

TITLE:

Investigation of Al-Zn-Mg Alloys on the Zn-Al Side

AUTHOR(S):

NISHIMURA, Hideo; MURAKAMI, Yōtaro

CITATION:

NISHIMURA, Hideo ...[et al]. Investigation of Al-Zn-Mg Alloys on the Zn-Al Side. Memoirs of the Faculty of Engineering, Kyoto University 1950, 12(2): 119-128

ISSUE DATE: 1950-01-20

URL: http://hdl.handle.net/2433/280205 RIGHT:

Investigation of Al-Zn-Mg Alloys on the Zn-Al Side

By

Hideo NISHIMURA and Yōtaro MURAKAMI

(Recieved September, 1949)

Since a research was carried out by G. Eger ¹⁾ at the first time on the alloy system of aluminium, magnesium and zinc, many authors have investigated on this system. Among them W. Köster ²⁾ and M. Hamazumi ³⁾ reported independently on the general diagram of this ternary system in the year 1936. Furthermore, the solid equilibrium relations on the aluminium corner of the diagram were studied in detail by W.L. Fink and L.A. Willey.⁴⁾

These results being not in agreement in some points and the complete studies on the solid equilibrium relations lacking, we have taken up the present work to make these insufficient points in the diagram of Al-Zn-MgZn₂ more distinct with a relation of industrial alloys employed in our country.

Already, the binary systems⁵⁾ composing these ternary alloys were thoroughly investigated, and their results were almost in accordance with each other. However, the quasi-binary system of Al-MgZn₂ was not so complete that we have especially examined it at the beginning of this study.

Materials Used — The specimens employed were made from aluminium of 99.95% purity, electrolytic zinc of 99.98% purity and magnesium of 99.9% purity.

Preparation of Alloys — Aluminium was melted in a small graphite crucible lined with alumina in an electric resistance furnace under the cover of anhydrated mixtures composed of MgCl₂ 60% and KCl 40%. Zinc and magnesium were respectively added to the melted aluminium at about 700 °C. Thus the alloys desired were prepared. This alloying procedure was so effective that any loss of alloying elements could scarcely be recognized, judging from the results of chemical analyses of the specimens. The specimens to be used for the measurement of solid transformation were cast in a steel mould into a small ingot 8 mm in diameter and 40 mm long. They were annealed at temperatures from 320 °C to 350 °C, and then they were gradually cooled to the room temperature. The annealing more than one month was necessary for the specimens to attain

equilibrium at the room temperature. The specimens to be used for the measurement of solidification changes and also for metallographic examination were respectively cast in cast iron mould 15 mm in diameter and 35 mm long from the same liquid alloys.

120

Chemical Analyses of the Specimens - Chemical analyses were not carried out for the specimens except some important ones, for the analytical compositions of the specimens were not so different from the charge compositions as above mentioned.

Methods of Investigations

Thermal Analyses -- Differential thermal analyses as ordinary employed in our laboratory⁶) were adopted for the determination of the solidification phenomena from liquid. As well known, the

Table	2	Chemical	Analyses	of	the	Specimens
-------	---	----------	----------	----	-----	-----------

Alloy No.	Weight	Percentage	%
Anoy AD.	Zn	Mg	X AL yemainder "" " " " " " " " " " " " " " " " " "
0502	93.76	1.73	remainder
0506	90,23	5.46	
0513	82,53	12.84	
1005	83,61	4.78	,,
1013	78,77	13.02	·
1503	81.57	2,99	
1504	82.07	3.72	
1506	80.23	5.85	n
1512	74.56	12.58	יי
2002	79.17	1.78	u I
2006	73.17	6.68	ير ا
250/	72.70	0.82	
2505	71.45	430	·
25/0	63.93	9.90	
3002	67.12	1.20	"
3004	66.58	3.68	
3504	62.30	\$12	
3506	58.40	5.43	•
5006	45.13	5.29	
6002	37.69	170	*
6502	33.44	1.96	

	Table 1	<u>. Th</u>	ermal	Analyse	s of t	he Alloy	/s		
Alloy No.	Or	Points He	of ating	Change	. or	Arrest	Coolin	<u>°C</u> 9	
0501 0502 0503 0505 0505 0506 0507 0508 0507 0508 0507 0508 0511 0512 0513 0514	276 277 278 278 278 275 279	317 313 313 313 312 309 373	338 341 342 342 345	347 350 351 349 350 347 350 350 350	371 355 344 373 415 447 473 473 513 520 535 543 547 552	393 401 412 419	345 349 354 354 362 372 380 381 380	323	343 344 343 343 343 343 344 343 344 344
1000 1001 1002 1003 1004 1005 1006 1006 1007 1008 1009 1010 1010 1011 1012	297 276 277 277 277 276 276	327 314 313 313 313 313 313 313 313 313	340 340 341 345	350 350 350 350 350	419 407 403 393 399 438 450 473 489 503 515 523 527	407 411 409 414 421 430 4 37 44 6	380 384 380 380 380 383 383 383 381	353 357 376 376	344 343 342 342 342 342 342 342 342 342
1500 1501 1502 1503 1504 1505 1506 1507 1508 1507 1510 1510 1510 1512 1513	282 276 276 276 276 276	329 325 313 313 313 313 313 313 313 313 313 31	341 347	350 350 350 350 351	464 465 443 469		380 380 380	352	340 <i>339</i> 336 338
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010	278 276 276 276	331 321 316 313 317 317 314 311	347	350 350 350 350	477 491 472 465	393 441 453	381 380 381	365	337 340 340 338
2501 2502 2503 2504 2505 2506 2508 2509 2510	276 277 277	316 313 315 317 312 312 315 315	349	356. 371 368 370 367 371 378 383 403		•		×.	•
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010	279 276 277 279 279	315 314 814 312 313 313 313		359	502 498 504 492 490 487 479 477 474	447 447 454 464	378 380 380	363	
3501 3502 3503 3504 3505 3506 3506	277 277 280	327 320 317 315 313 314 314	2.0	371 372 373 383 399		Al-MgZn;	e Quasi-l	binary S	System
4001 4002 4003 4004 4005 4006	271 276 276	314 315 316 311 318 318 314		373 384 383 387		Alloy 1gZnz 95	<u>Popets</u> % 56.	of Change °C 5	eor Arrest 431
450 1 450 2 450 3 450 4	276 278 279 277	315 316 317 309		373 383 387 387 379		* 90 * 85 -^	· 54	•	456 465
5000 5001 5002 5003	280 279 276 277	318 315 312				" - 80 " 75	~ 50 ~ 48	6	466 466
5004 6001 6002 6003	276 280	.309 315 314				" " 60 " 60	* 47 * 513	3	466 466
6501 6502	280 280	315 315				° 40	- 54 - 56	4 9	465 _466

observation on cooling were not sufficient to determine the equilibrium, for solidification reactions do not always occur in equilibrium even on cooling with the very slow rate. Therefore, the solid transformations or some solidus points were determined with thermal analyses on heating. The arrests in solid transformation were too feeble to be detected with the usually employed couples. For that purpose we used a thrice folded differential couples to increase the sensitibity. Specimens were heated with the rate of 2 °C per minute.

Microscopic Methods — The results of the thermal analyses were checked on important specimens by microscopic examinations as described later.

Results of Experiments

Thermal Analyses — Thermal analyses were carried out for the alloys corresponding to the composition in 9 kinds of constitutional sections. The results of experiments are given in Table 1, and they are plotted in Fig. 1 to 9, in which the marks \cdot and \circ indicate respectively the change points on heating and on cooling. The chemical analyses of some alloys are given in Table 2.

The composition of the alloys in Table 1 are represented by alloy numbers, in which the first two numerals indicate the weight percentage of aluminium and the next two that of magnesium. For example, alloy number 1513 indicates an

Fig. 1 Al 5% Series

alloy containing 15% Al, 13% Mg and the remainder Zn. In Table 1, the results of the thermal analyses of quasi-binary Al-MgZn₂ are also given, and they are plotted in Fig. 10. From these results, the exsistence of five non-variant reactions were observed as follows.

The invariant halting at $380 \,^{\circ}$ C was recognized to be a peritecto-monotectic reaction,

Liquid + $(A1)_{\alpha} \rightleftharpoons (MgZn_2) + (A1)_{\beta}$,

which was not found by W. Köster, but by M. Hamazumi as a peritecto-eutectic reaction at 370 °C. In this reaction formula, the parentheses show a solid solution of the phase indicated in it.

Similarly as given by W. Köster and M. Hamazumi, the points of arrest at $350 \,^{\circ}$ C and $340 \,^{\circ}$ C were observed on heating curves. They belong to the invariant reactions,

Liquid + $(MgZn_2) \rightleftharpoons (A1)_{\beta} + (MgZn_5)$

in the point of Al 11%, Mg 4% and Zn 85%, and

Liquid \rightleftharpoons (Al)_{β}+(MgZn₅)+(Zn)

in the point of Al 4%, Mg 3% and Zn 93%.

In addition to the invariant arrests above mentioned, the two more invariant arrests, which were not clearly given by the both authors, were found to be at $313 \,^{\circ}$ C and $276 \,^{\circ}$ C on heating curves. One is a peritecto-eutectoid reaction,

 $(A1)_{\beta} + (MgZn_2) \rightleftharpoons (A1)_{\alpha} + (MgZn_5)$

and the other is a ternary eutectoid reaction,

 $(A1)_{\beta} \rightleftharpoons (A1)_{\alpha} + (MgZn_5) + (Zn).$

The invariant points of these two reactions could not accurately be estimated, but will be respectively near the points of 29.5% Al, 0.5% Mg, 70% Zn and 21% Al, 0.2% Mg, 78.8% Zn judging from the general equilibrium diagram which is obtained by our experiments.

Microscopical Study — For microscopical study, slowly-cooled or heat-treated specimens were taken and some typical ones are given in Photo. 1 to 14. Especially the etching reagent introduced by J. Schramm⁷) was employed to distinguish (Al)_{α} from (Al)_{β}.

Photo. 1 represents the microstructure of the slowly cooled alloy 0501 etched by nitric acid, in which (Al_{α}) and (Zn) are present respectively as white and

124

Fig. 11 General Equilibrium Diagram

black crystallites in the ground of the ternary eutectic $(A1)_{\beta}+(Zn)+(MgZn_5)$, and Photo. 2 (Alloy 0502) shows $(A1)_{\alpha}$ in the matrix of the ternary eutectic mixture.

In the slowly cooled alloy 0506, the primary separation is $(MgZn_2)$ which is enveloped by $(MgZn_5)$ in the ground of the binary eutectic $(A1)_{\beta}+(MgZn_5)$ as shown in Photo. 3. Both Photo. 2 and 3 were etched by the special etching reagent.⁷⁾

Photo. 4 and 5 show the microstructures of the slowly cooled alloys 1502 and 1504, in which are observed a black dendritic $(A1)_{\alpha}$ being peripherally transformed into $(A1)_{\beta}$ with the binary peritectic reaction Liquid+ $(A1)_{\alpha} \rightarrow (A1)_{\beta}$, and in the latter the binary eutectic $(A1)_{\beta} + (MgZn_{5})$ is observed, it being different from the former.

The annealed alloys 3009 and 3010 show almost similar structures in which the primary (A1)_{α} is surrounded by the matrix of the binary eutectic (A1)_{α}+ (MgZn₂), but only in 3009 alloy a small amount of (MgZn₅) is seen. The difference between them is shown in Photo. 6 and 7.

Photo. 8 to 11 show the microstructures of the alloys in the Al 10% constitutional section quenched from 330 °C after 30 hours annealing. The alloy 1002, etched either by a nitric acid or by the special reagent, shows the structure in equilibrium of $(A1)_{\beta}+(MgZr_{5})+(Zn)$ at this temperature. It is recognized in Photo. 8 and 9. Photo. 10 (alloy 1006) and Photo. 11 (alloy 1010) represent respectively $(MgZn_{2})+(MgZn_{5})+(A1)_{\beta}$ and $(MgZn_{2})+(A1)_{\alpha}+(A1)_{\beta}$.

Table 3 General View of Transformation Process

Hideo NISHIMURA and Yotaro MURAKAMI

Photo. 12 to 14 are the microstructures of alloys of the quasi-binary Al-MgZn₂ containing respectively Al 15%, 30% and 40%. From these microphotographs these alloys are observed to make a quasi-binary system.

Summary

The constitutions of the alloys of aluminium, zinc and $MgZn_2$ were investigated, and the equilibriums on the side of zinc and aluminium were determined. From these experimental results, we obtained a general diagram as shown in Fig. 11. Table 3 shows the solidification and transformation process of this system considered from this diagram.

Acknowledgement

We express hearty thanks to the Science Research Funds of Education Ministry for the subsidy to excute this research.

References:

1. G. Eger: Studie über die konstitution der Ternären Magnesium-Aluminium-Zink-Legierungen. Inst. Ztsch. Metallog. (1913) 4, 29.

2. W. Köster und W. Wolf: Das Dreistoffsystem Aluminium-Magnesium-Zink. Ztsch. Metallkunde (1936) 28, 155.

3. M. Hamazumi: An Investigation of the General Equilibrium Diagram of Aluminium-Magnesium-Zinc Ternary System. Tetsu to Hagane (1936) 4, 258.

4. W. L. Fink and L. A. Willey: Equilibrium Relations in Aluminium-Magnesium-Zinc Alloys of High Purity. Trans. A. I. M. E. (1937) 124, 78.

5. W. L. Fink and L. A. Willey: Equilibrium Relations in Aluminium-Zinc Alloys of High Purity, II. Trans. A. I. M. E. (1936) 122, 244.

6. H. Nishimura: An Investifiation of the Alloy system of Aluminium, Copper and Zinc. The Memoirs of the College of Engineering Kyoto University (1927) 5, 61.

7. J. Schramm: Ein Atzmittel für Zink und Zinklegierungen. Ztsch. Metallkunde (1936) 28, 159.