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On the Electric Field due to Tides. III. 

By 

Takeshi KIYONO* 

(Received January 22, 1959) 

In this paper the author will discuss briefly some results of theoretical work 
carried out by Dr. Longuet-Higgins, Dr. Malkus and others (Section 2). The 
theory of field due to streams of elliptical cross-sction will also be described 
(Section 3), and a method of generalization of this theory will be discussed 
(Section 4). 

In Section 5 the results of numerical computation concerning the streams of 
elliptical cross-section will be shown, and in Section 6 the approximate relation 
between the mean velocity and potential difference will be discussed for two types 
of streams. 

1. Introduction 

The author has published two papers 1
), 

2
) concerning the electric field induced by 

tidal streams, mainly to contribute to the theory of sheath currents in submarine 

cables3), 4 )_ 

On the other hand, potential differences observed between moored or towed 

electrodes have been discussed by several authors in order to utilize this phenomenon 

for measurements of some oceanographic quantities5
)-

9
)_ In this connection, some 

theoretical results obtained by Dr. Longuet-Higgins, Dr. Malkus, Dr. Stommel, Dr. 

Stern and others will be discussed here briefly. 

The theory of electric field induced by streams of elliptical cross-section, which 

has been established by Dr. Longuet-Higgins10
), ll), will also be presented, and a part 

of his theory will be generalized to a case where the stream velocity is not constant. 

2. Electromagnetic Methods for Measuring the 

Velocity of Ocean Currents. 

2.1. Principles of the Electromagnetic Methods11 ). 

Let the stream velocity at any point be v, and the earth's magnetic field be H, 

then the e.m.f. per unit distance will be 

* Department of Electronics. 
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F=/J.<)VXH, (2. 1) 

As a result of this e.m.f., a current will flow through the sea water and sea bed, the 

density of which is given by 

j =aE, (2.2) 

where a is the conductivity of the medium and E the electric field. As shown in the 

previous paper2>, the field E can be divided into two parts, the irrotational partial 

field E' and the other partial field E" which is identical to the distributed e.m.f. F: 

E= E'+E", 

E' = -grad V', 

E"= F. } 
(2.3) 

(2. 4) 

The potential V' can be determined by the velocity v, the magnetic field H, and the 

geometry of the stream and sea bed. 

Eq. (2. 3) can be modified as follows : 

fl.<JVXH = E+grad V'. (2. 5) 

This relation suggests the possibility of determining the velocity v from electrical 

measurements, assuming that the earth's magnetic field is known. 

Generally, the relation between the observable electrical quantities and the velocity 

is rather complicated, but it will become very simple in the two limiting cases, where 

either essentially no current flows or the current is almost short circuited. 

2. 2. Measurements by Electrodes at Rest. 

(1) As we have seen in one of the previous papers1), the potential difference 

dV' observed between two point electrodes placed at arbitrary points is given by 

dV' = ~: (F-E)•ds 

= t1o ~: (vxd)•ds-~:E•ds. (2.6) 

If the stream velocity is almost uniform from the surface to the bottom, and the bed 

is effectively non-conducting, current will not flow, and the field E almost vanishes. 

In such a case Eq. (2. 6) will become 

dV' = µ 0 ~: (v x H) •ds. (2. 7) 

In the case where the velocity has no vertical component, and the two points A and B 

are at the same depth, Eq. (2. 7) can be written as follows : 

dV'= -11oHy~:vzdx+t1oHy~:vxdz. (2. 7a) 

Moreover, if the velocity is constant between the points A and B, 
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(2. 7b) 

Hence the components v.,, and v,, can be determined by measuring the potential 

differences along two different directions. 

This method can be applied to the measurement of shoal water or tidal current 

("the method of moored electrodes"). 

(2) When two electrodes are placed near the two shores of a channel, the 

potential difference between these electrodes is given by Eq. (2. 6), or 

Vs-VA'= -µo~:v,,Hydx-~:aj.,,dx, (2.8) 

where the electrode line is taken as the x-axis, and the mean stream of the ocean 

current is assumed to be directed parallel to the z-axis. 

Assuming Hy=const. and a=a1 =Const., and integrating the above equation between 

y=O and h, we get 

(2.9) 

where + c' and - c' are the x-coordinates of the points A and B respectively, and 2c' 

is taken to be sufficiently larger than the width 2c of the stream. 

If the bed is non-conducting (0'2 =0), the current flux flowing across a vertical 

plane x=const. must be zero: 

(2.10) 

On the other hand, the dependence of V' on y at x = ± c' ( c' - c > h) is so small that 

we can write 

~: V' dy = h V' , x = ± c' . 

Moreover, the transport T of the stream is given by 

~+c ~h I+c' ~h T = v,,dydx = , v,,dydx. 
-c O -c 0 

(2. 11) 

Substituting these relations into Eq. (2. 9), we obtain 

T= hH (VA'-Vs). 
µo Y 

(2.12) 

Although this relation has been established by Dr. Malkus and Dr. Stern for a more 

general case12
), it should be noted that the assumption of a non-conducting bed is 

necessary in order that the relation of Eq. (2. 10) be valid11). 

For a stream of rectangular cross-section the transport T is related to the mean 

velocity v by the following expression : 

T = 2chv, (2.13) 

where 2c and h are the breadth and depth of the stream respectively. Substituting 
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this expression into Eq. (2. 12), we get 

- 1 u 
v = 2 H ' CIJ.o y 

(2.14) 

where 
(2.15) 

2. 3. Method of Towed Electrodes7), u) 

We shall consider here the potential difference between two electrodes which are 

towed in line behind a ship as shown in Fig. 1. Let the velocity of the ocean current 

be v, and the velocity of the ship relative to the water be v1 • Then 

8 

<J 
A 

Fig. 1. 

the e.m.f. per unit distance in the stream will be 

F = 11.ovxH. (2.16) 

On the other hand, since the ship and electrodes are in motion with 

velocity v+v1 relative to the earth, an e.m.f. per unit distance of 

the electrode line will be induced, the intensity of which is given by 

(2.17) 

Therefore, the potential difference observed between these two 

electrodes will be 

(2. 18) 

where Jl is the vector of the electrode line AB. 

Since v 1 is parallel to Jl, we have 

(v1 xH) •Jl= 0, and F.•Jl = F•Jl. 

and Eq. (2. 18) becomes as follows : 

JV'= -E•Jl. (2.19) 

That is to say, the potential difference between the towed electrodes of unit distance 

is equal to the electric field E in the water. 

If the stream is limited to the shallow part of the ocean, and the stationary water 

makes a highly conducting return path for the current, the e.m.f. induced in the 

moving water will be short-circuited by the stationary water, the potential drop per 

unit distance j/a will become nearly equal to the e.m.f. per unit distance F. In this 

case, Eq. (2.19) can be written as follows: 

JV'= -F-Jl 

= 11.o(vxH)-Jl, (2. 20) 

from which we get 
(2.21) 

This relation shows that the velocity (Vz, v,,) can be determined from two potential 

differences measured along two different directions, and is the basic formula for 
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measuring the velocity by means of the Geomagnetic Electrokinetograph7
). 

In this case it is assumed that the stream of water is shallow compared with the 

layer of water at rest ; in other words, the current density is assumed to be so large, 

that the potential drop due to this current will become nearly equal to the e.m.f. 

However, since the e.m.f. per unit distance is always larger than the potential drop 

per unit distance, Eq. (2. 21) may produce an error in some cases. 

Dr. von Arx7l defined the "k-factor" as a ratio of the e.m.f. between two electrodes 

to the observed potential difference : 

F•Jl 
k = JV' (2.22) 

or 

k =~Hv, 
Je/t1 

(2. 22') 

where v is the horizontal component of stream velocity which meets the electrode line 

at right angle, and j 8 is the component of current density along the electrode line. 

According to the observation by Dr. von Arx, the value of k is less than 1.10 in deep 

oceans, whereas it will become very large in shoal tidal reaches. Usually, tidal 

streams can be more easily measured by moored electrodes11). 

3. Theory of Electric Field due to a Stream of Elliptical 

Cross-section after Longuet-Higgins. 

Dr. Longuet-Higgins has solved a problem of an electric field induced in a 

constant stream of elliptical cross-section10l, 11), as shown in Fig. 2. 

X=-a 0 X=a 
,, ~ 

tr, ,, 
~~~~~~~"r::>t---------------✓ 

Fig. 2. 

Since the method of fictitious current sources2l is not adequate for this problem*, 

it will be better to treat it as a boundary value problem. For this purpose, elliptic 

cylindrical coordinates will be convenient : 

x= ccosh~cos7J, 

y = c sinh ~ sin 7/ , } (3.1) 

* Although the distribution of the fictitious current sources can easily be found, it is difficult 
to obtain the potential due to these sources by means of integrals of Eq. (3.7) in Part II. 
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An ellipse: 
x2 y2 
7+v = 1 

can be expressed by ~=~0 =const., where 

a= ccosh~o, b = csinh~0 ; 

c= ✓a2 -b2 , 
} 
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(3. 2) 

(3.3) 

Also in this case the electric field E 1 inside the ellipse can be expressed as a 

sum of two partial electric fields Ei' and Ei'' : 

E1 =Ei'+Ei'', 
Ei' = -grad Vi', 
Ei''= F; 

} 
and the field outside the ellipse is deduced from a potential V{ : 

E2 =E{, 
E{ = -grad V/. } 

These fields must satisfy the boundary conditions : 

E{t = E~t, } 

t11(E{n+Efn) = t12E~n; 
when ~ = ~o, 

and 

when y = 0. 

(3. 4) 

(3. 5) 

(3. 6) 

(3.7) 

As shown before, the partial field Ef is identical with the distributed e.m.f. F, 

and the ~- and r;-components of F can be expressed as follows : 

F _ E sinh ~ cos r; 
e - ox✓ ' cosh2 ~ - cos2 r; 

F _ E cosh ~ sin r; 
" - - ox✓ cosh2 ~-cos2 r;' 

Fe = -Eo __ cosh ~ sin r; , 
Y ✓ cosh2 ~-cos2 r; 

F" = -E sinh ~ cos r; 
oy ✓ cosii2 -~-cos2 r;' 

where 

l 
l 

due to Hy; 

due to Hx; 

(3.8) 

(3.9) 

(3.10) 

Laplace's equation from which the potentials Vi' and V{ are obtained, can be 

written in the coordinates (~, r;) as follows: 

the solutions of which are 

V' = e±"'f (c?s ar;) . 
· sm ar; 

(3.11) 

(3.12) 
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The normal and tangential components of the partial field E' are given by 

(3.13) 

where 

(3.14) 

3. 1. Electric Field due to the Vertical Magnetic Field. 

Since the partial field Ei'' has no vertical component in this case, the conditions 

of Eq. (3. 7) at the surface can be written as follows : 

Eft = 0, 

Ef. = 0, 

E2. = 0, 

when ~ = 0 , 0 > n > 1r , I 
when n = 0 or 1r, 0>~>~0 ; 

when n = 0 or 1r, ~o < ~ . 
(3.15) 

To satisfy these conditions, the potentials inside and outside the ellipse should take 

the following forms : 

Vi'=~ An cosh n~ cos nn, 0 < ~ < ~0 ; I 
n=l 

V2' = i'.] Bne-nt cos nn, ~o < ~. 
n=l 

The boundary conditions of Eq. (3. 6) can be modified as 

where 

Substitution of Eq. (3.16) into Eq. (3.17) gives: 

V, E sinh ~o h ~ 
1 = C ox sinh ~o+K: cosh ~o cos \, cos n 

sinh ~o 
= Eox sinh ~o+K: cosh ~o X' ~ < ~o ; 

V, E sinh ~o cosh ~o -<E-t ) 
2 = c ox sinh ~o+" cosh ~o e o cos n' 

(3.16) 

(3.17) 

(3.18) 

} (3.19) 

Two components of the partial electric field Ei' inside the ellipse can be deduced 

from V/: 

E' E sinh ~o c . h ~ l 1t = - ox . h ~ h ~ h sm ,, cos n , sm 1,o+K: cos 1,0 t 

E' E sinh ~o c h ~ . 
l• = ox . h ~ h ~ h cos \, stn n ' sm 1,o+K: cos 1,0 t 

(3. 20) 
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or 

(3. 21) 

and the resultant field in the ellipse becomes 

ix = ix+ lx = ox 'nh e + he ' E E l E" E " cosh eo . l 
Sl ,o 1' COS ,o (3. 22) 

This means that the electric field inside the ellipse is uniform and horizontal. 

The electric field outside the ellipse is 

(3. 23) 

In the special case of a uniform medium (t.=l), the potentials will become as 

follows: 

Vi'= cEox sinh eo cosh e cos 1/, 

V{ = ! cEox sinh 2e0 -e-t cos 1/, 

S. 2. Electric Field due to the Horizontal Magnetic Field. 

The partial electric field Ei'' in this case can be expressed as follows : 

E'1e = -Eoy Ie :e (sinh e sin 11)' 

E'{~ = -E0y %~ :1/ (sinh e sin 11), 

(see Eqs. (3. 4) and (3. 9)). 

l 
The condition, E 1y=0, to be satisfied at the surface can be modified as 

E{e +E'1e = o, 
E{~+E'f~ = 0, 

or, combining with Eqs. (3. 25), 

:e (Vi'+cE0ysinhesin11) = 0, 

/
11 

(Vi'+cE0ysinhesin11) = 0, 

when e = 0; 

when 1/ = 0 o, •. l 

(3. 24) 

(3. 25) 

(3. 26) 

(3. 27) 

Considering these conditions, we assume a general expression for the potential Vi' as 

Vi'+ cE0y sinh e sin 1/ = ~ A,. cosh n e cos n 1/ • 
"=0 

(3.28) 

As for the potential outside the ellipse, the following conditions must be satisfied : 
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a V2' = 0 
87} ' 

V/=0, 

for which we assume the form: 

Takeshi KlYONO 

when 7J = 0 or TC , 

when e = oo, 

V/ = ~ Cne-nt cos n7J. 
"=1 

} (3.29) 

(3.30) 

Substituting Eqs. (3. 28) and (3. 30) into the boundary conditions of Eq. (3. 6), or 

a (VI E . h e • ) a V/ l ae I + C o Slil '> Slil 7} = t.f)~ , 
(3.31) 

we get the relations : 

fJ An cosh neo cos n7J-CE0 sinh eo sin 7} = ~ Cne-n~o cos n7J, 
H=O ff=l 

(i) 

and 
(ii) 

The treatment of Eq. (i) is rather complicated, since it contains sin 7J as well as 

cos n71. To avoid this difficulty, Dr. Longuet-Higgins employed the relation: 

2 [ = 1 ] sin 7/ = - 1-2 :E 
4
~

1 
cos 2m 7J , 

TC m=l m -
(3.32) 

Substituting this expression into Eq. (i), and comparing the coefficients of cos n7J we 

get: 

Vi' = ±. cE0 - cE0 sinh e sin 7/ 
TC 

4 c . ~ 2m cosh 2me sin 2m7} 
E1.,, = --1.Eo-h smh eo L.J 4~ 1 . h 2m e h 2m e , } 

TC .,, m=l m - sin ,.0+1. cos ,.0 

E{.,, = E1.,,+E0 ~ sinh e cos 7J. 

4 C . = 2m sinh 2m eo. e-2mct-to) cos 2m 7J 
Et = -E -smh e :E -- -~~-=------=-----~-'-, 2 

TC 
0 kt 0m=14m2-1 sinh2meo+t.cosh2meo 

(3.33) 

(3. 34) 

(3. 35) 

(3. 36) 

(3. 37) 

(3.38) 
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In the case where the conductivity is uniform (<12=<11 , ,c= 1), these components of 

the fields can be expressed in closed forms* : 

where 

E1e = 2~ Eo ~ sinh eo[L(eo+e-i1)) +L(eo+e+i1)) l 
-L(eo-e-i1J)-L(eo-e+i1J)], 

E1ri = - i!1rEo ~ sinh eo[L(eo+e-i1J)-L(eo+e+i1J) 

+L(eo-e-i1J)-L(eo-e+i1J)]. 

E2t = iir Eo It sinheo[L(e+eo-i1J)+L(e+eo+i1J) l 
-L(e-eo-i1J)-L(e-eo+i1J)], 

E271 = -i~E0 ~ sinheo[L(e+eo-i1J)-L(e+eo+i1J) 

+L(e-eo-i1J)-L(e-eo+i1J)], 

L(t;) = cosh t: • log tanh (t;/2) . 

The horizontal components on the surface will become as follows11) : 

E E 1 E sinh eo[ . h I! • l cosh eo-COS 1J = - = - -- sm ,. sm 'Y) og 
" 1ri 1r 

O sin 1J O 
., cosh eo+cos 1J 

_ 1 sin 1J ] +2cosh e0 cos 1J tan ~ , 
SID o 

y= 0, lxl<c, 

1 sinh e0 y= 0, c<lxl<a, E,, = E1e = -Eo~ [L(eo+e)-L(eo-e)], 
7t' Sln 

1 sinh eo y = 0, a<lxl. E,, = E2t = -Eo 'nh e [L(e+eo)-L(e-eo)], 
7t' Sl 

(3. 39) 

(3.40) 

(3. 41) 

(3. 42a) 

(3.42b) 

(3. 42c) 

4. Electric Field due to a Stream of Elliptical Cross-section in which 

the Velocity Diminishes toward the Boundary. 

4. 1. Uniform Medium 

We shall consider the case where the stream velocity in the elliptical cross-section 

diminishes toward the boundary, assuming that the magnetic field is vertical and the 

conductivity is uniform (<12 =<11). If the velocity distribution is given by a function 

V = Vof(e'), 

the distributed e.m.f. is expressed by 

F,, = Eof(e'), Fy = 0, } 

Eo = fJ.oVoHy. 

* For this purpose the following relations are employed : 

2m 1 ( 1 1 ) 
4m2 -1 =2 2m+1+2m-1 ' 
= e-(2'"-l)al 1 a, J21 2m-1 = -2 logtanh 2. 

(4.1) 

(4. 2) 

(i) 

(ii) 
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If we divide the velocity v into infinitesimal velocities dv, which is constant inside 

an ellipse e=e', the elementary potential dV' due to the elementary velocity dv will 

become as follows : 

dV' = ! cdF,.(1-e-2t') cosh e cos r;, 

= ! cdF,.(e2t' -e-2t') e-t cos r;, 

(see Eq. (3. 24) ), where 
dF,. = /J.oH,dv 

= Eof'Cn d~'. 

Integrating the above equations, we obtain the potentials due to the stream with a 

velocity distribution given by Eq. ( 4. 1) : 

Vi'=_!_ cE0 e-t cos r; 
10 

(eW -e-W) /'(e') de' 
4 Je 

1 re , +2 cEo cosh e cos r; Jeo (l-e-2E) /'(n d~', 

V2
1 = ! cE0 e-e cos r; ~;

0 
(e2E' -e-2t') J'(e') de', 

If we assume a velocity distribution such that 

as shown in Fig. 3, the potential will become as follows : 

Vz' = ! cEoKCeo, e1) e-e cos r;, 

where 

Fig. 3. 

l 

(4.3) 

(4.4) 

(4. 5) 

(4. 6) 

(4. 7) 

(4.8) 
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From these expressions we obtain the e- and 1}-Components of the electric fields : 

Eit = E{e+E'{e' } 
E1~ = E{~ + E'f ~ , 

o<e<eo; (4. 9) 

(4. 10) 

E{~ = ! E0(l-e-fo-t1) ( cosh e sin Y/, 

1 eto-et c E,, - --.-E, ,<,- ,<, (1- ,-td) -.,-sinH cos •

1 

1 et-et1 c +-4 Eo • ~ K(e, e1)-h e-t cos Y/, e•o-e l e 
1 eto-et c 

E~~ = -
2 

E0 • , (1-e-to-t) -h cosh e sin Y/ eso-es1 ~ 

1 et-et1 c _ . 
+4 Eo eEo-eti K(t e1) li;e t sm Y/, 

(4. 11) 

(4.12) 

(4.13) 

1 C 
E2t = 4 EoK(eo, e1) liie-t cos Y/' l 
E211 = ! EoK(eo, e1) ( e-t sin Y/, 

(4.14) 

It should be noted that the electric field in the region of constant velocity 

( 0 < e < e 1) is uniform and horizontal, i.e. 

E1,, = E1e T sinh e cos YJ- E1~ _he cosh e sin Y/ 
t ~ 

1 = 2 E 0(l+e-to-Ei), 

E1y = E1e Ie cosh e sin 'f/ + E1~ ( sinh e cos 'f/ 

=0. 

4. 2. Two-Layer Problem. 

(4.15) 

If the conductivity a2 of the medium outside the ellipse e=eo is different from 

that of the water inside the ellipse, the interior and exterior potentials will be changed 

from the values given by Eqs. (4. 6) and (4. 7). 

Let the secondary potential inside the ellipse be V1*, and the resultant potential 

outside the ellipse be V2 • These will be expressed as follows: 
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V1* = Acosh~cos71, } 
V2 = B e-e cos 71 • 

The ~- and 71- components of the secondary field inside the ellipse are : 

E" ~ - t sinh < oos • , l 
E!~ = ! cosh ~ sin 7/ , 

and the components of the resultant field outside the ellipse are : 

E,< ~ :. .-, '°' • ' l 
E2~ = f e-t sin 7/ • 

(4.16) 

(4. 17) 

(4.18) 

The expressions (4.11), obtained for the field in the case where the conductivity 

is uniform, can be used as the primary field in this problem : 

(4.19) 

These must satisfy the boundary conditions : 

(4.20) 

where 

It should be noted that the partial field Ete which is equal to E'1e of Eq. ( 4. 12) 

vanishes when ~=~0 • 

Substitution of Eqs. (4.17), (4.18) and (4.19) into Eq. (4. 20) will give: 

A= 1-cE (1-,c) e-eo K(~ ~) } 
4 °sinh ~0 +,c cosh ~o 

0
' 

1 
' 

B = e2eo A. 
1-,c 

(4.21) 

Using these constants, we obtoin the following results : 

(4.22) 
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1 Vp' = 2 cE0(1-e-to-t1) cosh e cos r;, 0 < e < e0 ; 

1 eto-et 
= -

2 
cEo et t (1-e-Eo-t) cosh e cos r; o-e 1 } 

E1t = E;t+E;t+Ett; 

E;t = - ~ Eo(l-e-to-t,) Ii sinh e cos r;' 0 < e < e1' 

1 eto-et c } = - 2 Eo eto-et, (1-e-io-t) 7zesinh e cos r; 

1 eto-et c 
+-4 Eo t t K(e, e1)~h e-tcosr;, e1 < e < eo; e o-e , t 

E'{,t = Eo %t sinh e cos r; , 

eto-et c . 
= Eo t t -h~ smh e cos r; , e o-e , t 

E" 1 Ec he· = - ----- cos sin .,, 
11~ 20~ .,, 

o<e<e1, l 
e1 <e<eo; 
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(4.23) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.30) 

(4.31) 

(4. 32) 

(4. 33) 

(4.34) 

Also in this case, the resultant field in the region O < e < e1 is uniform and 

horizontal, i.e. 
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E = l_E (l+e-to-t1)-l_E (l-,c) e-toK(~o, ~1), l 
u 2 ° 4 ° sinh ~o+ic cosh ~o 

E1y = 0 , 0 < ~ < ~1 • 

5. Numerical Examples 

5. 1. Current Lines. 

(4.35) 

The current lines can be drawn by computing the current flux through a surface 

7J=const.: 

(5.1) 

In the case of uniform velocity and vertical magnetic field we get : 

sinh ~ . 
J = ]max 'nh e, sm 7)' 

Sl 'oO 

= ]maxe-Ct-to) sin 7), l (5. 2) 

where ]max is the total current which circulates about the point x=O, y=b: 

J = ca E icsinh~ocosh~o . 
max 1 0 sinh ~0 +ic cosh ~o 

(5. 3) 

The current lines inside the ellipse are uniform and horizontal, as can be seen from 

Eq. (5. 2), or 

(5. 4) 

where Eu has been given in Eq. (3. 22). 

Although the total current ]max depends on the ratio of conductivities (ic=aia1), 

the shape of the current lines does not depend on the ratio ,c (see Eq. (5. 2)). 

Fig. 4 shows a set of current lines inside and outside the stream of elliptical 

cross-section. The curves are similar to those of the rectangular cross-section shown 

in Fig. 4( a) of Part 112). 

If the stream velocity varies in the manner shown in Fig. 3, and the conductivity 

of the stationary medium is equal to that of the moving medium, the integrals of 

Eq. (5.1) will become as follows: 

(5. 5) 

(5. 6) 
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In this case the center of the circulation of current will not be on the ellipse 

e=eo, but on its minor axis (e1<e<e0 , r;=n:/2). However, as can be seen from 

Eqs. (5. 2) and (5. 6), the expressions for the current flux outside the ellipse take 
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the same form in both cases where the velocity is constant over the elliptical cross

section, and the velocity varies according to the function shown in Eq. ( 4. 5), i.e. 

J = const. e-t sin Y/ , (5. 7) 

which means that the shape of the current lines outside the ellipse does not depend 

on the parameter ~1 (or b'). 

In Fig. 5 a set of current lines are shown for the case where the stream velocity 

diminishes toward the boundary. Although these curves outside the ellipse are almost 

the same in their general shape to that of Fig. 4, the current lines inside the ellipse 

are not uniform in the annular domain near the boundary, where the stream velocity 

is not constant. 

5. 2. Electric Field on the Surface and the Bottom of a Stream. 

If the stream velocity is uniform and the magnetic field is vertical, the electric 

field on the surface can be expressed as follows (see Eqs. (3. 22) and (3. 23)): 

E = E IC cosh ~o < < 0 
u- 0sinh ~o+IC cosh ~o' -a x +a' y = ' } 

(5.8) 

E2x=E0 • h;osh~o h~rct-to), a<lxl, y=O. 
sm o+IC cos o 

The tangential component of the electric field along the boundary (ellipse) of the 

stream is given by: 

E = -E IC cosh2 ~o _ _£_sin 
m 

0sinh ~o+IC cosh ~o ht0 Y/' \f 
~ = ~o, 

E E sinh ~o cosh ~o c . 
2-,, = o • ~ ~ ~h sm Y/ smh 1.o+IC cosh 1.0 t0 ' 

(5. 9) 

where 
(5.10) 

The difference between E,.,, and E2.,, at ~=~0 is equal to E'{.,, (or F.,,). 

In the case of variable velocity, these fields on the surface become as follows: 

E =l_E . K(~o, ~,) ~ 2" 2 °s1nh~0+1Ccosh~01-e-2t' 

y=O, a'<lxl<a; 

y=O, a<lxl. 

(5.11) 

(5.12) 

The tangential component of the electric field along the boundary is given by : 

(5.13) 
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Fig. 6 shows electric fields on the surface (Y=O) and along the bottom (~=~0) 

for three values of the conductivity ratio ,r:. As mentioned above, the relative shape 

of each curve is equal to that in the case of uniform conductivity (,r:=l). 

Fig. 7 shows electric fields for the case where the velocity diminishes toward the 

boundary of the stream. It can be seen that the tangential components of the electric 

field along the bottom and on the surface outside the ellipse are very weak compared 

to those for the case of constant velocity (Fig. 6). In Fig. 8 the electric fields at 

the surface near the transition region are shown in detail. 
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6. Mean Velocity. 

We have seen in Section 2. 2 that the potential difference between the two shores 
of a stream will be nearly proportional to the total transport or to the mean velocity 

of the stream. We shall discuss here this approximation for some special cases. 

6. 1. Rectangular Cross-Section. 

If the stream velocity is a function of depth only (Case II in Table I of Part 
112)), and the medium is uniform (<12=<11), the potential difference between the two 

shores is given by: 

U = -rr(tg) [F(O, h)-F(O, g)-F(2c, h)+F(2c, g)], 

where 

For simplicity, if we put g=O (see Fig. 9), Eq. (6.1) becomes as follows: 

where 

V = v,, 

y 

Fig. 9. 

2 [2c h ( c h) . h] U = -cE0 -log 2c--log h- ---- log (4c2 +h2) +2 tan-1 -
-rr h 2c h 4c 2c' 

(6.1) 

(6.2) 

(6.3) 
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and v0 is the maximum velocity at the surface. 

The mean velocity v and the mean e.m.f. E0 per unit distance in this case will be : 

(6.4) 

On the other hand, if we picture a stream of cross-section equal to that in the 

above case, but assume that the velocity is constant. and equal to v, the potential 

difference between the shores of this stream will be given by : 

tJ = Eo [H(2c, h)-H(O, h)], 
TC 

(6.5) 

or 

- 4 -[ h h h] U = 1rcE0 -2clog h+Tclog (4c2 +h2)+tan-12c . (6.6) 

Substituting the value of E0 of Eq. (6. 4) into Eq. (6. 6), and comparing with 

Eq. (6. 3), we obtain: 

(6. 7) 

or 

(6.8) 

This means that the potential difference U can be replaced by tJ, when h/(2c) is 

small ; in other words, U can be calculated assuming that the velocity is uniform 

and its value is equal to the mean velocity v of the stream. 

6. 2. Elliptical Cross-Section. 

If we put e=eo in Eq. (4. 25), we get: 

V 1 E K(eo, e,) 
2=-4 c o. hi!:+ h,': cosr;, 

Sln 'i"O IC COS 'i"o 

Hence, the potential difference between the shores (r;=0 and re) will be 

U _ _!_cE K(eo, e,) 
- 2 ° sinh eo+tc cosh eo. 

Since the velocity distribution in this case has been assumed as 

v(e) =Vo, 
e~o-et 

= Vo eto-e~, ' 

o<e<e,; 

e, <e<eo, l 

(6. 9) 

(6.10) 

(6.11) 

the mean velocity on the minor axis (r;=rc/2) of the ellipse can be calculated by: 

_ ~:
0
v(e) htde 

v = . ~:o ht de ' 
(6.12) 
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where 
ht = c cosh ~ , r; = rr/2. (6.13) 

From Eq. (6.12) we get: 

- 1 [ 1 ( t t) ~0-~1 ] v = v02 . h I': -2 e o+e 1 - , , • sin ,o e<o-e<1 
(6.14) 

Therefore, in the case where the velocity is v (const.), the potential difference between 
the two ends of the major axis of the ellipse is given by : 

O = _ 2cE . sinh ~o cosh ~o . 
0 sinh ~o+K cosh ~o 

cosh ~o [ 1 = cE0 • h ~ + h ~ -2-(eto+et1) sm o ,. cos o 

Eqs. (6.10) and (6.15) can be modified as follows: 

U = U. --~!____ K(~o, ~1) , 
0 4 cosh ~o sinh ~o+K cosh ~o 

(6.15) 

} (6.16) 

where U0 is the potential difference in the case where the velocity is constant (V=Vo) 

inside the ellipse (~=~0), and the medium outside the ellipse is non-conducting (t.=0); 

U0 = 2aE0 = 2c cosh ~0 • E0 • (6. 17) 

It can be easily shown that the ratio of two values of U for t.=0 and K=l, and 

the ratio of two values of O for t.=0 and K=l are given by the formula: 

U(t.=0) = O(t.=0) = l+E_ 
U(t.=1) U(t.=1) b ' 

(6.18) 

where a and b are the semi-major and semi-minor axes of the ellipse respectively. 
It will also be evident that the relative error 

,:JU 
[! (6.19) 

which arose from the approximation of using the value O in place of U does not 

depend on the conductivity ratio "· 
In Fig. 10 the true value U and the approximate value O of the potential 

differences are compared for the two extreme cases where t.=0 and t.=l, varying the 

parameter ~1 (or b') of the velocity distribution. 
Fig. 11 shows the results for a similar comparison between U and O for the 

case where ~1 = 0, varying the shape of ellipse. 
From these figures it can be seen that the error of O is quite small if a/b 

exceeds 4 or 5. 
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