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Statistical Representation of S-N Curve
on the Fatigue Test Results
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Introduction

It is generally recognized that fatigue test results are widely scattered. Con-
sequently, in treating fatigue test data, it is desirable to represent them statistically
and, of late, the studies in this line are frequently reported™~*. In all of these
studies, fatigue tests are carried on many test pieces on each stress level, and the
distribution of the number of cycles to fracture N is statistically studied; and the
probabilities of fracture P are obtained by application of the most probable distribution
function and the S-N-P curves are drawn. However, to draw S-N-P curves by these
methods, many a fatigue tests must be performed on many specimens on numerous
stress levels and it is felt that conducting such experiments in most cases is practically
difficult because of the exceedingly long duration of time and huge expenditure
required. On the contrary, the method the authors propose here is a method which
does not necessitate performance of many tests on the same stress level, and yet
gives the probabilities of, fracture P. In other words, the S-N-P curves are obtained
from the whole fatigue test results obtained {on different stress levels, even with a
single test performed for each stress level.

1. Determination of S-N Curve

For the purpose of obtaining the most probable S-N curve, it is quite useful to
represent fatigue test results with an equation. Although there are many equations
which represent the S-N relations’#%%, the following equation is applied in this study :

6—0yu=AN" (m<0) (1)

where N is a number of cycles to fracture under a repeated stress ¢ (kg/mm?), o, is

a constant whijch represents the endurance limit (kg/mm?), and A and m are arbitrary
constants.
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Taking the common logarithm of both sides of Eg. (1), then we have
log (06— 6w) =log;cA+m-log, N (2)
By transforming variables by the following substitution,
log,(6—0w) =Y

log;nA=a (3)
logi N=1x U

the following relation is obtained :
y=a+mx (4)

Here the correlation between x and y becomes linear.

Before determining the constants @ and m, the value of a constant ¢, must be deter-
mined. For the different sets of values of ¢ and N to be obtained from fatigue test
results, it is best to determine the value of ¢, so as to best satisfy the linear relation
of Eq. (4). In other words, the correlation coefficient » is computed between x and y,
and the value of ¢, is determined to make the absolute value of 7 to be maximum.
For an arbitrary value of ¢,, x and y computed from # experimental results are
denoted o, as x; and y; (1=1,2,3,---,n) and the correlation coeflicient 7 is given as

follows :
t=1xiyi n i=1{;__£=1yz

= 1. I P
D2raf— (N x)™ 29— (2197
i=1 n =1 =1 n =1

(5)

The constants @ and m are computed by the least square method for the value of g,

thus determined and are given by the following equations :

IR
PAEZDARVEDAE DAY 7L
i=1 i=1 i=1

g=1t=1
7 n
n2) 2" —(2) %:)°
i=1 i=1
< 5 (6)
RO ¥i— 20 % 20 ¥
m= i=1 i=1  i=1

n [
n 20 2t~ (2] x)°
i=1 i=1
Thus, the S-N curve can be drawn.

2. Scatter of Fatigue Test Results

The conventional method of computing the probability of failure Pis: the results
obtained by numerous tests with many specimens on each stress level are arranged
in an increasing order of the magnitudes of fatigue lives and then the probability P
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is calculated®’®>®, In this study, however, the values of P obtained from the whole
fatigue test results for the various stress levels are computed. The most probable
S-N curve for the test results can be determined by the method described in the
preceding paragraph. The S-N equation thus determined is assumed as Eq. (1).
The S-N curve of Eq. (1) does not generally pass thrdugh the plotted points of
experimental values in the S-N diagram. But by changing the value of any one of
the three parameters g, A, and m in Eq. (1), we can make the S-N curve pass
through a test point. Therefore, we can reduce the scatter of test results to the
scatter of any one of the three parameters.

In the case in which the value of A and m are constant and only the value of
g, varies with an increase of P, a vertical distance between the original S-N curve
and the new S-N curve (which has been made to pass through each test point by
changing the value of ¢, only,) is constant and independent of the value of N as
shown in Fig. 1, if the measurement of the ordinate ¢ in the S-N diagram is made
with a linear scale. Ransom?*’ states that the values of the endurance limits are widely
scattered about a mean of their values. Therefore, for such test results showing such

a scatter of test points, the method in which the value of ¢, alone is changed can

be applied.
o Vertical distance o Vertucal distance
is conslant. & not constant.
Log, N log, N
Fig. 1. S-N curves in which the endurance Fig. 2. S-N curves in which the
limit ¢, is only varied. parameter A is only varied.

Now, when the values of ¢, and m are constant and the value of A only varies
with an increase of P, a vertical distance between the original S-N curve and the
new S-N curve (which has been made to pass through each test point by changing
the value of A,) decreases with an increase of the value N as shown in Fig. 2, if
the measurement of the ordinate ¢ is made with a linear scale as above. Also in the
case where the values of ¢, and A are constant and the value of m only varies with
an increase of P, the similar tendencies as shown in Fig. 2 are obtained. In many
cases, the endurance limit scarcely shows any scatter of its value, but their fatigue

lives on each stress level are widely scattered. For the cases of this type, the method
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in which the value of A only (or the value of m only) is changed can be applied.
However, in general, it seems better to vary adequately the values of all the three
parameters o,, A, and m in the S-N equation with an increase of P. As mentioned
above, it is known that both the methods of changing the value of A only and m
only indicate the similar tendencies. In this study, the method of calculating the
value P in the case where the value of m is kept constant and other two values oy,
and A vary with P while maintaining a definite relation between them. (The method
in which the values o, and m are changed keeping the value A as a constant is

similar to this.)

3. Relation between the Parameter A and o,
The S-N equation determined by the least square method is denoted as follows :
0—0yy=AN"™ (7>

Taking into consideration the condition of scatter of test points, a scatter band is
drawn in the S-N diagram. Now, making the value of the parameter m constant

and assuming the equation of the lower boundary of the scatter band as
o—o, =A'N™, (8)

and taking the two points (¢,, N,) and (¢,, N,) on its boundary adequately, then
the following relations are obtained from Eq. (8).

0,—0'w=AN" % (9)

O‘Z'O‘lw:A/NZm

From these relations, the values of the constants ¢,” and A’ are calculated as follows:

Ll
2
A= NrNp

Accordingly, when the two points (e;, N,) and (¢, N,) are determined, the constants
o,/ and A’ of the lower boundary of the S-N scatter band can be determined.

Next, when the equation of the upper boundary of the scatter band is taken as
o—o, =A'N", (11)
the two constants ¢,” and A” are calculated in a similar manner described above by

taking the two points (g3, N;) and (¢,, N,) adequately on the upper boundary.

Hence, we have
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= N4
Cy
=N,
¢ 112)
’r_ g3—0y
A= "Nr-N7

Then, the three sets of values (guy, Ay), (0w, A), and (6,7, A”) are plotted into the
diagram, Fig. 3, which represents the value of A in ordinate and ¢, in abcissa. It
is assumed that the relation between A and ¢, can

be represented by the two straight lines shown in
Fig. 3. Then, the relations between A and g, become
as follows:
A=A+ 272 (46y)  (for GuZaun)
w wo (13)
A”—A
A:A0+ 7 0 (aw_awo) (for O'wgo'wo)
Ow — Ouy
Fig. 3. Relation bet
In the next stage, the values of g, and A corres- i and o. chween

ponding to each experimental value are determined
from Eq. (1) applying the relation of Eq. (13). Then, the scatter of experimental
values can be reduced to the scatter of value of the parameter o,.

In the method discussed above, an appropriate estimation of the shape of a scatter
band must be allowed. Also, in the method in which the values of both parameters
ow and A are changed, some relation between them must be assumed in order to
represent the scatter of test results as the scatter of values of ¢,. This relation can
be obtained by estimating the shape of the scatter band. The estimation of the
scatter band depends upon the judgment with the eye and has no theoretical basis.
However, it may be permissible similarly as Eq. (1) is applied at the S-N equation
without any theoretical basis.

4. Determination of Probability of Failure

The method to compute the probability of failure P from the scatter of the value
2 which represents one of the three parameters o., A, and m shall be explained.
The n values of 2, corresponding to each experimental value, are obtained by sub-
stituting experimental values into Eq. (1) and these » values are arranged in an
increasing order of their magnitudes and numbered from 1to n. The expected value
of the probability of failure P, corresponding to the value of z numbered as v ie. z,,
(that is, the probability that the value of 2z is less than or equal to 2,) can be
computed by the following equation®.
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Yy
P=i= =128 ,m) (14)

The relation between z and P is indicated by plotting the » points (z,, P,)
computed above into a diagram which represents the value of P in ordinate and z in
abcissa as shown in Fig. 4, and the most fitted equation of the curve for the computed
values is sought. The type of the function P

which is suitable for the cumulative distribution !

function of the random variable z is considered P

T T 7T

to be something like the following :

L | S i

P=1—e*¢® (15) F————==
where ¢(2) expresses an increasing function of (]
2. Many equations have been introduced as the V4
. . . R Fig. 4. Relation between P and z:
1)3)5)
function of ¢(2) in Eq. (15) , but in this plotted points are the calculated
study the following equation is adopted as the values and the solid line repre-
, e s . . . sents the cumulative distribution
cumulative distribution functions of z: curve of 2.
k(!,:z b
P=1-¢"\r-¢ (16
which satisfies the following conditions :
P=0%* at z=
v a7
P=1 at 2=T

where T and U are the constants showing the upper and lower limit of 2z, and % and
b are arbitrary constants. Taking twice the common logarithm of both sides of Eq.
(16), we have

1 —
log,log;, 1—p= log, k+logi,log,,e+b Ing(ZTTZ) . (18)
Putting
1
logylogy, 1—P~ Y
log,ck+log, loge=K 19)

U
logs, (ZTTZ>ZX '
the following linear correlation between X and Y is obtained.
Y=K+bX (20)

These constants 7 and U are determined so as to satisfy the relation of Eq. (20)

* The S-N curve for P=0 is important depending upon applications for design, etc.—
especially in estimation of a safety factor.
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most fittedly : that is, the correlation coefficient » between X and Y computed from
the n sets of values (z,, P,) are calculated for the various values of T and U, and
the most probable values of 7 and U, which make the value of » maximum, are
determined. The constants £ and b are determined by the least square method from
the values of X and Y which are calculated from the » values (z,, P,), using the
value of 7 and U determined above.

Thus, the cumulative distribution function P of a random variable 2z being deter-
mined and the value of 2z corresponding to a given arbitrary value of P being
computed, we can now draw the S-N curves with parameter P (S-N-P curves).

5. Numerical Examples
(1) Method in which the Parameter ¢, is varied
The numerical example is indicated in which the values of parameters A and m
are kept constant, another parameter o, varies with P, and the scatter of test results
is reduced to the scatter of the parameter o¢,. This computation process is applied
to the rotating bending fatigue test results of the rail steel (0.7% carbon steel).
These test results are shown in Table 1 and the S-N diagram in Fig. 5. The eight

Table 1. Fatigue Test Results ~g 50
of Rail Steel. 3
Number of o g5 \u oo
Cyecl a -
No. | Stress | 4 Foifure g \O\\o 6 =295 =dI55N
o (kg/mm?) & 40 \
21 4.7 44.5%10° 3 o) <Q
7 429 710 g g |
4 414 155.0 &
27 38.7 252.0 30
37 36.7 367.0
3 36.2 909.0 B 10° 10° 107
30 35.7 399.0 Number of Cycles to Fallure N
78 34.8 1580.0 Fig. 5. S-N curve of Rail Steel computed by

the Least Square Method.

plotted points in the diagram indicate the respective test results. As the results of

computations by the least square method, the most probable S-N equation is obtained
as follows:

S-N equation : 6—295=415.5 N-0.308
Endurance limit: 6,=29.5 kg/mm?®
and the correlation coefficient becomes : r=—0,95537

The solid line shown in Fig. 5 is the S-N curve thus computed. Fig. 6 shows
the relation between the endurance limit ¢, and the absolute value of the correlation
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coefficient », and Fig. 7 shows the
09554 ! .

[Vlmax== 095537

linear correlation between x and y,
that is the S-N relation plotted in

log-log. scale,

// N
09553 \\
A
the values of parameters A and m
P 0952 ,5 29 & 30 3
are kept constant), and by means Endurance Limit 6. @,2
w 'mm

of Eq. (14) the probabilities of Fig. 6. Correlation Coefficient vs. Endurance
failure P corresponding to the Limit for Rail Steel.

Next, the values of endurance

limit corresponding to the experi-

mental values are calculated (where

Correlation Coefiicient Irt

A Table 2. Endurance Limit & its Proba-
12 t\l bility of Failure correspond-

ing to Experimental Value.

1l N

3 © ogr kg 2 Probability
? 10 \ G =295 Ymi No Engﬁ;?? ce Order of Failure
S ‘ Y
§ 09 ‘&\ T (kg/mmz) v P—nJrl
[a) !
3 o\o 30 27.95 1 0.111
> 08 N 37 28.74 2 0.222
o7 No 21 29.44 3 0.333
) \ 77 29.69 4 0.444
%525 50 55 6o 5 Zj zg;z 2 8223
x:[ogaN : >
3 30.19 7 0.778
Fig. 7. S-N Curve of Rail Steel plotted
by Log-Log Scale. 4 31.02 8 0.889 |
values of o, are deter- & 10 | i f
. . QLJ ~23.0 4563
mined as shown in Table %08 PIp( e 7
2 and graphically in Fig. "%05 g
8. The calculated results 9, y
_\j‘ 0‘7 /Q
by the least square method §
Y S0 yo
of the most fitted curve as &
the distribution function 052 21 28 29 90 3 2 33

Endurance Limit 6., "%nd

of o, for these computed ) )
Fig. 8. Cumulative Distribution Curve of Endurance

points are as follows: Limit for Rail Steel.
— 4 563
e . oo Gu20)
Cumulative distribution function: P=1-—-e 4450,

Here, the correlation coefficient between X and Y becomes :
r=0.97164
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« . [ S, ~
N Toax=097164_ | §
b — 1 S 50 i
3 1 |_T=445 j%.% &
Y f Trna=097086 - K2 o
§a97 71_,&/—_‘7__\*/7—400 % 045
§ / ~ R P=090
Som \ 2 40\ P=075 ——
5 @ \ g P=050
Q P=025 o .
0 21 22 23 4 25 26 & plor ~ ——
Coeficient U "m 2 010 %QE
——P=00/ ~] =
097 y f . b
~ 25 P|=0 \\\
1
§ Tax=097163 2%0° 10° 0°¢ 107
S ] ~ \:U=23 @A,,,z Number of Cycles to Failure N
§0W1’6 A Fig. 10. S-N Curves of Rail Steel with
§ / ) Parameter P.
)
S
E / \ (b The cumulative distribution curve of
09715 0 ;15 50 g, thus obtained are shown by a solid line
Coefficient T "Fnd in Fig. 8. Fig. 9 shows the relation be-

Fig. 9. Correlation Coefficient vs. Co- tween the correlation coefficient # and the
efficients U and 7T for Rail Steel.

values of T and UU. The S-N curves with
Table 3. Fatigue Test Results of 0'22%

Carbon Steel. the probability of failure P as a parameter

- Strees NumtgerF;fluSgdes are obtained as shown in Fig. 10.
" o (kg/mm?) N (2) Method in which the Parameter A is
1 330 1086400 varied
2 330 643460 Secondly, the similar numerical exam-
3 325 1056700 ple is explained in which parameters o,
4 325 1175300
5 320 1644400 and m are kept constant, another parameter
6 320 1334160 A varies with P, and the scatter of test
7 315 1034700 values is represented as the scatter of the
8 315 920810 parameter A. This computation process
9 310 1339800 is applied to the rotating bending fatigue
10 sL0 2051300 test results of the 0.22% carbon steel.
1 305 1516200 Nineteen experimental values are shown in
12 22(5) i;:;gég Table 3 and S-N plots of these values are
14 30.0 4633980 shown in Fig. 11. The computation results
15 29.5 8471000 by means of the least square method are
16 295 5024150 as follows :
17 292 3442400 S-N equation : a—25.0=316.9 N-0.2762
18 29.2 4146600 Endurance limit: ¢,=25.0kg/mm?
19 285 6407700 Correlation coefficient: 7= —0.87103
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The solid line in Fig. 11 is the S-N

~g

curve computed as above. § 3%

The values of the parameter A cor- z, 34 N
responding to the experimental values § 32 0[33) 6-250=3169N 0212
are calculated (where the values of the % _ ) i
parameters o, and m are kept constant), S o) 00\
and by means of Eq. (14), the probabili- Q§ 28
ties of failure P corresponding to the 2
values of A are determined and they are 107 70° 07
shown in Table 4 and graphically in Number of Cycles o Failure N
Fig. 12. For these calculated values, the Fig. 11. S-N Curve of 0.22% Carbon Steel

. . . . computed by the Least S Method.
most fitted distribution function of A is puted by the Least Square Me

computed by the least square method as follows :

412350\ 0,998
Cumulative distribution function: P=1—¢ (-2

Correlation coefficient : r=0.98678

The cumulative distribution curve of A is represented by a solid line in Fig. 12.

1

Table 4. Coefficient. A & its Probability a L0
of Failure corresponding to ®
Experimental Value. 3 08 S
3
Probability | o 06 /3
No, | Coefficient | Order | of Failure ; g l{éslo e
* 14
A v P=n+1 13 04 —G g (A2250\09%6 -
) [o) I~ P=l-e “l430-A
12 261.2 1 0.05 _§ 0z Q,
19 265.4 2 0.10 & o
17 268.3 3 0.1 0 2% 300 35 200
11 280.1 4 0.20 CogﬁLc(ent A '@/mf
18 2824 5 0.25 Fig. 12. Cumulative Distribution Curve of
8 288.4 6 0.30 Coefficient A for 0.229 Carbon Steel.
9 295.3 7 0.35 % .
7 297.9 8 0.40 % "”OP” ———
16 319.1 9 0.45 ST IR AN S 090
2 3216 10 0.50 8 \\ pP=099
10 332.2 11 055 & %2 — P=] —
6 344.2 12 0.60 § 0 FF:O
345.7 13 0.65 $ P=0i0’
S ) —
14 346.7 14 0.70 o P=025
13 351.8 15 0.75 L P=050
356.1 16 0.80 . _
5 364.6 17 0.85 10 10¢ 107
15 368.6 18 0.90 Number of Cycles fo/F'aélu;e N
Fig. 13. S-N Curves of 0.229; Carbon
1 3716 19 0.95 Steel with Parameter P.
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The S-N curves with a parameter P are shown in Fig. 13.

(3) Method in which the Parameters o, and A are varied

Thirdly, the numerical example is indicated in which the parameter m is kept
constant, the other parameters ¢, and A vary with P, while maintaining a definite
relation between them, and the scatter of test results is reduced to the scatter of the
parameter o,,. This computation process is applied to the rotating bending fatigue
test results of the 0.61% carbon steel. Seventeen test results are given in Table 5

Table 5. Fatigue Test Results of 0'61% E % B ) .
Carbon Steel. 9 Y
Number of Cycles| © \\‘\\§> l —ojlg/
Stress umber ot Lycles H X 6-220=104N I
No. to Failure I \\ DN
o (kg/mm?) g » NS v
1 35.0 108200 © o~
x o .
2 35.0 118080 g 30 ] =
3 33.0 297100 g SO T~
’ 3 28 Q]

4 330 291770 & ‘ S~

5 32.0 402500 26 : *

6 32.0 335900

7 31.0 616900 St 10° 10°¢ 0’

8 31.0 602520 Number of Cycles to Failure N

9 31.0 803600 Fig. 14. S-N Curve of 0.612; Carbon Steel.
10 30.0 2971700

1 30.0 1166840 and S-N plots of these test values are shown
12 30.0 739800 in Fig. 14, The results computed by means
13 29.0 4821600 ¢ the least thod foll .
14 29.0 2911120 0 e least square method are as follows:
15 290 1659200 S-N equation:  ¢—22.0=103.75 N~
16 280 3482000 Endurance limit: o,=22.0kg/mm?

17 28.0 7602100 ) .

Correlation coeflicient: »= —0.95812

The solid line given in Fig. 14 is the S-N curve caiculated as above.
Now, the scatter band in the S-N diagram is drawn adequately as mentioned in
Chapter 3. These two boundary lines of the scatter band are indicated by the dotted

lines in Fig. 14. Taking the following two points on the lower boundary of the
scatter band,

6,=35kg/mm?, N,=7.00x10* }
0,=30kg/mm?, N,=7.40x10° ),

and calculating the coefficients ¢,/ and A’ of the lower boundary from these values
by means of Eq. (10), the following values are obtained :

o,/ =20.61 kg/mm?

A’=108.41 kg/mm?
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In a similar manner, the coefficients ¢,” and A” of the upper bhoundary are
calculated by taking the following two points,

0,=35 kg/mm?,
0,=30kg/mm?,

on its boundary line, the following values are obtained :

N;=1.18x10°
N,=297x10°

a,,” =23.69 kg/mm?
A”=93.63 kg/mm?®

3

From the S-N cquation, the values of g, and A, are as follows:

Ow,= 22.00 kg/mm?
A,=103.75 kg/mm?

These three sets of values (a,,, A,), (¢, A", and (s¢,”, A”) are plotted in the
A—o¢, diagram as shown in Fig. 15 and the relation between A and ¢, is assumed

to be expressed by the two
straight lines passing through
these three points in Fig. 15:
that is, the relation between
A and ¢, is assumed to be
expressed by the following
equations :

A=103.75-3.353 (o, —22)
for ¢,<22.0 kg/mm?

A=103.75-5.988 (s,,—22)
for ¢,.>22.0kg/mm?

o / /0 S~
< 105 ‘\( A-6yCurve ——
R
g
-% J00 \\
~,
~
2 2] 7 23 X

Endurance Limit 6w K9/md

Fig. 15. Assumed Relation between Coefficient A and
Eudurance Limit o, for 0.612; Carbon Steel.

The values of ¢, and A correspnding to each experimental value are calculated
using the relations described above and the probabilities of failure P corresponding

to the values of ¢, is deter-
mined respectively by Ea.
(14). The results obtained
are shown in Table 6 and are
plotted in Fig. 16.

The cumulative distribu-
tion curve of a,,, which is the
most fitted curve for these
computed points in Fig. 16, is
computed by the least square
method. As the results, the

]

T
1

AT

>
>

(¢

>
BN

(%D

Probability of Failure P
R % B

<
—
o

19

20 2i

22

33

24 25 26

Endurance Lumit bur Loy

Fig. 16. Cumulative Distribution Curve of Endurance
Limit for 0.619; Carbon Steel.
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Table 6. Endurance Limit s, , Coefficient A and following distribution function of
its Probability of Failure corresponding . btained :
to Experimental Values. 0y 18 Oblained:
Endurance ] Probability Cumulative distribution function:
No. Limit Coefficient | Order | of Fallj}xre i 58("£2_0>1'847
o, (kg/mm?2) A v P=n+1 P=1—¢ =~ \3B-0,
12 20.61 108.41 1 0.0556 Correlation coefficient :
15 20.98 107.18 2 0.111 7 =0.98925
16 20.99 107.13 3 0.167
6 21.46 105.50 4 0.222 The solid line in Flg 16 shows
21.54 105.22 5 0.278 the distribution curve computed
7 21.60 105.04 6 0.333 by the above method. From this
1 2163 10492 7 0.389 relation, the values of the para-
5 21.96 103.82 8 0.444 t d A di
14 21.98 103.80 9 0.500 meters dy, an corresponding
17 2216 102.80 10 0.556 to a given probability of failure
9 22.30 101.95 11 0.611 P are calculated and then the
4 22.93 98.20 12 0.667 S-N-P curves are obtained as
13 22.94 98.15 13 0.722 shown in Fig. 17.
1 23.00 97.80 14 0.778 In th h
3 23.01 97.76 15 0.833 1 these processes, the com-
2 23.69 93.63 16 0.889 putation of the correlation coeffii-
10 23.69 93.63 17 0.944 cient is very complicated when
the number of experimental values
| ptoo] . are more than twenty because
N 36 / —097—]'
\5 | P=090 the computed error of the corre-
< ¥ . T lation coefficient » must be less
™ P=075
n 3 = than 0.001 (about 0.1% of the
=050
P=025 value of #) and, consequently,
30— R - . :
3 P=0/0 - computations must be done with
3
§ % P=007 Ny the seven-igure  logarithmic
QL -~
=26 P=0 — tables. For such a purpose, it
2 \ [ will be convenient to use a proper
SW0° 108 \ 0% 107 statistical computor.
Number of Cycles to Failure N
Fig. 17. S-N Curves of 0.61% Carbon Steel Conclusion

with Parameter P. R
The computation process pro-
posed in this report is a method which, without testing many specimens on a stress

level, enables to compute the probability of failure P from the whole fatigue test
data carried out on different stress levels. A summary of this calculating method is
given below :

The S-N equation is assumed as
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6—0,=AN" (m>0)

and the probability of failure P corresponding to each experimental value is computed
by representing the scatter of test results by the scatter of any one (denoted as z) of
the three parameters ¢,,, A and m in the S-N equation. The probability of failure
P is plotted by the following equation :

By applying the following equation
P=1- e—k(gT:—LDb

as the most fitted distribution function of z, the S—-N-P curves are obtained.

This process has been applied to the fatigue test results of three kinds of carbon
steels as examples.
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