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Heat T ransferj by'Na_tural Convéction in Laminar
Boundary Layer on Vertical Flat Wall

By

Sugao SucAawArAa and Itaru MICHIYOSHI

Department. of Mechanical Engineering

(Received May, 1951)

In this paper, we have studied theoretically the heat transfer by laminar natural
convection from a hot vertical flat wall to the surrounding fluid. This problem
has already been theoretically studied by Poblhausen,” but his metbod is very
troublesome and since he uses Schmidt and Beckmann’s?’ experimental results for
air, Pohlhausen’s solution is not applicable to other kinds of fluids except air. We
bave analysed this problem for gas and liquid by means of three different approxi-
mate methods, and compared each result with the other.

- 1. Fundamental ordinary differential equations

For the steady flow past a vertical flat wall, which is at temperature T,
(absolute) and contacts with the fluid at temperature Tp, the equation of motion,
the equation for thermal equilibrium, and the equation of continuity are

Ou ou 0%u -
a.154—1)—(,)7~y——g{3(T To+v 5 T’ (1)
oT oT 0T
upotv By = Ra By7 (2)
and . :
Ou.  0v._ . . )
ox oy T (3

respectively, provided that the temperature difference between. the wall and the ﬂuid
1s small as compared with the absolute temperature. In the above equation, T, v,
k and B are absolute temperature, kinematic viscosity, thermometric conductivity
and coefficient of thermal’ expansmn of fluid, respectively, and g is the acceleration
of grav:ty, and velocity «# and v, and coordinates x and ¥y are shown in Fig. 1 When

1) E. Pohlhausen: Forschung, Vol. 1, 1930 p. 391.
2) E. Schmidt and W. Beckmann: Forschung, Vol. 1, 1930 p. 341.
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the temperature of heated surface of the vertical wall
is not constant but varies in the direction of the

are constant, Egs. (1) and (2) become

height x, such as 7i= Ty+ Bx%, where Ty, B and ¢

u ou Ou 0%u
“pr TV 8y =gB(Ti—T) O+vH Byt ? 4
06 o@ _ 4, 0%8
y u(ox +56) 05y ~h oy 5
where

0 ! T 7
. - — 0

Flg.l. @—Tl_n. (6)

The boundary conditions are u=v=0, =1 at y=0~ and =0, =0 at y=co.

The partial differential equations can now be transformed into ordinary diffe-

rential equations by ‘the substxtutmns

t=Ax"%y, (7)
¢ = AL «(®), (8)
6 = (&), (9)
where A is a function of x, and ¢ is the stream-function defined by
00 - __ 08
u= 0y’ U= "%y
so that o
% d
u= A" 72— 10
v=—[was crapans ng +3Ax He—yAry %y—fi{g], an
where the dash indicates the first d1fferent1a1 coefficient of x.
The equations for ¢ and ¢ are
d3¢ Al d*c A" \de\?, gB(h—T) p
g +(3+4A %) ¢ < de (“4,4 ")(de) T gege 0=0 (2
dz 19 A’ dd 1Y de o _
aget (3+4A %) ¢ <t 4pag =0 (13
When we put
_[&B(hi—T)V% _[&BB4  ess
A—[ 4% ] —[41/2 * <_14)
in Egs. (12) and (13), they become
d% g d* _ de\? ., o
dEtBroc S -2 (9E) va =0, (15)
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d}

52+Pr(3+e)cd$ 4Pr€ =0, (16)

d&

where P» is Prandtl number (equal to v/k), and the boundary conditions are

-0 - —0 8¢ _ =
an

dg
da&

Egs. (15) and (16) are the fundamental ordinary differential equations, and
they will be solved with the boundary conditions (17). Now, suppose ¢ is equal to

=0 9=0

= 00

zero, that is, if the surface temperature is constant, two equations become

a3 dz¢ d¢ -

gt dez (de) +#=0, « asy-
a2 »
3PSl = | (19)

which have been given by Pohlhausen. Pohlhausen has solved these equations for
air in the form of power series, adopting Schmidt and Beckmann’s experimental
results as the value of d&z \E _p2nd Z& \E .o Therefore its solution can not be
applied to other fluids. But we think that Eqs. (15) and (16) or Egs. (18) and
(19) may be solved for any kinds of fluids by means of Runge-Kutt2’s® method,
in stead of Pohlhausen’s, but since this method is very troublesome to calculate, we
have analysed by the following three approximate methods.

2. The first method

When the fluid flows along a wall, the boundary layer exists near the surface
of the wall. Now let & be the thickness of the velocity layer and ¢’ the thickness
of the temperature layer, then the momentum equation for & becomes

d (3 _ (] _ - .a"
S oay = 0eB(T- T dy-p(34) 20
and the energy equation for ¢’ becomes
d % 57
A N

Since the pressure is constant (the variation of pressure with height is neglected),
the density o for fluid is expressed by the equation

o=oo [[1+8(T- )] ' (22)

3) C. Runge: Mathematische Annalen, Vol. 46, 1895 p. 167.
W. Kutta : Zeit. f. Mathe. u. Physik, Vol. 46, 1901 p. 435.
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and in the case of gas
oT = po Ty, @3)

For gas, Eqs. (20) and (21) are transformed by using Eq. (23):

Ll ea-ef-Boo(Z),,, o
a o u(i-F) ar = ‘k[gf);("%)]y=o- (21)

For liquid, B is less than the thermal expansion of gas, and is so small that
B(T— Tp) is less than (T — Tp)/ Ty: therefore, we can neglect the variation of
density p with temperature when the temperature difference ( 71— 7p) is small as
compared with Tp; hence Eqs. (20) and (21) become

N W
L ur-may=-#(Z) . 1)

Here the suitable approximate expressions for # and 7 which satisfy the boun.
dary conditions are demanded. For this purpose, we approximate # and T to the
following expressions containing unknown factors:

u= Ao(x)+A1(x) y+Ax(x) y2+ As(x) ¥, 24
T = Bo(x)+Bu(x) y+ Bx(x) y2+ Bs(x) 33, (25)

and decide Aq, By, A1, By, etc. from the following boundary conditions :

For u—
(i) u=0 at y=0
(ii) u=v=0 at y =0, hence from Eq. (1)
0%u |
g8 T T)+v gz (=0
(iii) u=0 at y=290
. ou ] L
<1V) ‘a&‘ =0 at y -\—' 0.
For T—
(i) T=1 at y=0
(ii) u=v=0 at y=20, hence from Eq. (2)
T | _
B3 |y=0 =0
(iii) T=T at y=1d¢
Giv) T o at y=0.
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Then we obtain # and T as functions of y/é and »/é’:
_&(TL—-T) y y
s[5 2 () (5] 26

9=le by 322 (2). @n

Because the natural convection occurs owing to the difference of gravitational
forces due to the temperature difference in the fluid, we can consider the velocity
field is closely related with the temperature field. Now, we put ¢ as approximately
equal to ¢/, and we use only the energy equation for the temperature layer, and

assume ( 71— Tp)/ Th<<1 for gas, so that from Eq. (27) we can obtain

L _ i (h-T\[{_3 l(Ls ’
T = ( T )[l 25 T2 a')] .27
to a sufficient approximation. With these expressions for # and T, the energy
equation (21’) becomes

d 1
R ACOLS 1 - @®
whén the temperature of surface is constant.> (The following discussion is only
for the case of the constant temperature of surface.) This equation can be solved
easily, and we obtain the following result from the boundary condition that &’ =0
at x=0:

. % p,-%[e(h~T)
& =[210] AT ] (29)
Similarly we obtain for liquid by using Eq. (217,
# = [210)% p,~ % [£E T - T))- 29)
The local coefficient of surface heat transmission at x is given as follows:
I S (?1
= =gt (55 ) smo 30
And the mean coefficient of surface heat transmission from -zero to x is
1 2
O = ?So UsdXx. 3L

When we use Eqs. (27), (80), (31) and (29) or Eq. (29’), we obtain the following
relation among non dimensional numbers Nu,,, P and G- for both gas and liquid :

Num =0-525 P % G, (32)

4) For the case where the temperature of surface is not constant, we have prepared another
paper that was read at the lecture meating of J. S. M. E. at Kobe, Dec. 3, 1949.
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where
Nuy = -"’fi Nusselt number

P, = w% Prandt] number «

- 3
Gr = &B( ,,71;& o # Grashoff number,

and in the case of gas,
o & T T2
v2 Ty
This result agrees well with Schmidt and Beckmann’s experimental results for
air which are shown in Fig. 3, but the velocity gradient on the surface in the
direction of y is about 8% higher than their experimental results.

3. The second method

In the first method, we have assumed that « is independent of 7 and that the
thickness of velocity layer is equal to that of temperature layer. But for the natural
convection, the velocjty distribution is closely related with the temperature distri-
bution, so that it becomes necessary to consider the relation between temperature
field and velocity field. For this purpose, we assume that velocity « is a function
of temperature 7°, that is,

u= f(T).
Then Eq. (1) becomes
d oT oT 02
a7 (e ga o5y ) = 88T T+v gL,
and by putting Eq. (2) into this equation,
0T du _ . [(_01)2 d*u_, 0T i&]
koytar = 8T - To+v|\5) gret oy ar ]’

and by using Prandtl number, the above equation becomes

du  Pr—18T (8T \-2du_, gB(T— T){ 8T \"2 _
V7 I T (6y) ar s (6y) =0. (33
By substituting 8 for 7', Eq. (33) is transformed as follows:
du _ Pr—10%0 (00\2du  gB(Ti=T) o(86\2 _,. ’
a6+ p; 6y2(8y) gty e(ay)_'o' (339

This equation expresses that, when 96 /0y and 026 /dy? are given as functions
of @, the relation between # and T is obtainable, and that this relation varies with
Prandtl number which is constant for gas. [For liquid, Prandtl number varies with
temperature, so that Eq. (33’) can not be solved so easily. But if we assume



Heat Transfer by Natural Convection in Laminar Boundary 155
Layer on Vertical Flat Wall

(h— Ty)] Ty<1, we may adopt its mezn value as Prandtl number of liquid.] Now,
from the above assumptlon u=Jf(T),

ou_du 096
6y_d6 oy
02u dzu_(iﬁ_)z du 9260
oyr dez \ oy de 8y -

When we transform Eq. (33’) with these relations, the following equation is
obtained :

0%y 1 626(68)1611 gﬂ(Tl T°)9=0 (34)

dy: P, 0y: \ oy ay T

Here we assume that & is equal to ¢/ as in the 1st method, and both # and T are
functions of ¥/é only, then Eq. (34) becomes

du 1 d29(d8)1du gb(Th—

_1 4 B gan .
d Py ¢ \ay) ay ” 642 =0, (35)

where 9 =y/0.

V_Ve approximate 8 to the following expressions which satisfy the boundary condi-
tions as in the 1st method:

O1=1-59+575% (36)
or
6; =1-294+29%— 37D

Putting Eq. (36) or @37) into Eq. (35), we can solve the differential equation from
the boundary conditions that #=0 at y=0 and #=0 at y=34.

(I) Using Eq. (36), we obtain:

1. for Pr=2,
u=gB( i~ Tp)v=152 [1-429 {1/2 sin~* n+1/2 n(1—72)*}
—1/4 (sin-1p)2—1/2 77(1—772)% —~7/69+1/49%+4/9 93 —1/30 %%] (38)
2, for Ps=1,
u=gB(T— T)v202[{1/3(p+1)3—-(9+1)2} log (+1)—-1/20 p°+1/12 %
~1/9 (3+1)3+1/2 (+1)2+182-132/720( —1/3 »*+ %) —7/18] 39

3. for Pr=1/2,
‘u=1/2 gB( [, — Tp) v=182[1/25 (9 +1)°-1/4 (p+1)*+4/9 (y+1)?
+1/47*~1/39*=1/2 92+ 9—{1/5 (y+1)5—(p+ 1)*+4/3 (y+1)3} log<v+1>
—250-579/480 (1/5 %°—2/3 7%+ ) —211/900] (40)
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4. for Pr=1/3,

u=1/2g8(Ti— T)v-262[3/8 {1/7 Q- (A—9)¢+12/5(1—7)°
—2(1—p*tlog (1—7)—3/8 {1/49 (1-9)"—-1/6 (1—7)5+12/25 (1 —7)°
-1/2 A—p)*}+3/8{1/7 A+ 97— (1+7)°+12/5 (A+7)° 2 +p)*} log (1 +2)
+0-070 (1+9)7—0-605 (14+%)64-1-972 (1 + ) —2-773 (1+9)*+ A+ p)?
+(14-9)2-0-727]. 41)

(11) Using Eq. (37), we obtain
1. for Pr=2,
u=1/4096 gB( T — Ty) v~ 102 [1/21 (45 +2)5—8/7 (49+2)°+8 (45 +2)*
+32 (49+2)% — 432 (49+2)2—3937-595/16 {2/5 (4y+2)5/2— 4 (4p+2)*?}
—849-916] ' (42)
2. for Pr=1, . i
u=1/64 g8 T,— To) v=23% [4 {4/3 v° — 495+ 3/2 7+ 13/3 47 — 292 —3n}
+3/16 {1/16 (4p+2)*—4/3 (4 +2)3+9 (49 +2)2} —3/16 {1/4 (49 +2)*
—4 (47+2)3+ 18 (49 +2)2} log (dy+2) +20-898 (gt — 293 +29) +0-781] (43)
3. for Pr=1/2, ' -
u=1/AgB( Ti.— T3) v-162[0-178 (16/7 " — 8%5+36/5 %°+ 49* — 8%%+ 4%)
+32/441 (1-9)7—2/27 (1—9)8—-2/25 (1 —9)5—2/9 {16/7 (1 — )" —8(1—n)¢
+36/5 (1—%)5} log (1 —9)—1/4608 {1/7 (49+2)7"—4 (49+2)%+216/5 (49 +2)°
—216 (49 +2)4+432 (49 +2)3} log (49+2) +1/4608 {1/49 (49 +2)7
—2/3 (49p+2)%+216/25 (49 +-2)°—54 (47+2)*+ 144 (49 +2)3} +0-140]. (44)
Next, we calculate the thickness of boundary layer by means of the energy
equation, and obtain the following result :

b= P(pp|EE T T) =% 4 (45)

where P(P,) is a function of Prandtl number only and its value is given in
Table 1.

Table 1.
P, 2 1 % b4
P, 3-125 3-817 4739 5412
P, 3912 4833 6083

The local coefficient of surface heat transmission «; and its average value am
are obtained from Egs. (30) and (31). Then the relation among non dimensional
numbers Num, Pr and Gr becomes as follows:
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Nun=K(P)GH. (46)

K(Py) is a function of Prandtl number only and its value is given in Table 2.
Now we plot the value of K, and K in tbe logarithmic graph as Fig. 2; then the
calculated points are situated on a straight line which has the same gradient in
both cases (K, and K3) for Prandtl number, and the gradient is about 1/3. Hence,
Eq. (46) becomes '

Table 2.
P, 2 1 » u
K, 0640 0-524 0422 0-369
K, 0681 | 0552 0438
-8
5(‘7 - /L ;
6 A /(‘f
5 - /;' 1
/
4 = /% o A
/ = °
-3 | - '
03 3 4 5 6 7 8 9 7 rs 2 28
Fig. 2.
(1) Num = 0-525 P/* G, “n
(1) Nutw = 0-550 P+ G4, (48)

These relations show that Nusselt number is proportional to GH and Pr% . But
the relation obtained by the 1st method indicates in Eq. (32) that Nusselt number
is proportional to GHApH , and this relation well agrees with the expression
obtained from the law of similarity, if it is assumed that the natural convection is
a “slack flow” and in the eq\‘xation of motion the terms of inertia force are neglected
when compared with the gravitaitional force and the frictional force. When we
compare Eq. (47) or (48) with Eq. (32), we find the difference between them that
while one is proportional to P.”, the other is proportional to P»**, This difference
is due to the fact that, in the 2nd method, # is dependent of 7. 'That is to say,
we solve the equation of motion and temperature distribution according to the rela-
tion #=f(T") ; while in the 1st method, we use only the energy equation and assume
u is independent of 7', except a relation that
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02u

at y=0, u=v=0; hence from Eq. (1)
gB( - 76)+V,W }

(49

y=0" 0. '
But since the relation in Eq. (49) is applicable likewise in the case of “slack flow”,
we can say that the relation deduced by the 1st method is owing to the assumption
that the natural convection is a “slack flow”. On the other hand, we believe that
the relation obtained from the 2nd method satisfy more completely the fundamental
differential equations, and it is close to the experimental results. However, we can
not compare_ very satisfactorily our theoretical results with the experimental results,
since those kinds of fluids with which many investigators have conducted experi-
ments are very few, namely, air, water® and one kind of 0il.® Now, when we
compare Eq. (48) with the experimental results relative to air (Pr=0.733), we

F A —
&28- © King - (? //
éo 26 & Nusselt and Jiirges g)@ -
E (o Sl/llld E)@.//

24 X

‘ ®  Schmidt and Beckmann @@e.

L @

22 ®  Griffiths and Davis |§)"

200 © Heilman __o.gg/

. ®  Saunders ' ®

1.8 | Z é@

, 6 ] J
14 | - oog/

‘ o0
12 = qu/

06 ".// :
' . .//
04 :

0 7 2 3 4 5 6 7 8 9 10 /1 72 13
.log,aG-r
Fig. 3.

5) C. W. Rice: Trans. Am. Inst. Elec. Engrs, 42, 1923 p. 653.
6) H. H. Lorenz: Zeit. f. tech. Physik, Jahrg. 15, 1934 p. 362.
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obtain Fig. 3. In this figure, the experimental results are shown by points, and
the straight line shows Eq. (48). From this figure, we see that Eq. (48) agrees
sufficiently well with the experimental results (to be precise, Eq. (48) is a few %
less than experimental results) over the range of logio Gr from 4 to 9.7

4. The third method

In the two methods mentioned above, we assume that the thickness é of velocity
layer is equal to the thickness 6’ of temperature layer. But & is not generally equal
to 8’. Hence we must consider what difference appears on 9’/8 corresponding to
the Prandtl number. For this purpose, we use the momentum equation (20’/) and
the energy equation (21'/) for fluid as simultane(.)us equations, and approximate «
and T to the following expressions as in the 1st method:

(1 ul—*ﬂ%——@az[y ~2(2Y+(2)]. (50)
N R
6. =1-22 +2()-(2)". (51"

Putting Egs. (50) and (51) or Eqs (50’) and (51’) into Egs. (20’") and (21'"), we
calculate as follows:
(1) When Prandtl number is larger than unity, namely, 8" /0<1,

LB oy 55 )
%M‘i [" (10 112“1?10 "3)"3]=%k%%' (53
and when Prandtl number is smaller than unity, namely, 8’/d>1,
= ?}1:, == ;x [(12 i tao W) Fl =2 ¥ (55)

where 2=4/8, i.e., X is the ratio between the thickness of the temperature and the
velocity layer. If we assume that % is independent of x, we can solve ¢ and X
from Egs. (52) and (53) for Pr>1, and Egs. (54) and (55) for Pr<1 Hence we
obtain the following :

7) Inthe range larger than 9, the boundary layer changes to the turbulent boundary 1ayer, and
as for the range smaller than 4, .a paper has been read by us at the lecture meeting of
J. S. M. E. at Osaka, March 26, 1950. . .
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P>1, x<1 :
21 (31-2) (j528 —m s+ o0 1) = L 36
8 = [1681% (3x-2)% [B( T~ T)v-21"* 2%, (57)
P.<1, Z>i
L Tar A LEE
6 =[1681% (6-61+ x—{,)y“‘[&(ﬁﬁo—@]'% s (59
(11) P:>1, x<1 . )
22—56—8(13—01—%)(1131—%1 xu% x5 15130 x‘)xz = ;r (56")
[ (G- W foscme ] L
P.<1, 21
-t bbbk ge R @
o= [E(E- Lo b b LA (BB A

Fig. 4 shows the relation between X and Prandtl number. When we calculate the
surface heat transmission according to Egs. (30) and (31), we obtain the following
relation among non dimensional numbers Nun, Pr and Gr:

3 TTT [
=
2 o USiﬂj 91, 2%} -
1-5-a~0Ox Usi 8, U
MO [ ] szry 2 2
‘\t\.o\_o\ '
; O] oy
.g — —
-7 R == o
5 ©
*5
v —
*2 *3 A 5 678971 2 3 4 5673910 20 80
FPr
Fig. 4.
_ X
Nllm = M(Pr) G+, (60)

M(Py) is a function of Prandtl number only, and its values are plotted in the
logarithmic graph as Fig. 5, where a dotted line shows K2(P») in Eq. (46). From
this figure, we find that the relation between Nusselt number and Prandt]l number
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2
X =0

1 4/

-4 A

.8 - %

7

6 jom—
5 3= o USiﬂJ O, —
a D ~ | . pu—

= o Using 6nu
3
2 3 4.5 6 7891 2 3 4 5 678%10 A 20 30

Fig. 5.

obtained by the 3rd method agrees well with the relation obtained from the 2nd
method except its absolute value. And we also find some interesting facts. They
are: when Prandtl number is smaller than 0.6 or larger than 20, the relation differs
from Eq. (48), and Nusselt number is not proportional to Pr% . But we can not
compare these facts with the experimental results, because experiments have been
carried out only in relation to a few kinds of fluids such as air, water and one kind
of oil as already mentioned.





