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The Confinement of High Temperature Plasma by the 
Heliotron Magnetic Fields 

By 

* Koji Uo 

(Received October 31, 1961) 

A magnetic field named the Heliotron field is produced by electric current in 
a series of pair coils wound around a discharge tube at regular intervals. The 
electric current in each coil of the pair differs both in intensity and direction. 
The lines of force in this field undulate near the tube axis without cutting the 
wall, while those near the tube wall intersect the wall. Thus a high temperature 
plasma can be produced by ohmic heating in the central region of this field, and 
the plasma is prevented from touching the wall. This field is found to satisfy 
the necessary condition for equilibrium. The interchange instability of the plasma 
confined in this field is discussed. A general expression is given for the magnetic 
field, and it is shown that the Heliotron B magnetic field, the cylindrical cusp 
field, the helical winding field of the Stellarater and the Picket-Fence field are 
derived as special cases of this general formula. 

§ L Introduction 

31 

There are two different type situations in the confinement of high tempera­

ture plasma by a magnetic field. The magnetic pressure is comparable with the 

plasma pressure in the one and much larger than the plasma pressure in the 

other. For example, the pinch type machine belongs to the first type and the 

mirror type machine and the stellarator to the second. 

Recently two machines of the second type have been constructed successively 

at Kyoto University and named the Helliotron A and the Heliotron B.1
,
5

) The 

Heliotron:+o1< magnetic field uses a series of pair coils which are wound around 

a discharge tube of toroidal shape at regular intervals. In general, the electric 

currents in the coils of each pair are different in both intensity and direction. 

The magnetic field produced by these currents is composed of two different 

regions. In the region near the tube axis the magnetic lines of force undulate 

along the axis without cutting the wall, whereas those near the tube wall cross 

* Department of Electrical Engineering 
** The basic plan of the Heliotron field was first presented at the meeting of Thermonuclear 

Conference of Japan (May 5, 1958), and was published in Kakuyugo Kenki1, 1, 20 (1958). 
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the boundary and make short arcs inside the wall. Therefore, a high-temperature 

plasma can be produced by ohmic heating only in the central region of the 

magnetic field, since particles near the wall cannot be accelerated sufficiently by 

the applied axial electric field. Thus it may be said that the machine has the 

effect of preventing the hot plasma from directly touching the wall. 

There are two sorts of Heliotron magnetic fields. One is axisymmetrical 

and is called the Heliotron B field, and the other is helically invariant and is 
called the Heliotron H field. The distinctive characteristics of the Heliotron B 

field are as follows : 

(1) The charge sep::ration of the plasma could be eliminated by the azimuthal 

drift of the particles in the undulated field. 

(2) By the existence of the circular cusp series inside the tube wall, we 

can satisfy the necessary condition for equilibrium of the plasma under the 

magnetohydrodynamical assumption. 

(3) The plasma in this field is stable for the interchange instability under a 

proper gradient of the plasma density. 

( 4) It seems possible that the magnetic mirrors in the Heliotron field will 

prevent generation of runaway electrons. 

(5) It is possible to heat the plasma by the generation of ioncyclotron waves 

using the beach effect at many slopes of the undulation of the Heliotron field. 

(6) The configuration of the Heliotron field is very flexible. By changing 

the current ratio of one coil series to another, we may obtain various magnetic 

field configurations from the ZETA type field to the Picket Fence type field. 

And we need not worry too much over the exactness of the field configuration, 

since we can bore apertures for observation without introducing field correction 

coils. 

(7) The lines of force near the wall in themselves make a plasma diameter 

limiter. Therefore the metal aperture limiter is not necessary. 

The main defects of the Heliotron B field are : 

(1) The stability condition for interchange instability seems rater too strict. 

(2) The particles will be lost from the circular cusp series. However, the 

former faults will be overcome in the Heliotron H field. The Heliotron H 

magnetic field can be obtained by making the coils of the Heliotron B (Fig. 2. 4) 

helical around the tube as shown in Fig. 2. 7. This field is like the field 

produced by the helical windings of the stellarators making the pitch of the 

windings shorter than the stellarator and the current flowing in the windings 

different from each other. Thus we can make the rotationally transformed field 
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the same as the stellarator and make a plasma which is stable for interchange 

instability. Furthermore in the Heliotron H field, the field intensities, Bp, Be 

and Bz, have comparable orders. Therefore, when the magnetic field is sufficiently 

strong, it seems that the distortion of the Hiliotron H field by the plasma current 

would be very small, and that the field could confine the plasma with /3 nearly 

equal to unity. Making ). = 1, the Heliotron H field becomes the helical Picket 

Fence field. 

The Heliotron A of toroidal shape was constructed first. Its discharge tube 

was made of Zircon ceramic with a torus radius of 30 cm, the inner radius of 

the tube being 8 cm, and the thickness of the tube wall 1 cm. It had six apertures 

for observation. Unfortunately the Heliotron A was damaged, presumably due 

to the residual stress in the ceramic and the mechanical stress caused by the 

field coils which were wound around the torus tube. 

Next, the Heliotron B was constructed. Its discharge tube has the shape of 

a race-track and is made of stainless steel. Its curved part has nearly the same 

size as the Heliotron A, and the length of its straight part is 50 cm, the inner 

radius of the tube is 8.4 cm~7.5 cm, and the wall thickness 0.2 cm. It has nine 

apertures for observation. The field intensity is about 10,000~ 16,000 gausses. 

Various experiments are being carried out with the Heliotron B at present. 
In this paper, we describe first the configuration of the Heliotron magnetic 

field and discuss the conditions for the confinement of a high temperature plasma 
in this field. Secondly, it will be shown that this field satisfies the necessary 

conditions for equilibrium within the framework of the magnetohydrodynamic 
approximation. Lastly, we will discuss the interchange instability of plasma in 

this field. 

~ 2. General Configuration of the Heliotron Magnetic Field 

Let us consider a magnetic field produced by an electric current in the coils, 

which are wound, as shown in Fig. 2. 1, around a torus tube at regular intervals. 

The outline of the magnetic field in a cylindrical 

section involving the tube axis is shown graphically 

in Fig. 2. 2. 

It is assumed that the charged particles in the 

slightly ionized gas in the tube move along the lines 

of force, being accelerated by an electric field, and 

l I 

Fig. 2.1 

that the plasma is so dilute and the magnetic field is so strong that the magnetic 
pressure Pmag is much larger than the plasma pressure Pgas. In this case charged 
particles inside the curve AB of Fig. 2. 2 are accelerated over a long distance 
and reach a high energy. On the other hand, particles outside AB run along 



the lines of force which are 

interupted by the tube wall 

and therefore cannot attain 

a high energy. Thus it may 

be expected that we can 

generate the discharge only 

in the region inside the 

curve because the electric 

conductivity along the x 

direction becomes so poor 

near the wall that the high 

temperature plasma in the 

inner region is prevented 

from reaching the wall ex­

cept at the point G (see 

Fig. 2. 2). 

This field appears to be 
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C D 
Fig. 2. 2 The lines of force inside the curve AB undulate 

along the axis without cutting the wall, whereas those 
outside the curve AB cross the wall and those outside 
CD are the leakage flux. 

effective for protecting the wall against the hot plasma and for decreasing the 

influx of impurity from the wall. At point G however, the high temperature 

plasma touches the wall. In order to correct this defect, double rows of coils as 

shown in Figs. 2. 3 and 2. 4 are introduced. The direction of the electric current 

in the outer coils is opposite to that of the inner one. The magnetic lines of 

force in these fields are roughly sketched in Figs. 2. 5 and 2. 6. 

Fig. 2. 3 Fig. 2.4 

In these fields the magnetic lines of force inside AMB do not touch the wall, 

whereas all lines outside AMB enter the wall leaving short arcs inside the wall. 

The lines of force near the axis are completely separated from those near the 

wall, and therefore the high temperature plasma confined by the lines of force 

inside AMB do not touch the wall at all. Therefore, these fields are evidently 

more advantageous for confining hot plasma than the field shown in Fig. 2. 2. 
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~ 
A M B 

C 0 

~ 
Fig. 2.5 Fig. 2. 6 

The rows of coils in Fig. 2. 4 may be modified as shown in Fig. 2. 7, or coils 
may be wound helically around the tube as shown in Figs. 2. 8~2. 10. In the 
latter case the lines of force also become helical, and this field may be called 
the Heliotron H field. 

The magnetic fields generated by these double rows of coils are named the 
Heliotron magnetic field. Let us denote the ratio of the electric currents in the 
two coils of a pair by ..l. If we put ,l = 1 in the windings of Figs. 2. 7 and 2. 10, 
they reduce to the Picket Fence field and to the field produced by the helical 
windings of the Stellarator respectively. 

I -.J..f 
Fig. 2. 7 Fig. 2.9 

UJJD 
J -)J 

I 
Fig. 2.8 Fig. 2.10 

It is one of the merits of the Heliotron field that we can bore apertures for 
observation without introducing correction coils, which are usually necessary 
for eliminating the field distortion caused by the irregularity of the coils near 
the apertures. 

The patterns of the magnetic fields produced by the windings are observed 
experimentally by the iron sand method, and their pictures are shown in Figs. 
2.11~2.19. 



36 Koji Uo 

Fig. 2.11. The Heliotron A Magnetic Field Produced by the Coils Shown in Figs. 2. 3 and 2. 5. 

Fig. 2.12. The Heliotron B Magnetic Field ,\ = 0.17. 
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Fig. 2.13. The Heliotron B Magnetic Field 7' = 0.33. 

Fig. 2.14. The Heliotron B Magnet ic Field 7' = 0.50, 
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Fig. 2.17. The Heliotron H Magnetic Field 1'=0.67. 

Fig. 2. 18. The Heliotron H Magnetic Field ;>,. = 1.00. 
(Vhe Helical Picket Fence Field) 

'I"' '• ':i' ... ')0,~""·" 
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"·"y,, , 
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Fig. 2. 19. The Heliotron H Magnetic Field i\ = - 0.67. 
(The Toroidal Solenoid Field) 

\:3 3. Basic Equations of the Cylindrical Magnetic Field 

If we assume that a cylindrical magnetic field is generated by the coils wound 

around a cylindrical tube and no current exists inside of it, we have 

rot B = 0. 

Then the magnetic flux density B is given by 

B = grad¢, 

where ¢ is a scalar function. From (3. 1) and (3. 2) we have 

(3. 1) 

(3.2) 

(3. 3) 

and if we solve this Laplace equation we obtain B from (3. 2). Equation (3. 3) 

may be expressed in cylindrical coordinates (p. fl, z) as 

(3. 4) 

Let us assume ¢ in the following form : 

¢ = F(.o)G (fl ) S(z) , (3. 5) 

where S(z) and G (fl ) are periodic functions of z and fl respectively. Substituting 

(3. 5) into (3. 4) and solving the resultant ordinary differential equations, we 

have the following solution (see Appendix II) : 
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= 00 

+ I:: I:; /cv cos (vt.:z) + dv sin (vt.:z)} (P n cos nfl + Q n sin nfl) 
V=l n=O 

(3. 6) 

where e, log P, eiJ and e3z are particular solutions of (3. 4), and t.:, Cv, dv, Pn, Qn, 

An and En are numerical constants. If we impose the boundary conditions 

IBl=\=oo 
Bp = 0 

to (3. 6), <fa becomes 

for p = 0, } 
for nfl+vt.:z = mn, m = 0, 1, 2, ···, 

Substituting (3. 8) into eq. (3. 2) we have 

BP= t.: :E f vAnvl~(vt.:p) sin (nfl+vt.:z), 
v=1 n=o 

Bz = e3 +t.: I:; I:; vAnvln(v,cp) cos (nfl+vt.:z), 
v=1 n=o 

(3. 7) 

(3.8) 

(3.9) 

(3.10) 

(3. 11) 

and the magnetic lines of force are obtained by solving the following differential 

equation: 

§ 4. Epuations for the Heliotron B Magnetic Field 

Putting 

n = 0, 

(3. 12) 

(4.1) 

in (3. 9)~(3. 11), we have the expression for the axisymmetrical magnetic field 

of the Heliotron B type as follows : 

Bp = t.: I:: v Aov I, (v,cp) sin (vt.:z) , 
11=1 

Be= 0, (4. 2) 
00 

Bz = e3 +K I:: vAovlo(v,cp) cos (v,cz). 
'V=l 

The magnetic field given by (4. 2) approximately expresses the situation in the 

region inside the curve AME of Fig. 2. 5. Taking the simplest case, 

J.I = 1 (4.3) 

in (4. 2), we have 
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BP = ,;;A0J 1(,;;p) sin ,;;z, 

Bz = e3 +,;;Ao1 l 0 (,;;p) cos ,;;z. } (4. 4) 

Expression (4. 4) can also be derived from the vector potential given by Lust 

and Schluter2J. 

Now we take (4. 4) as an approximate expression of the Heliotron B magnetic 

field. First we have to determine the integration constants ,., e3 , Ao,. The 

assumption that the field is periodic in the z direction gives (see Fig. 4. 1) 

,;; = n/a. (4. 5) 

Putting 

a= (n/a)z, (3 = (n/a)p, (4. 6) 

( 4. 4) becomes 

BP = ,;;Ao,I,({3) sin a, } 
Bz = e3+,;;A01 [ 0 ({3) cos a. 

(4. 7) 

In order to determine the constants A 01 and e3 , we have to calculate the intensity 

of the magnetic field along the axis of the coils as shown in Fig. 4. 1. The coils 

have the common radium b and their centres are located on the z axis at equal 

intervals a. The electric currents in these coils are I and -U alternately. 

-.v I 

Fig. 4.1 

The magnetic flux density along the axis due to a single coil placed at the 

origin is 

Therefore the flux density along the axis due to all coils is given by 
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Let the flux density at the origen (0, 0) and at the point (0, a), be Boo and Boa 

respectively. They are given by 

where 

Boo= {µob2//(2a3
)} CS1-).S2), } 

Boa= {µob2 //(2a3
)} (S2-).S1), 

(4. 9) 

(4. 10) 

Boo and Boa are determined by ( 4. 9) and ( 4. 10) if the aspect ratio of the coils 

a/b and the current ratio ). are given. From ( 4. 7) we have 

1 µob 2 I e3 = 2 (Boo+Boa) = 4a3 (S1+S2)(l-).), (4.11) 

(4. 12) 

Denoting the coodinates of the eqilibrium point M by [Pe, (2n+l)a] in the (P, z) 

coordinates or [0e, (2n+l)rr] in the (0, a) coordinates, we have, from (4. 7), 

eo = lo(/3e) = ~ = l-). Si +S2. 
teA01 l+).S1-S2 

(4.13) 

The position of the equilibrium point is also dependent upon a/b and ).. Substi­

tuting (4. 12) and (4. 13) into (4. 7), we have 

BP = Bel1(0) sin a, 

B,, = Be {loC/3e) + lo(/3) COS a} . 
} (4. 14) 

Again substituting (4. 14) into eq. (3. 12), we obtain 

dp _ d/3 _ / 1(/3) sin a 
dz - da - IoC0e) +loC/3) cos a· 

(4. 15) 

Integrating (4. 15), we obtain the following equation for the line of force: 

cos a= Io(0e) 0(05_1) 
2/1(0) 02 

' 
(4.16) 

where 0o is the parameter which designates the line of force. For the lines of 

force inside the equilibrium point M, /30 of a line of force is equal to the value of 

0 on the lines of force at a=n-/2. The field represented by (4. 14) and (4. 16) is 

shown graphically in Fig. 4. 2. But the solution given by (4. 16) does not re­

present the true situation near the coil. In order to ol;>tain a better appro~imation 
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z 

Fig. 4.2 Fig. 4.3 

Fig. 4.4 Fig. 4. 5 

we must compute the line of force using the complete expression (4. 2). If ,l, 

tends to S2/S1 it may be seen from (4. 13) that f3e becomes 0, that is, the equili­

brium points come to the axis as shown in Fig. 4. 3. Further increasing the 

value of ). we find that there appear two equilibrium points on the axis in one 

period (see Fig. 4. 4). Finally for ). = 1 the equilibrium points coincide with the 

points [ 0, ( n + ~ )rr] on the axis (Fig. 4. 5), and the magnetic field becomes the 

Picket Fence field. Figs. 4. 3~4. 5 have been drawn using (A. 4). 

§ 5. Cylindrical Cusp Field 

The magnetic fields given by (3. 9)~(3. 11) include the cylindrical cusp fields 

as a special case. If we put, in (3. 9)~(3.11), 
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II= 1 } 
K:Z -> 0: (5.1) 

and expand the modified Bessel functions, we have the following expression : 

_ ~ ,.;" An1 n-1 • 
Bp-~2"(n-l)!P smnfJ, 

_ ~ ,.;" Ani n-1 
Be - ~

1 2"(n-l)! p cos nfJ, 

_ ~ ,.;" Am n-1 {} 
Bz - ea+ ~

1 
K:p 2"-(n-l)! p cos n . l (5.2) 

The limit ,.;z - 0 means that the period of the field in the z direction tends to 

infinity and in this case ,.;p-0. We have to ignore the term n=O, since this 

gives Be=Bp=O. For simplicity, let us take the term n=m alone: 

where 

Bp = Cmpm-1 sin mfJ, 

Be = Cm pm-l COS mfJ , 

Bz =ea' l (5.3) 

(5. 4) 

In (5. 3) we neglected the second term of Bz as ,.;p is assumed to be small. From 

(3. 12) it will be seen that the projection of the line of force (5. 3) to a plane 

perpendicular to the tube axis is represented by 

pm_ ... 
1 

1 I 
- Po cosmfJ , (5. 5) 

where flo is the value of p at fJ=O. 

Figure 5. 1 shows the magnetic fields in the neighbourhood of the tube axis, 

y 

m=J 

(a/ 

1 
X 

m=2 

(b) 

Fig. 5.1 

m=J 

(c J 
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which are given by putting m=l, m=2 and m=3 in (5. 3) and (5. 5). The magnetic 

fields given by (5. 3) are made by superposing a constant magnetic field in the 

z direction upon the field which is produced by the linear currents put on the 

tube wall parallel to the tube axis. The flux density of the fields takes the 

minimum value e3 at the axis. 

Further it may be noted that the intensity of the magnetic field decreases 

towards the axis and thus this part of the field appears to act as a sort of 

magnetic bottle. However Fig. 5. 1 shows that the lines of force of the field cross 

the tube wall, and therefore that the dilute plasma, in which particles move 

along the lines of force, cannot be confined within this bottle. Only the ex­

ceptional case where e3 =0 may yield a dense plasma which can be confined in 
this bottle. 

§ 6. The Heliotron H Magnetic Figld (Helical Heliotron) 

For ni~O, (3. 9)~(3. 11) give the magnetic field produced by making the coils 

of the Heliotron B (Fig. 2. 4) helical around the tube as shown in Fig. 6. 1. This 

{ -)-../ 

1 
f---2a--J 

Fig. 6.1 

field gives a transitional type from the Heliotron B field to the cylindrical cusp 

field, and it may be hoped that it will have the merits of both types of field. 

Putting v=l and n=m in (3. 9)~(3.11), we have 

where 

Assuming that 

we have 

Bp = "Am, r:,, (/3) sin u , 

Be = IC Am,; lm(/3) COS U, 

Bz =e3+1CAm,lm(/3) COS U, 

u = nO+a. 

for /3 = f3e and 

for 

} (6. 1) 

(6.2) 

u = rr, } (6. 3) 

(6. 4) 
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Substituting (6. 4) into (6. 1) we obtain 

BP= B 0 {[{,.((3)/lm({3.)} sin U, l 
Bo= Bo(m/{3){Im(f3)/lm(f3e)} COS U, (6. 5) 

The field given by (6. 5) is produced by m pairs of helical winding. From (3. 12) 

we have 

d{3 _ {3Bp 
du - mBo+f3Bz • 

(6.6) 

Substituting (6. 5) into (6. 6) we obtain 

{r.i+(m2+r.i) lm(f3) }dr.i r.il,{.({3) . d - 0 ,., 0°" ,., lm(f3e) cos u ,.,-,., lm({3) sm u u - • (6. 7) 

Equation (6. 7) becomes a total differential equation by multiplying by an inte­

grating factor, and its solution is given by 

12
+{3 l,{.({3) cosu = c', 

2 lm(0e) 
(6.8) 

where c' is a constant. If we assume that, along the line of force, 

(3 = f3o for u = rr/2, (6. 9) 

we obtain the expression for the magnetic surface 

(6. 10) 

From (6.10) we can see that (3 is a function of cos u alone. This means that 

the lines of force inside the point ({3={3 •• u=rr) undulate in the band 

f3min L {3 L 0max • 

Therefore, if we take the field which satisfies the condition 

0e < (rr/a) x (inner tube radius) , 

(6. 11) 

(6.12) 

the lines of force inside the equilibrium point do not cross the tube wall. An 

exact expression for the field produced by m pairs of helical winding is given by 

= 
Bz = ea+ i;;:E Cnln(f3)cosun, l (6. 13) 

s=1 
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where 

n = ms , Un = msO + a . (6.14) 

If we put m=O in (6.10) it reduces to (4.16). 

§ 7. Equilibrium of the Plasma in the Heliotron B Field 

Under the magnetohydrodynamical approximation the equilibrium condition 

of the plasma is given by 

f'P=jXB, (7.1) 

where gravitational force is neglected. Equation (7. 1) shows that the isobaric 

surfaces 

p = const, (7.2) 

are woven by the lines of current and magnetic lines of force. We define a 

function U by the integral along the line of force 

U = _ f dl 
J B' 

(7. 3) 

where integration is carried out over one period of the line of force. We see 

that the isobaric surfaces coincide with the surfaces of constant U. However, 

assuming <J, to be constant we have the relation 

(7.4) 

where dS is the sectional area of the infinitesimal flux tube and Vis the volume 

involved in one period. Thus - U is found to be proportional to the volume of 

the flux tube, and we can conclude that the isobaric surfaces coincide with the 

magnetic surfaces woven by the lines of force along which the volume of the 

flux tube is constant3l. 

Furthermore in order to make the magnetic surfaces coincide with the equili­

brium surfaces so as to confine the plasma, it is repuired that the isobaric surfaces 

be toroidal and, for practical use, be inside the toroidal discharge tube and not 
cross the tube wall. For example, in the case of the field produced by coils 

wound uniformly around a circular toroidal tube such as Zeta, the magnetic flux 

density B is inversely proportional to R, the distance of the line of force from 

the toroidal center (see Figs. 7.1 and 7. 2). Then the constant U surfaces are 

given by 

R = const. (7.5) 

The surfaces are coaxial cylinders with an axis which coincides with the toroidal 

axis, but they are not toroidal. Therefore, these surfaces cannot be the equili-
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Fig. 7.1 

~ R=const 

v'B 

Fig. 7. 2 

brium surfaces. Physically, in this case, the plasma current flows in the direction 

of the toroidal axis and produces the charge separation which destroys the 

plasma confinement. 

On the other hand, in the case of the undulated field, U takes different 

values at different distances from the tube axis. When the tube is a straight 

cylinder, the constant U surfaces become coaxial cylinders whose axis coincides 

with the tube axis. In the case of the toroidal undulated field, the surfaces be-
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(a} 

Koji Uo 

confining range 

Fig. 7.3 

(b) 

come toroidal and their axes are different from the tube axis as shown in Fig. 

7. 3(a). In this case, the cross-sectional areas of the constant U surfaces which 

do not cross the toroidal tube wall become very small, unless one makes the 

toroidal radius sufficiently large compared with the tube radius or the amplitude 

of the undulation of the line of force sufficiently large. 

The Heliotron B field, has the equilibrium points distributed periodically 

inside the wall. Since the flux density B becomes O at these points we can make 

U as large as we wish in the vicinity of those points. In Fig. 7. 3(b), the thick 

solid line represents the boundary of the cross section of the magnetic surface 

woven by the constant U lines of force passing through the equilibrium points. 

In the Heliotron B field therefore, all the constant U surfaces are located inside 

the solid line and make toroidal surfaces. Since it is easy to have the equilibrium 

points inside the tube wall, it may be said that the Heliotron field essentially 

satisfies the necessary conditions for equilibrium. 

§ 6. Interchange Instability of the Plasma in the Heliotron B Field 

Let us consider the interchange instability•) of the plasma confined in the 

Heliotron B field shown in Fig. 8. 1 from the particle-dynamical point of view. 

In Fig. 8. 1 M is an equilibrium point of the magnetic field. The change in 

plasma energy 4Ep, which is caused by the interchange of the plasma contained 

in flux tube I with that in II of equal magnetic flux, is given by 

with 

oNo = No2-No,, 

OWo = How(µ, W)f(µ, W)dµdw, 

(8.1) 

(8.2) 

(8. 3) 
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(' I ____ , 

r' flux II C 

I 

Fig. 8.1 

where No1 and No2 are the number of particles contained in flux tubes I and II 

respectively, i3w(µ, W) is the change in energy of a single particle which has 

magnetic moment µ and total energy W, and f (µ, W) is the distribution function. 

The condition for stability is expressed by 4Ep>O. If ow0 >0 the plasma is 

stable for interchange instability according to the orbit theory•\ and we discuss 

the case i3wo< 0. In this case the plasma cannot be stable except for the case 

oNo>O. Now, 

No = no V = noko ~ ~ , (8.4) 

where no denotes the average density of the plasma in the flux tube of volume 

V, and ko is a positive constant. The condition 0N0 >0 is reduced to 

(8. 5) 

The average density n0 must be zero on the line of force CMD which forms the 

the plasma boundary, and o ~ ~ is positive inside CMD in the Heliotron B field. 

In order to examine condition (8. 5), we expand (4. 14) and (4.16) putting 

and we have 

(~/7!)2 < 1, 
(1}//1e) 2 {:'. 1, } 

where ao is a constant and e0, e1, e2 and u are functions of /10. We put 

where 

(8.6) 

(8. 7) 

(8.8) 
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~

"-T da 
Q,=k -, 

o Bz 
(8. 9) 

and T" is a small positive constant which satisfies (T"/n) 2{'.0. In the vicinity of 

CMD we find that Q0 is very large and Q, a constant value Q10 approximately. 

Denote the value of /30 on the line CMD by /3oe, then if /3o approaches to f3oe 
we find that (see Appendix III) 

Q::::: Qc+log ✓/3a~-/36, QC= const 

and that condition (8. 5) is reduced to 

If no is expressed by 

no= no,= ko/{Qc+log ✓~}m, 
/3o,-/3o 

The stability condition becomes 

(8. 10) 

(8. 11) 

(8.12) 

(8.13) 

If the average density distribution satisfies condition (8. 11) the plasma is stable 

for interchange instability. But if the effect of diffusion gives a finite gradient 

of n0 in the vicinity of CMD, the stability condition will not be satisfied and 

interchange instability will occur. When the plasma temperature becomes suffi­

ciently high, the effect of diffusion becomes weaker, and we may expect that the 

rate of growth of instability is also very small. If we consider the azimuthal 

magnetic field produced by the axial plasma current, the magnetic field pro­

duced by the windings of the Heliotron B device will be twisted by this azimuthal 

field. As a result, the rotational transform for the magnetic field would be pro­

vided and the plasma would become stable. These questions must be clarified 

through future experiments with the Heliotron B. 

The author wishes to express his gratitude to Professor S. Hayashi for his 

continual encouragement and to Professor C. Hayashi for his helpful advice. 
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§ Appendix I 

In order to investigate the qualitative features of the axisymmetric Heliotron 

field, we first approximate a part of the torus tube by a straight tube and then 

y 

b 2.::1-l 

replace the magnetic field in the straight 

tube produced by the series of coil pairs 

(see Fig. 2. 1) by a field produced by 

infinite rows of straight currents (see 

Fig. A.1). The vector potential of the 

magnetic field produced by these currents 

is given by 

----1----+--+' --- X 

b 
0 

Fig. A.1 

Axo = AYo = 0, 

A = µ 0 [ £; log (x+2va) 2 +(y+b)2 

zO 4it~--oo (x+2va) 2 +(y-b)2 

(A.1) 
I cosh !!.. (y+b)-cos !!..x 

= /!:,2_.log a a 
4it cosh .!!....(y-b)-cos .!!....x 

a a 

The equation of the line of force is expressed by 

cos !!.. x = cosh !!.. b cosh !!.. y-coth C sinh .!!.... b sihn .!!.... y . 
a a a a a 

(A.2) 

where C is a parameter which designates the line of force. Using eq. (A. 2) we 

can draw Fig. 2. 2 as the qualitative sketch of the magnetic field made by the 

double coil series as shown in Fig. 2. 1. In similar way we can calculate the 

vector potential of the double current rows as shown in Figs. A. 2 and A. 3 

respectively: 

{ 
7t 7t }{ 7t 7t }>. 

I cosh- (y+b)-cos -x cosh -(y-d)-cos-x 
A = /!:,2__ log a a a a , 

z 4it { it it }{ it 7t }>. cosh a (y-b)-cos ax cosh a (y+d)-cosax 

(A.3) 

,y 

Fig. A.2 Fig. A.3 
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{ 
7t 7t }{ 7r 7t }>. 

I cosh- (y+b)-cos -x cosh -(y-d) +cos-x 
A = &__ log a a a a , 

z 41r { rr 1r }{ rr rr } cosh a (y-b)-cos ax cosh a (y+d) +cos ax 
(A. 4) 

These magnetic fields are shown graphically in Figs. 2. 5 and 2. 6. 

§ Appendix II 

Since S(z) in (3. 5) is a periodic function of z, we have 

= = 
S(z) -~ ~ Sv = I:; {Cp cos (v,cz) +d, sin (v,cz)} , (A. 5) 

\F----1 \1-=l 

where K, c,, dv are constants. Substituting (3. 5) and (A. 5) into (3. 4) we have 

(A. 6) 

Since the above equation must be satisfied for arbitrary values of z, we have 

the following relation 

p2_(fJ2F +l?£_),'2,c2F) = _ __l_ 02 G 
F 0.02 Pop c ot/2 • 

(A. 7) 

The left-hand side of the above equation is a function of p alone and the right­

hand side of fl alone, and therefore both sides must equal a constant, n2 say. 

Thus we obtain the following two equations : 

0
2

F +1- oF -(.!12-+v•,c•)p = O 
op2 pop .02 

• 

CA.8) 

02G 
otl2 +n

2
G = 0. (A. 9) 

If n is a positive integer, the general solution of eq. (A. 8) is expressed by 

(~_ .. 10) 

and that of eq. (A. 9) is given by 

00 

G(O) = I: (Pn cos nfl+Qn sin ntJ). (A.11) 
n=O 

Substituting (A. 5), (A. 10) and (A. 11) into (3. 5) and adding simple particular 

solutions of eq. (3. 4), we obtain the solution (3. 6). 

§ Appendix III 

Substituting (8. 6) into ( 4. 14) and expanding it we obtain 

(A.12) 
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where 

ao = BeloCf3e), a1 = li({3.)/lo(f3e), 

a2 = (1/2)Cl-a1/f3.). } 
In the same way, from eq. (4.16) we have 

where 

and 

~2 (1/- p)2 _ ------1 u2 v2 ' 

P = g1C!Cl-g2C), 

u
2 

= 2goc{ l+ 2go(f~ g2C) _. + 2(1 :~2C) c
2
}, 

v2 = u2/{Cl-g2d(l+goC)), 

go = 1/ (2a1{3.) , 

gl = 1 /{c2a1#e)(1+ 2a~f3e ,)} ' 

g2 = ( 1-2a/3J / {aif3,( 1 + 2a~{3. C)}' 

(A.13) 

(A. 14) 

(A.15) 

(A.16) 

(A.17) 

#oe is the value of {3 0 of the line of force passing through the equilibrium point. 

Eliminating "fl in (A. 12) by using (A. 14), we have (8. 7), and where 

Putting in (8. 9) 

reduces to 

eo = p(a1-a2P)-a2V2, l 
e1 = (v/u)(a1-2a2P), 

e2 = (1/2)-a2v2/u2. . 

Qo = _2 _ f "o _ dx 1 dx 
aoe2r.: Jo x2+ (e1/e2)x+ (eo/e2-u2) ✓x2-u2 · 

Qo is expressed by 

where x1 and x 2 are the roots of the following equation : 

x2+ (ei/e2)x+ (eo/e2-u2) = 0. 

When t; becomes very small, Q0 is approximately expressed by (8.10), 

(A.18) 

(A.19) 

(A. 20) 

(A. 21) 

(A. 22) 




