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An Analysis of Non-Linear Sampled-Data
Feedback Control Systems

By
Shigenori Havasur* and Koichi Mizukamr*

(Received August 31, 1963)

Higher order sampled-data feedback systems which contain a saturating
element or a backlash element are investigated in this paper.

This study introduces a new approach to the analysis of non-linear sampled-
data control systems. At first the authors describe a new analytlcal method for
such systems using the theorem of Periodically Interrupted Electric Circuits and
how to apply the Digital Computer (KDC-1) to this theorem. The method pre-
sented here can be applied to any higher order systems with any non-linear
elements by making use of the digtal computer simulation of the above theorem
and the non-linear element. Some illustrative examples are given to clarify the
method involved. One example of the third order sampled-data feedback system
wlith a saturating element is investigated in case of initial conditions being given
without external forces, a unit step function and sine wave inputs being given.
The examples show that in the case of a step input as well as initial conditions
existing, slight variations of initial values result in difierent modes of periodic
oscillations, while in the case of a sinusoidal input, a slight modification of non-
linear characteristics results in forced oscillations in one case and in sub-harmynic
oscillations in another.

Two illustrative examples of the second order system with a backlash ele-
ment are considered in the case where the linear system is followed by the
backlash or follows the backlash.

Some results obtained by numerical computations are presented to show the

performance of the system dynamics on the basis of the new analytical method
presented here.

1. Introduction

To feedback control systems belongs a sampled-data feedback system for
which the input signal is represented by samples at regular intervals of time
as a discontinious waveform, for example, the control system with contactor
relay mechanism, the radar system and the digital computer control system.
There are two types in the sampled-data feedback systems, one of which is a

* Department of Electrical Engineering, II.



428 Shigenori HAyAsHI and K&ichi Mizukmi

linear sampled-data feedback system containing linear elements and another is
a non-linear sampled-data feedback system containing non-linear elements.

The theory of the former has progressed and been well constructed by
means of the techniques of the z transform and the modified 2z transform. How-
ever the theory of the latter containing non-linear elements, for example, a
saturating element, a backlash element, and a hysteresis or deadzone element,
has hardly been established because of difficulties of analyzing the complicated
phenomena arising between the discontinious signal and nonlinearity. However
C.K. Chow? has recently studied about the self-sustained oscillations in relay
servomechanisms with sampling by using the describing function method. R.E.
Kalman®, on the other hand, has investigated the initial condition problems for
the same system by the phase plane method and has obtained unexpected
results from the theoretical point of view.

The approach to the analysis of the transient behavior of the low order
relay sampled-data feedback system has been introduced in the past by F.J.
Mullin, E.I. Jury®, K. Izawa and L.E. Weaver® by use of the phase plane
method. Especially F.J. Mullin® has studied the stability and the compensation
of the saturating sampled-data feedback systems and S. Kodama®, from a
different point of view, investigated the stability of a non-linear sampled-data
feedback system and he gave the counter theory for the stability to F.J. Mullin’s
study. These investigations based on various assumptions of non-linear elements
as well as the dynamic chracteristic of the feedback systems have not been
established generally for the non-linear sampled-data feedback systems.

In this paper we introduce a new approach to the analysis of the higher
order sampled-data feedback systems containing non-linear elements. This
analytical technique for the transient and steady state behavior of the systems
is based on the theorem of Periodically Interrupted Electrical Circuits™ applying
the digital computer®®, Although only saturating and backlash elements are
here taken into account as non-linear elements, the analytical method presented
here may serve as a useful tool in the system with other non-linear elements.

2. Application of the Theorem of Periodically Interrupted

Electric Circuits
Controlled System
Sampling L

The system under consideration is Switch Nonlinearity 1117 b
. . . . ) 1—_5”’ Vx5 .
shown in Fig. 1. The non-linearity of ’—Te/t)em 270 hakidid w(l/ et

Zero-Order
the memory or the zero-memory type Hold Network s

follows a zero-order hold network. Fig. 1 Nonlinear sampled-data control

The controlled system is considered system
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generally as an m-th order linear element and subject to the disturbances »(f)’s
which are applied to points of the cascaded output elements.

When the input to the nonlinearity is x(¢), the output w(#) of the nonlinearity
is written as

w(t) = N{x(2), &)

= Wy t=n—1T+0 (1)
where N(.x, £) .1s the. non-linear .funct1o.n represe;tmg R ’_,_!w_CIL'
the non-linearity, T is the sampling period, .‘i(t)=a x(t) 1l il ' . :
and n=1,2,--. This output w(f) becomes constant T aliil
during one sampling period as shown in Fig. 2. Fig. 2 Output of the

The system equation can be set up, in general, nonlinearity
in the matrix form as follows during some (#) sampling period
D4ay Agp eeeevees A (€2 W
An D‘j‘azz : Cz(t). v(#)+ V1
S : D= odD) o (2)
: Am—1om Cm—1.(t)
Aot Aot D+ ) \() 9O +0un) 0SEST

where

D= %, Vun = Uu(t)], -t =_n_:1T ]12, o, xm»m—l, —Qor +1

and ay, -, amm are constants determined by the controlled system, c¢\(?), -,
cm—i(t) are outputs at points of the cascaded first order output elements of the
controlled system.

Now we rewrite Eq. (2) in the abbreviated form as

[ZD)ILgAt)] =[yu®)] O<t<T (3)

and Eq. (3) can be replaced by the operational form (the second kind Laplace
transform)

[Z(O)M gn($)] = Lyn( )1+ PLLI gn-(T)] (4)

where [L] is a constant determined by [Z(D)] and generally this matrix is a
unit matrix.

Premultiplying both sides of Eq. (4) by [Z( )], the following equation can
be obtained

Lan(£)] = [Z()1Lyn( )+ LZ( DT [LIL g0 T)] (5)

Hence the corresponding time function to Eq. (5) can be derived by taking
the inverse transform of Eq. (5) directly
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[gn®)] = [os) ]+ XM gnT)] 02T (6)
where
[oa()] = DMZ(P)T 'L yu(2)]
[x()] = DL Z(p)I'[L]

This result is the solution of the system Eq. (2) under consideration during
n-th sampling period and corresponds to the solution obtaind by the modified
Z trasform used in the linear sampled-data feedback system.

Now the initial matrix [ g,—(7)] of Eq. (6) is evaluated by the following
reccurrence formulae in matrix notation as

[gnAT)] = [P o D)1+ gu-AT)]
= [@u—o T)]+[XH( D)W @u-o T+ LA TV VL@ n- TYJA -+
+I( D Lo DI+ (T [ 20°] (7)

then, substituting Eq. (7) into Eq. (6) results in the solution during any sampl-
ing interval.

If the disturbances vi(2), -, v.(f) in Fig. 1 were not applied, then [¢.(#)] in
Eq. (6) would be replaced and deduced easily in the form of the product of
two matrices, that is, [ y,(¢)] becomes equal to [ y,] composed of the constant
elements being indifferent to time ¢ during one sampling interval, therefore in
such a case Eq. (6) can be written as

Lan®)] = [e®)ILynd +L2(IL gn— )1 0=t<T (8)

where
[ot)] = PLZ(H)T ) .
[ 3w = EN(CRI+LTY g0nATID ] (9)

In Eq. (9), [R,] is determined by the 7(#) input to the feedback system and
includes »(z—17T) component, [(7)} is the so-called transfer matrix whose con-
ponents of 0 or +1. In this case the initial matrix [ g,—.(7T)] can be written as

LgnoAT)] = [TV yus ]+ L) W oA T)]
=AWy 1+ LTI DIy + LA T AT yrr—sd + oo
+H( DI eIy 1+ LTI [ £5°] (10)

Next we shall induce the condition of the self-sustained oscillations. In
the case where the »(¢) input to the system exists, it is possible to obtain its
conditions, though we now consider the case where the r(¢) input is not given.

If the self-sustained oscillations of period »T(r=1, 2, ---) are to exist in the
system when »(#)=0, we can put, from Eq. (9)

* 9{f(}= Z—}U lim, (. jjgf;w etidp
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[IN{LTILgn-AT)B] = [en-] 1D

and substituting Eq. (11) into Eq. (8) yields the following matrix according to
the condition that Eq. (8) should have the same value at the r-th sampling
instant as the value at the previous »-th sampling instant, that is,

[B.] = ([AT)Ien—J+ (DD (LA T)Ien—2d+E2(T)T} -
{LATYIed+ DA DD LA T)e, 1+ DT - LA TMend + (DT (12)

where

p=12 - r

Hence we can obtain the #’s latent roots of the matrix [B,] by solving the
characteristic equation of the form

o{pLUI-[Bu1} =0 (13)

Then we know that the necessary and sufficient condition* where the system
would generate the self-sustained oscillations is that the absolute values of all
the latent roots f., 8., -, fm should be equal to unity respectively. If there
is only one latent root which is more than unity, the system is unstable and
if all the latent roots are less than unity, the system is stable because the
solution becomes infinitesimal as time goes.

3. Simulation by the Digital Computer and Numerical Examples

In practice it is difficult to clarify theoreticaly the dynamic characteristics
of the system according to the above theorem, but it is easily possible to place
the characteristics more clearly in sight by using the digital computer to simutate
this analytical method

applied to some examples. et wit)
Now consider the case hy= Al
where the controlled system - % ) i 7 0t) =htannkx (t)
is the 3rd order system ! Lx(t) x (1)
without disturbances and 72 Fetmg T -5
the non-linearity is a satura-
(e) ()

ing element shown in Fig. 3.

Fig. 3 Nonlinarity (saturating element
Eq. (8) represents the & v ( g )

solution during #-th sampl- w7 e ol 2 NI )
ing interval when the L P LP+1 T, P+1
saturating element is given Fig. 4 Controlled system G(2)

*¥ When 7 is a rational number, similarly we consider the self-sustained oscillation, therefore
the condition of the self-sustained oscillatlons could be established in general,
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by Fig. 3(a), where [ y,] of Eq. (9) can be determined by the following three
regions denoted such that
(1), if the linear region exists;

lxnl = {r(B)—cE} 1< h/y t=n—1T+0

then Eq. (9) becomes

r{Lr(n—1T)J+[T YL gu— DI
T%n
0 |, 14)
0

[ yn]

(2), if the positive saturate region exists ;

Zn > 'h“
r
then Eq. (9) becomes
k
[yn] ={ 0 |, (15)
0

(3), and if the negative saturating region exists;

xn<_h‘
r

then Eq. (9) becomes
—h
[y = 0 . (16)
0

In the case of this example, the digital computer flowchart is shown in Fig. 5.

When the saturating element whose characteristic is represented by the
following Eq. (17) is given in Fig. 3(b), [ y.] can be more easily determined
rather than in the above case.

w(t) = htanh kx(?) a7

Fig. 6 and Fig. 7 show the numerical results in the case of these examples.
Fig. 6(a) shows the response to a unit step function input in which the different
modes of periodic oscillation occurring depend on a slight variations of initial
values.

Other different modes of periodic oscillation depending on other initial con-
ditions in the same system was generated.

Fig. 6(b) shows the response of the system with various saturating elements
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to a unit step function input in the case where the 7 of the non-linearity is
only changed at same initial conditions.

The modes (2), (3) and (4) in Fig. 6(b) illustrate the periodic oscillation,
therefore we know that it is possible for one value of the y of the non-linearity
that the periodic oscillation should exist in the system, but for another value

Read in injtial values
and system parameters

Cornpute[ /57atr;'x tcompo/nents
of{ ) (X ] and store for
seéerg/ 74T « Set index

resisters K=1 i=r

Set in
sampling periods i @ and index

initial conditions, number of

resisters = j=r, j=1, K=1

Compute and slore for

nmodify I
K—HK+1

modity
—/+]

rae (9] (1 )+ (2] (go-1]

no

$j=72
yes

Gompute _the error signal at sampling
time nl and lpad

it into accumulator

iflal<Xo=h/8

Minus saturate state.

Plus saturate  state.

Linear state.

!
i

Set the mattix{ yas: ] and
initial  value matrix (g
for next sampling period,
Reset index Resistor __J=1

no

Fig. 5 Digital computer flowchart for the higher order sampled-data control

yes

print  output

system with a saturating element

Set the output of the non-| |Set the output of the non-| |Compte the output of the non-
/inear element and. store as linear element and store as linear element and store as
Wo =—H Wo=hH m:an
L
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r=g. (1}c=0, C20,C%0. (2/0 -02C%1.2.C2-22,
(3) 02 08 -18(1) 06 14, -22
(5) 07, 14, -22

modes of periodic oscillations in response to a unit step function input

2.0
~
= 15

- = =8, C= CLO0, C20,
25l (1) 0=1,(2),0=2.(3),0=4,(4). §=8, C=0, C*0. C 0(2/

(b) The time response of the system with various saturating elements to a unit step

function

input

" (2) =8

(1/ 6:4. Ea:

A /2/

A Ny . l,
: N2, \/25 kY 7 \ 52 /57 e
W /fsec) \/
'33 7\ i/ sec }

The input Sine wave.r (1)

(¢) Forced

oscillations in the system with a saturating element for »(¢)=sin 0.5z¢

D
Oy
T

(1), sin 0251t input Fed Fip e

(2), sin 137t /hput ’
(2) ( 1 )

. /2)

)

_05_
._1_0._.
_.‘5_

WV‘ PR

t(sec)

(d) The transient response of the system with a saturating element to sinusoidal inputs

Fig. 6 Response of the system with a saturating element, #/=1.0, 7=1.0 (sec) and

G

to a unit step function and sinusoidal inputs

- 1
p(p+1)y?



An Analysis of Non-Linear Sampled-Data Feedback Control Systems 435

20F(1) =05 sec
15H2). 720 -

1LOM 3).7=20 0
—~ ‘
> 05

=20

(a) The response of the system with a saturating element (w(#)=tanh 32(¢))}

to r(#)=0

5

Ly
S (0
T T

(1/, sin 0.5t input, é

5-05“‘ (2) (2), sin025uf input,
E' L
5% AL

(b) The response of the system with a saturating element (w(#)=tanh 2x(t)) and

T=1.0 to sinusoidal inputs

Fig. 7 Response of the system with a saturating element described w(¢)=# tanh kx(?)

and G(p) = p‘(;jr—nz

wt)| 1 Je @ L _tc)
e VYA TP

(a) Controlled system G(p)

wat)
@ .
H;‘%
~H
X
O]

(b) Nonlinearity (backlash)
Fig. 8 Controlled system and
backlash element

16F Noi-tingzr ) =0 T%=0
i {inear
> L2
st
041 ¢ (seconcs)
1 L L Il 1

) ' z
0 5 0 15 D 25 30

Fig. 9 The response of the second order system
T=1.0 with a back-

of G(p) = ﬁT)’

lash element H=0.1 and without (linear)

to a unit step function input

to sine wave inputs and no input but only initial values

Sampling Zero-Order Controtled Nonlinearity
Switch Hold Network System  (Backlash)

rit) /
T et ro)

5P t)
FEFZATE s By 2 g

P w(t) x )

w1 (1

(a)

()

(a) Sampled-data sarvo with backlash element
(b) Controlled system, G(p)
(¢ ) Nonlinearity (backlash)
Fig. 10 Non-linear sampled data control
system

-
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ead in initial values
and system parameters
|

Compute matrix components
of(%), {x] and store for
several  rdT - Set index
resisters.  K=1 /=r

no
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Set initial conditions, number of sampling

0ds give at first the gifferential
coefficient of the” imput of a Backlash
Set mdex resisters.

o and

j=r j=I

Compute & store for
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[/
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store.
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Con(AC)=X(j4%) = X,

Yeés

]
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no /Test only sign part yes_yes /Test only sign part no
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ore the sign part of X State or @ of Backlash the state 1s within or out 0O
for next calculation. element. Backlash _element.
1

L

in Qor

in@or @
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the state

compute and store
1-Ca T)+CHAT)I=a

compute and store
I-Clia D+CRA T)I= b
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Separate  [he slate
P 2H
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state (3) {stafe @

State

Set the system output

as Clid T =CKAT) J
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in 3

separate
the state

Compute output as
r pC.(/'A T+ H J
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[Coms gy byt = |

(-pr/hf output )

no
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Set the Matrix  [yas:] apd
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for next sampling period.”
Resel index  resister _j=1
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with a backlash element

Fig. 11 Digital computer flowchart for the second order sampled-data control system
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it is impossible.

Fig. 6(c) and (d) show the response of the system to a sine wave input.
The forced oscillations shown in Fig. 6(c) are the subharmonic oscillation of
order 1/2 illustrated by curve 1 and order 1/3 by curve 2, however in the case
shown in Fig. 6(d) the subharmonic oscillation don’t occur under the same
condition as in Fig. 6 (c).

Fig. 7(a) shows the response of the system to no inputs only due to the
given initial value for changing the sampling period and Fig. 7(b) indicates the
response of the same system to a sine wave input under the same conditions
in Fig. 7(a).

Next we show the numerical examples of the system with a backlash
element as the non-linearity shown in Fig. 8(b).

At first we consider that the controlled system is the 2nd order system
without disturbances and a backlash element follows the zero-order hold network
as shown in Fig. 1.

In such a case, [y,] of Eq. (9) is determined by the following separete
regions, thus

=70

here w(t) is found to be

@ w(t) = x($)—H, (x(¢) = 0)

® w(t) = x()—H) t=n—2T+0 (within backlash)

® w(t) = )+ H, (x(¢)<0)

@ w(t) = {x()+ H) t=n—2T+0 (within backlash)
where

H': half of the backlash width, ¢ = #—17T40 (at »-th sampling instant).

Fig. 9 shws the response of the system containing a backlash element to
a unit step function input which

16
is compared with the response of 12 (1)
the linear system. o8t . X L) umit Step inpur. (g“: 01 CE0
When the backlash element ©%7// \? N 5’”[0\-5 et frg ;{0/ ;
0 1 1 1! 1 i 1
follows the controlled system as _04_V \5/ o\ 5T 25] N\
. . . : ¢ (sec)

shown in Fig. 10, one numerical -08-=

results in such a case is illustrated Fig. 12 The transient response of the system

of Fig. 10 with T=1.0, 7,=1.0, K=
1.0 and H=0.1 to a unit step function
of the system to a unit step and sine wave input

in Fig. 12 which gives the response
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function input and to a sine wave input.
The digital computer flowchart for numerical calculation of the feedback
system shown in Fig. 10 is illustrated in Fig. 11.

4. Conclusion

An attempt has been made to analyze the higher order sampled-data feed-
back systems with non-linear element by appling the theorem of Periodically
Interrupted Electric Circuits.

The application of this analytical method to some non-linear sampled-data
system can be useful in practice only by making use of the digital computer
simulation.

In this paper we consider the 3rd order sampled-data feedback system with
a saturating element and the 2nd order sampled-data feedback system with a
backlash, however it may be possible to analyzed the higher order sampled-
dat feedback system with other non-linear elements by means of the analytical
method presented here. .

It is evident that this approach will be useful to clarify the performance
of the sampled-data feedback system with non-linear elements, which has hardly
been analyzed by other methods.
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