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Momentum Equations of the Boundary Layer
and their Application to the Turbulent Boundary Layer

By
Busuke HupiMoTo

Department of Applied Physics

(Received June, 1951)

The momentum equation of the boundary layer was first found by v. Karman
(reference 1) and was used in the approximate calculation of the boundary layer
problems. Karman-Pohlhausen’s solution of laminar boundary layer (reference 2)
is a well-known one. But as the velocity distribution is expressed by one para-
meter, this method loses accuracy at, and in the neighbourhood of, the separation
point. To improve the method, it is necessary add another parameter to the
expression of the velocity distribution.

The theory of turbulence has already been ‘well developed and much of it is
known but little is known about the turbulent flow with pressure rise and fall. So
it seems difficult to develope a theoretical method of calculating turbulent boundary
layer ; yet if a simple and practical method can be obtained, it will be useful in
the field of hydraulic engineering. Hitherto there have been two well-known
methods, one being that of Buri (reference 3) and the other that of Gruschwitz
(reference 4). Buri’s method is easy to calculate but does not give any reliable
result about the separation of boundary layer. To calculate both the thickness and
the velocity distribution of the boundary layer, at least two equations are needed,
and Gruschwitz uses momentum equation and an empirical relation which is
obtained from his experimental result.

To improve the solution of the laminar boundary layer problem and to solve
the turbulent boundary layer problem, the author has derived an equation of
momentum applying the law of moment of momentum. And a method of calcu-
lating turbulent boundary layer has been developed by using the above-mentioned
momentum eqgation.

1. Equations of Momentum

Take rectangular coordinate axes x and y, x-axis being along the surface of
body, and let # be the x—component, v the y-component of velocity, &, the velocity
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outside the boundary layer, v the shearing stress, p the static pressure, and p the
density of fluid, then the equations of motion and continuity in the case of steady
flow are as follows:

ou _1 dp,1 or

6x+vay p dxt o "8y’ (15
Ou  0v

‘5’—‘+5§ = (. (2 )

Integrating eq. (1) from y=0 the surface of body to y=4, & being the boundary
layer thickness, '
d

dxg udy— uodd S udy 6qu:° % , (3

where 7y is the shearing stress at y=0.

Eq. (8) is the Karman’s momentum equation (reference 3) and this can also
be obtained by applying law of momentum.-

Multiply » on both sides of eq. (1) and integrate from y=0 to y=4, then

d(s o .d (3 (8 _ %y duy_1(3
dxsouzydy uoﬁdxgoady Souvdy— 2 "dx pgordy. (4)

This equation can also be obtained by applying
law of moment of momentum. Take 2 small
portion OABC of the boundary layer as shown in ¢
Fig. 1 and consider moment around O, then /17

4P 4x

8 i3

d (3 d (3 3
asopuzydy dx— ”°63}So oudy-dx— Sopuvdy -dx p

is the excess of moment of momentum around O
which is carried away by the outgoing fluid from
the region OABC. While

——

H

_EQ — 8 . = 52140 dug
5 dxdx Sordy dx = 5 dxdx S tdy-dx

is the moment of force acting on the fluid in OABC. Equating these two quantities
eq. (4) is obtained. ’

Egs. (3) and (4) hold in both cases of laminar and turbulent flows and in the
present calculation these two equations are applied.

2. Velocity Distribution of Turbulent Flow

To apply eqs. (3) and (4), velocity distribution in the boundary layer is to be
properly assumed as in the case of Karman-Pohlhausen’s method with laminar flow.
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Assuming velocity distribution changes gradually in the direction of x, velocity
distribution in the boundary layer is expressed as follqws:

o = FD+A-DGm, (5)
r
5

As F(3), the velocity distribution on a flat plate placed along the direction of
uniform flow is taken. The shearing stress distribution in the boundary layer is

where ¢ is a dimensionless parameter, F(3) and G(y) are functions of 3=

assumed as follows:

:-(; = 1-0.2259—2.55%%+ 1.775%° . (6>

The second term on the right hand side is determined after some theoretical con-
sideration assuming ligé is not so large, v being the kinematic coefficient of
. viscosity, and this distribution agrees with experimental result (reference 5). And
mixing length [, in the boundary layer is assumed from the experimental result of

Schultz-Grunow as shown in Fig. 2 and Table 1. Then,

Table 1.
20 10 . n % ECn) _ ;z: f
Em) / G| 10F

‘ . o | o — —
e - 7 ¢ 0.05 | 001967 | 102345 | 50.395
/’ ‘ / 0.1 0.03513 | 82795 | 27.800
e R~—V,. 06 . 015 | 0.04737 7.1120 | 20.192
\ r 3 A('n 0.2 0.05660 | 6.1959 | 16.453
sl /| o4 03 | 006765 | 47579 | 12.809
| 04 | 007168 | 3.5774 | 10.946
| /\ 05 | 007220 | 25553 | 9514
4if ~ 02 06 | 007220 | 1.6799 |  7.961
J m\ 07 | 007220 | 09693 '  6.222
0 0 08 | 007220 | 04413 | 4300

02 o4 06 08 n 10

Fig. 2. 0.9 | 007220 | 0129 | 2232

1.0 | 0.07220 0 0

-

Integrating above equation numerically and putting ;;%’;Fco and 0=17¢,,

: A

F(p) =1-0E(p). (7)
o is equal to the ratio between friction velocity and u,. E(%) is a function of ¥

and is shown in Fig. 2 and Table 1 with %%: The calculated result exactly coin-
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cides with the measured velocity distribution of Schultz-Grunow (reference 5).

As G(%), the extreme case of the state of separation of boundary layer is taken.
When the boundary layer is in the state of separation, the shearing stress distri-
bution may be assumed as follows:

= const. y(1—79)2. (8
Assuming the mixing length I is constant throughout the boundary layer,

(%2)2(‘;—?)2 = const. (1 —»)2.

Inregrating the above equation and by the conditions G(»)=0 at =0, and G(3)=1
at y=1, s .
. G() =92(.5-1.57). (9>
Values of G(3) are given in Fig. 2 and Table 2.
" Combining F(3) and G(%) as eq. (5), the assumed velocity distribution when
. 6=0.04 becomes as shown in Fig. 3.

Table 2.
dF’ dG
/() Al 1.0
n F’(n) an G(n an -
, A
0 0388 | — 0 0 .
08

0.05 | 0639 | 1.600 ' 0.0271 : 0.7965
0.1 | 0702 | 0.9163 | 0.0743 | 1.0672

0.15 | 0744 | 0.7248 | 0.1322 | 1.2345 06/ 257 V)
02 | 0777 | 0.6136 | 0.1968 | 1.3416 ' / é/%m
03 | 0833 | 04778 | 0.3368 | 1.4378 oall ;’ /
04 | 0876 | 0.3918 | 0.4807 ! 1.4231 // / Teo08

0.5 0.912 | 0.3214 | 0.6187 | 1.3258 -

o2

06 | 0942 | 0.2628 | 0.7436 | 1.1619 : / )
07 | 0966 | 0.2002 | 0.8496 | 0.9413
08 | 0983 | 0.1432 | 0.9302 | 0.6708 0 e ae—an i

0.9 0.995 | 0.0852 | 0.9819 | 0.3558
1.0 1.000 0 1.0000 0

Fig. 3.

In obtaining G(y), it is assumed that the mixing length is constant but this
is too much idealized. Assuming thg same shearing stress distribution and taking
% as shown in Fig. 2 by broken line which is estimated from Nikuradse’s experi-
ment (reference 6), the velocity distribution in the state of separation becomes as
shown in Fig. 3 marked by G,().

There is another experimental result on the flow along the flat plate obtained
by Nikuradse (reference 7) besides that of Schultz-Grunow. Nikuradse’s velocity
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distribution is shown in Fig. 3 by broken line and marked by F/'(3). If F'(3) is
applied,. '
=+ A-6G@). 10)

/4
Table 2 shows numerical values of F’(3) and % with G(y) and %572

3. Several Quantities of Velocity Distribution

Let ;=7 (z) and
S:fdﬂ =k, S:fzdp =k, S:fzvd,? = k3.':~
S: fS:fd”d’?= ks Sl S: g;ﬂdﬂdﬂ = ks, S fSn afdvdw; = ke,

then the displacement thickness 6* aad momentum thickness 8 of the boundary

layer are
0% = (1_k1)6’ 6 = (kl—kZ)By
_ ot 1-hk
and H= 0= Fsh N an
From eq. (2) .
- (" 0u
v= So 9z
and
fduo ﬂ.a_,f.@+ of d:c
oy dx ' Y%k
hence
3 —- dugy 2.d0 2 3, 0K
Souvdy—— N e R . (12)
The shearing stress 7 is given by 0010
] 7 \ ’
of e =005
— P =
T 0( ) (67]) ’ 0008 /'—\K
but in the calculation of F() and G(3), / / X.zs\\
different values of the mixing length [ 0006 \
in the neighbourhood of %=0 are taken, / / /\\\0_5 \\
80 in calculating t the following relation 0004 — \
is applied: 075 \\
; 0002 \ \\\\\\\
T 1, 10
LI 3
o (4 &) a9 \Q§§
0
where 1,=0.07223, and [, is the mixing . a2 ‘;" . o6 08 10
ig.

length used in the calculation of F(#).
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The shearing stress distribution when ¢=0.05 is shown in Fig. 4. The assumption
of eq. (13) is crude and quite arbitrary and has no theoretical foundation, but since
the knowledge about mixing length is scarce, this equation is applied in the present
calculation.

Calculated values of ky, ks, etc. are as follow:

ky = 0.5714+0.4286x - 3.5080x ,
k2 = 0.4375+0.2679x — 1.8750x + 0.2946x2 — 5.1410x2 + 23.9022 ,
ks = 0.3214+0.1190x — 0.8036 0+ 0.0595x2 — 0.8840x2 + 3.32522 ,
ky = 0.1631+0.2452x —2.0050k + 0.0917%2 — 1.5000x2 + 6.1002x2 ,
ks = 0.1582 —0.1256k+ 1.197 9k — 0.0323«2 + 0.6130x2 — 2.7602x2 ,
ks = 0.2178—1.821¢+0.0917x — 1.5000% + 6.1002%¢ ,

1 T
k7 = So {;M_gdﬂ

= 0.006109 —0.012218x+ 0.102050x + 0.006109x2 - 0.10205¢x2 + 0.4840%x2 .

. : : g o*
Fig. 5, Tables 3, 4 and 5 show the value of 5 and H =g
020 30
6 — =005

r e =008 | H
Y S \\ A S SN N 77003 126

R =\~ F)

N s <

012 §\ BRSN 2
. D 22

NN NS
N NN
. \ \\ \
008 N D 18
”\}\\ \‘\\\ \
\\\\ O .
0.04 RGN B 1.4
S R
1
0 1.0
o0 0.2 o4 06 08 1.0 12 x r4

Fig. 5.

In the case of velocity distribution of eq. (10),
' k1 = 0.5714+0.3041«,

ks = 0.4375+0.2022x+0.1413x2 ,

ks = 0.3214-+0.0908x+0.0323x2 ,

ks = 0.1633+0.1737x +0.0464x2 ,

ks = 0.1582 —0.0844x —0.0142x2 ,
ks = 0.1530+0.0464« ,

1 T
k'l = So p—u?’dﬂ
= 0.00542 —0.00625x+ 0.001963x2 .
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Table 3. &=0.03. Table 4. &=0.04.
k| S| H | AUD | fUD £ |5 | H | AUD | faGD
0.1 |0.1435 | 2.762 |221.6 0.9743 0.1 |0.1422 | 2.811 |264.1 1.148
0.2 | 01498 | 2429 | 39.63 0.1663 0.2 |0.1479 | 2508 | 48.73 0.2056
03 [01529 | 2169 | 17.42 0.06705 03 |0.1511 | 2.264 | 22.01 0.08619
04 | 01527 | 1.959 | 9.534 | 0.03234 04 {01517 { 2.065 | 1236 | 0.04334
05 |0.1493 | 1.788 | 5770 | 0.01650 05 [0.1498 | 1.899 | 7.685 | 0.02314
0.6 |0.1427 | 1.644 | 3.688 | 0.00841 06 |01454 | 1.759 | 5.054 | 0.01236
07 |0.1328 | 1.523 | 2.426 | 0.00407 07 101384 | 1.639 | 3.436 | 0.00636
08 |0.1197 | 1.420 | 1.612 | 0.00174 0.8 |01288 | 1.537 | 2375 | 0.00289
09 |0.1033 | 1.331 | 1.061 | 0.000537 09 | 01167 | 1.449 | 1.647 | 0.000944
1.0 | 00837 | 1.257 | 0.6715|-0.000017 1.0 | 01021 | 1.375 | 1.125 |-0.000078
1.1 0.0609 1.197 ; 0.3805 | - 0.000188 1.1 0.0849 1.313 0.7323 | - 0.000507
1.2 100652 | 1.268 | 0.4040!|—0.000512
Table 5. 0=0.05. Table 6.
e | L | H | AGD | AGD £ | B | AUD | RUD
0.1 |0.1400 | 2.863 | 272.9 1.196 0.10 | 0.1427 | 2.790 | 210.8 0.6100
02 | 01459 | 2591 | 58.31 0.2464 0.15 | 0.1460 | 2.623 | 77.73 0.2206
03 | 01489 | 2.368 | 27.50 | 0.1087 0.20 | 0.1486 | 2.475 | 42.94 0.1184
0.4 | 01500 | 2.182 | 1595 | 0.05706 0.25 | 0.1506 | 2342 | 27.90 | 0.07412
05 |0.1491 | 2.025 | 10.20 0.03173 030 |0.1518 | 2223 | 19.42 0.04930
0.6 | 01463 | 1.891 | 6.896 | 0.01771 035 | 0.1523 | 2.116 | 14.36 0.03437
0.7 | 0.1416 | 1.775 | 4.825 | 0.00345 0.40 | 0.1521 | 2.018 | 10.93 0.02449
0.8 | 013490 | 1676 | 3.443 | 0.00462 045 | 01512 | 1.930 | 8.506 | 0.01762
0.9 |01262 | 159 | 2477 | 0.00146 050 | 0.1495 | 1.850 | 6.739 | 0.01273
1.0 | 01157 | 1517 | 1.773 |-0.000258 055 |0.1472 | 1775 | 5.406 | 0.00923
1.1 |0.1031 | 1.455 | 1.237 {-0.00111 0.60 | 0.1442 | 1707 | 4.387 | 0.00666
1.2 | 00886 | 1.407 | 0.800 [-0.00132 0.65 (01404 | 1.644 | 3.587 | 0.00474
070 | 0.1360 | 1.586 | 2.953 | 0.00332
075 |0.1309 | 1.533 | 2.431 | 0.00225
.0.80 | 01250 | 1.482 | 2013 | 0.00147
0.85 | 0.1184 | 1.436 | 1.667 | 0.00089
090 {01112 | 1.393 | 1.381 | 0.00048
095 |0.1032 | 1.354 | 1.134 | 0.00019
1.00 | 0.0945 | 1.317 | 0.930 0
1.10 | 0.0750 | 1.254 | 0.611 [—0.00018
1.20 | 0.0527 | 1.208 | 0.443 |-0.00019
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In this case, it is assumed [2=0.0680 which is the value obtained in the experi-
ment on the flow in the boundary region of two-dimensional free jet. Numerical

values of % and H are shown by broken lines in Fig. 5 and in Table 6.

4, Momentum Equations for Turblent Boundary Layer -

From eq. (1) . .
@ f -d”°(2+H) —c, - )
P”o
From eq. (4)
0.4, 0. g dEs =0, e

where ¢i1, ¢2, ¢3 and ¢, are functions of x and o¢. Replacing & by 6§ iﬁ eq. (15)
and combining with eq. (14),

de _ _¢2 duy_¢s -
Nz Tuy dx 0 @

where ¢1, ¢2 and ¢3 are functions of £ and ¢..

= GCks—ky) 2ks—kr—ks d(la—k)
¢1 de k1"'kz _dli +k6 *

=B ok,

G2 = kot ks— ;
¢3= C(2ks—k1“ks)+k7(k1—kz) .
Again replacing £ by H, eq. (16) becomes as follows :

dH _ _ACH) | dus_ f:(H)

ekl iy B - an
H(H) and f,(H) are functions 16 7
of H and ¢ and they are shown f(#) ,"/
in Pigs: 6 and 7 for 0=0.03, s
0.04 and 0.05 and in Tables 3, — ey
4 and 5. In this calculation szl | ~ =003 W/
it is assumed that //
{= 'T—o‘z = x2g2 s ’ /// //
0] A /.
, yz y/
2=y being the value of ¢ 4 /_,/ Z! : — )f/
25 22 JL
for F(%). o "'/% g 10
In the case of velocity dis- 2 74 1.6 18 20 22 24 H 26

tribution of eq. (10), ¢=¢,= . Fig. 6.
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0.00212 is assumed and the oos

calculated results are shown in  £(#) ,’/ /
Table 6 and in Figs. 6 and 7 o0« Vi
. ——0=005 iy

by broken lines.* =G =004 / / / J

By solving egs. (14) and 003 72003 /"’. 4 /’,I,
(17), the thickness of the , Vi / ' /
boundary layer and the velo- coz ;// / : /,1
city distribution in the boun- v PN
dary layer are determined. The 207 g LA
velocity distribution at the A =
seperation point is given in or.'z"""“:'—:l;/ s 2o i za W is

Fig. 3 and the value of H is
2.646; hence the separation
point, if it exisfs, is determined by H=2.65. On the other hand, in the case of
accelerated flow, if x reaches 1.1~1.2 according to the value of ¢, the velocity
distribution maintains the same form in such a region of flow unless x diminishes

Fig. 7.

with the decrease of pressure gradient.
£2(H) consists of two factors, one factor being a function of A, and the other

¢. Let c=e(lﬁ,)* and fo2lH)=Cf;(H), then from eq. (17)
I

GlUof, Uy d__H) — fS(H>E
v | ug dx( H(H) dugy AEH)

£ U GH

Hence, if FCED  dug

meter (1)1 0. 4t
Vv Uy dx

author do not give a single relation between H and Buri’s parameter.

is a function of H alone, H is determined by Buri’s para-

But results of the experiments of both Gruschwitz and the

5. Simplified Calculation
To calculate the boundary layer thickness and velocity distribution, it is
necessary to solve simultaneous djfferential equations numerically. But fortunately,
the momentum thickness can be calculated independently by the method originated
by Buri, and this makes calculation easier than when simultaneous equations have
to be solved.
In eq. (14), assume H=1.4, then

af g 40 duy _ o v \i
dx 34, dx_e(uoﬂ) ’

*  Gruschwitz’s empirical relation can also be transformed into the same form as eq. (17).
By using the velocity distribution of eq. (10) corresponding values of f;(H) and f,(H) are
calculated. These values increase with /4 but their numerical values are smaller than those
values given in Figs. 6 and 7.
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hence

U\ g _ 1 (5,

( y ) i = {4ESuodx+copst.}. o
From results of several experiments, the author has obtained £§=0.0136; hence

(M)*0=%%{0.017S:u3dx+0}, o - a®

14

where C = {usﬁ(l—‘:—ﬂ)*}”o .

This formula yields good resuits except in the neighbourhood of the separation point.

From eq. (17) for two points x and x+ 4x, the amount of change of H in
the distance of 4x is given by the following equation :

4H = ~ FHY R fy (T (19
By using the value of 8 calculated by eq. (18) and values of uo, duy, /HL(H) and
f2(H), 4H can be calculated and H is determined. '

6. Examples of Calculation
The above-mentioned method is applied to the experimental results of Gruschwitz.
Calculation has been carried out by solving egs. (14) and (17> by Runge-
Kutta’s method. Fig. 8 shows the measured velocity and calculated velocity

,-6' I
u | pemo—ot- X=/5.85CM
W;“ / o= 19.35
o / Y A4
; ) / o 23.48
12 / / I 27.05
" / A oD 37.24
- a =’—-J.—-_
;; o//° /9:;/ /‘ | S
10 A + —
.;, / o 7 2 / // /W%
// Y L 2= = :
o8t o/ v &//’/r/’/’
- o~
4 L~
0.6 ,1// 'Qr/z f/ /(
L~ ="
/’//
o4 /1// -
o d . V B
/ / Aerofoil ol=12°
4 W,=30.8 m/s
02 - <
[+ H 2 3 4 2 6 7 8 Q. 170
y mm

Fig. 8.
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distributions in the case of aerofoil at an angle of incidence «=12°. The boundary
layer thickness and velocity distribution in the transition region from the laminar
to the turbulent flow can be roughly estimated by the present method as shown in
the next paragraph. Still, there is doubt as to whether eq. (17) can be applied to
such a region or not. ‘So to compare the calculated results with the experiment
in the region of turbulent flow, velocity distribution at x=15.85 cm where the
_turbulent flow is well developed, is assumed and those on the downstream side are
calculated. Points show the measured velocity and the lines are those calculated
by taking ¢=0.05 and broken lines are those calculated by using the velocity dis-
tribution given by eq. (10). Fig. 9 shows the case of the test series No. 3 where

0 T T
y_ GO~ X= 4172 cm
We ’ 46.72
o8 '
5172
56.72
0.6 e ’4——"3:_‘
/ ’//——
4’4/
04 —
Jest Series No.3.
W,=238s5m/s
02 o /"
0 10 12 4 16 8 20
. y mm
Fig. 9.

it is assumed ¢=0.04. The calculated results coincide with experimental results
fairly well but some difference is observed. Numerically it seems better to use the
velocity distribution of eq. (10) and f1(H) and f:(H) deduced from it, though its
application is limited to the case where the surface of body is smooth and Reynolds
number of the boundary layer is not large.

7. Transition Region on the Flat Plate

In obtaining eq. (17), it is assumed that the velocity distribution is expressed
with a single parameter £, and that a single relation holds between velocity distri-
bution and shearing stress distribution connected by the mixing length which is a
function of 7 alone. So eq. (17) can be applied only when the velocity distribution
changes gradually in the direction of flow, and it is not correct to apply this
equation to the transition region from the laminar to the turbulent flow. Yet it is
of some interest to estimate the length of transition region.

The case of the flow along a flat plate placed along a uniform flow is considered,
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and it is assumed H=2.65 at the beginning of the region. In this case egs. (14)
and (17) become as follows:

af _ dH _ _ fo(H)
dx=¢ ad =" "
or f4H _ _df .
f(H) [ *

These equations can easily be integrated. Fig. 10 shows the variations of H, @

and ¢ along the flat plate; x is the distance 3

measured from the point where transition begins Z 1'3"”

and 6o is the momentum thickness at the end [ T,

of the laminar part. A diminishes with x and 2 T
the velocity distribution approaches to the re- H

gular one assymptotically. o / s

For example, if the length of transition ¢ ‘

region is assumed to be approximately 1506,, '

A 05 being 0.03 cm, then the length of transition

will be 4.5 cm, and this value agrees fairly well 0 - 7 00 X 150
with the experimental result of Gruschwitz. o Fig. 10, 6.
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