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Abstract 

229 

The hydraulic behavior of the boundary layer growth, which has been investigated 

in connection with the practical application to the air-entrainment into flows by turbu­

lence, is concerned in the light of mathematical and physical interpretation made 

possible by the combination of three basic equations of boundary layer, main flow and 

discharge in hydrodynamics and of experimental verification conducted at the Hydraulics 

Laboratory, Engineering Research Institute, Kyoto University, with results of the clear 

difference between the behavior of boundary layer of open channel flows and that 

along the flat plate in the unconfined flow. 

Furthermore, the application to design problem of steep chutes and the hydraulic 

behavior of flows in transition to the fully developed turbulent flow near an entrance 

of channel are discussed. 

Introduction 

When a fluid flows from a reservoir into a conduit or over a spillway and a chute, 

the fluid initially given by the nearly constant velocity profile is retarded by the 

tangential shear along the boundaries and the velocity gradient is quite large, within 

a thin layer near the boundaries, if the distance the fluid has travelled along the 

channel is not so long. This retarding effect of the boundary shear gradually spreads 

farther and farther, so that the thickness of the layer of retarded fluid continually 

increases to the free surface of flow. It is well known that this zone of retarded fluid 

is called the boundary layer. 

Although it is a matter of common observation that even in open channel flows 

there exists the boundary layer near the inlet from a reservoir, the analysis of the 

behavior of open channel flows over a spillway in hydraulics, hitherto, was made in 
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common by the following two procedures of approach: the evaluc:tion of flow patterns 

by means of describing the stream line in classical hydrodynamics, and the one­

dimensional analysis of the hydraulic equation in which some suitable empirical 

formulas like Chezy's or Manning's in fully developed turbulent flows are used, with 

the aid of numerical integration. 

The dynamical process of motion in the fluid is governed by the hydraulic equation 

of motion based on the Newtonian principle of motion, and the solution obtained from 

the Navier-Stokes equation of motion under certain suitable boundary and initial 

conditions associated with a problem under consideration indicates the behavior of 

flows. However, until the present day no general methods have been become available 

for the integration of the Navier-Stokes equation owing to the great mathematical 

difficulties. Furthermore, solutions which are valid for all values of viscosity are 

known only for some particular cases. 

In the turbulent flow, which is of more importance from the point of view of 

practical application to engineering problems, 0. Reynolds introduced the fundamentally 

important concept of virtual turbulent friction as far back as 1880. However, this 

concept was in itself insufficient to make the theoretical analysis of turbulent flows 

possible. Great progress was achieved with the introduction of L. Prandtl's mixing 

length theory in 1904, which, together with systematic experiments conducted by many 

investigators, paved the way for the theoretical approach of this flow in every field 

of applied aero- and hydrodynamics. 

The significance of the behavior of boundary layer growth in open channel flow 

is that the open channel flow is a confined flow, which contacts with the free surface, 

an additional unknown function, readily sensible for the influence of boundaries. This 

is quite different from the boundary layer growth in the unconfined flow, and therefore, 

the interdependency of the boundary layer equation to the main flow outside the 

boundary layer should be considered, while the behavior of the flow around an airfoil 

or near an obstacle can be practically calculated without any modification of its original 

equation. The existence of free surface gives a rise of difficulty of the analysis of 

boundary layer growth in open channel flows, owing to the shear friction between the 

fluid ,md the atmosphere and the doubtfulness of clear formulation of boundary layer. 

Neverthless, it seems the actual hydraulic behavior of open channel flows like the 

high velocity flow on steep chutes suddenly changes at the critical point where the 

boundary layer intersects the free surface. 

The history of the investigation of boundary layer growth in open channel flows 

was initially related to the study of air-entrainme11t process into the fluid flow over 

steep chutes suggested by E. A. Lane'). Then, many investigators studied the process 

associated with the practical application to spillway design and almost verified with 

field observations, especially it should be remembered that this subject was one of 
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special topics to study in the International Hydraulic Convention held at Minneapolis 

in 19532
). However, all procedures of approach have ever been studied are only related 

to the empirical development based on the well known relationship of turbulent 

boundary layer growth on a flat plate in the unconfined flow. In 1952, G. Halbronn3 ) 

first investigated the interdependency between both flows of boundary layer and main 

flow, and in the same year, A. E. Craya and J. W. Delleur4
) also studied this subject 

associated with the problem in horizontal and slightly sloping channels, with results 

of refined interpretation of boundary layer growth near the critical regime. Both of 

them are highly evaluated as the outstanding theoretical results revealed the significance 

of interdependency between the boundary layer flow and main flow. More recently, 

in 1953, W. J. Bauer5 ) conducted the systematic experimentation of velocity distribution 

of the turbulent boundary layer under accelerative flow, resulted in the interpretation 

of applicability to the process of air-entrainment in the high velocity flow. 

In this paper, the present purpose is to reveal the general behavior of boundary 

layer growth under steady regime in the light of hydrodynamic interpretation made 

possible by the mathematical analysis of boundary layer equation and of experimental 

verification conducted in a smooth bed at the Hydraulics Laboratory, Engineering 

Research Institute, Kyoto University. However, the final stage of clear formulation of 

the subject, resulted in the practical application contributed to the establishment of 

modern hydraulics of high velocity flow in open channels and design problem of 

channels, stands still far away owing to the great complicated phenomena combined 

with turbulence and non-linear mechanics related to the existence of pressure gradient 

as well as the unknown function of fluid depth. 

Basic Principles of Boundary Layer in Open Channel Flows 

The prerequisite requirement to investigate the exact behavior of boundary layer 

growth in open channel flows is to establish the basic relationships of flows in both 

of main and boundary layer zones under accelerative flows made the interpretation of 

interdependency possible. This is attained ~ 

by combining two equations of boundary 

layer and main flow together through the 

principle of constant discharge under steady 

regime. 

(1) Equation of momentum in main flow 

Taking x-axis in the downstream direc­

tion along the channel bed, y-axis vertically 

upward, and denoting u and v : components 

of velocity in both of x and y directions, p : 
Fig. 1. Schematic diagram of open 

channel flows. 
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pressure, h: depth of flow, a: thickness of boundary layer, g: acceleration of gravity, 

8 : inclination angle of channel bed, p : density of fluid and subscript o : values in the 

main flow, the law of momentum conservation yields the following relationship, con­

sidering the water column BCDE of unit width on a virtual boundary acting no 

tangential shear. 

(1) 

Usually the vertical acceleration of fluid particle in open channel flows is considered 

to be practically negligible at hydraulic ordinary points, so that the pressure distribu­

tion is given by the hydrostatic law, 

p = pg cos B(h-y). (2) 

Differentiating Eq. (2) with respect to x, inserting into Eq. (1), integrating Eq. 

(1) between two limits of zone under consideration and dividing both terms by dx, 

Eq. (1) is, finally, reduced to the following momentum equation in the main flow. 

( 3) 

Using the constant discharge principle under steady regime as seen in (4), 

Eq. (3) is reduced to 

du0 ( • B 8dh) u0dx = g sm -cos dx . (4) 

This equation of momen,um in the main flow is also obtained by integrating the 

Euler equation of motion with respect to y throughout the whole zone of main flow 

from a to h, that is, 

(5) 

Considering the following relation derived from the equation of continuity, 

Eq. (5) becomes 
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Finally, it follows 

du ( . dh) 
Uo ax° = g sm 8-cos 8 dx . 

Hence, both procedures of method lead the basic equation to the same momentum 

equation. 

It can be reduced to the well known Bernoulli equation, that is, Eq. (4) is readily 

integrable with respect to x and it follows 

u2 
2~ + h cos 8 - x sin 8 = C . 

Thus, under the boundary condition that u0 =u00 and h=h0 at x=O, the above 

equation becomes 

u2 
E = ...'L+h cos 8-xsin 8, g 

( 6) 

where E is the specific energy expressed by (ua0/2g) +h0 cos 8. This equation is the 

well known Bernoulli equation of motion in the main flow characterized by the non­

friction and constancy of energy. 

(2) Boundary layer equation for momentum 

The application of law of conservation of momentum for the water column ABEF 

in Fig. 1 in the boundary layer yields the following relationship as same as in the 

previous section. 

d6 
_j_ f6 (pu2+p)dy = -u E_ rs pudy-j_ f6+.ixdx(p+1- 8p dx)dy 

dx)o 0 dx)o dx)s 28x 

-pgiJ sin 8+-.0 , (7) 

where -.0 : shearing stress along the channel bottom. Again, under the assumption of 

hydrostatic pressure of distribution, the integration of Eq. (7) leads to 

(8) 

Similarly, the above equation may also be obtained by integrating the Navier­

Stokes or Boussinesq equation of motion with respect to y between O and iJ. Thus, 

considering that 

the equation of motion 

rs( 8u 8u) ( . 8h) ( 11 )(8u) Jo u0x +v fJy dy = giJ sm 8-cos 8 ox - e fJy .,,-o, 

where J,I: kinematic viscosity and e: kinematic eddy viscosity, becomes 
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-r0 -"( • fJ f}dh) d is 2d d isud - = gu sm -cos - --- u y+u - y. 
P dx dx o 0 dx o 

Hence it may be understood that the above equation is equal to Eq. (8). 

(3) Modification of boundary layer equation by means of displacement and momen­

tum thicknesses 

The boundary layer equation (8) has been derived by the assumption that the 

thickness of boundary layer was certainly definite. It is, however, more desired to 

express the boundary layer equation in terms of certain suitable length capable of 

precise definition, and this is also done by introducing the displacement and momentum 

thicknesses defined by 

(10) 

As Eq. (8) is reduced to 

To= go (sin fJ-cos (Jdh) +!±. rs u(uo-u)dy-~0 ra udy' 
p dx dx Jo dx Jo (11) 

and Eq. (4) in the main fl.ow is also transformed to 

go(sinfJ-cosfJdh) =dup r8
uodY 

dx dx Jo ' (12) 

so it follows, from these two equations of (11) and (12), 

-r d is du ~a _()_ = d- u(u0 -u)dy+d__Q (u0 -u)dy. 
p X o X o 

(13) 

Thus, inserting two relations of the displacement and momentum thicknesses 

above defined into Eq. (13) yields 

-r0 _ (u"') 2 
_Cr_ diJ + 1 duo (2iJ+o ) 

pu/ Uo 2 dx u0 dx * ' 
(14) 

where u*: frictional velocity and Cr: local skin friction coefficient defined by -r0/(pua2/2). 

Eq. (14) is the well known equation seen in many publications related to the boundary 

layer theory. 

Designating the ratio o*/iJ by H, Eq. (14) becomes 

(15) 

Although His a variable dependent on the flow characteristics in both of constant 

pressure flow and flow with pressure gradient, it is customary that it is assumed 

constant for a given problem without large range of Reynolds numbers as a first 

approximation of engineering problem. 
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( 4) Relationship of constant discharge Principle 

As already described in the previous section, the steady flow is characterized by 

the constant discharge principle at any section of channel, which is expressed in 

terms of displacement thickness as follows. 

(16) 

(5) Interrelationship among thickness of boundary layer, displacement and momentum 

thicknesses 

The hydraulic significance of open channel flows with the growth of boundary 

layer is commonly associated with the mathematical behavior of the boundary layer 

thickness. However, as the displacement and momentum thicknesses are substantially 

confirmed by experimentation, so consequently, it is more desired to replace the ill­

defined thickness by the more precisely defined displacement and momentum thicknesses. 

Neverthless, the boundary layer thickness plays a primary role in hydraulics on the 

transitional behavior of open channel flows. Therefore, it is of practical convenience 

to derive the mutual correlation among these thicknesses. 

In fully developed laminar boundary layer, the velocity profile is practically in a 

form of 

(17) 

Hence, the displacement and momentum thicknesses and H become 

(18) 

In fully developed turbulent boundary layer, when the volocity profile is assumed 

of the power type 

(19) 

a*, !J and H become, respectively, 

(20) 

As in the power law the power varies with the increase of Reynolds numbers, 

so these values in Eq. (20) are not constant but variables of given flow characteri­

stics. Table 1 describes the interrelationships among a*, !J and H as a parametric 

expression of power. Evidently, the law in which the power is one seventh is the 

famous Blasius 7th law. 

If the velocity profile of turbulent layer forms logarithmic, 
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Table 1. Interrelationship among boundary layer, 
displacement and momentum thicknesses. 

I 
1 

I 
1 

I 
1 1 

I 

1 

I 
1 n T - 6 7 8 9 5 

therefore, a*, {) and H become 

1 1 1 1 1 1 
~* 5 6 7 8 9 10 

a*=__!_a {)=P- 2a p ' pz 

{) 
2 5 3 7 4 9 

15 42 28 72 
-

110 45 and H = p~ 2 , (22) 

H 3 7 4 9 5 11 
2 - 3 7 T 9 5 

(6) Consistency between boundary layer approach and usual hydraulic method of 

approach 

The reduction of basic relationship in both of boundary layer and main flows is 

based on the concept that both flows in the open channel flow are nominally divided 

by the assumed boundary layer thickness In hydraulics, the common practice is to 

analyze the hydraulic equation derived by the one-dimensional approach of momentum 

or energy conservation principles. Therefore, it will be desired to establish the con­

sistency between both approaches. 

Integrating Eq. (4) with respect to y throughout the zone of main flow, 

~: u0 ~:
0 dy = g(h-a) ( sin 0-cos o!!) . (23) 

Adding Eq. (23) to Eq. (8) yields 

-ro h( · O 0 dh) d rs 2d d rs d fh du0d µ = g sm -cos dx - dx Jou y+u0 dx Jou y- Jsuodx Y 

= gh ( sin 0-cos o!!)-ix): u2dy + ix {u/(h-a)} 

d fh d du0 +uodx Jo udy-u0 dx {uo(h-B) }-uo(h-B) dx. 

Finally, it becomes 

-ro h . 0 h Odh /3q2dh -=g sm -g cos -+- -
p dx h2 dx' 

(24) 

where /3 is the momentum correction factor. Transforming Eq. (24) into the usual 

form in hydraulics of open channel flows with the aid of normal depth h0 and critical 

depth he leads to 

dh h3 -h 3 

dx = tan U ha-h:a. (25) 

This equation is the basic equation of open channel flows usually derived by the one-

dimensional approach of analysis, and it follows that the consistency of both procedures 

of approach is established. 
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Velocity Distribution in Boundary Layer 

In engineering problems contributable to practical calculation of the skin friction 

and the boundary layer thickness with the growth of boundary layer, the usual proce­

dure of approach is to solve the one-dimensional equation like the von Karman integral 

equation. Therefore, for the analysis of boundary layer growth of open channel flows, 

the prior knowledge of the shape of velocity profile across any section is required. 

Although many investigators have studied this subject, it stands far away to 

reach the final stage of clear formulation of velocity profile and especially a rational 

theory for fully developed turbulent flow is still non-existent and in view of the 

extreme complexity of such flows it will remain so for a considerable time. Only the 

way possible to approach the fruitful success in this problem is to derive the solution 

or formula of steady uniform flows. Thus, for many years, engineers and scientists 

have been enforced to establish the velocity distribution in pipes, conduits and open 

channels under such flow characteristics. And the analysis of the behavior of boundary 

layer by the application of momentum equation to assumed families of velocity profile 

remains popular, since engineers have to make computations relating to the turbulent 

skin friction and the like with the aid of some development of empirical methods. 

In this section, velocity profile and related skin friction of turbulent layer obtained 

from the experiment conducted at the Hydraulics Laboratory, Kyoto University, are 

concerned, with the aid of theoretically derived results by many investigators. The 

experimental flume used is of length of 36 ft. and its slope is variable from O to 30 

degree. The side walls and bed consist of a very smooth lucite, and as seen in the 

later section the Manning roughness is 0.0084 (m-sec) in average. At the entrance 

to channel there is a reach where the hypothesis of flow without curvature is not 

valid and which makes the velocity near the bottom faster than that in the upper flow. 

Therefore, a lucite guide vane was set up to make the velocity at the entrance reach 

uniform. 

The problems of laminar layer of boundary layer flow are largely mathematical, 

since it is certain that the fundamental mechanical principles are fully understood 

and that the equation adequately describe the phenomena when the flow may be 

regarded as incompressible. It is well known that the shape of velocity profile in 

unconfined flows of constant pressure is the Blasius profile and in the steady uniform 

regime of open channel flows, T. Ishihara, Y. Iwagaki and T. Goda6l proved that it 

became parabolic as a close approximation, though the laminar layer has of less 

importance in engineering problems owing to its appearance only for small Reynolds 

numbers. 

In fully· developed turbulent layer, which is mainly subjected to study, Reynolds 
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has refined the method of appropach with insufficient results to make the theoretical 

analysis possible. A somewhat different method of simplifying the Navier-Stokes 

relation was proposed by Boussinesq, who reasoned that the similarity between the 

molecular motion in laminar flow and the eddy motion in turbulent flow should permit 

the shearing stress resulting from the two types of motion to be described in a similar 

fashion. However, great progress of the subject was achieved with the introduction 

of mixing length theory by Prandtl, which distinguishly formulated the actual inter­

relationship of the Reynolds and Boussinesq parameters and in the same period G. I. 

Taylor developed his statistical theory of turbulence, which was so fruitful in treating 

the problem of isotropic turbulence. Von Karman extended the theory, clothed it in 

more elegant mathematical form, and attempted, with incomplete success, to treat the 

problem of shear flow. More recently, F. H. Clauser7J divided the velocity distribution 

in turbulent layer into the two parts of inner and outer, resulted from the detailed 

analysis of velocity profile of flows under both of constant pressure and pressure 

gradient. On the other hand, the effort in establishment of the power law still con­

tinues from the practical point of view of dimensional analysis in classical hydraulics. 
1 

In the past the popular form has been of the power type u0ocy7 which is known 

as the Blasius 7th law, i.e. 

Cf= 2
-r~ = 0.0450 Rs-+, 

puo 
(26) 

and 

(27) 

The power law is directly related to the Reynolds number, resulted from the empirical 

analysis of the experimental data of steady uniform flows. Nikuradse investigated 

the correlation between the power of power law and the Reynolds number in pipe 

flows and obtained the variation of powers with the increase of Reynolds numbers. 

I 
n 

10 

6 
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2 
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-! 

i 
.~ .,. ~~ u 
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I 
O b{,erfo,ent-
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R,,,x10·3 

Fig. 2. Correlation of power to Reynolds numbers 
in steady uniform regime. 

Fig. 2 indicates the correlation of 

the power to the Reynolds number 

in steady unifom regime. Fig. 3 

describes the skin friction coeffi­

cient as a function of Reynolds 

numbers and the trend of plotting 

of data is slightly large compared 

with the Blasius curve. 

As the problem of boundary 

layer of open channel flows is re­

lated to the flow with pressure 
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I I 11 

gradient, so consequently, it has 

to be dealt with the velocity pro­

file and skin friction law under 

the existence of pressure gradient. 

These flows have been studied 

with the application of the von 

Karman integral equation for 

momentum and the use of em­

pirical relations obtained from a 

few experimental studies of flow 

in convergent and divergent pas­

sages by E. Gruschwitz8
), A. E. 
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Fig. 3. Skin friction coefficient in steady uniform 
regime. 

von Doenhoff and N. Tetervin9
) and other investigators, while the earliest procedure 

was suggested by Buri. All such procedures rest on empirical assumption like the 

Squire-Young formula and are considered the practical approach of method in engineer­

ing application not contributable to the construction of a rational theory founded on 

knowledge of the underlying physical phenomena. 

Bauer studied the velocity profile of turbulent layer in open channel flows with 

systematic experiments and concluded that the shape of velocity profile associated with 

'the development of turbulent layer on steep slopes was better approximated in most 

reaches by an expression of the power type than one of the form of logarithmic 

function and especially it is true at large values of the Reynolds number. However, 

it is natural that the power law with the adequately determined power describes the 

actual profile of velocity as a very close approximation and the plotting shown by 
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Bauer has been compared 

with the results theoretical-

ly obtained from the loga­

rithmic law, with results 

of obscure conclusion in 

clear difference between two 

types of flow shape. Fig. 4 

indicates the behavior of 

local skin friction coefficient 

to the Reynolds number in 

terms of boundary layer 

thickness for a smooth bed. 

It indicates that the coeffi­

cient throughout the whole 
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region of experimentation 

has slightly less values than 

those derived by curves of 

Blasius and Bauer. Fig. 5 

also described the same 

coefficient for the Reynolds 

number of displacement 

thickness. Within the ap­

plicability of Reynolds 

numbers obtained from the 

experiment, the following 

empirical formula will be 

proposed, predicting the va­

lidity of the 7th power law. 

As in the power law the skin friction coefficient is assumed to be proportional to 
the m th power of Reynolds numbers, so between m and H, it is found that 

m(l+H) +2(H-1) = 0, (29) 

from the dimensional analysis. It means that the application of Eqs. (26) or (28) to 

a given problem under investigation involves that H is not a variable but a constant 

of 9/7 without the range of Reynolds numbers. Fig. 6 indicates the growth of H with 

the increase of Reynolds numbers of displacement thickness. Evidently in inspection, 

H is not constant and has a trend of increase to a constant value determined by flow 

characteristics given. Therefore, 

it may be understood that there 

is a contradiction between the 

physical interpretation of empiri-

cal formula of Eq. (28) and the 

actual flow indicated in Fig. 6. 

However, it should be expected 

that the guide vane set up at the 

H 
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Fig. 6. The growth of H with the increase of 
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it is required the further study of this effect. 

As the power law is essentially empirical, based on the dimensional analysis of 

data obtained, so the adequate consequence involved in the law may describe the actual 

phenomena in a very simple mathematical form and apply to the similar problem within 

the limit of applicability. However, as the substantial characters of mechanical prin­

ciple of turbulence in flow itself is not concerned in this approach, so it is classified 

as a procedure in classical hydraulics. Under such a historic background the establish­

ment of dynamical principle of turbulence has been required as one of the fundamental 

subject in modern hydrodynamics, and many outstanding scientists and engineers have 

been enforced to study, and thus, the superiority of logarithmic law has also been 

acknowledged. More recently, Clauser concluded that the very simple assumption of a 

constant eddy viscosity which was proportional to u00* accurately predicted the be­

havior of the outer 80 to 90% of turbulent layer in both flows of constant and pressure 

gradient, and when it was combined with an inner eddy viscosity proportional to 

~ in the inner 10 to 20% zone, a complete remarkably accurate shape of the turbulent 

velocity profile was obtained. 

For the application of logarithmic law to the velocity profile in open channel flows, 

many investigators have studied and especially G. H. Keulegan10 >, R. W. Powell11> and 

Y. Iwagaki12> have obtained so fruitful conclusion on the turbulent characteristics of 

flow. Fig. 7 indicates the velocity profile of fully developed turbulent flow in steady 

uniform regime with the expression of logarithmic form and it is proved that these 

plotting tends to the theoretical study of Iwagaki. In 1952, Halbronn analyzed the 

turbulent boundary layer with the aid of logarithmic law of von Karman and t.:=0.4. 

Although Bauer concluded the power law of velocity profile in turbulent layer had a 

superiority over the logarithmic law from his experimental study, his plottings were 

compared with the theoretical results from logarithmic law. It means that the actual 

shape of velocity profile is expressed 

approximately in terms of both power 

and logarithmic laws, though the essen­

tial character of both approaches should 

be distinguishly divided. Fig. 8 des­

cribes the logarithmic expression of 

velocity profile of turbulent boundary 

layer. At an earlier reach of develop­

ment of boundary layer the velocity 

has a nearly constant value and it 

becomes logarithmic with the increase 

of boundary layer growth. Two curves 

/61-----Ja.!"'f~":>----'"--t----t--l--j-j G F,,~ 4.B'Y 

0 FR• 4.StJ 

/2 Q6 I 2 3 6 10 20 

~x/0-2 

Fig. 7. Velocity profile of fully developed 
turbulent flow in terms of logarithmic ex­
pression. 
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Fig. 8. Velocity profile of turbulent boundary 
layer in terms of logarithmic expression. 
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in Fig. 5 are of Blasius and old law 

described by Clauser. It is also under­

stood that the plotting has less value 

compared with these two curves. The 

Karman constant IC is determined 0.38 

to 0.40 from the experiments of steady 

uniform regime. With the aid of Prandtl 

form .of logarithmic law, IC is also ex­

pressed in a form of 

,- H 
1C=vZC1H-l' (30) 

Fig. 9 indicates the behavior of IC with 

the increase of Reynolds numbers of 

displacement thickness. Evident­

SinfJ ly in inspection in Fig. 9, the 

trend of behavior of IC describes 

a rapid decrease from a large 

value to a constant of 0.40 deter­

mined by many investigators 

with the increase of Reynolds 

numbers. This fact is not ex­

plained and the further study 

of the behavior of IC is also re­

quired if the conclusion of Bauer 

on the unvalidity of logarithmic 
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law to the shape of velocity 

Fig. 9. Karman constant in turbulent boundary 
layer. 

profile of turbulent layer means 

the above described fact. 

Mathematical Analysis of Boundary Layer Growth 

As often described in the previous section, the growth of boundary layer in open 

channel flows is readily influenced by the free surface and characteristics of boundaries, 

so the required solution is simultaneously solved by the basic equations (6), (15) 

and (16) together. Before discussing their mathematical behavior, considered is the 

boundary condition permitted by the suitable hydraulic conditions of flow. It will be 

practically acknowledged at the entrance of channel there is a disturbed reach where 

the hypothesis of flow without curvature is not valid, and which makes it difficult to 

locate the origin of the development of boundary layer, However, as it is always 
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possible to start the calculation of the boundary layer growth at a point located some 

distance downstream from the entrance, where the displacement and momentum thick­

nesses can eventually be determined by the experiment, so it is of practical convenience 

to assume the origin at the point where the boundary layer will be developed. 

Hence, at .x=O and ~*=0, the velocity in the main flow is given by the solution of 

E=ui+qcosO 
2g Uo ' 

for given specific head E and discharge q. 

The above equation has two physically possible roots : tranquil and rapid. The 

critical velocity is u0 = f, gq cos O and specific energy is E= (3/2)Hc cos 0, so con­

sequently, for the sake of simplicity of analysis as Craya and Delleur did, the follow­

ing dimensionless forms are introduced. 

(31) 

Hence, the basic relations of boundary layer growth are dimensionlessly expressed 

as follows. 

1- = r
2

+1r-~ tan 0 
2 2 ..- ' 

Ct= !!__(!L) + Z+H !L dr 
2 d~ H H rd~' 

a=r(rr-7J). 

Eliminating 1r from Eqs. (32) and (34) yields 

3 y2 q z+~ tan O = 2+r+7l. 

Differentiating Eq. (35) with respect to t it leads to 

d~•tan O = (r- : 2 )dr+d7J. 

From Eqs. (33) and (36), finally 

(__!__ Ct )d"fl +(Z+H 1 _ 1 dH) _ Ct (r- a) 
H 2 tan 8 dr H r H 2 dr 7l 2 tan O r2 

• 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

If the skin friction coefficient and Hare assumed constant throughout the whole 

region under investigation, Eq. (37) becomes linear and the solution is readily obtain­

able as a function of velocity of main flow. The boundary condition for solving 

equation is dimensionlessly expressed as follows. 

2a = 3r-r3
• (38) 
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(1) Growth of laminar boundary layer 

Assuming the velocity profile in laminar layer is given by Eq. (17) indicated in 

steady uniform regime, the basic equation becomes from Eq. (37) 

dr; { 2 lOv'(q )}/(lOv' ) - = 27r; +-- --r ---6r;r . dr tan 8 r2 tan 8 
(39) 

Evidently, Eq. (39) is non-linear and the solution has to be obtained by numerical 

integration. However, at the point where is satisfied the following relation of 

r;r = ~ v' cot 8 , (40) 

dr;/dr becomes infinite and thus it is understood that Eq. (39) is not adequate for 

laminar layer at this point. However, this point is very near the origin of development, 

and nelgecting this unreliability of basic equation and considering the flow concerned 

is a flow over a relatively steep chute, Eq. (36) is approximated by 

(41) 

For case of initially supercritical flow, Eq. (39) also becomes singular in the topological 

sense and as the singular point is proved a saddle point, so it is seen that 

two curves of integration passed the saddle point. 

With the use of Eq. ( 41), the basic equation is linearized as follows. 

there are 

(42) 

In Eq. (42), it means the singular point expressed in Eq. (40) is transformed to the 

origin of the coordinate system. Under a given boundary condition of Eq. (38), the 

solution is 

(43) 

The boundary layer thickness, flow depth and location are also calculated. 

Halbronn integrated the laminar boundary layer equation, neglecting the slope of 

free surface and obtained 

(44) 

Putting o;=O and u01 =u00 for comparison with the result of Eq. (43), the dimension­

less form of Eq. (44) becomes 

(45) 

Therefore, it follows that Eq. (45) obtained by Halbronn is more approximate, com-
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pared with the result of Eq. (43). 

In accelerative flows, as the thickness of boundary layer spreads farther and 

farther, so (njr)'0 and (ro/r) 7 decrease rapidly and the approximate behavior of Eq. 

( 43) is described in a manner of 

3tan8 2 10a 1 
~11-,~r; = r-1 ? · (46) 

(2) Turbulent boundary layer growth in terms of power law 

As seen in the previous section, the skin friction is assumed to be proportional 

to the m th power of Reynolds numbers, so the basic equation for turbulent boundary 

layer growth in terms of power law becomes 

(47) 

Hence, eliminating ~ from Eqs. (36) and (47) yields the basic relation of turbulent 

layer of open channel flows. 

A. r;mrm( d) 2+H r; + r; dH 
dr; _ tan 8 111m r r2 H r H 2 dr 
dr - r A r;mrm 

H-tan8 111 m 

(48) 

Eq. (48) has the same unreliability, and therefore, neglecting such a fact and 

transforming the singular point to the origin, the solution will be readily obtained by 

numerical integration as an approximate behavior of turbulent layer growth. How­

ever as H is not constant, so an additional function for H is required to calculate. 

Neverthless, it will be understood from Figs. 4 or 5 that the skin friction coefficient 

is assumed to be proportional to the m th power of Reynolds numbers. Therefore, H 
is assumed constant in the contrast with the experimental results. It will be acknow­

ledged from the rapid increase of H with the increase of displacement thickness. 

Under such an approximate condition, Eq. (48) becomes the following linear equation 

dr;'-m + (2+H)(l-m) I-m = A.H(l-m) rm(r-~) 
dr r r; 111m tan 8 r2 • 

(49) 

Hence, the solution is 

(50) 

As it is so difficult to determine the location of the origin of boundary layer 

growth by experiments, so preferable is that the boundary condition is r;=r;0 at r=r0 • 

Therefore, the solution becomes, considering the specific energy is measured from the 
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virtual channel bed stands at the level of displacement thickness. 

1-m 1- ...'.'..Q ___!J = ~~-~~~c=-r2+m 1- ___!J tan O µ'm { ( "Yi ) 1-m( r )CI-m)C2+H)} 1-m { ( r )a+CI-m)CI+H)} 

H). r; r; r 3+(1-m)(l+H) r 

-~-r-I+m 1- ___!l t1 { ( r )Cl-m)Cl+H)} 
l+H r . (51) 

In the same manner as in laminar layer, the boundary layer thickness, flow depth and 

location are also calculated. At the downstream region, the approximate behavior is 

described by 

(52) 

As the above procedure is applied until the boundary layer reaches the free surface, 

so the critical point of the theory will be concerned. It is known this point is the 

location of initial air-entrainment. Denoting values at the critical point by subscript 

c, the critical condition is 

(53) 

Hence, from Eq. (34), 

H-1 
rcrJc = -2-a. (54) 

Therefore, the velocity at the critical point is 

tan flµ'm (H-1)'-mai-m = 1-m 3{ -( r 0) 3+C1-m)Cl+H)} 

).H 21 -m 3+(1-m)(l+H)rc l re 

-l~H{1-( ;;)c1-m)c1+m}. (55) 

Also, in accelerative flows the approximate critical velocity is 

1-m 
3 

__ tan Oi,'m (H-1) 1-ma1 -m a 
3+(1-m)(l+H)rc - ).H 21 -m +l+H' (56) 

and the critical depth and location are 

. H+l a 
11:c = tc = -2- r C > (57) 

(58) 

(3) Turbulent boundary layer growth in terms of logarithmic law 

It is of practical convenience that another variable of p expressed by Ku0/ u* as 

von Karman and Halbronn did is applied to the boundary layer equation, since the 

velocity in the main flow is commonly associated with the frictional velocity as seen 

in the Prandtl expression. Therefore, the displacement thickness is 

(59) 
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where C1=e-As and for steady uniform flows in pipes As=5.5. Tranforming Eq. (33) 

with the use of Eq. (22) yields 

1.2d~ = P(P-2)dr;+ 2r;dP+ P(3P-4).!l_dr. 
r 

(60) 

Eliminating ~ and r; with the aid of Eqs. (36) and· (59), the relation between the 

dimensionless velocity and parameter p becomes 

(61) 

Eq. (61) is the basic equation of turbulent boundary layer in terms of logarithmic 

form, and the displacement thickness, flow depth and location are calculated. 

Before starting the integration by numerical method, the boundary condition for 

this case has to be considered. Taking the origin of coordinate system at the point 

where the boundary layer starts, it is intuitively assumed that the friction acts on the 

fluid at a very large amount and therefore, P becomes very small and substantially 

zero. It proves a contradiction of boundary condition at the origin, since r; is not 

zero when p is zero. It is due to an essential character of logarithmic law which is 

applied to the upper zone from laminar sublayer. However, as the magnitude of v' 

is quite small, 10-• to 10-s, compared with other quantities, it is practically assumed 

that r;=O at the origin of growth. Evidently in calculation, the initial value of p has 

less effect on the boundary layer growth in numerical integration, though it is not 

certain that P=O at the origin or not. 

The approximate equation neglected the displacement thickness becomes also 

dr 
dp 

reP(p2 -2p+2) 
(62) 

However, for all cases of the logarithmic law, the mathematical behavior is obtained 

only by numerical integration. 

Hydraulic Significance of Boundary Layer Growth and its Contribution 

to the Practical Application to Design Problem 

In this section, hydraulic significance of the boundary layer growth of open channel 

flows is concerned in the light of mathematical analysis and experimental verification 

mainly conducted at the Hydraulics Laboratory, Kyoto University. Furthermore, its 

contribution to the practical application to engineering purpose of channel design in 

terms of interpretation made possible by the present analysis will be accented. 

(1) Growth of boundary layer 
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The turbulent boundary layer of open channel flows is of more importance from 

the practical point of view and it has been associated with the air-entrainment by 

turbulence in the high velocity flow. The mathematical behavior of turbulent boundary 

layer growth is described as the 
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solution of Eq. (48) for flows 

of the power type and Eq. (61) 

for flows of logarithmic form. 

Until the present day, however, 

as seen in many publications, 

most solutions are associated 

with the well known solution 

of unconfined flows with zero 

pressure gradient, that is, for 

the Blasius 7th law, 

_§_ = 0.371 R,, -+, 
X 

(63) 

where Rx is the Reynolds num­

ber in terms of distance. V. 

Michels and M. Lovely13l obtain­

ed the empirical relation in a 

similar fashion of Eq. (63) to 

compare with the field observa­

tion of air-entrained flow at 

the Glenmaggie Dam and the 

Werribee Diversion Weir. Fig. 

10 describes some examples of 

the boundary layer growth of 

open channel flows and theoreti-

Fig. 10. Examples of boundary layer growth of 
open channel flows. 

cal curves calculated by various 

approaches. The curve for 

logarithmic law is calculated under the assumption of 1'=0.4 and As=5.5 valid for 

pipe flows. For the Blasius 7th law, the curve becomes 

~~/ 11+ = 0.00367 rt-{1-( ; 0/}-0.00753 e1r-+ {1-( ; 0)-¥(, (64) 

with the use of m=-0.25, H=(9/7) and .l.=0.0225 for the thickness of boundary 

layer. Applying the empirical formula of Eq. (28) to Eq. (48) for comparison with 

experimental data, the equation of boundary layer growth is slightly changed to 



Boundary Layer Growth of Open Channel Flows on a Smooth Bed and its Contribution 
to Practical Application to Channel Design 

249 

tan 8 5 
1 { ( r ) ¥-} s { ( r )"/-}· J.1'¼ r;•=0.00309r• 1- / -0.00633ar-• 1- j . (65) 

It is seen that the behavior of boundary growth described by Eq. (63) is so rapid 

and the 7th law or similar formula express the closest approximation compared with 

the experimental data. A. T. lppen, R. S. Tankin and F. Raichlen14
) conducted the 

experiment of turbulent boundary layer growth during the measurement of flow 

turbulence and proved that the growth is rather mild compared with the result of Eq. 

(63). The development indicated by Bauer is milder than the results described in the 

figure owing to his assumption that the thickness of boundary layer is given by the 

amount of 99% of maximum velocity. 

(2) Critical point 

The boundary layer 

theory will be applied until 

the thickness of boundary 

layer spreads farther to 

the free surface of open 

channel flow. Denoting 

this point the critical point, 

the location of critical 

point has been studied as 

the initiation of air­

entrainment into flows by 
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Fig. 11. Location of critical point for various slopes and 
discharge. 

turbulence since Lane. It is readily calculated with the use of previously equations. 

Fig. 11 describes the location of critical point as a parametric expression of discharge 

with the aid of Eq. (55). 

(3) Influence of hydraulic and channel characteristics on the boundary layer growth 

It will be predicted that the hydraulic characteristics like discharge and channel 

characteristics like slope and roughness have a significant effect on the growth of 

boundary layer. Fig. 12 indicates the boundary layer thickness as a function of dis­

tance in the direction of flow, resulted from experimental data of lppen, Tankin and 

Raichlen, Bauer, and the author for smooth boundaries. Although data plotted are 

scattering, in inspection, it may be seen that points corresponding to the same boun­

daries, but with much different rate of discharge and slope, fall along the same line 

and it follows that the hydraulic characteristics have less significant effect, as Bauer 

concluded. However, as seen in Fig. 11, the effect of the hydraulic characteristics on 

boundary layer growth will be readily recognized. That is, at the same slope the 

location of critical point becomes farther with the increase of discharge and same 
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Fig. 12. Relation between boundary layer growth and distance. 

conclusion for variable slopes is evident for constant discharge. It seems the inter­

relationship between main and boundary layer flows has an influence on the boundary 

layer growth of open channel flows to a considerable degree. 

It is also understood from the dynamical and mathematical principles of boundary 

layer that the growth of boundary layer is feasibly influenced by the velocity profile 

and especially skin friction law plays a significant effect on the growth as seen in 

the later section. 

(4) X-wise distribution of shear and Manning roughness 

The theory of boundary layer is concerned with not only the application to 

practical problems of air-entrained flow but also the transitional behavior from an 

uniformly distributed flow near an entrance to fully developed turbulent flow, so it 

will be also considered one of the fundamental subjects contributable to the design of 

channel in moden hydraulics. Up to the present day, the channel was designed to 

make the safe-pass of design discharge possible under the assumption of fully developed 

turbulent flow; with the use of given slope and channel alignment determined by the 

topographical and geological circumstances, the momentum or energy approaches of 

one-dimensional analysis was to be solved for the design of open channels. The basic 

concept previously mentioned is considered an extention of the theory established in 

steady uniform regime. One of the purposes of the present study is to make the 

dynamical principle and hydraulic behavior of steady but non-uniform flow in open 

channels clear, by means of the boundary layer theory, and applicability of the usual 

concept in classical hydraulics to channel design should be concerned, Fig. 13 describes 
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the x-wise distribution of frictional 

velocity resulted from the author's 

experiment as a function of distance 

from the entrance of channel and a 

curve shows the theoretical one calcu­

lated with the boundary layer theory. 

It is seen that there is a close agree­

ment between the experimental re­

sults and the theoretical curve, though 

numbers of plottings are so few. 

0 Experimental Dai,;, 

50 100 
X ccmJ 

Fig. 13. Frictional velocity in turbulent 
boundary layer. 

Fig. 14 indicates the distribution of Manning roughness as a function of distance. At 

the earlier stage of boundary layer growth, values of roughness is very large and 

they tend rapidly to the constant value which is equal to that in steady uniform 

regime. Therefore, it is concluded that the Manning roughness is determined only by 

the channel characteristics consists of the bed and side wall of channel and for the 

practical application to problems of channel design the usual approach is adequate 

as approximation. 

(5) Surface turbulence associated with boundary layer growth 

As the high velocity flow over a very steep chute has the entrainment of air and 

forms an air-water mixture, it is virtually observed that the discharge of high velocity 

flow bulks to some extents and for the practical design of spillway the virtual increase 

of discharge is frequently considered. Although there is still unsolved for the clear 

formulation of dynamics of air-entrainment, as suggested by Lane, the necessary con­

dition to carry the air bubbles into flows is assumed that the thickness of boundary 

layer will be reached the free surface of flow. The above concept is almost verified 

by many investigators. Evidently, it is so difficult to produce the self air-entrainment 
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Fig. 14. Manning roughness of a very smooth channel. 
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in experimental flumes of the la boratory. How­

ever, it is of common observation that the flow 

has a sudden transition from the flow with a 

smooth plane surface to the flow with very 

small shuggy and also the color of free surface 

suddenly changes from transparent to opaque 

as seen in Photo. 1. However, the final estab­

lishment of formulation of air-entrained flow 

still stands far away. 

(6) Contribution of critical Point to channel 

design 

So far as the application to the design of 

steep chutes like a spillway, the problem re­

quires the location of the critical point for 

given discharge and head on a given chute, 

to determine the location of initiation of bulked 

discharge. It has been recognized that the 

location was determined by calculation of 

previous relations. Fig. 15 indicates the locus 

of location at which the flow becomes critical 

under the assumption of E = (q/ 2) ½ for a very 
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smooth channel like a lucite. 

Evidently, it is seen that the 

location is so far compared 

with the actual measurements 

by many investigators. It is 

due to the so small value of 

roughness. Fig. 16 also in­

dicates the location of critical 

point for a concrete channel 

under the assumption of Man­

ning roughness 0.013. It is 

readily understood that the 

theoretical results obtained in 

the present study indicates 

an outstanding agreement 

with data of field observation 
Fig. 16. Location of critical point for a concrete channel. 

by G. H. Hickox15
), and Michels and Lovely13

). 

Conclusion 

Although the growth of boundary layer of open channel flows and its associated 

problem have not yet been established by the present study, the following conclusion 

seems justified on the basis of the foregoing results. 

1. The hydraulic behavior of boundary layer of open channel flows has to be 

concerned by the combination of three bacic relations of main flow, boundary layer 

and discharge together and the interrelationship among these equations is the same 

equation commonly used in classical hydraulics. 

2. It seems that for a smooth boundary the shape of velocity profile of turbulent 

layer is better approximated by the power type of law than the logarithmic law as 

Bauer concluded. However, it requires the further study concerned the details of 
velocity profile. 

3. The hydraulic behavior of boundary layer growth is closely approximated by 
Eq. (65) used the 7th type of power law within the limit of experimentation conducted. 

4. It is . readily understood from observations that the flow pattern and the free 
surface color change suddenly at the critical point where the boundary layer reaches 
the free surface. However, it stands far away that the establishment of mechanical 

principle of air-entrained flow will be obtained. 

5. For the practical application to problems of channel design commonly used 
procedure is also available in the light of knowlegde of boundary layer theory deve­
loped in here. 
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The initial purpose expected for the study of boundary layer growth in open 

channel flows has not yet reached the final goal contributable to the practical applica­

tion to engineering problem. Neverthless, it seems that a rational procedure of approach 

for studying the problem of boundary layer has been formed in the light of possible 

mathematical form. However, as Craya and Delleur did, there still remains unsolved 

for the mathematical interest of behavior of the boundary layer equation near the 

critical regime and the application problem for hydraulics of mild slope. It is hoped 

that the clear formulation of behaviors of boundary layer of open channel flows will 

be attained by the useful process of mathematics and systematic experimentation, with 

the development of further study for a rough bed now in progress. Furthermore, much 

of the true nature of fluid motion still unsolved in the present hydraulics will be soundly 

clearified through many physical knowledge obtained by the boundary layer theory. 
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