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Accuracy Considerations of the Equivalent Linearization
Technique for the Analysis of a Non-Linear Control
System with a Gaussian Random Input

By
Yoshikazu SAWARAGI* and Narinobu SuGar*

(Received April 28, 1961)

In this paper, the accuracy of the results which can be obtained by the
linearization technique of a non-linear control system with a Gaussian random
input is investigated. Presence of non-linearity in the control system destroys
the Gaussian nature of the response signals. In the linearization technique,
therefore, assumption of the Gaussian input for the non-linear element is appro-
ximate. The accuracy analysis is restricted to consideration of the cumulants
of the second and the fourth order of the input to the non-linear element. This
results from the consideration that a linear element with a memory tends to
make non-Gaussian signals more nearly Gaussian. A simple control system with
a Gaussian input is analyzed as an example. It is concluded that the equivalent
linearization technique is accurate enough for engineering purposes.

1. Introduction

In dealing with a non-linear control system subjected to a stationary Gaussian
random input, we have so far assumed that the input to the non-linear element
in the system also belongs to a Gaussian random process, in order to analyze
the non-linear control system by the equivalent linear technique?. However, if
rigorously considered, the assumption is not valid because of the presence of the
non-linearity in the system. Therefore, the results obtained by the equivalent
linear technique will be only approximate, although from the point of view of
practical applications such solutions will be satisfactory. At times one is inter-
ested in checking or improving the accuracy of analytical results by considering
the effects of the signal portions which can not be described by the equivalent
linear technique. In the equivalent linear technique, it is assumed that the
distortion from the Gaussian properties of the input to ‘the non-linear element
are small. As a matter of fact, this assumption is reasonable if the non-linearity
is small and the low-pass characteristics in the linear parts are dominant. In this

* Department of Applied Mathematics and Physics.
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paper, we will treat a random signal which does not belong to a Gaussian random
process but is nearly Gaussian from the above mentioned point of view. Before
considering the closed loop system we must develop a general approximate de-
scription of a random process in such a way that it will afford many mathematical
advantages for the later discussions.

2. Moment-Generating Functions and Cumulant Functions

T. N. Thiele® originally introduced the notion of the cumulants or the semi-
invariants instead of the moments as a set of statistical parameters for a random
process {y(#)}. Now, the moment-generating function M(s,) of a random variable
»n=y(t), when it exists, is given by

M(s,) = Elexp s3] (1)

where s, is an auxiliary variable. This function always exists and is, moreover,

an uniformly continuous function of s, when s, is imaginary, say jw,. It is then

a function ¢(w,) of the real variable w,, and is known as the characteristic

function. The moment-generating function gives the moments of a distribution.
If we expand M(s,) in the MacLaurin series, we have

M(s) = M(O)-I—M’(O)%_}_MH(O)_;_%'_ (2)
where
M©O) =1
M) = E{y]
M”‘(O) = E[yﬂ (3)

M) = Ef 1]

Thus Eq. (2) is expressed as
M<s1>=1+'g§%ﬂs3’ (4)

Eq. (4) gives the moments of the distribution in terms of the coefficients of the
expansion for M(s,).
The logarithm of M(s,) defines the cumulant or semi-invariant function
K(sy), that is,
K(s,) = log M(sy) (5)

and whose z-th derivative (when it exists) at s;=0 is the #-th cumulant or semi-
invariant, that is, :
e = K™(0) (0)
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Therefore, by expanding K(s;) in a MacLaurin series, we have
K(s) = 3 22 g (7)
! _n=1 n! 1

Then by expanding exp K(s,) in a power series in s,, and equating the coefficients
to those of the corresponding powers in Eq. (4), the following relations between
the moments and the cumulants are obtained.

A = E[y]
4 = E[y}]—{E[y.]}*
4s = E[y1]1—3E[s}]-EL .1+ 2{E[».1}* (8)
A = E[ 911—4E[ 53] E[ 3,1 3E[ {1+ 12E[ s} ]{E[ 5,1} *
—6{E[51}*
etc.

These relations mentioned above can be extended to the case of the # random
variables, y,=y(t,), y.=y{), - and y,=y(.). Then the cumulant function
K(sy, 82, , Sa) is defined by

K(sly S2y *** ,S”) = logM(SI’ S25 000 Sn)

= DAt st 5y 334t t) sisitgp 3 2 b, ) sisisnt o (9)
\
where the function M(s,, sz, -, Sa) is the moment generating function of the »
random variables, and the coefficients 2’s of the expansion are the cumulants
and serve as an interpretation of the distribution. In a similar way as before,
the relations between the moments and the cumulants are obtained as follows,

A@t;) = ELy:]

ACt;, t5) = EL3i-9i1—A(t;:)-A(¢5)

At;, ti, te) = E[yi-yi-yrl—A(t:, ti) A(te) — A(t;, te) A(25)
—At, t3) A() —A(#) A7) A(Ee)

Aty ti, tey 8) = E[yi-9i-ye-y1]1— A, ti, te) A —A(8;, ti, t;) A(te) (19)
— Aty te, 1) A(E5) —AQti, by E0) Ak —A(E;, E5) Atk tr)
— Ak, t) AQtj ) —R(2;, £1) A(Rjs te) —A(E;, 27) ACkE) A(E5)
— A, te) At M) — Aty t0) A7) At) —A(ts, ) A(2:) A(tr)
—A&Qt, 1) ACE;) AtR) — ACke, 81) A(8) A(E5)
—AQt) A(E5) ACte) A(22)
etc.

A familiar and typical model for this manner of description of a distribution
is readily provided by the shot effect, which affords mathematical description of
the voltage fluctuation that might be expected in the output of a vacuum-tube
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circuit. The shot effect consists of a collection of impulses with random magni-
tudes at randomly occurring times. It is known that the joint cumulant function
for Y1y Y2y " 3 YVn is written as

K(si, 0000, $0) = 005 sit o 230@ | 0(t=0) 0t =) de sisy
i LN —o0
bar 3 0@ [T 008Dt dr st < (D)
<87, —o0

where v represents the constant average density with which the times of occur-
rence of the impulses are distributed at random and independently over the time
axis, and a” is the n—-th moment of the magnitude of the impulses.

In general, a random process {y(¢)} can be completely characterized by an
infinite sequence of functions p:, p., -, pn, Where the function p, is the joint
probability density function of the » random variables y,, ¥, - and y,. It is
expected that one of the satisfactory approximations for the probability distri-
bution function of an actual random process would be obtained by employing
the cumulants of the first few orders. In fact if we take up only the first and
second cumulant, 4(¢;) and (¢, ¢,), the corresponding approximate distribution
becomes a well-known n-dimensional normal one. On the other hand, except
for the first and second cumulants, all the others vanish if a random process is
Gaussian.

8. The Relations between the Cumulants of the Input and
the Output of a Linear System
Let W(, ) denote the weighting function of a linear system, then the out-
put x(¢) is expressed by

s = W, Dy (12)

where y(¢) is the input to the linear system. We assume that W({, ) is
essentially zero when the absolute difference between ¢ and r exceeds some fixed
value T3, that is,

Wt ) =0 for [t—7|>T, (13

We fix upon a large but finite interval (—T<¢<T), where T» Ty, and
divide the interval at the points #,f,, -, tn+r (— T=8,<t,<--<tus=T) into n
parts. If ¢ is now constrained to lie within a sub-interval,

—T+T,<t<<T-T,

and if the number of the points of sub-intervals can be sufficiently small, then
we can write Eq. (12) in the following form



304 Yoshikazu SAwaRrRAGI and Narinobu Sucaz

x(8) = 33 W, 1)y dt; (14)

where
dt; =t —t;

By definition we have the cumlant function of the m random variables
x,=2()), x.=x(t3), - , xm=x(t},) and then by using Eq. (14) it is rewritten as

K2(uy, sy, um) = log E[exp % xjuj]
J
” m
- logE[exp S (W W, t,-)At,-uj)] (15)
3 7

where the #’s are auxiliary variables. It is found that the last expression repre-
sents the cumlant function of the » random variables y;, 3., -, ¥» of the input

with the arguments s;= % W5, t)tu; (1=1,2,---,n), which has been given by
J

Eq. (9). Therefore, we have formally
K;‘(uly Uzy " ,um)

= KI{ SYWt5, 1) dtaus, 52 W, 1) dtaas, - ST WCH, ) dtwss} (16)

Each of the cumlants of the output can be obtained as a sum of the products of
the input cumlant by the weighting function over all the sampled points. when
the number of the sub-division » tends to infinity such that max (4¢;) =0, the
cumlant function K% can be expressed by the cumlants which are functions of
the input cumlants and the weighting function, that is

m
Zklxct,-,tj,tk)uiujuk‘l' an

K7 = Z lx(ti)u,--l‘? 2] lx(ti,tj)uiuj‘I“gT. .
! P LR

where

0

aatd) = (Wits, 1) a0 dto

——o0

Mty 1) = | (Wt ) Wats, 1) 4yt0, t)dtatty
R (18)

hati i t0) = | { (W, W@t Wb, 10 4y, 15, 1) dtdtdty

Kt tis et = {1 (was, wwas, e wa, towa, 1) x

—00 ~—00 —00 —co

X Ay(to, tp, tgs tr) dbudt pdt dt,
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When W(¢, v) cannot be considered zero as the absolute difference between
t and v becomes large, say in such systems that have integral characteristics or
are unstable we can also obtain the same relations of cumlants as Eq. (18).
These are regarded as the limiting cases when 7, tends to infinity.

In particular, if the input y(#) is stationary and the linear system is time-
~ invariant, all the functions considered above are invariable for the shift of the
time origin. Therefore, these functions depend on ¢ and t only through the
difference (¢—1).

Wi, o) = Wit—1)

Ay(t;) = my

Ay(t;, t5) = Ay(11) (19)
Ay(ti, ti, te) = Ay('rl, Ty)

ly(tiy tiy trs tl) = xy(rlr T2y 13)
where
T, =ti—1;, T, = Ipg—1;, Ty = b—1ti,

Then Eq. (18) can be expressed as follows,
s = SW(a) do-m,

aa(r) = ([ Wa) W(ap) dy(ri—0,+ 0)) dorde,

—o0

A(ry, ) = SSSW(a,) W(a2) W(as) Ay (rs+ 0r—o03, Ts—ast o) dordodo, | 200

—o0

o0

ke, 7 ) = ([ {{ WO W W Weodt,(ri—aitar, Tamoston,

—o00

T3— 0y + 01) dald62d03d04

If we take the Fourier transform of Eq. (20), we have

msd(@) = G(0)3(w) my

2:(jo,) = G(—jw,) G(jo,) .Uy(jwl)

pz(joy, jo;) = G(—jo,— jw,) G(jw,) G(jwy) py(jo,, jw,) @b
Ha(jy, jw,, jog) = G(jw,—jw,—jus) G(jw) G(jw,) G(jws) uy (o, jw,, jos)

where

oo

SW(a) exp (—jos)ds = G(jw)

u(jor, jws, -, jou) = (2#71,)” S"'Sl('ﬁ, Ty ** 5 Tn) €XP (—jOiT) — = j@uTy) dry o dTy

T (22)
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Now, if the mean value of the input my is zero, the mean value of the output
m, becomes zero, and Ay(r,) and A.(t;) correspond to the auto-correlation func-
tions Ry(7;) and R.(r,) of the input and the output respectively. Therefore,
2y(jo,) and p.(jo,) correspond to the spectral densities, Sy(w,) and S.(®,), of
the input and the output respectively.

4. The Distribution of the Output Signal Passing
Through Linear Filters

If a linear system has a Gaussian input, every signal appearing in the system
is also Gaussian. However, the presence of a non-linear element in the system
destroys the Gaussian nature of the response signals. It is said that the low-
pass nature of a linear element usually tends to make non-Gaussian signals more
nearly Gaussian. This statement is equivalent to saying that when the memory
of a linear filter becomes so long as to hold as the same order of the variance

s wi(t) x{t)
6ljw)
Fig. 1.

of the output as before, the higher the order of the cumulants of interest is, the
more rapidly the corresponding cumulants of the output decrease. To see this
fact, consider the stable linear system as shown in Fig. 1, where W(¢) and G(jw)
are the weighting function and the frequency-response function of the linear
filter respectively. Then, let us write the weighting function of the linear filter
transformed by the time scale as follows,

H(TYW/T) for T>1 (23)
where H(T) is to be determined as a normalizing factor under the above con-
dition, because by this transformation the memory of the linear filter will become
long but the magnitude of the output of the transformed linear filter will
generally increase.

Now, if we assume that the input y(¢) is a non-Gaussian signal with the

mean zero, we have
uy(jow) = Sy(w), #z(jo) = S:(w)

where Sy(®) and S.(w) are the spectral densities of the input y(¢) and the output
x(2) respectively. Therfore, the spectral density S.(o, T) of the output from the
transformed linear filter can be obtained from Eq. (21) as follows,

Sz(0,T) = T’H?|G(jTw)|*Sy(w) (24)
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and the variance ¢,(7T) is given by

ox(T) = %Ss,(w T)dw

— TH? S |G (jo) 1> uy(jo/ T)dew (25)

—o00

In particular, if the input y(¢#)is a shot noise with the mean zero, we can
write the Fourier transforms of its cumulants from Eq. (11) as follows,

. 1 va?
uy(jo) = 27 o1
. .y 1 @@ 2%
ny(jo, jo,) = W? (26)
. . . vat
,Uy(](l)l, J@2, ]wa) (271:)3 4|
etc.

From Eq. (25) we have

ox(T) = TH* 22 SIG(Jw)Izdw

2!
= TH?0,(1)

where o0,(1) is the variance of the output from the original linear (filter.
Therefore, in order that ¢,.(T) be of the same order as ¢,(1) when T—co, the
normalizing factor H(T ) must be chosen as

H(T)=T"? 27

Hence, the Fourier transforms of the cumulants of the output from tne trans-
formed filter become

u:(joy, ja,; T) = T2G(~jTw,—jTw,) G(iTw,) G(jTw,) py(jo,, jo;)
#:(jw,, jo,, jo;; T) = T*G(—jTw,—jTw,—~jTw) G(jTw,) G(jTw,) x } (28)
XG(jTws) py(jw,, jo,, jos)

etc.

and the corresponding cumulants can be obtained from Eq. (21) as follows,

Aa(ry, 723 T) = S Sﬂx(jwn Jjoo; T) exp (ot + jw,r;) dodw,

oo

= T S SG(—jwl—ij)G(J’wx)X

X G(jw;) exp (jo T, + jw,T,) dwdw,
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oo

- T-l/zvg S W@ W(t+t) W(t+1,) dt

—oo

= T 2(7y, 723 1) (29)
Similarly we have

Ae(Ty, T2 753 T) = T h:(7y, 75, 73, 1) (30)

In general, the #-th cumulant 2.(r, 7, -, 7s—; T) of the output is of the order
T~ b, Therefore, if the value of T becomes large, the output tends closely
to a member of a Gaussian random process. ’

Next we consider the general cases where the input y(¢) is not a shot noise
but satisfies the following conditions,

my = 0
#y(0) =0 (31)
luy(joy, jo,, -, jo) 1< My, for n=12 - and —oco< @< oo

where the M,’s are finite numbers. Let us assume that the linear filter satisfies
the following conditions

oo

[-l16=d0,, jus, -, jow) GCiw - Gliv) | dor-don< Mew — (32)
0 == fOI' (n = 1, 2,'“)

where the Mg's are finite numbers. Under these conditions, we have from
Eq. (25)

lim 0, (T) = #5(0) {IGCjw)12dw = const (33)
if the normalizing factor H(T) is equal to T7'/2 That is, in order that o.(7T)
be of the same order as ¢.(1) even if T tends to infinity, the normalizing factor
must be chosen in the same form as before. Then we have the following
inequalities,

o0

PRCHERY SIES(PRENEIRY SIFAv

—oa

< T My,My, (34)
|42 (71, T2y a1 T)| > T_lMyaMgb’
From these results, it is found that the absolute value of the s#—th cumulant
|Ax(Ty, Tay -+, Tn—1, T)| is of the order T—/*1,
In the case where a linear filter has purely integral characteristics, condition
(32) does not satisfy. The transfer function of such a filter can be expressed by
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G(s) = G(s)/s (35)

where G’(s) has neither pole nor zero-point at the origin of the s-plane. Lest
the cumulants of the output from the linear filter should become infinite, the
Fourier transforms of the cumulants of the input must be of the following form

#y(j@y, -, jou) = (—jo, — - —jon)(jo) - (jou) py(jo, -, joa) (36)

where p)(jw,,---,jo,) has neither pole nor zero-point at the origin of the
n-dimensional space (@, .-, w,). This description is confirmed by the fact that,
when a control system containing a purely integral element in the forward path
is excited by random noise, the output has finite variance. The variance of the
output from the transformed filter can be expressed from Eqs. (25), (35), and
(36) by

0x = TH? {1G(j0) 2 5(jo/ T) dow

— BT {16/Go) 1244 o/ T) do

—oa

*

In the limiting case of T — oo, we have the same result as Eq. (33), if the nor-
malizing factor is chosen to be of the form H(T )= T2 Therefore, the Fourier
transforms of the cumulants of the output are expressed as

Il

#e(Joy, jo,: T) T2G(~jTw,—jTw,) G(jTw) G(jTw,) uy(jo,, jo,)
= TG (—jTw,—jTw,) G'(jTw) G (jTw,) py(jo,, jw,)
bz (Joo, jo,, jos: T) = T?*G'(—jTo,—jTo,—jTws) G'(jTw,) X

XG'(jTwp) G'(jTws) py(joy, jop, jos)

(37

etc.

Eq. (37) coincides with Eq. (28). Therefore it is found that the same results are
obtained as before.

5. The Cumulant Function of the Input to the Non-Linear
Element in Control Systems

Let us consider the system as shown in Fig. 2, where the non-linear element,
N.L., is symmetric and the transfer characteristic is expressed by

( (t)
V/ti ~ 2(t) VoL st ls) X

Fig. 2.
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y=r@

=2 -I——3—'23 (38)
where z(¢) and y(¢) are the input and the output respectively. The coefficient
of the third power, 7, is now interpreted as the measure of non-linearity and is
assumed to be a small quantity. Then, the two-sided Laplace transform of
Eq. (38) is

F(s) = S f(2) exp (—sz)dz

—oco

= §724ys™ 39

The output y(¢) is expressed by

y@) = 1 fF( jw) exp (jwz)dw

- 71;3( (—w2+w) exp (jwz)dw (40)

where the symbol f is an integral path taken counter clock-wise along a sma'lll
circle with a center at the origin, and s=jw.

As the input to the control system v(#) is assumed to be a random signal
belonging to a stationary Gaussian random process with mean zero, the cumulant
function of the m-th dimension is expressed by

Koy, ) 5m) = % f;w, £:) si85
= L SRt~ suss (41)
2 £, J

where R,(7) is the auto-correlation function of »(#).

As the control system considered here is symmetric and the cumulant function
of z(#) also become symmetric about the origin of the auxiliary variables, all the
cumulants of odd order can be assumed to be zero. Therefore, the cumulant
function of z(#) can be expressed as

1 m
Kz(sla SZy"':sm) 7 Z}Xz(ti; tj)S;'Sj
+—41—!—i ]Z; llz(l‘i, ti, te, L1) SiSiSeSy
4o (42)

where
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4,(t;, tj) = Elzz5]
A:.(t;, 5, te, t1) = Elzizizezs]—A:(4;, 1) A: (2x, t0) } (43)
=2t te) Ao (85, 8 — A, (8sy 8D A, (25, )

Now, let us assume that the input to the non-linear element characterized by
Eq. (38) belongs to a Gaussian random process with the mean zero and the

variance unity, then the cumulants of the output become as follows,

Wmd=dg= =0

A= 1474

A= 47 40
Jo =127+

If y is small, all the cumulants higher than the sixth are negligibly small.

Therefore, in Eq. (42) we can safely neglect all the cumulants higher than the
sixth. ’

6. Analysis of the Closed System

Let us again consider the non-linear control system as shown in Fig. 2. We
have the following relation from Fig. 2.

v(t) = z(t) +x(t) (45)

If the cumulant function of z(¢) +x(¢) is expressed as

K,x(s), Sz, 5m) = log E[exp{i (2;+x) Si}]

S A CECHO R MON R MONDEY MORDEY
0 5 QhereeChi iy 0 0 Dl 5, 10, 1)
T PO PSPPI
+ oot Axxaa(ti, E5, tr, t:)}SiSjSkSI (46)
Therefore we have
K(81, oy 3 Sm) = K2(S1, Sz Spy) 47

If on both sides of Eq. (46) we put the coefficient of each of the auxiliary vari-
ables equal to the corresponding one on the other side and if we use the relations
of Eq. (18), we have the following two relations. One relation is for the 2nd
cumulants,
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oo

Rty £) = eati, 1)+ [ Wty 1) der(ts, 0t

—oo

oo

+ SW(ti) 1p) Ay (Ep, ti)dts+ S SW(ti, L) W(t;, tp) Ryy(to, tp)dtdt, (48)

—oo —00

and the other is for the 4th cumulants,

0= Aezzz(ts, ti, te, 1)+ SW(tl’ 1) Reezy(ti, tj, ty, L) dt,

—oo

—co

+ SW(tks tq)lzzyz(ti, ti’ tq’ tl)dtq+ SW<tJ', tﬁ)zzyzz(tiy tﬁ, tk, tl)dtP

—o0 00

oo

+ SW(tt, to) Z."'zzz(tOy t]v tk,tl)dto

—oco

oo

+ (W, W, 1 daasstts, 14, t0, ) dtyity +

—o0

+ SSSSW(’“ 1YW (ti, t) Witn, 1YW (ts, 1) Avys(ta, tpy ta, by)dtodt sdtodt, (49)

—oa

If the control system is time-invariant and the input to the system is stationary,
and if we take the Fourier transforms of Egs. (48) and (49), we have

to(J 0) = pe2(j©) + G(j0) pzy(jo) +G(—jo) py=( jo)
+G(—jo)G(jw) pyy(jw) (50)
and
0 = tezzz+ G(j03) Mazzy+ G(j02) trazyzt G(jOy) ayzz
+G(—jo,— j0,— js) fy222+ G(j0,) G(J0s) trzzyy
+G(jos) GUjw,) payzy+ G(jw,) G(j0,) 2y 5, ,
+G(—jo,—jo,— jws) G(js) 3223+ G(— jo,— jw,— jws) G(jw,) 3232
+G(—jo,—jw,— j0y) G(jo) 332+ G(j0,) G(jw) G(jws) ey 5>
+G(—jo,—jw,—jw;) G(jw,) G(jws) py. 5y
+G(—jo,—jo,— jo;) G(jo) G(jo,) 1y, 5
+G(—jo,—jo,—jws) G(jw,) G(jw,) 55,
+G(—jor—jo,— jw)G(jo) G(jo,) G(jws) pyryy (51)

where we denote the expression x(jw,, jw,, jw;) by the abbreviated form s.

Now, by using expression (40) and by changing the order of integration and
average, the cross-correlation function between z; and y;, 4.5(¢;, ¢;), becomes as
follows,
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hesti, 1) = Blzioyi] = ey § (i ~2dw; §_FCjw;) Elexp Gwiai+ jwje)1dw;
(52)
The expression E[exp (jw;z;+jw;z;)] is the characteristic function of x; and zj,
and by using Eq. (42) and by putting s;=jw; it can be expressed as follows,

Elexp (jw;z;+ jw;z;)]
= exp| —L{L(ts, twt 20,8, 1D war; + 1., 1) 03]
+’%‘{Az(ti, Ly by towi+H44, (2, 8t D) wiw;

+61z(ti’ ti’ t.i) t])w%w_zl-l“l’lz(tn tj) tf) ti)wiwg

Aty t, 1, ) wi}] (53)
If we put
_1 w)” j _l ot w?
Bn =5 SC(Jw) F(jw) exp{ o Ae(tiy tDw
g heltiy b, s, D w'hdw (54)
Eq. (52) becomes
Rasti, 1) = Bubuti, 1)+ 0ty i, 14, 1) (55)

In a stationary case, the above equation is written as

hea(0) = BAu(e) + 550,00, 0, =) (56)
In the similar way, we have
Ay (7) = Bllz(f)+—§3!~lz(0, 0, 7) (57)
and
15(0) = B+ B2 {1, (0,0, )+ 4,00, 0, )}
+Bao+om (58)

By substituting the Fourier transforms of Egs. (56), (57) and (58) into Eq. (50),
we have

o j0) = {14860 H1+86(~jo)} e (jo)
+ 8 [60w) A= j0)+ G(—jo) A, o)
+B.6(j0) G(~jo) {A(—jw) + Ao} ]

+§—§!G( o) G(—jo) uP (o) + OB (59)
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where
A (jw) = —21? #:(0, 0, ) exp (—jor)dr
= {mtio, jo., jo dodo, (60)
and
#P(j0) = 5= | 8o exp (—jor) ds (61)

—oo

In a similar way, we have the following relation from Eq. (51)

#(jo,, jo,,jo;) = _Ba{Gc(jwa) attz + Ge(j@,) o1,

Gl ) sty t Gl — o= jeos— ) ot} (62)
where
Ge(jo) = (W.(t) exp (—jot) dt
- _GUo)
= 176,G(a) )
and

sty = Mz (Jo,+ jao+ jws) p, (o) p(Fw,)
oty = P (O, 0o+ jw3) 11, (Jw3) p ()

. . . . . (64)
1wy = P (o + jou+ jos) p,(jor) 1, (jws)
Otuz = ﬂz(jwl) ﬂz(jwz) /-‘z(jwa)
Therefore, we have from the inverse Fourier Transform of Fq. (62).
Ko, 70, ) = —Bs | {100 1 (510) A (2= ) Welrs—)
+4,(0) A (1 —0) Wo(t,—a) A, (13—0)
+2,(6) Wo(t1—0) ,(1,—0) A, (t3—0)
+ We0) 441, 0) (= 0) Ay (rs— )} do (65)

The required quantity 4,(0, 0, r) becomes

o0

lz(o’ 0’ T) = _B:i { SWC(O') /13(1'—0) do

—oo

oo

+3 SWC((,) 2(0) A, (r—0) do} (66)

—o0
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and the 4th cumulant of z(¢) is given by

o

A= 2,(0,0,0) = —48; SWc(t) @ at (67)

—o0

As Eq. (60) is equal to the Fourier transform of Eq. (66), we have

A,(j0) = —B:{G.(jw) 4P (o) +3Ba(j0) e G} } (68)
where

o

B.(jo) = | W(e) 55(e) exp (—jur) dr (69)

—oco

By substituting Eq. (68) into Eq. (59) and by neglecting the small quantities of
higher order than that of p}, we have

(@) = |1+B,G(j0) |7 el o)
— B8 Real {G(—j0) (1+B,G(j0)) B, (j) } e (o)

+ 166G up G | (70)

It is difficult to find the expression for u,(jo) from the above equation, so
that we intend to solve it by the perturbation method. As £} generally is a
small quantity, we assume that z.(jw) can be expanded in series of powers of
B4 as follows,

2#:(J0) = prao( )+ Biua(jo) +O0(BY) ()
The first approximation g,(jw) can be found by substituting Eq. (71) into Eq.
(70) and by putting 5% equal to zero, that is,

1o 9) = | 1 G5 | #0050 (72)

The additional term u,,(jo) is found by differentiating Eq. (70) with respect to
B% and putting % equal to zero, that is,

#1(j) = [ Real {Go( =) Buol i) } ol )

+ 116w 1t o) | (73)

where

4P o) = _217 S A.3(7) exp (—jor)dr (74)

1
—o0

and
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Bu(j0) = [ We(e) 13(5) exp (—jur)de (75)

Hence, the approximate value of the 2nd cumulant, the variance, of z(¢#) is found
by

35 = { o) do+83 | G0y do (76)

00 —oo

As for the 4th cumulant of z(¢),, we have from Eq. (62)

2. (jou, jo,, jo) = _ﬁs{ﬂzo(jw1+jw2+jwa) ol J@1) prz0( J0,) Go(Js)
+ prao( Jr + F@, + J03) prao( F01) Ge( fwr) pzo( Fs)
+ ttao( Jor + j0,+ F03) G (F,) prao( F03) 2o f3)
+Go(—jw,—jw,—jws) #zo(jwl)#zo(jwz)ﬂzo(jws)} (77

Therefore, the value of the 4th cumulant of z(¢#) can be obtained from Eq. (77)
or Eq. (67) as

i = SSSﬂz(]'wu Jo,, jws)dwdwdw,

—0a

= —45, (W) 14 ds (78)
But Egs. (76) and (78) contain the unknown parameters, 5, and ;. From Eq.
(57) B, and B; can be calculatated as the functions of 4% and 4%, that is,

By = 21 S (]w)F(]w)exp{ %Aéwz%— ar /hw}dw
=ZLS (jw)F(jw)(l 214 Mw)exp(—%liwz)dw (79)
and
53::2 S (;w)4F(;w)(1+214/14 )exp(—%xng)dw (80)

Therefore we can find the required values of A3 and /i from solution of the
simultaneous equations (76), (78), (79) and (80).

7. Numerical Example

Let us consider a simple non-linear conrol system as shown in Fig. 3, where
N.L. is a non-linear element of zero-memory type and the transfer characteristics
are expressed by Eq. (38). We assume that the system input »,(¢) is a white
noise and is normally distributed. Fig. 3 is Equivalent to Fig. 4 where
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w(t) &) b 2(t)
+71_ 7s
st} VoL
Fig. 3.
volt) 7 Jvlt) _ 2(t) y(t) 7 x(t)
—17; e’y N.L. Vo
Fig. 4.
i) = . L
G(jw) = iTw

C o . ., N?
po(jo) = ‘G(]w)lzz—n_
We have from Eqgs. (79) and (80)

r
=1+Lg,
Bi=1ltryo } (81)
Ba =7
where o, is the variance of z(¢), that is ¢.=43
We have from Eq. (63)
G.(jo) = —+ (82)
R JiTo+B,
and
=1 B
W) = exp ( Tt) >0 } -
Wc(t) =0 f<0
The first approximation of the spectral density of z(¢) is given by
2
pao §0) = o Y (84)

2r T + B3
In this case, as B, is equal to the equivalent gain of the non-linear element,

Eq. (84) is coincident with the result obtained by the equivalent linear technique.
We have from Eq. (84)

hao() = e o) exp (jor)de

—co

_=%exp(—%lr|) (85)

and
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__N° 3B
A3 = WeXp (_TITI)

Eq. (74) becomes

@iy 1 3N°® 1
Hz0 (]Cl)) 272,' 4——‘_3%T2—T—Tzwz+gﬂ%

As we have the reletion, _
2 _ Nt _%
W) db() = g3 exp( 9 T) >0 }
=0 <0
Eq. (75) becomes

N* 1

Therefore, we have
Real [Go(—jo) Bl jo» |

_ N* T3
48T (T** + 981 (T?w? + B%)

So that we have from Eq. (73)

. o_ 1 N° 372w+ 7%
s (o) 2n 83T (T2 + B1) (T2w* 1+ 952)

Hence the variance of z(t) can be found from Eq. (76), that is,

Aé =0z
N[ 1 s N° 1§ 3T+ T8}
27 S Tt T B0 B g i a, S (T% 1 FD (T 1 950 %°

Lz Z_IVi_
278, T B1aTomm

And the 4th cumulant of z(¢) is given by Eq. (79) as

™
4 = f4[33%7,4§exp (—iglf)d‘l'

0

_B.N°
831 T3

(86)

87)

(88)

(89)

(90)

(91)

(92)

(93)

From Eqgs. (81) and (92), the variance of 2(¢) can be found graphically. For

N=1, these numerical results are shown in Fig. 5. It is found from Eq. (92)
that the variance of z(¢#) is almost equal to the one obtained by the equivalent

linear technique if 7 is a small quantity, that is,

i N
T 2TH

= 0Oz0

(94
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as X4
- 7 z X4 K
Oz | r=7 QL "6)\7:’{ o 7=y -X4
— e |/
0z H‘ a15+ £ 002
o4 /,/ 7=1
a3 g
o010 / 002
7=2 [ z /
02, / 7=z
02 ) / =2 /
=3 02 g2 005 7 oo
y ‘/ / 7'=z_ L
o y // =z
ar Z=2 ! o el I A= 3 -
01 07 03 04 05 o ar 07 03 04 05
T 2
Fig. 5. Fig. 6.

Fig. 6 shows the values of the 4th cumulant of z(#) and the peakedness of the
one-dimensional distribution of z(#), A;/s2.

8. Conclusions

By assuming the cumulant function of the input to a non-linear element in
a closed system, we obtain the expressions for the 2nd cumulant and the 4th
cumulant of the input to the non-linear element. But these equations do not
explicitly give quantitative results. Therefore, we considered a first-order system
with a non-linear element characterized by a cubic curve as an example. The
variance of the input to the non-linear element is expressed by a sum of the
first approximation and the corrective term. The corrective term is of the order
of 72, where 7 is the coefficient of the cubic term of the non-linear element.
The 4th cumulant is of the order of 7 and the magnitude is inversely propor-
tional to the time constant of the system. The peakedness, which is a measure
of the discrépancy from the Gaussian distribution, is positive for 7<{0 and is
negative for 7 >0.

Thus it is concluded that, from the viewpoint of engineering application, the
equivalent linear technique may be employed to obtain a rapid evaluation of a
system and to provide results for engineering purposes.
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