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On the Coupled Free Vibrations of a Suspension Bridge- (I) 

By 

Naruhito SHIRAISHI* 

(Received January 31, 1963) 

In Part I, a set of fundamental equations of motions of a suspension bridge 
is derived and classified into two classes of modes, the first of which can be 
termed as the deflectional modes, while the second can be termed as the torsional 
modes. Analytical solutions for the deflectional modes of free vibrations are 
discussed and determined by employing the Ritz method with and without a fix 
point at midspan of stiffening floor. Detailed informations for the torsional 
modes and some basic applications of the theory developed here will be described 
in Part II. 

1. Introduction 

217 

This paper presents general dynamic characteristics of a suspension bridge 

in the vertical direction as well as in the horizontal direction including the 

torsional rotation of a stiffening floor system. Stress is placed on derivation 

of fundamental equations of motions and classification of free vibrational modes 

from a general point of view. 

Because of complexity in 

structural conjunctions and 

mutual reactions of individual 

members, it is expected that 

the fundamental equations are 

eventually of the coupled non· 

linear form of expressions, for 
which to obtain the exact solu· 
tions may be scarcely pos· 
sible. Our consideration, thus, 
at the present state of investi· 

gation, is limited to linear 

elastic responses of a suspen· 

sion bridge assumed to consist 

merely of extensional cables, 
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stiffening floor and hangers distributed uniformly along the spanwise direction. 

(Fig. 1) Fundamental differential equations are obtained with the aid of the 

variational principle, which results in a somewhat involved form of expressions. 

Employing the Ritz method for this eigenvalue problem of free vibrations, 

the solutions are sought as an infinite series of sinusoidal functions for the case 

without constraint at the midspan and a modified form of the same functions 

with constraint. As well-known, a suspension bridge is rather different from 

other types of structures used in civil engineering on an account of its flexi

bility and our present investigation aims to clarify combined responses of 

cables and stiffening floor. 

2. Formulation of the problem 

In this paragraph we shall consider the mathematical formulation of free 

vibrations of a suspension bridge as shown in Fig. 1. Three components of 

displacements u0 , x0 , w0 , which are longitudinal (horizontal), lateral (horizontal), 

and lateral (vertical), suffice 

to define the deformed state f 
of floor system. The same 

notations are employed for 

displacements of cables in 

~ '--

~ 

\ 
\ 
\ Vi 

\ 
\ 
\ 

horizontal and vertical direc

tions and l, r are attached to 

them in order to distinguish 

the configurations of the two 
cables (Fig. 2). In addition to 
these the angle of rotation {) 
with respect to the center line, 
which varies with the coordi
nate x only, is considered so 

that torsional motions of the 

L.~~-<==_"'+--1---+------l 

0 

Fig. 2. 
floor can be described simu-

Initial state 

laneously with horizontal and vertical modes of deformations. By virtue of 

the assumption that initial plane remains plane after deformation, the dis
placements at a typical point of the stiffening floor are expressed as follows: 

( ) ( ) 8wo 8vo 
u X y z = Uo X --z--y ' ' ax ax 
w(x, y, z) = Vo(x)-0(x)z 

w(x, y, z) = wo(x) +0(x)y 

for x-direction 

for y-direction 

for z-direction 
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Since the strain energy density for an isotropic homogeneous material is 
written as 

1 (/), = 2 ()..EkkDij + 2µE;j)E;j 

J., µ : Lame's constants 

the strain energy of the floor system becomes 

u~:J~;/2 (f), (x, Y, z)dzdydx = ~ ~I()..+ 2µ) { [y ( ~:1 r + lz ( ~;
0 r 

+ µ(ly + lz) (~:ndx 

( 2) 

( 3) 

where l, b, d denote span length, width and depth of floor and ly, lz are the 

moments of inertia with respect to y and z axes respectively. 

For evaluation of strain energy of floor it is suggested in general to con

sider separately the bending deformation of stiffening web plates attached to 

the floor slab, forming an H-shaped cross section as a result. As long as the 

deflectional modes defined later are concerned, the integral (3) remains of the 

same form, but for the torsional modes, the bending resistance of the web

plates contributes to an increase of trosional rigidity of the floor. The latter 

consideration, to include the bending rigidity of the web in torsional deforma

tion, results in the fourth order differential equation of 0 with respect to x, 

while the former in the second order differential equation. 

The strain energy of cables can be given in terms of three components 

of displacements at a typical cross-section. Let Ee and Ac be the Young's 

modulus and the sectional area of a cable, respectively, and elongation of cable 

signified by ds is written for element dx as 

( 4) 

where high order terms are eliminated and furthermore no effect due to 

Poisson's ratio is involved. By use of this one may have the strain energy of 

a cable as follows 

( 5) 

The first term signifies the strain energy due to elongation of cable and the 

second term the work done by the inital cable stress due to the dead weight. 

Substitution of eq. (4) into eq. (5) yields to 
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1 f' {(uf-h'wf) 2 (u~-h'w~) 2
} 2 JoEcAc l+h'2 + l+h'2 dx 

+ f' Hw{uf-h'wf +l 1£f~±2h'wfui + h'"}t;,2_ +lv;s}dx 
Jo 2 l+h'2 2 

( 6) 

The kinetic energies of floor system and cables are easily obtained, as follows: 

for the sitiffening floor system and 

Tc ~ _!_ r I We (u2 + iP + tb2) (1 + h'2 ) 1l 2dx 
2 Jog 

= -} t:; (1 +h'2
)

112 (u1+ v1+ w1+ u;+ v~+ w~)dx ( 8) 

for cables which are assumed to possess the same mechanical properties for 

both left and right cables with respect to the section perpendicular to the 

center line of bridge and, if different, one may easily find the corresponding 

expressions in the exactly same fashion. 

In addition to the above mentioned, the change of potential energy due 

to vertical displacement of the stiffening floor by gravitation should be taken 

into an account since the workdone by initial cable stresses are included in 

the strain energy of cables. The structure with own weight Wf works by an 

amount equal to 

( 9) 

Thus the total energy expressions associated with stiffening girders and 

two cables plus two constraint conditions can be reduced to the fundamental 

equations of motion with the aid of the variational principle1
) which can be 

written as 

(10) 

where 
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and 

/ 2 = ( ~ ~:0 +ur r + (v0 -vr) 2 + (h+w0 - ~ 0-wr r-h2 

.:!1, .:!2: Lagrange's multipliers 

assuming inextensible hangers. 
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Using the ordinary method of calculus of variation, eq. (10) provides a 

following set of differ:ential equations, viz., 

w: Wo-Pf a~~t ( ly ~:~~) + ;;2 { 0 + 2µ)Jy ~;
0

} 

+2.:i1(h+w0 + ~ 8-w1)+2.:i2(h+wo-{-e-wr) ~ wf (11) 

wf ·· a { ae} g.A (Iy+lz)e- ax µ(Iy+lz) ax 

+b.:i1(h+wo+ ~ 8-w,)-b.:i2(h+wo-~B-wr) = 0 (13) 

We (l+h'2)1;2il _j}__{E A (uf-h'wi)}-H .!t..{h'(wl±_h'ufl} 
g I ax e e (l+h'2) 2 wax l+h'2 

-2.:i)~- (avo_u,) = 0 
2 ax 

(14) 

We (l+h'2)1;2 .. _j}__{E A u'r-h'w_'r}-H _§_ {lfJw'r+h'u'r)} 
g Ur ax e e (l+h'2)2 wax l+h'2 

+ 2.:!2 ( ~ ~:o + Ur) = 0 (15) 

We (l+h;2)1/2ij -H a2v, -2.:l (v -v) = 0 g I W ax2 I o I (16) 

We (1 + h'2)1/2ij -H a2vr -2.:l (v -v ) ~ 0 ¥ r W a:>;2 2 0 r <17) 
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Wc(l+h'2)1;2w +1-{E A h'(uf-h'wD}+Hwh"-H, 1-_(wf+h'uf) 
g t ax c c (l+h'2) 2 wax l+h'2 

-2,l1(h+w0 + ~ 0-wt) = Wc1/l+h'2 (18) 

We (l+h'2)1;2"' +1-{E A h'(u;.-h'w;.)}+Hwh"-H, 1-_ (w;.+h'u;.) 
g Wr ax C C (l+h'2)2 wax l+h'2 

-2,l2(1z+wo- ~ 0-wr) = wc✓l+h'2 (19) 

The above nine equations contain eleven unkown dependent variables, 

Wo, Vo, 0, Ut, Vt, Wt, u,, v,, w,, A1 and A2 to be determined by the equations 

plus two constraint conditions 

( ~ ~:
0 -Ut r + (V0 -Vt) 2 + (h+wo+ ~ 0-Wtr = /z2 

(~ ~~
0 +u,f + (v0 -v,) 2 +(h+w0 - ~ 0-w,)2 = h2 

where ,l and µ signify Lame's constants. Physically Lagrange's multiplers A1, 

,l 2 correspond to mutual reactions for cables and floor as the result of the 
constraint conditions. Eq's (11) through (19) are of the general form of ex

pressions for describing the dynamic behavior of a suspension bridge. For 

example combining eq's (11), (18) and (19) to eliminate both ,l1 and A2, the 
result can coincide with the form of differential equation derived by F. Eleich 
and others2l except for coupling of vertical and horizontal displacements of a 
cable. In this derivation the increment of the horizontal components of cable 

stress is equivalently replaced by two components of displacements in the 

longitudinal and vertical directions3l. 

Based on the above fundamental equations, the free vibrations of a sus

pension bridge are classified into two types of modes, the first of which can 

be termed as the deflectional modes, while the second of which as the torsional 
modes. The former modes of vibrations indicate that neither lateral (hori
zontal) displacement nor rotation of floor with respect to the center line of 
bridge contributes to the oscillations, which therefore are described two

dimensionally with the relations Ut=u,=u, Wt=W, w and A1=A2-I. Thus 
under the assumption that 0=v0 =Vt=v,=O we obtain three out of nine expres
sions to describe the configuration for this mode : 

(20) 

(21) 
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We (1 + h'2)1;2 ·· _.!}_{E A h' (h'w' -u')} + H,,Jz" _ H .!!_(w' +_j_(_u'_) 
g W ax e e (l+h'2)2 wax l+h12 

-21(h+wo-W) = Wei/i.+h' 2 (22) 

with a constraint condition 

(23) 

For an other mode of free vibrations one has to consider all expressions, 

none of which is reduced nor combined together. This indicates obviously 

complex behaviors of a suspension bridge in the torsional oscillation and it 

should be noticed that the torsional modes are dependent on the other modes 

of displacements at this order of approximation. One should thus recognize 

the coupling of torsional and lateral displacements as a characteristic of free 

vibrations of suspension bridges. Detailed discussion will be made later 

regarding this problem. 

3. Initial funicular curve of cable 

In the preceding paragraph we have obtained a set of equations for free 

vibrations of suspension bridges, in which Lagrange's multiplers signify the 

mutual reactions between cables and stiffening girder. Let all displacements 

vanish identically, then we have 

(24) 

which determines the initial funicular curve of cable. In eq. (24) wf denotes 

the dead weight of unit length of floor system and eq (24) is rewritten as 

(25) 

Neglecting higher order term h'2 in eq. (25), h(x), is approximately expressed 

by a parabola, while with h'2 it is defined as a solution of the non-linear 

equation 

the first integral of which is easily obtained by denoting p as h', namely 

where 

rjp = We (l+p2)112+ Wf 
dx Hw 2Hw 

X - ~ _1!!L+l!!s~~l+p2)1/2 = 
2:;Los0c1lse~-fa) 

2Hw Hw 

a = !We, p = tap fl 
f 
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Then X = 2Hw{-11n tan (_§_+.!E_)_-1 r ____!JL_ __ }
4

) 

w f a 2 4 a J a+ cos 0 
(26) 

2Hw[l I (0 n) 1 r 2 -i{Ca-1) tan0/2}J 
= wf a n tan 2+4 -a J (a2-1)1/2 tan (a2-1)1/2 (26.1) 

for a 2 > 1 

~ 2Hw [1n tan (_§_ + .!E_)- tan _§_] 
wf 2 4 2 

(26.2) 

for a2 = 1 

2Hw[l f e -;r;) 1 1 {(1-a) tan~ +(l-a
2
)
1
!
2
} 

= ~ - In tan -+- -- ~-~~ In 
wf a \ 2 4 a (l-a2)1;2 (1-a) tan_§__ (1-a2)1;2 

2 

(26.3) 

for a2 <1 
Eq. (26) is therefore the first integral which forms three different types of 
expressions as eq's (26. 1), (26. 2) and (26. 3) depending on the ratios of w f 

vs We, Ignoring the high order term h'2 it is reduced to the customary 

parabolic curve of cable which is given as 

x = 2Hw f dP = 2Hw _1_ tan e 
wf J l+a wf l+a 

(27) 

From the practical point of view a stiffening truss of a suspension bridge 
weighes it down more than cables, the initial funicular curve of which can be 

approximated by a parabola. 

4. General remarks on the de:flectional modes of free vibrations 

As mentioned in 2. the modes of our present consideration are defined by 
eq's (20) through (23). Let us specify the associate boundary conditions with 

the above equations as 

u(0) = u(l) = w(0) = w(l) = 0 

Wo(0) = wo(l) = w6' (0) = w6' (l) = 0 
(28) 

assuming that the cable is perfectly flexible and the stiffening girder is simply 
supported at both ends of the span. Classically the fundamental differential 

equation for this mode of vibrations is written in the form2l 

!!,_~ (EI d
2
W0 )_2Hwd

2
Wo+ 2hwf _ (Wf + 2wc)olwo = 0 

dx2 
Y dx2 dx2 Hw g g 

(29) 

where h, ol denotes the increment of horizontal component of cable stress 
and the circular frequency, respectively, and for sake of simplicity the symbol 
Wo is used for the mode of deflection. In terms of eq's (20) and (22) we find 
the corresponding expression to eq. (29) requiring the u = 0, w0 = w, (h' {:: 1) 

jdentically, that is
1 
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(30) 

It should be noticed that the assumption u=0, w0 =w does not satisfy eq. (21) 

and thus eq. (30) is only valid in the sense that it forms an approximation of 

the deflectional modes. 

There appears to be no closed form of solutions in terms of tabulated 

functions for this coupled free vibrational problem. It is known, however, 

that the equations with boundary conditions, eq. (28), provide two branches 

of curves in the spectrum diagram. Physically it follows that one branch 

approaches to the spectrum corresponding to the vibrations of stiffening girder 

only and another to the spectrum corresponding to the vibrations of stiffening 

girder only and another to the spectrum for cables only. Our attention is 

primarily restricted to the lower branch of natural frequency spectra. For 

higher frequencies ignorance of shear effect in floor girders may not be justi

fied any longer and more thoroughful consideration will be required. 

The deflectional modes are featured at the following structural point ; 

recalling eq. (24) one may notice that the lowest approximation for reactive 

force of hangers can be given by ~ = Hwh" /2h5
). Substituting this into eq's (20), 

(21) and (22) we have 

(31) 

for which a singular point is introduced if hr=! (sag of cable), i.e., h=0 at 

the midspan of bridge. This classifies the modes of the present problem into 

two classes for which solutions will be described in the following paragraphs. 

It is worthwhile to notice that center-diagonal stays, commonly adopted to 

modern types of suspension bridge, constrain horizontal displacement of cable 

at the midspan and as result augment remarkably the stiffness of a suspension 

bridge6
). Mathematically, installment of diagonal stays is conceived as the 

fundamental equations are associated with singularity at the midspan of the 

bridge. Thus the problem should be treated separately depending on whether 

there is a fix point at the center point of the span. 
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5. Analytical solutions of the deflectional modes without a fix point at midspan 

The solutions of three coupled simultaneous differential equations (31) 

with boundary conditions (28) can be expressed in the form 

~A . k11:x 
Wo = L.J k SIU -,- , 

k-1 

~c . k11:x 
U = L.J k Sin --

k-1 / 
(32) 

Restricting our attention to eq's (31), the stationary theorem for our eigenvalue 

problem is written as 

which leads to 

D';,1/+DW n<2) 
mJ 0 A; 

n<2) 
Jl D\~+D;;l n<4) 

ln Bm =0 

0 D<4) 
mr mr+n~s,: Cn 

Thus, the characteristic equation becomes 

D';.1,/+D':N 
D':,2,,1 

0 

or explicitly 

D(2) 
mJ 

D(4) 
mr 

0 

D(4) 
l?l =0 

2D'i~. DW+mv, ...... Dfi.J, D'iW, .............. . 
mV+DW, 2DW, ...... Df?., mw, .............. . 

j, k = 1, ... ,jl.., ... 

m, l = 1, .. · , m,,., .. · 
n, r = 1, • · · , n,, · · · 

0 

Dfi\ m~. ............... 2Dfl_l, D'i~+ng_i, ...... DW, DW, .............. , 
D'iW, D/f.}, ............... m'f+Di~, 2ngi, ...... DW, D'-i,':}, .............. . 

mr, nsir, ............... 2mr, nw+mt .... .. 

0 DW, mii. ............... Dfr +DW, 2Dff, .... .. 

(33) 

(34) 

The equation (34) is the basic equation for investigating the dynamic behavior 

of a suspension bridge and each element forms an infinite which converges 

the more rapidly the smaller the sag ratios. Explicit expressions for DW are 

given in the appendix II. For the simplest case of the fundamental modes 

numerical results by eq. (34) are compared with those obtained by Bleich 

(Appendix I). The result indicates that a sufficient amount of stiffness of floor 
system provides a simple shape of fundamental modes and the lesser stiffness 
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the more the flexibility of the cables effects the vibrational characterictics of 

a suspension bridge. 

6. Analytical solutions of the defl.ectional modes with a fix point at midspan 

In the preceding paragraph we have assumed non-vanishing h(x) in the 

interval of definition, O<x<l. However most of long spanned suspension 

bridges of these days are stiffened by center diagonal stays to increase torsional 

rigidity and to prevent the structure from catastropic oscillations6
). The 

practical attachment of this stay envisages physically the solutions for eq. (31) 

and for this case one may not adopt the mode functions as described in 

eq. (32). Since analytical solutions are possibly sought in the same fashion 

as before, we assume them as follows 

00 
• inx 

Wo = E,_ A; sm - 1- , 
00 

( h) . inx w = I:; A1+B1- sm-, 
i=l l l 

00 h . inx u = I:; C1- sm - (35) 
i=l l l 

It is easily known that the deflectional modes under consideration, eq. (35), 

can be subdivided into symmetric modes by taking odd terms for vertical dis

placements and even terms for horizontal displacements and anti-symmetric modes 

by having even terms for vertical and odd terms for horizontal displacements. 

The second expression in eq. (35) is alternatively expressed as 

w = {d {A,+1B1 ~ +~,( ~ n sin i1x 

introducing high order corrections to lateral displacements of cables (Fig. 3). 

Fig. 3. 

/ 
/ ...._ __ .,,.,,,,,./ 

sin(TCx/!}, ls/ symmelrjc mode 
(h//}sinnx/1 corrective mode 
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For the sake of brevity, we illustrate the symmetric modes only. The 
anti-symmetric modes can be considered in exactly same way and any expres
sions discussed hereafter are easily extended to this case. By virtue of 
eq. (35) the stationary condition associated with eq. (31) is given as 

which yields 

81 

the characterictic equation 

DW+1.21+1 -I- DHhu+1 

DW+l,2J+l 

or explicity 

and 

Df']+1.2n =0 

2Dl.~L ne; + D~~L · · · Dl.~L m~;, · · · · · · · · · · · · Dl.~t Dl.?4, · · · · · · · · · · · · 
m~i + net 2n~~;. • • • m~L m~t • • • • • • • • • • • • m~t m~t • • • • • • · · · · · · 
D1~L m~L · · · · · · · · · · · · 2Dl.:L Dl.:~ + m:L · · · Dl.~t Dl.~t · · · · · · · · · · · · 
m~~. m~t • • • • • • • • • • • • m:1 + nf~. 2m:~. . . . m~~. n~~4, . . . . . . . . . . . . = o 

Dl.?~. m?t · · · · · · · · · · · · ne~. m~t · · · · · · · · · · · · 2Di~d, D~~H Di~t · · · 
Dl.?t m?~. •· • • •· •· • •·· m~t n~~~. •· • •·· •·· •· • n:i~H m~4, 2m~~. • •· 

(37) 

where elements in eq. (37) are explicitly specified in the appendix III. Eq. (35) 
are therfore known to suffice to describe general dynamic responses of a 
suspension bridge with center diagonal stays and can be reduced to the clas
sical solutions for symmetric and anti-symmetric modes by annihilating B; 

and C;. Under this classical assumption, however, the significance of singu
larity at the central point can not be conceived properly and justification of 
the fact that the central diagonal stays are pertinent to stiffen the structu~e 
can be accomplished by taking into account the higher order approximations. 

7. Conclusion 

Free vibrations of a suspension bridge are classified into two classes of 

modes, deflectional and torsional. Analytical solutions for the deflectional 

modes which converge rapidly for small sag-ratios are presented in the general 

form for cases with and without a fix point at midspan. The significance for 
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center diagonal stays is thus clarified to correspond to singularity in funda

mental differential equations. The dynamic design of such flexible structures 

as suspension bridges calls for thorough detailed analysis including the higher 

order terms so that we are accessible to proper justification of any physical 

phenomena. 
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Appendix I 

For the simplest case of free vibrations of a suspenfion bridge the potential 

energy and the kinetic energy become 

_ 1 f1
[ (EJ2wo) 2 (u'-h'w') ( , w12 +2h'w'u'+h'2u'2)] Umax - 2 Jo Ely Bx2 +2EeAe l+h'2 +4Hw u + 2(l+h'2) dx 

T max = w
2 r / [Wf w5+ 2we (l+h'2)1/2(u2+ w2) + Wf I (Bwo )

2
]dx 

2 .lo g g gA Y Bx 

by which the approximate natural frequency of the lowest order is written as 

1.. 1e'Ely + l6/2
ir

2
EeAe F (I)+ ir

2 
Hw F (I) 

2 4 / 3 / 3 e l l H l 
W1=-----=----c--~-~~-~-~~---

_!_ Wfl + 1r
2 Wf ly + Wei Fd( f) 

4 g 4 gA l g l 

where 

(I)_ f 1 Cl-2,) 2 
2 

Fe T - Jo { 16/2 2}2 cos 11:i;di;' 
1--12 (l-2,;) 
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under the assumption that w0 =w=sin n; and u=0 

Example: !=2,800 ft 

We= 0.647 kips/ft/cable 

Hw = 12,040 kips 

Ee= 26,000 kps/in2 

Iy=2 X 128,400 ft2/in2 

then IC= 
16(i2 

= 0.109,84 ond wt "7 1.907 

while w2 =1.965 by the Ritz method.7 l 

/=232ft 

wf=4,406 kips/ft 

Ac= 191.5 in2 

E=29,600 kips/in2 

Appendix II 

DW = EI (kn)
2
(jn)

2 
j_ok·+2Hw 11h11 sin!0"x sin jnx dx-w2wtl Dk; 

Y l l 2 ' Joh l l 2g 

= {EI n'k2j2-w2 w11}ok·+2Hw 81 f.. f (-l)PH(4f)P ~ 
Y 213 2g 1 hrl P-o q-o hr q 

X t e+q sin kn, sinjnfdf 

D~J1 = -4Hw - sin nx sin Jnx dx 
~

1 h" k . 
oh l I 

= - 32Hw L f.. f ( -1)PH(4 f)P ~q r 1 
'PH sin kn, sin jnfdf 

hrl 1bO q-o hr Jo 

(3) - 2 A n2 
.fl h'2 knx jnxd 2H n2k.r1 1 knx jnx d 

Dki - Ee cp:-kJJol+h'2 cos-1-cos-1- x+ wp 'JJol+h'2 cos-1-cos-1- x 

+2Hw ri h" sin knx sin jnx dx-w22Wc 11 (l+h'2) 112 sin knx sin jnx dx 
Joh l l g Jo l l 

2 2E A = 21'• 1 ( 41)2(P+l) 11 
= n / c kj fo Eo (- l)PH2q T 2cp+ilCq Jo fq cos knf cos jnf~ 

+ 2n:
2

{1w kj Ec, ~o ( -l)PHV( 4()2P 2pCq ~: fq cos knf cos jnfdf 

+ 16Hwf f.. f ( - l)PH (41 )p pCq 11 'PH sin knf sin jnfdf 
hrl 11-0 q-o hr Jo 

-(i)22Wcl{l ak ·+ i: f ( -l)PH+11· 1·3··· (2p-3) (41) 2
P 2q2 C 

g 2 1 11-0 q~o 2Pp! l P q 

x ~: fq sin knf sin jnM,} 

kjn2 f1 h' knx jnx Dk4J = -4EcAcy Jo (l+h'2 ) 2 cos-1- cos-1-dx 

+ 4H ---1..!!_ ·-- cos nx cos JnX dx k. 2 ~I h' k . 
w l 2 o 1 + h'2 l l 
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411:2n ~ 2"+1 (4f)2P+l fl 
+~kj'Eo ~/-l)PH2q T 2p+iCq .lo ,qcosk11:,cosj11:td, 

Des,_ 211:2EcAc k. r1 1 k11:x j71:x d 211:2Hw k. f I h12 k11:x j11:x d 
kJ - 12 J .lo(l+h'2)2cos-1-cos-1- x+-1-2 - J .lol+h'2cos-1-cos-1- x 

+ 2Hw fl h" sin k11:x sin j11:x dx-w22Wc fl (1 +h'2) 1/2 sin k11:x sin j11:x dx 
.lo h l l g .lo l l 

= 211:
2
~cAc kj f:. 2:E ( -l)P-t'q(p+ 1)2q(41f)ZP2pCq ri 'q cos k11:, cos j11: ,d, 

P=O Q=O .lo 

211:2n ~ 2(P+l) ( 41 )2P+2 r1 
+--rkjP"Jd {d (-l)PH2q T zp+Cq .lo ,qcosk11:fcosj11:fdf 

+ 16Hwf f:. f ( -l)P+q (4f )P pCq f
1 

, PH sin k11:f sin j11:, df 
hrl P=O Q=O hr .lo 

_2wcl wz{lok·+:E f: (-l)P+q+11·1·3···(2p-3) (4f)ZP2qzpCq 
g 2 1 

P=lQ=O 2Pp! l 

x ~: ,qsink11:f sinj11:fd,} 

Appendix III 

D(2) - z{Wfl ,. __ +2Wc f1 cl+h'2)1/Zsin (2i+lhx sin (2j+1)71:xdx} 
2t+l.2J+l - w g2 u ;, g .lo l l 

- (2i + 1)2(2j + 1)211:• EI o .. 
213 Y ., 

_ 2E A (2i + 1) (2j + 1)11:2 f 1 h'2 cos (2i + 1)11:x cos (2j + 1)11:x d 
c c 12 Jo (l+h12)2 l l X 

_ 2H (2i+1)(2j+l)71:2 f1 _1_cos (2i+l)11:x cos (2j+1)11:x d 
w l 2 .lo 1 + h'2 l l X 

n<2) = (J)z2Wc fl (l+h'Z)l/2(.f!:...)
2 
sin (2i+l)11:x sin (2j+l)11:xdx 

2i+l.2J+l g .lo l l l 

_ 2E A f1 h'2 {(2i+1)71: .f!:...cos (2i+l)11:x + h' . (2i+l)11:x} 
c c .lo (1 + h'2) 2 l l l l sm l 

x{(2j+l)11:hcos (2j+l)11:x + h' sin (2j+1)11:x}dx 
/

2 l l l 

_ 2R fl_1_{(2i+l)11:h cos (2i+1)71:x +h's· (2i+l)11:x} 
w .lo 1 + h'2 12 l l m l 

x {(2j + 1)71:h cos (2j + 1)71:x + h' sin (2j + 1)71:x}d 
12 l l l X 

-2Hw ~: h7:' sin (2i + /hx sin (2j +/)71:x dx 

= (J)z2Wc r I (A)z (1+ h'Z)l/Z sin 2i71:x sin 2j11:x dx 
g .lo l l l 

2E A f1 1 {h' . 2i11:x 2i11:h 2i71:x} 
- c c.lo(l+h'2) 2 1 sm-1-+12cos-1-



232 Naruhito SHIRAISIU 

x { h' sin 2irr:x + 2irr:h cos 'ijrrx}dx 
l l / 2 l 

_ 2H. fl h
12 

-{h' sin 2irrx+2irrh cos2irrx}{h' sin 2jrrx+2jrrhcos2jrrx}dx 
w Jo 1 + h12 l l / 2 l l l / 2 l 

-2H.. fl hh" sin 2irrx sin 2jrrx dx 
w Jo /2 l l 

D*t+1.2J+1 = c,i 2w£ fl (l+h'2)112(2h) sin (2i+1)7r:x sin (2j+l)u dx+H.wh"oii 
g Jo l l l 

+ 2E A (2i + 1) (2j + 1) 1r:
2 11 2h12 .!!_ cos (2i + 1) rrx cos (2j + 1) u dx 

c c / 2 Jo (l+h'2)2 l l l 

+ 2E A f I h'2 
· h' { (2i + 1) 1r: cos (2i + 1) rrx sin (2j + 1)7r:x 

c c Jo (1 + h'2 ) 2 l l l l 

+ (2j + 1) rr cos (2j + 1) rrx sin (2i + 1) rrx }dx 
l l l 

-4H.. (2i + 1) (2j + 1)7r:2 11 _1_ .!!_ cos (2i + 1) 7r:X cos (2j + 1) u dx 
w / 2 Jo 1 + h'2 l l l 

_ 2H. fl_l_ h'{(2i+l)rr cos (2i+1)7r:x sin (2j+l)rrx 
w Jo 1 + h'2 l l l l 

+ (2j: l)x sin (2i +/)7r:x cos (2j +/)rrx}dx 

D2<~)+1.2J = 4E A fl h' {(2i + 1)2j1r:2 (.!!_)2 cos (2i + l)rrx c s 2jrrx 
' c c Jo (1 + h'2)2 12 l l o l 

+ ( ~')2 sin (2i +/)u sin 2j;x + r2i + prrhh' cos (2i +/)rrx sin 2j;x 

+ 2jrrhh' sin (2i + 1) rrx cos 2jrrx}dx 
/

3 l l 

_ 4H.. f 1 _]!__{(2i + 1)7r:h cos (2i + l)rrx + h' sin (2i + l)u} 
w Jo 1 + h'2 

/
2 l l l 

x { h' sin 2jrrx + 2jrr}! cos 2#x}dx 
l l / 2 l 

D2(6i~l,2J = 4E A (2i + 1)7r: r / 2h' { h' cos (2i + l)rrx sin 2jrrx 
c c l Jo (1 + h'2 ) 2 l l l 

+ 2~~h cos (2i \l)rrx cos 2j;x}dx 

_ 4H.. (2i+1)7r: f 1 _j{__{fs· 2jrrx+2jrrhcos2jrrx}cos (2i+l)rrx dx 
w l Jo 1 + h'2 l m / / 2 l l 




