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A Study on the Space and Energy Dependent Reactor 
Kinetics, with Direct Physical Interpretation of the 
Effective Neutron Lifetime and Criticality Factor 

By 

Hiroshi NISHIHARA* and Seiji UKAI* 

(Received January 31, 1963) 

First, the concept of neutron importance is introduced. It is assumed that 
each of the neutrons produced by fission in a chain reactor possesses an importance 
proportional to the number of its descendants. Secondly, on the basis of the law 
of conservation, a transport equation of the neutron importance is derived. Then, 
the effective neutron lifetime is defined as the mean interval of successive fission 
events in the course of the importance transport. The consistent definition of 
the criticality factor is the neutron multiplicity during the effective neutron life­
time so defined. 

After defining the basic reactor kinetics parameters, such as the effective 
neutron lifetime and criticality factor, the persistent time behavior of nuclear 
chain reactors has been investigated. 

The kernel form reactor equation is used because of its physical intelligibility. 
The formulas obtained are applicable to any reactor, provided that the neutron 

flux and its adjoint function is known either analytically or numerically. 

I. Introduction 

The effective neutron lifetime and criticality factor are of essential im­

portance in the kinetics of nuclear reactors. In spite of their significance, 

however, they are not very clearly defined, in the sense that their physical 

entities are not directly reflected in their definitions. 

We now intend to define these parameters on the basis of a direct physical 

interpretation of the time behavior of chain reactors. 

The general neutron transport equation in kernel form is1
) 

¢(P, t) = [= df i dP'H(P', f .- P, t)S(P', f), ( 1) 

where P represents a point (r, E, D) in the neutron phase space. S(P', f) 

neutrons are supposed to be born in unit volume of the phase space around 

P' per unit time at f. 
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The medium is characterized by the general transport kernel H(P', t--P, t) 

which gives the neutron flux at time t in unit volume of neutron phase space 

around P due to a single neutron produced by fission or some other process 

at point P' at time f. 

In the case of prompt neutron kinetics, where the effect of delayed 

neutrons is neglected, S(P', f) is given by 

SCP', f) = i
71
/CE') !dE 11v(E 11

) "'i.t(r', E 11 )¢0 (r', E", f), ( 2) 

where f(E) is the normalized spectrum of prompt fission neutrons. The total 

flux ¢0 is the integral of the angular flux ¢ over all directions : 

¢ 0 (r', E", f) = !d0"¢(r', E", 0.11
, f). ( 3) 

v(E) is the neutron multiplicity which gives the number of neutrons born 

per fission induced by a neutron of energy E, while "'i.1(r, E) is the medium's 

fission cross section for neutrons of energy E. 

In order to eliminate the energy and angular dependences, we multiply 

the equation (1) through by v(E) "'i.1(r, E) and integrate over energy E and 

direction n. Then we obtain 

S(r, t) = [
00 

dt' ! dr'G(r', t' - r, t)S(r', f), ( 4) 

where 

S(r, t) = ! dE v(E) "'i.1(r, E)ct>o(r, E, t) , ( 5) 

and 

G(r', f -- r, t) = in ! dE ~ dE' ~ d!l ~ d!l'v(E) "'i.1(r, E) f(E')H(P', f - P, t) . ( 6) 

The kernel G (r', t' -- r, t) gives the number of neutrons produced, in unit 

volume around r in unit time interval at time t, by fissions induced by a 

single neutron born by fission at (r', f). 

II. Fisson Neutron Importance 

The fission neutron importance is related to the rate of fission neutron 

production due to a family of neutrons originated in the past from a single 

ancestor. 

It is assumed that the descendants of a single neutron born at (r, t) by 

fission will produce in the reactor system a total of F(r, t; T) neutrons by 

fission in unit time interval at Tin the future. The function F(r, t; T) satisfies 

Lewin's axiom of conservation2
), because the ability of a neutron to cause 
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fission is expected to be transfered to its issue through the transport kernel 

G(r', t' - r, t) ; that is, we have 

F(r, t; T) = r dt' ~ dr'G(r, t - r', t')F(r', t'; T), ( 7) 

which shows that the quantity represented by the function F(r, t; T) is con­

served in the course of chain reactions. This quantity is evidently the adjoint 

of the neutron transport equation (1). 

Now we may consider that each of the neutrons within the reactor system 

possesses, when born by fission at (r, t), the importance F(r, t; T) in sustaining 

the chain reaction at T in the future. 

We introduce, hereon, the effective fission neutron source S*(r, t) which 

is defined as the fission neutron source S(r, t) weighted by the importance 

F(r, t; T); 

S*(r, t) = F(r, t: T)S(r, t) . ( 8 )t 

Substituting the neutron transport equation (1) into the above equation we 

obtain, 

S*(r, t) = t= dt' ~ dr1G*(r1
, t' - r, t)S*(r', t') 

where G*(r', t' -> r, t) is a biased kernel whicn is defined by 

G*( , t' _, t) _ F(r, t; T) G( , .,, __ , t) 
r, r, - F(r', t'; T) r • r, . 

The biased kernel is normalized in the sense that 

rdt ~drG*(r', t' - r, t) = 1. 

( 9) 

(10) 

(11) 

Since, according to the equation (9), a single effective neutron born at 

(r', n is expected to produce effective neutrons of G*(r', t'- r, t), in unit 

volume around (r, t), then G*(r', t' ➔ r, t) is the probability that a single 

effective neutron born at (r', t') will die to produce another effective neutron 

by fission, in unit volume around r and in unit time interval at t. 

III. Effective Neutron Lifetime and Criticality Factor 

The average time interval between birth and death of an effective neutron 

born at (r, t) is given by 

l(r, t) = r dt' ~dr1 (t1 -t)G*(r, t > r', t'). (12) 

t S*(r, t) may be considered as the importance rate at (r, t). 
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The effective neutron lifetime is, then, defined as the average value of l(r, t) 

in the reactor system : 

(13) 

where 

~drS*(r, t) 

is the integrated importance rate. 

A possible definition of the criticality factor is 

k(t) = [ ~ dr r df ~ dr'G(r, t - r', f)S(r, t)] x [ ~ drS(r, t) rl, (14) 

which represents the multiplication of fission rate after the average neutron 

lifetime. 

The criticality factor should, however, rather be defined as the effective 

multiplication factor, which is the neutron multiplicity during the effective 

neutron lifetime l(t). 

During an effective neutron's lifetime, from its birth at (r, t) to its death 

at (r', t,), the neutron importance at r' is supposed to be changed from F(r', t) 

into F(r', f). Since the multiplication factor of neutrons is the reciprocal 

multiplication factor F(r', t)/F(r', t') of their importance, the criticality factor 

is defined by the equation : 

IV. Evaluation of the Reactor Kinetics Parameters 

In order to evaluate, numerically, the reactor kinetics parameters defined 

in the preceding sections, some modifications are necessary in their expres­
sions, because the equations (13) and (15) are not directly applicable to 

numerical work. 

As in most reactor theories, we now assume that the kernel H(P', f - P, t) 

is the Green's function for the Boltzmann transport equation: 

-Ji- B</J~, t) +Q(P)</J(P, t) = 
4
~J(E)S(r, t), (16) 

where the isotropic emission of fission neutrons is assumed. 

The Green's function H(P', t' -► P, t) satisfies the equation 

! gtH(P', f - P, t) +Q(P)H(P', f - P, t) = o(P-P')o(t-f), (17) 
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with the initial condition H = 0 for t < f and with appropriate boundary con­

ditions. 

It is readily shown that the adjoint equation of the transport equation 

(16) is given by 

-! fJ¢*~f• t) +Q*(P)¢*(P, t) = 
4
~11(E) ~f(r, E) ~dE' ~dil'f(E')</J*(r, E', ff, t), 

(18) 

where ¢*(P, t) is the adjoint function of the neutron flux ¢(P, t), while Q* is 

the adjoint operator of Q. 

By reciprocity, the Green's function H(P, t-->P', f) satisfies the following 

equation: 

-! :tH(P, t-P', f)+Q*(P)H(P, t-P', f) = o(P-P')o(t-f), (19) 

which shows that H(P, t- P', f) is the Green's function for the adjoint equa­

tion (18). 

It can easily be shown that the function 

F(r, t) = ~ dil ~ dEf(E) </J*(r, E, il, t) (20) 

is well defined mathematically within the reactor system and is adaptable to 

all physical and mathematical conditions imposed on the neutron importance 

function. 

It is assumed hereafter that the operator Q, subsequently Q*, is time­

invariant, so that the transport kernels H(P', f-P, t) and G(r', f-r, t) do 

not depend explicitly on absolute time but on the transport delay r:=f-t. 

Then dependence of the reactor variables on time can be separated as 

follows: 

¢(P, t) = ¢1'.(P)eM, </J*(P, t) = ¢f (P)e->--t, 

S(r, t) = S1'.(r)eM, F(r, t) = F1'.(r)e-M. (21) 

Substituting the above expressions into the equations (16), (18), (4), and 

(7), we have 

J 1 -¢1'.(P) +Q(P)¢1'.(P) = -
4 

/(E)S1'.(r), 
V rr 

1-¢f(P) +Q*(P)¢f(P) = 
4
1 11(E) ~f(r, E)A(r), 

V rr 

} (22) 

where 

¢1'. and ¢f being the eigenfunctions associated with the eigenvalue J. 
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In this case, the effective neutron lifetime and criticality factor defined 

in the previous section become time independent and are given by 

h = Udr ~dr'A.(r)S>,.(r') r ,e->-TG(r'-r, ,)d,]xUdrS>,.(r)Fl,,(r)r
1

, (24) 

k>,. = Udr ~dr'F>,.(r)S>,.(r') r G(r'-r, ,)d,]xUdrS>,.(r)F>,.(r) rl. (25) 

The following equations can be derived immediately from the equation 

(22): 

1__ aa [,H(r)]+Q[,H(,)] = lH(,), (26) 
V , V 

where H(,) is written for the kernel H(P'->-P, ,). 

Since H(,) is the Green's function for the equations (26) and (27), then 

,H(,) and e-1,.TH(,) can be expressed in the kernel form: 

,H(r) = ~: d,' ~dP"H(P" - P, ,') v\H(P' - P", ,-,'), (28) 

e->-TH(,) = H(,)-A~:d,'~d~"H(P"->-P, ,')v~
1
H(P'-P", ,-,')e-MT-T'). (29) 

Being multiplied by e->-T and integrated over ,, the equation (28) yields 

where 

Meanwhile, on integrating the equation (29) over ,, we obtain 

where the kernel Ho is defined by the integral of H 

Ho(P' _.. P) = rd, H(P' - P, , ) . 

(30) 

(32) 

Since, in most cases, we are concerned with the largest eigenvalue, then 

the kernel appearing in the second term on the right-hand side of the equation 

(31) can be replaced by H. This approximation is equivalent to the neglecting 

of terms of the order A2
• 

Under this assumption, the following relation can easily be proved: 

(33) 
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In the case where the reactor is not very far from criticality, the calculus 

of perturbations can be used in evaluating the reactor kinetics parameters. 

Let oGo be a small variation in the kernel G0 • Then in the first order 

approximation we havet 

The variation 0G0(r' - r) can be divided into two parts: 

oGo(r' -> r) = l,r: ~ dE ~ dE' ~ dil ~ df2' {o[µ ~1(r, E) ]HocCP' -> P) f(E') 

+ [µ(E) ~1(r, E) ]c oHo(P' - P) f(E')} , (35) 

where 0H0(P' -> P) approximately satisfies the equation which follows: 

Qc(P) oHo(P' -➔ P) = -oQ(P)Hoc(P' - P). 

Since we have, in the critical state of the reactor, 

Qc(P)Hoc(P' - P) = o(P - P') , 

then oH0 can be expressed in the kernel form: 

(36) 

(37) 

oHo(P' - P) = - ~ dP" Hoc(P" - P) oQ(P") Hoc(P' -, P") . (38) 

Substitution of (38) into (35) and subsequently (34) yields 

kA -1 = lln: ~ dr ~ dE i dE' ! dil ~ dil'f(E) ¢t(r, E, D,) o[µ(E) ~t(r, E)]</>c(r, E', D,') 

- ~ dP¢~(P) oQ(P) ¢(P)] x u drSc(r) Fc(r) rl. (39) 

According to the equation (30), the exact expression for the effective 

neutron lifetime is 

(40) 

In the first order approximation we have 

(41) 

V. Inhour Equation 

Here we will discuss the case where delayed neutrons are taken into 

accout, in another approach. 

First we assume that the delayed neutron precursors do not move in space. 

t Subscript c denotes the critical state. 
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Then the fission neutron source with delayed neutrons can be written as 

1 -
4 

{/p(E)[l-.B(r)]S(r, t) + ~ J..;C;(r, t) o(E-E;)} 
n ; 
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(42) 

where fp(E) is the normalized prompt fission neutron spectrum, and .B(r) is 

the delayed neutron fraction at r, while C;(r, t) is the density of the precursors 

of i-th species from which delayed neutrons of energy E; are emitted. C;(r, t) 

obeys the equation ; 

8 at;(r, t) = ,B;(r)S(r, t)-J..,C;(r, t). (43) 

We further assume that ¢(r, t) and S(r, t) vary in time in the way des­

cribed by the equation (21). Then the equation (43) can easily be solved, 

giving: 

C·(r t) = ,B;(r) S,(r)el>t 
t ' J..+J..; A • 

(44) 

Substitution of the equations ( 42) and ( 44) into (1) yields 

(45) 

where 

F(r, E, J..) = FoCr, E)-~ , J.., ,B;(r) o(E-ED 
i /\+/\i 

(46) 

and 

Fo(r, E) = fp(E) {1-.B(r)} + ~ ,B;(r) o(E-E;). 
i 

(47) 

Then the equation (45) is rewritten, using the equation (31); 

¢11.(P) = in~ dP' H 0 (P' -- P) F(r', E', J..) S11.(r) 

-J.. ~ dP' ~ dP,, H0(P,, -> P) v~,H11.(P' -- pn) F(r', E', J..) S11.(r') • ( 48) 

Multiplying this equation by A(r) v 'i,f(r, E) and integrating over all vari­

ables, we obtain the following equation, in the first order approximation with 

respect to o, 

J.. ~ dP¢;(P) ; ¢c(P) = iJdr~dE~dE'~d.O~dD/ ¢;(r, E, .0) o[v(E') 'i,r(r, E')] 

x F0 (r, E') ¢c(r, E', 0/)- ~dP¢;(P) oQ(P) ¢c(P) 

- in~ J.. ~Jdr~dE~dE'~d.O~dD/¢c(r, E, .0),B;(r)o(E-E;)v'i,rc(r', E', 0/), (49) 

where it is assumed that the terms involving J.. 2/v can be neglected and that 



272 Hiroshi NISHIHARA and Seiji UKAI 

Fo(r, E) can be replaced by f p(E) when involved in the first order term of 

the flux. 

The equation (49) can be reduced into a simpler form 

(50) 

where the reactor kinetics parameters are defined as follows : 

l = }~dP¢!(P) ~ <l>c(P), W= ~drFc(r)Sc(r), (51) 

k-1 = }[lir ~dr~dE~dE'~d!1~dff <t>t(r, E, !1)o[v(E') 'J.f(r, E')]F0(r, E')<l>c(r, E', ff) 

-~dP<t>t(P)oQ(P)</>c(P0)], (52) 

/3ieff = }· lir ~dr~dE~dE'~d!1 ~dff[<t>t(r, E, !1)/3;(r)o(E-E;)v(E') "J.1(r, E') 

X</>c(r, E', !1')]. (53) 

The equation (50) is well known as the inhour equation. The definition (53) 

of the effective delayed neutron fraction seems quite natural. 

It should be noted that the procedure developed in this section, as well as 
the results obtained as the consequence, is valid only for the largest eigen­

value of the fundamental mode of the flux distribution. 
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