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Theoretical Study on the Ground Resistivity Method

of Electrical Prospecting
By
Takeshi Kivono

(Received July, 1949)

1. Introduction

The resistivity of the ground can be measured by using the Wenner’s electrode
system (Fig. 1.1). When the current I is introduced into the ground through

the outer current electrodes C; and C., and the potential

difference V is measured between the two potential T
electrodes P, and P, the resistivity p of the ground ¢ &l # @
? T
can be given by the following formula: L————z—a_., ~
Fig. 1.1.
0=2naV /I, : (1.1

where ¢ means the spacing of two adjacent eléctrodes. The above equation is
valid only when the ground consists of a uniform medium, and if an orebody
having different resistivity exists in the ground, the value calculated by Eq. (1.1)
is not the true resistivity of the ground, but the one giving the “apparent”
resistivity. This quantity generally depends on the pcsition, direction of the
electrode system and the electrode spacing.

For the Wenner configuration the apparent resistivity o is shown as a function
of the electrode spacing @ and the coordinate x of the center of the electrode

system :
p=r(x, a). A 1.2)

The method in which the electrode spacing @ is kept constant, moves the
whole electrode system along a straight line, and the apparent resistivity o mea-
sured as the function of x, is called the “ constant depth method”, being utilized
as the horizontal mapping of the buried orebody. On the contrary, the method
in which the center of the system is fixed and the spacing « is variable, thereby
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the relation between p and a being obtained, is utilized in case of the vertical
sounding of the geological structure.

The object of this paper is to study theoretically the resistivity curve (p—x
curve) for the constant depth profile. These curves are of use for the interpreta-

» tion of practical data. .

The apparent resistivity, as defined in Eq. (1.1), is obtained by multiplging
the ratio of the potential difference V between the electrodes P, and Ps to the
current I between the electrodes C; and C: by the constant coefficient 2ra. More-
over, the potential difference V can be expressed as the resultant of the four

potentials by the following equation:
V=(VutVa)—(Vit+ V), » .3

where Vs is the potential of the electrcde P; (j=1;2) due to the current elec-
trode C, ({=1;2). Therefore, the calculaticn of the apparent resistivity is reduced

to that of the potential at any point due to a current electrode.

.

2. Apparent Resistivity for Linear Current Sources

1t is evident that only few models can be treated accurately as three-dimen-
sional '_problems, because the calculation of potential due to a point source of
current is very difficult, if an orebody is buried in the ground. If we assume,
however, that the current electrodes are linear electrodes of infinite length, and
that the orebodies are cylindrical, which are also infinitely long and parallel to
the current electrodes, then we can treat the problems as two-dimensional ones.
By this approximation, the range of problems
that can be solved becomes extremely wide.

In the ideal electrode system shown in

Fig. 2.1, if we denote the current supplied
from unit length of the energizing electrodes ‘
Ci and C: by I, the potential differedce V. /
between the potential electrodes P, and P: is |
given by the following equation : !

I C.P,-C, P,
V=20 1pg S2fatals 2.1
2r °R . P,-CoPs 2.1

where p means the resistivity of the medium.
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For the Wenner configuration,

C1P1=C2P2#a, C1P2=C2P1=2ﬂ,

therefore, ¥V becomes as follows:

v=20L 10g 4, 2.2)
2 S

from which the formula defining the apparent resistivity is obtained:

T JI’_ X ; (2.3)

It is found from the comparison of the results obtained on some simple
models of orebodies, which can be treated not only as two-dimensional problems,
but also as three-dimensional ones, that the two-dimensional approiimation gives
resistivity curves which are analogous to the actual curves properly obtained by
the three-dimensional analysis., Therefore, the results obtained by the two-dimen-
sional methods may be considered to be correct qualitatively, even when the
problems could not be analysed as three-dimensional ones,

3. Application of Conformal Representation

If we adopt the two-dimensional approximaticn, we can apply the theory of
functions of complex variables, by
which the boundary of the orebody can
be transformed to simpler one, and the
potential can be calculated very easily.
The processes of calculation of the

potential using the conformal represen- 2
tations are as follows: Fig. 3.1. -

(i) Transform the given domain, for example Fig. 3.1 (a), into the upper
half of the new plane, for example #-plane as shown in Fig. 3.1 (b), by a relation:

t=f(z) or z=¢ (). 3.1

It is convenient to choose the function f(z), as it transforms the boundary of
the orebody, which is assumed to be a perfect conductor or insulator, into the
real axis of the /-plane (r-axis), and the ground surface (x-axis) into the imagi-
nary axis of the #-plane (s-axis).

(ii) Obtain the relation between x and s:

is=f(x) or x=¢s), 3.2) .
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by which the current and potential electrodes C; and P; on the x-axis are trans-

formed to the points ¢; and p; on the s-axis.
(iii) Place an electric image ¢,/ of the current source ¢; in the r-axis, and
calculate the potential at the point p; by the following equation:

Vi=— p;rl log% for  p:=0, (3.3)
or

Vi=- ”:TI logcps-c/py  for  p=oo, Q.
where

cpy=|si=s;l,  e/ps=1sitsy] : (3.5)
and

£s¢=r(x), isy=f(xs), (3.6)

in which %; and x; mean the x-coordinates of the points C, and Pj.
(iv) Calculate the apparent resistivity p by using the values of the potential
V.t (1=1;2, j=1;2) obtained above: ’

-0 _ 1 —yt+S
0 m ]0g4 ‘,21( ) VU’ (3. 7)

i=1;2, j=1;2.

If the domain of the
given plane is doubly con-
nectéd, as shown in Fig. 3.2
(a), the potential must be
calculated in ‘a ring or rec-
tangular domain (see Figs.
3.2 (b)and (c)). The pro-
cesses of the calculation in

Fig. 3.2.

this case are as follows:
(i) Transform the z-plane into the ¢-plane (¢=£&+i%), by a regular function:

¢=g(2) (3.8)

or transform into the v-plane (v=v'+7v"), by the relation:

1
v="jo— log ¢. : 3.9
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1t is convenient to transform the x-axis into a unit circle on the ¢-plane ;¢ =1,
and the boundary of the body into a circle ¢ =¢<1, and the boundary of the
image body into a circle |¢|=¢ 1>1. These circles correspond to the real axis
of the v-plane (—%<v/<+%), the straight lines fv"=1/2 (—%<y'<+¥%) and
iv'=—1[2 (—%<¥/<+%) respectively,

where
r=-1 log g ‘ (3.10)
in . .
and
in which
= pe®. | | (3.12)

(ii) Find the coordinates of the points ¢, and p; on the ¢-plane or on the
v-plane, which correspond to the points C, and P; on the x-axis. ‘

oe=1, - fO,=arg g(x,),
} (3.13)
03=1,  Oy=arg g(x;)
or
v = _—g;— ’ v =0, '
3.1
» ’ ﬂl v u=0
ST g 7T
(iii) Calculate the potential at p; due to ¢; by the formulae:
__ ol (v, |27) = 3.15
Vs - log 3uco.l 127) for p2=0, 3.15)
or
Vig=— p;rI log %14y [ 7)), for  ps=oo, (3.16)
where
v =|v/—vf = 6,05 [(2n) : @3.175

(iv) Substitute the values of V,; into Eq. (3.7) to obtain the apparent
resistivity p.
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4. Semi-infinite Horizontal Plate.

In this section, the apparent resistivity is conside- G A, A G
red for the case, where a semi-infinite plate of the W 7 %”4 e
perfect conductor or insulator of a thickness af; lies ?22; ﬂ'? ‘A
horizontally at a depth aq: (see Fig. 4.1). &

4.1, Theory. Fig. 4.1.
The domain of the z-plane (a) (b
(z=x+iy) shown in Fig. 4.2 (a) s ‘{;:;?) is
can be transformed into the upper s
LY

e
half of the f-plane (¢=r+is) shown  ,ZZZZZ8 0" 4 & R =
. . & SENNS
in (b) by the relation: A7 B Cig £ €0 () 6D6p)

Fig. 4.2.

dz ) g, 4.1)

—c¥ (l—tz)t(l—k'-’

Integrating the above equation and determining constants, we get:

=20 [ /(1= BEXT- ) +logt—log G T— R +,/ T )

+-%’—2— log G/ T=FE+ Ry 1 —tﬂ)——%‘b— log (1-E)—ig;. (4.2)

The parameter k is determined from

b _qp—aq _ (1R
a= @z .3

or

bty (02 | .0

The relation between x and s is given by the following equation :

x= 2 (TR 5% Hog s log G/ THES +,/ T+ 59

+ 2732 log G/ T+ BT+ ky/ T+55)— -‘1‘-’;—‘11 log (1—&2). (4.5)

4.2. Special Cases.
(1) G — 0.
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In the limiting case, where ¢, in Fig. 4.1 becomes zero, the following trans-

formation must be made:

2h
T

z2=—1 (H/1—12+ sin~1¢). . (4.6)

The relation between x and s is as follows:
x=—%— [s,/l +s%+log (s+,/1_~k—3*?)] . 4.7

(2) tp — 0.

.

From Eq. (4.3), it is found that the limit k—1 corresponds to the case ¢;=g¢:
or £1=0, which represents a very thin plate. For this case, Eq. (4.2) becomes:

2 1-g .
=21 (——2——+10gt) ~ig, “8

from which the relation between x and s is obtained :

2 142
x=2 (——-23—+10gs) i 4.9)

@ H—-0; ¢1—0.

In Fig. 4.1, if we make #,—0 and ¢,—0, a thin plate which covers the left
half of the ground surface is obtained. The transformation from the z-plane to
the {-plane is given by:

t=iy z . (4.10)
Hence, s is represeuted as follows:
s=y x . 4.1
1) fy — oo,

In Eq. (4.3), if we make k—0, keeping ¢,=1=0, it becomes gz—< or f;— oo,
This case corresponds to a covered vertical fault. In this limiting case Eq. (4.2)

becomes as follows:

e=-20 (T Prlog 1y = ) —ien (4.12)

T

Hence we get the following relation between x and s:

1/1+s'=+1~) (4.13)

_2q ( g 1 VI¥S
x=— ('/”5 g log ey

4.3. Resistivity Curves.
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/ A =
8 /// AN gt
L 7=0 //'\ //
25—
] 5 ) -6
10—
| oo —
4
Fig. 4.4 shows the curves for the
2 insulator. It is found that the effect
J ' of the plate thickness is negligible.
zZ 1, 0 1z 3 ‘
. ¢2=0.25
B=0 z
j‘ A <9
Fig. 4.3. \\ ul
\ 8
Fig. 4.3 shows the resistivity
curves for a semi-infinite horizontal 7
plate of the perfect conductor, the
upper surface of which lies at the 6
depth a/4. As the thickness of the
plate increases, the maximum point 5 .
of the curve is lowered, and the curve
becomes flat. 4
5 \ 4 =ooo
; .5
N\Z=k
NN
1 %SE:
2 -1 . 0 1. 2 3
=025
=00 r ﬂ
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Fig. 4.5 shows the curves for the thin plate conductor. As the depth

increases, the curves become flat.
Fig. 4.6 shows the curves for a vertical fault.

10
12 / —
P Lt
. 87 1 g=10
o — A S 3
SN m— / £ N—0
V Y !
8 -
} N /
A TN B 4
’d i T /
--—-7‘ ,/ 2
4 /1 :
e -1 2 3
2 1; '
/ A0 £
? N 0 1 2 3
—— _ | Fig, 4.6.
VA0 A o
Fig. 4. 5.
5. Semi-infinite Vertical Plate
In this section, the apparent resistivity curves for G R, A G
the semi-infinite plate of the perfect conductor or in- Z/é“ﬁ;"/—“—’l// s
sulator with finite thickness, which is buried in a ver- ;
Pi

tical position, are considered (see Fig. 5.1).

5.1. Theory.
The domain of the 2-plane shown in Fig. 5.2 (a) can be transformed t¢ the

upper half of the ?-plane (b) by the relation:

Fig. 5.1.

(a ) Ced
VA (X4 0’ i< ) ’ o’ WK +eK')
v s ”(é/{;) hK)C Do C(sKs+i
7 2 . 7 \
A8 avig) / \
M X v 7 AP ,
. - A AN A w
A8 COA-2) ) D Gn A Ky GK)
Fig. 5.2,
A P .
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VAZEXLREY g, (5.1

dz=C

1If we introduce a new plane shown in Fig. 5.2 (c), where w=w"+iw", and
put
t=sn (w, k), (5.2)
Eq. (5.1) becomes:

_ confwedn®w
dz= C—_sn2 w dw. 5.3

By integrating the above equation and determining constants, we get:

i2p 9 cnw-dnw
(1+k")K} g (Frw—2BG, - SRS ] - G

The modulus & is given by the transcendental equation:

2 (L+EDK'—2E'

[/} 2E—-F*K

(5.5)
To calculate the potential, the relation between x and s must be found.
Inserting w={w" into (5.2) and (5.4), we obtain:

. 2
TTATEK -2E

[(1 +EDW" —2E(w", k)

d;(:_ @)y, .6
cnw snw

where snw"=sn (w", k), cnw’=cn(w", ¥) and dnw’=dn (w", ¥').
For numerical calculations, it is convenient to use #-functions. If we put:

w=2Kv, k b7

and represent (5.4) by J-functions, we get:

2= [—2Cv—-21?{—— —fy— log (v, o0, )] — v, (5.8)

where

q=e*, t=i{K'|K, (5.9
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and

C=2E-KK=—".}

4K "G’
_ (5.10)
Vl,__.. _1« . N _ [ nq‘.%ﬂ .
G =3~ [2+9:03 +3500] ~16 PR
Using the above notations, Eq. (5.5) can be written as follows:
2o _ 1 g1 4 |
A log 2 - G. G510

The parameter ¢ of #-functions can be determined by the above equation.
The relation between 2 and s is given by the following equations:

—_ ‘41‘ "__ 1 . iﬂl,(iv”9 l/?) -

= O Gk G )

(5.12)

5= 9300, 9) 9:(iv", q) '
9200,9) 90", @) °

If we develop the ?-functions into series, we get the following equations:

x= 2qs - [ w__n® _ coshmy” —3q cosh 3nv” +5¢° cosh 5mv” — ] - 5
- 4KC " sinhno” —gsinh 3nv” + ¢° sinh 510" — - 1,
_o % Y3 _sinhny”—g® sinh 3rxv"” +¢° sinh 5rp” — -

s=2¢ Py 1—2q cosh 2rv” +2¢* cosh 4z — -+ . (5.13)

1t is found that the point z=0 corresponds to t=:/," %, w={K'[2 and v=
7/2. Tt should be noted that

1 1

S(‘x)=T' (%) ° . . (5-14)

In the case, where the parameter ¢ is very small, the following approximate
formulae can be used:

x= 27;11 (w"-cothw")— py,
5.15
K’ =2+t (5.15)
1 .

s=sinhw” for w'<K’[2. -
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5.2. Special Case.

The limiting caée, when the modulus
k becomes unity, corresponds to a ver-
tical plate of zero thickness. Then Egs.
(5.4) and (5.2) are written as follows:

2==—{¢q, coth 2w,

t=tanh w,
from which we get:

S T 2 S
2=t =3 (5.17)

(see Fig. 5.3). Hence

(5oL, (5.18)
.or
| s=%;‘/(%§:i_ : (5.19)

5.3. Resistivity Curves.
In Fig. 5.4, the curves for

perfect conductor are shown, in
which' the depth ¢ is ’ kept con-

R D™ 4
stant, and the breadth 2p is E \ \ / / /

g
/

N

taken as parameter. When the \ \ \ / ' [
breadth ‘is large, the curve is % ; 1 \ 4 / / / /
vUv-gshaped, and when the i :__//\ \ \ / / /
breadth is equal to the electrode ' \ \ \ » / /
spacing, that is 2p=1, the vVv- \ ‘L \ ’ / / i
curve is obtained. \ |/ /
3 2 - 0 3
7-025
L 2p ——]
A0 A
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Fig. 5.5 shows the curves, when the breadth is smaller than the electrode
spacing (2p<71). The form of the curves varies from vVv to W, as the beradth
decreases. ,

In Fig. 5.6, the breadth 2p is kept constant, and the depth g is varied. With
increasing depth, the curves become flat. Fig. 5.7 shows the curves for a very '
thin plate (W-curves).

10 10—
/4 ‘ é%‘\
N AN | N A AN 7
N P V X AR
= N v .
TR JARE : ! f-‘}s//‘f/ ’57" :
%y / yini,
- 5 \ 1257
.0- . 0 M
2 : 2
S 2 0 1 2~ 3 3 2 0 T 2 3
epes %
180 A PINAC R
Fig. 5.5 Fig. 5.6.
1
____47",'2_/ s..// Yd \\_/7
625 YA I
6
4
.2
3 2 = 0, Z 3
+
£ £=0
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(3]

- 3 T
AN / / \\\
G/ SR\
.// A \\\ g
3 2 -1 0 . 2 3
fi
I N
Fig. 5.8.
6.1. Theory.
The domain ABDFG shown ca)
in Fig. 6.2 (a) can be trans- i
formed into the f#-plane shown
in (b) by the relation: ‘ £l )

dz

¢
V1R at

%
7
b4

:D(‘A'?:)

Integrating the above equation, we obtain:

z=—ign/1- k%",

where

V1-k=F=q/qg.

Fig. 5.8 shows the curves
for a very thin plate'of insula-
tor.
ped.
mum point of the curve is lowe-
red, when the depth is increased.

They are inverted V-sha-
It is found that the maxi-

6. Thin Vertical Plate

~ In this section, the apparent
resistivity for a thin. vertical
plate as shown in Fig. 6.1 is
considered. ‘

G R A G

| &8 —az-i
it
%4 £
Fig. 6. 1.
(b e
o5 . -4 +% v’ é"}
2 e b
AJ«/@[«{@ /1: 5/-'//
g rn oﬂf}j & . z:g_.u,
BN V4 “ i
i # o ClE D
) =¥ %
Fig. 6. 2.
6.1
(6.2)
(6.3)

~To calculate the potential, we must transform the f-plane into the rectan-
gular domain of the v-plane shown in Fig. 6.2 (c¢), by means of the following

relation;
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t=sn(K+i{K'—2Kv, k)

1 _dn2Kwp
k cn2Kv ’

(6.4

or

sn (2K, k) v (6.5)

"en (2K, k)

z=—gq

or

Ys o 7 (6.6)

TR e
The relation between x and ¢’ is as follows:

x= — g S0 2Kv
=TT en 2Ky

=—qn—:§%“ 318}’ g . : o 6.7)
The " potential at any point P on the x-axis due to a current source C on
the x-axis, can be calculated by the formula (3.15) or (3.16).
6.2. Numerical Calculation. .
In most cases, the modulus k=<1, and consequently, the parameter g=1. So-
we apply the Jacobi’s transformation to Eq. (6.7), and write:

T,) (6.8)

’
r’)

. v
90 i F-
T T o) T, (1/

T
where
v'=-1/t=iK|K’. . - (6.9

By developing the J—functions into g-series, it becomes as follows:

_ sinh § —¢’% sinh 3§ +¢’®sinh 56 — - 6.10)
%=—qQ "9y coth 2t +2q4 cosh4é . (
where
_o 4% 0017)  142¢ 4294+ 6.11
Q=2q P(017)  1+q g+ (6.11)
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E=inv [v=nKv |K’, (6.12)
and
g =¢ +2e54+15¢0 4.,
~ _ } (6.13)
¢=01)-(A—k)A+ k).
For larger values of variable & we use the following relations:
#3(0 1) 790(77/7 ) 6.1
= — LIS . 4
FETET90 D) T o e Y (6.1
or
_ Q 1-2q cosh2y+2q" coshdy—--
=T 4,’qd  sinhy—gq’?sinh3y+¢®sinh5y—- ’ (6.15
where
WINEE S - K _
v,_ 2 v, 7= 2 K/ é- (60 16)
6.3. Special Case, (a> (b
If the depth ¢ in Fig. 6.1 is reduced to zero, y tes
the z-plane becomes as shown in Fig. 6.3 (a). ] j, f,.(‘.)
This can be transformed to the upper half of the 4,42 % A pt 6L p
@E%—’x CEEC
t-plane (b), by means of the relation: IS
it
Fig. 6.3.
r=— il — b - 6.17
142 ° .
from which we obtain;
s ’ ,
x=2t1 T——‘-Sz_ , . : (6. 18)
or
_.,L \/ h Tl
s=hy (_x-) +1, (6.19)

6.4. Resistivity Curves,
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Figs. 6.4 and 6.5 show the curves

|
10 .
\§\5— s // == for the plates of finite depths. 1n bc.)th
;‘J \ D77 cases, the curves are W-shaped, which
— b 8 < / f imil to th urves shown in
t-;.g a :/ 5 N a1:e similar e ¢
40 Fig. 5.7.
= .6 |
% ‘c " ;—-
4 /’ \\_/
- e @ 'J
7=05 )
Py 251~/ £
125
J —
8
3 % -1 ) 0 2 3 3 2 -1 . 0 1 z 3
=0,25 y
[4 T Lr -
z Z=l
s £=0 A L\.Pa =0 A
Fig. 6. 4. Fig. 6.5.

Fig. 6.6 shows the curves for the non-conducting plates of zero depth.
In Fig. 6.7, the curves are shown for a plate of the insulator. In mcst cases,
they are inverted vVv-shaped.

t-w\ Y,
\V T

20 4 Pany
7 ]/ F\\
A-16 hs
T\ \|
| — et/ e /o
I 3 > 202 TN
e _J; NV "’-"Q\
t0 7 A4 - - 10 \\ /\ Ba—
W\
< 2 3 3 % ] 2 3

1Nfize 2 “Thae g
X .
Fig. 6.6. Fig. 6.7.
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7. Thin Harizontal Plate G P LA G
' ' ' L pazd
In this section, a thin plate of finite depth buried in = 2,
. 22, ~—1 '
a horizontal position, is considered (see Fig. 7.1). Fig. 7.1
7.1. Theory. s T
The domain ABC::- » Ca
GH shown in Fig. 7.2
(a) can be transformed (/m/r).s Z O
2’ ca . Akl — A%// //{/A "
to the #-plane (b) by ety F o 2
. 4 *- D) ol
the relation: #-tg | 4peig
Fig. 7.2.
i &
dz=C jme o e (7.1
VA-EY1-EEY
Substituting
t=sn (u, k) (7.2
into Eq. (7.1), and integrating, we get:
__2q - s R ’
=20 (Ewu-K-EG D] ~ig, (7.3
where
D2 (k. E(D. B)-E- 1
D=t (K-E(D, - E-D], |
(7.4
ege_1_E_
ktdi=1 b6
and
d=sn(D, k). ‘ ‘ (7.5) .

To transform the domain of Fig. 7.2 (c) into the »-plane shown in Fig. 3.2,
we put: :

=+K+iK'~2Kv. (7.6

Then it becomes :

__2q _ - sn2Kv-dn 2Ky .
z=—"0 [K—E(ZKv,k) E-2Kv—- K on 2K ]_, 7.7

from which we obtain thé following relation:
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__2q1 N 80 2Kv- dn 2KV
x=-1 (K-EQKV,b)-E-2Kv—K R . (18
or
— _ . -
x=-20 (E.2Ky - K-EQKY, k)~ K M2EV - dn2Ky'y - g g,
m sn 2K v’ ,
where
5’=—%——v’. ' (7.10)

The potential is calculated by means of the formulae (3.15) or (3.16).
9.2. Numerical Calculation.
If we use the ¥-function, (7.7) can be represented as follows:

- _ad v
2= - av log 9:(v T), (7.1

bence it becomes: -

=a_,
= Tay

log 2:(v" 1), (7.12)

or by means of the Jacobi’s transformation : , . . )

x=

24 (__izvq_,-l‘.j_"/.(_v?:‘a,); o (7.13)
9 .

where
t/=—1/r, , - (714

. . Developing the d-function, we get:

__ 2 . 24 $inh 2¢ —4¢’* sinh 4¢& I :
xX= = ($+2$m 1—2¢ cosh 26 +2¢'*cosh 46— -~ ) ’ (7.15)

where
551}1"=ﬂ%v’, $m=%——é-=——;—log q. (7.16

47
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When & approaches its maximum value &n, the other formula should be used.
Inserting (7.10) into (7.12), we obtain:

B S ey
x=—— a7 log (v 7). (7.17
Then, by Jabobi’s transformation, it becomes:
7/
. 191’ v (<4
=0 (_2 i 5 +_1_.v_;.,__A(_,AT,,, I ) ) , (7.18)
w T T v 7
A
T ]
from which the following formula is obtained:
_ 2¢q _ cosh 7—3¢’2 cosh 3y +5¢"¢ cosh 5p—--. .
r= T (77 2Em einh y— ¢’2 einh 3+ ¢’® sinh 5y — - ) ’ (7.19
where
p=Em—E. (7.20)

If we represent (7.4) hy means of the #~functions, the following equations
are obtained:

m_2 [L.i‘ygf’ifi)__i_n,,d]
‘h r L2r 02(_1:-1 1,) T
(7.21)
192',(&— ’) 19-:'( Ya 1’)2 ]
/ ; { - ; =12nT,
w2l
where
va=D/(Q2K). (7.22)

When the value of the parameter ¢'=exp (—én/7) is very small, the constants
&m or K can be calculated by means of the approximate formula:

D _ 2 | rE TS tapp-1./ Em 1
B2 () /EatEaT>-tanh-1 g/ S2=L). (7.23)

In such a case

K o= &m. (7.23)
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7.3. Special Case. o (3D i W)

For the limiting case ¢:—0, we can trans- i : ats

form the z-plane, Fig. 7.3 (a), into the #-
_plane (b), by the following equation:

1-#
AR

The relation between x¥ and s becomes as follows:

s=J—§§§—,- 21> p (7.25)

In this case, the potential can be calculated by Eq. (3.3) or (3.4).

7.4. Resistivity Curves. i 18 /

The resistivity curves for _ \ — l

conducting plates of zero depth - \ |5P l
are shown in Fig. 7.4. When \ I L/
the breadth 2a¢p is larger than \ \ 4,4r ‘ x[ '
the electrode spacing @, the . : \
\

- P2 NIRRT

curves are vVv- or vUv-shaped, || 12

and in the case 2p<1, a maxi- 3 bl /A\_ \ \ [ [\LA‘ Y

mum appears at the center of 1 I 1 \

the plate. ™ I . /|

[——t—

£ kF2p->pa0
Fig. 7. 4.
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Fig. 7.5 shows the curves for finite depth.. The type of these curves is similar
to those of zero depth.

Tn Fig. 9.6, are shown the curves for perfect conductor, taking the depth ¢
as parameter. It is found that the vVv- or vUv-curves reduce to‘ V- or U-curves
with increasing depth. ’
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Fig. 7.7 shows the curves for the non-conducting. plate of a constant depth,
taking the breadth 2p as parameter. They are inverted W-shaped, and approach
the inverted U-curves with increasing breadth. In Fig. 7.8, are shown the curves
for various values of the depth and a constant breadth 2p=2,

These results are summarized in the following table, combining with those
obtained in the section 6: -

Conductor Non-conductor

Vertical w inverted vVv

Horizontal vy inverted W

8. Circular Cylinder

We calculate the apparent resistivity for a buried as, ax| 7
cylinder with circular section, as shown in Fig.'8.1. )

The resistivity of the cylinder p: is assumed to be’ zero

or infinity.

8.1, . Theory. . ! .
The domain of the z-plane shown in Fig. 8.2 (a) can be transformed to a

ring domain of tﬁe ¢-plane (b) by the linear transformation:.

<)) b )

3.1
where
t1=]//$12—;‘12; } . (8. 2) :
The x-axis corresponds to the unit circle:

c = ", ) : (8.3)
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and the relation between % and 6 i8 given by:

f=2tan=1-%— . (8.4
t .

To calculate the potential, we must transform the c¢-plane to the v—plane
shown in Fig. 3.2 or in Fig. 8.2 (c), by the relation:

v= i;ﬂ log ¢ (8.5
or '
w=~22{, o=~ log o, 8.6
where-
v=v +iv", ¢c=pe', (8. D

8.2. Resistivity Curves. .

Fig. 8.3 shows the curves for a cylindrical conductor, the diameter of which
is equal to the electrode spacing @. As the depth increases, vVv-curves are re-
duced to V—curves. .

Fig. 8.4 shows the curves for a non-conducting circular cylinder. They are
similar to the curves for a vertical
plate (see Fig. 6.7).

. ~10 N
N[ F T
NN | B IR
=" BEERa
s 1IN ‘°—'\ '8
Y/ d
\V W)
]

TN
\VV

2 - 0 |

2
+ -
¥ . )
< S
A r<05
i

Fig. 8.3. Fig. 8.4.

o
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9. Circular Cylinder of Finite Conductivity

9.1. Theory.

We can also calculate the potential in the case, where the resistivity p; of
the buried cylinder shown in Fig. 8.1 is finite. In this case, the following for-
mula must be used for the calculation: -

V=L ;rl log sin nvgy’ — -2 ;rI fél h™ log(l —sech 2r mk-cos 21 v,
‘ | 9.1
where
v =\v/—vs], k=rt/i . 9.2)
and |

, h=(ﬂ.".01)/(pz1_‘m)- .(9.3)

9.2. Registivity Curves.

Figs. 9.1 and 9.2 show the curves for the cylinders of finite conductivity.
It is found that the curves for the good conductor (p:< gm) are similar to those

of the perfect conductor (p:=0), and
184 \\ - the curves ifor the poor conductor
( (p2>p) to those of the insulator
4 -
R -e2] \ - (102.- %),
S5HJYY :
2 M0 P \ "
- /V\; =~ I . , //\\
o
10l ' 'g =\ N
3 b ) N ) f \ ,
~
8 : 10}~
B2 1
/& 5 -y el
LaZ\NY/ ZE St NUP%
6 718
Y Lr RN 74
R — T3 3 ; L 6 7 3
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.. 10. Antieline
Co [ - W

We consider the potential due to a symmetrical alﬂ‘ “J P

ag
l-—Za,—-i £
Fig. 10.1.

anticline as shown in Fig, 10.1. It is assumed that
the two inclined planes intersect to each other at right
angle.

10. 1. Theory.

To calculate the potential, we must transform the domain of the z-plane,
Fig. 10.2 (a),‘into the upper half of the /—plane (b). It is convenient, however,
to introduce an auxiliary plane ¢, Fig. 10.2 (¢). The transformation from 2z to
¢ is given by the following equation:

ca) (b S ' N
, . ”
PR ¢ l” o ° 4 8l
/4
(sia-iq)

A8 M o BA
x =
E O 1 o O &

—— 27 ¢ —c :
%'fd*(ﬂ &P T S &) et ’///é‘/#/ o0
4% o ll?(-t/f )

8 O, £
(y-id) (rg-td) Fig. 10.2

bS
N
N

s _y 1 :
2=CGet-1) % o2y ) A de. (10.1)

To integraté the above equation, we put:

o 1-cn¥w, k) ' 1 :
=T RN, B k=1/2 . (10.2)

The domain of the w-plane is shown in Fig. 10.2 (d). The relation between
¢ and ¢ is given by: '

(= . (10.3)
Inserting (10.2) into (10.1) and integrating, we get:

5 sa-dn n «-dn . .
2=C) 2 ”sﬁ [s;‘n ,;“ w-- I (w, a)+i I (o, m)] , (10.4)
where

1 e
h=72‘__4§22gu,%’ E=1/,7 . | (10.5)
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If we represent the IT-function by the #-function, Eq. (10.4) becomes as
follows :

__24_ _J__ ' dov—-clt) - do(v—ic|t)
z=i - [chv 5 log 0ho(v+clr) +—5— log 190(Wv+zc|r) (10.6)
where
“w=2Kv, T=} B
and
. e=(d—g)[2d). L S - (10.7)
The relation between x and v” is given by:
a=—2L (4, (e, 0], o (10.8)
where
NS S Y )
‘p(v ’ C)'— 2 10g 02(1}”"‘0) ]
} . (10.9)
PR -1 sin 2r ¢-sinh 2r v"”
o(v"y 3 »Z tan cosh (27--1)m —cos 2r ¢-cosh 27 v”

The value of s which corresponds to v”, can be calculated as follows:

sn 2Kv"-dn 2Kv"

T2 Ry R (10.10)
s=y/1T+y2+7.
10.2. Numerical Calculation:
Ed. (10.8) can be written as follows:
~2=d (LCL T+ T 1Y), | C0.11)
where SR
L (g cosCx=1) B 1+q4"+2 "cos2(x—7).
L= (e oodTy + Do 1+q“”+2q’~’”cosZ(x+7’) ) '10.12)
or
L(Z,T)='— 1 (clcosgﬁ c3co8 Iy -+ - )+(s sin x +sysin 3x-+---)

(cicosx+czcos 3+ )—(si8in x+sssin3x+---) °’
(10.13)
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in which
c1=Cos 7, c3=g* cos 37, ca=¢® cos 57, ; g (10.16)
s1= sin 7, s3=qZ sin 37, ss=¢® sin 57, ,
and :
2 D -1 sin 27 -sinh 2x
TL1)= T ,.):'1 tan cosh (2n~1)r-—-cos 27-cosh 2y ’ 10.15)
and
r=nv’ = v2%4 w”, 7=nc= 77;{— a. . (10.16)
If we write:
Y=1 +—T/12~=H[1 +FC), O (10.17)
the values of s can be calculated from the following relations:
s=G/Y-1D//Y-1, for x>0; % (10.18)
s=y¥—1/,/(¥-1), for x<0, )
where
2r
i3
_}I_=1+2% 5 ( il ) et (10.19)
00( Fid )+0"( 72'~)
and
2
F(p=2%# 203<‘" ) 5 (10.20)
[ )0 %)
n T ‘ 0 ’4
— ﬁ L]
10. 3. - Resistivity Curves. -~ 3 \\, . '
Fig. 10.3 shows the resistivity cur- 72 Q*‘/j 8 t\ 7
ves for a special case g/d=1%, and l5 —IxT - A4
. p2=0. The ordinate of this- figure is \ l T4
p=plo(x=00), 3 2 1 0 2 3
T .
These curves are W-shaped. - d A
VAN
p—d— S0

Fig. 10.3.
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Fig. 10.4 shows the curves for the T
non-conducting anticlines., They are ] AR
inverted V-shaped.

11. Syncline A AN~
As an example for the syncline, ° _

we treat the model shown in Fig. 11.1. 3{ P
1
This is not so important for practice l \
L1 . . - — A
as the anticline described in the former Fig. 10.4.
section, but of theoretical interest.
11.1. Theory. o

The domain of the z—-plane
shown in Fig. 11.2 can be

[ A
transformed to the ¢-plane, . :z.x 2
paze
which is similar to Fig. 10.2 _—:’W.—,’_ 4 / D .
H - .L..:_- v : (~cd~ig)
(.c),'by the following equa o A . 1 14
tion: Fig. 11.1. Fig. 11.2.
dz=C(:2-1)" ¥ (c”— ';2 )y“ ds. (L.

Inserting ¢ of (10.2) into the above equation, and integrating, we get:

y— shy [ Cdnfa
;7 dna snu-cn o

in which the parameter « is related to % by (10.4).

By representing the IT-function by the J-function, z can be written as
follows:

w+(w, d+ill(w,iw)) (112

.2d r d+g 1 Fo(v—-e[7) £ F(v—ic|t
zT[ d n‘v+-2—10g S CETIED) + log 0o(v+zclr)]

(11.3)

o=

where
c=a/(2K), - v=w/(2K)
“and T=4f.

The constant ¢, which corresponds to the given values of d and g, must be
determined from the equation:
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9Ce) .7 dig | | (11.4)
o) TT2 T 4 ;

The relation between-x and v" is as follows:

L .d+ R i 19(1.11”"07)” 4_1—. ﬁ_«ﬁ@x—{c) ,
x=-27‘r—i'—[—__dg—ﬂ” +_2‘10g\4i9§(—i'1}"’4770) 2 OB 94(iv" +ic)
' (11.5)
or

x=27d [——2%:-%%-0"+¢(v", =4’ )], (11.6)

where ¢ and ¢ are functions, which have been defined by Eq. (10.9).

11.1. Numerical Calculation.
By using the notations in Section 10.2, x can be represented as a function of
% as follows:

#=d (B ~TCL+LLTI) (.7
where \
4 %) _ 2 (d+g 2.\ ’ (11.8)
Be= 2y 9~ x ( d 7 r)'

To determine the constant 7, it is convenient to use the following relation:

d+g_ cosy—3¢%cos3r+5¢°cos 57—+ I (11.9)
2d ~ siny—¢°sin3r+ ¢°sinb7—-- 7 :
The transformations from 4
v to ¢, consequently from x to s ' /|
are the same as in the case of / 7 \
3

anticline (see Section 10.2).
11.3. Resistivity Curves.

N ' i B
In Fig. 11. 3, the resistivity ' ﬂ AN / \

\ 2 / \

curves for the anticlines of the &71 4 \ \
perfect conductor are shown. / 4 ;_/// \\\\ \
They are inverted W-shaped, 3 2 -l 0 e 3
similar to those for the horizon- d-05 - 29 £

tal plates of the “insulator”, . ' - £-0
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Fig. 11. 4 shows the curves
for the insulator; these curves
are V-shaped,

It is interesting to compare

table).

59

~ - 10—
N avia
7\ /|

&0,
N
I~

\ )
\ II o
P

29|
the curves for the anticline and 4 2 ——// \
. i 4 —
syncline (see the following \\ r/
Nd a7
N
2
3 2 1 0 N 2
L)
d-=i0.5 r—2$—-j » P
=
Fig. 11.'4.
Conductor . \ Non-'conductor '
Antiéline w . inverted V
Syncline inverted W \'






