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On the Laws of Resistance to Turbulent Flow in
' Open Smooth Channels
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Synopsis It is generally considered that differing from the pipe flow, the
flow in open channels has a free surface and waves appearing on water surface
relate to some extent with the laws of resistance on turbulent flow in open
channels. According to the above opinion, inctability of flow is connected with
the mixing length of turbulence; and computing the velocity distribution by
Prandtl’s equation which expresses the flow near the wall, Froude Number is in-
troduced with Reynolds Number in the laws of reistance on turbulent flow in open
channels. Applying this theory, experimental results by authors, Dr. Matuo and
R. W. Powell with smooth open channels can be explained within the region of
sub- and supercritical flow, and, therefore, the difference between the laws of
resistance to turbulent flow in pipes and that in open channels can be made clear.

1. Introduction

Since Prandtl and Kérméan proposed the logarithmic law as the velocity
distribution of turbulent flow .in circular pipes, many authorities have attempted
to explain the results of the experiment with turbulent flow in open channels
by applying the same logarithmic law. It is especially worthy of note that
G. H. Keulegen added —: u,/uz* as the effect of the free surface and the
nonuniformity of the shear force on the wall and 3/x as the effect of the shape
of the cross section to the equation of logarithmic law for turbulent flow in
circular pipes and expressed the characteristics as an open cHannel. However,
expressing the effect of the free surface in this form is intuitive and is
actually neglected as being a small value. Later when R. W. Powell?? analysed
the result of his experiment using the equation expressed by Keulegan, he also
put =0. In the paper3® he published thereafter, he assumed &= -—0.208.
According to Keulegan the additional term for the shape of the cross section is
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p=log.{1-+(2h/By)} when a rectangular section. For example, as 3=0.098 when
the ratio of the hydraulic mean depth R, to the width of the channel B,
R/B,=0.1, then B/k=0.245 if x=0.4, which is negligibly small compared with
the accuracy of the experiment. The value of ¢, however, cannot be theoretically
appreciated as 8 can be done. In this paper the instability of the flow is con-
sidered as the effect of the free surface and connecting it with the mixing length
of turbulence, the velocity distribution is calculated by the same method as
). Rotta®>, W. Szablewski® and an attempt is made to introduce Froude Number
into the equation of the logarithmic law by using Prandtl’s equation expressing

the flow near the wall.

2. Mixing Length and Logarithmic Law
L. Prandtl and Th. v. Karman? assumed that near the wall mixing length
! is proportional to distance y from the wall surface in the case of a turbulent
flow in smooth circular pipes and putting /=¢y, deduced the following logarithmic
law of the velocity distribution.

“ o A+ L1072, (1)
K 14

where # is the velocily at distance y from wall surface, y the kinematic visco-
sity of fluid, «* the friction vélocity which is equal to ,/7o/p. To the frictional
stress on wall surface and p the density of fluid. It was found experimentally
"that the value of A, in Eq. (1) is a constant value 5.5 for turbulent flow in
smooth circular pipes. A,, however, is not a constant value for turbulent flow
in smooth open channels, it being clarified by experiments® by the authors that
it decreases with the increase of the slope of the channel. The fact that the
value of A, in the case of supercritical flow changes remarkably in comparison
with the case of subcritical flow is well recognized in the experiments by
Powell? and Homma%!?. It is considered that this fact is the radical difference
between the flow in circular pipes without free surface and that in open chan-
nels with free surface.

Now it will be assumed that due to the effect of the free surface the mixing
length increases or decreases as follow when compared wilh that of the turbu-
lent flow in smooth circular pipes. When it increases, it is as shown by the
real line in Fig. 1, that is;

for 0,<y<100p f0* -

I=¢'(y—05), (2)
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where LK =kt (u*l /100 u*‘?‘) .

14
for 100y/u*<y: -

I=r(y- 3:)+lw, (3>
where 1,,, which is constant in y—dlrectlon, is the amount of increase of the
mixing length due to the effect_of free surface in the region y>10Cy/u*, and ¢;
is the thickness of laminar sublayer. On the other hand, when it decreases, as

#

0
Fig. 1 - Fig. 2

shown by the real line in Fig. 2, the values of 7, in Egs. (2) and (3) are put
-negative. : o

From the momentum transfer theory proposed by Prandtl, frictional stress
is expressed as

du\du
- 2 4
T == p(u+l ) dy’ (4
If ¢ is put equal to frictional stress to on the wall, Eq. (4) becomes
' du VAlPu¥ey,2 v . . v

dy= —ar ‘o ' ' (55

If the a‘)ove equation is integrated using Eq. (2) and the 1ntegra1 constant
determined from the condition of w=w#*25;/v at y=7,, then the following is
obtained for 0;<Zy< 100y /2c*. '

o= Tog (262, ferr L)1 e

1If Eq. (5) is integrated using Eq. (3) and the integral constant determined
from the condition &€=§, and

E N T A P X MY e AR

at y=100y/%*, then
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N
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14
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Ry s wly
’ w T .

where ' £y = 100k + £, — .

For the value of large y, the following is derived as A, in Eq. (1) from Eq. (7),

= Lamae (L 2ot )
(LA et

As k=x’ when there is no effect of the free surface, i.e. when /,=0, Eq. (8)
becomes the same as the following equation deduced by J. Rotta:®

w¥oy

1
A, = ?(loge4n—1)+ v

If experimental values in pipe flow A;=5.5 and £=04 are taken, the value
of u*5,/v=6.83 is obtained. Therefore, Eq. (8) becomes

S ) TS

-2,

and &, and «’ become respectively

50 = ew +37-27r }

’ (9)
&’ = 0.4+0.01073¢,,.

Regarding the value of r in open channels, x=0.4, the same. as: in pipe flow,
may be used as can be understood from the experiments by the authors® and
by Hosoil?? and from Fig. 7.

8
A e

40 4 8§ 12 6 XH_2%
3.

Fig. 3. Relation between A; and &,
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As is clear from Egs. (8) and (9), A, is a function of &, only. This relation
is shown in Fig. 3, from which the relation between A, and the amount of
increase or decrease of the mixing length due to the effect of the free surface
can he understood. :

3. Instability of Flow and Mixing Length

Now consider a two-dimensional flow on a slope surface. Take x-axis in
the downstream direction along the bottom surface, y-axis vertically upwards
from the bottom surface and put depth: P, time ; £, slope angle: «, mean velocity :

., gravity acceleration: g and am=(1/h)s (#/un)?*dy. Then generally the
>0 :

n
or

momeqtum equatioﬁ becomes1?)
. oh 0 0
*2 — Py ey O
u ghsina—gh cos % amax(um h) 3 t(umh) .

Putting #.,/u*=C,, the above equation is expressed as follows.

Um?

C.i= &h sin «— gh cos agz— am%(umzh)—gt(umh) . (10)

The equation of continuity is

O+ 2 (uatiy=0. (1)

In order to simplify the treatment of the equation, assume C,=const. and

put #n=o%mo+%n’, h=h,+h" when u,’ and I’ respectively represent the small

variations in the mean velocity and water depth caused by small disturbance.

‘Then the following equation is derived from Egs. (10) and (11) by neglecting
the small terms.

2h/ 25/ 27,7
(&l c08 Mamum‘z’)g_h - ZAmumogx%t"%%

xZ
—{gsin gy 2%nb )?_’f’ﬁ_?umo, o _qo. 12

(gs1na+cmzh;l bx ~Cooh ot =0. 12)
Since Eq. (12) is always a hyperbolic form,v it can be solved by means of
- Riemann’s integral. An attempt has also been made to solve it by operational

method!®. In this paper, for the purpose of simplifying the treatment, if Eq. (13)

B = Ap exp (yt—iBx) : (13)

expressing a small disturbance of which the initial condition is a simple harmo-
nic form is considered, Eq. (13) satisfies Eq. (12). Putting y=y,+4rs, wheny is
divided into real and imaginary parts, the following equation for r, is obtained
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from Egs. (12) and (13).
4/14+8af13+(5a9+b2+4c)f12+(a3+ab2+4a0)r1+a2c+abd dz=0, 14)
where a=200/Cr hm, b= 2amumoﬁ, ¢ =82 ghm COS t—tmthmo?) » @ =3%mo2B/Cn2hum .
In the following #,,, hn will be denoted as u,,, h, respectlvely. If the orders
of the coefficients of the terms in Eq. (14) are compared, assuming #,=200cm/s,
Cn=15, h=lcm, un=1, B=1lem=!, cosu=1 and g=980cm/s?, the coefficients of
the lst, 2nd, 3rd, 4th and 5th terms respectively become 4, 8a=-1.4x10, 5az+b2
+4¢=:3.9x103, a3 +ab?+4ac==7x10% and @’ +abd —d?= —1.2x105. Therefore, tor
1711<5, an approximate calculation is poss‘ible within an error of several percent,
neglecting the Ist and 2nd terms of Eq. (14). As understood below, this condi-
tion is satisfied when Froude Numder is less than 10. Thus y1 becomes as
follows, neglecting the Ist and 2nd terms of Eq. (14). '

(9 8im)F2—1
z«/ L s DFE 1 1}’ (155

2h
where F = #n/y/ ghcosa .
If ap is computed using Eq. (1),
am = 1+(1/)2(0* J10y)2 = 1+ 6.25(at* [e)? .
Introducing this into Eq. (15) gives,

v . YUm ' {1+50(2e* /22, )2} F2— ’
" 2h[ﬂ/ L g 250 w2 Fril’ 1]' , as

According to this theory, when a disturbance is caused, the wave height
of the disturbance increases with the time if y; is positive and dampens if 7, is
negative. If the wave height becomes large in comparison with the depth, this
theory no longer applies. The wave height, however, actually neither becomes
infinitely large nor zero, but becomes stable after attaining a certain magnitud.
Rollwavetrains can be mentioned as one of the most distinguished examples!?,

If 4, is the time required for the wave height to become constant after a
disturbance is produced; to may be considered as being proportional to water
depth £ and contrarily proportional to #«*. Since h/u* =, p/gsing, fo becomes
small when the water depth is small and the slope steep. This is a fact obviously
in the experiment on rollwave-trains.

Next, regarding wa——u*lw/y, it may be considered that 7,=0, viz. §,=0 as
follows, when y;=0. y;=0 means the criterion which the height of the given
disturbing wave theoreticaIIS} neither dampens nor increases. That is, in this
case in order to maintain this wave height, no energy is given to the wave and
no energy which the wave hold decreases, and it is considered that the free
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surface has absolutely no effect on the mixing length.

Since the dimension of y; is [T]~1, r1fo becomes dimesionless, and from the
correspondence of ;=0 and £,=0, &, will be assumed as being proportional to
7160 - Furthermore, as mentioned above, if %, is assumed as proportional to h/u*,
the following Eq. (16) and (17) are obtained from Eq. (15), taking K as pro-
portional constant.

§w = KO(ttn/u¥, F), .(16)
' ® =iﬁ‘[\/ {1-50Cee* /um )2} F2—1 'I ‘
OCum/w, F= | 1+ st ey 7o~ L an
The reletion between @ and F, ta- azs
king ., /w* as the parameter, is shown 220 — Sy
in Fig. 4. Therefore, if K is determi- éalﬁ ) _u_,_',é A
ned from experimental results, the a2 ‘w \,;
relation between A; and F and u,,/«* 1 u . A
. 008 &==10 4
can be obtained from Egs. (8) and Un_ 0
16) o 7
(16)- 0 4 .
: T )// /
4. Determination of K from -a04 e g I
Experimental Results and -008 ==
Laws of Resistance -10-08-06 -04-02 0 02 04 06 08 10
log,F

The authors® once performed eX-  Fig. 4 Reletion between ¢ and F and #n/u*
periments on the thin sheet flow for

slopes between 0.0021 and 0.024, using

a rectangufar section planed wood 3 - T !
flume 40cm wide, 19cm deep and h a. /Sm“?.(:O'OZS _
about 18 m long (effective length 10m), (m -o-c\Loﬂ

but further experiments* were perfor- 2 Nl

med for slopes ranging from 0.025 to” Q

. . . X Sinol= 0.05
0.222, using a rectangular section pla- Wl

ned wood flume 20 cm Wifle', 10cm deep ! é;"n ol =|o, 222 S
and about 5m long (effective length -

3.8 m). ' , ,

Fig.5 shows an example of the water 0 / 2 3
surface profile measured along the cen- distanice fom the errance of the chameed. m

ter of flume, the Wa.tér depth becoming
nea;ly constant from a distance of

Fig. 5 An example of the water surface
profile ’

* The expeiments were mainly performed by Mr, Y, Ishihara, Postgraduate Student,
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about 2.5m downstream from the entrance of the channel. As this depth is
considered the normal depth of uniform flow, the water depth and velocity
distribution are measured at a distance 3 m downstream from the entrance of
the channel. Since the experiment is three-dimensional, if uz*=, gRsin. using -
hydraulic mean depth instead of water depth & is taken as the friction velocity
and Fr=un/y g Rcose( Boussinesq Number145) taken as Froude Number for the

sake of convenience, Eq. (17) obtained as two-dimension, becomes

scwrrd I IEERRRE L. v

The values of A, and ¢ in Eq. (17) computed for uz*R/y>100 from the
results of experiments by authors, Dr. H. Matsuo!® and R. W. Powell?> are
plotted in Fig.6. The real line in this figure represents the curve obtained from
Eqs. (8Y and (17) for K=90. It is difficult to determine a suitable value for
K, because for the reason explained below the experimental values are scattered
widely, but the value of 90 may be considered suitable judging from the experi-
mental results. In Fig. 6 the results of experiments by Dr. Matsuo are distin-
guished as (1), (2) and (8), which respactively correspond to the results obtained
using flumes 70 cm, 35cm and 20 cm wide. ’

’0 K
. . o Thihara,Y agoli & Thoda
No o YIshihara
As e _ o RW.Awell
8t : o [} Z.Matl‘guo (/;
o o H.Malsuo (2
N k% > ¢ e H.Matsuo (3)
4 3
6= : v
3o AR .
® - Ll ey °
4 eo ;0 :_ 0 \DQ o o \\~‘ ')
. ~
M \'\~ P ‘;,% A% [T
e ‘;’r‘\ 4 % ,GlS of d *\o %o
2 '~'.\\.Q » :od oa\
8 o — bo\'\o J

0
-008 -004 O, 004 Q08 02 an

Fig. 6 Relation between A; and @.

Now, as the value of K is determined, the value of £, is computable from
Eqs. (16) and (17) if the values of #,/#* and F are given. Thus, as the values
of & and x’ are determined from Eq. (9), the velocity distribution is obtained
from Egs. (6) and (7). Velocity distribution curves computed by assuming the
value of §, properly and the experimental results obtained by the authors are
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24 :
u 5.~0_ | 1]
-Eﬁ. 20 /‘
E.=-25 ol
[$)] /
1A 4
- ] Lot aa L
/2 | ‘2)__ : ” p,,u)” l l
X > sbpe sinat  dpth hem
V. 3 47s, g%
8 E=1998 4+ o 01332 088
e 00622 102
® 005 e« 1.Of
® 00333 102
4 ® 0025 1.00
e 002 0.71
@ 0005 0.‘22
ol © 0002 344
4 © 8540 2 34 685/ 2 34 65

ury/v

Fig. 7 An example of the velocity distribution
shown in Fig. 7. Although it will be understood from the accuracy of experi-
ments explained below, values of £, obtained experimentally shown in the
figure generally do not coincide with the values of ¢,, used in the computation.
However, the manner in which the change takes place from the turbulent
region through the transition region to the velocity distribution curve in the
region of laminar sublayer agrees quite well, substantiating the fact that the
assumption of Eqs. (2) and (3) is almost correct. (1) and (2) in the figure respec-
tively represent curve u/w*=w*y/y and straight line #/u*=5.5+5.75 logioz*y/v.

As is clear from Fig. 4, the

values of @ for cases u,/u* 1 :%ﬁ%ﬁw
=15 and 20 show no great diffe- As ® o R.W.Powell

. 3 © H.Matsuo 1)
rence except when F is small. a ¢ 9, o o Jo| ok Matsuc @)
In Fig. 8, the results of exper- I 2 Ly Pl P 9
iments and computation are 6 S o & Bo ° N
shown taking the logarithm of 4 o® “"_ ¢ o ‘,’ °p
Fy along the abscissa and A, ° | X A
along the ordinate. For Fz>1, ° ¥ o® 1% K i
the curves of .z, /uz*=15 and 2 —— tb//u:glgo e P g

—— U/ U=

20 almost coincide. From the -— — EQRR(N) L °
results of computation shown in OIO" 2 34 6 8y 2 34 63p

Fig.8, the experimental formu- F’-‘

las will be expressed simply as Fig. 8 Relation between A4, and Fr
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A; =63 as)
for F,<0.89, and
A, = 6.0-5.75 log 10 F z +1.2(logy o F 5 )2 19

for Fp=>0.89. The chain line in Fig. 8 obtained by Eqgs. (18) and (19) agrees
with the theoretical curve except in the region of small values of Fy. If Eq.
(19) is transformed,

A, =6.0-575 1ogmz%':§—5.75 1og10,/7‘+1.2(1og1%%-,/] ¥, (20)

R

where J=sinq. Thus A, is expressed as a function of u,/uz* and slope J.
Fig. 9 shows the relation between A, and J for the cases of #,/#z*=15 and
20. The chain line in the figure represents

A, = —~11-5.75log 1w/ J - @D
10 —
o T/shikara,\luagaki &1 Gode
A o Ylshihara
As : ° o R.W. Fowell
8t | 5 e  H.Mafsuo 1)
& Wl i S frened
AL Ml \ 'i:b‘ 9 '
. S v - C__io p Qn_ ~ °
. = L a .
lep o ‘ ° i 2 |° o[ o -
4 ) ¢ Ty R b o
2 l %\\:ﬁ; 4
) ———— Unfur=15 s o~ o]
——— Ww/i=20 e
. 0' = Eq.(20)
. »8/0-1 2 > 4 :6 8/0-3 2 3 4 6 8/‘2 2 .3 4 6 8/" 2 3

Fig. 9 Reletion between A, and J

! This represents the experimental formula proposed in the previous paper?’-
and corresponds to the case of #,./uz*=17.17 when the last term of the right
side of Eq. (20) is neglected. | '

Furthermore, if A is the coefficient of frictional resistance and ro=Aou%.2/2,
then A=2 (ﬂg*/umjz, so from Eqgs. (18) and (19) and the equation of mean
velocity derived from Eq. (1), the following equation is obtained.

P Fp<0.80: 1/,/T = 2.07-+4.07 logro(Re*1/T)» (22)

F=>0.89; 1/,/7 = 1.861-4.07 log1oF 5 +0.849(log1oF r )?
+4.0710g16(Re*v/ 7)) - (23) -
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‘Fig. 10 shows the rela-
tion between Fz and i, the
coefficient of frictional resi-
stance due to Eqgs. (22) and
(23); using Reynolds Number
R,=u,R/v as the parameter.

R. W. Powell!® used the

experimental. data on ultra- .

rapid flow from the experi
ment he performed and pro-
posed . an experimental for-
mula containing Vedernikowv
Number, a parameter with
which the instability of flow
is appreciated, and Froude
Number. His method of in-

N

00/4 _ A

aorz

001 /

N

/

. //
| Dy
Re=2-10] A
0008 A -
[ [l /[03 // . // =
0006 ' I/OI(‘ . // /ﬁ l//'
2'/04: 4// u.|0~>/
Q004
,0" 2 3 4 6 8 1 2 3 6 8 /0

4
Fr

Fig. 10 Relation between i and Fg

troducing these two factors is not analytical, but his idea is very interesting in .
comparison with the author’s analysed results.

5. Accuracy of Experiment

As is clear from Figs. 6, 8 and 9, . experimental results are scattered widely. .

This reason will be considered from the point of view of accuracy of experiment.

To make it simple, the two dimensional case will be discussed. Putting the *

discharge per unit width as' @, the equation of mean velocity is expressed as -

follows. .

Q/h =A,—— 1 log/gh]h - (24)

v gh]

K

Differentiating the above equation assurning @ and J as constant gives,

11 w*h\dh

- —5g 1°ge,7)‘h" ()

Assuming (1/x)log, #*h/v=20 and dh/h=£0.05, that is an error of 5% exists
in the water depth, Eq. (25) becomes

dA, = F(0.0754,+15). (26)

The chain lines in Fig. 6 represent Eq. (26).

Tt Eq. (25) is differentiated assuming @ and % as constant, it becomes

dA,
a, =

—l(1+ }}— LR g,“*h)d]f @n
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‘Now consider the case of a gentle slope and put (1/x)log.u*h/y =14, A,="7,
then Eq. (27) becomes . '

dAA, = -15d]]], o (28)

and the error of A. becomes one and a half times the error of the slope J.

When the slope is steep, namely F is large, an error of 5¢ is very likely
to occur in the water depth due to the remarkable variation of the free surface
and the difficulty of obtaining the normal depth of uniform flow, and when the
slope is gentle, namely Fj is small, it may be expected that the error of the
slope is comparatively large and from Eq. (28) the error of A, is considerably
large. Although all experimental results are more or less widely scattered, this
can be explained quite satisfactorily with the above consideration on accuracy
of experiment. . ' .

Furthermore, as the bottom svrface of the flume is not. perfectly smooth,
there arises doubt that due to the effect of the roughness, the values of A,
become small and get scattered. The meximum value of ug*/y in the above
mentioned experiments is 1465, so if the average height of unevenness is k£ and
E<0.02mm, it can be regarded as being hydraulically smooth. Although the
roughness of the flume made of planed Japanese cypress used in the experiments
by the authors is not clear, it.is thought that the condition 2<0.02 mm is probably
almost satisfied. In the velocity distribution shown in Fig. 7, the condition of
change in the transition region between the turbulent and the laminar sub-
layer region is different from that of the case qf rough surfac=5. It can also
be conjectured from this fact that the change in A, is not the result of the
effect of the roughness of the bottom surface. Experiment by R. W. Powell is
performed with a flume with a painted bottom surface, concerning which there
is no question. '

6. Conclusion

Connecting the instability of flow with the mixing length of turbulence has
made it possible to introduce both Reynolds Number and Froude Number into
the laws of resistance to turbulent flow in open charilnels.‘ As mentioned at the
beginning the effect of the shape of the cross section is very small compared
with the accuracy of the experiments, and also a comparison of experimental
results obtained with channels of various widths shown in the figure will show
that the effect of the nonuniformity of the shear force on the wall is so small
that the difference is difficult to be distinguished when compared with the
accuracy of the experiment. Therefore, only the effect of the free surface
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produces a remarkable difference between the law of resistance of pipe-and that
of open channel. This is the reason why the effect of the free surface is chiefly
discussed in this paper.

Concerning the instability of flow, investigation by graphical method!” has
also been made hesides many other interesting researches. There are many
problems regarding details of the relation between instability of flow and mixing
length of turbulence. It is considered that together with the very problem of
instability of flow, these are problems for future study.
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