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Experimental Methods for Determining Aerodynamic Stability 
Derivatives of an Airplane in Wind Tunnels 

By 

Hiroshi MAEDA* 

(Received April 30, 1960) 

Two methods for determining the aerodynamic stability derivatives of an 
airplane in wind tunnels are investigated. 

The principles of measurement are as follows : 
(1) Determining the stability derivatives from the frequency response characteri­

stics of a second order dynamic system with application of a forced oscil­
lation of constant amplitude; 

(2) Determining the stability derivatives from the transient response data of 
the model to a step control deflection input. 

The former is suitable for low speed wind tunnel tests, and the latter is mainly 
for high speed wind tunnel tests. 

In this paper the theoretical calculation and the preliminary experimental 
results are reported. 

L Introduction 

In recent years, methods for determining the aerodynamic stability derivatives 
of an airplane in flight tests have made rapid progress and many reports have 

been published about the results of the work. However, it seems that the ex­

perimental methods in wind tunnels employing the model of an airplane for 

measuring the stability derivatives have not made remarkable development. 
The author has investigated the usual methods for measuring the stability 

derivatives in wind tunnels, and originated suitable methods for both low and 
high speed wind tunnel tests with application of the principle of measurement 

in recent flight tests. By means of theoretical analysis and experimental research 

the following two methods have been established. The principles of measurement 
for these two methods are as follows : 

(1) Determining the stability derivatives from the frequency response characte­

ristics of a second order system by applying a steady forced oscillation with 

constant amplitude to the model; 
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(2) Determining the stability derivatives from the transient response data of 

the model to a step control deflection. 

The former is suitable for low speed wind tunnel tests principally, and it is 

supposed to involve the most desirable principles of measurement. On the other 

hand, the latter is a suitable mothod for high speed wind tunnels, in particular 

for tunnels of the intermittent type. 

II. Forced Oscillation Method with Constant Amplitude 

As is generally known, the forced oscillation method is the most desirable 

when the stability derivatives of an airplane model are measured in a wind 

tunnel. But the forced oscillation methods usually used in the past had many 

weak points in their principles or accuracies of measurement. Therefore, in order 

to overcome these disadvantages, the following experimental method has been 

devised. This method is at first sight similar to the well-known "Inexorable 

Forcing Method", but in principle of measurement it is rather similar to the 

usual forced oscillation method. 

A. Principle of Measurement 

(1) Measurement of Damping Derivatives and Stiffness Derivatives. 

When a model is supported to rotate freely in the wind tunnel airstream 

about one axis, which is chosen at the design e.g. position, as shown in Fig. 1, 

Fig. 2 and Fig. 3, the equations of motion in each system are expressed as 

follows: 

k 

V 0 

Center of Rotation r-( 
(C. G) I P(t) 

Fig. 1. Forced oscillation method. 
(pitching system) 

' 0 

I 
~z' 

Fig. 2. Forced oscillation method. 
(rolling system) 
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Fig. 3. Forced oscillation method. 
(yawing system) 

\ 
1/r 

) 

B0+(-M9)B+(kl2 -Ms)8 = M(t) (1) 

Me= Mq+M.; 

A~+ (-Lp)~+k/2</J = L(t) ( 2) 

C¢+(-Nr)¢+(kt2 -N.,,)c/J = N(t). (3) 

Eq. (1), (2) and (3) are cases in the 

pitching, rolling and yawing systems, 

respectively. In the above equations 

M(t), L(t) and N(t) are the applied 

forcing moment terms, and in this ex­

perimental method they are all equal to 

P(t) ·l'. Moreover, it is obvious that in 

these systems output angular displace­

ment amplitudes are all constant re­

gardless of the forcing frequency. 

Eq. (1), (2) and (3) are all rewritten by the following simple equation 

x + 2Cw,.i + w~ = f(t) ( 4) 

hence, if the input f(t) is expressed by the following equation 

f(t) = F•sin wt ( 5) 

or J(t) varies sinusoidally with amplitude F and circular frequency w, the vari­

ations of amplitude and phase angle of output x are expressed by the frequency 

transfer function G (jw) as follows ; 

( 6) 

( 6 )' 

By the absolute value and argument of Eq. (6), the amplitude ratio M, static 

gain K and phase angle rp are expressed by the following equations 

M= [{1-(:,,)T +4c2 (:Jr½ 
K= _!_ 

Ct>~ 

( 7) 

( 8) 

( 9) 

The graphical representation of the variations of Mand rp against the damping 

ratio C and the frequency w are shown in Fig. 4 and Fig. 5. 
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Fig. 4. Amplitude ratio diagram in 

second order system. 
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Fig. 5. Phase angle diagram in 
second order system. 

Nevertheless, in this experimental method, the model makes steady oscillation 

with constant amplidude regardless of the values of w and C: as has been stated 

already, therefore 

where I Xs I is the amplitude of x in steady oscillation. Hence 

(10) 

(11) 

(12) 

where F0 corresponds to the forcing moment which is necessary to give a 

constant displacement I Xs I statically to the model. Therefore, if the amplitude 

ratio of the forcing moment is expressed by M', 

(13) 

hence M' is equal to the inverse of M. The variation of M' against w and C: is 

illustrated in Fig. 6. 

The phenomenon shown in Fig. 6 may be understood in the following man­

ners. In general forced oscillation, it is a well-known fact that, if the forcing 

input is given with constant amplitude, the output amplitude may increase at a 

frequency near the resonance point; and in particular, if the damping of the 
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system is zero, the amplitude will be 

infinitely large theoretically at the re­

sonance point. On the contrary, in 

this experimental method, since the 

output amplitude is always kept at a 

finite constant value, the forcing input 

amplitude will decrease inversely near 

the resonance point in general, and in 

the case of the zero damping, it will 

become zero at the resonance point. 

Therefore, in the above mentioned 

experimental method, if the variation 

of the output or the model motion 

and the input or the forcing moment 

against the forcing frequencies are 

measured, it means that the frequency 

response of the second order system 

is determined, which can be seen from 

Eq. (7), (8) and (13). 

~,.. 3. 0 ,-----,----e-----r-.---r-.......... 

"" i? 
~ 
~ 2. 5 t-------+--------<f----+---+#--+-, ...... -1 

"1-._ .. 
<I,.._, 

' j 2. 0t-----+-----''---1---11-1411---r 

'r 
...... ..__ 

" -{ I. 5 r------t--~---+>'----F¥<1-.fl-

0 0.5 1.0 1.5 

Fig. 6. Amplitude ratio of forcing moment. 

With application of these frequency response characteristics, i.e. the amplitude 

ratio M and the phase angle <p, the stability derivatives in each system may be 

calculated by the following treatments. Using Eq. (7) and (8) 

In the above equation, since cos <p and 1-(;1J
2 

have always the same sign, it is 

possible to remove the sign of absolute value. Therefore 

M = COS<p 

( 
(J) )2 1- -

Wn 

(14) 

hence 

1-M' cos <p 
(15) 

2 • 2 
2Cwn = w,.•sm <p = M'sin <pw.,,. 

M•w w 
(16) 

Since w~ and 2Cwn are the linear functions of the stability derivatives in each 

system, which can be seen from Eq. (1), (2) and (3), they are calculated as 

follows. In the case of the pitching system, using Eq. (1) 
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2Cwn = -Me/B 

w2 = kl2 -Ma 
" B . 

Therefore, the stability derivatives Me and Ma are determined as follows; 

Me = - B(2Cwn) 

Ma= kl2 -B(w;). 

(17) 

(18) 

(19) 

(20) 

In Eq. (19) and (20), the moment of inertia B, spring constant k and lever length 

l are all known quantities. Therefore, if w~ and 2,:;wn are determined from 

frequency response characteristics, the stability derivatives M6 and Ma can be 

calculated using the above relations. These dimensional derivatives can be ex­

pressed in the following non-dimensional coefficient forms. 

(19)' 

Cmii=Cmq+Cm,;, 

C 8Cm Ma 
ma = 88 = P V2S ( ~ )' 

(20)' 

In rolling and yawing system too, the stability derivatives Lp, Nr and N,i, are 

similarly determined as follows : 

Lp = -A(2Cwn) 

Nr = -C(2Cwn) 

N,i, = kl2 -C(w;) . 

(21) 

(22) 

(23) 

These derivatives are also expressed in the non-dimensional coefficient form as 

follows: 

(21)' 

c _ 8Cn _ Nr 
nr - ~( rb) - ( b )2 

a 2V pVS 2 
(22)' 

C _ 8Cn _ N,i, 
n,f, - a,,, - ( b ) . 

.,, pV2S -
2 

(23)' 

Moreover, in the case of the determination of damping derivatives M8, Lp and 

Nr, it is necessary to correct the mechanical damping effect which is contained 

in the damping term 2,wn. 
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(2) Measurement of Cross Derivatives. 

Independently of the measurement of Lp and Nr above mentioned, the cross 

derivatives Np and Lr can be determined by means of the same experimental 

apparatus. 

The equations of motion in antisymmetric system of two degrees of freedom 

are expressed by the following equations 

-Lr,•{3+A¢>-Lpif,-E¢-Lr<P = L(t) 

-Nr,•(3-Eif>-Npif,+C¢-Nr<P = N(t). 

(24) 

(25) 

In the first place, in the case of the rolling system, the model is supported to 

rotate freely about x-axis only, as shown in Fig. 2, hence 

therefore, using Eq. (25), 

-Np-¢,= N(t). (26) 

During the forced oscillation, the model oscillates steadily with constant amplitude 
of the rolling angle. Therefore, it can be expressed as follows: 

<p = <p0 sin wt (27) 

hence 

(28) 

where 'Po is constant. Therefore, if the amplitude of the yawing moment N(t) 

is expressed as N 0 , Np may be determined as follows: 

(29) 

Hence, if the yawing moment N(t) is measured during the rolling oscillation of 

the model, Np can be determined from Eq. (29). Since the yawing moment N(t) 

corresponds to the torsional moment about z-axis of the model, it is possible to 

measure it by use of a suitable pick-up. 

In the same manner as in the above mentioned rolling system, in the case 

of the yawing system shown in Fig. 3 

hence, using Eq. (24), 

(30) 

Since the steady yawing oscillation of constant amplitude is expressed by the 

following equation, 

cp = c/)0 sin wt (31) 
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substituting Eq. (31) to Eq. (30) 

where 

L(t) = (-L,,)¢0 sinwt+(-Lr)¢0wcoswt 

= L0 sin (wt+<p0 ) 

Lo = [ ( -L,,•¢o) 2 + (-Lr·</Jo•W )2]½ 

({lo= tan~1 L-,,/Lr•W 

(32) 

(33) 

(34) 

hence, derivatives Lr and L,, can be calculated from Eq. (33) and (34) as follows: 

L-,, = _ LFJ = - L0 cos ({)0 

</Jo 
(35) 

(36) 

Though the rolling moment L(t) contains two different effects of derivatives L-,, 

(or LFJ) and Lr, it is possible to determine these two derivatives separately with 

the measurement of amplitude L0 and phase angle <p0 of L(t). Since the rolling 

moment L(t) is a torsional moment about .x-axis of the model, it is possible to 

measure it using a suitable pick-up which is inserted to the supporting e.g. position 

of the model. 

The derivatives Np, Lr and L.,, are expressed by the following non-dimensional 

coefficient form 

(29)' 

(35)' 

(36)' 

(3) Measurement of Heaving Derivatives. 

It is a well-known fact that the study of short period mode oscillations with 

longitudinal stability is one of the latest important problems in stability analysis. 

In the case of this analysis, it is necessary to determine the heaving derivatives 

M11,, Ma-, Z11,, Z;., etc. which are derived from the heaving velocity w or the induced 

angle of attack a=w/V of the airplane, in addition to the previously mentioned 

stability derivatives M6 and M6 in the pitching system. These derivatives can 

also be determined with application of the above mentioned experimental method. 

As shown in Fig. 7, it is assumed that the center of rotation of the pitching 

system is removed to a point Q' which i& at a, di&tance x from the design e.g. 
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position 0, and the pitching oscil-

lation is applied about the axis O' 

with anglar displacement €1. The 

equation of motion in this system 

is expressed as follows : 

10+ (-M~)t9+ (k/2 -Mt)e = M'(t) 

(37) 

where / represents the moment 

of inertia about O', and moment 

M' are all those about O'. There­

fore, in this system the motion of 

the model is considered to be that 

of the combined pitching and 

k 

V 

Lx 
Center of Rotation I w = .x-@ IP( t) 

Fig. 7. Forced oscillation method. 
(heaving system) 

8 

+ 
j 

heaving motions. The pitching angle fl and the heaving velocity ware expressed 
by the following equations 

w = x8 = x-U (38) 

where the signs are all taken plus in the direction shown in Fig. 7. Let M'0 and 

MIJ be rewritten with the aid of the stability derivatives, respectively, 

M~ = Me+MG 

M~ = Me+M.,+x(Ze+Z.,) 

also 

a= w/V = xfl/V. 

(39) 

(40) 

(41) 

In the above equations Z8 and Zd, are neglected because they are in general small 
quantities. Substituting Eq. (39) and (40) to Eq. (37) 

(1-Md,;)n+(-Ms-M .. ;-z .. ;)o 
+(kl2-Me-Z8•x)8 = M'(t)=P(t)·l' (42) 

Since Eq. (42) satisfies the relation of Eq. (4), the following expressions are 

derived in the same way as for the previous cases. 

(43) 

(44) 
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There are six unknown stability derivatives.in Eq. (43) and (44), but two relations 

can be derived from one value of x, as can be seen from the above equations. 

Therefore, it is possible to determine all the stability derivatives if three different 

values of x, or in other words three different centers of rotation, are chosen. 

From the practical point of view, it is convenient to choose x=0 as one 

value of x, i.e. the e.g. position as one center of rotation. In Eq. (43) and (44), 

then x = 0, x = x1 and x = x2 are chosen as the three values of x, then 

l-M· X1 
i "'V 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

where wind velocity V is assumed to be constant. However, since the motion 

in the case of x=0 means a pitching oscillation only about e.g. position, it is 

quite identical with the case of the pitching system which was mentioned in the 

previous section. Hence /0 is equal to B, and M9 and Me are determined as 

follows: 

Mo = - B(2C(J)n)o 

Me= k0 l'fi-B((J);.) 0 

(51) 

(52) 

Eq. (51) and (52) are of course identical with Eq. (19) and (20), respectively. 

Substituting the values of M9 and M8 into Eq. (47), (48), (49) and (50) 

-M· x1c(JJ2) "'V n 1 

M . X2( 2) - "'V (J)" 2 

(53) 

(54) 

(55) 

(56) 
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Solving the simultaneous algebraic equations (53), (54), (55) and (56), the follow­
ing solutions are derived: 

M;,_ = Mo(X1-X2) +{k1lr-I1(w~)i}x2-{k2'~-Mw~)2}X1 (57) 
xt2 

{ (w~)2-(w~)1} 

z Mo{X1 (w~)1 -xiw;)2} + {k1/r-Ii(w~)1 }x2(w~)2-{k2'~- Mw~)2}X1 (w~)1 (5S) 9 = x,x2{ (w~)2-Cw~)1} 

M;,_XiVX2 { (2(wn)1 - (2(wn) 2} + Mii(X1 +x2)- l1X2(2(wn)1 + l 2x1 (2(wn)2 
Z., = -~------------------- (59) 

X1X2 (X1 - X2) 
V 

- M;;. xt2 {xi2(wn)1 -x1(2(wnM -1- MiJ(xr-xD-l1X~(2(wn)1 + I2xr(2(wn)2 
M., - -~-- ------- -- ---- ---------- - --- (60) 

X1X2 (X2 - X1) 
V 

Eq. (57), (58), (59) and (60) represent the stability derivatives to be determined. 
Nevertheless, when numerical computation is tried in a practical case, it is 

found that the following relation is always satisfied in the usual wind tunnel test, 

even in consideration of the variable extent of x and V: 

(61) 

Hence, if the terms of M;;. are negligible with respect to I, the following equations 

are derived. 

z
9 

= -J,(w~),-1-k,lr-Mo = -Mw~)2+k2l~-M9 
X, X2 

X1X2 (X, _ X
2

) 

V 

- I1xi(2(~,.)1+I2xr(2(w,.)2+ Mii(xr-x~) 

(62) 

(63) 

(64) 

Eq. (62), (63) and (64) should be employed as the equations for practical calcu­
lation. 

The derivatives Zo, Z., and M., are expressed by the following non-dimensional 
coefficient form 

(62)' 

(63)' 

(64)' 
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Because of the above mentioned reason, therefore, M;. cannot be determined with 

this experimental method. 

B. Experimental Apparatus and Results. 

With application of the principle of measurement stated in the previous 

section, the experiments were tried in a low speed wind tunnel. The wind tunnel 

model employed in this experiment is a complete model which was constructed 

for use in the three components test. As an example, a schematic diagram of 

the experimental apparatus in the case of the pitching system is shown in Fig. 8. 

In the case of the rolling ·and yawing systems, too, they are similar to this 
diagram. 

Supporting 
strut 

Strain Gage 

Cd! Sprint 

Wire 

Forcing Strut 

'ck-up(2) 
train Gage 

rosshead 

Forcing 
Motor 

Fig. 8. Schematic diagram of forced 
oscillation method setup. 
(pitching system) 

Photo 1. Model (rolling system). 

Photo 2. Forcing arrangement. 
Photographs in forced oscillation 
method. 

As shown in Fig. 8, the pick-up (1) which is inserted into the supporting 

part of a coil spring is used to measure the system output or the pitching angle fl . 

The pick-up (2) which is inserted into the forcing strut of the model is similarly 

used to measure the applying force P(t) or, accordingly, the system input moment 

M(t). The electric transducers are all the _ resistance wire strain gage. 

An example of the results of the experiment is shown in Fig. 9 (a), (b) and 

(c). Fig. 9 (a) illustrates a typical example of a recording oscillogram. In this 
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diagram, output amplitude is always constant regardless of the forcing frequency 
w. Therefore, the input amplitude a, and the phase difference between the output 
signal and the input signal rp should be measured in various forcing frequency w. 
An example of the data in the pitching system is shown in Fig. 9 (b) and (c). 

( 

0 

<>o 

0 2 

0 

0 

4 
(b) 

0 0 
0 0 
0" ~ 

Cb 

6 

(a) 0 2 --o 

-
' . 

·' B -180 
w½ 

4 

• 8 
~ 

~ 

(c) 

t 
6 

0 

0 

0 

00 

0 

Fig. 9. Typical experimental results in forced oscillation method. 
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0. 51-----------

0.5 1.0 1.5 -18 0 

Frequency Ratio ¾, 
(a) 

0.5 1.0 

(b) 

Fig. 10. Comparison of experimental results and theoretical curves, 
(forced oscillation method) 

>o 
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Table 1. Calculating table for the stability derivatives in forced 
oscil1ation method. 

w 
I am/m 

5.23 16.6 
----· ---·-

5.76 12.5 
---

5.88 12.0 

6.25 9.3 

6.41 9.0 

6.90 11.8 

7.05 12.0 
---

7.35 15.5 
·--- ---

7.49 17.0 
---

8.05 23.2 

Notes 
21l' 

w=21l'f=r 

I q>deg. 

-26.0 
---

-38.5 

-41.5 

-67.0 

-80.0 

-109.0 

-120.5 
---

-126.0 

-137.5 

-148.0 

I =~ao*I 2 w,. I 2Cw. I Ma I Cma I Mo 

0.415 43.8 -1.48 -0.176 -0.850 -0.0100 

0.312 43.8 -1.44 -0.176 -0.850 -0.0096 

0.300 44.5 -1.50 -0.181 -0.875 -0.0101 

0.231 43.0 -1.46 -0.171 -0.825 -0.0097 

0.225 42.6 -1.47 -0.168 -0.812 -0.0098 

0.294 43.5 -1.75 -0.174 -0.840 -0.0116 

0.300 43.0 -1.58 -0.171 -0.825 -0.0105 
--- ·---

0.389 44.0 -1.88 -0.178 -0.860 -0.0125 
---·--- ~-

0.436 42.3 -1.67 -0.167 -0.807 -0.0111 
----~ --

-0.8311-0.0113 0.595 43.l -1.70 -0.172 

w;=w2/l-M' COS q> 

Ma=-B·(2Cw.) 

I Cmli 

14.62 

14.14 

14.70 

14.25 

14.35 

17.10 

15.43 

18.38 

16.32 

16.60 

These values of measurement are calculated and rearranged in Fig. 10 for com­

parison with the theoretical curves. Table 1 is the calculating table for estimating 

the stability derivatives from a result of the experiment. In this table, numerical 

values of the experimental data are written in the first three columns. In calcu­

lating the amplitude ratio M', i.e. the fourth column, the static input amplitude 

a0 must be determined; but in practice it is convenient to estimate it by the 

following equation 

(65) 

where (J) <(_ Wn. 

The calculations for the other columns are all presented in the previous section. 

As the result of the experiment, the following phenomena were found. When 

the forcing moment or applying force is recorded during the forced oscillation 

by aid of the pickup (2), the recorded oscillating wave always contains the higher 

harmonics more or less, and presents a distorted wave form. It can readily be 

supposed that this phenomenon is due to the mechanical clearance existing in 

the various parts of the mechanism. Moreover, the frequency of the higher 
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harmonics is principally determined by the rigidity of the pick-up (2). There­
fore, in order to obtain accurate results of measurerr.:mt, it is necessary to make 

the mechanical clearances in the whole mechanism as small as possible, and the 

rigidity of the whole mechanism containing the pick-up (2) as high as possible. 

Moreover, it is also necessary to insert a suitable low-pass filter between the 
recorder and the transducer. 

Since the amplitude of the forced oscillation should be limited to the extent 

of no aerodynamic non-linear effect, the attitude of the model and the eccentri­

city of the forcing crank must be determined at the suitable values before the 
experiment. 

In the next place, as was 

mentioned previously, it is also 

necessary to prepare other kinds 
of pick-ups in order to measure 

the cross derivatives L,. and Np. 

Examples of design for these pick­

ups which were employed in this 

experiment are shown in Fig. 

11 (a) and (b). However since 

the magnitudes of L,. and Np are 

both proportional to the lift 

coefficient CL of the model, the 

measurement must be carried out 

V, (a) (b) 

Fig. 11. Pick-ups for cross derivatives. 

giving the variation of angle of attack to the model. 

By means of the results of the experiment, it is found that the measurement 

of stiffness derivatives, i.e. Me and N,i,, is relatively easy and accurate and has 

little relation to the forcing frequency. On the other hand, the measurement of 

the damping derivatives, i.e. M8, Lp and N,., is rather difficult, especially when 

the damping magnitude of the system is small. Moreover, the accuracy of the 
measurement becomes higher when the forcing frequency is near the resonance 

point of the system, and lower when it is far away from it. This is due to the 

reason that, as can be seen from Fig. 4, Fig. 5 and Fig. 6, the effect of the 

damping ratio C is in general most remarkable near the resonance point and this 

inclination is more noticeable when C is relatively small. In other words, the 

above mentioned phenomenon can be understood as the frequency response 

characteristic of the representative second order system. Therefore, if the fre­

quency range to be measured is decided, the mement of inertia of the model, the 

spring constant, the lever length, the wind velocity, etc. must all be calculated 
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and chosen so that the measurement may be made near the particular resonance 

point. In the case of a weak damping system, since the accuracy of the measure­

ment of the damping derivatives will not be so high for the above mentioned 

reason, the usual free oscillation method should be used in conjunction. 

The measurement of cross derivatives is also not so easy, because the magni­

tude of the moment which is measured by the pick-ups is rather small. It is 

supposed that the accuracy of its measurement depends mainly upon the rigidity 

of the whole mechanism. 

In the case of the measurement of heaving derivatives, it is necessary to 

choose the value of x to satisfy the oscillation condition of the system. There­

fore, the value of the spring constant, the lever length, etc. must also be chosen 

suitably. In the same way as for the damping derivatives, the measurement 

should be carried out near the resonance point. Moreover, the frequency extent 

to be tested in this case may be decided by the characteristics of short period 

modes of motion. In general, it will be calculated using the condition in 

which the reduced frequency n is nearly equal to 0.1, where n is expressed as 

wc/V. 

III. Transient Response Method 

The forced oscillation method, as was stated in the previous section, may in 

general be the most excellent method for measuring stability derivatives in wind 

tunnels. Because, using this method, the accuracy of measurement is higher, and 

the calculation of experimental results is easier than for other methods, and 

almost all of the stability derivatives can be determined. But, for instance, in 

the case of closed type wind tunnels with variable pressures, or high speed 

tunnels, in particular of the intermittent type, it is difficult or impossible to apply 

this forced oscillation method. 

In the case of a wind tunnel having such experimental conditions, it will 

therefore be convenient to determine the stability derivatives from the transient 

response characteristics of the model to a step control deflection. This method 

is an application of the experimental methods which are employed in flight 

test, but in the case of the wind tunnel test it will be necessary to choose the 

most suitable method in consideration of the differences between the flight con­

ditions and the wind tunnel conditions. 

A. Principle of Measurement. 

(1) Determination by the Frequency Response Method 

In the same way as for the forced oscillation method, the equations of motion 

in pitching, rolling and yawing systems are expressed as follows : 
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Bii+ (-Mi,)O+ (k/2-Me)fl ~ Ma
6
·/Je(t) 

A~+(-Lp)~+kl2¢ = La
0

•/J0 (t) or Lar•or(t) 

C¢+ (-Nr)ifl+ (kl2 -N-,,)cp = Nar·/Jr(t) 

IO+ ( -Mii-M<» ;-kt» tr fi+ (kl2 -Me-Ze·x)II = Mae·/JeCt) 

317 

(66) 

(67) 

(68) 

(69) 

where the terms Ma
6
•/Je(t), L 60 •/J0 (t), Nar·/Jr(t) etc. represent the forcing mom~nt 

due to the control deflection. 
1 

Eq. (66), (67), (68) and (69) can be rewritten by the following simple· equation 

(70) 

for the control deflection is assumed to be a step function. Therefore, the output 

x(t) will represent a transient response of the representative second order system 

to a step input. It is therefore possible to determine the coefficients of the 

transfer function of Eq. (70), 2Cwn and w~, from this transient response data, and 

consequently to calculate the stability derivatives. 

In the case of a step input, it is supposed that there exist various methods 

to determine the stabilty derivatves from the transient reponse data. But, in 

this paper, the subsequent determination of stability derivatives depends upon 

the frequency response method stated below, because this method can be compared 

directly with the forced oscillation method described in the previous section. 

In order to obtain the frequency response from transient data, the ordinary 

Fourier transform is used. Since the input o(t) is a step function in this case, 

as shown in Eq. (70) 

G(s) = s·X(s) = L{tr x(t)} = ~~ tr x(t)e-stdt (71) 

therefore 

(72) 

If the increment of x(t) between time t and t + dt is expressed by dx, the fre­

quency transfer function G(jw) can be calculated by the following expression 

(73) 

In practice, there exists a finite time T in which x(t) reaches a stationary state, 

as shown in Fig. 12. Therefore it is convenient to calculate G(jw) as follows: 

(74) 

(74)' 
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.,,~ 
X(f) 6~ 

0 t 

T x, 

Time t 

Fig. 12. Transient response to a step 
input in second order system. 

Fig. 13. Calculation of frequency 
response from transient data. 

Eq. (74) means that the wave form of output x(t) can be approximated by the 

total sum of step functional waves of height Jx1 , dx2 , ••• etc., which are respec­
tively shifted at uniform time intervals dT, as shown in Fig. 13. When G(jw) is 

determined, the amplitude ratio M and the phase ange 'P to any frequency w will 
be determined as follows ; 

(75) 

(76) 

Eq. (75) and (76) are quite identical with Eq. (7) and (9), respectively, in case of 

the forced oscillation method. The subsequent treatments are, therefore, entirely 

identical with those of the forced oscillation method in the previous section. 

(2) Effect of a Initial Tangent of the Input 

In the pratical calculation of fre-

quency response, the effects of the 

initial tangent of the input control 

deflection are important subjects for 
study. If the control deflection is a 
theoretical step function 

1/xs 

1.0 

0.5 

0.5 

-Ti=Osec 
---- 0.1. 
--- 0.2 

x+6x+/O0x=S1t, l 
1.0 1.5 / 5« 

But in practice, it is impossible to 

realize the step control deflection which 

satisfies Eq. (77) strictly, and there­

fore a finite ramp time T1 exists 
Fig. 14. Influence of ramp time T1 in 

transient response curve. 
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inevitably (See Fig. 14.). Moreover, even if the control deflection iJ(t) is a 
theoretical step input, it is supposed that the forcing moment M8 •iJ(t) will still 

be represented by the form resembling to the ramp input because of the unsteady 
aerodynamic effect. 

Now, it is assumed that the outputs x(t) for a ramp input and a step input 

are expressed as x,. and Xu, respectively. Let Xu(s) and XR(s) denote the 
Laplace transform of Xu and x,., respectively, then 

Xu(s) = 1 .l.m8 •iJ c2 +2Cwns+w~ s 

XR(S) = l .1_.ma•iJ (l-e-•T1). 
S

2 + 2Cwns + w~ s2 T1 

Let sT1<l, which corresponds to wT1<l in frequency domain, 

e-•T1 = 1-sT, + (s1',)2 - ~T,)s + ... 
2! 3! 

Hence 

Substituting Eq. (80) to (79), 

(78) 

(79) 

(80) 

(81) 

From Eq. (81), it is found that the output x(t) for a ramp input is approximately 

equal to the output for a step input having a time lag of T1/2, if the ramp time 
is too small to satisfy the condition 'of wT1<l. 

In the treatment of the stability problems of an airplane, since the frequency 

of oscillating motion is at most less than 2 or 3 cycles per second in general, it will 

not be so difficult to satisfy the condition of wT1 <L As an example, the results 

of numerical calculation in case of wn = 10 are illustrated in Fig. 14. From this 

diagram, it is found that the relation of Eq. (81) is fully satisfied even in the 

case of T1 = 0.1 or Wn T1 = 1. By means of theoretical calculation, the error in the 

case of Wn T1 = 1 is only about 2 percent. Therefore, in experiment, a ramp input 

can be substituted satisfactorily for a step input if the former has the ramp time 

T1 which satisfies the condition of wnT1<l. Moreover, it is found that the curve 

of T1 = 0.2 illustrated in the same diagram expresses that the larger T1 affects 

not only the time lag but also the amplitudes of the wave form. 

(3) Determination of the Initial Point of the Output Curve 
In the next place, it is also practical to study to determine the point of t=O 
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or the initial point of the curve of output x(t). If the initial ramp time T1 has 

been measured, it is :reasonable to choose a point having a delay time of Ti/2, 

but if T1 is unknown, it is convenient to utilize the following relations. 

In the case of a step input, as shown in Eq. (70), since the initial condition 

is a stationary state, the output x(t) is given as follows: 

where 

(82) 

(83) 

(84) 

Xs is a constsant value corresponding to the equilibrium condition of output x 

against the control deflection iJ. Therefore, as shown in Fig. 15, since x(t) 

expresses a damped oscillation in which 

Xs is the mean value, the initial curve 

of the output to a step input is con­

sidered to be a part of the curve of 

phase lead (J), as shown in Eq. (82). 

Since fJ) is a function of the damping 

ratio ( only as shown in Eq. (84), it 

is covenient to choose t = 0 as a time 

about a quarter period before the cros­

sing point between the initial wave 

and the straight lin~ x=xs, when ( is 

relatively small. 

In the case of the transient re­

sponse method, it is therefore impos­

sible to determine the stability deriva­

tives M;;., Lr, L,J, and Np. 

B. Experimental Apparatus and Results 

I 
I 
I 
I 
I 
I 
I 
\ 
\ 
\ 

1 
Xs 

"o,c__ ___________ ~....,.. 

5' ~ 5' p 

0 9(!' 0.3 72.5° 

0.1 84.3° 0.4 66.4° 

0.2 78.5° 0.5 60.0° 

Fig. 15. Phase lead ID for a step input. 

As has been stated previously, the transient response method is particularly 

suitable for a high speed wind tunnel test. But, because of the experimental 

equipment, the following preliminary experiment with application of this method 

was made in a low speed wind tunnel. The wind tunnel and the model which 

were employed in this experiment are therefore entirely the same as those in 

the case of the forced oscillation method. The experiment was made with a 

pitching system. The schematic diagram of the experimental apparatus is shown 
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in Fig. 16. The mechanism giving a step deflection to the elevators in this ex­
ample is shown in Fig. 17, which is the setup combining a electromagnet and a 

coil spring. A magnitude of the elevator deflection De must be chosen so that 

the attitude of the model is limited in the extent to which the slope of lift and 

the pitching moment against the angle of attack is linear. In practice, the 

numerical value of De was about 5 degrees. 

strain Gages 

Coil Spring 

Wire 

Fig. 16. Schematic diagram of transient response method setup. 
(pitching system) 

Horizontal Tail 

Electromagnet 

Fig. 17. Schematic diagram of setup for giving a step elevator 
deflection. 
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The detector of the output, or the pitching angle 8 in this system, is the 

pick-up which was inserted into the supporting part of the spring, in the same 

way as for the forced oscillation method. The electric transducer is the wire 

strain gage in this case also. 

The amplitude ratio M and the phase angle <p which has been calculated 

from a recorded output curve are respresented in Fig. 18 (a) and (b). Moreover, 

the numerical values of the stability derivatives which have been calculated from 

5 

:::.: 
4 

.C> 
~ 

~ 
~ 3 
;i 

1 
~ 2 

0 4 8 

{a) 

12 16 
U) ½ 

(J) ¼ 
0 8 12 16 

o;, 
<l} -,, 
S-._40 
Q) 

~ c:: 
--;: 
QJ-80 

"' ~ 
0..: 
-120 

-160 

(b) 

Fig. 18. Comparison of experimental results and theoretical curves. 
(transient response method) 

the above mentioned data are shown in 

Table 2. From these experimental re­

sults too, it is obvious that the data far 

removed from the resonance point in 

frequency are useless for practical pur­

poses because of their low accuracies. 

The reason for this phenomenon is the 

frequency response characteristics of a 

second order system as has been stated 

in detail iri the case of the forced oscil­

lation method. In order to determine 

the accurate values of stability deriva­

tives, it is therefore necessary to choose 

frequency w in more instances near to 
the natural frequency Wn particularly. 

Table 2. Experimental results in transient 
response method. 

w I 2(w. I 
2 

I Cme Cme w,. 

8.5 2.50 98.0 -0.883 -19.7 

9.0 2.53 96.0 -0.865 -20.0 
--------

9.4 2.52 95.8 -0.863 -19.9 

9.6 2.50 95.8 -0.863 -19.7 
-----~ 

9.8 2.46 96.0 -0.865 -19.4 

10.0 2.42 96.0 -0.865 -19.0 
---

10,2 2.32 96.1 -0.866 -18.25 

10.4 2.21 96.1 -0.866 -17.35 
---

10.6 2.07 96.0 -0.865 -16.1 
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In comparison with the values obtained using the forced oscillation method, 
which are shown in Table 1, the measurement by the transient response method 

may be considered to have sufficiently high accuracies. 

IV. Concluding Remarks 

As experimental methods for determining the stability derivatives of an 
airplane employing the wind tunnel model, the forced oscillation method with 
constant amplitude and the transient response method have been represented. 

The principles of measurement are, in both cases, those calculating the stability 

derivatives from the frequency response characteristics of a second order system. 

Therefore, in the case of the large damping ratio of the system, the measurements 

are easier and more accurate. When the damping ratio is too small, it will 

therefore be convenient to apply these methods together with the ordinary free 

oscillation method. 

Moreover, the forced oscillation method described above is applicable to the 

measurement of negative damping systems and aerodynamic unsteady effects in 

case of high frequency. 
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Nomenclature 

A moment of inertia about x-axis 

B " y-axis 
C " z-axis 
E product of inertia 
G(s): transfer function 
K static gain 

L(t) : rolling moment 

M amplitude ratio 
M(t): pitching moment 
N(t): yawing moment 
P(t) : applied force 
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S wing area 
V wind velocity 
b wing span 
c m.a.c. 
k spring constant 
p rolling angular velocity 
q 

r 

pitching 

yawing 
" 
" 

u(t) unit step function 
w heaving velocity 
a angle of attack 
{3 sideslip angle 
fi control deflection 
fia aileron angle 
a. elevator angle 
fir rudder angle 
C damping ratio 
fJ pitching angle 
p air density 
<j) rolling angle 
<p, QJ : phase angle 
¢ yawing angle 

w circular frequency 
M8 stability derivative 8M/8fJ 
Mu, 

M~ 
Mq 

Lp 

L,,,=-Lf',: 

Nr 

N,,,=-Nf',: 

Lr 
Np 

Zo 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 

8M/8a 

8M/8a 

8M/8q 
8L/8p 
8L/8¢= -8L/8{3 
8N/8r 

8N/8¢= -8N/8{3 
8L/8r 
8N/8p 

8Z/8fJ 

Zu, " 8Z/8a 
Ms. control effectiveness 8M/8fi. 

" 
'I 

8L/8fia 

8N/8fi, 
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