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An Approximate Analysis of the Transient Stability 
of One- or Two-Machine Systems 

By 

Shigenori HAYASHI* and JUro UMOTO* 

(Received June 27, 1963) 

In this paper, first, we correct Hano's approximate analysis of power system 
stability in which he has neglected to consider the initial angular displacement 
and velocity of machines when he solved his approximate differential equation 
of angular motion of one or two machines in power systems. Next we propose 
better procedures, based on approximating the trigonometric function in the 
original nonlinear differential equation of angular motion of the machines by more 
appropriate triangles than Hano's, or by trapezoids. Then developing these 
approximate procedure, we derive a sort of stability criterion of one- or two­
machine systems, the simple formulae for the critical switching time and so on, 
when the circuit breakers are reclosed or not reclosed after the fault has been 
cleared. 

At last, comparing the calculated results of some transient stability problems 
by the approximate procedures with those by the conventional step-by-step method, 
we ascertain that the approximate analysis of system stability, especially the 
trapzoid-approximation is a good approximate analysis of system stability. 

1. Introduction 

413 

In order to solve the equations of the angular motion of some machines in 

power systems and to predict the transient stability, power engineers have 

thought of many procedures, for example, numerical calculation by the step-by­

step method, the computation by AC network analyzer, analog or digital 

computer. Moreover, in 1930, by an excellent idea, Hano introduced1
) 2) 3) the 

piecewise linealized analysis of transient stability. 

However, it is said that the calculation results from Hano's method, com­

paring with those by the step-by-step method, are too pesimistic, because power 

systems are predicted to be apt to incline to extreme unstability in the case 

of the former method. 

So inspecting this method in detail, it has the basic defects that he has 

neglected to consider the initial angular displacement and velocity of the mach­

ines when he solved his approximate differential equations of their angular 
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motion as mentioned later. Hence he could not help reaching the incorrect 

conclusion that the machines are stable only if the approximate equations have 

periodical solutions. 

Therefore, first, we amend his wrong theory. Next we propose better 

procedures based on approximating the trigonometric function in the original 

nonlinear differential equation for the machines by the more suitable triangles 

than Hano's or the trapezoids. Moreover developing these procedures, we derive 

a kind of stability criterion of one- or two-machine systems, the expression for 

the angular dispacement in transient stability limit, the direct formula for the 

critical switching time and so on. 

At last, comparing the calculated results by these approximations with 

those by the step-by-step procedure, the authors ascertain that their method, 

especially the trapezoid-approximation is a good approximate analysis for 

transient stability of power systems. 

2. Differential Equations of Angular Motion for Two Machines 

In Fig. 1, A, B, C and iJ are the overall four terminal network constants, 

which consist of the transient impedances of the two synchronous machines S1 

and S2, the transformer impedances at the sending and the receiving end. and 

the line constants in the transient states, i.e. during line fault, after switching 

out the faulty line and after reclosing breakers. In the same Figure. 

_fl_,_ 
A s c 6 

Fig. 1. Two-machine system diagram. 

P,0 : the mechanical input or output power for the synchronous machine 

S, before fault. 

P, : the electrical input or output power of S, after fault. 

M,: the inertia constant of S,. 
E, = E, /0,: the transient internal voltage of S, after fault, where E, 

and 0, are the magnitude and the phase angle of E, respectively. 

v = 1 and 2. 

Next let us denote 

W = W /Ow, W = A, B, C, iJ ; W and 0u; are the magnitude and the argument 

of W respectively, 
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then, as well known, the transient electrical input or output power for S1 and 

S2 are given by, respectively 

where 

Pi = Pu cos(0v-0B)-p12 cos((} +0B), 

P2 = P22 cos((}A -0B)+ 11i2 cos(0-0B) 
} ( 1 ) 

(2) 

(} = 01 - (}2: the electrical angular displacement between rotors of S1 and S2 

or the voltages E1 and E2 • ( 3) 

As already known, the differential equation of angular motion for two 
machines in the power system shown in Fig. 1 are given as 

where 

Wo = 211:fo 

/ 0 : commercial frequency 

Eq. (4) is equivalent to the equation for one machine. 

Next, substituting Eq. (1) into Eq. (4), yields 

d20 . 
dt2+aosm0+bocos(} = Co, 

where 

bo = -WoP12COS 0B l 
Co = wo[ {P,o-Pn cos(Ov-0B)) /M, - {P20+ P22 cos((}A +OB)) /M2] 

By the way, in reference 1), 2) and 3), denoting 

<p' = (}-(}o, 

Oo: initial angular displacement, } 

(4) 

( 5) 

( 6) 

( 7) 

( 8) 

Hano introduced a fundamental equation of the same form as Eq. (6) from Eq. 
(4), and he linealized piecewise the fundamental equation by substituting the 

piecewise linear function corresponding to the @-triangle-approximation as 

illustrated in the next Article into sin <p' and cos <p' in the original equation, and 

then he investigated the transient stability of one- or two-machine systems 

through the solution <p' of the piecewise linealized approximate equations. 

However as pointed out previously, he has made the wrong conclusion that the 

rotating motion of the machines is stable only if <p' has a periodical solution, 

:,ince h~ has f~i!e4 to notic(? tl:).~ effects of the initial values of <p' al.Id <p' =d<p' I dt, 
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Fig. 2. Illustration of triangle­
approximation. 
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Fig. 3. Illustration of trapezoid­
approximation. 

On the other hand, we reduced the next convenient fundamental expression 
from Eq. (6), i.e. 

<p=0+0a, 

Ba = tan-1(bo/ ao), 

do= ✓ahb~-

l 
J 

( 9) 

(10) 

By means of approximating sin cp in the form of a triangle and a trapezoid as 

shown in Figs 2 and 3, we shall derive the piecewise linearized differential 

equations from Eq. (9). Next we shall discuss the transient stability of the 

systems with the solutions of the approximate equations. These will be 

illustrated in detail in the following Articles. 

3. Approximate Differential Equations and their solutions 

3.1. Case by Triangle-Approximation 

From Fig. 2 and Eq. (9), we can derive the approximate differential equa­

tions and their solutions as shown in Table 1, 

where 

'Po0 and cp0°: the initial values of cp and cp respectively, where ( -n-/2) < cp < 11:/2 

cp2° and cp2°: the same values, where 11:/2 < cp < 311:/2 

Moreover Table 2 denotes the values of T/o in the three special cases as shown 
in Fig. 4(a), (b) and (c). 

3.2. Case by Trapezoid-Approximation 

From Fig. 3 and Eq. (9), we can introduce the approximate differential 

equatiops and their soJutiQns a$ $hown in Table 31 
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Table 1. Approximate differential equations and their solutions­
triangle-approximation. 

_..':..s.<ps...':.. 
2- -2 I 

..':.. S,. S,. 31t' 
2 _<p_ 2 

7Ja:, sin <p 27Jo 27Jo 
--;;-'P -(1t'-<p) 

1t' 

Approximate eifferential d2<p +CtJ2<p=Co 
d2<p 
dt2 -CtJ2<p=C2 dt 

7ld1J 

equations 

<p 

Solutions 

<l> 

/I\ 
/ I \ 

/ I \ 
I \ 

I \ 
/ \ 

I \ 
I \ 

I \I 

CtJ2 =2do7Jo/1t' 

~ (1-cos CtJt) +<p0 - 0 cos CtJt 
Ct) 

<l> -0 
+-0-sinCtJt 

Ct) 

( ~ -CtJ<p0 -
0) sin CtJt 

+q,0 - 0 cos CtJt 

~ 1/ ~ 
.':, I I \ 
"' pJ I \ u I I \ 
~ 1/ I 

~ 
V I 

~ I 

C2=Co-21Jodo 

c2
2 (cosh CtJt-1) + <p2- 0 cosh CtJt 

Ct) 

<l> -0 
+-2-sinhCtJt 

Ct) 

(: +CtJ<pz- 0) sinh CtJt 

+ q,2 -o cosh CtJt 

~ 
s 
"' \I 
~ 

00 ½ 7[ ~ 
I 

½ 7[ ~ ½ 
<;{radian) <;(rad1an) y,(rad/an) 

(a) ®-approximation. (b) (D0-approximation ; 
area OPQ=area QRS. 

( c) ©i-approximation ; 
area TPQ=area QSR. 

Fig. 4. Illustration of three special triangle-approximations. 

Table 2. The values of 7Jo for the three special 
triangle-approximations in Fig. 4. 

Approximation 7/o 

@ 1 

©o 4/1t' 

©1 (4 cos <p,/1t')/(l-2<p,/1t')2 
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TJ=sincp 
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Table 3. Approximate differential equations and their 
solutions-trapezoid-approximation. 

- 'PoS.(fJSJPo I 'PoS.<pS.-(po 11:-(poS.<pS.11: + 'Po 

<p/(po 1 (11:-rp)/,Po 

I 11:+,PoS.<pS.211:-(po 

I -1 

Approximate d2<p a2cp d2cp d2cp 
--+w2cp=c dt2=C1 ---w2cp=c <ft2 =Ca dt2 o dt2 2 differential 

equations w2=dol'Po 

(c0/w2)(1-cos wt) 
<p +cp0 - 0 cos wt 

Solutions 
+ (¢0- 0/w)sin wt 

<p 
(~-wcp0 -

0) sin wt 

+¢0- 0cos wt 

l -- 1:, 
/ I \ 

I \ 
I \ 

I \ 

/ \ 
I \ 

1/ " 

0 0 ½ 7[ 

':P (ractian) 

(a) @-approximation. 

\ 

C1=Co-do 

C f2 
_l -+cp -0+¢ -Of 2 1 1 

C1t+¢1-0 

I I 

I I 
I 

I I ' 

'f: 7[/ 7[-~ 
/2 . 

r,, :radian; 

c2 = c0-(11:/,Po)do 

(c2/w2)(cosh wt-1) 
+ cp2 -o cosh wt 
+(¢2 - 0/w)sinhwt 

( ~-wg,2 - 0)sinh wt 

+ ¢2 - 0 cosh wt 

I 

I 
I 

I 

Ca=co+do 

C3f2 + -o+ • -Of 
2 

(/Ja (/Ja 

csf+¢a- 0 

I I 

cp 1/;; 7[-~ 

:f' :radian) 

(b) ® 0-approximation ; 
area OPQ=area QSR. 

(c) ®capproximation; 
area TPQ=area QSR. 

Fig. 5. Illustration of three special trapezoid-approximations. 

Table 4. The values of (p0 for three special trapezoid­
approximations in Fig. 5. 

Approximations I <fio (radian) 

@ 11:/2 

®o 11:-2 

®1 { r2 11:/2-cos (fJs+ (11:/2-cos cp,)2-cp,2 
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where 

cpa° and g,0°: the initia] values of cp and g, respectively, where ( -cpo) < rp < f/!o 

cp1° and 4'1° : the same values, where f/!o < cp < 1r: - f/!o 

cp2° and 4'2° : the same values, where 1r: -{po< cp < 1r: + f/!o 

Table 4 denotes the values of f/!0 in the three special cases shown in Fig. 5(a), 
(b) and (c), where ®-approximation in (a) perfectly coincides with @-approxim­
ation in Fig. 4(a). 

4. Stability Criterion, Critical Angular Displacement fib .. and Critical 

Switching Time T"b .. -Non-Reclosing Circuit Breakers 

In the preceeding Articles 2 and 3, we could develop our theory without 
distinguishing the three transient states, i.e. the circuit modes during fault, 
after switching out faulty line and after reclosing cirduit breakers. However. 
hereafter, we have need of distinguishing these three states and so we supple­
ment /, b and c as suffixes representing every constant and variable, except 7/o, 

rp0 and cp,,, coming out in the approximate differential equations and their solu­
tions during fault, switching out and after reclosing, in turn. 

Next in this and the next Articles, we make the assumptions shown in 
Table 5, where 

O~m: the maximum value of the angular displacement, where 
v = b, c, and in the critical case the suffix m is displaced with oo. 

Table 5. Assumptions for initial angular displacement and the maximum ones in 
the case of switching out faulty line within critical switching time. 

I triangle-approximation I trapezoid-approximation 

Initial angular displacement 
-1r/2S.<p 10=/Jo+ /J ,.s.1r/2 -qioS.'Pto=IJo+ /J toS.<i>o (IJ,o-0==/Jo, 'Pto- 0==,Pio) 

Maximum angular displace-
ment-non reclosing breakers 1C /2s_ ,Pbm = /J bm + /J baS.31t /2 1t-q>oS.,Pbm=IJbm+ /JbaS.1t+ <i>o 

(/Jbm, 'Pbm) 
Maximum angular displace-
ment-reclosing breakers 1t/2S.,Pcm= /Jc,.+ /JcaS.31t/2 1C-q>oS.,Pcm=IJcm + /JcaS.1t + <i>o 

(/Jcm, 'Pcm) 

4.1. Stability Criterion 

If 

1r: < CJ'b < 31r:/2 for triangle-approximation, 
1r:-f/!o < Cf>b < 1r:+f/!o for trapezoid-approximation, } 

the solutions of the appro:x:iJnate equations shown in Tables 1 and 3 give 

(11) 
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•-o 
<pb = Cb¥cosh wbtb2-l)+<pbf cose wbtb2 + <pb2 sinh wbtb2 

OJb 0Jb 

= _ cb;+l(cb;+<pbf + <f!bi)1;"'b'b2 +l(cb;+ <pbf _ <f!bi)1;-"'b'b2, 
OJb 2 OJb 0Jb 2 OJb 0Jb 

(12) 

where 

tb2 : the time taken from the moment when <pb - % > 11:/2 for the triangle­

approximation or % > 11:-(/50 for the trapezoid-approximation-reaches 

<pbf• 

Therefore, the necessary and sufficient condition in order that <pb has the 

maximum, i.e. {) has the maximum, hence the one- or two-machine systems are 

stable, is given by 

(13) 

This formula is the required stability criterion, which is able to be applied to 

both cases by the triangle- and trapezoid-approximations. 

4.2. Critical Angular Displacement Ob.,,, 

The rotor motion of the machines reaches the stability limit, if the summ­

ation in the left side of Eq. (13) tends to zero. Then the critical angular 

displacement {)b.,,, is denoted by 

where l (14) 

This formula, too, can be applied to both cases by the triangle- and trapezoid­

approximation. 

4.3. Critical Switching Time 

( i) Case by Triangle-approximation 

Using Eq. (13) and the solutions given in Table 3, we can derive the 

formulae to give the critical switching time •boo as presented in Table 6. 

(ii) Case by Trapezoid-Approximation 

With Eq. (13) and the solutions given in Table 3, we can derive the expres­

sions to give the critical switching time '""" as shown in Table 7. 
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Table 6. Critical switching time i-6.,,-triangle-approximation. 

?°boo I m 

-1r:/2s,.<pf'rboo, _!_ cos- 1{~±/(!!_ )2-!!.} ( Wt
2

)(Ct r 
<pm.,,s..1r:/2 

1--- --0 -<pJo 
Wt m m m wt2 w12 

T1o+i-b2.,,; 
( 1+ Wt){ CJo _!£_ 

1r:/2s,.<p J-rb=, T 12 =_!__ cos-i(Ctol w12-1r:/2) Wt WJ2 2 
<pm.,,s,.31r:/2 

WJ c10/ w/-<pJo 
+✓(~- r-(_SlQ__-~n 

i-2.,,= ;
1 
log,t ±/(;~)2-!} w12 'Pto w/ 2 

n I h 

( CJo CbQ r -----(}Ja+(}ba 
( CJo Cto ) w/ w/ --2 ---2 -{}Ja+(}b• 

( Wf )2( Cfo y Wf Wt + -- ---<p10 
( Cfo ) Wb w/ 

X ---<p10 
-z( Cto _!£_ r w,2 

Wt2 2 

(1-~){_££Q___.!£.. 
CJo Cto Wb w/ 2 
-----+o,.-ob. 

-✓( Cfo r ( Cfo 'lr:n w/ wt2 
w/-<pfo - w,2-2 

5. Stability Criterion, Critical Angular Displacement Oc.,, and 

Critical Switching time i-c.,,-Reclosing Circuit Breakers 

5.1. When No-Voltage Time i-0 =0 

In this case, our purpose is attained if only we substitute c for the suffix 

b of the symbol of every quantity coming out in Eqs. (13) and (14), Tables 6 and 

7 shown in the preceding Article. For example, the stability criterion and the 

critical angular displacement Be.,, are reduced from Eqs. (13) and (14) respectively 

as follows: 

(15) 

and 

(16) 

5.2. When No-Voltage Time i-0 >0 
In this case, the stability criterion and the critical angular displacement Be.,, 
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Table 7. Critical switching time ?"6=-trapezoid-approximation. 

I ?°b= I m 

( w/)( c, r -<po~<fJfTb=, 
:, COS-I!;-±/(;; r-!} 1 --- --O--<pio 

<fJbTb=~<fJo ©b2 W/ 

T1o+?°b1=; 
( c,o ){ w/ ( Cfo ) 

<fJo~<fJ /Tb=• 
T __ 1_ _1 (Ctol w,2-<po ) w/ ---<po -- ---<po 

10- cos w/ Wb2 w,2 
<fJbTb=~TC-<po 

w, c,ol w/-<p10 
( Cbo ) 

?"bJ== ~ ±/(; Y-¾ - --<po 
©b2 

T1o+T11+?"b2= 

T 1 _1 (Ctol w,
2
-<po ) 10 =--cos 

w, c,ol w/-<p10 

T {✓ ( Cfo r ( Cfo )( Cfo _ 

TC-<po~<fJfTb=• 
/1 = . w/-<pfo - w/ -<po w/ -<po (1+~){~-<po+/(_ELQ__- )2 

- 211:-<po-/ ( ;:;2 -<p,oY-( ;:;2 -<pon 
Wo wb2 w/ 'Pto 

<fJbTb=~1C + '{>o 
( Cfo )( Cfo -) - -· --<po ---<po-211:-<po 

( Cfo ) 
w/ <p/ 

-+w, --2 -<po 
w, 

?°b2==-
1
- loge{~±/( ~r-~} 

w1 m m m 

n I h 

( !:.ft__!.M__(}fa+ (}bar 
( Cfo Cbo ) w/ wb2 
--2---2 -{}ta+ (}ba +( Wt Y( Cfo )2 ©f ©b 

-- ---<p10 
( Cfo ) wb w/ 

X w,2 -<pfo 
( Cbo _ )( Cbo --) -2 ---<po ---11:-<po 

w? wb2 

( ©f Y{( Cfo r ( Cfo )1 
{Wt2( Cfo _) ( cbo _)} 

-- ---<p,o - ---<po 
wb w/ w/ 

-w, -- ---<po - ---<po 

+2{ Cao2 -<po)(11:-2<po+01a-0ba) 
w? w/ Wb2 

r( Cf y ( Cfo y Wb 
X - O--<pfo - ---<po 

( Cto r w/ w1 - --<po ©b2 

( 1- ; ){ ~ 0

2 -<po 
, I 

~-~+01a-{}ba 
wb2 ©b2 

-✓( Cfo y w,2 -<p10 

( Cfo )( Cfo _ -} -
01

2 -<po w/-<po-211:-<po 



An Apprximate Analysis of the Transient Stability of On- or Two-Machine Systems 423 

are given by all the same expressions as those in Eqs. (15) and (16) respectively. 

On the other hand, the switching time ?" coo is introduced as shown Table 8, 

where we give only the case by the trapezoid-approximation for simplicity. 

However, as seen in this Table, compared with ?"boo in Tables 6 or 7 and ?"coo 

- ifioS,. If! fT coo 

'POTcooS.ifio 

ifioS..<f!fTceo 
'PbTceoS..1C-ipo 

-ifioS.'f!/Tceo 
<f!bTceoS..1C + ifio 

Table 8. Critical switching time -rc .. -trapezoid-approximation. 
(1e-<poS..<f!~ I t~Tcoo+T•, 'Pel l=Tcoo+T•S..1C+ 'Po 

✓(" )' ( c., ) ( ,,. '• ) } 1 [. _ { H -2 <n/-ifio (1e-2ifio)+ o,2- (J)b2 -8fa+8oa 
-r=-- sm i f 

(J)f ( Cfo2 ) 
<nf2 -<pfo 

- B.0
1
]. Bb,f= tan- 1( :; tan <nbTbo) 

\ 

CbQ ( Cfo Cbo ) 
1 [ { (J)b2 -ifio+ 7,;z---;;;z-8fa+8ba } 

-r=-- cos-1 f b 
(J)f ( Cfo ) ---<pfo 

<nl With these 

-Bbo"] 8bO"=tan-1(~tan<nbTbo) equations, 
' (J)b -r=-rc .. can be 

Tbo='t'a-Tb2 I c6: 1{/(jj)2-2(~:2 -ifio)-Jjjl} sought 
(J)b (J)b2 -</Jo graphically. 

{ Cc0 CbQ 1 ( Cbo )(~ G/H= ------(}b.+8ca+- ---lpo 1+- e"'b'l'b2 
<n,2 (J)b2 2 (1)62 <nc 

- )/1- -+1-(J)b e-"'b'l'b2 -(1+ (J)b e"'b'l'b2-l- t:J)h e-"'b'l'b2) 
<nc 2 <nc <n, 

Cf1't'a-Tb2+<p11 0 
+✓ (Cf't'a-Tb2+ ¢11 -or -r= 

c,, c,, 

+ 2(1e-2<fo+ 81.-8ba)-Cb1(-r.-Tb2)2-2<pf1 - 0 c-r.-Tb2) With these 
C/1 equations, 

(- <p -o) /( • -oy 't'=- 't'a-Tb2+--.£!._ + 't'a-Tb2+~ ) -r=-r ... can be 
Ct1 Cft 

sought 
+ 2(1e-2ifio+8fa-8ba)-Cb1( 't'a-Tb2)2-2<p11 -O( 't'a-Tb2) 

graphically. Cft 

<p -0- ✓(Cfo r (Cfo y /1 -<nf --2 -<pro - --2 -<Po (J)f <nt I 

-r ... =-1 log, {_!!_±/(_!!_)2-~}. 
<nt m m m 

-0 ✓ Cfo r ( Cfo ) ¢12 =<nt <n/-<pfo - <nt2 -ifio 

(Cto -) X <nf2 -<po-21e - ifio 

m=__!_( Cfo -<po+ ¢12-0 ){(1+ (J)b )(1+ <nt) e"'bT•+(1- (J)b )(1- (J)')e-"'bT•} 
2 <nf2 <nt <nc (J)b <nc (J)b 

Ceo ( Cbo ) [ 1 { ( (J)b ) ( (J)b ) } n= (J) 2 -1e+8ca-8ba- (J) 2 -TC 1+2 1+;- e"'b7•+ 1-- e-"'b7
• 

c b c Cdc 

x( Cf~ -1e+8fa-8ba)] 
(J)b 

h=__!_( ~-ifio_ <pf2 -0){(1+ (J)b )( 1-<nt) e"'bT•+ ( 1- (J)b )(1- <nt) e-"'bT•} 
2 <nf2 (J)f <nc (J)b <nc (J)b 
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when 1:0 =0, it is impossible, in some cases, to express directly Tceo• In such 
cases, i.e. in the first or second columns in Table 8, we are obliged to determine 
the value of 1: coo on the graph, after calculating the values of 1: by substituting 

the various numerical values into T1n in Table 8, where 

Tb2: the time taken for <fib to vary from 1e-rp0 to the value of <fib at the 

instant when circuit breakers are reclosed. 

6. Numerical Examples 

As one exercise, let us adopt the one-machine system sketched in Fig. 6, 
whose constants are indicated in Table 9. 

6.1. Case of Non-Reclosing Circuit Breakers 

In Fig. 7 are plotted the representative swing curves calculated by our 

approximate procedures previously mentioned and, for comparison, by the con­

ventional step-by-step method, where it is assumed that two-wire ground fault 

Table 9. System constants in Fig. 7. 

Earth resistance : Ro 0.1.Q/km 

Wire resistance : R 0.1.Q/km 
Transmission Positive- and negative-phase-sequence reactance : 1.3mH/km 

line L 

Zero-phase-sequence reactance, I : L 0 4.5 mH/km/circuit 

Zero-phase-sequence reactance, II : L 00 7.5 mH/km/2 circuits 

Generator capacity : [MV A]0 250MVA 

Terminal voltage of generator G before fault, 154kV reduced to the high-voltage side : EG 
Positive-phase-sequence steady-state reactance 75% of G: x1 

Positiv-phase-sequence transient reactance ofG: 35% 
Sending x{ 

end Negative-phase-sequence reactance of G: x2 55% 

Zero-phase-sequence reactance of G: x0 15% 

Unit inertia constant of G : MG 6 

Transformer caprcity : [MV A]Ts 250MVA 

Transformer reactance : XTs 10% 

Voltage of the infinite bus reduced to the high- 140kV voltage side : ER 

Power supplied to the infinite bus : PR 160MW 
Receiving (power factor= 100%) 

end Tranformer capacity : [MVA]TR 250MVA 

Transformer reactance : XTR 10% 
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Fig. 6. One-machine system diagram with two-wire ground fault 
at the snding end of one of double circuits. 
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Fig. 7. Swing curves calculated by various procedures-non-reclosing 
circuit breakers. 

Table 10. Calculated results of r6= and 06= by the various procedures. 

I rb= [sec] I 06= [degree] 

@-approximation No exist No exist 

©0-approximation 0.208 133.7 

® 0-approximation 0.198 137.7 

®.-approximation 0.187 136.1 (<po= 1.18 radians) 

Step-by-step method 0.175~0.2 138.1 
(by equal-area caiterion) 
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occurs at the sending end of one of the double circuits of symmetrically arranged 

three-conductor transmission wires as shown in Fig. 6, and the faulty circuit 

is not reclosed after the fault has been cleared. Also Table 10 denotes the 

calculated results of the critical switching time •b .. in seconds, and the critical 

angular dispacement Ob .. in degrees by the various procedures. As seen by these 

results, especially ®capproximation, where we assume the values of <p8 and so 

{fo in equation shown in Table 4 as follows : 

cp. = 810+(81a+Bba)/2=0.538 [radian], 
{fo = 1.18 [radian], (17) 

give better results than the other approximations, if compared with the results 
from the step-by-step procedure. 

6.2. Case of Reclosing Circuit Breakers 

Table 11 shows the calculated results of the critical switching time , co .. 

and ,e15 .. in seconds, which present Tc .. when •a=O and 15 in cycles respectively, 

and the critical angular dispacement Be .. in degrees by the step-by-step method 

(containing equal-area criterion) and ®capproximation, where it is assumed 

</5o = 'Po in Eq. (17), 

and the faulty condition is the same as that in Section 6.1. Here, too, we see 

that ®capproximation gives the good results. 

Table 11. Calculated resuls of 'l'c000 and 'l'ctsoo and 8coo by the 
®capproxlmation and the step-by-step method. 

I •cooo [sec] I •c1soo [sec] I 8coo [degree] 

®capproximation 0.278 0.211 149.4 ((J)o=l.18 radians) 

Step-by-step method 0.275~0.3 0.2~0.225 153.2 
(by equal-area criterion) 

7. Conclusion 

In the preceding Articles, we have illustrated our approximate analysis of 

transient stability of one- or two-machine systems. As ascertained by the 

numerical examples, through our approximate analysis, especially ®capproxima­

tion, we are able to estimate power system stability with suitable accuracy. 
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