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Stress Around a Shaft or Level Excavated in Ground with a 
Three-Dimensional Stress State 

By 

Yoshio HIRAMATSU* and Yukitoshi OKA* 

(Received October 31, 1961) 

The stress around underground openings is much affected by the state of 
stress in the ground at which the opening is made. The present paper describes 
the results of an investigation of the stress distributions around a vertical shaft, 
an inclined shaft and a level, taking into account the fact that the ground is in 
a three-dimensional stress state. 

First the stress around a circular inclined shaft is analyzed strictly and it is 
proved that some components of the stress are indeterminate. Secondly the general 
method of experimental analysis of stress by means of two-dimensional and three­
dimensional photoelastic experiments is discussed, paying special attention to the 
evaluation of indeterminate stresses. By the method thus obtained, the stress is 
found around a shaft or level with a square or rectangular cross section having 
rounded corners, from which the influence of the state of stress in the undisturbed 
ground upon the stress around a shaft or level is discussed. 

Introduction 

In general, the principal. stresses in the undisturbed ground are not always 
directed to the vertical and horizontal, and their relative intensity may take 
several values according to topographical, geological and orogenic conditions. 
Therefore, in investigating earth pressure phenomena, it is necessary to analyze 
the stress around underground openings taking into account the fact that the 
undisturbed ground is generally in a three-dimensional stress state. 

Yamaguchi1) analyzed the stress around a circular level, and Suzuki2) the 
stress around a circular shaft. These analyses, however, were carried out under 
the assumption that the direction of one of the principal stresses in the undis­
turbed ground coircided with the direction of the axis of the shaft or level. 
The stress around a circular level has been frequently treated in the literature, 
but it has always been analyzed as a two-dimensional stress. Sugihara3

) analyzed 
the stress around an inclined shaft under the assumption that the stress in the 
undisturbed ground was uniform in all directions. 

Recently the authors•) analyzed the stress around a level with several shapes 
of cross section excavated in ground in which one of the principal stresses 
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coincided with the axis of the level, while the other two principal stresses took 
any direction. This assumption about the state of stress in the undisturbed 
ground, however, is not fully general. Therefore, the authors have attempted 
to analyze theoretically and experimentally the stress around a vertical or inclined 

shaft or a level excavated in ground whose state of stress is three-dimensional. 

Theoretical Analysis of Stress Around a Circular Shaft or Level 

The analyses of stress around a vertical or inclined shaft and around a level 

come to the same analysis in the general case where the ground in which the 

excavation is made is in a three-dimensional state of stress. Thus we shall only 
discuss the analysis of stress around an inclined circular shaft. 

Let the principal stresses in the undisturbed ground be P1, P2 and p3 and the 
angle of inclination of the 
axis ST of an inclined shaft 
be </>. Take two systems of 
rectangular coordinates (x, 

y, z) and (x', y', z'), with the 
same origin O on ST. As 

shown in Fig. 1, the z-axis 

is vertical, the x-axis 

coincides with the horizontal 

projection of ST and the 

y-axis is perpendicular to 

both x and z-axes, while 

x', y' and z' -axes are defined 

in the directions of pi, p2 and 

p3 respectively. Further, let 

us take cylindrical coordi­

nates (r, fJ, C'), whose origin, 

initial line and (-axis coin­

cide with Point 0, the y-axis 

and ST respectively. 
Fig. 1. 

Now, the conditions of equilibrium of forces are expressed, in cylindrical 
coordinates, as : 

Odr +.!. <J'Z'~+ <J'Z't;r + dr-de = 0 
8r r 88 a, r ' 

O'Z're+.!. 8a!.+ <J'Z'et;+ 2..!!L = O 
8r r an a, r (1. 1) 

O'Z't;r+ 1 8-r-et;+ <ld/; + 'Z'l;r _ 0 
fJr r 8fJ ae; r · 
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in which dr, de, di;, Tei;, Tfr and Tre are components of stress referring to (r, B, () 

coordinates*. In elastic bodies, there exist the following relations between com­

ponents of stress and components of strain. 

(1. 2) 

in which ;. and µ are Lame's constants, and u, v and w are the components of 

displacement in the directions of the radius vector, perpendicular to both the 

the radius vector and (-axis and of (-axis respectively, and e is the volumetric 

strain given by 

e = _!l__+ 8u +1- 8v_+8w 
r 8r r 80 8( · 

(1. 3) 

Since all the components of stress and two of the three components of 

displacement, u and v, as well as the component of strain in the direction of 

(-axis, (e)1;, do not vary with (, Eqs. (1.1), (1. 2) and (1. 3) are simplified as 

follows: 

8d,. +l 8Tre+ d,--de = O 
8r r 80 r ' 

8Tre +l ~f!._+2~ = 0 
8r r 8fl r ' 

8Tt;r +_!_!)_Tes+ __21,:__ = o 
8r r 8fl r ' 

d,. = J.e+2µ~:, 

de = J.e+2µ(1- !l!!_+_!t__), r 8fl r 

di; = J.e+2µK, 

1 8w 
Tei; =µy 8/f' 

l (1.4) 

(1. 5-a) 

(1. 5-b) 

(1. 5-c) 

(1. 5-d) 

* Eq. (1. 1) is deduced neglecting the body force, but it may be justified so long as the sectioq 
of ground concerned is not very shallow, · · 

- . 
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in which K=(e)1;= :~=const. 

(1. 5-e) 

(1. 5-f) 

(1. 6) 

Substituting Eqs. (1. 5) and (1. 6) for tlr, tl/;o, t11;, 'ro!;, 't"/;r and 't"ro in Eq. (1. 4), 

As the boundary conditions, we have: 

for large values of r, 

and for r=a ( =radius of an inclined shaft), 

tlr = 0, 

't"!;r = 0, 

't"ro = 0. 

} 

(1. 7-a) 

(1. 7-b) 

(1. 7-c) 

(1. 8) 

(1.9-a) 
(1.9-b) 
(1.9-c) 

Now, let us represent the boundary condition (1. 8) in terms of components of 

stress referred to (r, 0, C) coordinates. Assume that the direction cosines of x', y' 

and z'-axes are l1, l2, l3; m1, m2, m3 and n1, n2, n3 respectively. Then, 

llx = ltt1x1 +mtt1y1 +ntt1z1 +2m1n1'ry',:'+2n,l1'rz'x1 +2l,m1'rx'Y'' 

tJ Y = l'f_t1 x' + m~t1 y' + n~tJ z' + 2m2n2r y' z' + 2n2l2-r z' x' + 2l2m2-r x' Y1 
, 

t1 z = l~t1 x' + m~t1 Y' + n~t1 z' + 2m3n3-r y' z' + 2n3's-r z' x' + 2/3m3-r x' Y' , 

-r yz = l,/3t1x1 + m2m3t1 y' + n2n3t1z1 + (m2n3 + n2m3)'r y' z' + (n2l3+ l2n3)-r z' x' 

+ U2ms+m2lJ-rx 1 Y', 

'r zx = l3'1t1x' + m3m1t1 y' + nsn1t1z' + (m3n1 + nsm,)-r y' z' + (n3l1 + /3n1)• z' x' 

+ (l3m1 +m3'1)'rx'Y', 

'rxY = l1l2llx1 +m1m2t1y1 +n,n2t1z 1 + (m1n2+n1m2)'ry'z1 + (n1l2+l1n2)'rz'x 1 

+ Cl1m2+m,l2)'rx'Y'. 

Substituting Eq. (1.8) for llx', t1y1 ,···,-rx1Y1 in Eq. (1.10), 

(1. 10) 
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From geometry, 
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<lx ~· lf P1 -I mr.Pzl nr.P3, 

<1y = l~P1+m~P2+n~p3, 

<lz =l~P1+miP2+n§p3, 

'l"yz = li3P1 +m2m3P2-l-n2n3p3, 

'l"zx = lal1P1 +m3m1P2+n3n1P3, 

-r,,y = lil2P1+m1m2P2+n1n2ft3. 

(1. 11) 

cos(x, r) = -sin¢sinlJ, cos(x,IJ) = -sin¢coslJ, 

cos (y, r) = cos IJ, cos (y, IJ) = -sin IJ, 

cos (z, r) =cos¢ sin IJ, cos (z, IJ) = cos¢ cos IJ, 

cos (x, ,) = cos¢. l 
cos ( y, C") = 0 , (1. 12) 

cos ( z, () = sin ¢. 

Transforming the components of stress from (x, y, z) coordinates into those of 

( r, fJ, () coordinates, and considering Eq. (1. 11), we have : 

in which 

<1,. = a:1 + a:2 cos 2IJ + a:3 sin 2IJ, 

<19 = a:1 - a:2 cos 2IJ--a3 sin 211 , 

<l!; = /31, 

'1"9!; = 71 cos tJ 172Sin tJ' 

'l"l;r = 71 sin IJ-72 cos tJ' 

-r r8 ~ -~ sin 2IJ -1- a:3 cos 2IJ , 

a1 = ~ {msin2¢+l~+l~cos2¢-2lal1sin¢cos¢)P1 

+ (my sin2 ¢ + m~ -1- mi cos2 ¢-2m3m1 sin ¢ cos ¢) P2 

-1- (nr. sin2 ¢ -1- nh ni cos2 ¢-2n3n1 sin </J cos¢ )p3} , 

a:2 = ~ {(-trsin2¢+/z-/Jcos¢+2laI1sin</Jcos¢)P1 

+ (-my sin2 ¢-1-mj-m~ cos2 ¢+2m3m1 sin¢ cos ¢)P2 

+ ( -nr. sin2 </J -1-n~-n~ cos2 </J +2n3n1 sin¢ cos ¢)p3} , 

a:3 = ('2/3 cos ¢-/1'2 sin ¢)P1 -1- (m2m3 cos ¢-m1m2 sin ¢)P2 

+ (n2n3 cos ¢-n1n2 sin ¢)p3, 

/31 = (lrcos2¢+lhin2¢+2'3!1sin¢cos¢)P1 

+ (my cos2 ¢-1-m~ sin2 ¢+2m3m1 sin¢ cos ¢)P2 

+ (ny COS2 ¢ + ni sin2 ¢ + 2n3n1 sin ¢ cos ¢) p3 ' 

71 {-tr sin </J cos¢+/~ cos¢ sin¢+ '3!1(cos2 ¢-sin2¢} P1 

+ {-my sin¢ cos ¢-1-m~ cos¢ sin </J+m3mi(cos2 ¢-sin2¢)}p2 
-j- {-ny sin¢ cos¢ -j- n~ cos <p sin¢ -j- n3n1(cos2 ¢-sin¢} p3, 

72 = (-/2/3 sin ¢-/1'2 cos ¢)P1 + (-m2m3 sin ¢-m1m2 cos ¢)P2 

-I- ( - n2n3 sin ¢- n1n2 cos ¢) p3 . 

(1.13-a) 

(1. 13-b) 

(1. 13-c) 

(1. 13-d) 

(1.13-e) 

(1. 13-f) 

(1. 14) 
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Eq. (1. 13) is the substitute of Eq. (1. 18). Solving Eq. (1. 7-c) for w, and con­

sidering Eqs. (1. 5--d), (1. 5-e), (1. 13-d) and (1.13-e), we obtain 

Consequently, from Eqs. (1. 2-d) and (1. 2--e), we have 

'!" e{ = µ { ( - Af - A1r-2) sin fJ + (Bf+ B1r-2) cos fJ} , 

'!"{,- = µ { (Af-A1r-2) cos fJ + (Bf - B1r-2) sin fJ} . 

From Eqs. (1. 13--d), (1.13-e) and (1. 9-b), 

Eqs. (1. 7-a) and (1. 7-b) are rewritten as: 

(1. 15) 

(1.16) 

(1. 17) 

(1. 18-a) 

(1.18-b) 

Differentiate Eq. (1. 18-a) with respect to r and divide the same equation by r. 
On the other hand, differentiate Eq. (1. 18--b) with respect to fJ and further divide 

the result by r. Then by adding these three equations, we obtain 

(1.19) 

Considering Eqs. (1. 5-a), (1. 5-b), (1. 5-c), (1.13-a), (1.13-b) (1.13-c) and (1. 9-a), 

Eq. (1. 19) is solved as 

(1. 20) 

Eliminating :: and :~ by introduction of _Eqs. (1. 20) and (1. 6) to Eq. (1. 7-a), 

~2
U + 1_ au + ~ + _l 82u 

f)y2 r ar y2 y2 8 (}2 

= 2(C0 -K)r-1+ 20 + 2µ) y-3(C2 cos 2fJ+ D2 sin 2fJ) . 
µ 

(1.21) 

Solving Eq. (1. 21) under consideration of Eqs. (1. 5-a), (1. 13-a) and (1. 9-a), 

u = 2(Co-K)r+E0r-1+(E£r+E2r-3
- ~ J.+/µc2r-1) cos2fJ 

(1.22) 
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From Eqs. (1. 6), (1. 20) and (1. 22), 

8v Bu aff = er-u-r or 

= ( -2E~r+2E2r-3 +C2r-1
) cos 2fJ + (-2F~r+2F2r-3 + D2r-1

) sin 20. (1. 23) 

Solving Eq. (1. 23) under consideration of Eq. (1. 7-b), 

(1. 24) 

Introducing Eqs. (1.20), (1.22) and (1,24) into Eqs. (1.5-a), (1.5-b), (1.5-c) and 

(1. 5-f), and determining each constant from the boundary conditions represented 

by Eqs. (1.13-a), (1.13-b), (1.13-c), (1.13-f), (1.19-a) and (1. 9-c), we obtain 

the equations that give the components of stress around a circular inclined shaft 

as follows: 

ar = a1(l-~_2_)+a2(1-4a
2 
+3a

4

)cos20 y2 y2 y4 

+a3(l-4a
2 

+3'!~)sin20, y2 y4 

ao = a1( 1+::) + a2( -1-3::-) cos2/J +a3( -1-3f:) sin 20, 

a1; = 01-~a2a
2 

cos21J-_2L_a3 a
2 

sin2/J, 
..l+µ y2 ..l+µ y2 

(1. 25) 

To!:~ 11(1+::)cosfJ+,2(1+::)sinfJ, 

Tro = ttz -1-2---+3-- J sm2fJ+a3 1 +2--3-- cos2/J. ( 
az a4 \ . ( az a4) 
y2 y4 / yZ y4 

Since Poisson's number mis equal to 2(..l+µ)/,l, 2..l/(,l+µ) in the third equation 

of Eq. (1. 25) can be replaced by 4/m. By putting ¢=0° or 90°, Eq. (1. 25) gives 

the components of stress around a circular level or vertical shaft. 

It is noticed, in Eq. (1. 25), that ar, a0, To!:, Tl;r and Tro are independent of 

elastic constants and therefore determinate, but that a1; depends upon Poisson's 

number and is therefore indeterminate. 

In the case where the direction of one of the principal stresses in the 

undisturbed ground is assumed to have the same direction as the axis of the 

cylindrical opening, the components of stress ar, a0, Tro have been analyzed by 

several investigators simply regarding them as plane stresses. The author's strict 

solution verifies that this simple analysis is justified. However, ar; is not to be 

obtained from the simple solution. 
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Experimental Analysis of Stress Around a Shaft or Level 

Theoretical considerations 

Let us first discuss the general way to determine experimentally the stre~s 

around an opening made in ground with a three-dimensional stress state. 

Consider two systems of rectangular coordinates (x, y, z) and (x', y', z'), with 

the same origin 0. The x, y and z-axes are arbitrary and say that the x and y 

axes are horizontal and the z-axis is vertical, while the x', y' and z'-axes are taken 

in the directions of the principal stresses p1 , p2 and Pa in the undisturbed ground. 

Let the direction cosines of x', y' and z'-axes be !1, !2, la; m1, m2, ma and n1, n2, na 
respectively. 

At any point sufficiently far from an opening, there following relations exist : 

} (2. 1) 

in which <lx', <Jy', ··• ,-rx'Y' are components of stress in reference to (x', y', z') 

coordinates. By expressing Eq. (2. 1) with components of stress in reference to 

(x, y, z) coordinates, we obtain 

<lx = lr.P1 + mr_p2 + nr.Pa, 

<Jy = liP1 +m~P2+n]Pa, 

<1,, = liP1 +m~P2+niPa, 

'T:yz = li!aP1 +m2maP2+n2naPa, 

'T:zx = lal1P1 +mam1P2+nan1Pa, 

'T:xy = l1l2P1 +m1m2P2+n1n2Pa. 

If a model for photoelastic ex­

periment is loaded simultaneously 

in the directions of and with the 

intensities of P1, P2 and Pa respec­

tively, the state of stress expressed 

by Eq. (2. 2) will be reproduced in 

the model. But it would be a waste 

of effort and time to make such an 

experiment for each given set of P1, 

P2 and Pa, 
However, in order to determine 

the components of stress at any 

point in a model, it is supposed 

sufficient to make six kinds of ex­

periment for a given shape of 

b 

X' 

X 

(2.2) 

z 

y=-z+const. 

y 

x~-y+const. 

C 

Fig. 2. 
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opening, whatever the state of stress in the undisturbed ground may be. 

Now we shall treat the stress analysis from such experiments where six 

models are, one by one, loaded in x, y, z, a, b and c-directions with intensities of 

of Px, PY, Pz, Pa, Pb and Pc; the a, b, and c-axes being the bisectors of the y and 

z-axes, z and x-axes, x and y--axes respectively. (See Fig. 2.) If these six kinds 

of loading were practiced on a model simultaneously, the components of stress 

at any point far from the opening would be given by the following equations: 

<1:x =Px+Pbcos2 ~ +PcCOS2~ =Px+~ (Pb+Pc), 

1 
<Jy = PY+ 2 (Pc+ Pa), 

1 <1z =Pz+-2 (Pa--1-Pb), 

1 
'ryz = 2 Pa, 1 

'rzx = 2 Pb, 

(2.3-a) 

(2.3-b) 

(2.3-c) 

(2.4) 

In order that the components of stress given by Eqs. (2. 3), and (2. 4) become 

equal to those given by Eq. (2. 2), the following relations must exist: 

Putting 

Px+ ~ (Pb+Pc) = lr.P1+mr.P2+n'f.p3, 

PY+~ (Pc+Pa) = l~P1+m~P2+njp3, 

Pz,- ~ (Pa+Pb)= l~P1+m§P2+n§p3, 

1 
2-Pa = l2/3P1 -I- m2m3P2 + n2n3p3, 

1 -2-h = lal1P1 + m3m1 P2 + n3n,p3, 

1 
2--Pc = l,l2P, + m,m2P2-1- n,n2P3. 

a,., = lr_-/3/1 - l,l2 , 

a,.2 = m'f_-m3m,-m,m2, 

a1.3 = n~ ~ nsn1 - n1n2 , 

a2., = l~-l,l2-lzl3, 

a2.2 = m~- m,m2 - m2m3 , 

a2.J = n~-n1n2-n2n3, 

a3.1 °·~ l§-l2l3--lal,, 

a 3 _2 m~ - m2ma -- m3m, , 

a3.s -= n§ - n2n3 -· n3n, , 

a,., = 2/2'3 , a,.2 = 2m2m3 , a,.3 -~ 2n2n3, 

(2. 5) 

(2. 6) 
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as.1 = 2lal1, 

a,;_1 = 2l1l2, 

as.2 = 2mam1 , 

a,;_2 = 2m1m2 , 

we obtain the following equations. 

as.a = 2nan1 , j 
a,;_a = 2n1n2 , 

Px = a1.1P1 +a1.2P2+a1.aPa, 

PY= a2.1P1 +a2.2P2+a2.aPa, 

Pz = a3.1P1+aa.2P2+aa.aPa, 

Pa = a,.1P1 + a,.2P2 + a,.aPa, 

Pb = as.1 P1 + as.2 P2 + as.a Pa , 

Pc = a,;.1P1 +a,;.2P2+a,;.aPa. 

(2. 7) 

If a model is loaded by Px, py, Pz, Pa, Pb and Pc simultaneously, the stress state 

in the model will be just the same as that which is caused by p1 , p2 and Pa, 

acting simultaneously. 

Now let us explain how to find components of stress expressed in reference 

to an optional system of coordinates (x", y", z") at any point P in a model, which 
is loaded by P1, P2 and Pa simultaneously. Six models are prepared, one of which 
is loaded in the x--direction with an intensity of Px, the stress pattern in it being 

fixed by proper heat treatment. Observing the stress pattern by means of a 
photoelastic apparatus, the components of stress at Point P are determined, from 
which the stress coefficients Ax, Bx,··· ,Fx defined by the following equations 

are found*. 

(2. 8) 

in which (ax11 )x, (ay11 )x, ···, (-rx"Y")x are the components of stress caused by Px, 
expressed in reference to (x", y", z") coordinates. 

In the same manner, the other five models are loaded, one by one, by py, p,,, 
Pa, Pb and Pc, and the five groups of stress coefficients Ay,By,··•,Fy,···,Ac, 
Be,···, Fe are found. 

On the other hand, from given values of p1, P2 and Pa, the theoretical 
intensities of loading Px, py, Pz, Pa, Pb and Pc can be calculated from Eq. (2. 7). 
Thus the components of stress under question are obtained by the following 
equations. 

ax"= AxPx+Aypy+A,,p,,+AaPa+AbPb+AcPc, 

(Jy" = BxPx+Bypy+BzPz+BaPa+BbPb+BcPc, l (2. 9) 

* In general, the stress around an underground opening is indeterminate. In finding such inde­
terminate stress by means of three-dimensional photoelastic experiments, one must take a proper 
measure to meet the fact that the Poisson's number of the material of models decreases down 
to about 2 when stress patterns are fixed by heat treatment. 
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Let us proceed to discuss how to determine the stress around a shaft or 

level with a uniform cross section. In this case the stress analysis becomes far 

simpler. 

It is convenient to take the x-axis along the axis of the shaft or level, the 

y-axis perpendicular to the x-axis and horizontal, the z-axis perpendicular 

to both the x and y-axes. Let us explain how to 

find the components of stress, d t, a,, -r ,, at any given 

point P on the wall surface, expressed in reference 

to rectangular coordinates (t, !, n), with origin at 

Point P, the t-axis being tangent to the wall surface 

and perpendicular to the x-axis, the /-axis being 

parallel to the x-axis, and the n-axis being normal 

to the surface. (See Fig. 3.) Since Point P is on 

the wall surface, 

lln = '1"tn = '1"nt = 0. 

X 

z 

Fig. 3. 

I 
/ 

I 
I 

I 

z' 
I 

The stress coefficients concerning a1 , a, and -r 1, shall be denoted by the 

letters, A, B and F respectively. Now the present problem is to find six groups 

of stress coefficients, namely : 

Ax, Bx, Fx; 

Aa, Ba, Fa; 

Ay, By, Fy; 

Ab, Bb, Fb; 

Az, Bz, Fz; 

Ac, Be, Fe; 

from six experiments. However, on theoretical grounds the first group of stress 

coefficients Ax, Bx and Fx, which are to be determined from an experiment 

loading a model in the direction of the axis of opening, is given by : 

Ax = 0 , Bx = 1 , F:x = 0. (2. 10) 

Therefore the experiment in which a model is loaded in the x-direction can be 

omitted. 

We must pay attention to the fact that we can not determine a1 from three­

dimensional photoelastic experiments. The reason is that, judging from the strict 

analysis of stress, expressed by Eq. (1. 25), around a circular inclined shaft, llt 

depends upon the elastic constants and is indeterminate, while on the other hand 

Poisson's number for the model material decreases down to almost 2 when the 

stress pattern is fixed by heat treatment, and accordingly the determination of 

the indeterminate stress a, is impossible from three-dimensional photoelastic 

experiments. 

An alternative method to find a, was investigated and developed as follows. 

Let Young's modulus and Poisson's number of the ground in which a shaft or 
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level is excavated be E and m respectively, and the strain at Point P in the 

/-direction be c,. Then, from the relation between stress and strain in an elastic 

body, 

On the other hand, by definition we have 

Hence 

(a,)y = Bypy, (a,),,= B,,p,,, ···, (<11)c = BcPc, 

(a,)y = Aypy, (a,),,= A,,p,,, ... , (a,)c = Ac Pc. 

l (2.11) 

Since it is supposed that e1 does not vary upon excavating a shaft or level, we have 

By= (Ay-1)/m, B,, = (A,,-1)/m, 

Ba= (Aa-1)/m, Bb = (2Ab+m-l)/2m, 

Be= (2Ac+m-1)/2m. 
} (2.12) 

Since a, and a, can be determined by regarding them as two-dimensional 

stresses, the three kinds of photoelastic experiment in which models are loaded 

in the y, z and a-directions are enough to be two-dimensional. Consequently only 

the two kinds of experiment in which models are loaded in the band c-direction 

must be three-dimensional. However, since two-dimensional photoelastic experi­

ments are superior to three-dimensional ones in accuracy, it is preferable to find 

Ab and Ac from two-dimensional experiments rather than from three-dimensional 

ones, by means of the following equations*: 

* Let the 7i-axis be the bisector of the y-axis and the minus side of the x-axis. If a model 

is loaded in the b and 7i-directions simultaneously with the same intensity Pb, the components 
of stress at any point far from the opening are given by 

1 1 1 1 
er,= 

2
-Pd 2 Pv 0 h, .,.,~o, cr,-~ 2 Pd 2 Pb=Pb 
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(2. 13) 

Making use of this relation, Ba and Bb in Eq. (2. 12) can be rewritten as : 

Bb = (Az+m-1)/2m, 

Be= (Ay+m-1)/2m. } (2.14) 

When the cross section of an opening has more than one axis of symmetry, 

such as a circle, square, rectangle, trapezoid or arch shape, the following relation 

exists among Ay, Az and Aa:fol<: 

(2. 15) 

in which Aa is the stress coefficient representing a, at the symmetrical point of 

Point P with respect to the axis of symmetry. It is advisable to improve the 

accuracy in the determination of Ay, Az and Aa by making use of Eq. (2. 15). 

It must be noted that Tt1 is always zero when a model is loaded in the x, y, z 

and a-directions. Therefore 

(2. 16) 

In short, the components of stress at the wall surface of a vertical or inclined 

shaft or a level can be obtained from the following equations: 

dt = Aypy+AzPz+AaPa+ 1z Pb+A; Pc. 

dt = Px+Ay-1 py+Ax-1 Pz+Aa-1 Pa+Az~m-1 Pb+Ay~m-1Pc, 
m m m m m 

(2. 17) 

Tt1 = FbPb+FcPc • 

The stress coefficients Ay, Az, Aa, Fb and F c, appearing in Eq. (2. 17), are 

determined by the photoelastic experiments shown in Table 1, and Px, py, •· • , Pc 

are calculated from the magnitudes and directions of p1 , p2 and Pa, using Eq. (2. 7). 

Accordingly, at Point P on the wall surface, 

<T1=Ax<Tx+A,<T,=A,Pb • (Since A,=0.) 

On the other hand, since the wall surface is parallel to the x-axis, the magnitude of <T1 , caused 

by a loading Pb in the b-direction is equal to that caused by a loading in the b-direction. 

Therefore the magnitude of <Tt, when a model is subjected to loadings in both b and b-directions 
simultaneously with the same intensity Pb, is given by 

IT1=2Abh. 
Thus we get Eq. (2. 13). 

** Let the a-axis be the bisector of the z-axis and the minus side of the y-axis. The stress 
component <Tt caused by loadings with an intensity of Pa in the a and a-directions simultane­
ously is equal to that caused by loadings with the same intensity in the y and z-directions 
simultaneously, whereas <T1 at a point caused by a loading in the a-direction is equal to <T I at 
the symmetrical point by a loading with the same intensity in the a-direction. Consequently 
we obtain Eq. (2. 15). 
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Table 1 
--- --------------- .. ----~, 

Two-dimensional photoelastic Three-dimensional photoelastic 
Stress coefficients :xperiments, loading a model I :xperiments, loading a model Remarks 

Ill Ill 

A .• y-direction Consider 
A, z-direction 

A. a-direction Eq. (2.15). 

Fb b-direction 

Fe c-direction 

In the special case where the direction of the axis of a shaft or a level 

coincides with the direction of p1 , namely the x-axis coincides with the x' -axis, 

and therefore, according to Eq. (2. 7), we have 

Pb= Pc= 0. 

Thus the components of stress are given by the following equations: 

-ra=O. l (2.18) 

We only have to know, in this case, the three stress coefficients Ay, Az and 

Aa from two-dimensional photoelastic experiments. 

Photoelastic experiments 

In the manner described above, the stress was investigated around a shaft 

or level whose cross section is a square or rectangle with rounded corners. In 

order to compare the results of experiment with those,of theory, the stress around 

a circular shaft or level was also found in the same way. 

Two-dimensional photolastic experiments were carried out to determine Ay, 

Az and Aa, which are given by dividing the value of a, obtained experimentally 

by the intensities of loading in the y, z and a-directions respectively. The details 

of the two-dimensional photoelastic experiments will be omitted here for they 

are well known. 

Three-dimensional photoelastic experiments were carried out to determine 

Fb and Fe. The shape and size of the models for these experiments are illustrated 

in Fig. 4. The models were loaded uniformly, with an intensity of about 

1.5 kg/cm2, by dividing the surface into thirty-six squares and loading them 

uniformly with the same weights, and the stress patterns were fixed by heat 
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Fig. 4. Models for three-dimen­
sional photoelastic experiments. 

G' 

l:~~" 
p 

5mm 
fd) 

-observation 

Fig. 5. Cutting a model in order to determine the 
principal stresses at Point P. 

treatment. Then the models were cut into a number of small pieces for observa­

tion, as shown in Fig. 5. 

The determination of Fb and Fe at any point P on the wall of an opening 

was practised in the following manner. At first, a flat piece was cut out from 

the wall of an opening around Point P (Fig. 5 (a, b,c) ). Projecting plane polarized 

light normal to the wall at Point P, isoclinics were observed, from which the 

directions of principal stresses were determined. (Fig. 5 ( c) ). Then, as shown 

in Fig. 5 (d), a small square prism, 5 mm x 5 mm in cross section, was cut out 

of the flat piece around Point P, and by projecting circular polarized light in the 

direction perpendicular to one of the principal stresses, say cT1 , and then-direction, 

the fringe order was determined, from which the principal stress 0'1 was evaluated, 

Table 2 Values of s/iesss coeff1oents 

Stress Vi!lues of Stress Coell1c,ents al Potnts 

Cross Section Coel/1- P, P, P, P, P, P, P, P, P, P, P,, P,, 
C1ents P,, P,, P,. P,, P,. P,, P,. P,, p,_ P,, P,, P,, 

'O" 
A, 2.16 2.22 2.15 1.50 ·0.60 -0.97 -1.00 -0.97 -0.60 1.50 2.75 2.22 

A, -J.00 -0.97 -0.60 1.50 2.75 2.22 2.16 ?.22 2.75 I.SO -0.60 -0.97 

P6 Pia A, 0.51 1.39 3.00 540 3.00 1.39 0.50 -0.05 -0.95 -240 -Q95 -0.05 

F,, 0 ,0.11 ±0./9 ±0.05 :;0.62 +0.46 ;0.40 +0.46 ~0.62 ±0.05 ±0.19 ±0.11 
Pg P1t Pis F, :;0.40 +0.46 :;0.62 ±0.05 ±0./9 ±0.11 0 ,0./1 :;0.19 +0.05 >0.62 ±0.46 

A, 1.68 1.79 235 0.60 ·0.45 -0.90 -J.00 -0.90 -0.45 0.60 2.35 I .79 
p Po Ph 

A, -1.00 ·0.99 ·050 2.18 3.38 2.95 2.18 2.95 3.38 2.18 -0.50 -0.99 

P:□P,. A, 0.34 1.16 2.94 4.55 4.13 ?.99 086 0.13 -J.26 -169 -J.15 -0.41 

Pg P11 PH F, 0 t..0.21 ±0.29 :;:0.19 +0.95 +0.76 :;0.10 ,0.76 +0.95 +0.19 !0.29 ±0.21 

F,, +0.25 ;0,25 T044 ,0.01 ±0.12 :!0.1 I 0 ,0.11 ,0.12 ±0.01 !0.44 ±0.25 

'O" 
A, 2.18 2.95 3.38 2.18 -o.so -0.99 -J.00 -099 -0.50 218 3.38 2.95 

A, -1.00 ·0.90 ·0.45 0.60 2.35 1.19 J.68 1.19 2.35 0.60 ·0.45 -0.90 

P6 P,e A, rJ.86 299 4.13 4.55 2.94 1.16 0.34 -0.41 -I.15 -1.69 -1.2d Q./3 

F, 0 ±0.J I ±0.12 +0.01 ;.044 ,0.25 +0.25 :;:0.25 +0.44 +0.01 ±0.12 ±0.11 

p9 PJl pl) F, + 0.70 :; 0.76 ;;o 98 :;0./9 !:0.29 ±:0.2 I 0 :;0.21 +0.29 ±0.19 •0.95 ±0.76 
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taking into account the photoelastic sensitiveness determined from test pieces 

which were produced with the same material under the same heat treatment at 

the models. The determination of fringe orders requires some inventive means. 

From the magnitudes and directions of the principal stresses thus obtained, the 

component of shearing stress -r tt at Point P was calculated. Dividing it by the 

intensity of loading in b or c-direction, Fb or Fe was obtained. Table 2 shows 

the values of the five stress coefficients Ay, A,,, Aa, Fb ane Fe, thus obtained, 

for a shaft or level whose cross section is a square, a lying rectangle or standing 

rectangle with rounded corners. 

In order to examine the accuracy of the determination of stress coefficients 

from three-dimensional photoelastic experiments, the values of Ab and A obtained 

from these experiments are compared with those calculated theoretically using 

Eq. (1. 25) in Table 3. 

Table 3. Comparison of the values of stress coefficients concerning a circular shaft or level 
obtained experimentally with those obtained theoretically. 

Values of stress coefficients at points whose angles of 
Stress deviation e are 
Coefficients oo 

I 15° I 30° I 45° I 60° I 75° I 
goo 

• 

I Theoretical I -0.50 

I 
-0.37 

I 
0 

I 
0.50 1.00 

I 
1.37 

I 
1.50 

Ab Experimental -0.60 -0.39 0.09 0.51 1.03 1.53 1.80 

I Theoretical I 1.00 

I 
0.97 

I 
0.87 

I 
0.71 0.50 

I 
0.26 

I 
0 

Fb Experimental 1.00 0.95 0.82 0.62 0.28 0.08 0 

We see, from this table, that it is fairly difficult to obtain accurate values 

of stress coefficients from the experiments. Probably, the error is caused by the 

error in making models, by the thickness of slices through which isochromatics 

are observed, and so on. 

Discussion 

Let us assume that a circular inclined shaft is excavated in the ground in 

which P, = P2=kP3 and P3 is vertical, and denote the center points of the side wall 

and the roof with A and B respectively. The variations in ae, a1;, Te!; at Points 

A and B as well as the magnitudes and directions of principal stresses at Point 

A with the angle of inclination¢ of the inclined shaft are investigated according 

to Eq. (1. 25), and assuming that Poisson's number for the ground is 4. They 

are as shown in Fig. 6 (a), (b), (c). For ¢=0, the inclined shaft becomes a level, 

while for ¢=90°, it becomes a vertical shaft. 

From Fig. 6 it is seen that the greatest stress appearing on the wall is 

maximum when ¢=0, while it is minimum when ¢=90°. 
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Fig. 6 (a). Relations between the stress components de, dt;, 'f'Ot; at 
Point A and the angle of inclination </>. • 

2.01~----,-----.---,----..--k-=-l-,---,--,--, 

---rr. 
'---+---+---+----+----t--------1 --+---I 

------(JS 

k=J 
10 ---- -""- ----· ---- --

-
10

0• 30• 60° cf> go• 

Fig. 6 (b). Relations between the stress components ae, dt; at Point B 
(principal stresses) and the angle of inclination <f>. 
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20 

_k_=_l 10 
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(T, 

,; 
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~ 

-t-------t-+-J....,_--, 75• 

Fig. 6 (c). Relations between the magnitudes and directions of prin­
cipal stresses at Point A and the angle of inclination ,i,, 

,J, being the angle of the smaller compressive principal 
stress measured from (-axis. 

Now we proceed to discuss the stress concentration around a shaft or level 

in the case where the directions of all the principal stresses in the undisturbed 

ground deviate from the vertical or horizontal. Assuming that the principal 

stresses in the undisturbed ground are as shown in Fig. 7, the distributions of 

principal stresses on the wall of a vertical shaft, an inclined shaft (if>= 15"') and 

a level are illustrated in Fig. 8 (a) ~(d). In these figures, the magnitudes and 

Fig_ 7. An example of state off stress in the 
undisturbed ground (P1 =P3 /4, P2=P3 /3). 

directions of principal stresses are 

plotted on the development of the 

wall surface, the positive direction 

of the axis of the shaft or level 

being directed upwards. (a), (b), (c) 

and (d) of Fig. 8 correspond to shafts 

or levels with a circular, square and 

two rectangular (lying and standing) 

cross sections respectively. Fig. 8(a) 

is based on the theoretical stress, 

while Fig. 8 (b), (c) and (d) on the 

experimental stress. In all cases, 

Poisson's number for the ground is 

assumed to be 4. Points PO , P 1, • • • , 

P12 on the abscissa in Fig. 8 (b), (c) 
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Fig. 8 (a). The distributions of principal stresses on the wall of a vertical shaft, an 
inclined shaft (<1>=15°) and a level, with a circular cross section, which are 
made in the ground whose stress state is as shown in Fig. 7. 

)M'><t><:~~~~t\+-~(1<+#~1><l ,( ~:1f\\~, ~, 

~-~kkntt I ,,fJts i ~I btti:E 
P12 ?19 P, Po P,1 P, s P,, 

~~~'~~· I I ., , ,, .,"tr,,-....__~ I I ,, ·~ 
~~ ~, #, ' ~ ~ \ I I I '!~ ii,~"'--.._•~~> .. ,. 

~~JRI fERc,!fbltIJ 
p

12 
- P19 P, p

0 
P21 P,, p

12 

Fig. 8 (b). The distributions of principal stress on the wall of a vertical shaft, an 
inclined shaft (<1>=15°) and a level, having a square cross section with 
rounded corners, which are made in the ground whose stress state is as 
shown in Fig. 7. 
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Inclined 
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Fig. 8 (c). The distributions of principal stresses on the wall of a vertical shaft, an 
inclined shaft (<t,=15°) and a level, having a lying rectangular cross section 
with rounded corners, which are made in the ground whose stress state is 
as shown in Fig. 7. 

)~-i;~~~<"'~ \ /-....... / / 

~1tlt I FlJ&ilM+P, f iatill 
P,, P9 P, Po P,1 P,5 Pu 

Fig. 8 (d). The distributions of principal stresses on the wall of a vertical shaft, an 
inclined shaft (<t>=l5°) and a level, having a standing rectangular cross 
section with rounded corners, which are made in the ground whose stress 
state is as shown in Fig. 7. 
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and (d) correspond to those shown in Table 2. In Fig. 8 (a), however, the 
positions of points are expressed by the angle of deviation fl. 

From Fig. 8, it is seen how the principal stresses on the wall deviate from 
the direction of the axis of the shaft or level ( or from the direction perpendicular 
to it) with the deviation of that axis from the direction of one of the principal 
stresses in the undisturbed ground. 

It seems that along the outline of the cross section, the maximum tensile 
stress (or the minimum compressive stress) may appear near the points which 
the plane containing Pa ( the greatest of p,, P2, Pa) and the axis of the shaft or 
level cuts the outline, whereas the maximum compressive stress may appear near 
the points where the plane perpendicular to the former cuts the outline. However 

the above mentioned rule becomes ambiguous when p 1 or P2 is considerably 

large or when there are corners on the cross section, since the points of maximum 

stresses have a tendency to be drawn toward the corners. 

The maximum compressive stress appearing on the wall is much affected by 

the directions of the maximum of the principal stresses in the undisturbed 

ground, so that the maximum stress can hardly be expressed by a simple rule. 

But it may not be a great mistake to say that the greatest stress in all cases 

is of about the same order as the greatest stress appearing in the case where 

the axis of the shaft or level is in the direction of p, or p2 • 

Summary 

The stress around underground openings is much affected by the state of 

stress in the ground in which the openings are made. The present paper treats 

the stress around a vertical shaft, an inclined shaft and a level, taking into 

account that the ground is in a three-dimensional stress state. 

First the stress around a circular shaft or level is analyzed theoretically. Then, 

the general method of experimental analysis of the stress around a shaft or level 

is discussed, paying special attention to the evaluation of indeterminate stresses. 

Secondly the stress around shafts and levels with a square and with two 

rectangular cross sections, all having rounded corners, is found by two-dimensional 

and three-dimensional photoelastic experiments. The results obtained are illus­

trated, from which the influence of the state of stress in the undisturbed ground 

upon the stress around a shaft or level is discussed. 
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