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Abstract 

237 

As one of the research projects of clear formulation in hydraulic characteristics 

of transitional behaviours from subcritical to supercritical or vice versa, this paper 

deals with the hydraulic behaviours of channel characteristics in geometry and 

boundary to the functional variety of channel transitions and controls in divergent or 

convergent channels. 

The gradually varied flow in divergent or convergent channels changes its flow 

regime at a singular point of surface profile equation imposed by particular discharge 

and channel characteristics, and consequently the theoretical approach in analysis of 

hydraulic behaviours of transition flow will be established with the application of the 

geometric theory of differential equation, which is known in problems of non-linear 

mechanics. 

The classification of singular points as transitional points and the significance 

of transitional characteristics of flow passing through a transitional point, and especially 

from a standpoint of practical hydraulic engineering, those for flows of Chezy and 

Manning are presented: 

The present procedure of analysis is applied not only to the flow behaviours 

discussed in this study but also to the flow with side in- or outflows and similar 

problems in the hydraulics of open channel flows. 

1. Introduction 

Local changes of channel geometry and boundary resistance like channel shape, 

roughness and bed slope produce a variation in flow from one uniform state to another, 

and a flow passing through such transitions may be defined as a transition flow. 
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Evidently in the hydraulics of open channel flows, the physical regimes of open 

channel flow are imposed by the existence of free surface and defined as subcritical and 

supercritical, so that the dynamical characteristics of transition flow are classified1
) into 

(1) transitions from a subcritical to another subcritical state of flow, 

(2) transitions from subcritical to supercritical flow past a channel control in a 

sense of classical hydraulics, 

(3) transitions from a supercritical to another supercritical state of flow, 

(4) transitions from supercritical to subcritical flow. 

The configuration of water surface in open channel flows passing through a 

channel of constant channel geometry and boundary characteristics is described by 

equations of Bresse and Tolkmitt or similar equations of flow commonly expressed in 

terms of the Vedernikov power law as the boundary resistance, and continuous 

endeavours have been made of clear formulation and tabulation of hydraulic behaviours 

in the physics of surface profiles by a number of scientists and engineers2
). Nearly 

almost natural channels and artificial water courses in themselves, however, involve 

local changes of geometrical and boundary characteristics, and an actual configuration 

of water surface for a particular discharge may be considered a superposition of local 

surface profiles resulted from changes in channel geometry and resistance. Careful 

treatment of hydraulic behaviours of transition flow in the light of past experience 

and hydraulic knowledge in basic principles of flow, therefore, will bring a real success 

in pertinent practice of channel design. Usual procedures to trace the surface profile 

of flow in channel design related to the practical hydraulic engineering are the scale 

model test and the analytical calculation by numerical or graphical methods. The 

step by step method of integration as a simple tool for numerical analysis is most 

practical for hydraulic engineers, neverthless much errors for calculation are involved 

in the solution in the immediate vicinity of a singular point. 

Supercritical flows are characterized by the fact that the small changes in the 

channel geometry cannot have any influence on the flow upstream from the section 

at which such changes take place, and transitions from supercritical to subcritical 

flow, therefore, are classified as the rapidly varied flow in the first approximation of 

open channel flows. A transitional point from subcritical to supercritical flow is 

usually called a control section which is the class of transition for which the elevation 

of the water surface can be uniquely predicted at a particular geometrical character­

istics for a given discharge as a barrier to the transmittal of small disturbances, and 

the hydraulic property of a channel control, which leads to a consistent relationship 

between the head and the discharge, is familiar to hydraulic engineers. 

In this paper, as a first step of the research project to clear formulation of the 

hydraulic characteristics of channel transitions and controls and their dynamical 
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significance, the theoretical analysis of transitional behaviours of geometrical and 

boundary characteristics to transition flow in divergent or convergent channels is 

discussed. This problem has already treated by M. Homma3
), without establishing it 

by rigorous analysis. 

As seen in the later section, mathematically speaking, the singular point of basic 

equation of gradually varied flows in divergent or convergent channels is located at 

h=oo, h=hc (he is the critical depth for a particular discharge) and a point at which 

both of numerator and denominator become simultaneously zero. The transitional 

behaviours of flow at the critical point are known as the rapidly varied flow character­

ized by the hydraulic jump. The third point at which both terms of basic equation 

are zero is classified as a singular point in the geometric theory of differential 

equation applied to the problems in non-linear mechanics. In the hydraulics of open 

channel flows, the curve of normal flow and the critical depth curve for particular 

characteristics in channel geometry and discharge intersect together, so that the change 

of flow regime indicated by the behaviour of transition profile will be supposed to 

take place. Consequently, the purpose of this study is to reveal the topological 

properties of singular points and the hydraulic significance of surface profile as a 

solution of basic equation of gradually varied flow in the immediate vicinity. of the 

singular point. 

It is known that in 1939, P. Masse4
) first studied the application of geometric 

theory of ordinary differential equation to the flow in channels with variable slope 

as the further development of Bresse equation and a brief summary is cited. in the 
literature of C. Jaeger4

). More recently, in 1956, F. F. Escoffier6
) studied the same 

transitional behaviours of flow for his intention of application to the graphical method 

of tracing of surface profiles of flow. 

The first section of this paper deals with the location of transitional point and its 
hydraulic significance to transition flow in divergent or convergent channels, and the 

classification of transitional behaviours from subcritical to supercritical or vice versa 
and the influence of geometrical and boundary characteristics to transitional behaviours 

are followed. From a practical point of view, the analysis of this subject in the 
Chezy and Manning flows followed by the tracing procedure of surface profiles and 

its contribution to the hydraulics of open channel flows is briefly discussed and the 

details will be presented in the other publication. 

The present procedure of analysis is applied not only to the flow in divergent or 

convergent channels but also to many hydraulic problems like the flow with side in­

or outflows, transition profiles of water surface in estuaries and the hydraulic process 

of boundary layer growth in open channel flows7
•

8
). After the real success of clear 

formulation of transitional behaviours in channels is attained, the pertinent hydraulic 

design in channels and hydraulic structures will be possible. 
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2. Transitional Point of Flow in Divergent or Convergent 

Channels and its Hydraulic Significance 

Taking the x-axis in the downstream direction along the channel bed, and 

denoting Q: discharge, h: water depth, A: flow area, s: wetted perimeter, T': shear 

along the channel bed, g: acceleration of gravity, p: density of water, fJ: inclination 

angle of bed, and {3 : momentum correction factor of Corioli, the law of momentum 

conservation in the one dimensional approach of hydraulics yields 

1 d ({3Q2
) dh . T'S - -- - + g cos fJ - = g sm fJ- - . 

A dx A dx pA 
( 1) 

Although the pressure distribution in the fluid flow is a·ssumed hydrostatic, the non­

hydrostatic influence of flow is appreciable in the flow near critical regime or along 

the curved boundaries. As a first approximation of hydraulics, Eq. (1) is still valid 

for curved streamlined flows. 

For the sake of simplicity, the shape of cross-section of channel is assumed 

rectangular and the boundary resistance is expressed in terms of the Chezy law, and 

consequently, Eq. (1) is transformed into 

dh 
dx 

where, ~ : width of channel and C: Chezy's coefficient of roughness. 

(2) 

A transitional point at which the flow regime will be changed is a point of 

solution derived by /1(X, h)=0 and /2(x, h)=0 in Eq. (2). Denoting the value at the 

transitional point by the subscript c, f2(x, h) =0 leads to the following relation of 

(3) 

Evidently, Eq. (3) indicates the hydraulic relation of critical regime in flow. 

Inserting Eq. (3) into /1 (x, h) =0, the ratio of critical depth to width of channel at 

the transitional point is 

(4) 

in which, i is the slope of channel bed equals to tan fJ. 

Introducing the local critical slope ic as in the uniform channels, it is 

(5) 
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From Eqs. (4) and (5), he/be in terms of the geometrical characteristics of channels 

is obtained in the following. 

(6) 

This is an important relationship for the existence of transitional point in transi­

tion flows and characterized by the following conclusion. 

(1) A transitional point of flow is produced under the geometrical condition that 

the channel is divergent and of mild slope. 

(2) On the contrary, in steep channels, the geometrical condition for channels 

to produce a transitional point is that channels are convergent. 

3. Classification of Transitional Points in Transitional Flows 

The foregoing analysis revealed the location of a singular point as a transitional 

point in divergent or convergent channels, produced by the local change in channel 

geometry and boundary resistance. This section concerns with the classification of 

transitional points of gradually varied flows by means of the geometric theory of 

ordinary differential equation, though the general theory of steady flows has been com­

pletely studied and will be published in the very near future. 

(1) Water surface equation of transition flow in the immediate vicinity 

of transitional point 

Before the classification of transitional points of gradually varied flow is discussed, 

the variation equation of Eq. (2) in the neighbourhood of a transitional point will 

be derived for the further development of the study. Let assume the channel geometry 

and boundary resistance change continuously and put the distance, the water depth 

and the other as follows ; 

X = Xe+x', h = he+h'' ............ ' (7) 

in which, Xe:> x', he)> h', ............ . 

Inserting the relations of Eq. (7) into Eq. (2) and transforming the origin of coor­

dinate system to the transitional point, the variation equation of Eq. (2) is in a form of 

dh' 
dx' 

(i-ie)[ 6i(i-ie) + ( * t (ie-3i)-{( *L -2(i-ie) }he(~))(* )J 
-2{( ::) e -2(i-ie)}Ci-ie) X1 

x'+[ ~( ~t{( * t-2(i-ie))}+( t )}2i+ie)-4i(i-ie)]h'+Q(x', h') 

+ 3{ ( :: ) e -2(i-ie)} h'1+ P(x', h') 
' (8) 
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where, P(x', h') and Q(x', h') are higher terms depending on the squares and products 

of x' and h'. Omitting the prime in Eq. (8), for the convenience of notation, and 

introducing the following dimensionless expressions of 

a = i/ic, fJ = (ob/8x)c/ic, and m = 3h~(82b/8x2)c/bcic2, 

Eq. (8) becomes 

in which, 

dh cx+dh+Q(x, h) 
dx = ax+bh+P(x, h) ' 

· a= -2ic(a-l){fJ-2(a-1)}, 

b = 3{fJ-2(a-l)}, 

C = i~[(a-1){6a(a-1)-{3(3a-l)}+(m/3){fJ-2(a-1)}], 

d = i{ (2hc/Cc) (8C/8h)c{fJ-2(a-1) }+fJ(2a+l)-4a(a-1)]. 

(9) 

This is the basic homogeneous equation for the analysis of transitional behaviours, 

in which the change of flow regime will be predicted at the origin of the present 

coordinate system. 

(2) Classification of transitional points 

As seen in the basic equation (9), the coefficients a, b, c and d vary with the 

local change of channel geometry and boundary resistance for a particular discharge, 

so that the resulting surface profile of transition flow as a solution of Eq. (9) will 

be influenced by the geometrical and boundary characteristics of channels. The 

mathematical properties of Eq. (9) and the hydraulic behaviour of surface profiles are 

obtained by the geometric theory of ordinary differential equation. If y=dx/dt is 

substituted for h, the procedure will become the same as the vibration problem in 

non-linear mechanics. 

In the characteristic equation of Eq. (9), 

S2
- (a+d) S+ (ad-be) = 0, (10) 

let denote two roots of equation by S1 and S2 • 

( a ) When S1 and S2 are real and of opposite sign, a singular point is called a 

saddle point, through which two singular solutions defined as the transition profiles 

in this study pass. 

( b) S1 and S2 are real and of same sign, so that a singular point is classified as 

a nodal point, at which all surfac• profiles of fluid flows have a certain definite 
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direction determined by the geometrical and boundary characteristics of channel 

transitions. 

( c ) If S1 and S2 are conjugate complex, a singular point becomes a focal point, 

and all surface profiles in the immediate vicinity of the focal point are logarithmic 

spirals and approach the point. 

The classification of singular points as the transitional point of flows from sub-
• 

critical to supercritical or vice versa in channel transitions and controls, therefore, is 

described in the following : 

in which, 

and 

for saddle point, D ;;=:,: 0 , ad - be< 0 , 

for nodal point, D~O, ad-bc>O, 

for focal point, D<O, ad-bc>O, 

ad-be= {5(a-1) 2
- 4;;(~~ t (a-1)-m}{0-2(a-1)} 

{ Bhc(oC) l 

[ 

(a-1) lOa(a-1)--- - (a-1)-2mr] 
x 0- Cc oh c 1 • 

{5(a-l) 2 - 4hc(8C) -m} 
Cc 8h c 

(12) 

Although the above equation seems to be of much complexity, it will be seen in 

the later section that Eqs. (11) and (12) become simple, if the empirical resistance 

law of power type like formulas of Chezy and Manning are substituted in Eqs. (11) 

and (12). Furthermore, it is readily understood that the bed slope, the channel 

geometry and the boundary resistance as the geometrical and boundary characteristics 

of channel transitions and controls for a given discharge are represented by the 

dimensionless parameters of a, 0 and m, and C. 

4. Hydraulic Significance of Transitional Point and Change 

of Flow Regime by Transitional Point 

(1) Curves of normal and critical depths of transition flow at transitional point 
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When the numerator of basic equations, /, (x, h), becomes zero, (dh/dx) becomes 

also zero, and therefore, the local surface profile of transition flow is parallel to the. 

channel bed. The curve of /, (x, h) = 0 is defined as the curve of normal depth or 

normal flow for a given discharge in the present study, though Masse called it the 

curve of quasi-normal flow and Escoffier the transition curve. The curve of f 2 (x, h) =0 

for a particular discharge is the well known critical depth curve in the hydraulics of . , 
open channel flows. Denoting the slopes of the foregoing two curves of flow at the 

transitional point by s, and s2 , they are derived by the linear variation equation of 

(9) as follows. 

s, = -(e/d), (13) 

and 

(14) 

Consequently, the values of s, and s2 are characterized by the channel geometry 

and the boundary resistance. The subtraction of s2 from s, yields 

(15) 

If b and d are of same sign, the sign of ( s, - s2 ) corresponds with that of 

(ad-be), and if b and d are opposite, (s,-s2 ) and (ad-be) are of opposite sign. 

Furthermore, the sign of (ad-be) is negative for the saddle point and positive for 

the nodal and focal points as seen in the foregoing section. 

On the other hand, when (s, -s2 ) is positive, the geometric properties of these 

two curves are classified as 

( a ) S1, S2 > 0 , s, > S2 , 

( b ) s, > 0 ' S2 < 0 ' 

( C ) s,, S2 < 0 , I Sz I > I s, I , 
and all of the above geometric properties indicate that the curve of normal depth 

passes through the lower half plane divided by the critical depth curve and approaches 

the transitional point at which both curves intersect together. 

When (s, - s2) is negative, the classification of geometric situation is in forms of 

( d ) s, ' S2 > 0 ' S2 > s, ' 
( e ) s1 < 0 , S2 > 0 , 

( f ) s,, Sz < 0 , I s, I > I s2 I . 

In contrast with the foregoing case, the curve of normal depth passes through the 

upper half plane divided by the critical depth curve. 

Consequently, the relationship between the classification of transitional points and 

the geometry of two curves of normal flow and critical depth, which are the most 
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important curves in the hydraulics of open channel flows, is described in the 

following, by means of the channel characteristics. 

When b and d are of same sign, (s1-s2 ) is negative for saddle points and the 

curve of normal depth passes through the upper half plane divided by the critical 

depth curve and approaches the saddle point, and the opposite hydraulic behaviours 

in the transition flow are imposed by focal and nodal points. 

On the contrary, when b and d are of opposite sign, three kinds of singular points 

indicate the opposite behaviours of the foregoing conclusion. 

(2) Transition slope as solution of transition flow at transitional point 

At the transitional point in this study, both of numerator and denominator become 

simultaneously zero and the resulting transition slope of water surface derived by the 

original equation is indeterminate. When the transitional point is classified as the 

· control of channel, it is commonly a starting point of calculation for the tracing of 

surface profile in hydraulic design problems, and consequently, the value of (dh/dx) 

at the point must be known for the calculation procedure. 

The usual procedure to evaluate the value of (dh/dx) at the singular point is to 

use the method of form 0/0 in the differential calculus known as the rule of 

L. Hospital. Or simply, (dh/dx)x, h➔o=(h/x)x, h➔o=const., provided these values at 

the transitional point are certain definite, so that Eq. (9) becomes 

( dh)
2 

(dh) b dx c+(a-d) dx c-c=0. (16) 

The transition slope is, then, 

(
dh) = -(a-d)±V (a-d) 2 +4bc 
dx c 2b 

(17) 

The possible slope of transition profile is evidently one of solutions of Eq. (17). The 

rather empirical study of Homma3
) on the behaviours of transition flow with the 

Chezy law of resistance in wide channels indicates that the possible slope of transition· 

profile is given by a negative root of Eq. (17) for divergent channels and a positive 

one for convergent channels. As the product of two transition slopes described in 

the foregoing is - (c/b) by means of the expression of channel characteristics, so 

two roots are of same sign if c and b are opposite, and therefore, the foregoing con­

clusion of Homma on the possible transition slope at the transitional point is essentially 

insufficient to define the slope of transition flow. 

The first consideration to make the behaviours of transition slope and transitional 

surface profile clear is oriented to the transition flow passing through the saddle 

point. Denoting the positive root by S2 and the negative one by S1 in the character­

istic equation, in which S1 and S2 are of opposite sign, the canonical form of the 
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variation equation (9) is derived with the use of the linear transformation being in 

forms of 

and it is 

x=(S2-a)~+(S1-a)r;,} 

h = -c~-cr;, 

dr; 

(18) 

(19) 

Consequently, the hydraulic behaviour of transition flow in the immediate vicinity 

of transitional point is approximately indicated by 

(20) 

The solution of Eq. (20) describes a family of hyperbolas, among which only two 

singular curves of transition profiles pass through the saddle point, and the transition 

slopes at the origin are 

(dr;/d~)c = 0, or oo • 

Tranforming to the original coordinate system, the transition slopes are, then, 

(dh/dx)c1 = -c/(S2-a), (21) 

or 

(22) 

The expression of Eqs. (21) and (22) in terms of the channel characteristics becomes 

the same relation of Eq. (17), and it is 

(
dh) _ -{a-d+i/(a-d)2+4bc} 
dx cl - 2b ' 

(23) 

and 

( 
dh) = -{a-d-✓_(a-d) 2 +4bc}. 
dx c2 2b 

(24) 

Next consideration to the behaviour of surface slope of transition flow is directed 

to the sign of (dh/dx)c1• 

If (a-d) is positive, the sign of (dh/dx)c1 depends only on tr._e sign of b, so 

that (dh/dx)c1 becomes positive for convergent channels and negative for divergent 

channels, and the condition that (a-d) is positive is expressed as 

a,d>O, 

a>O, 

a,d<O, 

a>d, 

d<O, 

ldl>lal, 
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the divergent channel makes that the value of transition slope becomes negative or 

positive for c~O, and the convergent channel yields (dh/dx)c,~O for c~O. 

The sign of (dh/dx)c2 is determined by the diversity of (dh/dx)c, in signs by 

means of making the product of both slopes. As 

(dh/dx)c,· (dh/dx)c2 = -(c/b), (25) 

so for divergent channels two values of transition slopes are opposite or same depending 

on c~O, and on the other hand, c~O leads that two values are same or opposite for 

convergent channels. 

The geometric property of two possible singular solutions, which intersect together 

at the saddle point, is characterized by the following relation of 

(dh/dx)c, - (dh/dx)c2 = -✓ (a-d) 2+4bc/b . (26) 

In Eq. (26), the numerator is positive for any characteristic of channel geometry and 

boundary, and consequently the classification of geometric properties between two 

singular curves is described in the following. 

(a) for divergent channels, 

( i ) (dh/dx)c, > 0, (dh/dx)c2 > 0, (dh/dx)c2 > (dh/dx)c,, 

(ii) (dh/dx)c, < O, (dh/dx)c2 > 0, 

(iii) (dh/dx)c, < O, (dh/dx)c2 < 0, I (dh/dx)c,l>I (dh/dx)c2I, 

(b) for convergent channels, 

( i ) (dh/dx)c, > 0, (dh/dx)c2 > 0, (dh/dx)c, > (dh/dx)c2, 

(ii) (dh/dx)c, > 0, (dh/dx)c2 < 0, 

(iii) (dh/dx)c, < 0, (dh/dx)c2 < 0, I (dh/dx)c2l>I (dh/dx)c,I. 

In case of (a), cl-curve defined as the singular curve of which the transition 

slope is (dh/dx)c, passes through the upper half plane divided by c2-curve, while 

the case of (b) indicates cl -curve passes through the lower half plane. 

Of most significance in practical problems of channel design is to select the 

possible transition profile between two values of (dh/dx), of which characteristics 

have been described, for a particular discharge and given channel characteristics in 

geometry and boundary. The basic property of open channel flows, in which the 

supercritical flow must be traced from the upstream end and the subcritical flow from 

the downstream end, makes the determination of possible slope. The detailed 
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behaviours in the transition profile will be treated for a particular channel resistance 

as seen in the later section. 

Furthermore, the other surface slope (dh/dx)c2 or ci is also significant in channel 

design. Two singular curves as transition profiles intersecting together at the saddle 

point divide the whole plane into four domains, and a surface profile curve traced 

under certain definite boundary conditions in each domain cannot be transmitted to 

the other domain without changing its flow regime, and therefore, the engineering 

contribution of singular curves to the evaluation of backwater zone resulted from the 

construction of control structures will be readily understood. 

The same procedure described in the foregoing is directed to the behaviours of 

nodal point. The characteristic equation (10) has two real roots of same sign. Let 

denote the greater root by S2 , and thus, (S2/S1) is always greater than unity. By 

means of the linear transformation of Eq. (18), the canonical form becomes 

The transition slope at the nodal point is uniquely determined and it is 

(dh/dx)c = -c/(S2-a). (27) 

Eq. (27) for nodal points is the same form as for saddle point, Eq. (21), and therefore, 

the behaviour of Eq. (27) is also similar to that of Eq. (21), if S2 is defined as the 

greater root of Eq. (10). 

(3) Hydraulic significance of transitional behaviours 

The most significant subject of study on the transitional behaviours of flow and 

associated problems in channel design is to formulate the type of change in flow 

regime for the particular design discharge through the transitional point in channel 

transitions and controls. When a transition curve as a configuration of water surface 

approaches the transitional point after passing through the upper half plane divided 

by the critical depth curve, and thereafter passes through the lower half plane, the 

flow changes its flow regime from subcritical to supercritical. On the contrary, the 

transition curve passes from the lower half plane to the upper half plane, so that the 

flow regime changes from supercritical to subcritical. Consequently, the transitional 

behaviours of transition flow from subcritical to supercritical or vice versa are solved 

by the establishment of geometric property between the transition curve and the 

critical depth curve for the design discharge. 

The case, in which the transitional point is classified as a saddle point and the 

transition slope is assumed to be (dh/ dx)ci, will be first treated. The difference of 

both curves of transition and critical depth at the transitional point is obtained, with 

the use of Eqs. (14) and (21). 
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(28) 

in which, S1 is negative by the definition of saddle point, and therefore, the sign of 

Eq. (28) is dependent on the behaviour of b. Expressing in terms of the channel 

geometry, the geometric property is classified as follows: 

For divergent channels, which are characterized by the positive value of b, 

( i ) (dh/dx)c1 > 0, S2 > 0, s2 > (dh/dx)c1, 

(ii) (dh/dx)ci<O, s2>0, 

(iii) (dh/dx)c1<0, s2<0, l(dh/dx)c1l>ls2I, 

and the transition flow changes its flow regime from subcritical to supercritical at the 

transitional point. 

For convergent channels, on the other hand, 

(iv) (dh/dx)c1 > 0, S2 > 0, (dh/dx)c1 > S2, 

(v) (dh/dx)c1>0, s2<0, 

(vi) (dh/dx)c1<0, s2<0, \s2l>l(dh/dx)c1I, 

and consequently, the flow regime of transition flow is changed from supercritical to 

subcritical. 

If (dh/dx)c2 becomes the transition slope of flow, the difference between (dh/dx)c2 

and s2 is 

(29) 

S2 is always positive, so that the channel characteristics in channel transitions and 

controls induce the transition flow to make the opposite behaviours in its flow regime. 

Consequently, the transitional behaviours of flow passing through the transitional 

point classified as the saddle point are thoroughly investigated by the foregoing analysis 

of geometric property among curves of normal flow, critical depth and two singular 

curves of a family of hyperbolas as solutions of surface profiles of transition flow. 

The hydraulic behaviours of solutions and the resulting transition profiles for gradually 

varied flow of a particular resistance law will be discussed in the later section. 

When the transitional point is known as a nodal point, Eq. (28) is still valid if 

S1 is assumed the smaller root of the characteristic equation (10). In this case, 

however, the sign of S1 changes with the change of channel characteristics. As 

(S1 +S2) = (a+d), and S1 and S2 are of same sign, so the sign of S1 depends on the 

sign of (a+d). Finally, the transitional behaviours of nodal point is described in the 

following. 

(a) When (a+d)>O, S1 becomes positive, and the flow changes from supercritical 

to subcritical through the nodal point in divergent channels and from subcritical to 

to supercritical in convergent channels. 
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(b) When (a+d) <0, S1 becomes negative, and therefore, the transitional 

behaviours of nodal point are the same as the cl -curve at the saddle point does. 

As the last part of this section, the transitional behaviours of focal point will be 

explained. The surface profile as a mathematical solution of Eq. (9) in the immediate 

vicinity of the focal point is a logarithmic spiral and the resulting water depth at a 

certain definite distance near the transitional point is indeterminate. Such a transitional 

behaviour in the hydraulics of open channel flows will be only possible by the hydraulic 

jump. Consequently, when the upstream depth from the transitional point and the 

downstream depth become sequent in the momentum conservatisn law, the hydraulic 

jump will occur and the focal point is not substantially the transitional point, through 

which the flow changes its flow regime. 

(4) Slope of surface .profile near transitional point 

In the foregoing analysis of transitional behaviours, the surface profile under con­

sideration is the singular curve which passes through the transitional point determined 

uniquely by given values of discharge and channel characteristics in geometry and 

boundary. This class of transition, of which functional diversity has been discussed, 

is known as the channel control as seen in the introduction, and consequently it is 

also understood that the possible class of channel control is saddle and nodal points. 

When the elevation of water surface for a particular discharge is regulated by the 

other control structures like the sluice gate or the weir, the resulting surface profile 

cannot sometimes pass the transitional point as the control section, which is uniquely 

predicted by given discharge and channel characteristics. In this case, the local change 

of channel geometry simply produces a variation in flow elevation, so that the channel 

becomes a transition. 

The analysis of the hydraulic behaviours of surface profiles in the vicinity of 

transitional point is essentially important to evaluate the variation in flow due to the 

channel transitions and controls. The increase or decrease of surface elevation of 

flow with the increase of distance at a point is estimated by the geometric properties of 

f 1(x, h) =0 and f 2 (x, ,h) =0 in the basic relationship of (2). 

First attention is directed to the behaviours of critical depth curve, f 2 (x,h) =0. 

For the sake of simplicity in discussion, the behaviours of f 2 (x,h) =0 associated with 

the increase of water elevation at the location of X=Xc will be treated. From Eq. (2), 

in which, the upper and lower inequalities indicate the positive and negative domains 

of f 2 (Xc, h). The insertion of Eq. (3) into the above equation yields 

(30) 
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Consequently, at x=xc, the critical depth makes f 2 (Xc, h) zero and in the upper half 

plane f 2 (x, h) is positive and in the lower plane negative. The same behaviour of 

critical depth curve to f 2 (x, h) will be extended to the neighbouring domain of 

transitional point. 

In the same manner, the behaviour of normal depth curve to / 1(x, h) will be 

discussed. At x=xc, f1(X, h) is 

/ 1 (xc, h) = g sin 0- (gQ2/C2b~h3
){ 1+ (2h/bc) }+ ('3Q2/b~h2

) (db/dx)c ~ 0. 

With the aid of Eqs. (3), (5) and (6) and dimensionless parameters of a and 0, it 

is indicated as follows. 

(31) 

In contrast with the foregoing case of critical depth, the positive and negative domains 

will not be explicitely determined if the resistance formula of boundary like laws of 

Chezy or Manning are not assumed. Furthermore, the attention must be directed to 

the sign of bed slope or sin O. 

In the immediate vicinity of transitional point, the sign of / 1 (x, h) and f 2 (x, h) 

is simply determined by the mathematical behaviours of variation equation. The 

straight line, ax+bh=O, indicates f 2 (x, h) =0 as the approximation near the transitional 

point, and therefore, ax+bh=O divides the whole plane into the positive and negative 

domains. If b is positive and thus the channel is divergent, the upper half plane 

indicates the positive domain of f 2 (x, h), and vice versa. 

The sign of two domains divided by Ji(x, h) =0 is also determined by the sign 

of d. Finally, the combination of behaviours of / 1(x, h) and f2(x, h) in sign determines 

the sign of slope of transition curve positive or negative. The details of surface 

profiles for Chezy flows will be explained in the following section. 

5. Transitional Characteristics of Chezy Flows 

The investigation of hydraulic characteristics of the Chezy flow was initiated by 

Bresse in 1860 and thereafter many refined treatments were completed by a large 

number of scientists and engineers. The study, however, is limited to the problem 

of hydraulic behaviours and the classification of surface profiles resulted from the local 

change of water elevation in a constant channel geometry. Homma first treated with 

the transitional behaviours of Chezy flow in wide channels by means of the rather 
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empirical procedure without rigorous mathematical knowledge. The detailed discussion 

of the classification of transitional points and the hydraulic significance of transition 

flow for the resistance law of Chezy in wide channels, as an extension of the Bresse 

theory of gradually varied flows, is explained in the paper of the present author9). 

This section deals with the common transitional characteristics of Chezy flows in 

channel transitions and controls. 

(1) Characteristics of channel geometry and boundaries 

Before discussing the classification of transitional points and their hydraulic 

significance, the behaviours of coefficients of a, b, c and d in the variation equation 

is concerned. 

Putting C = constant in the expressions of coefficients of variation equation, a, b, c 

and d become in the following. 

a= -2ic(a-1){0-2(a-1)}, 

·b = 3{0-2(a-1)}, 

in which a, 0 and m represent the channel and boundary characteristics. 

(32) 

The positive or negative domains of coefficient a are influenced by two curves of 

a=l and 0=2(a-1) in the a-0 plane. From Eq. (6) which describes the existence 

theorem of transitional point in channel transitions, the divergent channel must be of 

mild or adverse slope and the convergent channel steep in slope. Consequently, 

selecting a-axis as the abscissa . and 0-axis as the ordinate in the a - {3 plane, the 

possible domains for the existence of transitional points are the second and fourth 

quardrants in the plane of new coordinate system, of which ordinate and abscissa are 

located at a=l and 0=0. Finally, it is understood that in all possible domains the 

sign of a is positive. 

The characteristics of b in sign are readily determined and b is positive in 

divergent channels and negative in convergent channels. 

The expression of d in Eq. (32) is transformed into 

d = ic(2a+1){0-4a(a-1)/(2a+l)}, (33) 

and evidently, a= -0.5 is a barrier of change in sign of d. The upper and lower 

half planes divided by the curve of 0=4a(a-1)/(2a+l) become positive and negative 

domains, corresponding with a~ -0.5. The combination of the foregoing results and 
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the existence theorem determines the behaviours of d in the following and Fig. 1 

indicates the behaviours of a, b and d in terms of the bed slope and channel diversity. 

a>o 
b>O 
d(O 

o>o 
b<O 
d<O 

Fig. 1. Behaviours of Boundary Characteristics to a, b and d for Chezy flows. 

( a) In steep channels, d is negative. 
( b) In mild and gently adverse channels, d becomes positive. 
( c ) In adverse channels, d is commonly negative. 

On the other hand, c is a function of a, {1 and m, so that the behaviour of c is 
expressible with the parameter of m in the a-(1 plane. 

The expression of c is 

_ •
2

{ } 2(a-l){Ca-1/2)2-(9+4m)/36}] 
c - -3ic (a-2/3)2 -(l+m)/9 [0- (a-2/ 3)2 -(l+m)/9 , (34) 

and the behaviour of c is classified as follows. 

( a ) m < - 2.25 ; 

c = -3icM{f1-(2N/M)(a-1)}, 

M = (a-2/3) 2 - (l-m)/9>0, 

N = (a-1/2) 2 -(9-4m)/36>0. l (35) 
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The negative domain of c in the a-0 plane is the upper half plane divided by 

the curve of 0=(2N/M)(a-1). Furthermore, (2N/M)>':_0 and 0=(2N/M)(a-1) 

passes the point of (1, 0). Consequently, c is negative for divergent channels and 

positive for convergent channels. 

( b ) - 1 > m > - 2.25 ; 

c = -3i~M{0-2(a-l)(a-a3)(a-a4)/M}, 

l (36) 

as= {1+✓1+ (4m/9) }12, a 4 = {1-✓1+ (4m/9) };2. 

For the range of -l>m>-2.25, l>a3 >a4 , as seen in Fig. 2, which indicates the 

relation between a and m, so that it is evidently seen that c is positive for steep 

channels and mild channels in which 0 is of small value and negative for adverse 

and mild channels, as seen in Fig. 3. 

(c) 0>m>--1; 

c = -3i2(a-a )Ca-a ){1;;_ 2(a-l)(a-a3)(a-a4)} 

c ' 2 I-' (a-a,)(a-a2) ' l (37) 
a,= (2+✓1+m)/3, a 2 = (2-✓l+m)/3. 

Evidently in Fig. 2, 1 > a 3 >a,?: a2 > a 4 > 0, and therefore, for a> a, and a< a2, c 
is positive in the lower half 

m plane divided by the curve of 0 
in Eq. (37) and negative in the 

upper half plane. On the other 

hand, for a,> a> a 2 the upper 

plane is the positive domain of 

c. As seen in Fig. 4, the positive 

domain for mild channels in­

creases gradually with the in­

crease of m. 

(d) m?:0; 

For positive values of m, 

the behaviour of c is also ex-

--:----~::1---lior-----+.------!.-- cX pressed by Eq. (37). The order 
-I 2 

Fig. 2. Relation between a, and m. 

of magnitude of a, however, is 

changed and it is expressible in 

a form of 
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Consequently, both positive and nega­

tive domains of c exist for steep and 

adverse channels and especially, in the 

case of m > 3.0, in mild channels, c is 

positive. 

The behaviours of slopes of criti­

cal depth and normal flow curves at 

the transitional point, s1 and s2 , are 

also determined by the channel charac­

teristics by means of a, b, c and d. 

As the value of s2 is independent of 

m, so it is uniquely determined by the 

channel characteristics in a and 0, and 

for steep channels s2 is positive 

and negative for mild and adverse 

channels. On the other hand, s1 is 

influenced by m and the common 

characteristics are described in the 

following. 

( a ) For steep channels, s1 is 

positive in cases of negative values of 

m. The negative domain of s1 , how­

ever, exists in the neighbourhood of 

critical slope in case of positive values 

of m and it increases with the increase 

of m. 

( b) For mild channels, s1 is 

positive in the case of m< -2.25. 

The negative domain developes with 

the increase of m and finally it is 

always negative in the case of m > 3.0. 

( c ) For adverse channels, the 

magnitude of adverseness divides into 

two characteristics in sign of s1 • For 

gently adverse channels, s1 indicates 

the same behaviour as for mild chan­

nel and conversely the opposite be­

haviour is made for steeply adverse 

Fig. 3. Behaviour of Boundary Characteristics 
to Sign of c in Chezy Flows ( - l>m> - 2.25). 

-"""""""~~~~'-¥..~~~ .......... ,,_ o( 

h C)O 

Fig. 4. Behaviour of Boundary Characteristics 
to Sign of c in Chezy Flows (O>m;;;;-1). 

C<O 

V 

0( 

c>o 

Fig. 5. Behaviour of Boundary Characteristics 
to Sign of c in Chezy Flows (rn;;;;O). 
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m=O 

a>o 
b>O 
C<O 
d<0 

a.>o 
b>O 
c<O 
d)O 

a>o 
b>O 
c<O 
d<O 

Yoshiaki IWASA 

l 
Divergent Convergent 

a>o 
b<O 
C<O 

-5 d<O 
I 

, 

s 
o( 

a.>O 
b<O 
c>O 
d<O 

-5 
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a>o 
b>O 
C<O 
d(.O 

I 
m~-1 

p 

O>O 
b< 0 
C>O 
d.<O 

Fig. 6. Behaviours of Boundary Characteristics to a, b, c and d for 

Chezy flows; (i) m=l, (ii) m=O, (iii) m=-0.5, (iv) m~-1. 
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channels. Fig. 6 indicates some examples of behaviours of boundary characteristics 

to a, b, c and d for Chezy flows. 

The geometric property between the normal depth curve and the critical depth 

curve at the transitional point is determined by (ad-be) and bd. The sign of (ab-be) 

classifies the singular point and therefore, the sign of bd formulates the geometric 

relation between both curves. Fig. 7 indicates the positive and negative domains of 

the product bd. Evidently in inspection of Fig. 7, bd>O for steep, mild and gently 

adverse channels, so that the normal depth curve passes through the upper plane 

~ 
Diver ent Convergerit 

bd<O 

-2 -I 4 

Fig. 7. Behaviours of Boundary Characteristics to Sign of bd. 

divided by the critical depth curve and approaches the saddle point, while it passes 

through the lower plane and approaches the nodal and focal points. On the contrary, 

for steeply adverse channels, bd becomes negative, and the opposite relations between 

both curves are obtained. 

(2) Classification of transitional points 

As the characteristic equation in terms of the channel characteristics in geometry 

and boundary of Chezy flows is derived in a form of 
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S2-ic{3/3-4(a-1)} S+i~{/3-2(a-1) }[ 5(a-1) 2(/3-2a)-m{/3-2(a-1)} ]= 0, 

(38) 

so the classification of transitional points as focal, or saddle and nodal is obtained by 

the sign of discriminant of Eq. (38). The discriminant is 

D = _ 20 ·2( 2_ 2 11-4m){oz_ 8(a-l)(l0a2-15a+2-2m) r.i 

t, a a+ 20 1-' (20a2 -40a+ll-4m) I-' 

16(a-1)2 (5a2 -5a-1-m)} +~~--------- ~o 
(20a2 -40a+ll-4m) · 

Or, transforming Eq. (39) becomes 

(39) 

(40) 

It is, therefore, seen that the sign of the discriminant depends on the behaviours of 

a1 , a2 , aa and a 4 curves expressed as 

a1 = 1+✓(9+4m)/20, a 2 = 1-✓(9+4m)/20, 

a 3 = {3+✓1+ (Sm/15) }!4, a 4 = {3-✓1+ (Sm/15) }!4. 

The classification of positive and negative domains of the discriminant is finally 

in the following. 

( a ) m < - 2.25 ; 

Two roots of a 1 and a 2 are conjugate complex and thus the first bracket of Eq. 

( 40) becomes positive and the second bracket has real roots of 

~
1 = -~{· a-l }[<1oa2

- 15a+2-2m)±~3o{(a-3/4)2 -(15+8m)/240}]. 
2 5 (a-1)2

- (4m+9)/20 

Consequently, the inner domain between /31 (a, m) curve and /3z(a, m) curve in the 

a-/3 plane makes the discriminant positive and therefore the transitional point is 

classified as saddle or nodal while the outer domain yields the transitional point focal. 

For this range of m, the discriminant becomes 
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and consequently, for a>a1 and a<a2 , the same conclusion as in the case of (a) 

is obtained. On the contrary, for a,> a> a2 , in the outer domain between both curves 

of {3, and [32 , D becomes positive and the domain in which D is negative is the inner 

part. 

( C ) m > -1.875 ; 

For the range of m2. -1.875, the characteristics of {3 depend on the values of a, 

and furthermore the relation between a and m in the boundary characteristics is seen 

in Fig. 8, so that the classification of D in sign is as follows. 

m 

14 
-::t - ~ ,... 
~ 

e -::: 
e £ i~/2 ~~ + ~ 

-10 ... ,~ \ 
... 

~ 
+ ~ 

-:?. • 'Is ..,. 

' ,, 
~ 

Fig. 8. Relation between a: and m for Classification 
of Transitional Point in Chezy Flows. 

and the inner domain makes D positive for a>a, and a<a2 , and also D becomes 

positive in the outer domain for a4>a>a2 and a,>a>a3 • 
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On the other hand, for a 3 > a ::2; a 4 , the first bracket is negative and the second 

one positive, and therefore D is always positive without the change of diversity in 

channel geometry. 

The discrimination between saddle and nodal points is obtained by the sign of 

two real roots of the characteristic equation, and it is indicated as follows. 

i~ {11-2(a-1) }[ 5(a-1) 2 (/3-2a)-m{/3-2(a-1)}] ~O, (41) 

in which the lower and upper inequalities indicate the condition for saddle and nodal 

points respectively. Eq. (41) is also transformed into 

5i~{ (a-1) 2 -m/5}{/3-2(a-1) }[11-2(a-l)(a2-a-m/5) /{ (a-1)2 -m/5} J~o, 
(42) 

and the classification between saddle and nodal points is described in the following. 

( i) For m > 0, the transitional point is classified as the saddle point in the inner 
domain enclosed by two curves of /3=2(a-1) and /3=2(a-l)(a2 -a-m/5)/{a­

(1+✓ m/5)}{a-(1-✓m/5)} for the range of a>(l+✓m/5) and a<(l-✓m/5) 

and the outer domain for (l+✓m/5)>a>(l-✓m/5). The classification for nodal 

points is obtained under the opposite condition of foregoing conclusion. 

(ii) For the negative values of m, the first bracket of Eq. ( 42) is positive for 

any value of a, and thus the inner and outer domains represent the condition for 

saddle and nodal, respectively. 

Following the foregoing conclusion for the classification of transitional points in 

channel transitions and controls, the retationship between the classification of transi­

tional points and the boundary characteristics in channels are obtained, and Fig. 9 

describes some examples of the hydraulic behaviours of boundary characteristics to 

transitional characteristics for Chezy flows. 

(3) Common Properties of Transitional Characteristics 

When the transitional point is classified as saddle or nodal, the slope of transition 

profile at the point i_i, uniquely evaluated by Eqs. (23) and (24). When the slope of 

transition curve at the transitional point is assumed to be (dh/dx)ci, the sign of this 

slope depends on b, (a-d) and ✓ (a-d)2 +4 be. Making the subtraction of d from 

a with the aid of Eq. (32), it becomes 

a-d = -ic(4a-l){i3-(a-1)(2a-1)/(4a-1)}. (42) 

The behaviours of (a-d) in sign, hence, is divided into two different domains by 

the straight line, a=0.25, and for a>0.25, the upper domain of /3=(a-1)(2a-1)/ 

(4a-1) makes (a-d) negative and for a<0.25, (a-d) becomes positive in the same 
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Fig. 9. Hydraulic Behaviours of Boundary Characteristics to Transitional Characteristics 
for Chezy Flows; (i) m= -3, (ii) m= -2, (iii) m=O, (iv) m=l. 
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domain. On the other hand, ✓(a-d) 2 -t-4bc is positive, and bis positive for divergent 

channels and negative for convergent channels. Finally the sign of (dh/dx)c1 is clas­

sified as follows, depending on the channel characteristics. 

For steep channels, ✓(a-d)2-t-4bc and (a-d) are positive and bis negative, and 

thus (dh/dx)c1 becomes positive. For mild slopes, ✓ (a-d) 2 +4bc and b are positive, 

while (a-d) is negative, and thus (dh/dx)c1 becomes negative or positive, depending 

on the magnitudes of (a-d) and ✓(a-d) 2 -t-4bc. For mild channels, which are of 

slopes less than 0.25, and adverse channels, ✓ (a-d) 2 +4bc, band (a-d) are positive, 

and thus (dh/dx)c 1 is negative. Fig. 10 indicates the behaviour of (dh/dx)c1 in sign. 

p 
I 

Divergent Convergent 

++ {C>O 
5 l--'ll,o'----'--,,I"-- C < 0 

-2 

(dh) >0• 
dx e1 

(~>c2~0, 

Fig. 10. Relation between Boundary Characteristics and Sign 
of Slope of Transition Curve. 

The sign of the other slope of transition curve, (dh/dx)c2 , is readily determined. 

The product of both slopes is -(c/b). If c is positive, (dh/dx)c1 and (dh/dx)c2 are 

of opposite sign for divergent channels and of same sign for convergent channels. On 

the contrary, if c is negative, (dh/dx)c1 and (dh/cx)c2 are of same sign for divergent 

channels and of opposite sign for convergent channels. Fig. 10 also indicates the 

behaviours of (dh/dx)c2 • 

The hydraulic significance of transitional behaviours of flow is imposed by the 
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change of flow regime in transition flows. The change of flow regime at the saddle 

point has been already discussed in the foregoing section and the brief summary is 

in the following. When (dh/dx)c 1 is assumed to be the slope of transition curve, the 

flow in divergent channels changes from subcritical to supercritical and in convergent 

channels the transition in flow regime from supercritical to subcritical is produced. On 

the other hand, (dh/dx)c2 as the transition slope reduces to the opposite behaviours of 

transition in flow regime, and the possible transition slope between (dh/dx)c1 and 

(dh/dx)C', is determined by the basic principle of open channel flows, in which the 

subcritical flow must be traced from the downstream end and the supercritical flow 

from the upstream end. 

The transitional behaviours of flow by the nodal point is followed by the sign of 

(a+d) already indicated. As (a+d) for Chezy flows becomes in a form of 

so (a+d) and thus S1 become negative for steep slopes and positive for mild and 

adverse slopes. Consequently, keeping in mind that b is positive for divergent channels 

and negative for steep channels, the flow regime is changed from supercritical to 

subcritical for any characteristic in channel geometry and boundary. 

(4) Slope of surface profile near transitional point 

The critical depth curve divides the domain into the upper one, in which (dh/dx) 

is positive, and the lower one of negative values in slope of surface profile. The 

behaviour of normal depth curve in the vicinity of the transitional point is described 

by Eq. (31) and it is transformed into, for Chezy flows, 

in which t=h/hc. The positive and negative domains of f 1 (Xc, h) are characterized 

by the critical depth t3 =1, and two roots of the second bracket, t1 and t2 , which are 

real or conjugate complex. Mathematical characteristics of the second bracket are 

classified in the following. 

( a ) For steep and mild slopes : The outer domain enclosed by two curves of 

0=2(a-1) and 0=2a(a-1)/(a-4) for a>4 and the inner domain for 4>a>o 

yield two real roots and the larger root, t1 , is less than unity. 

( b) For adverse slopes : The second bracket has two real roots in the outer 

domain enclosed by /3=2(a-1) and /3=2a(a-1)/(a-4) and conjugate complexes in 

the inner domain. Furthermore, t1 is less than unity in the inner domain for O>a> 
-0.5 and in the outer domain for a< -0.5. 

The behaviour of f 1 (Xe, h) is, thus, in the following as seen in Fig. 11. 
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Fig. 11. Behaviour of / 1 (xc, h) to Boundary Characteristics. 

I 
f,CX:c,h)>O 
for h> he 

f,(x.,h )< 0 
for h> he 

The behaviour of f 1(Xc, h) is finally characterized by the following conclusion. 
The upper domain divided by the critical depth curve makes f 1 (Xe, h) positive 

for steep, mild and gently adverse slopes and negative for steeply adverse slopes. 

Consequently, the schematic figures of surface profiles traced under various 
boundary conditions are readily drawn in the vicinity of transitional points, and the 
transitional behaviours of flow are also determined. 

(5) Surface profiles of flow and transition curve in the vicinity of 
transitional point of Chezy flows 

As the conclusive characteristics of transitional behaviours of flows at and in the 
vicinity of transitional points in channel transitions and controls, the following table 
and figures are presented by the combined features of geometrical and boundary 
characteristics in channels. 

Table 1 indicates the transitional characteristics of Chezy flows produced by the 
saddle point and Figs. 12 (i)-12 ( v) also describe surface profiles involving the 

transition curve in particular cases of channel characteristics. 
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Character- alb C di S1 S2 (:!t l(::t of (dh/dx) I Transitional 
Inner I Outer Feature 

Remarks 
istics T.C. 

Steep Slopes 1:1=1~1=1~ :I 
+ 

I 
+ I (dh/,~X)c2 I - + Fig. 12 (i) 

I + - - + (ii) 

Mild and ++ + + - - - + (dh/dx), 1 - + (iii) 
Gently ++ -+ +- + + ad-bc</::0 Adverse 
Slopes ++ -+ +- - - " 

Adverse 

1:1:1~1=1~1=1 
-

I 
+ I (dh/.~x)c1 I + 

I 
-

I 
(iv) 

I Slopes - - + - (v) 

Trons;t;on Curve 

+ 

fz=O 
Fig. 12 (i). Surface Profiles of 

Transition Flows near Saddle 
Point in Steep Slopes. 

Fig. 12 (iii). Surface Profiles of 
Transition Flows near Saddle 
Point in Mild and Gently 
Adverse Slopes. 

Fig. 12 (ii). Surface Profiles of 
Transition Flows near Saddle 
Point in Steep Slopes. 

T rans;t1on Curve 

T rans1t1on Curve 

Fig. 12 (iv). Surface Profiles of 
Transition Flows near Saddle 
Point in Adverse Slopes. 
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Fig. 12 (v). Surface Profiles of 
Transition Flows near Saddle 
Point in Adverse Slopes. 

Table 2 indicates the same characteristics at the nodal point and Figs. 12 ( vi)-
12 (x) describe surface profiles. The sign of smaller root of the characteristic 
equation, S1 , is also indicated in the remarks. 

Table 2. Transitional Characteristics of Chezy Flows at Nodal Point. 

Transitional I I I I Characteristics a b c d 
I 

S1 I Sz l(dh) (dh/dx) I Transitional I 
d,c ,1 Inner I Outer Feature 

Remarks 

Steep Slopes 
1:1=1~1=1~1:1 

Mild and + + + + - -
Gently Adverse + + - + + -

Slopes + + - + + -

Adverse Slopes I : I : I ~ I = I ~ I = I 

Fig. 12 (vi). Surface Profiles of 
Transition Flows near Nodal 
Point in Steep Slopes. 

+ 
+ 
-

+ 
-

-
-

I 
-

I 
+ I Fig. 12 (vi) I S1<0 

ad-bc)>O 

- + (vii) S1>0 
- + (viii) S1>0 

- + (ix) S1>0 

I I I 

ad-bc)>O 

+ - (x) S1>0 

Fig. 12 (vii). Surface Profiles of 
Transition Flows near Nodal 
Point in Mild and Gently 
Adverse Slopes. 
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f,=O 
Fig. 12 ( viii). Surface Profiles of 

Transition Flows near Nodal 
Point in Mild and Gently 
Adverse Slopes. 

Fig. 12 (ix). Surface Profiles of 
Transition Flow near Nodal 
Point in Mild and Gently 
Adverse Slopes. 

Fig. 12 (x). Surface Profiles of 
Transition Flows near Nodal 
Point in Steeply Adverse Slopes. 

269 

Table 3 indicates the hydraulic characteristics of transition flow at the focal point 

and Figs. 12 (xi)-12 (xiii) describe surface profiles near the point. As seen in the 

foregoing section, surface profiles traced from up- and downstream ends never pass 

the focal point and therefore the hydraulic jump is produced under the condition that 

both depths of upstream and downstream become sequent. 

Table 3. Transitional Characteristics of Chezy Flows at Focal Point. 

Transitional 
Characteristics 

Steep Slopes 

I 
Transitional Remarks 

a b c d s1 S2 Feature ad- be [ Discriminant 
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fa=O 

f,=O 

Fig. 12 (xi). Surface Profiles of 
Transition Flows near Focal 
Point in Steep Slopes. 

Fig. 12 (xii). Surface Profiles of 
Transition Flows near Focal 
Point in Mild and Gently 
Adverse Slopos. 

Fig. 12 (xiii). Surface Profiles of 
Transition Flows near Focal 
Point in Adverse Slopes. 

In figures, the arrow indicates the direction of tracing of surface profiles in both 

regimes of sub- and supercritical flows. 

Local changes in channel geometry and boundary resistance as channel transitions 

and controls are involved in natural channels and even in artificial water courses, and 

a combined feature of surface profile determined by the foregoing transitional character­

istics for particular discharge and channel characteristics will become an actual 

transition curve of flow. The detailed behaviour of transition curve will be seen in 

some examples of the later section. 

6. Transitional Characteristics of Manning Flows 

The resistance law of Manning is more available for the open channels flows and, 

especially, the flow in alluvial channels than that of Chezy. In this section, therefore, 

the transitional characteristics of Manning flows are treated. Hydraulic characteristics 
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of Manning flows, however, are commonly similar to those of Chezy flows, and 

consequently the summary of analysis will be described. 

The Manning roughness n is closely related to the Chezy roughness C through 

the relation of C = R1! 5 
/ n, and 

In the flow of Manning, therefore, a, b, c and d bocome 

a= -2ic(a-l){f3-2(a-1)}, 

b = 3{f3-2(a-1)}, l 
C = i~[(a-1){6a(a-1)-{3(3a-l)}+(m/3)\{3-2(a-1)}], 

d = ic{f3(2a+4/3)-4a(a-1)}. 

(44) 

The characteristics of c are different from those in Chezy flows, as seen in Eq. (44). 

a= -0.667 is a barrier of change in sign from positive to negative or vice versa for 

Manning flows, compared with a= -0.5 for Chezy flows. 

The discriminant of characteristic equation is also 

D = _ i~ ( 45a2_ 96a+ 26 _ 9 m){f32 6(a-1) (30a2-47 a+7-6m) {3 
9 (45a2 -96a+26-9m) 

+_36(a--:-_1) 2 (5a2 -5_a-1-m)} 
(45a2 -96a+26-9m) · 

(45) 

Consequently, the positive domain of discriminant is classified in the following. 

(a) From m< -2.80; 

The inner domain enclosed by two curves of l31 and l32 expressed as 

131 _ a-1 [ 2 _ / \( 29)2 53136+26896m}] 
132 - 15{(a-l6)2_12~:1:-_45m} (30a 47a+7-6m)±-y369( a-41 620289 ' 

15 225 

makes D positive. 

( b ) For the range of -1.9756 > m > - 2.80, the inner domain for a> a 1 and 

a<a2 and the outer domain for a1>a>a2 make D positive. The expressions of 

a 1 and a 2 are in forms of 

( c) When m is equal to and larger than -1.9756, putting 

:: = (1/41){29±✓144+ (656m/9)} 
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and 

the positive domains are the inner part of {31 and {32 curves for a 1 < a and a< a2 and 

the outer part of two curves for a,>a>a2 and a 1>a>a3, and especially for 

a 3 2a2a,, D is always positive. 

The classification between saddle and nodal is obtained by 

{( 
16)2 1+45m}{ }[ 2(a-1){5a(a-1)-m} ];::a, 

5 a-15 -~ {3-2(a-1) {3- {( _16)2 1+45m} oa::O, (47) 
5 a 15 225 

and the domain for saddle points is as follows. 

( i ) When m < - 0.022, the transitional point becomes saddle in the inner domain 

of {3=2(a-1) and {3=2(a-1){5a(a-1)-m}/5{ (a-16/15) 2
- (1+45m)/225}. 

(ii) When m2 -0.022, the inner domain for a>a1 and a<a2 and the outer 

domain for a1>a>a2 , in which 

:: = (16±✓1+45m)/15, 

make transitional points saddle. 

On the other hand, the other domains separated from the whole domain by the 

domain for saddle points indicate the part for nodal points, provided the discriminant 

given by Eq. (47) is positive. 

7. Surface Profiles in Channel Transitions and Controls 

The surface profile of flow for a particular design discharge must be traced with 

a sufficient accuracy in hydraulic design problem of channels and water courses, which 

carry safely the design discharge. When the flow under investigation is gradually 

varied, the problem is classified as the Cauchy problem and the surface profile is also 

calculated under given boundary conditions. Fruitful tabulations for back water and 

draw down curves proposed by many scientists and engineers are available for the 

estimation of surface profiles, if the flow has no transitional points. 

Natural channels characterized by continuous change in channel geometry and 

boundary produce transitional points in flows as a combined mixture of three kinds of 

singular points, and thus the transitional behaviours described in the foregoing analysis 

become important factors to estimate an actual surface profile in channels and water 

courses. The influence of transitional behaviours to control structures in channels to 

the actual surface profiles and the tracing procedure of surface profiles are explained 

with the aid of some examples. 
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( a ) When a saddle point first appears and a nodal point continues in the 

transitior1 flow, a family of surface profiles involving the transition curve is indicated 

in Fig. 13. Such profiles of water surface are observed in gradually divergent channels. 

If no control structures like weir, dam and gate exist in channels, the resulting 

surface profile becomes the transition curve indicated in the figure. The flow regime 

is classified as subcritical in the upstream reach from the saddle point and in the 

downstream reach from the nodal point. Between the saddle and nodal points, on the 

contrary, the flow is supercritical. 

Fig. 13. Water Surface Profiles of Transition Flows in Divergent Channels of Mild Slopes. 

The procedure to calculate the surface profile starts from the saddle point to both 

directions of up- and downstream. Numerical values required for the calculation 

procedure are evaluated by the foregoing analysis. Of special interest is the hydraulic 

behaviour of nodal point. The possibility of hydraulic transition from supercritical to 

subcritical without the hydraulic jump is observed in gradually divergent channels. 

Two types of different transitional behaviours are divided in the following. When the 

surface profile traced from the downstream reach intersects the critical depth curve 
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for the design discharge before it approaches the nodal point, as seen in the curve of 
@ of Fig. 13, the hydraulic jump is observed at the location where both depths become 
sequent in the momentum conservation law of rapidly varied flows. On the other 

hand, the curve G) approaches the nodal point without intersecting the critical depth 
curve and the flow regime changes smoothly from supercritical to subcritical. 

Consequently, the nodal point in the latter case is classified as control of channels. 

Next discussion is directed to surface profiles of flows traced from the overflow 
structure like dams constructed in the downstream reach. When the surface elevation 
of flow resulted from darning up by control structures is less than the depth indicated 
by the curve started from the saddle point, surface profiles becomes G) and @ in 
Fig. 13 and their hydraulic behaviours are also described in the foregoing. When the 

height of control structures is high, the resulting surface profile is represented by the 
curve @. In this case, the saddle point as the transitional point of flow can not exert 
the hydraulic behaviour of surface profile, and the back water region stretches to the 

upstream reach beyond the saddle point. Consequently, usual procedures of calculation 

is applied to this case. 

When the control structure like a gate, by which the underflow is produced, is 
constructed in the upstream reach, resulting surface profiles are represented by curves 
of ® and ®· The flow expressed by the curve ® changes from supercritical to 

subcritical by the hydraulic jump and thereafter is expressed by the transition curve. 
After passing through the saddle point, the flow changes again to supercritical. On 

the other hand, the flow represented by the curve of ® is supercritical, until the flow 

passes the nodal point or unless the flow is drowned by the regulation of stage due 

Fig. 14. Water Surface Profiles of Transition Flows in Convergent Channels. 
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( b) When a nodal point first appears and a saddle point follows, which is 
observed in convergent channels, a family of surface profiles is represented in Fig. 14. 
In the same manner as described in (a), the hydraulic behaviours of surface profiles 
are discussed by means of the foregoing analysis. 

The details of transitional behaviours of flow in channels are treated in the other 
paper of the author10

). As seen in the above examples, however, the following 
attention must be called. 

(1) Before the calculation is applied to estimate the surface profile in divergent 
or convergent channels for design discharge, two curves of normal depth and critical 

depth must be traced. 

(2) When the singular point is not located in the flow, the usual procedure of 

calculation is applied. On the other hand, the singular point appeared must be clas­
sified and the transitional behaviours are treated by means of the foregoing analysis. 

8. Conclusion 

This paper deals with the hydraulic characteristics of transitional behaviours of 
flow in channels involving local changes in channel geometry and boundary by means 

of the geometric theory of differential equation. As the conclusion of the present 

research, the following summaries are expressible. 

(1) The transitional point produces the change of flow regime from subcritical 

to supercritical or vice versa and it is characterized by Eq. (6). 

(2) The characteristics of transitional point are classified as saddle, nodal and 
focal, resulted from the geometric properties of the variation equation of surface 
profile near the transitional point. 

(3) Saddle point is the most important to determine the transitional characteristics 

of flow and also a starting point to trace the surface profile. 

( 4) Nodal point is characterized by the point at which the flow changes from 

supercritical to subcritical. 

(5) Focal point produces the hydraulic jump and therefore surface profiles can 

not pass the point. 

(6) Saddle and, under some conditions, nodal points become controls of channels 
for which the elevation of surface profile is uniquely predicted. 

(7) In relation with the application of this analysis to problems in hydraulic 

engineering, the transitional characteristics for Chezy and Manning flows are discussed. 

Furthermore, the application of the analysis to the discharge measurement by 
control structures will make a real promotion to formulate a functional diversity of control 
structures, and this problem is treated in the other literature10 J. The analysis expressed 
in the study may be considered as an extension of the theory of gradually varied 
flow in uniform channels developed by a large number of investigators for some 
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centuries. The systematic experiments are now in progress at the Hydraulics Labora­

tory, and a fruitful contribution to the hydraulics of open channel flows will be 

obtained after successful completion of research program. 
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