

Beiträge zur Auxochromwirkung

AUTHOR(S):

Horio, Masao

CITATION:

Horio, Masao. Beiträge zur Auxochromwirkung. Memoirs of the College of Engineering, Kyoto Imperial University 1933, 7(4): 177-248

ISSUE DATE: 1933-01-29

URL: http://hdl.handle.net/2433/280124 RIGHT:

Beiträge zur Auxochromwirkung

Von

Masao Horio

(Eingegangen am 19, Sept. 1932.)

EINLEITUNG

Das Hauptziel der vorliegenden Untersuchung besteht darin, die Auxochromwirkung einiger Atomgruppen zu erforschen, die wegen ihrer Zugehörigkeit zu wichtigen Farbstoffen Bedeutung haben, unter besonderer Berücksichtigung der modernen physikalischen Theorien der Lichtabsorption des Gases, die in glücklichen Fällen uns die Möglichkeit verschaffen, über den Zustand des Moleküls genauere Auskunft zu erhalten. Wenngleich bisher zahlreiche Untersuchungen mit manchen wichtigen Ergebnissen in bezug auf die Auxochromwirkung erschienen sind, beschäftigen sich diese doch meistens mit der Absorption der gelösten Stoffe, welche die Auxochromgruppen enthalten. Hierbei erinnert man sich indessen des Einflusses verschiedener Bedingungen, die sich häufig bemerkbar machen, und zwar solcher, von denen die Absorption der Lösung abhängt.¹⁾ So wiesen die bisherigen, besonders neuerdings exakt angestellten Forschungen darauf hin, dass beim Lösungsspektrum der Einfluss des Lösungsmittels unter anderm als komplizierender Faktor auftritt, die Untersuchung desselben also oft grossen Schwierigkeiten begegnet.²⁾ So sind im allgemeinen die Absorptionsbanden der Lösung nicht allein sehr viel breiter und weniger ausgeprägt als diejenigen des Dampfes, sondern sie erleiden auch man-

¹⁾ Mit aller Ausführlichkeit ist die Abhängigkeit des Lösungsspektrums von verschiedenen Bedingungen im Handbuch der Physik Bd. XXI 1929, II. Ley: "Absorptionsspektren und ihre Veränderlichkeit" dargestellt.

²⁾ Eine bemerkenswerte Eigentümlichkeit des Einflusses des Lösungsmittels, die neuerdings weitgehender verfolgt worden ist, besteht darin, dass Dipolmomente desselben auf die Absorption sehr verschieden wirken. Scheibe, B. 58, 586, (1925), B. 59, 2617, (1926), B. 60, 1406, (1927), usw. M. Treves, Z. f. Phys. 48, 244, (1928), H. v. Halban u. J. Eisenbrand, Z. f. phys. Chem., 132, 401, (1928), K. Wolf, Z. f. phys. Chem. 1929, Bd 2, 39.

nigfaltige Veränderungen und Verschiebungen, deren Ursachen einerseits chemischer, anderseits physikalischer Natur sind. Folglich gibt es keine allgemein geltende Theorie für Lösungsspektren.¹⁾ Soweit es sich dagegen um Gas- bzw. Dampfspektren handelt, insbesondere von zweiatomigen Molekülen, ist die theoretische Begründung derselben von einigen Physikern gegeben worden, die die Entstehung des Bandenspektrums und dessen Zusammenhang mit dem Molekülbau zu einem umfassenden Bild entwickeln lässt. Auf eine vollständigere Wiedergabe der Theorien müssen wir aber in der vorliegenden Abhandlung verzichten.²⁾ Hier begnügen wir uns damit, sie bloss in Hauptzügen anzudeuten.

In dem Molekül müssen wir drei Bewegungsarten unterscheiden: (1) Bewegung der Elektronen, (2) Schwingung der Atome od. Atomgruppen und (3) Rotation des Moleküles. Folglich muss auch die innere Energie des Moleküls aus drei Anteilen bestehen. Wir können zunächst mittels verschiedener Anregungen die Energie des in normalem od. ruhigem Zustand sich befindenden Moleküls verändern, indem wir die Elektronen auf ein neues Energieniveau überspringen lassen. Diese Energieveränderung ΔE_e nennt man Anregungs- oder Aktivierungsenergie des Elektrons. Da gleichzeitig mit diesen Elektronenübergängen auch die Zustandsänderungen der zwei anderen Bewegungen auftreten können, setzt sich die gesamte Energiedifferenz aus drei Anteilen zusammen, und zwar dem Anteil aus dem Elektronenübergang ΔE_{e} , aus der Schwingung ΔE_{vib} und der Rotation $\triangle E_{rot}$. Werden diese Anregungen zunächst durch die Absorption irgendeiner Strahlung der Frequenz v verursacht und sind die geschilderten drei Bewegungsarten ausserdem quantummässig bestimmt, so ergibt sich unter Anwendung des Bohrschen Postulats

$$\nu = \frac{\Delta E}{\hbar} = \frac{\Delta F_e}{\hbar} + \frac{\Delta E_{vib}}{\hbar} + \frac{\Delta E_{rot}}{\hbar} = \nu_e + \nu_{vib} + \nu_{rot},$$

wobei allgemein $\nu_e > \nu_{vib} > \nu_{rot}$ ist.

¹⁾ Weigert, Z. f. phys. Chem. 102, 416, (1922). Scheibe, B. 58, 598, (1925).

²⁾ s. Sommerfeld, Atombau und Spektrallinien, 4. Aufl. 1924. Handbuch der Physik, Bd XXI, Berlin, 1929, Mecke, Bandenspektra usw.

Wegen der Kleinheit der Rotationsenergie liegt das reine Rotationsspektrum stets im äussersten Ultrarot und $\triangle E_e$ und $\triangle E_{vtb}$ sind hierbei sämtlich gleich Null. Im kurzwelligen Ultrarot wird aber die Rotation mit der Schwingung kombiniert und das sog. Rotationsschwingungsspektrum erscheint, wobei nur $\triangle E_e$ gleich Null ist. Erst im sichtbaren und ultravioletten Gebiet kommt der Elektronensprung in Betracht, da diese Energie am grössten ist.

Von diesen drei Energieanteilen ist der der Elektronen, d.h. die Natur des Elektronenübersprunges des mehratomigen Moleküls heute noch unanalysiert geblieben, und seine Grösse einfach nur durch $\triangle E_e = h\nu_e$ dargestellt. Andrerseits sind die der Schwingungs- und der Rotationsenergie seit Jahren Gegenstand eingehenderer theoretischer Untersuchung gewesen. So gilt nach Kratzer¹ für Schwingungsenergie das folgende Verhältnis

$$\Delta E_{vib} = n'h\nu' (\mathbf{I} - x'n') - nh\nu (\mathbf{I} - nx),$$

worin x und x' die vom unharmonischen Charakter abhängigen kleinen Konstanten, n und n' die Schwingungsquantumzahlen des normalen und angeregten Moleküls sind.

Für die Molekularrotation erhalten wir nach Schwarzschild²⁾

$$\Delta E_{rot} = \frac{m^{\prime 2} h}{8 \pi f'} - \frac{m^2 h}{8 \pi f},$$

worin m und m' die Rotationsquantumzahl, J und J' das Trägheitsmoment des normalen und angeregten Moleküls sind. Da nach dem Auswahlprinzip nur drei Sorten von Übergängen des Rotationszustandes, d.h. $m \rightarrow m+1, m \rightarrow m-1$ und $m \rightarrow m$ möglich sind, so verteilt sich die Anregungsenergie, also auch Frequenz auf die entsprechenden drei Zweige, und zwar in den R(m)-, P(m)- und Q(m)-Zweig.

Nach diesen Ausführungen kann man nun die Frequenzen der absorbierten Strahlen bei mehratomigen Molekülen durch folgende Gleichung schematisch darstellen :

$$\nu = \nu_e + n' \nu'_{vib} (1 - x'n') - n \nu_{vib} (1 - xn) + R(m) + P(m) + Q(m).$$

¹⁾ Z. f. Phys. 3, 289, (1920). Ann. d. Phys. 67, 127, (1922), usw.

²⁾ Preuss. Akadem. Wiss. Sitzung, 548, (1916).

Ist hierbei die Rotation gequantelt, so zeigen die Banden die Feinstruktur. Bisweilen werden aber, besonders im Falle von mehratomigen Molekülen, wie an einer grossen Anzahl von Spektren beobachtet wurde, die Banden unscharf, und die Feinstruktur verschwindet. Auf Grund der Beobachtung einerseits, dass an einer Reihe von Banden desselben Elektronenzustandes mit steigendem Schwingungszustand das Unscharfwerden der Banden erscheint, und der Tatsache anderseits, dass das Molekül in diesem Zustand reaktionsfähiger bzw. unstabiler ist, führte V. Henri¹⁾ den Zustand mit dem Ausdruck "Prädissoziation" ein. In diesem Zustand ist die Molekularrotation nicht gequantelt, wohl aber die Elektronen- und Atombewegung. Eine andere Möglichkeit, das Molekül zu dissoziieren, ist die Steigerung der Schwingung, worauf Franck²⁾ erstmalig mit aller Ausführlichkeit hingewiesen hat. So beobachtet man bei den Absorptionsspektren der Halogene usw., dass die Banden zu den Grenzen hin konvergieren, und hiernach eine kontinuierliche Absorption folgt. Diese Erscheinung schrieb Franck dem erwähnten Zerfall des Moleküls, d.h. dem dadurch veranlassten Nichtgequanteltwerden der Energie zu.

Handelt es sich zunächst um die chemische Theorie des Chromophores und Auxochromophores, deren ursprüngliche Begründung wir Graebe u. Liebermann³⁾ und O.N. Witt⁴⁾ verdanken, so muss man vor allem die Ausführungen H. Kaufmanns⁵⁾ berücksichtigen. Dieser Forscher wies einerseits auf manche wichtige Eigentümlichkeit der Auxochromwirkung hin, anderseits führte er diese Wirkung auf die Valenzzersplitterung zurück. Früher bzw. später als er schlugen einige Verfasser, wie z.B. Staudinger⁶⁾, Stark⁷⁾, Fajan⁸⁾ u. a. chemische bzw. physikochemische Erklärungen bezüglich

¹⁾ Structurs des molécules, Paris, 1925, Z. f. Phys., 49, 774, (1928).

²⁾ Z. f. phys. Chem., 120, 144, (1926).

³⁾ B. 1, 106, (1876). 4) B. 9, 522, (1884).

⁵⁾ Kaufmann veröffentlichte seine Werke in den Büchern, "Valenzlehre", Stuttgart, 1911, "Auxochrome" und in der weiteren Literatur wie z.B. B. 39, 2722, (1906), B. 40, 2341, (1907), B. 49, 1324, (1916), B. 52, 1422, (1919), usw. Kaufmanns Ansicht ist in Henrich: Theorien der organischen Chemie, 5. Aufl., 1924, zusammenfassend dargestellt.

⁶⁾ A. 384, 45, (1911).

⁷⁾ Phys. Z. 9, 85, (1906), Jahrb. d. Radioaktivität u. Elektronik, 5, 124.

⁸⁾ Naturwiss. 11, 165, (1923), Z. f. Phys. 23, 1.

Beiträge zur Auxochromwirkung.

dieser Wirkung vor. Doch wird hier weder eine Einzeldarstellung in dieser Hinsicht noch die Wiedergabe der von manchen Forschern in bezug auf den Zusammenhang zwischen Lichtabsorption und chemischer Konstitution durchgeführten Arbeiten an dieser Stelle angestrebt.¹⁾ Obgleich diese Untersuchungen, wie schon erwähnt worden ist, sich meistens mit der Absorption von Lösungen befassen, so finden sich doch eine Reihe von Arbeiten, bei denen es sich um dieselbe von verdampften Stoffen handelt. So stehen im Vordergrund des Interesses die umfangreichen Untersuchungen von Purvis²⁾, der hauptsächlich auf die Abhängigkeit der Bande von Dampfdruck und Temperatur hinwies. Der Erste, der das Auftreten der Gesetzmässigkeit bei Dampfspektren von aromatischen Verbindungen konstatierte und deren physikalische Bedeutung erkannte, ist aber V. Henri^{3,}, und ihm und seinen Schülern verdankt man den grössten Teil der weiteren Entwicklung. So arbeitete H.G. de Laszlo⁴⁾ über das Dampfspektrum des Naphtalins, L. Light⁵⁾ über das des Benzochinons und E. Acly⁶⁾ über das des Benzonitrils. Zunächst erwähnte Mecke⁷⁾ gelegentlich die Absorptionsspektren der Dämpfe einiger Benzolderivate. Neuerdings analysierte J. Savard⁸⁾ das Absorptionsspektrum des Anilindampfes, und Kronenberger⁹⁾ gelang es, die Absorption des Benzoldampfes mit der des kristallförmigen Benzols zu vergleichen.

Trotz der Möglichkeit, wichtige Schlüsse auf den Bau und Zustand des Moleküles ziehen zu können, gibt es noch wenig Untersuchungen, wie oben gezeigt, über Absorptionsspektren von Dämpfen aromatischer

¹⁾ S. z.B. Henrich : Theorien der organischen Chemie. 5. Aufl., 1924. Lifschitz : Spektroskopie und Kolorimetrie, 2. Aufl., Leipzig, 1927. Handbuch der Physik, Bd. XXI, Ley: Farbe und chemische Konstitution, 1929, usw.

²⁾ J. Chem. Soc. 99, 1699, 2318, (1911): 101, 1514, (1912): 103, 433, 1088, (1913). Die Resultate von Purvis weichen oft ab von denen der anderen Forscher. Früher als Purvis beschättigten sich noch Hartley u. Huntington' (Phil. Trans. 170, 257, (1879)), J. Pauer (Wied. Ann., 61, 363, (1897)), L. Grebe (Z. f. wiss. Phot., 3, 376, (1905)) usw. mit der Absorption der dampflörmigen Stoffe.

³⁾ J. de Phys. et le Radium. (6), 3, 202, (1922), Structure des molécules, Paris, 1925.

⁴⁾ Z. f. phys. Chem., 118, 369 (1925). 5) Z. f. phys. Chem., 122, 414, (1926).

⁶⁾ Z. f. phys. Chem., 135, 251, (1928). 7) Handbuch der Physik, Bd. XXI, 552, (1929).

⁸⁾ Compt. rend., 190, 678, (1930). 9) Z. f. Phys., 63, 494, (1930).

Verbindungen. Somit schien es von Interesse, die Dampfspektren der weiteren Benzolderivate zu analysieren und danach dann die Auxochromwirkung zu interpretieren. Es handelt sich daher in der vorliegenden Abhandlung um die Absorption der monosubstituierten Benzolderivate mit den -C-C, -C=C, -C=C, $-NH_2$, -OH und $-OCH_3$ Gruppen und einiger disubstituierter Derivate wie Toluidine und Anisidine.

ANGEWANDTE METHODE

Als Lichtquelle wurde die Emission des Wasserstoffs verwendet, der langsam durch ein Geisslerrohr mit einem Quarzfenster hindurchströmend unter niedrigem Gasdruck durch elektrische Entladung zum Leuchten gebracht wurde. Auf diesem Wege erhielten wir für das bei der vorliegenden Untersuchung in Frage kommende Gebiet des Spektrums ein fast gleichmässiges kontinuierliches Spektrum. Zum Photographieren wurden zwei Quarzspektrographen Adam-Hilgers verwendet. Die Dispersion des einen beträgt im Gebiet 3200-2800 Å ca 15Å/mm, im Gebiet 2800-2300 Å 10Å/mm. ca Diese Dispersion genügt zur Analyse der Schwingungsspektren. Der durchschnittliche Fehler der Wellenzahlen ist etwa 5cm⁻¹. Der andere Spektrograph, der hauptsächlich zur Bemessung der unausgeprägten Spektren, wie der der Biderivate, und der Lösungsspektren verwendet wurde, ist kleiner als der obige; seine Dispersion beträgt im Gebiet 2800-2300 Å ca 25Å/mm. Die Wellenlänge der Bandkanten wurde mit dem Komparator Adam-Hilgers, bei dessen Anwendung der Abstand bis zu 0,001mm abgelesen werden kann, durch Interpolation zwischen den in der Nähe befindlichen Eisenbogenlinien gemessen. Die Schwingungszahl, auf Vakuum bezogen, wurde nach der Tabelle von H. Kayser bestimmt. Die Intensität der Absorptionsbanden wurde durch ein Mikrophotometer gemessen.

Als Versuchsmaterial dienten einerseits Kahlbaums reine Präparate, die vor Verwendung aber durch Redestillation bzw. Umkrystallisierung noch genügend gereinigt wurden, anderseits von uns rein dargestellte Präparate. Die Verdampfung der Proben verlief folgendermassen, je nachdem sie flüssig oder fest waren. Die flüssigen Proben, in einem

Beiträge zur Auxochromwirkung.

Kapillarchen mit dünner Aussenwand derart eingeschmolzen, dass die Luft möglichst ausgeschlossen war, wurden in ein mit planparallelen Quarzscheiben abgeschlossenes Glasrohr eingeführt. Nachdem das Rohr durch eine "cenco"-Pumpe und zwei in Serie verbundene Diffusionspumpen genug abgesaugt und abgeschmolzen war, wurden die Proben unverzüglich verdampft, indem das Kapillarchen, infolge des Zusammenstossens mit dem in das Rohr vorher eingeführten Glasstäbchen durch Schütterung des Rohrs zerbrochen wurde. Der Gasdruck des Materials war meistens 2~10 mmHg. Die festen Substanzen liessen sich unmittelbar in das Rohr einführen, worauf das Rohr unter guter Abkühlung mittels Kältegemisch durch die Pumpen abgesaugt und hiernach abgeschmolzen wurde.

Die Spektrumaufnahme wurde meistens bei Zimmertemperatur durchgeführt. Da allein bei p-Toluidin und p-Anisidin, welche bei gewöhnlicher Temperatur nur schwer vergasbar sind, der Absorptionsversuch selbst dann unmöglich war, wenn die längere Absorptionsschicht von 2 Meter angewendet wurde, so liess sich das Rohr durch die Umgebung dahin erwärmen, dass die Substanzen schliesslich genügend hohen Dampfdruck aufwiesen.

Zur Messung des Lösungsspektrums wurde der Extinktionskoeffizient bei verschiedener Wellenlänge nach der photographischen Methode V. Henris ermittelt, wobei der kondensierte Funken des Kupfers als Lichtquelle diente. Die Absorption wurde nach der Extinktionskurve gedeutet, indem die Ordinate den Wert log ε trägt, und die Abszisse die Wellenlänge od. Wellenzahl ist.

KAPITEL I

Wirkung der -C-C, -C=C und $-C\equiv C$ Gruppe

Die Wirkung der genannten Gruppen auf den Benzolkern, die wegen der Beziehung zwischen der chemischen Ungesättigtheit des Substituents und der Auxochromwirkung desselben von besonderem Interesse ist, sei zuerst näher beobachtet, indem wir besonders das Dampfspektrum von Äthylbenzol, Styrol und Phenylazetylen analysieren, obschon dieser in bezug auf ihre Lösungsspektren von einigen Forschern Erwähnung geschah,

wobei besonders die wesentliche Parallelität zwischen Reaktionsfähigkeit und optischer Aktivität des Substituents bestätigt wurde.

(A) SPEKTREN DES STYROLS

(I) Lösungsspektrum : Die Absorption der Styrollösung wurde von einigen Forschern, wie E. Baly, C. Desch¹) und H. Ley²) u.a. nach der Absorptionsgrenzemethode gemessen. Dabei erinnert man sich jedoch daran, dass durch Verknüpfung der Äthylenbindung mit dem Benzolkern ein neues Chromophorsystem mit einer gegenüber dem Benzol stark veränderten bzw. verschobenen Absorption zustandekommt. Bei der alkoholischen Lösung beobachteten wir aber drei Absorptionsbanden d.h. A, B und C in Ultraviolett. deren Intensitätsmaximum sich bei etwa 292 m μ (log ϵ = 2.60), 283 m μ (log ϵ =2.72) und 275 mµ (log ε =2.74) befindet, und noch eine sehr breite und intensive Bande im kürzeren Ultraviolett, deren ε -Wert 10⁴ erreicht. (vgl. Abb. 1). Der Abstand der Wellenzahl (mm^{-1}) zwischen den schmäleren Banden A und B wird etwa zu III, zwischen B und C zu 99 bestimmt. Dieser Abstand erstreckt sich bei dem aus mehreren Banden bestehenden Benzolspektrum, wie von V. Henri³⁾ und neuerdings von Orndorff und Mitarbeitern⁴) gefunden wurde, von etwa 92 bis 98. Bezüglich dieser Verhältnisse, namentlich über die Wirkung der -C = C Gruppe lässt sich ebenfalls eine genauere Kenntnis durch Analysierung des Dampfspektrums gewinnen.

2) Dampfspektrum: Wie in Abb 1. im Vergleich mit dem Lösungsspektrum schematisch dargestellt ist, besteht das Dampfspektrum aus mehreren Banden (217 Banden und Linien), die an fast derselben Stelle, wo die Lösungsbanden A, B und C auftreten, erscheinen, obgleich das Lösungsspektrum in merklicher Weise nach Rot verschoben ist. Photo. I zeigt das Dampfspektrum des Styrols. Die beobachteten Wellenzahlen dieser Bandkanten sind in Tabelle I (s. 212) wiedergegeben. An der Grenze,

¹⁾ J. chem. Soc. 93, 1751, (1908).

²⁾ Z. f. wiss. Photo. 18, 177, (1919), B 50, 243, (1917), 51, 1808. (1918), s. hierzu I. Lifschitz, Z. f. phys. Chem. 95, 1, (1920).

³⁾ J. de. phys. et le Radium. (6), 3, 181, (1922).

⁴⁾ J. Am. Chem. Soc. 50, 831, (1928).

die bei ca 2570 Å liegt, obschon dieselbe nicht nur unausgeprägt, sondern auch ziemlich von den Versuchsbedingungen abhängig ist, schliesst sich zunächst an die kurzwellige Seite eine kontinuierliche Absorption an. Jedoch weder ihr Intensitätsmaximum noch ihre Breite konnten beobachtet werden.

Abb. Ι.

Bandenverteilung des Dampfspektrums des Styrols.

. Die Verteilung der Banden ist in Abb. 2 schematisch dargestellt. Daraus kann man zunächst einen regelmässigen Aufbau des Spektrums konstatieren, wenn man besonders die Intensitäten und die Wellenzahlen

der Bandkanten in Betracht zieht : Von der stärksten Bande A_0 (λ 2876.0Å, I/λ 34760 cm⁻¹) aus nach der kurzwelligen Seite hin treten die starken Banden B_0 und C_0 in abnehmender Intensität auf. Der Abstand zwischen A_0 und B_0 beträgt 951 cm⁻¹, der zwischen B_0 und C_0 ebenfalls 954 cm⁻¹. Diese Verhältnisse gelten wiederholentlich für die Bandenserien A_1 , B_1 , C_1 und A_2 , B_2 . Von der starken Bande A_1 (λ 2779.2 Å, I/λ 35971 cm⁻¹) aus folgen die starken Banden B_1 und C_1 in abnehmender Intensität hinterein-Dabei ist der Abstand zwischen A_1 und B_1 zu 950 cm⁻¹, der ander. zwischen B_1 und C_1 zu 954 cm⁻¹ bestimmt. Im kürzeren Gebiet kommen noch eine Reihe von Banden A_2 , B_2 vor. Der Abstand zwischen A_2 $(\lambda 2667.2 \text{ Å}, 1/\lambda 37481 \text{ cm}^{-1})$ und B_2 beträgt ebenfalls 950 cm⁻¹. Zunächst treten die mittelstarken Banden in einem durchschnittlichen Intervall von 207 cm⁻¹ sowohl von den Banden A_0 , B_0 , C_0 , als auch von A_1 , B_1 , C_1 aus nach den langwelligen hin liegend auf. Diese Banden sind mit den Buchstaben $a_0, b_0, \ldots, oder a_1, b_1, \ldots$ bezeichnet,¹⁾ je nachdem sie der A_0 - oder A_1 -Bandenserie zugehören. Somit zeigen die A_0 - und die A_1 -Serie dieselbe Struktur. Anstatt dieses Intervalls beobachtet man nur bei der A_2 -Serie andere Intervalle von 297 cm⁻¹ und 151 cm⁻¹. Ausserdem findet man Reihen von schwachen Banden, die sich in den Intervallen von 72 cm⁻¹ und 23 cm⁻¹ von fast allen starken Banden entfernt nach der langwelligen Seite hin gelegen befinden. Von der stärksten Bande Ao zu den kurzwelligen hin treten noch eine Reihe von schwachen Banden in abnehmender Intensität auf, deren durchschnittlicher Abstand 52 cm⁻¹ beträgt.

Die obige Gruppierung lässt sich folgendermassen erklären: Die Atome des Styrolmoleküls haben zwei in Frage kommende Schwingungszustände, deren Frequenzen im normalen Zustand a_0 , β_0 (cm⁻¹), im angeregten Zustand a', β' (cm⁻¹) sind. Sind die zu jedem Zustand gehörigen Quantumzahlen p_0 , q_0 und p', q', so wird unter Vernachlässigung der durch die

¹⁾ Die Zahl oben auf den Buchstaben, wie z.B. $\frac{1}{0}$, $\frac{2}{0}$,.....usw., zeigt, um das Wievielfache von β' die Bande von den starken Banden, wie z.B. von B₀ entfernt ist, zeigt also den Zahlenwert von $q'-q_0$.

187

Unharmonität der Schwingung hervorgerufenen Konstanten die Schwingungsenergie für den Normal- und Aktivierungszustand E_0 resp. E' folgendermassen angegeben.

$$E_0 = p_0 h a_0 c + q_0 h \beta_0 c$$
$$E' = p' h a' c + q' h \beta' c$$

Die Energiedifferenz vor und nach der Aktivierung ist daher

$$E' - E_0 = p' h a' c + q' h \beta' c - p_0 h \sigma_0 c - q_0 h \beta_0 c'$$

= h u' c (p' - p_0) + p_0 h c (a' - a_0) + h \beta' c (q' - q_0) + q_0 h c (\beta' - \beta_0).

Daraus folgt die Schwingungsfrequenz

$$\nu_{vib} = \frac{E' - E_0}{hc} = a' (p' - p_0) + p_0 (a' - a_0) + \beta' (q' - q_0) + q_0 (\beta' - \beta_0).$$

Stellt ν_e den Betrag eines gewissen Elektronensprungs dar, so lässt sich das Elektronenschwingungsspektrum durch untenstehende Formel angeben.

$$\nu = \nu_e + a' (p' - p_0) + p_0 (a' - a_0) + \beta' (q' - q_0) + q_0 (\beta' - \beta_0)$$

Begründet auf die obige Beobachtung, kann man nun für die A_0 und A_1 -Serie a'=952, $a'-a_0=-72$, $\beta'=207$, $\beta'-\beta_0=-23$ setzen.

Nimmt man zunächst an, dass die Wellenzahlen der A_0 - und A_1 -Bande die Elektronenfrequenzen darstellen, so erhält man für die A_0 -Serie $\nu_e = 34760$, für die A_1 - Serie $\nu_e = 35971$.

Für die A_2 -Serie kann man noch einen anderen Schwingungszustand, dessen normale und aktivierte Frequenz γ_0 resp. γ' , und dessen entsprechende Quantumzahlen r_0 resp. r' sind, annehmen. Daraus folgt die Absorptionsfrequenz

$$\nu = \nu_e + a'(p' - p_0) + p_0(a' - a_0) + \beta'(q' - q_0) + q_0(\beta' - \beta_0) + \gamma'(r' - r_0) + r_0(\gamma' - \gamma_0),$$

wobei sich nach den experimentalen Daten $\nu_e = 37481$, $\alpha' = 950$, $\alpha' - \alpha_0 = -72$, $\beta' = 297$, $\beta' - \beta_0 = -23$ und $\gamma' = 151$ setzen lässt.

Das gesamte Schwingungsspektrum lässt sich somit durch folgende Formeln ausdrücken:

 $\nu = 34760 + 952(p'-p_0) - 72p_0 + 207(q'-q_0) - 23q_0 + 52s \dots A_0$ -Serie $\nu = 35971 + 952(p'-p_0) - 72p_0 + 207(q'-q_0) - 23q_0 \dots A_1$ -Serie $\nu = 37481 + 950(p'-p_0) - 72p_0 + 297(q'-q_0) - 23q_0 + 151(r'-r_0) \dots A_2$ -Serie, wobei in der A_0 -Serie $p'-p_0$ von 0 bis 2, p_0 und q_0 von 0 bis 3, $q'-q_0$ von -3 bis 0, s von 0 bis 3, in der A_1 -Serie $p'-p_0$, p_0 und q_0 von 0 bis 2, $q'-q_0$ von -1 bis 0, in der A_2 -Serie $p'-p_0$ und p_0 von 0 bis 1, $q'-q_0$, $r'-r_0$, von -1 bis 0, q_0 von 0 bis 2 variieren können.

52s in der A_0 -Serie zeigt einige schwache Banden, die sich von A_0 nach den kurzwelligen hin befinden und über deren Natur vorläufig nichts ausgesagt werden kann. In Tabelle 2 (s. 214) sind vergleichsweise die beobachteten und die aus den obenstehenden Gleichungen berechneten Werte der Wellenzahlen angegeben. Der Vergleich wurde bei 130 Bandkanten durchgeführt.

Das allgemeine Aussehen des Dampfspektrums des Styrols ist dem des Benzols und seiner anderen Derivate etwas ähnlich; es können hier, wie schon gezeigt, zwei Teile unterschieden werden, der eine aus mehreren schmalen Banden, der andere dagegen aus völlig kontinuierlicher Absorption bestehend. Was den Teil des schmalen Bandensystems anbetrifft, so können wir darauf aufmerksam machen, dass die Hauptfrequenz des Benzolkerns, die bei unsubstituiertem Benzol 922 cm⁻¹ beträgt und der Schwingung der Ringkohlenstoffatome zuzuschreiben ist, bei Styrol nur wenig verändert ist, da sich dabei als dieselbe 952cm⁻¹ ergeben hat. Bezüglich der Natur der beobachteten kleinen Frequenzen, wie 207 cm⁻¹, 297 cm⁻¹, 151 cm⁻¹ usw., kann man, obwohl das Vorhandensein verschiedener Frequenzen in mehratomigen Molekülen sehr wahrscheinlich sein mag, noch nichts mit Sicherheit aussagen. So hat V. Henri beim unsubstituierten Benzol die Frequenz von 164 cm⁻¹ und 121 cm⁻¹, Mecke von 465 cm⁻¹ gemessen. Bedeutender noch als die Wirkung der -C = C Gruppe auf die Hauptfrequenz der Kernschwingung ist jedoch ihre Wirkung auf die Elektronenaktivierung. Während ν_e des blossen Benzols 38612 cm⁻¹ ist, ist dies bei Styrol 34760 cm⁻¹. Daraus folgt als Elektronenaktivierungsenergie des Benzols 110 Kcal/mol, als die des Styrols 99 Kcal/mol. Somit verschiebt sich die Bandenserie durch Ersetzung mit der -C = C Gruppe um 286,9 Å nach Rot.

(B) SPEKTREN DES PHENYLAZETYLENS.

(1) Lösungsspektrum : Nach der Absorptionsgrenzemethode wurde das Spektrum der Phenylazetylenlösung mit der diskontinuierlichen Lichtquelle von H. Ley u. K. Engelhardt¹⁾ gemessen, wobei sich hauptsächlich nur eine breite und intensive Bande in kürzerem Ultraviolett ergab.

Bei näherer Beobachtung mit kontinuierlicher Lichtquelle konnten wir jedoch, wie in Abb. 3 gezeigt, mehrere schmälere Banden im Gebiet von 290~250 m μ und sehr intensive breitere Banden im kürzeren Ultraviolett (245—225 m μ) messen. Ausserdem kommen noch in jenen, wie in Tabelle 3 angeordnet, die durchschnittlichen Intervalle von 95 mm⁻¹ und 50 mm⁻¹ vor.

Tabelle 3.

3608 (49) 3559 (54) 3505	3626
(94) (101) 3702 (42) 3660 (06) (88)	(95) 3724 (41) 3683 (91) (82)
(90) (00) 3798 (50) 3748 (90) (98)	3815 (49) 3766
3888 (42) 3846	

Die Zusammenstellung der Wellenzahlen (mm⁻¹) der Banden des Lösungsspektrums des Phenylazetylens. Die Zahlen in Klammern bezeichnen die entsprechenden Intervalle zwischen den miteinander vertikal bzw. horizontal angeordneten Wellenzahlen.

(2) Dampfspektrum: Eine Ähnlichkeit mit dem Fall des Styrols entnimmt man der Abb. 3, worin der Vergleich zwischen dem Dampf- und Lösungsspektrum schematisch dargestellt ist. So ist das Dampfspektrum nicht nur aus zwei Teilen, einem aus mehreren schmalen Banden, einem andern dagegen aus kontinuierlicher Absorption bestehend, zusammensetzt, sondern es ist auch kurzwelliger als das Lösungsspektrum. In Tabelle 4 (S. 217) sind die beobachteten Bandkanten des Dampfspektrums wiedergegeben.

Photo. 2 zeigt das Dampfspektrum des Phenylazetylens. Die Bandenverteilung desselben ist in Abb. 4 schematish dargestellt. Man sieht, dass die Banden auch hier mit Regelmässigkeit angeordnet sind. So

I) Z. f. phys. Chem. 74, (1910), 30.

Masao Horio.

kann man eine Reihe von starken Banden A_0 , B_0 , C_0 , D_0 und F_0 finden, in der die Abstände immer zwischen den miteinander benachbarten Banden praktisch gleich sind und durchschnittlich 954 cm⁻¹ betragen. Die Wellenlänge und -zahl der in der Reihe langwelligsten A_0 -Bande sind $\lambda 2750.2$ Å, I/λ 36350 cm⁻¹. In gleicher Weise treten von A_1 ($\lambda 2732.1$ Å, I/λ 36591 cm⁻¹) aus die starken Banden B_1 , C_1 , D_1 und E_1 in dem durchschnittlichen Intervall von 954 cm⁻¹ hintereinander nach der kurzwelligen Seite hin auf. Dazu kommen noch andere Intervalle von $482 \text{ cm}^{-1}(\beta')$ und 164 cm⁻¹ oder 165 cm⁻¹ (γ'): Die Banden, die von A_0 , B_0 ,..... und A_1 , B_1 ,..... aus in dem Abstand von β' liegen, sind mit den kleinen Buchstaben a_0, b_0, \ldots und a_1 , b_1 ,...., und die Banden, die im Abstand von γ' liegen, mit a'_0, b'_0, \ldots und a'_1, b'_1, \ldots bezeichnet. Alle diese Banden beobachtet man von den starken Banden A_0 , B_0 ,..... und A_1 , B_1 ,..... aus nach der langwelligen Seite hin befindlich. Mit Regelmässigkeit treten noch andere Abstände von 75 cm⁻¹ und 33 cm⁻¹ auf. In diesen Abständen liegen Bandenreihen bei allen starken Banden nach deren langwelliger Seite zu. Diese Tatsache legt eine ähnliche Überlegung wie bei Styrol nahe. So kann man für die A_0 -Bandenserie $\nu_e = 36350$, für die A_1 -Serie $\nu_e = 36591$, und für beide Serien $\alpha'=954$, $\alpha'-\alpha_0=-75$, $\beta'=482$, $\beta'-\beta_0=-33$, und für die A_0 -Serie $\gamma' = 164$, für A_1 -Serie $\gamma' = 165$ setzen. Also lassen sich folgende Bandenformeln ableiten:

 $\nu = 36350 + 954(p'-p_0) - 75p_0 + 482(q'-q_0) - 33q_0 + 164(r'-r_0)....A_0$ -Serie $\nu = 36591 + 954(p'-p_0) - 75p_0 + 482(q'-q_0) - 33q_0 + 165(r'-r_0)....A_1$ -Serie, worin in der A_0 -Serie $p'-p_0$ von 0 bis 4, p_0 von 0 bis 6, $q'-q_0$ von -2bis 0, q_0 von 0 bis 1, $r'-r_0$ von -1 bis 0 und in der A_1 -Serie $p'-p_0$ von 0 bis 4, p_0 von 0 bis 3, $q'-q_0$ von -1 bis 0, q_0 von 0 bis 1, $r'-r_0$ von -1 bis 0 variieren können.

Der bei 90 Bandkanten durchgeführte Vergleich der aus den obigen Gleichungen berechneten Wellenzahlen der Bandkanten mit den beobachteten ist in Tabelle 5 (S. 219) wiedergegeben. Hier ist auch zu bemerken, dass die Hauptfrequenz 954 cm⁻¹ nur unbedeutend von der des Styrols abwich, also sich nicht wesentlich von der des Benzols unterscheidet. Dabei ist die Aktivierungsenergie des Elektrons für die A_0 -Serie zu 103 Kcal/mol bestimmt, die bei Styrol sich zu 99 Kcal/mol ergab. Also ist die stärkste Serie durch Einführung der $-C \equiv C$ Gruppe um 161.1 Å nach den längeren Wellenlängen hin verschoben.

(C) DAMPFSPEKTRUM DES ÄTHYLBENZOLS.

Äthylbenzoldampt zeigt etwas breitere Banden als Styrol und Phenylazetylen, also werden die kleineren Intervalle undeutlicher. Die beobachteten Bandkanten sind in Tabelle 6 (S. 220) wiedergegeben. Die Verteilung der Banden ist in Abb. 5 schematisch dargestellt.

Bandenverteilung des Äthylbenzolspektrums. (Absorption des Dampfes)

Das Dampfspektrum des Äthylbenzols besteht aus drei Serien, d.h. der $A_{0^{-}}$, $A_{1^{-}}$ und A_{2} -Serie. Von A_{0} ($\lambda 2659.4$ Å, $^{I}/\lambda 37591$ cm⁻¹) zu den kurzwelligen hin folgen die starken Banden B_{0} , C_{0} , D_{0} und E_{0} in abnehmender Intensität im durchschnittlichen Abstand von 932 cm⁻¹. In gleicher Weise treten von A_{1} ($\lambda 2622.0$ Å $I/\lambda 38127$ cm⁻¹) aus eine Reihe von Banden A_{1} , B_{1} , C_{1} und D_{1} im durchschnittlichen Intervall von 924 cm⁻¹, und von A_{2} ($\lambda 2578.1$ Å, $I/\lambda 38777$ cm⁻¹) aus eine Reihe von Banden A_{2} , B_{2} , C_{2} , D_{2} und E_{2} im durchschnittlichen Abstand von 930 cm⁻¹ auf. Ausserdem beobachten wir für die A_{0} -Serie noch ein anderes Intervall von 207 cm⁻¹, für die $A_{1^{-}}$ Serie von 182 cm⁻¹. Ferner kommen noch, wie bei den vorigen Fällen, andere kleinere Intervalle von 64 cm⁻¹ und 24 cm⁻¹ vor, in denen sich einige Banden von den starken zu den langwelligen hin befinden. Aus den obigen Feststellungen können wir nun die folgenden Bandenformeln ableiten. Beiträge zur Auxochromwirkung.

$$\begin{cases}
\nu = 37591 + 932(p'-p_0) - 64p_0 + 207(q'-q_0) - 24q_0 \dots A_0 \text{-Serie} \\
\nu = 38127 + 924(p'-p_0) - 64p_0 + 182(q'-q_0) - 24q_0 \dots A_1 \text{-Serie} \\
\nu = 38777 + 930(p'-p_0) - 64p_0 \dots A_2 \text{-Serie},
\end{cases}$$

worin in der A_0 -serie $p'-p_0$ von 0 bis 4, p_0 von 0 bis 1, $q'-q_0$ von -1 bis 0, q_0 von 0 bis 1, in der A_1 -Serie $p'-p_0$ von 0 bis 4, p_0 von 0 bis 1, $q'-q_0$ von 0 bis 1, $q'-q_0$ von -2 bis 0, q_0 von 0 bis 1, und in der A_2 -Serie $p'-p_0$ von 0 bis 4, p_0 von 0 bis 1 variieren können.

Die Werte der berechneten Frequenzen sind in Tabelle 7 (S. 221) mit den beobachteten verglichen.

Nochmals ist darauf aufmerksam zu machen, dass die obigen Hauptfrequenzen des Äthylbenzols, $924-932 \text{ cm}^{-1}$, denen des Benzols 922- 924 cm^{-1} beinahe gleich sind, also die Wirkung der -C-C Gruppe auf die Hauptfrequenz des Benzolkerns sehr gering ist.

Ausserdem ist die Energie der Elektronenaktivierung, bestimmt nach der Frequenz der A_0 -Bande zu 107 Kcal/mol, am wenigsten von der des Benzols (110 Kcal/mol) verschieden. Durch Einführung der -C-C Gruppe ist also die stärkste Bandenserie um 70.3 Å nach Rot verschoben.

Diskussion der Versuchsergebnisse

Die obigen Resultate, die sich betreffs der Wirkung der $-CH_2-CH_3$, $-CH=CH_2$ und $-C\equiv CH$ Gruppen auf Benzol ergaben, sind nochmals in der untenstehenden Tabelle und Abbildung zusammengefasst dargestellt.

	Substituent	α' cm-1	v _e cm ⁻¹	ΔE Kcal/Mol	Δλ Å
Benzol		922	38612	110	
Äthylbenzol	-CH2CH3	930	37591	107	70.3
Styrol	$-CH = CH_2$	952	34760	99	286.9
Phenylazetylen	C≡CH	954	36350	103	161.1

Tabelle 8.

Zusammenstellung der Zahlenwerte in bezug auf die Wirkungen der Substituenten.

In Tabelle 8 zeigt die Kolumme α' die Hauptfrequenz des Benzol-

kerns. Durch Ersetzung eines Kernwasserstoffes durch die $-CH_2-CH_3$ findet beinahe keine Änderung, durch die $-CH=CH_2$ und $-C\equiv CH$ Gruppe nur eine geringe Erhöhung der Schwingungsfrequenz des Benzolkerns statt. Im grossen und ganzen sind aber die Veränderungen nicht bedeutend.

Zunächst ist der Betrag des Elektronensprunges ν_e , wie in der vierten Kolumme angegeben, durch Ersetzung in verschiedener Weise verkleinert. Dabei übt die $-CH_2-CH_3$ Gruppe die kleinste, die $-C \equiv CH$ - Gruppe eine mittlere, die $-CH = CH_2$ Gruppe die grösste Wirkung aus. In gleicher Reihenfolge ist die Aktivierungsenergie des Elektrons herabgesetzt. Die A_0 -Bande wird also durch jede Ersetzung nach den grösseren Wellenlängen hin verschoben. Die Verschiebungen in Å sind in Kolumme $\Delta \lambda$ angegeben.

In Abb. 6 sind die obigen Verhältnisse schematisch angedeutet.

Abgesehen von der kleinen Steigerung der Schwingungsfrequenz des Kerns, ist vor allem darauf aufmerksam zu machen, dass die $-CH = CH_2$ Gruppe die grösste Veränderung bei dem Elektronensprung hervorruft und die Absorption dadurch am weitesten nach Rot verrückt.

Untersucht man also die Beziehung zwischen der Auxochromwirkung und der chemischen Natur der Substituenten, so findet man alsbald, dass die Reihenfolge der Wirkung derart ist, dass die chemisch aktivste, die -C=CGruppe, die grösste, die $-C\equiv C$ Gruppe die mittlere und die gesättigtste, die -C-C Gruppe, die wenigste Wirkung ausüben.

Obwohl unsere Kenntnisse über die Natur des Elektronensprunges der mehratomigen Moleküle bisher zu gering sind, um diese näher analysieren zu können, also es vorläufig unmöglich ist, den Schluss zu ziehen,

dass die stärksten Bandenserien aller miteinander in naher Verwandtschaft stehenden Substanzen demselben Elektronensprung entsprangen, nehmen wir dennoch wahr, wie oben gesehen, dass die Verschiebung der Bandenserien dem Zustand des Elektrons zuzuschreiben ist, insbesondere in unserem Fall, ist es deutlich, dass die chemische Ungesättigtheit des Substituents von massgebendem Einfluss auf den Elektronensprung ist. Zur physikalischen Interpretation dieses Verhältnisses kann man aber mit Fajan u.a., der die elastische Deformierbarkeit der Elektronenschale annahm, darauf hinweisen, dass das starke elektrische Feld, das die ungesättigte Atomgruppe besitzen kann, eine starke Deformation der Elektronenhülle bewirkt, durch die sich ohne weiteres die Farbvertiefung ergibt.

KAPITEL II

Die Wirkung der *NH*₂-Gruppe

Die Amido-Gruppe übt eine starke Auxochromwirkung aus. Diese Wirkung wurde bei Anilin¹⁾ untersucht.

Das Dampfspektrum des Anilins besteht aus vielen schmalen Banden. Wir haben 317 Banden und Linien im Ultraviolett (λ 3000 Å—2550 Å), beobachtet: Die beobachteten Wellenlängen, -zahlen usw. sind in Tabelle 9 (S. 222) angegeben.

Schematische Darstellung der Bandenverteilung des Dampfspektrums des Anilins.

1) Neuerdings sind kurze Mitteilungen über das Dampfspektrum des Anilins von J. Savard (Compt. rend. 190, 678, (1930)) und von Mecke (Hardb. d. Phys. Bd. XXI, 1929, S. 552) gemacht worden, die Resultate der beiden stimmen im Ganzen nicht gut überein.

Photo. 4 zeigt die vergrösserte Kopie des Spektrums. Die Bandenverteilung ist in Abb. 7 schematisch dargestellt.

Im Spektrum können wir drei Serien, d.h. die A_{0^-} , A_{1^-} und A_{2^-} Serie unterscheiden, den ersten beiden kommen die gleichen Frequenzen zu. Dann folgen die starken Banden A_0 , B_0 , C_0 , D_0 , E_0 und F_0 im durchschnittlichen Abstand von 952 cm⁻¹ (a') von A_0 (λ 2912.3 Å, I/λ 34327 cm⁻¹) ab nach den kürzeren Wellenlängen hin. In gleicher Weise treten von A_1 (λ 2871.0 Å, I/λ 34821 cm⁻¹) aus die starken Banden B_1 , C_1 und D_1 im durchschnittlichen Abstand von 955 cm⁻¹ (a') hintereinander auf. Es finden sich noch einige starke Banden, die im zweiten Intervall von 291 cm⁻¹ (β') auf der langwelligen Seite von A_0 , B_0 ,..... auftreten. Diese sind mit den kleinen Buchstaben a_0 , b_0 ,..... bezeichnet. Ebenfalls existiert in der A_1 -Serie das zweite Intervall von 296 cm⁻¹ (β), in dem sich die mittelstarken Banden von A_1 , B_1 ,..... aus sowohl zu den längeren als auch zu den kürzeren Wellenlängen hin befinden. Die Banden, die von A_1 , B_1 ,.... aus nach der kurzwelligen Seite liegen, sind mit den Bezeichnungen a¹₁, $b_{1}^{i},\ldots,$ die Banden, die nach der langwelligen Seite hin liegen, mit a_{1} , b_1,\ldots, b_{1} bezeichnet. Der A_0 - und A_1 -Serie kommt noch das dritte Intervall von 234 cm⁻¹ (γ') zu, in dem sich die Banden von den starken Banden aus nach den langwelligen hin befinden. Diese Banden sind mit a'_0, b'_0, \ldots oder, a'_1, b'_1, \ldots bezeichnet, je nachdem sie den Banden A_0 , B_0,\ldots oder A_1, B_1,\ldots zugehören. Zunächst sind die Banden, die sich von a_0 , b_0 in diesem Abstand entfernen, mit den Bezeichnungen x_0 , y_0 angedeutet.

Von 2832.4 Å ab nach der kurzwelligen Seite hin tritt noch eine Bandenserie auf. Das Hauptintervall (α'), in dem die starken Banden A_2 , B_2 und C_2 hintereinanderstehen, ist durchschnittlich 952 cm⁻¹. Wie bei der A_0 und A_1 - Serie kommt dieser Serie noch das zweite Intervall von 291 cm⁻¹ (β') zu. Die Banden, die in diesem Abstand von A_2 , B_2 ,..... entfernt liegen, sind mit a_2 , b_2 ,..... bezeichnet. Ausser diesen Intervallen kommt in der A_2 -Serie noch ein charakteristisches Intervall von 166 cm⁻¹ (γ') vor. Die Banden, die sich in diesem Abstand von A_2 , B_2 ,..... befinden, sind mit den Bezeichnungen a'_2 , b'_2 ,..... benannt. Bei allen Serien sind nun noch allgemein kleine Intervalle von 42cm⁻¹ und 16 cm⁻¹ vorhanden, durch welche die einzelnen Individuen jeder Bandengruppe charakterisiert sind.

Begründet auf die obigen Tatsachen können wir nun unter Anwendung der im vorigen Kapitel benutzten Überlegung als Bandenformeln die folgenden Gleichungen ableiten.

$$\begin{cases}
\nu = 34327 + 952(p'-p_0) - 42p_0 + 29I(q'-q_0) - 16q_0 + 234(r'-r_0)...(A_0 - \text{Serie}) \\
\nu = 3482I + 955(p'-p_0) - 42p_0 + 296(q'-q_0) - 16q_0 + 234(r'-r_0)...(A_1 - \text{Serie}) \\
\nu = 35627 + 952(p'-p_0) - 42p_0 + 29I(q'-q_0) - 16q_0 + 166(r'-r_0)...(A_2 - \text{Serie}),
\end{cases}$$

worin in der A_0 -Serie $p'-p_0$ von 0 bis 5, p_0 von 0 bis 4, $q'-q_0$ von - I bis 0, q_0 von 0 bis 2, $r'-r_0$ von - I bis 0, in der A_1 -Serie $p'-p_0$ von 0 bis 3, p_0 von 0 bis 4, $q'-q_0$ von - I bis I, q_0 von 0 bis 2, $r'-r_0$ von - I bis 0 und in der A_2 -Serie $p'-p_0$ und p_0 von 0 bis 2, $q'-q_0$ von - I bis 0, q_0 von 0 bis 2, $r'-r_0$ von - I bis 0 variieren können.

Der Vergleich zwischen den aus den Gleichungen berechneten und den beobachteten Wellenzahlen wurde bei 243 Bandkanten durchgeführt. Die Resultate sind in Tabelle 10 (S. 225) wiedergegeben.

Wiederholentlich ist hierbei die gleiche Schlussfolgerung wie in den vorhergehenden Fällen bei der Hauptfrequenz des Benzolkerns anwendbar. Es ergibt sich ein geringer Anstieg der Kernschwingung durch Hinzuführung der NH_2 -Gruppe. Bemerkenswert ist aber der Betrag des Elektronenübergangs ν_e der stärksten Serie, der 34327 cm⁻¹ ist. Die Aktivierungsenergie ΔE desselben beträgt 98 Kcal/Mol. Diese Zahlen sind viel kleiner als die des Benzols, wobei ν_e zu 38612 cm⁻¹, ΔE zu 110 Kcal/Mol bestimmt ist. Daraus folgt, dass die NH_2 -Gruppe eine sehr starke Wirkung ausübt.

KAPITEL III

Die Wirkung der OH- und OCH₃-Gruppe

Es scheint zunächst von Interesse zu sein, das Dampfspektrum des Phenols und Anisols zu analysieren, um festzustellen, eine wie wichtige Rolle das direkt an den Kern gebundene Atom spielt. In Wirklichkeit zeigen das Spektrum des Phenols und Anisols eine ganz ähnliche Struktur, indem sowohl der Betrag des Elektronensprunges als auch die Schwingungsfrequenzen wenig voneinander verschieden sind.

In Tabelle II (S. 231) und I2 (S. 235) sind die beobachteten Banden der beiden Verbindungen wiedergegeben. Photo. 5 und 6 zeigen die vergrösserten Kopien des Phenol- und Anisoldampfspektrums. Die Bandenverteilung der beiden Spektren ist in Abb. 8 schematisch dargestellt, der man vor allem die genannten Ähnlichkeiten zwischen beiden entnehmen kann.

Im Spektrum des Phenols können wir drei Serien mit fast denselben Frequenzen, d.h. die A_0 -, A_1 - und A_2 -Serie unterscheiden. Von den stärksten Banden A_0 ($\lambda 2750.1 \text{ Å}$, $1/\lambda 36352 \text{ cm}^{-1}$) zu der kurzwelligen Seite hin folgen die starken Banden B_0 , C_0 und D_0 in abnehmender Intensität im durchschnittlichen Abstand von 938 cm⁻¹ (α'). Auf gleiche Weise treten von A_1 ($\lambda 2691.9 \text{ Å}$, $1/\lambda 37137 \text{ cm}^{-1}$) aus die Banden B_1 , C_1 und D_1 im

Beiträge zur Auxochromwirkung.

durchschnittlichen Abstand von ebenfalls 938 cm^{-1} hintereinander auf. Von A_2 ($\lambda 2636.2 \text{ Å}$, $1/\lambda 37922 \text{ cm}^{-1}$) aus fängt noch eine andere Hauptreihe an. Die Banden A_2 , B_2 und C_2 folgen ebenfalls im durchschnittlichen Intervall von 938 cm^{-1} hintereinander.

Von diesen starken Banden im durchschnittlichen Intervall von 480 cm^{-1} — 485 cm^{-1} (β') zu den lang- bzw. kurzwelligen hin treten noch die mittelstarken Banden auf. Diese Banden sind mit kleinen Buchstaben folgenderweise bezeichnet: Je nachdem sich die Banden z.B. von A_0 nach den lang- oder kurzwelligen hin befinden, sind diese mit den Bezeichnungen ${}^{1}a_0$, ${}^{2}a_0$,..... oder a_0^{1} , a_0^{2} ,.... benannt, worin die Zahl links oder rechts oben auf dem Buchstaben zeigt, um das Wievielfache von β' die Banden sich von A_0 entfernen.

In der A_{0^-} und A_{1^-} Serie beobachtet man noch ein anderes Intervall von 220 cm⁻¹ (γ'). Die Banden, die in diesem Abstand von A_0 , B_0 ,, A_1 , B_1 ,..... zu den langwelligen hin auftreten, sind mit den Bezeichnungen a'_0 , b'_0, a'_1 , b'_1, die Banden, die von a_0 , b_0 bzw. a_1 , b_1 zu den langwelligen hin auftreten, mit x_0 , y_0 bzw. x_1 , y_1 benannt.

Ausser diesen Frequenzen kommen, wie in den bisherigen Fällen, noch andere kleine Intervalle von 62 cm⁻¹ und 35 cm⁻¹ vor, durch welche alle einzelnen Individuen jeder Bandengruppe charakterisiert sind.

Begründet auf die obigen Tatsachen können wir nun unter Anwendung der vielfach in den vorigen Kapiteln benutzten Überlegung die folgenden Bandenformeln ableiten.

 $\nu = 36352 + 938(p'-p_0) - 62p_0 + 480(q'-q_0) - 35q_0 + 220(r'-r_0)...(A_0-Serie)$ $\nu = 37137 + 938(p'-p_0) - 62p_0 + 485(q'-q_0) - 35q_0 + 220(r'-r_0)...(A_1-Serie)$ $\nu = 37922 + 938(p'-p_0) - 62p_0 + 485(q'-q_0) - 35q_0 \dots (A_2-Serie),$ worin in der A_0 -Serie $p'-p_0$, p_0 von 0 bis 3, $q'-q_0$ von -1 bis 2, q_0 von 0 bis 1, $r'-r_0$ von -2 bis 0, in der A_1 -Serie $p'-p_0$ von 0 bis 2, p_0 von 0 bis 3, $q'-q_0$ von 0 bis 2, q_0 von 0 bis 1, $r'-r_0$ von -1 bis 0, und in der A_2 -Serie $p'-p_0$, p_0 von 0 bis 2, $q'-q_0$, q_0 von 0 bis 1 variieren können.

Der Vergleich zwischen den beobachteten und den aus den Glei-

chungen berechneten Wellenzahlen wurde bei 114 Bandkanten durchgeführt. Die Resultate sind in Tabelle 13 (S. 233) wiedergegeben.

Fast dieselben Verhältnisse gelten wiederholentlich für das Spektrum des Anisols. In diesem können wir ebenfalls drei Serien mit denselben Frequenzen, d.h. die A_{0^-} , A_{1^-} und A_2 -Serie unterscheiden. Die Wellenlängen und -zahlen der A_{0^-} , A_{1^-} und A_2 - Bandkanten sind A_0 (λ 2747.5 Å, I/λ 36386 cm⁻¹), A_1 (λ 2691.2 Å, I/λ 37147 cm⁻¹) und A_2 (λ 2637.6 Å, I/λ 37902 cm⁻¹).

Dabei ist die Hauptfrequenz α' zu 943 cm⁻¹, die zweite Frequenz β' zu 505 cm⁻¹ und die dritte Frequenz zu 230 cm⁻¹ bestimmt. Ausser diesen Intervallen gibt es noch andere kleine Intervalle von 62 cm⁻¹ und 35 cm⁻¹. Den Banden sind dieselben Bezeichnungen wie bei Phenol gegeben.

Unten sind die Bandenformeln angegeben.

$$\begin{cases} \nu = 36386 + 943(p'-p_0) - 62p_0 + 505(q'-q_0) - 35q_0 + 230(r'-r_0) \dots A_0 \text{-Serie} \\ \nu = 37147 + 943(p'-p_0) - 62p_0 + 505(q'-q_0) - 35q_0 + 230(r'-r_0) \dots A_1 \text{-Serie} \\ \nu = 37902 + 943(p'-p_0) - 62p_0 + 505(q'-q_0) - 35q_0 + 230(r'-r_0) \dots A_2 \text{-Serie}, \end{cases}$$

worin in der A_0 -Serie $p'-p_0$, p_0 von 0 bis 4, $q'-q_0$ von 0 bis 2, q_0 von 0 bis 1, $r'-r_0$ von -2 bis 0, in der A_1 -Serie $p'-p_0$, p_0 von 0 bis 3, $q'-q_0$, q_0 von 0 bis 1, $r'-r_0$ von -2 bis 0 und in der A_2 -Serie $p'-p_0$ von 0 bis 3, p_0 von 0 bis 1, $q'-q_0$, q_0 von 0 bis 1, $r'-r_0$ von -1 bis 0 variieren können.

In Tabelle 14 (S. 237) ist der Vergleich zwischen den beobachteten und den aus den Gleichungen berechneten Wellenzahlen der Bandkanten wiedergegeben, der bei 110 Banden durchgeführt wurde.

Bemerkenswerterweise spricht das obige Resultat, dass nämlich die OH- und OCH_3 -Gruppe fast denselben Einfluss sowohl auf die Elektronen als auch auf den Schwingungszustand ausüben, dafür, dass der Zustand des direkt an den Kern gebundenen Atoms des Substituents für die Wirkung der Gruppe massgebend ist.

KAPITEL IV

BIDERIVATE

In den vorhergehenden Paragraphen haben wir uns damit beschäftigt, die Wirkung jeder einzelnen Gruppe, wenn sie sich allein im Kern befindet, zu untersuchen, indem wir die Spektren der Monoderivate analysierten. Im vorliegenden handelt es sich nun um die Fälle, wo zwei Gruppen gleichzeitig im Kern vorhanden sind. Zu diesem Zweck wollen wir die Spektren einiger Biderivate, wie z.B. der Toluidine und Anisidine beobachten.

Toluidine: Bezüglich der einzelnen Wirkung der NH_2 - und CH_3 -Gruppe, die in Toluidinen zugleich vorkommen, ergibt sich folgendes: Durch Hinzuführung der NH_2 -Gruppe in den Benzolkern ist einerseits eine nur geringe Steigerung, durch Hinzuführung der CH_3 -Gruppe jedoch beinahe keine äusserlich wahrnehmbare Veränderung der Hauptfrequenz des Kerns nachweisbar,¹⁾ anderseits werden die Bandenserien derart verrückt, dass durch die NH_2 -Gruppe die stärkste Serie um 323.2 Å, durch die CH_3 -Gruppe jedoch um 77.3 Å nach den längeren Wellenlängen verschoben wird. Sind aber diese Gruppen gleichzeitig vorhanden, so ergeben sich auffallende Resultate, jedoch aus ganz komplizierten Gründen: es erfolgen unmittelbare und durch den Kern mittelbare gegenseitige Beeinflussungen. So besteht die Verwicklung darin, dass je nach der wechselseitigen Stellung der Gruppen. d.h. o-, m- oder p-Stellung sowohl die Elektronen- als auch die Schwingungsfrequenzen ganz auffallend verschieden werden.

Die schematische Darstellung der Spektren der drei Toluidine im Vergleich mit Anilin ist in Abb. 9 gegeben.

Photo 7, 8 und 9 sind die vergrösserten Kopien des o-, m- und p-Toluidindampfspektrums.

Obschon diese Spektren im Vergleich mit denjenigen der Monoderivate viel weniger ausgeprägt sind, kann man doch darin, wie es bei den Monoderivaten der Fall war, das regelmässige Vorkommen der Banden konstatieren.

So befinden sich im Spektrum des o-Toluidins die starken Banden

1) Mecke: Handbuch d. Phys. Bd. XXI, 553, (1929)

Masao Horio.

 A_0 , B_0 und C_0 in der Äquidistanz von 965 cm⁻¹ hintereinander. Die Wellenlänge und -zahl der langwelligsten Bande A_0 sind $\lambda 2888.9$ Å resp. I/λ 34605 cm⁻¹. In gleicher Weise treten von dem starken Bande A_1 ($\lambda 2850.6$ Å, I/λ 35070 cm⁻¹) aus nach der kurzwelligen Seite hin die starken Banden B_1 und C_1 in der Äquidistanz von 970 cm⁻¹ auf. Ausserdem gibt es in beiden Serien noch das zweite Intervall von 268 cm⁻¹ resp. 262 cm⁻¹, in dem sich die mittelstarken Banden von den starken aus zu der langwelligen Seite hin befinden. Hinzu kommen noch die kleinen Intervalle von 68 cm⁻¹ und 36cm⁻¹, durch welche die einzelnen Individuen jeder Bandengruppe charakterisiert sind. Diese Struktur ist daher ganz dieselbe wie die der Monoderivate: Die beobachteten Banden sind in Tabelle 15 (S. 240) angegeben. Wir können somit als Bandenformeln die folgenden Gleichungen ableiten.

 $\nu = 34605 + 965(p' - p_0) - 68p_0 + 268(q' - q_0) - 36q_0 \dots A_0$ -Serie $\nu = 35070 + 970(p' - p_0) - 68p_0 + 262(q' - q_0) - 36q_0 \dots A_1$ -Serie,

wobei in beiden Serien $p'-p_0$ von 0 bis 2, p_0 von 0 bis 3, $q'-q_0$ von -1 bis 0, q_0 von 0 bis 1 variieren können.

Der Vergleich der berechneten und beobachteten Wellenzahlen ist in Tabelle 16 (S. 241) angegeben.

Ganz dieselbe Struktur weist das Dampfspektrum des *m*-Toluidins auf. Die beobachteten Bandkanten sind in Tabelle 17 (S. 242) wiedergegeben. Dabei wurde als die Hauptfrequenz 962 cm⁻¹ (für die A_0 -Serie) und 956 cm⁻¹ (für die A_1 -Serie), als die zweite Frequenz 278 cm⁻¹ (für beide Serien) gemessen. Es gibt wieder die kleinen Intervalle von 68 cm⁻¹ und 36 cm⁻¹. Das Spektrum ist aber im Vergleich mit dem des *o*-Toluidins augenscheinlich langwelliger. Die Wellenlängen und -zahlen der A_0 - und A_1 -Bande sind A_0 (λ 2931.4 Å, I/λ 34103 cm⁻¹) resp. A_1 (λ 2890.2 Å, I/λ 34590 cm⁻¹). Nimmt man an, wie bei den bisherigen Fällen, dass die Wellenzahlen dieser Banden die Elektronenfrequenz ν_e darstellen, so erhalten wir die folgenden Bandenformeln.

$$\nu = 34103 + 962(p'-p_0) - 68p_0 + 278(q'-q_0) - 34q_0 \dots A_0$$
-Serie
$$\nu = 34590 + 956(p'-p_0) - 68p_0 + 278(q'-q_0) - 34q_0 \dots A_1$$
-Serie,

worin in beiden Serien $p'-p_0$ von 0 bis 2, p_0 von 0 bis 3, $q'-q_0$ von -1 bis 0, q_0 von 0 bis 1 variieren können.

Der Vergleich der berechneten und beobachteten Wellenzahlen ist in Tabelle 18 (S. 242) angegeben.

Im p- Toluidinspektrum können wir wieder zwei Serien beobachten. In beiden stehen jedoch die starken Banden in der Äquidistanz von 420 cm⁻¹ hintereinander. In der an Intensität überwiegenden Serie, d.h. in der A₀-Serie gibt es noch ein anderes Intervall von 209 cm⁻¹, in der schwächeren d.h. in der A_1 -Serie von 204 cm⁻¹, in dem sich die mittelstarken Banden auf der langwelligen Seite der starken Banden (A_0 , B_0 ,..... oder A_1 , B_1 ,..... usw.) befinden. Überdies sind wiederum noch andere kleine Intervalle von 48 cm⁻¹ und 36 cm⁻¹ vorhanden. Betrachtet man zunächst die Wellenzahlen der A_0 - und A_1 -Bande, d.h. 33397 resp. 32667 als Elektronenfrequenz, so erhalten wir als Bandenformeln die folgenden Gleichungen.

$$\nu = 33397 + 420(p' - p_0) - 48p_0 + 209(q' - q_0) - 23q_0 \dots A_0$$
-Serie
$$\nu = 32667 + 420(p' - p_0) - 48p_0 + 204(q' - q_0) - 23q_0 \dots A_1$$
-Serie,

worin in der A_0 -Serie $p'-p_0$ von 0 bis 3, p_0 von 0 bis 4, $q'-q_0$ von -1bis 0, q_0 von 0 bis 1, in der A_1 -Serie $p'-p_0$ von 0 bis 5, p_0 von 0 bis 3, $q'-q_0$ von -1 bis 0. q_0 von 0 bis 1 variieren können.

Die beobachteten Banden sind in Tabelle 19 (S. 243), und der Vergleich der berechneten und der beobachteten Bandkanten ist in Tabelle 20 (S. 244) angegeben.

Aus den obigen Ausführungen erkennt man einerseits die äusserliche Ähnlichkeit in der Struktur des o- und m-Toluidinspektrums mit der des Anilins. Was die p-Verbindung anbetrifft, so macht sich anderseits eine grosse Eigentümlichkeit bemerkbar. Während so die Hauptfrequenzen des o- und m-Toluidins (960–970 cm) nur unmerklich von der des Anilins (, die durchschnittlich 952 cm⁻¹ ist,) verschieden sind, stehten alle starken Banden bei der p-Verbindung in dem charakteristischen Abstand von 420 cm^{-1} nebeneinander. Nun zeigt das obige Resultat, dass selbst dann, wenn die zwei Gruppen CH_3 und NH_2 in o- und m-Stellung auftreten, die Schwingungsfrequenz des Benzolkerns nur unbedeutend, am stärksten jedoch bei der p-Verbindung modifiziert wird. Zieht man zunächst die Lage des Spektrums, d.h. die Elektronenfrequenz in Betracht, so sieht man den ausgesprochenen Unterschied zwischen diesen drei Isomeren, indem o-Toluidin die kurzwelligste Absorption, ja eine kurzwelligere als Anilin, die p-Verbindung

dagegen die langwelligste Absorption zeigt.¹⁾ Am auffallendsten ist hierbei die Wirkung der in o-Stellung zugeführten CH_3 -Gruppe, da sich die Wirkung, die, wie schon erwähnt, gegen blosses Benzol bathochromig ist (d.h. die Bandenserie wird dadurch nach den längeren Wellenlängen hin verschoben) umkehrt, wenn die NH_2 -Gruppe in o-Stellung vorhanden ist.

Im Gegensatz zur *o*-Verbindung ist die Absorption der *m*- und *p*-Verbindung langwelliger als bei Anilin (ν_e des Anilins ist 34327 cm⁻¹, des *m*-Toluidins 34103 cm⁻¹, des *p*-Toluidins 33397 cm⁻¹).

Ehe wir uns mit den obigen Verhältnissen näher beschäftigen, sei ein anderer Fall des Biderivates, dass nämlich die NH_2 - und OCH_3 -Gruppe, deren Wirkung bei alleinigem Vorkommen wir schon in dem vorigen Paragraphen untersucht haben, in einem Kern zugleich sich befinden, beschrieben.

Anisidin : Trotz der äusserlichen Ähnlichkeit der Lösungsspektren der Anisidine mit dem des Anilins hat nun das Studium der Dampfspektren, wenn auch nicht so ausgeprägt wie bei den bisherigen, ergeben, dass man einen bedeutenden Unterschied zwischen ihnen feststellen muss, wenn man noch die Struktur in Betracht zieht. Die charakteristische Frequenz des Benzolkerns wird, wie es bei Toluidin der Fall war, bei der p-Verbindung am stärksten modifiziert, so dass die Hauptfrequenz bei o-Anisidin zu 714 cm⁻¹, bei p-Anisidin zu 420 cm⁻¹ bestimmt ist. Ebenso ist das Bandensystem nach Rot verschoben, am weitesten bei p-Anisidin. In Tabelle 21 (S. 245) und 23 (S. 246) sind die beobachteten Wellenzahlen der Bandkanten des o- und p-Anisidins, in Tabelle 22 (S. 245) und 24 (S. 246) der Vergleich zwischen den aus den untenstehenden Bandenformeln berechneten und den beobachteten Wellenzahlen angegeben.

o-Anisidin

 $\begin{cases} \nu = 33884 + 714(p'-p_0) - 38p_0 + 217(q'-q_0)...A_0 \text{-Serie} \\ \nu = 34337 + 711(p'-p_0) - 38p_0 + 331(q'-q_0)...A_1 \text{-Serie} \\ A_0 \text{-Serie}: p'-p_0 \ 0 \sim 2, \ p_0 \ 0 \sim 4, \ q'-q_0 \ -1 \sim 0, \\ A_1 \text{-Serie}: p'-p_0 \ 0 \sim 1, \ p_0 \ 0 \sim 3, \ q'-q_0 \ -1 \sim 0 \end{cases}$

¹⁾ Bezüglich des Lösungsspektrums siehe die Mitteilung von H. Ley und C. Pfeiffer (B. 54, 363 (1921)).

p-Anisidin

$\nu = 31864 +$	+420(p'-p ₀)	· · · · · · · · · · · · · · · · · · ·	$\dots A_0$ -Serie
{v=31590⊦	+413(p'-p_0)	••••••	A1-Serie
A_0 -Serie :	p'-p0 0~6	A1-Serie :	$p' - p_0 \ 0 \sim 2$

Aus den obigen Resultaten bei Toluidinen und Anisidinen ist die wichtige Tatsache erkennbar, dass im Fall, wo zwei Gruppen im Benzolkern nebeneinander stehen, die Hauptfrequenz des Benzolkerns bei den o-und m-Verbindungen nur wenig, zuweilen etwas, bei den p-Verbindungen, in denen eine Symmetrieachse zustandekommt, am stärksten modifiziert wird, und dass anderseits die Absorption bei den o-Verbindungen am kurzwelligsten, bei den p-Verbindungen dagegen am langwelligsten ist. Um diese Resultate weiter zu verfolgen, scheint die gegenseitige Beeinflussung der beiden Substituenten vor allen Dingen von Wichtigkeit zu sein, worüber das Studium der Dipolfrage der Benzolbiderivate, insbesondere ein Vergleich zwischen dem beobachteten und dem aus den einzelnen Momente vektorisch zusammengesetzten Moment, wie er neuerdings von manchen Forschern mit Erfolg versucht worden ist, wertvolle Schlussfolgerungen gestatten dürfte.

Ein Unterschied zwischen dem berechneten und dem beobachteten Werte des Dipolmomentes, der in vielen Fällen am grössten bei o-Verbindungen, kleiner bei m-Verbindungen, am geringsten bei p-Verbindungen ist, würde bewirkt sein, wenn verschiedene gegenseitige Beeinflussungen der beiden Substituenten herbeigeführt werden würden¹⁾. Diese dürften wegen der kleinsten Entfernung der zwei Gruppen an o-Verbindungen am grössten, wegen der grössten Entfernung an p-Verbindungen am geringsten sein.

Neuerdings versuchte Wolf²⁾ die Gültigkeit der analogen Verhältnisse bei Absorptionsspektren festzustellen, indem er die Lösungsspektren einer

¹⁾ Smallwood u. Herzfeld, (J. am. Chem. Soc. 53, 1919, (1930)) berechneten die von der gegenseitigen Einwirkung der zwei Substituenten aufeinander herrührende Erniedrigung des Moments, indem sie den sowohl wechselseitigen induzierenden Effekt als auch die induzierende Wirkung desselben auf das Übrige des Moleküls in Betracht zogen. Das in dieser Weise an einer grossen Anzahl Benzolbiderivate berechnete Moment stimmt mit dem gefundenen gut überein. Bemerkenswerterweise ergeben ausserdem die röntgenspektroskopischen Untersuchungen (Lonsdale, Proc. roy. soc. 123, A 494, (1929), Hendricks, Chem. Rev. 7, 431, (1930)) einen ebenen sechseckigen Ring beim Benzol.

²⁾ Z. phys. chem. B. 13, 201, (1931).

Anzahl Benzolbiderivate beobachtete. Trotz der Unschärfe, besonders. bei den anderen verschiedenen Lösungsmitteleinflüssen bei Lösungsspektren konnte Wolf die grösste Übereinstimmung zwischen der berechneten und beobachteten Verschiebung der Absorption an den *p*-Verbindungen feststellen. Natürlich bleibt es trotzdem fraglich, wenn man zunächst die Ursache der Absorptionsverschiebung und -veränderung in Betracht zieht, ob eine strenge Analogie zwischen der Absorption und dem Dipolmoment zustandekommen dürfte. Doch gelänge es, die Verschiebung der Bandenserien in genauerer und rationellerer Weise zu beobachten, wenn man die Dampfspektren heranzieht. In Tabelle 25 sind die Verschiebungen durch einzelne Substituenten und die Vergleiche der aus ihnen arithmetisch zusammengesetzten Verschiebung mit der beobachteten dargestellt.

	Δv (cm ⁻¹) beob.	$\Delta v (cm^{-1})$ ber.
NH ₂	4285	
CH ₂	1119	
$o-NH_2-CH_3$ $m-NH_2-CH_3$ $p-NH_5-CH_3$	4007 4509 5215	} 5404
OCH3	2226	
$o-NH_2 - OCH_3$ $f-NH_2 - OCH_3$	4728 6748	} 6511

Tabelle 25.

Sowohl bei Toluidinen als auch bei Anisidinen sieht man nun, dass die beiden Werte an den o-Verbindungen am meisten voneinander abweichen, an den p-Verbindungen dagegen in bemerkenswerter Weise gut übereinstimmen, indem bei p-Toluidin der berechnete Wert 97%, bei p-Anisidin 103% des beobachteten beträgt.

Diese Eigentümlichkeit der Auxochromwirkung dürfte also von besonderem Interesse sein.

Zusammenfassung

Zum Schluss sei kurz zusammenfassend gesagt, dass hier die Wirkung einiger Atomgruppen, wie $-CH_2 - CH_3$, $-CH = CH_2$, $-C \equiv CH$,

 $-NH_2$, -OH und $-OCH_3$, samt einigen Fällen, wo zwei derselben zugleich auftreten, auf die Lichtabsorption, insbesondere auf den Molekularzustand wie auf die Elektronensprünge und die Schwingungsfrequenzen des Benzolkerns beobachtet und diskutiert worden ist, indem die Dampfspektren dieser Benzolderivate, die aus mehreren Banden und Linien bestehen, analysiert wurden.

1) Durch Analysierung des Dampfspektrums des Styrols, Phenylazetylens und Äthylbenzols, wurde beobachtet:

(i) Die Spektren zeigen regelmässige Bandenverteilung, wonach sich einige fundamentale Intervalle konstatieren lassen. Der Bau der Spektren wurde dann durch die Bandenformeln gegeben. Folgende Gleichungen stellen die Frequenzen der Bandkanten der Dampfspektren der genannten Substanzen dar.

Styrol

$$\begin{cases}
\nu = 34760 + 952 (p' - p_0) - 72 p_0 + 207 (q' - q_0) - 23 q_0 + 52s \\
\nu = 3597I + 952 (p' - p_0) - 72 p_0 + 207 (q' - q_0) - 23 q_0 \\
\nu = 3748I + 950 (p' - p_0) - 72 p_0 + 297 (q' - q_0) - 23 q_0 + 15I (r' - r_0) \\
Phenylazetylen
\end{cases}$$

$$\begin{cases} \nu = 36350 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 164 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 164 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 164 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 954 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 956 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 956 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 956 (p' - p_0) - 75 p_0 + 482 (q' - q_0) - 33 q_0 + 165 (r' - r_0) \\ \nu = 36591 + 956 (p' - q_0) - 356 (p' - q_0) - 356 (p' - q_0) \\ \nu = 36591 + 956 (p' - q_0) - 356 (p' - q_0) - 356 (p' - q_0) \\ \nu = 36591 + 956 (p' - q_0) - 356 (p' - q_0) + 956 (p' - q_0) \\ \nu = 365 (p' - q_0) - 356 (p' - q_0) + 956 (p' - q_0) + 956 (p' - q_0) \\ \nu = 365 (p' - q_0) - 366 (p' - q_0) + 956 (p' - q_0) + 9$$

Äthylbenzol

 $\begin{cases} \nu = 37591 + 932 (p' - p_0) - 64p_0 + 207 (q' - q_0) - 24q_0 \\ \nu = 38127 + 924 (p' - p_0) - 64p_0 + 182 (q' - q_0) - 24q_0 \\ \nu = 38777 + 930 (p' - p_0) - 64p_0 \end{cases}$

(ii) Die $-CH_2 - CH_3$, $CH = CH_2$ und $-C \equiv CH$ Gruppen verursachen eine nur geringe Veränderung (Erhöhung) der Schwingungsfrequenz des Benzolkerns (u').

	Benzol	Äthylbenzol	Styrol	Phenylazetylen	
α′cm−1	924	928	952	954	

(iii) Durch Einführung dieser Gruppen in den Benzolkern ist die

stärkste Bandenserie in jedem Falle nach Rot verschoben. Dabei ist die Wirkung der chemisch ungesättigtsten $-CH = CH_2$ Gruppe am grössten, die der $-C \equiv CH$ Gruppe mittel und die der gesättigtsten $-CH_2 - CH_3$ Gruppe am geringsten. Dies dürfte auf Deformierung der Elektronenhülle beruhen, die dann am stärksten sein müsste, wenn die ungesättigtste Atomgruppe in den Kern eingeführt würde, da diese das grösste elektrische Feld besitzen dürfte. Die Verschiebungen in Å sind folgende:

	Äthylbenzol	Styrol	Phenylazetylen
△ì in Å	70.3	286.9	161.1

2) Ein Vergleich zwischen Dampf- und Lösungsspektrum bei Styrol und Phenylazetylen wurde durchgeführt.

3) Das Spektrum des Anilins wurde analysiert. Es wird durch folgende Bandenformeln dargestellt.

$$\begin{cases}
\nu = 34327 + 952 (p' - p_0) - 42p_0 + 291 (q' - q_0) - 16q_0 + 234 (r' - r_0) \\
\nu = 34821 + 955 (p' - p_0) - 42p_0 + 296 (q' - q_0) - 16q_0 + 234 (r' - r_0) \\
\nu = 35627 + 952 (p' - p_0) - 42p_0 + 291 (q' - q_0) - 16q_0 + 166 (r' - r_0)
\end{cases}$$

Das Spektrum besteht aus drei Serien. Zu den beiden ersten gehören dieselben Schwingungsfrequenzen. Die letzte unterscheidet sich nur durch eine kleinere Frequenz. Die Hauptfrequenz (a'), und die Verschiebung der stärksten Serie sind :

	a' cm-1	$\bigtriangleup \lambda$	v_e cm ⁻¹
Benzol	922		38612
Anilin	952	323.2 Å	34327

4) Das Dampfspektrum des Phenols und Anisols wurde analysiert und verglichen. Die Frequenzen der Bandkanten lassen sich durch folgende Gleichungen ausdrücken.

Phenol

Anisol

$$\begin{cases}
\nu = 36386 + 943 (p' - p_0) - 62p_0 + 505 (q' - q_0) - 35q_0 + 230 (r' - r_0) \\
\nu = 37147 + 943 (p' - p_0) - 62p_0 + 505 (q' - q_0) - 35q_0 + 230 (r' - r_0) \\
\nu = 37902 + 943 (q' - q_0) - 62p_0 + 505 (q' - q_0) - 35q_0 + 230 (r' - r_0)
\end{cases}$$

Die Lage, sowie die Struktur des Spektrums der beiden sind ganz ähnlich. Es ist daraus zu schliessen, dass der Zustand des unmittelbar an den Kern gebundenen Atoms für die Wirkung auf den Benzolkern (Elektronen-, sowie Schwingungszustand) massgebend ist. Die Hauptfrequenz α' , die zweite Frequenz β' und der Wert ν_e für jede Serie sind wie folgt :

	$\alpha' \mathrm{cm}^{-1}$	β′ cm-1	$v_e(A_0$ -Serie)	$v_e(A_1$ -Serie)	$v_e(A_2$ -Serie)
Phenol	938	480	36352	37137	37922
Anisol	943	505	36386	37147	37902

Es ist bemerkenswert, dass die stärkste Serie des Phenols 2.6 Å langwelliger ist als die des Anisols.

5) Einige Fälle, wo sich zwei der obenerwähnten Gruppen gleichzeitig im Kern befinden, wurden untersucht. Es wurden die Dampfspektren des o-, m- und p-Toluidins und o- und p-Anisidins analysiert. Die Verteilung der Absorptionsbanden jeder Substanz lässt sich durch folgende Formeln ausdrücken.

o-Toluidin

 $\begin{cases} \nu = 34605 + 965 (p' - p_0) - 68 p_0 + 268 (q' - q_0) - 36 q_0 \\ \nu = 35070 + 970 (p' - p_0) - 68 p_0 + 262 (q' - q_0) - 36 q_0 \\ m-Toluidin \end{cases}$

$$\begin{cases}
\nu = 34103 + 962 (p' - p_0) - 68 p_0 + 278 (q' - q_0) - 34 q_0 \\
\nu = 34590 + 956 (p' - p_0) - 68 p_0 + 278 (q' - q_0) - 34 q_0 \\
p - Toluidin
\end{cases}$$

 $\begin{cases} \nu = 33397 + 420 (p' - p_0) - 48 p_0 + 209 (q' - q_0) - 23 q_0 \\ \nu = 32667 + 420 (p' - p_0) - 48 p_0 + 204 (q' - q_0) - 23 q_0 \end{cases}$

o-Anisidin

$$\begin{cases} \nu = 33884 + 714 (p' - p_0) - 38p_0 + 217 (q' - q_0) \\ \nu = 34337 + 711 (p' - p_0) - 38p_0 + 331 (q' - q_0) \end{cases}$$

p-Anisidin

 $\begin{cases} \nu = 31864 + 420 (p' - p_0) \\ \nu = 31590 + 413 (p' - p_0) \end{cases}$

Dabei sind die Resultate komplizierter als die einfache Summe der einzelnen individuellen Wirkungen. Die Hauptfrequenzen a' und die Beträge des Elektronensprunges ν_e der Toluidine und Anisidine im Vergleich mit denen des Toluols, Anilins und Anisols, in welchen sich jede Gruppe einzeln befindet, sind unten gezeigt. $\Delta \nu_e$ zeigt die Verschiebung der stärksten Serie durch Substituierung in cm⁻¹.

	α' cm ⁻¹	v_e cm - 1	$\Delta v_e \mathrm{cm}^{-1}$ (Verschiebung)
Toluol	930	37493	1119
Anilin	952	34327	4285
Anisol	943	36386	2226
o-Toluidin	96 5	34605	4007
112- 11	962	33103	4509
p- "	420	32667	5215
o-Anisidin	714	33884	4728
p- ,,	420	31864	6748

Obwohl jede Gruppe, einzeln eingeführt im Kern, keine bedeutende Veränderung der Hauptfrequenz der Kernschwingung hervorruft, tritt doch, wenn zwei dieser Gruppen in einem Kern gleichzeitig vorkommen, besonders bei p-Stellung, eine augenscheinliche Frequenzenänderung ein. So beträgt die Eigenfrequenz des p-Toluidins und p-Anisidins 420 cm⁻¹. Dagegen ist die Änderung bei o- nnd m-Stellung weit geringer.

Auffallender ist die Lage des Spektrums. Trotz des Vorhandenseins zweier auxochromwirkender CH_{5} - und NH_{2} -Gruppen ist das Spektrum des o-Toluidins kurzwelliger als das des Anilins. Dagegen zeigt bei Toluidin und Anisidin die p-Verbindung die langwelligste Absorption. Dabei stimmt in erster Annäherung die Auxocheromwirkung bei den p-Verbindungen mit der arithmetischen Summe der einzelnen individuellen Wirkung überein.

> $\Delta v_e p$ -Toluidin 5215 Δv_e Toluol $+ \Delta v_e$ Anilin 5404 $\Delta v_e p$ -Anisidin 6748 Δv_e Anisol $+ \Delta v_e$ Anilin 6511
EXPERIMENTALER TEIL

In diesem Abschnitt sind die Kennzeichnen der verwendeten Versuchsmaterien, die Listen der beobachteten Banden sowie die Tabellen des Vergleiches zwischen den beobachteten und den aus den Bandenformeln berechneten Wellenzahlen der Bandkanten usw. angegeben.

Die experimentalen Daten für Kapitel I

Tabelle 1.

Liste der Absorptionsbanden des Styroldampfes.

						Ber	nerkun	gen						Bemerkungen					
Nr.	. х	ν	Inten- sität	1	∀- <u>1</u>	o Po	q'-q0	90	$s r' - r_0$	Nr.	λ	γ	Inter sitä	P	'-1	°o Po	$q' - q_0$	90	$sr'-r_0$
1	2908.6	34371	0							36	5.8	84	0						
2	7.7	81	0							37	4.9	95	0		ο	ο	0	I	3
3	6.4	97	0							38	3.5	912	2		0	0	о	0	3
4	1.2	458	0		0	I	— I	о		39	2.0	30	0		I	2	-3	I	
5	2897.8	99	0							40	0.8	45	O						
6	6.4	516	о		0	о	— I	2		41	0.0	55	I		I	2	-3	0	
7	5.1	31	0		0	0	— I	I		42	58.7	71	0		I	1	-3	2	
8	3.7	48	0	ae	0	0	— I	ο		43	7.6	84	0						
- 9	1.8	70	0		ο	2	0	2		44	6.6	96	I		I	I	-3	I	
10	1.0	80	0							45	5.3	35012	0		I	I	-3	0	
11	89.9	.93	I		0	2	0	I		46	4 ∙3	25	0						
12	9.1	603	I							47	3.7	32	0		_	-			
13	8.2	14	I		0	2	0	0		48	2.7	44	I		I	0	-3	2	
14	6.7	32	0							49	1.2	63	• I		I	0	-3	I	
15	6.0	40	2		0	I	0	2		50	49.8	81	0						
16	5.1	51	0							51	8.6	95	I	.,					
17	4.0	64	4		0	1	0	I		52	7.7	100	1	<i>°0</i> 0	I	0	-3	0	
18	2.5	82	5		0	I	0	0		53	7.1	13	0		Ι	2	→ 2	2	
19	1.6	93	I		0	0	0	3		54	6.0	27	0		I	2	-2	I	
20	0.5	706	0							55	5.1	38	0						
21	79.6	17	5		0	о	ο	2		56	4.3	48	0						
22	8.4	31	I							57	4.I	50	o		I	2	-2	0	
23	7.5	42	10		0	0	0	I		58	3.7	55	0						
24	6.7	52	10							59	2.8	66	0						
25	6.0	60	10	A ₀	0	0	0	0		60	1.7	80	0		I	I	-2	2	
26	5.1	71	ο							61	09	90	о						
27	3.9	_86	0		о	о	0	I	I	62	0.1	200	0		I	I	2	I	
28	2.6	801	0							63	39.1	12	0		I	I	-2	ο	
29	1.8	11	I							64	7.5	32	ο						
30	1.1	20	4		0	0	0	0	T	65	5.7	54	0		I	0	÷-2	2	
31	0.4	28	0							66	4∙9	64	0						
32	69.2	43	0		0	0	0	1	2	67	4.2	73	I		I	0	-2	I	
33	7.9	. 59	I							68	29	89	I	2/ ₀	I	0	- 2	0	
34	7.2	67	I		0	0	0	0	2	69	1.9	302	0						
35	6.4	77	0							70	0.7	17	0		I	2	— I	2	

Beiträge zur Auxochromwirkung.

						Ber	nerkung	gen							Ben	nerkung	en	
Nr.	λ	ν	Inten sität	P	/	Po	q'-q0	90 s 1'-ro	Nr.	λ	ν	Inten sität	1	V-1	'o \$0	9'-90	20 s 1'-	-r ₀
7 I	29.5	32	0		I	2	— I	I	126	04	55	8						
72	8.8	40	o						127	79.2	7 I	8	A_1	0	0	о	0	
73	8.1	49	0						128	8.9	75	0						
74	7.6	55	0		I	2	I	0	129	7.5	. 93	0						
75	6.6	68	· 0						130	6.6	36005	0		2	3	-2	2	
76	5.6	80	о		I	I	њ I	2	131	5.3	22	2		2	3	- 2	I	
77	4.7	92	ο						132	4.7	29	2			0			
78	3.9	402	0						133	3.8	41	I		2	3	-2	0	
79	3.0	13	0		1	I	— I	I	134	30	ςī	I			Ũ			
80	2.5	19	0						135	2. I	63	I		2	2	-2	2	
81	1.7	20	I		I	I	- 1	0	136	1.5	71	I						
82	0.4	46	о						137	0.3	87	o		2	2	-2	I	
83	19.5	57	I		I	0	— I	2	138	69.4	98	0						
84	9.1	62	о						130	8.6	IÓQ	I		2	2	-2	0	
85	8.5	70	о						140	8.0	17	о						
86	7.5	82	л		т	0	— T	т	TAT	6.4	27	0		2	T	-2	2	
87	6.8	01	4		-	-	-	-	142	5.5	37	ĩ		2	T	2	- т	
- 88	5.0	502	5	16.	T	0	I	0	142	3.2	62	Ť		-	-	-	-	
80	4.7	17	ő	- 0	T	2	0	2	144	26	74	Ť		2	T	-2	0	
- 90	3.4		r		-		-	-	145	0.2	219	ō		2	ō	-2	2	
01	2.2	40	2		т	2	0	т	146	FO 4	20	т		2	0	- 2	т	
02	I.7	55	- 2		-	-		•	147	- 8.4	12	2		~	Ŭ	-	-	
03	/ L.I	63	3		I	2	0	0	148	7.8	50	2	200	2	0	-2	0	
04	0.3	72	0		-	_	-	•	140	6.4	60	0	-0	2	2	I	2	
95	09.1	88	I		I	I	о	2	150	5.3	83	õ		2	2	— I	I	
06	7.5	608	٨						161			т						
07	6.8	17	4		T	T	0	т	152	2.5	207	Ť		2	2	I	0	
o8	5.5	24	5		T	ī	Ő	0	152	- 3·3 L.O	307	ō		2	ī	ī	2	
00	4.3	- 10	ő		-	-	Ũ	°	154	0.0	52	ő		2	Ť	- T	ī	
100	3.7	57	2						155	49.2	63	ī		2	ĩ	— I	0	
101	2.1	64	2		т	0	0	2	116	6 2	402	т						
102	J.2	87	2		Ť	õ	ŏ	2 T	150	r 6	402	1		2	0	— T	2	
102	0.2	700	õ		-	č	Ū	-	158	3.0	20	Ô		-	. 0	•	-	
104	2700.4	11	9	R.	т	0	0	0	150	4.9		2		2	0	- T	т	
105	8.9	18	8	20	-	Ŭ	Ũ	U	160	2.2	56	3	100	2	ō		0	
106	70	21	0		0	0	T	2	161	τ.	67	õ	v	•	-	0	2	
107	7.2	40	ő		0	0	T	2 T	162	20.6	07	0		2	2	õ	2 T	
108	,	56	2		v	v		-	162	39.0	506	0		2	2	U	1	
100	5.9	64	2						103	0.5	 	0						
110	4.8	70	3	<i>a</i> 1	0	о	- I	0	165	7.1	24	I		2	2	o	0	
* * *	2 7	8.	õ	-	•	-	0		766	60		•				~	•	
112	3.7	04	ő		U	2	0	2	100	0.2	30	0		2	1	0	2	
112		805	2		0	2	0	T	107	4.0	50	U 7		2		0		
114	T 2	15	2		õ	2	0	1	100	3.9	607	1 T		2	т Т	0	1	
114	88.0	46	2		U	2	U	0	109	0.9				4	1	0	0	
•• • • •	00.9	40	4						10	0.1	10	U		4	0	0	4	
116	8.2	55	3		0	I	о	2	171	28.3	42	3		2	0	0	I	
117	7.3	60	3					<i>r</i>	172	7.1	58	4	~					
118	5.9	84	3		0	I	0	I	173	6.6	65	4	C_0	2	0	0	0	
119	5.6	- 88	0						174	5.9	74	2		I	0	— I	2	
120	5.0	96	3		0	I	0	0	175	4 ∙3	96	2		I	0	- 1	I	
121	4.4	904	3						176	3.3	709	4	6,	I	о	— I	0	
122	3.6	14	Ĩ						177	1.7	31	o	•	I	2	о	2	
123	2.5	28	1		0	.0	ο	2	178	0.9	42	2		I	2	0	I	
124	1.8	37	L						179	19.0	67	2		1	2	0	0	
125	I.J	46	3		0	Q	Q	I	180	6.3	804	0		t	ĩ	Q	2	

Masao Horio.

						Ber	nerkung	gen								Ben	nerkung	en		
Nr.	λ	v	Inter sitäi	1	p'-j	po Po	$q' - q_0$	90	s + - r0	Nr.	λ	ν	Inten sität	p	′-‡	o Po	q'-q0	<i>q</i> 0	s r/ -	. r ₀
181	5.4	16	0							201	o.8	31	0		0	o	о	2	0	
182	4.5	28	2		I	I	0	I		202	68.9	57	0		0	0	0	I	0	
183	3.5	42	о							203	8.5	63	0							
184	2.6	54	2		I	1	0	ο		204	7.2	81	I	A_2	ο	0	0	ο	ο	
185	2.0	62	2							205	53.8	671	I	c_1	2	0	— I	0		
186	1.2	73	0		I	о	о	2		206	1.3	706	о		2	2	о	I		
187	0.0	89	I							207	49.3	35	о		2	2	о	ο		
188	08.9	904	4		I	0	0	I		208	7.1	66	о		2	1	0	I		
189	7.7	21	5	B_1	1	о	0	ο		209	4.1	809	0		. 2	I	0	ο		
190	7.0	30	2							210	3.0	25	0		2	ο	0	2		
191	3.1	84	0							211	39.5	75	2	C_1	2	0	ο	0		
192	2696.1	37080	I							212	8.5	89	0	•						
193	4.2	106	ο		ο	I	I	0	o	213	27.8	38043	о							
194	3.0	22	о		0	0	I	3	0	214	4.5	91	0							
195	1.5	43	0		0	0	— I	2	0	215	1.3	138	0	b_2	I	ο	— I	0	0	
196	89.7	68	2		о	о	I	1	o	216	II.4	282	о	h.'	I	0	о	0	- I	
197	8.8	80	I	a,	ο	0	- I	о	ο	217	01.3	431	2	₿.	1	ο	о	ο	ο	
198	3.4	255	о	-	ο	I	0	0	— I	•	U			-						
199	78.2	327	ο	a_2	′ o	0	ο	0	I											
200	2.2	411	ο	-	о	I	0	ο	0											

Tabelle 2.

Vergleich zwischen den berechneten und den beobachteten Wellenzahlen der Bandkanten des Styroldampfspektrums.

A_0 -Serie

 $\nu = 34760 + 952(p'-p_0) - 72p_0 + 207(q'-q_0) - 23q_0 + 52s$

	$A_0 p' - p_0 = 0 q' - q_0 = 0 (s = 0)$	
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0=2$ ber. beob.
$\begin{array}{rrrr} p_0 = 0 & 34760 & 34760 & (25)*\\ p_0 = 1 & 34688 & 34682 & (18)\\ p_0 = 2 & 34616 & 34614 & (13) \end{array}$	$\begin{array}{ccccccc} p_0 = 0 & 34737 & 34742 & (23) \\ p_0 = 1 & 34665 & 34664 & (17) \\ q_0 = 2 & 34593 & 34593 & (11) \end{array}$	$\begin{array}{cccccc} p_0 = 0 & 34714 & 34717 & (21) \\ p_0 = 1 & 34642 & 34640 & (15) \\ p_0 = 2 & 34570 & 34570 & (9) \end{array}$
$q_0=3$ ber. beob.	$p'-p_0=0 q'-q$	$p_0 = 0 p_0 = 0$
$p_0 = 0$ 34691 34693 (19)	$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
	s=1 34812 34820 (30) s=2 34864 34867 (34) s=3 34916 34912 (38)	s=1 34789 34786 (27) s=2 34841 34843 (32) s=3 34893 34895 (37)
	$a_0 p' - p_0 = 0 q' - q_0 = -1$	
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0=2$ ber. beob.
$p_0 = 0$ 34553 34548 (8) $p_0 = I$ 3448I 34458 (4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p_0 = 0$ 34507 34516 (6) $p_0 = 1$ 34435 $$

* Die eingeklammerte Zahl zeigt die Nummer der Bande.

			B ₀ p'-	-¢ ₀ =1	q'-q_0=0			
$q_0 = 0$ be	er.	beob.	<i>q</i> ₀ =1	ber.	beob.	$q_0=2$	ber.	beob.
$p_0 = 0$ 357	712	35711(104)	$p_0 = 0$ 3	35689	35687(102)	$p_0 = 0$	35666	35664(101)
$p_0 = 2 350$	568	35563 (93)	$p_0 = 2$ 3	5545	35549 (91)	$p_0 = 1$ $p_0 = 2$	35594	35517 (89)
			¹ b ₀ p'-	¢ ₀ =1	$q' - q_0 = -1$			
$q_0 = 0$ be	er.	bcob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ 35	505	35502 (88)	$f_0 = 0$	5482	35482 (86)	$p_0 = 0$	35459	35457 (83)
$p_0 = 1 352$ $p_0 = 2 353$	433 361	35355 (74)	$p_0 = 1$ 3 $p_0 = 2$ 3	5338	35332 (71)	$\begin{array}{c} p_0 = 1 \\ p_0 = 2 \end{array}$	35387	35317 (70)
			260 \$1-2	¢ ₀ == I	$q' - q_0 = -2$		•	
q₀=0 be	er.	beob.	$q_0 \Rightarrow \mathbf{I}$	ber.	beob.	$q_0=2$	ber.	beob.
$p_0 = 0$ 352	298	35289 (68)	$p_0 = 0$	35275	35273 (67)		35252	35254 (65)
$p_0 = 1 352$ $p_0 = 2 351$	154 154	35150 (57)	$p_0 = 1 \qquad \qquad$	35131	35127 (54)	$\begin{array}{c c} p_0 \equiv 1 \\ p_0 = 2 \end{array}$	35180	35113 (53
			³ b ₀ 1'-1	¢ ₀ =1	$q'-q_0 = -3$			
q₀=o be	er.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0=2$	ber.	beob.
$p_0 = 0$ 350	91 No	35106 (52)	$p_0 = 0$	35068	35063 (49)	$p_0 = 0$	35045	35044 (48)
$p_0 = 2 349$	947	34955 (41)	$p_0 = 1$ $p_0 = 2$	34990 34924	34930 (39) 34930 (39)	$\begin{array}{c} p_0 = 1 \\ p_0 = 2 \end{array}$	34973 34901	
			C ₀ 1'-	-¢0=2	$q' - q_0 = 0$			
q ₀ =0 be	er.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	<i>q</i> ₀ =2	ber.	beob.
$p_0 = 0 360$	664	36665(173)	$p_0 = 0$	36641	36642(171)	$p_0 = 0$	36618	36618(170)
$p_0 = 1 30$ $p_0 = 2 36$	592 520	36607(169) 36524(165)	$p_0 = 1$ 3 $p_0 = 2$ 3	6569 6497	36567(168) 36491(162)	$\begin{array}{c} p_0 = 1\\ p_0 = 2 \end{array}$	36546 36474	36467(161)
			$1_{c_0} 1' - 1$	¢ ₀ =2	$q' - q_0 = -1$			
q₀=0 be	er.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0 364$	157	36456(160)	$p_0 = 0$ 3	6434	36444(159)	<i>∲</i> ₀=0	36411	36411(157)
$p_0 = 1$ 363 $p_0 = 2$ 363	305 313	36303(155) 36307(152)	$p_0 = 1$ 3 $p_0 = 2$ 3	;0302 36290	30353(154) 36283(150)	$\begin{array}{c} p_0 = \mathbf{I} \\ p_0 = 2 \end{array}$	30339 36267	36269(149)
	_	· · · · · · · · · · · · · · · · · · ·	2c0 1'-1	$t_0 = 2$	$q' - q_0 = -2$	1		
$q_0 = 0$ be	er.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
	250	36250 148)	<i>p</i> ₀=0 3	6227	36229(146)	<i>∱</i> ₀=0	36204	36219(145)
$p_0 = 0 362$					antiolitia)	·	26122	- 201227(141)

	$\nu = 35971 + 952(p'-p_0) - 72p_0 + 207(q'-q_0) - 23q_0$							
			A ₁ \$	′ <i></i> ∱₀=0	q'-q_0=0			· · · · ·
<i>q</i> 0=0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	<i>q</i> ₀ =2	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	3597 I 35899 35827	35971(127) 35896(120) 35815(114)	$ \begin{array}{c} $	35948 35876 35804	35946(125) 35884(118) 35805(113)		35925 35853 35781	35928(123) 35855(116) 35784(111)
			a1 1'	-10=0	$q'-q_0 = -1$			
<i>q</i> 0=0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
¢₀=0	35764	35770(110)	∲₀=o	35741	35740(107)	<i>t</i> ₀ =0	35718	35731(106)
			B ₁ #	′-¢₀=1	$q' - q_0 = 0$			
$q_0 = 0$	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	36923 36851 36779	36921(189) 36854(184) 36767(179)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	36900 36828 36756	36904(188) 36828(182) 36742(178)	$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \\ p_0 = 2 \end{array} $	36877 36805 36733	36873(186) 36804(180) 36731(177)
			b1 1'-	-p ₀ =1	$q'-q_0 = -1$			
$q_0 = 0$	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.	$q_0 = 2$	ber.	beob.
<i>∲</i> ₀=0	36716	36709(176)	¢₀=0	36693	36696(175)	∲₀=0	36670	36674(174)
			C1 #	′-♪ ₀ =2	$q' - q_0 = 0$		· · ·	
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	37875 37803 37731	37875(211) 37809(209) 37735(207)	$ \begin{array}{c} $	37852 37780 37708	37766(208) 37706(206)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	37829 37757 37685	37825(210)
	$c_1 p' - p_0 = 2 q' - q_0 = -1$							
<i>q</i> ₀ =0	ber.	beob.	q ₀ =0	ber.	beob.	<i>q</i> ₀ =0	ber.	beob.
<i>f</i> ₀=0	37668	37671(205)	<i>₽</i> ₀=0	37645		<i>∲</i> ₀=0	37622	

 $A_1-\text{Serie}$ = 35971 + 952(p'-p_0)-72p_0+207(q'-q_0)-23q_0

 A_2 -Serie

$\nu = 37481 + 950(p'-p_0) - 72p_0 + 297(q'-q_0) - 23q_0 + 151$	$(r'-r_0)$

			$A_2 \not p' - \not p_0 = 0 q'$	$-q_0 = 0 r' - r_0 =$	=0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$ ber.	beob.	$q_0 \Rightarrow 2$	ber.	beob.
$ p_0 = 0 p_0 = 1 $	37481 37409	37481(204) 37411(200)	$p_0 = 0$ 3745 $p_0 = 0$ 3738	8 37457(202) 6 <u> </u>	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	37435 37363	37431(201)

$a_2 p' - p_0 = 0 q' - q_0 = -1 r' - r_0 = 0$									
$q_0 = 0$ t	oer.	beob.		$q_0 = \mathbf{I}$	ber.	beob.	<i>q</i> ₀ =2	ber.	beob.
$p_0 = 0$ 37 $p_0 = 1$ 37	7184 7112	37180(197) 37106(193)		$p_0 = 0$ $p_0 = 1$	37161 37089	37168(196)	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	37138 37066	37143(195)
	$a_2' p' - p_0 = 0 q' - q_0 = 0 r' - r_0 = -1$								
$q_0 = 0$ b	oer.	beob.		<i>q</i> ₀ =1	ber.	beob.	<i>q</i> ₀ =2	ber.	beob.
$p_0 = 0$ 37 $p_0 = 1$ 37	7330 7258	37327(199) 37255(198)		$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	37307 37235		$p_0 = 0$ $p_0 = 1$	37284 37212	
	$B_2 p' - p_0 = 1 q' - q_0 = 0 r' - r_0 = 0$								
$q_0 = 0$ b	per.	b.ob.		$q_0 = \mathbf{I}$	ber.	beob.	<i>q</i> ₀ =2	ber.	beob.
<i>p</i> ₀=0 38	3431	38431(217)		∱₀=0	37408		<i>‡</i> ₀=0	37385	·····
			b_2	t∕-¢₀=1	<i>q′−q</i>	$r_0 = -1$ $r' - r_0 = 0$	0		
$q_0 = 0$ b	oer.	beob.		$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
<i>p</i> ₀=0 38	3134	38138(215)		<i>∲</i> ₀=0	38111		<i>∳</i> ₀=0	38088	
$b_2' \not p' - p_0 = \mathbf{I} q' - q_0 = \mathbf{O} r' - r_0 = -\mathbf{I}$									
$q_0 = 0$ b	ber.	beob.		$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
\$\$ \$\$ \$\$	8280	38282(216)		¢0=0	38257		<i>q</i> ₀ =0	38234	·

Tabelle 4.

Liste der Absorptionsbanden des Phenylazetylendampfes

· · ·						Bem	erkung	en				Bemerkungen								
Nr	. λ	ν	Inter sitä	t P	'-p	0 <i>P</i> 0	$q'-q_0$	90	$r'-r_0$	Nr.	λ	ν	Inten sität	P	'-p ₀	\$o	$q' - q_0$	<i>q</i> 0	$r'-r_0$	
I	2841.5	35182	о		о	3	-2	о	0	16	33	89	I		о	I	— I	о	, o	
2	36.1	249	ο		ο	2	2	ο	0	17	2.7	97	о						· •	
3	- I.O	313	0		0	I	-2	́О	0	18	0.5	825	I		ο	ο	— I	I	0	
4	26.5	69	ο	$2a_0$	ο	ο	-2	ο	0	19	88.9	4ŏ	0							
5	3.3	409	0	v						20	7.1	69	2	$^{1}a_{0}$	ο	ο	I	ο	0	
6	0.1	49	о		0	5	— I	r	о	21	5.9	84	о		о	6	о	о	о	
7	17.5	82	0		0	5	I	0	0	22	3.0	922	0							
8	3.4	534	о		ο	4	— I	I	0	23	79.4	68	о		0	5	0	ο	0	
9	õõ	77	0		0	4	I	ο	0	24	5.9	36014	о		ο	4	о	I	о	
IÓ	05.6	632	0		о	3	— I	о	0	25	3.7	42	0		0	4	0	ο	0	
11	3.0	66	о							26	2.1	63	о							
12	ŏ.9	92	о		ο	2	1	I	0	27	69.6	9ĕ	0		ο	3	о	I	0	
13	2798.9	718	I		ο	2	— I	о	0	28	7.5	123	I		ο	3	о	ο	ο	
14	6.0	55	I		0	I	I	I	0	29	4.9	57	0			5				
15	4.7	71	0							30	4.0	69	2		0	2	0	I	0	

					-	Bem	erkung	en							1	Beme	en		
Nr.	.)	ν	Inten- sität	p	' _₽ ₀	, <i>P</i> 0	q'-q0	<i>q</i> ₀	$r'-r_0$	Nr.	. λ	ν	Inten sität	p	'-p	Po	q'-q0	90	$r'-r_0$
31 32 33 34 35	3.3 2.4 1.1 0.5 59.3	78 90 207 15 30	0 2 5 0 1		0	3	o	o	o	86 87 88 89 90	1.0 0.1 79.2 8.0 7·5	88 301 14 30 37	1 10 0 3 0	B ₀	I I	о 3	0 0	0 0	0 0
36 37 38 39 40	8.6 7.8 6.8 5.7 5.0	40 50 63 78 87	2 0 0 7 0		0 0	I I	0 0	0	0 0	91 92 93 94 95	5.4 3.1 0.9 67.6 4.9	67 99 429 76 514	0 2 0 3 3		I I I I I	2 2 1 1 0	0 0 0 0	I 0 1 0 I	0 0 0 0
41 42 43 44 45	4.0 3.4 2.4 1.7 0.9	300 08 21 30 41	1 8 8 1 1		o	0	o	I	0	96 97 98 99 100	2.3 1.7 57.4 3.3 49.0	50 59 620 78 739	5 0 1 1 1	B ₁	1 2 2 2	0 2 I 0	0 I I I	O I I	0 0 0
46 47 48 49 50	0.5 0.2 49.1 4·5 4.0	46 50 65 426 32	9 9 0 2 0	A_0 a_1'	0 0 0	0 I 0 2	0 0 0	00000	0 - 1 - 1 0	101 102 103 104 105	6.3 4.1 2.1 38.7 5.8	77 809 37 86 928	1 0 0 1 1	¢0	2 2 2 2	0 2 2 1	1 1 1 1	0 1 0 0	0 0 0 0
51 52 53 54 55	1.6 38.7 7.9 6.4 5 6	64 503 14 34 44	0 1 2 0 0		0	I I	0 0	I O	0 0	106 107 108 109 110	28 0.1 29.9 7.7 4.3	71 38010 13 45 94	0 0 2 0 0	с ₁	2 2	0	— I — I	I O	0 0
56 57 58 59	4.4 3.3 2.1 1.7	60 75 91 96	2 0 3 0	A ₁	0	0	0	I O	0	111 112 113 114 115	3.3 17.7 6.6 3.9 3.2	109 90 206 46 56	2 2 1 5	C ₀	2 2 2 2	2 I O	0 0 0	0 0 1 0	0 0 0
61 62 63	29.4 7.2 4.1 3.7	57 57 99 704			I	2		1 0	0	116 117 118 119	2.7 2.0 1.6 7.6	63 73 79 334	3 0 1 1	-	2	3	o	o	o
65 66 67	19.4 57 4.8	812 812	1 1 2	1 <i>6</i> 0	I I I	1 1 0 0		1 0 1 0	0 0 0	120 121 122 123	7.2 5.8 2.5 2599.6	44 64 413 56	1 0 2 3		2 2 2	2 1 0	0 0 0	0 0 1	0 0 0
69 70 71	3.1 08.4 3.1 2.2	47 911 84 96	0 2 0 2		I I	2 I	I I	0	0 0	124 125 126 127	8.4 6.9 80.5 70.7 68 0	74 96 741 888	0 3 0 1	C ₁ d ₀	2 3 3	0 0 1	0 -1 0		0 0 0
72 73 74 75	2099.8 7.6 6 5 5.9	37029 59 74 82	2 0 4 0	181	I	0		0	0	120 129 130 131	5.8 57.9 2.6	63 39083 164	1 1 0 2	<i>d</i> ₁	3 3 3	0	-1 -1 0	1 0 1	0 0 0
76 77 78 79	4.3 1.7 89.8 7.6	104 40 66 97	I 5 2 I	b ₀ '	I I I I	0 0 2 1	0 0 0	1 0 0 1	I - I - 0 0	132 133 134 135	49.3 8.4 3.0 37.4	215) 29 312 99		D_0	3 3 3 3	0 3 2 1	0 0 0	0 0 0 0	0 0 0
81 82 83	5.3 4.7 3.6	211 29 37 52	7 0 7		I	I	0	0	o	136 137 138 139	3.9 19.8 7.6 03.9	453 674 708 926	hwommen		3 4 4	0	0 -1 -1	0	0
84 85	3.1 2.3	59 70	7 7		I	0	о	I	о	140	2407.9 73.1	40182	0	E_0 E_1	4 4	0	0	0	0

Tabelle 5.

Vergleich der berechneten und der beobachteten Wellenzahlen der Bandkanten des Phenylazetylendampfspektrums.

A₀-Serie

ν=30350	$+954(p - p_0) - 75p_0 +$	$-402(q - q_0) - 33q_0 + 104(r - r_0)$
$A_0 p' - p_0 = 0 q'$	$-q_0 = 0$ $r' - r_0 = 0$	$b_0' t' - p_0 = \mathbf{I} q' - q_0 = \mathbf{O} t' - r_0 = -\mathbf{I}$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$p_0 = 0$ 36350 36350(47) $p_0 = 1$ 36275 36278(39)	$f_0 = 0$ 36317 36321(43) $f_0 = 1$ 36242 36240(36)	$p_0 = 0$ 37140 37140(77) $p_0 = 0$ 37107 37104(76)
$p_0 = 2$ 36200 36207(33) $p_0 = 3$ 36125 36123(28)	$p_0 = 2$ 36167 36169(30) $p_0 = 3$ 36092 36096(27)	$C_0 \not p' - p_0 = 2 q' - q_0 = 0 r' - r_0 = 0$
$p_0=4$ 36050 36042(25) $p_0=5$ 35975 35968(23) $q_0=6$ 25000 25084(21)	$p_0 = 4 36017 36014(24)$ $p_0 = 5 35942$	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$a_0 \ 1' - p_0 = 0 \ q' - q'$	$-q_0 = -1$ $r_0 = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	$c_0 p' - p_0 = 2 q' - q_0 = -1 r' - r_0 = 0$
$p_0 = 0$ 35868 35869(20) $p_0 = 1$ 35793 35789(16)	$p_0 = 0$ 35835 35825(18) $p_0 = 1$ 35760 35755(14)	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$p_0 = 2$ 35718 35718(13) $f_0 = 3$ 35643 35632(10) $f_0 = 4$ 35568 35577(9) $f_0 = 5$ 35493 35482(7)	$\begin{array}{c} p_0 = 2 & 35085 & 35092(12) \\ p_0 = 3 & 35610 & \\ p_0 = 4 & 35535 & 35534(8) \\ p_0 = 5 & 35460 & 35449(6) \end{array}$	$\begin{array}{c} f_0 = 0 & 37776 & 37777(101) \\ f_0 = 1 & 37701 & & \\ f_0 = 2 & 37626 & 37620(98) \\ \end{array} \begin{array}{c} f_0 = 0 & 37743 & 37739(100) \\ f_0 = 1 & 37668 & 37678(99) \\ f_0 = 2 & 37593 & & \\ \end{array}$
$2a_0 p' - t_0 = 0 q' - q'$	$-q_0 = -2$ $1' - r_0 = 0$	$D_0 \not t' - t_0 = 3 q' - q_0 = 0 r' - r_0 = 0$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber. bob. $q_0 = I$ ber. bob.
$p_0 = 0$ 35386 35369(4) $p_0 = 1$ 35311 35313(3)	$p_0 = 0 35353 p_0 = 1 35278$	$p_0 = 0$ 39212 39215(132) $p_0 = 0$ 39179 39164(131)
$p_0 = 2$ 35236 35249(2) $p_0 = 3$ 35161 35182(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_0 p' - p_0 = 3 q' - q_0 = -1 r' - r_0 = 0$
$B_0 \not l' - \not r_0 = \mathbf{I} q'$	$r_{-q_0=0}$ $r_{-r_0=0}$	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	$p_0 = 0$ 38730 38741(126) $p_0 = 0$ 38697
$p_0 = 0$ 37304 37301(87) $p_0 = 1$ 37220 37220(81)	$p_0 = 0$ 37271 37270(85) $p_0 = 1$ 37106 37107(70)	$E_0 \not t' - t_0 = 4 q' - q_0 = 0 t' - t_0 = 0$
$p_0 = 2 \ 37154 \ 37166(78)$	$p_0 = 2 \ 37121 \ - 371211 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 3712111 \ - 37121111 \ - 3712111 \ - 3712111111 \ - 3712111 \ - 371211111 \ - 3712111111 \$	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$^{1h_0} \not l' - f_0 = 1 q' -$	$-q_0 = -1$ $r' - r_0 = 0$	$p_0 = 0 40166 40182(140) p_0 = 0 40133$
$q_0 = 0$ ber. beob.	$q_0 = 1$ ber. beob.	$r_0 t' - t_0 = 4 q' - q_0 = -1 t' - r_0 = 0$
$p_0 = 0$ 36822 36824(67) $p_0 = 1$ 36747 36762(65)	$p_0 = 0$ 36789 36812(66) $p_0 = 1$ 36714 36731(64)	$q_0 = 0$ ber. heob. $q_0 = 1$ ber. beob.
$p_0 = 2 \ 36672 \ 36657(61)$	$p_0 = 2 36639 36627(60)$	$p_0 = 0$ 39684 39708(138) $p_0 = 0$ 39651

r A 1 189(d -22a + 16A(r)- 10) ر م .1 1 د م

A_1 -Serie

$\nu = 36591 + 954(p - p_0)$	$-75p_0+482(q)$	$-q_{0}$)-	$-33q_0+1$	65(* -	$-r_{0}$)	
$A_1 p' - p_0 = 0 q' - q_0 = 0 r' - r_0 =$	=0 0	1 \$'-	$p_0 = 2 q' - q'$	q ₀ =-1	1 r'-	r ₀ =0
$q_0 = 0$ ber. beob. $Iq_0 =$ ber.	beob. $q_0 = 0$	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ 36591 36591(58) $p_0 = 0$ 36558 36 $p_0 = 1$ 36516 36514(53) $p_0 = 1$ 36483 36 $p_{-2} = 2$ 36441 36432(50) $p_{-2} = 2$ 36409	$\begin{array}{ccc} 6560(56) & p_0 = 0 \\ 6503(52) & p_0 = 1 \\ \hline & p_0 = 2 \end{array}$	38017 37942 37867	38013(108) 37928(105) 37886(104)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	37984 37909 37834	37971(106)
$\frac{a_1' p' - p_0 = 0 q' - q_0 = 0 r' - r_0 = 0}{a_1' p' - p_0 = 0 q' - q_0 = 0 r' - r_0 = 0}$	= - I					
$q_0 = 0$ ber. bob. $q_0 = 1$ ber.	beob	<i>D</i> ₁ <i>F</i>	$-p_0 = 3 q$	-q ₀ =0) <i>r</i> _	r ₀ =0
$p_0 = 0$ 36426 36426(49) $p_0 = 0$ 36393	q_0=0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.
$p_0 = 1$ 36351 36365(48) $p_0 = 1$ 36318	$ \begin{array}{c} & & p_0 = 0 \\ \hline & & p_0 = \mathbf{I} \end{array} $	39453 39378	39453(136) 39399(135)	$p_0 = 0$ $p_0 = 1$	39420 39345	
$B_1 \not p' - p_0 = \mathbf{I} q' - q_0 = 0 r' - r_0 = 0$	$ \begin{array}{c} = 0 \qquad \qquad p_0 = 2 \\ \hline p_0 = 3 \end{array} $	39303 39 228	39312(134) 39229(133)	$p_0 = 2$ $p_0 = 3$	39270 39195	
$q_0 = 0$ ber. beob. $q_0 = I$ ber.	beob.					
$p_0 = 0$ 37545 37550(96) $p_0 = 0$ 37512 37 $p_0 = 1$ 37470 37476(94) $p_0 = 1$ 37437 32	7514(95)	/ ₁ //-	$p_0 = 3 q' -$	·90=-	I *'-	$r_0 = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$7367(91)$ $q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.
$b_1 \not l' - p_0 = \mathbf{I} q' - q_0 = -\mathbf{I} r' - r_0$	$ p_0 = 0 $ $ p_0 = 1 $	38971 38896	38963(129) 38888(127)	$p_0 = 0$ $p_0 = 1$	38938 38863	38929(128)
$q_0 = 0$ ber. beob. $q_0 = I$ ber.	beob.	E ₁ \$	$-p_0 = 4 q'$	- <i>q</i> ₀=c) <i>1</i> -	$r_0 = 0$
$p_0 = 0$ 37063 37074(74) $p_0 = 0$ 37030 3 $p_0 = 1$ 36988 36984(70) $p_0 = 1$ 36955	7029(72)	1	h 1			
$p_0 = 2 \ 36913 \ 36911(69)$ $p_0 = 2 \ 36880$	q_0=0	Der.	Deop.	$q_0 = \mathbf{I}$	ber.	beob.
$C_1 \not p' - p_0 = 2 q' - q_0 = 0 r' - r_0 =$	$=0$ $p_0=0$	40407	40423(141)	<i>∲</i> ₀=0	40374	
$q_0 = 0$ ber. beob. $q_0 = 1$ ber.	beob.	'ı 1'-	Po=4 q'-	q ₀ =	I r ¹	$r_0 = 0$
$p_0 = 0$ 38499 38496(125) $p_0 = 0$ 38466 38 $p_0 = 1$ 38424 38413(122) $p_0 = 1$ 38391 $p_0 = 2$ 38300 28344(120) $p_0 = 2$ 28216	$\frac{8456(123)}{q_0=0}$	ber.	beob.	<i>q</i> ₀ =0	ber.	beob.
$\begin{array}{c} p_0 = 2 & 38274 & 38279(118) \\ p_0 = 3 & 38274 & 38279(118) \\ p_0 = 3 & 38241 \end{array}$	\$\nt_0=0	39925	39926(139)	¢₀=0	39892	

$= 36591 + 954(p'-p_0) - 75p_0 + 482(q'-q_0) - 33q_0 + 165(r'-r_0)$

Tabelle 6.

Liste	der	Absorptionsbanden	des	Äthvlbenzoldamr	ofes.
TUDLO	uci	ribbonphonsbanden	ucs	1 iny iocnzoiuani.	nes.

Bemerkungen								Bemerkungen							
Nr.	λ	v		\$'-10	Po	$q' - q_0$	90	Nr.	λ	v		p'-to	Po.	$q'-q_0$	90
ĩ	2663.7	37531						6	28.3	38036		0	• 0		10
2	61.2	66						7	6.2	6 6					
3	59.4	91	A_0	0	о	ο	0	8	39	100					
4	47.I	766	${}^{2}a_{1}$	0	0	-2	0	9	2.0	27	A_1	о	0	о	о
. 5	34.4	948	¹ a ₁	0	0	— I	0	10	08.5	325	<i>b</i> 0	1	0	— I	0

.

	Bemerkungen			Bemerkungen					Bemerkungen						
Nr.	λ	v		p'-p0	Po	q'-q0	90	Nr.	λ	ν		p'-p_0	P 0	$q'-q_0$	90
11	2599.0	65						26	18.2	99	B_2	I	ο		
12	6.2	506						27	2.3	792	c1	2	ο	— I	0
13	4.9	26	E_0	I	ο	0	0	28	01.0	972	C_1	2	0	0	0
14	88.9	615						29	2479.6	40317					
15	. 2.3	714						30	5.6	82	D_0	3	0	0	0
16	78.1	77	A_2	0	о			31	1.1	456	_				
17	2.4	863	<i>b</i> 1	I	0	— I	0	32	60.0	638	C_2	2	0		
18	64.7	979						33	44.2	902	D_1	3	ο	0	0
19	0.1	39049	B_1	I	0	O	0	34	19.3	41322	E_0	4	ο	0	ο
20	47.7	239	c ₀	2	0	— I	0	35	5.9	80					
21	37.7	394						36	05.3	562	D_2	3	0		·
22	5.6	427						37	2389.3	839	E_1	4	0	0	0
23	3.9	53	Co	2	0	0	0	38	63.4	42299					
24	28.4	539	·					39	52.1	502	E_2	4	ò		
25	2.3	634									-				

Tabelle 7.

Vergleich der berechneten und beobachteten Wellenzahlen der Bandkanten des Äthylbenzoldampfspektrums

A_0 -Serie
$\nu = 37591 + 932(p'-p_0) - 64p_0 + 207(q'-q_0) - 24q_0$

$A_0 t' - t_0 = 0 q' - q_0 = 0$	\dot{b}_0 $p'-p_0=\mathbf{I}$ $q'-q_0=-\mathbf{I}$
$q_0 = 0$ ber. beob. $q_0 = I$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_0 = 0$ 38316 38325(10) $p_0 = 0$ 38292
$B_0 p'-p_0=\mathbf{I} q'-q_0=0$	$C_0 p'-p_0=2 q'-q_0=0$
$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \uparrow_0 = 0 & 39455 & 39453(23) \\ \not p_0 = 1 & 39391 & 39394(21) \\ \end{array} \begin{array}{c} \not p_0 = 0 & 39431 & 39427(22) \\ \not p_0 = 1 & 39367 \\ \end{array}$

A_1 -Serie
$\nu = 38127 + 924(p' - p_0) - 64p_0 + 182(q' - q_0) - 24q_0$

$A_1 p' - p_0 = 0 q' - q_0 = 0$	$a_2 p' - p_0 = 0 q' - q_0 = -2$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$f_0 = 0$ 38127 38127 (9) $p_0 = 0$ 38103 38100 (8) $f_0 = 1$ 38063 38066 (7) $p_0 = 1$ 38030 38036 (6)	$p_0 = 0$ 37763 37766 (4) $f_0 = 0$ 37739
	B di hat di ano
$a_1 p' - p_0 = 0 q' - q_0 = -1$	$D_1 p - p_0 = 1 q - q_0 = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Masao Horio.

	<i>b</i> ₁	<i>p</i> ′ − <i>p</i> ₀ = I	q ' .	- <i>q</i> ₀ =-1	[
$q_0 = \mathbf{o}$	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
<i>∲</i> ₀=0	38869	38863(17)	¢₀=0	38845	
	C ₁	¢ − ¢₀=	2 q	′-q₀=0	
$q_0 = 0$	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
<i>p</i> ₀ =0	39975	39972(28)	¢₀=0	39951	
	c ₁	$p'-p_0=2$	9'-	-q ₀ =-1	
$q_0 = 0$	ber.	beob.	q ₀ =1	ber.	beob.
<i>∲</i> ₀=0	39793	39792(27)	<i>†</i> ₀=0	39769	
	D_1	<i>t</i> ∕ − <i>p</i> ₀ =	3 9	$r'-q_0=0$	
$q_0 = 0$	ber.	beob.	$q_0 = 1$	ber.	beob.
<i>p</i> ₀=0	4 08 99	40902(33)	<i>∲</i> ₀=0	40875	

	E_1	1/-p_0=	4 q'-	-q ₀ =0	
<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	b er.	beob.
<i>‡</i> ₀=0	41823	41839(37)	<i>₽</i> ₀ =0 4	1799	

 $\mathcal{A}_2 ext{-Serie}$

$\nu = 38777 + 930(p' - p_0) - 64p_0$									
	P	₀ =0	P	1=0					
 \$'-\$0	ber.	beob.	ber.	beob.					

	\$'-\$0	ber.	beob.	ber.	beob.
A_2	, O	38777	38777(16)	38713	38714(15)
B_2	I	39707	39699(2 6)	39643	39634(25)
C_2	2	40637	40638(32)	40573	<u> </u>
D_2	3	41567	41562(36)	41 503	
E_2	4	42497	42502(39)	42433	

Die experimentalen Daten für Kapitel II

Tabelle 9.

Liste der Absorptionsbanden des Anilindampfes.

			Bemerkungen											E	leme	erkunge	en		
Nr.	λ	ν	Inter sität	P	′p	o Fo	q'-q0	90	$r'-r_0$	Nr.	λ	γ	Inten sität	V	'-p ₀	Þ0	q'-q0	90	$r'-r_0$
I	2995.1	33378	ο							24	0.9	93	3		0	I	I	ο	0
2	1.1	423	0							25	39.8	34006	I		0	ο	- 1	2	0
3	87.2	66	0																
4	2.7	517	0							26	8.2	25	4		0	о	I	I	. o
5	0.8	38	0							27	7.1	37	·4	<i>a</i> 0	0	ο	— I	ο	Ö
		. 0	_							28	5.5	56	I	-	0	I	O,	ο	I
0	77.3	78	0							29	4.2	71	0		0	0	0	2	I
7	5.2	001	0							30	3.1	84	0		0	о	0	I	1
ð	4.2	13	0																
_9	2.1	30	.0		~	-		~	-	31	2.1	95	2	a0'	0	ο	0	0	- I
10	09.0	05	0		0	- 3		U	1	32	1.8	99	I						
TT	5.0	717	0		0	2	T	0	— I	33	29.6	124	I		0	4	0	2	0
12	1.5	57	0		ō	T	I	0	I	34	8.5	37	0						
12	58.5	01	õ		ō	0	- I	r	— I	35	7.5	49	0		0	4	0	I	0
14	7.5	802	Ť	x.	ō	ō	T	ō	1										
15	1.1	41	<u> </u>	0		-	-	-		36	6.7	58	I		0	4	0	ο	0
- 5	4.7	4-	Ũ							37	3.7	93	0		0	3	о	I	0
16	1.5	71	0		0	3	I	2	0	38	3.0	201	I		0	3	0	ο	ο
17	0.0	88	0		0	3	— I	I	0	39	0.9	26	ο		0	2	о	I	0
18	47.9	913	I		ο	3	— I	0	ο	40	19.4	44	3		ο	2	0	ο	0
19	7.0	23	0		0	2	— I	2	0		0 -		~		~		~	•	~
20	6.1	33	0		ο	2	1	I	0	41	0.5	54	0		0	1	0	2	0
					~		-	~		42	7.0	72	4		0	1	0	1	0
21	4.7	49	2		0	2	-1	0	0	43	5.8	80 06	0		0	1	0	0	0
22	3.4	64	0		0	1	I	2	0	44	4.9	90	1		υ	0	0	2	0
23	2.4	70	2		0	I	I	1	0	45	4.2	305	I						

Beiträge sur Auxochromwirkung.

						Bem	erkung	en							F	Beme	erkunge	'n	
Nr.	λ	ν	Inten sität	p	'-¢	o Po	$q' - q_0$	90	$r'-r_0$	Nr.	у	v	Inten sität	p'	-¢0	Po	q'-q0	90	$r'-r_0$
46	3.0	19	8		0	0	0	I	0	101	87	93	I						
47	2.3	27	8	A_0	0	0	0	0	0	102	7.9	103	1		0	0	I	I	0
48	1.0	42	0		0	4	I	I	0	103	7.0	14	3	<i>a</i> ₁ ¹	0	0	I	0	0
49	09.3	62	I		0	4	I	0	0	104	6.I	25	0		I	3	0	2	0
50	8.4	73	Ţ							105	5.2	37	0		T	3	0	1	0
51	7.7	81	о		0	3	-1	1	0	106	3.8	53	I		I	3	0	ο	о
52	5.4	409	2		ο	3	I	о	ο	107	3.0	64	I						
53	2.4	44	I		0	2	— I	0	0	108	2.4	71	I		I	2	0	2	0
54	1.6	54	I		0	I	— I	2	0	109	1.5	82	0		I	2	0	I	0
55	0.8	63	0		0	I	— I	I	0	110	0.0	201	4		I	2	0	0	0
56	2808.8	87	3		0	I	— I	0	0	111	38.7	17	3		I	I	о	2	0
57	7.5	502	1				-			112	78	28	ŏ		I	I	ο	1	0
58	6.8	11	2		0	ο	— I	I	0	113	 6.9	39	4		I	I	0	о	0
59	6.0	20	2							114	5.8	53	2		I	0	0	2	0
60	5.3	29	4	a_1	0	0	- 1	ο	0	115	4.8	66	8		I	0	0	I	0
61	2.0	45	0		0	т	0	n	T	116	3.6	80	10	B.	I	о	o	0	0
62	3.9	43	õ		õ	ò	õ	2	ī	117	2.4	95	5	0	ō	I	I	ο	o
63	2.3	64	ŏ				-			118	2.0	300	5		0	0	<u> </u>	2	0
64	1.0	80	0		0	0	o	I	— I	119	1.1	Ĩ2	ĩ						
65	0.1	91	2	a1'	0	0	0	0	— I	120	0.3	22	5		0	0	— I	1	0
66	80 T	602	•							121	20.4	22	T						
67	7.2	26	ő		'n	Λ	0	2	0	122	9.0	33	, s	a	0	о	— I	ο	о
68	6.3	36	ō		õ	4	õ	ī	õ	123	7.2	60	Ĩ	-	ο	2	0	I	— I
69	3.6	69	o		ō	4	o	ō	0	124	5.5	82	I		0	2	0	0	— I
70	2.9	77	I		ο	3	0	I	ο	125	4.1	99	I		0	·I	0	I	— I
	T 19	07	T		0	2	0	~	0	126	20	414	r		0	ĭ	0	0	— T
72	0.2	710	ò		õ	2	õ	2	0	127	1.1	37	2		õ	ō	ō	ī	_ I
73	70.3	21	ŏ		ŏ	2	ŏ	ĩ	ŏ	128	19.0	63	4	a_{0}'	0	o	0	0	I
74	7.9	37	5		0	2	0	0	0	129	7.5	82	4	b1	I	ο	I	ο	0
75	6.6	53	5		0	I	0	2	0	130	65	95	ю	-	I	I	0	I	<u> </u>
=6	r a	60	т		~	т	~	т	0	121		507	т		т	T	0	0	- 1
70	5.3	77	8		0	T	õ	â	0	132	3·3 4.I	25	ī		î	ō	ŏ	ĭ	-1
78	2.2	03	8		ŏ	ò	ŏ	2	ő	133	3.5	32	3						
79	2.3	805	4		ō	ō	ō	. 1	ō	134	2.4	46	3	61	I	ο	0	ο	— I
80	1.0	21	io	A_1	о	о	0	0	о	135	1.9	53	ō	•	ο	I	ο	2	0
81	0.0		0	-						1.26	05	70	0		0	T	0	т	0
82	68.0	33	9							130	0.5	70	5		U	1	0	1	0
82	7.0	50	õ		т	2	— T	2	0	128	00.5	82	.2		0	I	0	0	0
84	6.5	76	ī		ī	2	1	ī	o'	130	8.9	- gI	ő		ō	0	0	2	ō
85	5.ŏ	, 94	2		I	2	— I	o	0	140	8.1	601	2						
86	26	000	~		Ŧ	-		~	0			10	~		0	0	~	т	~
87	⊿.0 т.\$	923	0		r T	1 T		2	0	141	7.2	12	2 7	A-	0	0	0	0	õ
88	0.8	33 4۲	2		Î	Ť	-1	0	õ	144 1/2	4.8	/ A2	0	- 2	ĩ	3	ŏ	ī	ŏ
89	59.2	65	ō		ī	ò	Î	2	ō	143 144	3.0	54	ŏ		ĩ	3	õ	ō	0
9ó	8.5	73	3		I	0	I	1	о	145	3.4	60	о		I	2	0	2	0
	F 0	80								1.6	~ -	60	~						
91	7.9	00 80	4	6	т	0	_ t '	~	0	140	27	- 99 - 19	~		т	2	0	т	0
92	6.1	35002	1	~0	ī	ĩ	0	ī	-ĭ	148	1.2	88	۲,		-			•	-
94	4.9	17	3		I	ĩ	õ	ō	I	149	0.5	97	5		I	2	ο	0	ο
95	3.8	31	2		I	о	0	I	I	150	0.0	704	ŏ		I	1	ο	2	ο
06	10		2								2700 2		т		т	T	~	т	0
90	5.U 2.4	41	2	61	T	0	0	n	— T	152	~/99.2 8.1	22	л П		1	T	0	T	J
- 97	1.2	61	о 0	. 0	ō	ĩ	ĩ	ĩ	ò	152	8.0	20 20	ō						
99	0.4	73	I		ο	I	I	0	о	154	7.7	33	3						
100	49.5	84	2		ο	0	I	2	ο	155	6.8	45	5		I	1	ο	0	0

]	Bem	erkung	en							E	leme	erkunge	n	
Nr.	λ	ν	Inten- sität	p	'-1°0	Po	$q' - q_0$	90	$r'-r_0$	Nr.	λ	ν	Inten sität	ø	-¢0	\$o	9'-90	90	$r'-r_0$
156	5.9	56	2		I	ο	о	2	ο	211	4.9	88	5	b_2	I	ο	I	ο	0
157	5.4	63	ĩ							212	3.9	301	ŏ	-	I	2	0	2	0
158	4.8	70	8		I	0	0	I	0	213	3.7	04	ο		I	2	0	I	0
159	4.3	77	0							214	2.6	19	о		I	2	о	ο	0
160	4.0	80	8	R_1	I	0	0	0	0	215	1.4	34	0		I	I	0	2	— I
161	3.1	92	1							216	0.5	46	2		I	I	0	I	I
162	2.2	804	0							217	49.3	62	2		I	I	0	0	I
163	I.7	10	0							218	8.0	79	0		I	0	0	2	- I
164	1.1	18	I		2	2	— I	2	0	219	7.2	90	0		ĩ	0	0	I	I
165	0.0	32	2		2	2	— I	I	0	220	5.9	407	4	02'	I	0	0	0	I
166	89.4	39	0							22I	5.2	16	I		2	0	— I	I	0
167	8.9	40	0		2	2	I	0	0	222	4.6	24	3	c_1	2	0	— I	0	0
168	7.5	64	0		2	I	I	2	0	223	3· 7	36	0		2	I	0	I	I
169	6.9	72	I		2	I	— I	I	0	224	3.0	46	0						
170	6.3	79	0							225	2.1	58	I		2	I	0	0	— I
171	5.4	91	I		2	I	— I	0	0	226	1.7	63	0		2	0	0	2	— I
172	4.7	900	0							227	0.9	74	0		2	0	0	I	— I
173	3.9	10	0		2	0	— I	2	0	228	0.0	86	2	c1'	2	0	0	0	I
174	3.4	17	0							229	39.3	95	I		I	2	о	0	0
175	2.7	26	0		2	0	— I	I	0	230	8.6	504	I		I	I	0	2	0
176	2.0	35	3	c_0	2	ο	<u> </u>	0	0	231	8.0	12	0						
177	1.2	45	о		2	I	0	I	- I	232	6.7	30	I		I	I	0	I	0
178	0.5	54	I		2	ĩ	0	0	— I	233	6.1	38	3		I	I	0	0	0
179	79.3	70	o		2	0	0	2	— I	234	5.1	51	I		I	0	0	2	0
180	8.7	77	о							235	4.2	63	I		I	0	о	I	0
181	8.1	85	I		2	0	0	I	— I	236	3.5	72	2						
182	7.6	02	I			•			-	237	2.0		5	B.	I	0	0	0	0
183	6.7	36003	2	c.!	2	0	0	0	I	238	1.8	05	ŏ	2	2	3	o	ī	0
184	5.2	23	0	.0	I	ī	ī	ī	ō	230	0.0	607	ō		2	3	ō	0	0
185	4·7	29	I					_	-	240	29.8	22	0		2	2	0	2	0
186	4.3	35	I		I	I	I	0	0	24 I	0.0	33	0		2	2	o	I	о
187	3.1	50	0		I	0	I	2	ō	242	8.1	45	2		2	2	0	0	0
188	ĭ.6	70	I		I	0	I	I	ò	243	7.1	58	0		2	I	0	2	ο
189	1.0	77	o							244	5.7	77	ō		2	I	о	I	0
190	0.4	85	2							245	4.9	88	4		2	I	о	0	0
191	0.0	90	2	6,1	I	о	I	0	o	246	4.3	96	4		2	0	0	2	ο
192	68.8	106	0	•						247	3.7	704	ò		2	ο	о	1	0
193	8.0	17	1		2	· 2	0	2	0	248	2.0	15	0						
194	7.3	26	0							249	2.3	23	4	C_1	2	ο	0	ο	0
195	6.4	37	I		2	2	0	I	0	250	1.3	36	I	1	,				
196	5.3	52	о							251	1.0	40	I		3	3	- I	I	о
197	5.1	54	2		2	2	о	ο	о	252	10.7	62	r		3	3	— I	ο	0
198	4.1	67	ο		2	I	о	2	ο	253	7.7	85	ο		3	2	— I	2	0
199	3.8	71	2		2	I	0	I	0	254	7.2	02	o		ž	2	— I	I	0
200	2 .9	83	I		2	I	0	0	0	255	6.7	<u>9</u> 8	0		3	2	— I	0	ο
201	1.8	98	o		2	о	о	2	о	256	5.1	820	I		3	I	— I	2	о
202	0.9	209	0							257	4 ·4	30	2		3	I	— I	I	ο
203	0.2	19	3	-	2	ο	0	I	0	258	3.4	43	2		3	1	— I	0	0
204	59.4	29	7	C_0	2	о	0	0	ο	259	1.4	70	I		3	0	— I	I	0
205	8.8	37	0		I	I	— I	I	0	260	09.7	94	2	d ₀	3	0	— I	0	0
206	8.1	46	4		I	I	-1	0	0	261	8.9	904	ο		3	I	о	о	-1
207	7.5	54	0		I	0	I	2	0	262	6.4	39	2	d_0'	3	0	0	0	— I
208	6.8	63	o							263	4.7	62	0						
209	6.3	7 <u>0</u>	4		I	0	<u> </u>	I	0	264	2.5	92	I		3	4	0	I	0
210	5.7	78	0							265	0.8	37015	I		2	Λ	0	0	0

						Bem	erkung	en							В	leme	rkunge	n	
Nr.	λ	ν	Inten- sität	p!	$-p_0$	Po !	q'-q0	<i>q</i> 0	$r'-r_0$	Nr.	λ	ν	Inten sität	V	- ∕ ₀	¢0	q'-q0	90	$r'-r_0$
266	2699.1	38	2		3	3	0	I	0	292	7.8	614	0		3	2	0	ο	0
267	8.2	51	2		3	3	0	0	0	293	4.7	58	0		3	I	о	0	ο
268	7.8	56	0		3	2	ο	2	0	294	1.8	99	0	D_1	3	ο	0	0	0
269	6.5	74	3		3	2	0	I	0	295	44.3	806	0	-	4	I	— I	0	0
270	5.1	93	3		3	2	ο	ο	0		- 0						_	-	-
			_			_	-	_	_	290	2.8	27	0		4	0	— I	I	0
271	3.7	113	0		3	7	0	1	0	297	1.3	49	0	Po	4	0	— I	0	0
272	2.9	24	3			_				298	0.4	62	0	,	4	1	0	0	-1
273	22	33	3		3	I	0	0	0	299	37.5	903	0	e 0'	4	0	0	0	I
274	1.0	50	0		3	0	0	I	0	300	2.0	83	0		4	3	0	I	0
275	89.6	69	3							301	0.2	38000	о		4	3	o	o	0
276	8.8	80	2	D_{0}	3	0	0	ο	о	302	20.0	26	o		4	2	0	I	0
277	6.7	200	о	U	2	I	— I	о	0	202	7.3	51	ō		4	2	0	ō	ō
278	4.2	44	I	Co	2	0	I	о	ο	304	5.8	72	10		4	I	0	I	0
279	3.0	61	0	-						305	4.3	04	20		Å	I	ο	о	0
280	2.1	73	ο							3-5	+5	2.4	sc		Ŧ				
		15								306	3.8	101	Fo		4	ο	0	I	O
281	1.0	88	0							307	I.I	41	jo jo	E_0	4	ο	0	0	0
282	79.9	304	ĩ		2	I	0	ο	— I	308	13.2	256	Цo						
283	5.7	62	о		2	0	0	I	— I	309	0.4	97	ğo						
284	4.9	73	I	c_{2}'	2	0	0	0	— I	310	09.1	316	۰ ۳						
285	3.9	87	I	d_1	3	0	I	0	0		6.	60							
2 86	~ ~		~							311	0.1	00							
200	60.2	439	0		•		~	~	•	312	2590.4	474	0						
207	00.0	- 59	0		2	2	0	0	0	313	4.2	530	0						
200	7.0	- 04	0		2	1	0	0	0	314	80.2	745	0	2		~		~	~
289	4.0	515	-2	C	2	0	0	1	0	315	70.5	801	0	J 0	5	0	-1	0	0
290	37	31	2	L ₂	2	U	U	0	U	316	2.3	64	0	f'	5	ο	0	0	I
291	5 9·3	93	I							317	56. ŏ	39103	0	F_0	5	0	0	ο	ο

Tabelle 10.

Vergleich der berechneten und der beobachteten Wellenzahlen der

Bandkanten des Anilindampfspektrums.

 $A_0-\text{Serie}$ $\nu = 34327 + 952(p'-p_0) - 42p_0 + 291(q'-q_0) - 16q_0 + 234(r'-r_0)$

$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
¢₀=0	34327	34327 (47)	<i>p</i> ₀=0	34311	34319 (46)	<i>f</i> ₀=0	34295	34296 (44)
¢ ₀ = 1	34285	34286 (43)	$p_0 = \mathbf{I}$	34269	34272 (42)	$p_0 = I$	34253	34254 (41)
$p_0 = 2$	34243	34244 (40)	$p_0 = 2$	34227	34226 (39)	$p_0=2$	34211	
$p_0 = 3$	34201	34201 (38)	$p_0 = 3$	34185	34193 (37)	$f_0 = 3$	34169	
₽₀=4	34159	34158 (36)	P0=4	34143	34149 (35)	<i>₽</i> 0=4	34127	34124 (33)

<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	34036 33994 33952 33910	34037 (27) 33993 (24) 33949 (21) 33913 (18)	$ \begin{array}{c} $	34020 33978 33936 33894	34025 (26) 33976 (23) 33933 (20) 33888 (17)	$ \begin{array}{c} $	34004 33962 33920 33878	34006 (25) 33964 (22) 33923 (19) 33871 (16)

		a ₀ /	<i>p</i> '- <i>p</i> ₀ =0	q '	- <i>q</i> ₀ =0	$r' - r_0 =$	-1		
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	br.	beob.		$q_0 = 2$	ber.	beob.
∲₀=0 ∲₀=1	34093 34051	34095 (31) 34056 (28)	$\begin{array}{c} p_0 = 0\\ f_0 = I \end{array}$	34077 34035	34084 ([30)	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	34061 34019	34071 (29)
		<i>x</i> ₀	<i>∲</i> ′− <i>p</i> ₀=0	q'-q	7₀=−1	1'-r ₀ =	= 1		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.		$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	33802 33760 33718 33676	33802 (14) 33757 (12) 33717 (11) 33665 (10)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	33786 33744 33702 33660	33791 (13)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	33770 33728 33686 33644	
		B ₀	₽′-/ ₀ =	1 q'	-q ₀ =0	"-r ₀ =	=0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	br.	beob.		$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	35279 35237 35195 35153	35280(116) 35239(113) 35201(110) 35153(106)	$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \\ p_0 = 2 \\ p_0 = 3 \end{array} $	35263 35221 35179 35137	35266(1 35228(1 35182(1 35137(1	15) 12) 091 05)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	35247 35205 35163 35121	35253(114) 35217(111) 35171(108) 35125(104)
		b ₀	¢′−¢₀=1	q'-	$q_0 = -1$	$r' - r_0$	=0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.		q ₀ =2	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	349 88 34946 34904	34989 (92) 34945 (88) 34894 (85)		34972 34930 34888	34973 (34933 (34876 (90) 87) 84)	$f_0 = 0$ $f_0 = 1$ $p_0 = 2$	34956 34914 34872	34965 (89) 34923 (86) 34859 (83)
	•	b ₀ '	₫-₽₀=I	q '- -	- <i>q</i> ₀ =0	$r' - r_0 =$	₩-I		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.		$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$	35045 35003	35048 (97) 35017 (94)	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	35029 34987	35031 (35003 (95) 93)	$f_0 = 0$ $f_0 = 1$	35013 35971	
		C ₀	1'-p_0=	2 q'	- <i>q</i> ₀=0	$r' - r_0 =$	=0		
<i>q</i> ₀=0	ber.	beob.	<i>q</i> ₀ = 1	ber.	beob.		$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	36231 36189 36147	36229(204) 36183(200) 36154(197)	$ \begin{array}{c} $	36215 36173 36131	36219(2 36171(1 36137(1	99) 95)	$p_0 = 0$ $p_0 = I$ $p_0 = 2$	36199 36157 36115	36198(201) 36167(198) 36117(193)
		c ₀	$p'-p_0=2$	q '-	q₀=−1	1'-r0:	=0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.		$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	35940 35898 35856	35935(176) 35891(171) 35846(167)	$p_0 = 0$ $f_0 = 1$ $p_0 = 2$	35924 35882 35840	35926(1 35872(1 35832(1	75) 69) 65)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	35908 35866 35824	35910(173) 35864(168) 35818(164)

		c0'	$p'-p_0=2$	q ' -	<i>q</i> ₀ =0	r'-r_0=	= I		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	1	$q_0 = 2$	ber.	beob.
$p_0 = 0 3$ $p_0 = 1 3$	35997 35955	36003(183) 35954(178)	$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \end{array} $	35981 35939	35985(1 35945(1	81) 77)	$p_0 = 0$ $p_0 = 1$	35965 35923	35970(179)
		D_0	$p' - p_0 =$	3 q'	- q ₀ =0	$r'-r_{0}$	₀ =0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = 1$	ber.	beob.		<i>q</i> ₀ =2	ber.	beob.
$p_0 = 0 3$ $p_0 = 1 3$ $f_0 = 2 3$ $f_0 = 3 3$ $p_0 = 4 3$	37183 37141 37099 37057 37015	37 180(276) 37 133(273) 37093(270) 37051(267) 37015(265)	$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \\ p_0 = 2 \\ p_0 = 3 \\ p_0 = 4 \end{array} $	37167 37125 37083 37041 36999	37150(2 37113(2 37074(2 37038(2 36992(2	274) 271) 269) 266) 266)		37151 37109 37067 37025 36983	37056(268)
		d ₀	1'-p_0=3	q" -	<i>q</i> ₀ =-1		r₀=0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber,	beob.		<i>q</i> ₀ =2	ber.	b.ob.
	36892 36850 36808 36766	36894(260) 36843(258) 36798(255) 36763(252)		36876 36834 36792 36750	36870(2 36830(2 36792(2 36740(2	259) 257) 254) 251)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	36860 36818 36776 36734	36820(256) 36785(253)
		do	1'-p_0=3	q'-	-q ₀ =0	$r'-r_0$	= - 1		
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.		$q_0 = 2$	ber.	beob.
$p_0 = 0 3$ $p_0 = 1 3$	36949 36907	36939(262) 36904(261)	$q_0 = 0$ $q_0 = 1$	36933 36891			$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \end{array} $	36917 36875	· · · · · · · · · · · · · · · · · · ·
		E_0	1'-p_0=	4 <i>q</i> ′	-q ₀ =0	1'-r)=0		-
<i>q</i> ₀ =0	ber.	beob.	$q_0 = 1$	ber.	beob.		<i>q</i> ₀ =2	ber.	beob.
$p_0 = 0 3$ $p_0 = 1 3$ $p_0 = 2 3$ $p_0 = 3 .3$	38135 38093 38051 38009	38141(307) 38094(305) 38051(303) 38009(301)	$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \\ p_0 = 2 \\ p_0 = 3 \end{array} $	38119 38077 38035 37993	38101(3 38072(3 38026(3 37983(3	06) 04) 02) 00)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	38103 38061 38019 37977	
		<i>c</i> ₀	<i>1∕−P</i> ₀ =4	q'-	$q_0 = -1$	r'-1	0=0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.		$q_0 = 2$	ber.	beob.
$\begin{array}{c} p_0 = 0 & 3\\ p_0 = 1 & 3 \end{array}$	37844 37802	37849(297) 37806(295)	$p_0 = 0$ $p_0 = 1$	37828 37786	37827:2	96)	$p_0 = 0$ $p_0 = 1$	37812 37770	
		e ₀ '	p'-p_0=4	q'-	<i>q</i> ₀ =0	$r' - r_0 =$	= I		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.		$q_0 = 2$	ber.	beob.
$p_0 = 0 3$ $p_0 = 1 3$	37901 37859	37903(299) 37862(298)	$ \begin{array}{c} $	37885 37843			$p_0 = 0$ $p_0 = 1$	37869 37827	

Masao Horio.

		F_0	₽'-p₀=5	$q'-q_0=0$	$r'-r_0=0$		
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$ ber	. beob.	$q_0 = 2$	ber.	beob.
∕ ₀ =0	39087	39103(317)	¢0=0 3907	· I	¢0=0	39055	
		fo	$p'-p_0=5$ q'	′- <i>q</i> ₀=−1	$r' - r_0 = 0$		
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$ ber	beob.	$q_0 = 2$	ber.	beob.
<i>⊉</i> ₀=0	38796	38801(315)	<i>p</i> ₀=0 3878	io <u>—</u>	\$	38764	
١		fo'	$p^{\prime}-p_0=5$	'-q ₀ =0	$r' - r_0 = -1$		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$ ber	. beob.	$q_0 = 2$	ber.	beob.
<i>∲</i> ₀=0	38853	38864(316)	<i>p</i> ₀=0 3883	57 —	∱₀=0	38821	

A_1 -Serie	
$\nu = 34821 + 955(p'-p_0) - 42p_0 + 296(q'-q_0) - 16q_0 + 234(r'-r_0)$	
	•

		<i>A</i> ₁	₽'-₽ ₀ =0	o q'	$-q_0 = 0$ $r' - r$	0=0		•
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
	34821 34779 34737 34695 34653	34821 (80) 34777 (77) 34737 (74) 34692 (71) 34669 (69)		34805 34763 34721 34679 34637	34805 (79) 34769 (76) 34721 (73) 34677 (70) 34636 (68)		34789 34747 34705 34663 34621	34793 (78) 34753 (75) 34710 (72) 34626 (67)

a_1	$p'-p_0=0$	$q' - q_0 = -1$	$r' - r_0 = 0$
-------	------------	-----------------	----------------

$q_0 = \mathbf{o}$ be	r. beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0=2$ ber. beob.
$\begin{array}{ccccccc} p_0 = 0 & 345\\ p_0 = 1 & 344\\ p_0 = 2 & 344\\ p_0 = 3 & 343\\ p_0 = 4 & 343 \end{array}$	25 34529 (60) 83 34487 (56) 41 34444 (53) 99 34409 (52) 57 34362 (49)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $a_1^1 p' - p_0 = 0 q' - q_0 = I r' - r_0 = 0$

<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.	
$p_0 = 0$ $p_0 = 1$	35117 35075	35114(103) 35073(99)	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	35101 35059	35103(102) 35061(98)	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	35085 35043	35084(100)	

a_1'	$p' - p_0 = 0$	$q' - q_0 = 0$	$r' - r_0 = -I$
--------	----------------	----------------	-----------------

<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ ==1	ber.	beob.	q0:=2	ber.	beob.
$p_0 = 0$ $p_0 = 1$	34587 34545	34591 (65) 34545 (61)	$ \begin{array}{c} $	34571 34529	34580 (64)	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	34555 34513	34554 (62)

.

		B ₁	<i>t'-p</i> _0=1	г q'-	$-q_0 = 0$ r'	$-r_0 = 0$		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
t = 0	25776	35780(160)	$t_0 = 0$	25760	35770 158)	$t_{a}=0$	35744	35756(156)
$f_0 = 0$	25721	35745(155)	$t_0 = 1$	25718	35710 - 50)	$p_0 = 1$	35702	35704(150)
1-2	35/34	33/43(*33)		35/10	25678(147)	$p_0 = 1$	25660	25660(145)
10-2	35092	35097(149)	$p_0 = 2$	35070	350/0(147)	$P_0 - 2$	35000	35000(145)
$P_0 = 3$	35050	35054(144)	P0-3	35034	35043(143)	F0-3	35018	
		δ_1^{1}	<i>t</i> ′− <i>t</i> ₀=1	r q'-	$-q_0 = \mathbf{I}$ r'	$-r_0 = 0$		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0=2$	ber.	beob.
$t_0 = 0$	36072	36000(101)	$t_0 = 0$	36056	36070(188)	$p_0 = 0$	36040	36050(187)
$p_0 = I$	36030	36035(186)	$p_0 = I$	36014	36023(184)	$p_0 = I$	35998	<u> </u>
				<u> </u>				
		<i>b</i> ₁	$p'-p_0=1$	q ' -	$-q_0 = -1$	$r_{0}=0$		
<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.	$q_0 = 2$	ber.	beob.
	35480	35482(129)	<i>†</i> ₀ =0	35464		<i>∱</i> ₀=0	35448	
<u></u>		<i>b</i> ₁ ′	$f'-p_0=\mathbf{I}$	q'	$q_0 = 0$ r'	$-r_0 = -1$		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	q0=2	ber.	beob.
$p_0 = 0$	35542	35546(134)	$p_0 = 0$	35526	35525(132)	<i>p</i> ₀=0	35510	
$p_0 = I$	35500	35507(131)	$p_0 = 1$	35484	35495(130)	$p_0 = 1$	35468	<u> </u>
<u> </u>		Ci	p'-p_0=	2 q'	$-q_0 = 0 r'$	$-r_0 = 0$		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0=2$	ber.	beob.
<i>t</i> -=0	26721	26722(240)	t = 0	26715	26704(247)	<i>t</i> -=0	26600	26606(246)
70-3 1-1	26680	26688(245)	A - I	26672	26677(241)	20-5 0-1	26657	26658(242)
$p_0 - x$	26645	26645(243)	P0-1	36621	26622(244)		36615	26622(243)
$p_0 = 2$	26605	26607(220)	$p_0 = 2$	26580	3653(241)	$p_0 = 2$	26872	30022(240)
P0-3		30007(239)	20-3	30309	30395(230)	1 10-3	30373	
		<i>c</i> ₁	<i>p</i> '- <i>p</i> ₀ =2	q'-	$q_0 = -\mathbf{I}$	$-r_0 = 0$		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = 1$	ber.	beob.	$q_0 = 2$	ber.	beob.
<i>∲</i> ₀=0	36435	36424(222)	¢0=0	36419	36416(221)	<i>∲</i> ₀=0	36403	<u> </u>
			2. ser.					
		c1'	$p' - p_0 = 2$	q ' -	$-q_0 = 0 r'$	$-r_0 = -1$		
<i>q</i> ₀ =0	ber.	c ₁ '	$p'-p_0=2$ $q_0=1$	q'- ber.	$-q_0 = 0$ r' -	$-r_0 = -1$ $q_0 = 2$	ber.	beob.
$q_0 = 0$	ber.	c ₁ '	$p' - p_0 = 2$ $q_0 = 1$ $q_0 = 1$	9'- ber.	$-q_0 = 0$ $r' - beob.$	$-r_0 = -1$ $q_0 = 2$ $q_0 = 0$	ber.	beob.
$q_0 = 0$ $p_0 = 0$ $p_0 = 1$	ber. 36497 36455	c ₁ ' beob. 39486(228) 36458(225)		9'- ber. 36481 36430	$-q_0 = 0$ $r' - beob.$ 36474(227) 36436(223)	$-r_0 = -I$ $q_0 = 2$ $p_0 = 0$ $p_0 = I$	ber. 36465 36423	beob. 36463(226)
$q_0 = 0$ $p_0 = 0$ $p_0 = 1$	ber. 36497 36455	c ₁ ' beob. 39486(228) 36458(225)		9'- ber. 36481 36439	$-q_0 = 0$ $r' - beob.$ 36474(227) 36436(223)	$-r_0 = -I$ $q_0 = 2$ $p_0 = 0$ $p_0 = 1$	ber. 36465 36423	beob. 36463(226)
$ \begin{array}{c} q_0 = 0 \\ $	ber. 36497 36455	$\begin{array}{c} c_1{}\prime\\ \\ beob.\\ \\ 39486(228)\\ 36458(225)\\ \\ D_1 \end{array}$	$p' - p_0 = 2$ $q_0 = 1$ $p_0 = 0$ $p_0 = 1$ $p' - p_0 = 1$	q'- ber. 36481 36439 3 q'	$-q_0 = 0$ $r' - beob.$ 36474(227) 36436(223) $-q_0 = 0$ r'	$-r_0 = -I$ $\frac{q_0 = 2}{p_0 = 0}$ $\frac{p_0 = 0}{p_0 = 1}$ $-r_0 = 0$	ber. 36465 36423	beob. 36463(226)
$ \begin{array}{c} q_0 = 0 \\ p_0 = 0 \\ p_0 = 1 \\ q_0 = 0 \end{array} $	ber. 36497 36455 ber.	c_1' beob. 39486(228) 36458(225) D_1 beob.	$ \begin{array}{c} p' - p_0 = 2 \\ q_0 = 1 \\ p_0 = 0 \\ p_0 = 1 \\ p' - p_0 = 1 \\ q_0 = 1 \end{array} $	9'- ber. 36481 36439 3 9' ber.	$-q_0 = 0$ $r' - beob.$ 36474(227) 36436(223) $-q_0 = 0$ r' beob.	$-r_0 = -I$ $\frac{q_0 = 2}{p_0 = 0}$ $\frac{p_0 = 0}{p_0 = I}$ $\frac{p_0 = 0}{p_0 = 2}$	ber. 36465 36423 ber.	beob. 36463(226)
$ \begin{array}{c} q_0 = 0 \\ \dot{p}_0 = 0 \\ \dot{p}_0 = 1 \\ \hline q_0 = 0 \\ \dot{p}_0 = 0 \end{array} $	ber. 36497 36455 ber. 37686	c_1' beob. 39486(228) 36458(225) D_1 beob. 37699(294)	$ \begin{array}{c} p' - p_0 = 2 \\ \hline q_0 = 1 \\ \hline p_0 = 0 \\ p_0 = 1 \\ p' - p_0 = 1 \\ \hline p' - p_0 = 1 \\ \hline p_0 = 1 \\ \hline p_0 = 0 \end{array} $	9'- ber. 36481 36439 3 9' ber. 37670	$-q_0 = 0$ $r' - beob.$ 36474(227) 36436(223) $-q_0 = 0$ r' beob.	$-r_0 = -I$ $\frac{q_0 = 2}{p_0 = 0}$ $\frac{p_0 = 0}{p_0 = I}$ $\frac{q_0 = 2}{p_0 = 2}$ $\frac{q_0 = 2}{p_0 = 0}$	ber. 36465 36423 ber. 37654	beob. 36463(226) beob.
$ \begin{array}{c} q_0 = 0 \\ p_0 = 0 \\ p_0 = 1 \\ q_0 = 0 \\ p_0 = 0 \\ p_0 = 1 \end{array} $	ber. 36497 36455 ber. 37686 37644	$\begin{array}{c} c_1'\\ \hline\\ beob,\\ 39486(228)\\ 36458(225)\\ \hline\\ D_1\\ \hline\\ beob,\\ 37699(294)\\ 36658(203)\\ \end{array}$	$ \begin{array}{c} p'-p_0 = 2 \\ q_0 = 1 \\ p_0 = 0 \\ p_0 = 1 \\ p'-p_0 = 1 \\ p_0 = 1 \\ p_0 = 1 \\ p_0 = 1 \end{array} $	q'- ber. 36481 36439 3 q' ber. 37670 37628	$-q_0 = 0$ $r' - beob.$ 36474(227) 36436(223) $-q_0 = 0$ r' beob.	$-r_{0} = -1$ $\frac{q_{0} = 2}{p_{0} = 0}$ $\frac{p_{0} = 0}{p_{0} = 1}$ $\frac{q_{0} = 2}{p_{0} = 2}$ $\frac{q_{0} = 2}{p_{0} = 0}$	ber. 36465 36423 ber. 37654 37612	beob. 36463(226) beob.
$ \begin{array}{c} q_0 = 0 \\ p_0 = 0 \\ q_0 = 0 \\ q_0 = 0 \\ p_0 = 1 \\ p_0 = 0 \\ p_0 = 2 \end{array} $	ber. 36497 36455 ber. 37686 37644 37602	$\begin{array}{c} c_1' \\ \hline \\ beob. \\ 39486(228) \\ 36458(225) \\ \hline \\ D_1 \\ \hline \\ beob. \\ 37699(294) \\ 36658(293) \\ 36614(292) \\ \end{array}$	$ \begin{array}{c c} p'-p_0=2 \\ q_0=1 \\ p_0=0 \\ p_0=1 \\ p'-p_0=1 \\ p_0=1 \\ p_0=1 \\ p_0=1 \\ p_0=2 \end{array} $	9'- ber. 36481 36439 3 9' ber. 37670 37628 36586	$-q_0 = 0$ r' - beob. 36474(227) 36436(223) $-q_0 = 0$ r' beob.	$-r_{0} = -1$ $\frac{q_{0} = 2}{p_{0} = 0}$ $\frac{p_{0} = 0}{p_{0} = 1}$ $\frac{q_{0} = 2}{p_{0} = 2}$ $\frac{q_{0} = 2}{p_{0} = 0}$ $\frac{p_{0} = 0}{p_{0} = 1}$	ber. 36465 36423 ber. 37654 37612 36570	beob.

.

Masao Horio.

		<i>d</i> ₁	<i>t</i> ¹ − <i>p</i> ₀ =3	q ' -	$q_0 = -1$ $r' -$	$r_0 = 0$		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
<i>∲</i> ₀=0	37390	37387(285)	<i>∲</i> ₀=0	37374		<i>∲</i> ₀=0	37358	
				A-Se	rie			•
	$\nu = j$	35627+952()	$(p' - p_0) - 2$	$12p_0+$	$291(q'-q_0)-$	$16q_0 + 16$	6(1 -	r_0)
							<u> </u>	
		A ₂	$p'-p_0=$	o q'	$-q_0 = 0 r' - r'$	″ °= 0		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$	35627 35585	35627(142) 25583(138)	$ \begin{array}{c c} p_0 = 0 \\ p_0 = 1 \end{array} $	35611 35569	35612(141) 35570(136)	$\begin{array}{c} p_0 = 0\\ p_0 = 1 \end{array}$	35595 35553	35591(139) 35553(135)
		<i>a</i> 2	<i>t</i> ∕′− <i>t</i> ₀=0	q'-	$q_0 = -1$ $r' -$	- <i>r</i> ₀ =0		
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{r}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$	35336 35294	35338(122) 35295(117)	$p_0 = 0$ $p_0 = 1$	35320 35278	35322(120)	$p_0 = 0$ $p_0 = 1$	35304 35262	35300(118)
		<i>u</i> 2 ⁴	<i>t</i> ∕- <i>p</i> ₀=0	o q′−	$-q_0 = 0$ $r' - r_0$	₀ =-1		
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$	35461	35463(128)	$p_0 = 0$	35445	35437(127)	$p_0 = 0$	35429	
$p_0 = 2$	35377	35382(124)	$f_0 = 2$	35361	35360(123)	$\begin{array}{c c} p_0 = 1 \\ p_0 = 2 \end{array}$	35345	
		<i>F</i> ₂	¢′−¢₀=	1 q ' -	$-q_0 = 0$ $r' - r$	r₀=0		
<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$	36579	36580(237) 36538(233)	$p_0 = 0$ $p_0 = 1$	36563	36563(235)	$p_0 = 0$ $p_0 = 1$	36547	36551(234) 36504(230)
$p_0 = 2$	36495	36495(229)	$p_0 = 2$	36479		$p_0 = 2$	36463	
		<i>b</i> ₂	$p'-p_0=1$	9'-	$q_0 = -\mathbf{I} \qquad r' -$	r ₀ =0		
$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	beob.
$p_0 = 0$ $p_0 = 1$	36288	36288(211)	$p_0 = 0$ $p_0 = 1$	36272	36270(209)	$p_0 = 0$ $p_0 = 1$	36256	36254(207)
			20-2			1 20 -		
		b2'	$p'-p_0=\mathbf{I}$	q'-	$q_0 = 0 r' - r_0$	= - I		
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.	$q_0 = 2$	ber.	bcob.
$p_0 = 0$ $p_0 = 1$	36413 36371	36407(220) 36362(217)	$p_0 = 0$ $p_0 = 1$	36397 36355	36390(219) 36346 216)	$p_0 = 0$ $p_0 = I$	36381 36330	36379(218) 36334(215)
¢0=2	36329	36319(214)	$p_0 = 2$	36313	36304(213)	$p_0 = 2$	36297	36301(212)

230

	C ₂	$p'-p_0=2$ $q'-q_0=0$ $r'-r_0$	=0
$q_0 = 0$ ber.	beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0=2$ ber. beob.
$p_0 = 0 37531 \\ p_0 = 1 37489 \\ p_0 = 2 37447$	37531(290) 37484(288) 37459(287)	$\begin{array}{ccccccc} p_0 = 0 & 37515 & 37515 & 289 \\ p_0 = I & 37473 & & \\ p_0 = 2 & 3743I & & \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ι <u></u>	C ₂	$p' - p_0 = 2$ $q' - q_0 = -1$ $r' - r$	₀ =0
$q_0 = 0$ ber.	beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0=2$ b r. beob.
$p_0 = 0$ 37240 $p_0 = 1$ 37198	37244(278) 37209(277)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_0 = 0$ 37208 $f_0 = 1$ 37166
	c ₂ '	$p'-p_0=2$ $q'-q_0=0$ $r'-r_0=0$	=-1
$q_0 = 0$ ber.	beob.	$q_0 = \mathbf{I}$ ber. beob.	90=2 ber. beob.
$f_0 = 0$ 37365 $f_0 = 1$ 37323	37373(284) 36304(282)	$\begin{array}{cccc} p_0 = 0 & 37349 & 37362(283) \\ p_0 = 1 & 37307 & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Die experimentalen Daten für Kapitel III

Tabelle 11.

Liste der Absorptionsbanden des Phenoldampfes.

						Bem	erkung	en							E	leme	erkunge	n	
Nr.	λ	v .	Inten sität	p	'-p	<i>P</i> 0	$q'-q_0$	90	$r'-r_0$	Nr.	λ	ν	Inten- sität	p	- <i>p</i> 0	Po	9'-90	q_0	$r'-r_0$
I	2807.5	35608	0							26	4.6	92	8		0	1	0	0	0
2	1.5	<u> </u>	о							27	3.7	304	I						
3	2795.2	765	o		0	I	- I	I	0	28	2.7	17	4		ο	ο	0	I	o
4	0.9	820	о		ο	I	— I	ο	0	29	1.5	33	10						
5	0.0	32	о		0	о	1	I	0	30	0.7	44	10						
6	88.2	55	о	a_0	о	о	I	о	0	31	0.1	52	10	A_0	о	о	о	о	o
7	4.6	901	0	U						32	48.o	79	0						
8	79.0	74	о							33	7.0	93	3	$2x_0$	ο	ο	I	ο	-2
9	3.0	36051	0		0	I	о	1	— I	34	6.8	95	ō	-					
IÓ	ō.3	87	2		ο	I	0	о	I ¹	35	5.1	418	I		ο	3	1	0	I
11	69.1	102	I		о	о	о	I	I	36	3.2	43	I						
12	8.2	14	ο							37	2.1	58	о		ο	2	I	I	1
13	6.9	31	3	a'	ο	о	0	о	— I	38	1.2	70	0						
14	5.7	47	0	-						39	39.7	- 90	. 1		о	2	I	0	I
15	4.2	66	ο		0	3	0	0	0	40	9. I	98	0						
16	3.3	78	о							41	8.3	508	о		o	I	I	r	— I
17	2.7	85	I							42	6.6	31	0						
18	2.0	. 95	I		0	2	0	I	0	43	5.1	51	I		0	I	I	o	1
19	1.3	204	0							44	4.3	62	0						
20	0.8	11	0							45	2.7	83	I		0	0	I	1	I
21	0.0	21	0							46	1.1	604	0						
22	59.5	28	2		ο	2	о	0	0	47	o.6	II	2	1x0	ο	о	I	ο	— I
23	8.4	42	0							48	28.8	35	ο	Ŭ					
24	7.4	55	5		ο	I	0	1	0	49	8.0	46	0		0	3	I	0	Q
25	5.8	76	3							50	6.a	61	I			Ŧ			

Masao Horio.

						Beme	erkur	igen							I	Beme	erkung	gen	
Nr.	λ	v I	nten sität	p	p	p Po s	q'-q	70 <i>I</i> 0	$r' - r_0$	Nr.	λ	ν	Inten sität	p	- <i>p</i> ₀	\$o	q'-q	'o <i>9</i> 0	$r'-r_0$
51	6.2	70	I		0	2	ı	I	0	106	1.3	24	I		_		_	_	~
52	5.4	81	ο						-	107	0.6	34	0		0	3	I	0	0
53	3.7	704	I		0	2	1	0	0	108	68.3	66	I		0	2	1	1	0
54	2.3	23	0					_		109	6.0	98	1		0	2	1	0	0
55	1.9	28	I		0	I	I	I	0	110	3.0	532	1		0	1	T	T	0
56	19.9	55	ο							III	2.2	52	0						
57	9.4	62	0							112	1.4	63	3		ο	I	I	0	0
58	9.0	67	2		0	I	I	ο	0	113	59.7	87	x		0	0	I	I	0
59	7.9	82	0							114	8.3	607	0						
60	7.1	93	0		ο	ο	I	I	0	115	7.5	18	4						
61	5.8	811	0							116	6.9	27	5	a_1^1	о	0	I	0	0
62	5.1	20	о							117	5.0	54	I						
63	4.6	27	4	a	0	ο	I	ο	0	118	4.2	65	0		I	I	I	I	0
64	2.8	51	İ	v	0	I	ο	ο	— I	119	2.5	89	I						
65	1.0	76	I		0	ο	0	I	— I	120	1.5	703	I		I	I	1	0	0
66	00 7	04	0							121	18.0	40	I		I	0	I	I	0
67	87	94	ň							122	8.2	50	ō						
68	8 T	907	2	a.!	0	0	n	Ó	— I	123	7.2	65	2	6,1	I	0	I	0	0
60	62	- 3	õ	41	ŏ	3	ŏ	ŏ	0	124	5.6	87	0	U					
70	4.3	67	ĩ		Ũ	3				125	4.4	805	I		ο	2	ο	ο	
		•	_		_	-	_	_		106		10	~						
71	3.0	77	1		0	2	0	I	0	120	4.0	10	0		~	т	~	r	
72	2.9	80	0		~		~	~	•	127	2.1	37	0		U		0	1	
73	1.0	37012	1		0	2	0	0	0	120	1.1	54	2		^	т	•	0	
74	2099.8	29	0		~	-	~		0	129	-28.8	- 00 8r	ź		0	Â	ī	0	
75	9.1	30	2		U	T	0	1	U	130	30.0	05	0,		Ŭ	Ŭ	-	č	
76	7.5	60	0							131	7.2	908	0					_	
77	7.I	66	0							132	6.2	22	4	A_2	o v	0	0	0	~
78	6.4	76	4		0	I	0	0	0	133	5.8	28	0		1	2	0	1	0
79	5.2	88	0		-	-			~	134	4.5	47	1		1	2	0	U	0
80	4.0	100	3		0	0	0	1	0	135	3.9	55	1						
81	3.6	14	0							136	2.1	81	I		I	I	0	I	0
82	2.8	25	7							137	0.6	38003	0						
83	1.9	37	9	A_{1}	0	0	о	0	0	138	29.5	19	4		1	I	0	0	0
84	0.6	55	ο							139	7.9	42	о		I	ο	0	I	0
85	89.4	72	2		I	2	0	0	0	140	7.1	53	0						
86	8.2	89	0							141	6.3	65	3						
87	7.5	9Ś	I		I	I	ο	I	0	142	5.Š	72	7	B_1	1	о	о	0	0
88	6.7	209	ο							143	4.5	91	Ī						
'89	6.0	19	6							144	3.7	103	ο		2	2	0	0	0
<u>9</u> 0	5.6	25	7		I	I	0	0	0	145	3.3	09	4	a_1^2	ο	0	2	0	0
OT.	4.0	21	0							146	2.2	25	o						·
91	4·9 4·1	54 ⊿r	2							147	J.6		Ö		2	T	0	I	0
92	2.6	43 52	2		T	0	0	т	0	148	1.1	33 41	õ		-	-	-	-	-
93	2.8	62	8		-	Ť	, T	-	Ũ	140	0.3	52	I						
05	2.0	75	8							150	19.5	6 4	2		2	I	0	о	0
5		19	_										-						
96	1.0	88	10	B_0	I	0	0	0	0	151	9.0	71	I						
97	0.1	301	0							152	0.3	01	0		•	~	~	т	~
98	79·3	12	U V							-53	6.	205	1		4	0	0	1	0
99	0.0 8 ~	22	1	a ?	0	0	2	~	0	154	60		T						
100	0.2	27	3	"0"	U	0	4	0	0	- 33	0.0	- 5	•	_					
101	7.1	43	0		0	I	I	ο	I	156	5.1	28	5	C_0	2	0	0	0	0
102	5.1	71	0		0	ο	I	I	— I	157	4.2	41	2		-	_	_	_	
103	4.2	83	0							158	3.6	50	0	2.0	I	2	I	1	c
104	3.4	.94	I		_	_			-	159	2.5	66	2	00-	ĩ	0	2	υ	U
105	2.4	408	1	x_1	0	0	1	0	-1	100	1.9	75	0						

						Bem	nerkung	gen								ŀ	Bem	erkung	en	
Nr.	λ	ν	Inten- sität	p	′-₽₀	\$o	q'-q0	90	r1 -		Nr.	λ	ν	Inten sität	p	- <i>p</i> 0	Í.	$q'-q_0$	90	r'-r0
161	1.2	85	ο		о	2	I	0			184	2.9	55	3	B_2	I	0	0	0	
162	0.5	95	0								185	0.4	93	õ	-	2	2	0	ο	о
163	09.9	304	0		0	I	I	I			- 07					_				
164	6.7	51	I		0	I	I	ο			180	66.9	940	0	a	2	I	0	0	0
165	5.6	67	ο		0	ο	I	1			187	2.8	39008	I	ι_1	2	0	0	0	0
			-								188	0.5	43	0		3	2	0	0	0
100	4.1	90	0								189	57.9	83	0		3	I	0	0	0
107	3.5	98	I				_				190	3.2	155	0		3	0	0	I	0
168	2.8	409	2	a_{2}	0	0	I	0			TOT	2.0	72	0	D.	2	a	0	0	0
169	2599.0	50	0								102	0.7	13	ŏ	* 0	3	v	Ŭ	U.	0
170	8.7	69	o		I	I	I	I	C)	102	A7 1	240	ŏ		т	т	т	т	
191	64	507	T		т	т	т	0	r	、	-93 I04	4/	-49	õ		÷	Ť	ĩ	ĥ	
172	25	303	Â		÷	ĥ	Ţ	ĭ	č	Ś	105	4.2	242	ī	<i>b</i> .	÷	Â	Ť	õ	
172	3.3	40	0		•	0	•				195	1.0	343	•	°2	÷	Ŭ	•	U.	
1/3	2.9	22	2	h	т	~	Ŧ	~	• •		196	39.0	74	ο		2	2	I	0	ο
1/4	80.8	601	3	°1	1	U	1	U	, c	,	197	¥.0	89	ο						
175	09.0	001	0								198	6.9	406	o		2	I	I	I	0
176	7.I	42	I		2	I	I	о	´ c)	199	5.6	27	ο						
177	5.7	63	0		2	0	I	I	c)	200	4.7	41	0		2	I	I	o	0
178	3.0	703	2	c.	2	0	I	o	c)			•							
170	ŏ.a	35	I	v	I	2	0	0			201	0.8	501	Î	c_1	2	0	I	0	0
180	78.5	71	0		I	I	0	I			202	26.1	75	0		3	I	I	0	ο
	7-5	, -									203	4.6	- 98	0		3	ο	I	I	0
181	7.0	93	I		1	I	0	0			204	0.7	660	о	d_0	3	ο	I	0	О,
182	5.2	820	0		I	ο	0	I			205	10.9	814	I	C_2	2	ο	0	0	
182	2.8	<i>1</i> I	0																	

Tabelle 13.

Vergleich der berechneten und der beobachteten Wellenzahlen des Phenoldampfspektrums.

	0	•
Α.	- 56	2110
× 10	~~~	

$\nu = 36352 + 938(p' - p_0) - 62p_0 + 480(q' - q_0) - 35q_0 + 220(r' - r_0)$

$A_0 p' - p_0 = 0 q' - q_0 = 0 r' - r_0 = 0$				
$\dot{q}_0 = 0$ ber. beob.	$q_0 = 1$ ber. beob.			
$\begin{array}{c} p_0 = 0 & 36352 & 36352(31) \\ p_0 = 1 & 36290 & 36292(26) \\ p_0 = 2 & 36228 & 36228(22) \\ p_0 = 3 & 36166 & 36166(15) \end{array}$	$p_0 = 0 36317 36317(28)$ $p_0 = 1 36255 36255(24)$ $p_0 = 2 36193 36195(18)$ $p_0 = 3 36131$			

$$q_0^1 p' - p_0 = 0 q' - q_0 = 1 r' - r_0 = 0$$

<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	36832 36770 36708 36646	36827(63) 36767(58) 36704(53) 36646(49)	$f_0 = 0$ $p_0 = 1$ $f_0 = 2$ $p_0 = 3$	36797 36735 36673 36611	36793(60) 36728(55) 36670(51)

	·
$a_0^2 \not p' - \not p_0 = 0 q'$	$-q_0 = 2$ $r' - r_0 = 0$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0 37312 37327(100)$	\$0=0 37277
$a_0 p' - p_0 = 0 q' - q'$	$-q_0 = -1$ $r' - r_0 = 0$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0$ 35872 35855 (6) $p_0 = 1$ 35810 35820 (4)	$f_0 = 0$ 35837 35832 (5) $f_0 = 1$ 35775 35765 (3)
$a_0' p' - p_0 = 0 q' - q'$	$-q_0 = 0$ $r' - r_0 = -1$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. boob.
$p_0 = 0$ 36132 36131(13) $p_0 = 1$ 36070 36087(10)	$p_0 = 0 36097 36102(11)$ $p_0 = 1 36035 36051 (9)$

${}^{1}x_{0} p' - p_{0} = 0 q' - q_{0} = 1 r' - r_{0} = -1$				
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.			
$\begin{array}{c} p_0 = 0 & 36612 & 36611(47) \\ p_0 = 1 & 36550 & 36551(43) \\ p_0 = 2 & 36488 & 36490(39) \\ p_0 = 3 & 36426 & 36418(35) \end{array}$	$\begin{array}{c} p_0 = 0 & 36577 & 36583(45) \\ p_0 = 1 & 36515 & 36508(41) \\ p_0 = 2 & 36453 & 36458(37) \\ p_0 = 3 & 36391 \end{array}$			
$2x_0 p' - p_0 = 0 q' - q'$	$-q_0 = \mathbf{I} r' - r_0 = -2$			
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.			
$p_0 = 0$ 36392 36393(33)	∲₀=0 36357 <u></u>			
$B_0 p' - p_0 = \mathbf{I} q' - q_0 = 0 r' - r_0 = 0$				
$q_0 = \mathbf{o}$ ber, beob.	$q_0 = \mathbf{I}$ ber. beob.			
$p_0 = 0$ 37290 37288(96) $p_0 = 1$ 37228 37225(90) $p_0 = 2$ 37166 37172(85)	$\begin{array}{c} p_0 = 0 & 37255 & 37252(93) \\ p_0 = 1 & 37193 & 37198(87) \\ p_0 = 2 & 37131 & \end{array}$			
$b_0^1 p' - p_0 = I q'$	$-q_0 = \mathbf{I} \mathbf{r'} - \mathbf{r}_0 = 0$			
$q_0 = 0$ ber. beob.	$q_0 = 1$ ber. beob.			
$p_0 = 0$ 37770 37765(123) $p_0 = 1$ 37708 37703(120)	$p_0 = 0$ 37735 37740(121 $p_0 = 1$ 37673 37665(118			
$b_0^2 p' - p_0 = 1 q'$	$-q_0 = 2 r' - r_0 = 0$			
$q_0 = 0$ ber. beob.	$q_0 = 1$ ber. beob.			
10=0 38250 38266(159)	<i>P</i> ₀ =0 38215			

	$C_0 p'$	$-p_0 = 2 q'$	-q ₀ =0	r'-r	₀ =0
<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38228 38166 38104	38228(156) 38164(150) 38103(144)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38193 38131 38069	38192(153) 38133(147)

 $c_0 p' - p_0 = 2 q' - q_0 = 1 r' - r_0 = 0$

<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.
$p_0 = 0$ $p_0 = 1$	38708 38646	38703(178) 38642(176)	$\begin{array}{c} p_0 = 0\\ f_0 = 1 \end{array}$	38673 38611	38663(177)

-0 # #0 5 7 70 0 -	D_0	1/-10=3	$q'-q_0=0$	$r' - r_0 = 0$
--------------------	-------	---------	------------	----------------

<i>q</i> ₀=0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	39166 39104 39042	39173(191) 39083(189) 39043(188)	$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \\ f_0 = 2 \end{array} $	39131 39069 39007	39155(190)

 $d_0^1 p' - p_0 = 3 q' - q_0 = 1 r' - r_0 = 0$

<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$ p_0 = 0 $ $ p_0 = 1 $	39646 39584	39660(204) 39575(202)	$p_0 = 0$ $p_0 = 1$	39611 39549	39598(203)

	~ ~ ~	•	
4		1110	
211	-00		

 $\nu = 37137 + 938(p'-p_0) - 62p_0 + 485(q'-q_0) - 35q_0 + 220(r'-r_0)$

	$A_1 \not l'$	$-p_0 = 0 q'$	-q ₀ =0	1-1	~ ₀ =0
<i>q</i> 0=0	ber.	bcob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	37137 37075 37013 36951	37137(83) 37076(78) 37012(73) 36941(69)	$p_0 = 0$ $f_0 = 1$ $p_0 = 2$ $p_0 = 3$	37102 37040 36978 36916	37100(80) 37038(75) 36977(71)

	a_1^1	p'-to==0	$q'-q_0=I$	$r' - r_{h} = 0$
--	---------	----------	------------	------------------

<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	37622 37560 37498 37436	37627(116) 37563(112) 37498(109) 37434(107)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	37587 37525 37463 37401	37587(113) 37532(110) 37466(108)

$a_1^2 p' - p_0 = 0 q'$	$-q_0=2$ $r'-r_0=0$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0$ 38107 38109(145)	\$0=0 38072
$a_1^1 \not l' - f_0 = 0 q' -$	$-q_0 = 0$ $r' - r_0 = -1$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
$f_0 = 0$ 36917 36915(68) $f_0 = 1$ 36855 36851(64)	$p_0 = 0$ 36882 36876(65) $p_0 = 1$ 36820
$x_1 p' - p_0 = 0 q' - q'$	$-q_0 = \mathbf{I} r' - r_0 = -\mathbf{I}$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
$f_0 = 0$ 37402 37408(105) $p_0 = 1$ 37340 37343(101)	$p_0 = 0 37367 37371(102)$ $p_0 = 1 37305 $

	B ₁ p'	$-p_0 = 1 q'$	-q ₀ =0	• r'−;	<i>r</i> ₀=0
<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38075 38013 37951	38072(142) 38019(138) 37947(134)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38040 37978 37916	38042(139) 37981(136) 37928(133)
	b ₁ \$'-	$-p_0 = 1 q' -$	- <i>q</i> ₀ =1	1'-r	0=0
<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$	38560 38498	38563(174) 38503(171)	$ \begin{array}{c} p_0 = 0 \\ p_0 = 1 \end{array} $	38525 38463	38546(172) 38469(170)

$C_1 p' - p_0 = 2 q'$	-q ₀ =0	r'-r	•=o
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$	ber.	beob.
$p_0 = 0$ 39013 39008(187)	<i>†</i> ₀=0	38978	
$p_0 = 1$ 38951 38946(186)	$p_0 = I$	38916	
$p_0 = 2$ 38889 38893(185)	\$p_0=2	38854	
$c_1 p' - p_0 = 2 q' - q'$	- <i>q</i> ₀ =1	r'-r)=0
$q_0 = 0$ ber. beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ 39498 39501(201)	∲ ₀ =0	39463	
$p_0 = 1$ 39436 39441(200)	$p_0 = 1$	39401	39406(198)
$p_0 = 2 39374 39374(196)$	$p_0 = 2$	39339	

 A_2 -Serie $\nu = 37922 + 938(p'-p_0) - 62p_0 + 485(q'-q_0) - 35q_0$

	A_2	p'-p_0=	o q	'-q_=	0
<i>q</i> ₀ =0	ber.	beob.	$q_0 = I$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	37922 37860 37798	37922(132) 37860(129) 37805(125)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	37887 37825 37763	37885(130) 37837(127)

a,	$p'-p_0=0$	$q' - q_0 = 1$
-		

$q_0 = 0$	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38407 38345 38283	38409(168) 38351(164) 38285(161)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38372 38310 38248	38367(165) 38304(163) 38250(158)

	F_2	1'-10=	ı q	'-q_=	0
<i>y</i> ₀=0	ber.	beob.	<i>q</i> ₀ = 1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38860 38798 38736	38855(184) 38793(181) 38735(179)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	38825 38763 38701	38820(182) 38771(180)
	b2	\$'-\$0=	1 q'	$'-q_0 =$	I .
<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.
$p_0 = 0$ $p_0 = 1$	39345 39283	39343(195) 39293(194)	$ \begin{array}{c} f_0 = 0 \\ f_0 = 1 \end{array} $	39310 39248	39249(193)
	C2	$p' - p_0 =$	2 q'	$'-q_0 =$	0
<i>q</i> ₀ =0	ber.	beob.	90=1	ber.	beob.
<i>p</i> ₀=0	39798	39814(205)	<i>∲</i> ₀=0	39763	

Tabelle 12.

Liste der Absorptionsbanden des Anisoldampfes

	Bemerkungen														Bem	erkung	en	
Nr.	λ	v	Inten sität	t p'	-p	0 <i>P</i> 0	9'-9	70 70	$r' - r_0$	Nr.	λ	v	Inten sität	1'-1	0 <i>P</i> 0	9'-90	90	r'-r0
I	2808.0	35602	0							11	1.9	66	I	0	I	0	I	— I
2	7.2	12	0							12	o.8	80	0					
3	2799.5	710	0							13	0.0	90	0					
4	4.9	69	ο							14	69.3	36100	I	0	I	0	0	1
5	89.8	834	0							15	8.0	17	0					
6	2.5	928	о	$2a_0'$	o	о	o	о	-2	16	6.9	. 31	I	о	o	о	ľ	— I
7	78.ĭ	85	0	0						17	5.9	44	o					
8	7.1	98	I		ο	2	0	I	I	18	5.0	56	I					
9	5.0	36025	I		ο	2	0	ο	— I	19	4.4	64	3	1a0' 0	ο	ο	0	I
IÒ	3.2	49	0							20	2.9	83	Ō	-				

Musao Horio.

			_			Beme	erkun	igen							E	Seme	erkunge	'n	
Nr.	. λ	ν	Inten sität	, p	'-p	Po s	q'-q	?o 9o	$r'-r_0$	Nr.	λ	۲	nten sität	p	'-po	₽o	9'-90	90	r'-r0
21	1.7	99	, I		0	3	0	0	0	76	4.6	100	7						
22	59.0	220	1		0	2	0	I	0	77	3.7	13	7		0	0	0	I	0
24	6.0	47	7		0	•	0	~	•	70	2.8	25	5						
25	5.9	75	ĭ		U	2	U	U	0	79 80	1.6	39 42	5. 8						
26	4.5	94	8		о	I	0	I	о	81	1.2	47	Q	Α,	o	o	o	0	0
27	3.6	305	6							82	0.9	51	3						
28	2.6	19	10							83	2687.8	94	ŏ						
29	2.2	24	10		0	1	ο	o	0	84	7.0	205	о		I	2	0	э	0
30	1.8	29	8							85	6.3	15	ο		I	I	0	I	0
31	1.1	38	2							8 6	3.9	48	ο						
32	0.5	46	8							87	3.0	61	2		I	I	o	ο	ο
33	0.0	53	9		0	ο	o	1	o	88	2.5	68	2						
34	49.4	61	9							89	1.2	86	7		I	0	O	I	0
35	8.6	71	IO							90	7 9·7	307	7						
36	7.9	81	10	1	•	~	~	-	-	91	8.5	23	9	n	_				
37	7.5	80	10	M ⁰	U	0	0	0	0	92	8.0	30	10	B ₀	I	0	0	0	0
30	7.3 6 r		0							93	7.1	43	9		0	0	2	1	0
39 40	5.9	407	0		0	4	I	о	I	94 95	5.7 4.5	02 79	2	a_0^2	о	о	2	0	o
4 I	4.8	22	o							96	1.5	421	о	<i>x</i> ,	о	о	I	o	1
42	1.9	60	о		ο	3	1	0	I	97	o.Š	31	ο	•					
43	37.4	520	0		0	2	I	0	I	98	0.0	42	0		0	3	I	0	0
44	3.0	79	0		0	, I	I	I	I	- 99	67.1	83	0						
45	1.0	606	I		0	I	1	0	— I	100	6.0	98	0		0	2	I	I	0
46	0.0	19	I							101	5.2	509	I						
47	29.3	29	I		0	0	I	I	I	102	3.6	32	1		0	2	I	0	0
40	7.7	50	2	x_0	0	0	I	0	- I	103	2.9	42	0		_	_	_		
49	7.0	59	0		0	0	0	I	-2	104	1.4	03	1		0	1	I	I	0
50	5.9	74	-	• •	_				_	105	59.9	04	1						
51	5.4	81	1	a_1'	0	0	0	0	-2	100	9.2	,94	2		0	I	I	0	0
52	3.4	708	1		0	3	1	0	0	107	<u>7</u> ·9	613	I		0	0	I	1	0
53	2.3	23	1		~	-	Ŧ		0	108	0.7	29	1		0	0	0	I	— I
54 55	0.7	44 54	2		U	4	T	1	0	109	4.0	50	3	"1,	0	0	1	0	0
55	-9.9	54	~		~							/-	-	<i>u</i> 2	-			-	1
50	10.0	82	1		0	2	1	0	0	111	1.0	99	0		1	2	1	I	0
57	7.9	816	ī		ő	Ţ		· .	T	112	1.0	710	0		Ţ	2	1	0	0
50	4.8	24	r		õ	Ť	ĩ	ò	-1	113	47.2	62	T		T	1	T	1	0
60	3.2	46	ī		õ	ĩ	o	o	-1	115	47.5	99	I		I	ò	1	I	0
61	2.5	55	I		о	0	I	I	о	116	2.0	839	3	ba	I	o	I	o	ο
62	1.1	74	0		ο	ο	0	I	1	117	1.3	49	Ó	v	0	I	0	о	о
63	09.7	94	. 3	a_0	0	0	I	0	0	118	0.1	66	I		ο	ο	ο	I	0
64	8.9	904	I							119	38.5	89	3						
65	7.9	18	4	¹ a ₁	0	0	0	0	— r	120	7.6	902	3	$A_{\frac{n}{2}}$	0	0	о	0	ο
66	6.4	39	0							121	5.9	26	I		I	2	0	I	0
07	5.5	51	0		0	3	0	0	0	122	4.3	49	0						
60	3.5	78	0		0	2	0	I	0	123	2.8	71	1		1	2	0	0	0
70	0.2	37023	I		o	2	0	σ	о	124 125	1.4 29.6	91 38017	0 2		I	I	0	I	0
71	2600.5	32	1							126	8.7	20	2		J	т	0	0	0
72	8.6	45	3		0	I	о	I	0	127	7.5	48	ĩ		ī	ō	õ	ĩ	0
73	7.6	59	3						-	128	6.1	68	2			•	-	_	-
74	5.8	84	8		0	I	о	0	ο	129	4.7	88	6	B_1	I	0	0	0	0
75	5-5	88	0							130	4.0	98	5	•					

ł

Beiträge zur Auxochromwirkung.

						Ben	nerkung	gen							E	Beini	erkunge	en	
Nr.	λ	γ	Inten sität	ŧ	'-p	0 <i>P</i> 0	$q'-q_0$	90	$r'-r_0$	Nr.	λ	ν	Inten sität	P	′ <i>−</i> ¢₀	Po	q'-90	90	$r'-r_0$
131	1.3	138	ο		2	2	0	ο	ο	156	7.2	90	0						
132	19.9	58	0		2	I	0	I	0	157	4.7	828	ο		I	ο	о	I	0
133	7.2	97	I							158	4.1	37	I	B_{2}	I	ο	· O	0	0
134	6.5	208	I		2	I	ο	0	0	159	3.0	54	0	-					
135	5.6	21	ο							160	69.8	902	0		2	2	0	0	ο
136	4.0	44	о		2	о	0	I	0	161	5.4	69	I		2	I	о	о	0
137	2.3	69	4	C_0	2	0	· 0	0	0	162	3.1	39004	I		2	0	0	I	0
138	1.4	82	3	-						163	2.6	11	0						
139	0.2	300	ō		1	0	2	I	0	164	1.7	25	I	C_1	2	о	0	о	ο
140	o8 .6	23	I	b_0^2	I	0	2	0	0	165	0.4	45	0	·					
141	6.5	54	0		0	I	I	0	о	166	49.4	213	0	D_0	3	о	0	0	о
142	4.6	82	0		0	0	I	1	0	167	2.8	315	0	-					
143	3.7	95	0							168	38.9	75	0	b_{2}	I	0	I	0	0
144	3.0	406	I	an	0	ο	I	0	0	169	0.9	500	0		2	0	1	1	0
145	1.1	34	0	-	1	2	I	I	0	170	28.4	39	Ver	c_1	2	0	I	0	0
146	2599.2	62	0		I	2	I	о	ο	171	6.7	65	scho						
147	6.5	502	ο		I	I	I	I	0	172	16.2	731	\₹ o	d_0	3	ο	I	0	0
148	3.6	45	I		I	1	I	0	0	173	3.5	73	ğо						
149	2.4	63	I		I	0	I	1	0	174	2.0	97	Bo	C_2	2	0	0	0	0
150	0.1	97	2	<i>b</i> ₁	I	0	I	0	0	175	00.3	983	Bo	D_1	3	0	0	0	0
151	88.5	621	о		2	2	I	ľ	о	176	2489.0	40165	0	E_0	4	о	о	ο	0
152	6.0	- 58	I		2	2	Ι.	0	0	177	0.3	306	0	c_2	2	0	I	0	0
153	2.7	708	0		2	I	Ι.	0	0	178	54.0	737	0	D_2	3	0	0	ο	0
154	0.7	38	ο		2	0	I	I	0										
155	78.4	72	I	60	2	0	I	0	0										

Tabelle 14.

Vergleich der berechneten und der beobachteten Wellenzahlen der

Bandkanten des Anisoldampfspektrums.

		•
~~~	S 0.	
	- 10	
4 14	20	110

 $\nu = 36386 + 943(p'-p_0) - 62p_0 + 505(q'-q_0) - 35q_0 + 230(r'-r_0)$ 

$A_0 p' - r_0 = 0 q' - q_0 = 0 r' - r_0 = 0$	$a_{\theta^2} p' - p_0 = 0 q'$	$r'-g_0=2$ $r'-r_0=0$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. bec
$p_0 = 0$ 36386 36386(37) $p_0 = 0$ 36351 36353(33)	<i>p</i> ₀=0 37396 37379(95)	Po=0 37361 37343
$p_0 = 1 \ 30324 \ 30324(29)$ $p_0 = 1 \ 30203 \ 30294(20)$ $p_0 = 2 \ 36262 \ 36262(24)$ $p_0 = 2 \ 36227 \ 36226(22)$ $h = 2 \ 36202 \ 36262(24)$ $h = 2 \ 36626 \ 36226(22)$	$a_0' \not p' - p_0 = 0 q'$	$-q_0 = 0$ $r' - r_0 = -1$
<u> </u>	$q_0 = 0$ ber. brob.	$q_0 = \mathbf{I}$ ber. bec
$a_0^1 \not p' - \not p_0 = 0  q' - q_0 = 1  r' - r_0 = 0$	fo=0 36156 36164(19)	\$0=0 36121 36131

$a_0^1$	1	$'-p_0=0$	9'	$-q_0 = \mathbf{I}$	r	$' - r_0 = 0$
---------	---	-----------	----	---------------------	---	---------------

q₀=0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	36891 36829 36767 36705	36894(63) 36824(59) 36770(56) 36708(52)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	36856 36794 36732 36670	36855(61) 36782(57) 36744(54)

$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0$ 37396 37379(95)	$p_0 = 0$ 37361 37343(93)
$a_0' \not p' - p_0 = 0 q'$	$-q_0 = 0$ $r' - r_0 = -1$
$q_0 = 0$ ber. brob.	$q_0 = 1$ ber. beob.
$p_0 = 0$ 36156 36164(19) $p_0 = 1$ 36094 36100(14) $p_0 = 2$ 36032 36025(9)	$\begin{array}{c} p_0 = 0 & 36121 & 36131(16) \\ p_0 = 1 & 36059 & 36066(11) \\ p_0 = 2 & 35997 & 35998(8) \end{array}$
$2a_0' \not p' - \not p_0 = 0 q' - q'$	$-q_0 = 0  r' - r_0 = -2$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0$ 35926 35928 (6)	<i>∲</i> ₀=1 35891

$x_0 \not l' - \not p_0 = 0  q' - q_0 = 1  r' - r_0 = -1$	$C_0  t' - p_0 = 2  q' - q_0 = 0  r' - r_0 = 0$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber, beob. $q_0 = \mathbf{I}$ ber, beob.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} p_0 = 0 & 38272 & 38269' 137) \\ p_0 = 1 & 38210 & 38208(134) \\ p_0 = 1 & 38105 & 38208(134) \\ p_0 = 2 & 38148 & 38138(131) \\ p_0 = 2 & 38113 \\ \end{array} $
$p_0 = 4 \ 36413 \ 36407(40)$ $p_0 = 4 \ 36378$ —	$c_0 p' - p_0 = 2 q' - q_0 = 1 r' - r_0 = 0$
$B_0 \not= r_0 = 1 q' - q_0 = 0 r' - r_0 = 0$	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$p_0 = 0$ 38777 38772(155) $p_0 = 0$ 38742 38738(154) $p_0 = 1$ 38715 38708(153) $p_0 = 1$ 38680 $p_0 = 1$ 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{p_0 = 2 38053 38058(152)}{D_0 \not t' - p_0 = 3 q' - q_0 = 0 r' - r_0 = 0}$
	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
${}^{1}b_0 t' - p_0 = \mathbf{I} q' - q_0 = \mathbf{I} r' - r_0 = 0$	$p_0 = 0 \ 39215 \ 39213(166) \ p_0 = 0 \ 39180 \$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$d_0 t' - t_0 = 3 q' - q_0 = 1 t' - r_0 = 0$
$\begin{array}{cccccccc} p_0 = 0 & 37834 & 37839(116) \\ p_0 = 1 & 37772 & 37763(114) \\ p_0 = 1 & 37772 & 37763(114) \\ \end{array} \right) \begin{array}{c} p_0 = 0 & 37799 & 37799(115) \\ p_0 = 1 & 37773 & 37720(113) \\ \end{array}$	$q_0 = 0$ ber. becb. $q_0 = \mathbf{I}$ ber. becb.
$\frac{p_0=2}{27710} \frac{37710}{37710(112)} p_0=2 \frac{37675}{37699(111)}$	$p_0 = 0$ 39720 39731(172) $p_0 = 0$ 39685
$2b_0 p' - p_0 = 1 q' - q_0 = 2 r' - r_0 = 0$	$E_0 t' - t_0 = 4 t' - q_0 = 0 t' - r_0 = 0$
$q_0 = 0$ ber. beob. $q_0 = I$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$r_0 = 0$ 38339 38323(140) $r_0 = 0$ 37304 37300(139)	$p_0 = 0$ 40158 40165(176) $p_0 = 0$ 40123

 $A_1$ -Serie . .

$\nu = 37 \left[ 47 + 943(p - p_0) - 62 p_0 + 505(q' - q_0) - 35 q_0 + 230(r') \right]$	$(-r_0)$

$A_1 \not l' - p_0 = 0 q'$	$-q_0 = 0  r' - r_0 = 0$
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ b r. beob.
$p_0 = 0$ 37147 37147(81) $p_0 = 1$ 37085 37084(74) $p_0 = 2$ 37023 37023(70) $p_0 = 3$ 36961 36951(67)	$\begin{array}{c} p_0 = 0  37112  37113(77) \\ p_0 = 1  37050  37045(72) \\ p_0 = 2  36988  36978(68) \\ p_0 = 3  36926  \end{array}$

 $a_1 \not p' - r_0 = 0 \quad q' - q_0 = 1 \quad r' - r_0 = 0$ 

<i>q</i> ₀ =0	ber.	beob.	$q_0 = I$	ber.	beob.
$p_0 = 0$ $f_0 = 1$ $p_0 = 2$ $p_0 = 3$	37652 37590 37528 37466	37656(109) 37594(106) 37532(102) 37442(98)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	37617 37555 37493 37431	37613(107) 37563(104) 37498(100)

$a_1' p' - p_0 = 0 q' - q'$	$-q_0 = 0$ $r' - r_0 = -1$	
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	
$p_0 = 0$ 36917 36918(65) $p_0 = 1$ 36855 36846(60)	$p_0 = 0$ 36882 36874(62) $p_0 = 1$ 36820 36816(58)	
$2a_1' p' - p_0 = 0 q' -$	$-q_0 = 0$ $r' - r_0 = -2$	
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	
<i>p</i> ₀=0 36687 36681(51)	<i>p</i> ₀=0 36652 36659(49)	
$x_1 \not p' - p_0 = 0  q' - q_0 = \mathbf{I}  r' - r_0 = -\mathbf{I}$		
$q_0 = 0$ ber. beob.	90=1 ber. beob.	
<i>↑</i> ₀ =0 37422 37421(96)	<i>p</i> ₀=0 37387	

		·····
$R_1 \not p' - p_0 = \mathbf{I}$	$q'-q_0 = 0  r'-r_0 = 0$	C ₁ p'-
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber.
$f_0 = 0$ 38090 38088(129	$p_0 = 0$ 38055 38048(127) $p_0 = 1$ 27002 27001(124)	$p_0 = 0$ 39033 $q_0 = 1$ 28071
$p_0 = 2$ 37966 37971(123	$p_0 = 2 \ 37931 \ 37926(121)$	$p_0 = 2$ 38909
· · · · · · · · · · · · · · · · · · ·		c1 #-
$b_1 \not p' - f_0 = \mathbf{I}  q'$	$-q_0 = \mathbf{I}  r' - r_0 = 0$	$q_0 = 0$ ber.
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	<i>∲</i> ₀=0 39538
$p_0 = 0$ 38595 38597(150	$p_0 = 0$ 38560 38563(149)	$D_1 \not p'$
$p_0 = 1$ 38533 38545(148 $p_0 = 2$ 38471 38462(146	$ \begin{array}{c} p_0 = 1 & 38498 & 38502(147) \\ p_0 = 2 & 38436 & 38434(145) \end{array} $	$q_0 = 0$ ber.
	•	\$0=0 39976

$C_1 p' - p_0 = 2 q' - q_0 = 0 r' - r_0 = 0$		
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	
$p_0 = 0$ 39033 39025(164) $p_0 = 1$ 38971 38969(161) $p_0 = 2$ 38909 38902(160)	$\begin{array}{c} p_0 = 0 & 38998 & 39004(162) \\ p_0 = 1 & 38936 & \\ p_0 = 2 & 38874 & \end{array}$	
$c_1 p' - p_0 = 2 q' - q'$	$-q_0 = 1$ $r' - r_0 = 0$	
$q_0 = 0$ ber. beob.	$q_0 = \mathbf{I}$ ber. beob.	
₽ ₀ =0 39538 39539(170)	$p_0 = 0$ 39503 39500(169)	
$D_1 \not t' - \not p_0 = 3 q'$	$-q_0 = 0  r' - r_0 = 0$	
$q_0 = 0$ ber. beob.	$q_0 = 1$ ber. beob.	
₽₀=0 39976 39983(175)	₽₀=0 3994I	

$A_2$ -Serie
$p = 37902 + 943(p'-p_0) - 62p_0 + 505(q'-q_0) - 35q_0 + 230(r'-r_0)$

$A_2 p' - p_0 = 0 q' - q_0 = 0 r' - r_0 = 0$	$b_2 p' - p_0 = \mathbf{I}  q' - q_0 = \mathbf{I}  r' - r_0 = \mathbf{O}$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p_0 = 0$ 39350 39375(168) $p_0 = 0$ 39315
$a_2 t' - t_0 = 0 q' - q_0 = 1 r' - r_0 = 0$	$C_2 \not t' - p_0 = 2  q' - q_0 = 0  r' - r_0 = 0$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0$ 38407 38406(144) $p_0 = 0$ 38372 38382(142) $p_0 = 1$ 38345 38354(141) $p_0 = 1$ 38310	$f_0 = 0.39788.39797(174)$ $f_0 = 0.39753$
$\frac{a_2' \ t' - t_0 = 0 \ q' - q_0 = 0 \ r' - r_0 = -1}{a_2' \ t' - t_0 = 0 \ q' - q_0 = 0 \ r' - r_0 = -1}$	$c_2 \not t' - f_0 = 2  q' - q_0 = 1  r' - r_0 = 0$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = I$ ber. beob.
$p_0 = 0.37672.37671(110)$ $p_0 = 0.37637.37629(108)$	$r_0 = 0 40293 40306(177) p_0 = 0 40258$
$B_2  t' - t_0 = \mathbf{I}  q' - q_0 = 0  r' - r_0 = 0$	$D_2 t' - t_0 = 3 q' - q_0 = 0 r' - r_0 = 0$
$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0$ 38845 38837(158) $p_0 = 0$ 38810 38828(157)	$p_0 = 0 40731 40737(178) p_0 = 0 40696$

۰.

Die experimentalen Daten für Kapitel IV

#### Tabelle 15.

Liste der Absorptionsbanden des o-Toluidins.

					Bea	nerk	ungen							Ber	nerk	ungen	
Nr.	λ	ν	Inten- sität	Þ	'-\$0	₽₀	$q' - q_0$	90	Nr	. v	λ	Inten- sität	ľ	′ <i>−</i> ₽₀	Í.	$q'-q_0$	90
I	2940.4	33999							36	49. <b>I</b>	89			I	3	— I	ο
2	38.0	34027							37	3.6	156			I	2	— I	0
3	4.6	66			0	3	— I	I	38	37.0	238	I		I	I	- I	ο
4	1.1	107							39	4.4	70	I		I	0	-1	I
5	27.7	47			0	3	— I	0	40	2.6	93	9					
6	4.9	79			0	2	— I	I	41	1.7	304	9	<i>b</i> 0	I	0	— I	0
7	1.2	223			0	I	I	I	42	27.2	60	0		I	3	0	0
ð	18.1	59			0	I	— I	0	43	1.5	432			I	2	0	0
_9	5.5	89							44	19.0	63	5		I	I	0	I
10	4.7	99			0	0	— I	I	45	6.1	500	10		I	0	0	0
11	2.3	327	3	$a_0$	0	0	— I	0	46	3.9	27	6	5	I	0	ο	I
12	08.3	74			0	3	0	I	47	1.1	63	10	$B_0$	I	0	0	0
13	0.0				0	3	0	0	48	05.7	631			I	2	I	0
14	3.0	430			0	2	0	1	49	2.9	67			I	I	I	I
15	0.9	02			0	2	0	0	50	0.1	703			I	I	- I	0
16	2897.6	501			0	I	о	I	51	2797.4	37			I	0	— I	I
17	6.5	14							52	4.5	74	7	<i>b</i> ₁	I	0	— I	0
18	4.5	38	8		о	I	0	0	53	3.0	93			I	3	0	I
19	1.9	69	8		0	0	о	I	54	87.4	865			I	2	0	I
20	88.9	605	9	$A_0$	0	0	0	0	55	4.6	901			1	2	0	0
21	5.9	41	I		0	2	-1	I	56	79.1	72	6		I	Í	0	0
22	3.7	68	2		0	2	— I	0	57	6.8	36002	6	_	I	0	0	I
23	0.8	702	0		0	I	I	I	58	3.9	40	8	$B_1$	I	0	0	0
24	79.3	21	0		0	1	— I	0	59	61.3	204	0					
25	4.0	85	0		0	0	I	I	60	58.9	36	2					
26	1.8	811	2	$a_1$	0	0	I	0	61	5.9	75	4	c ₀	2	0	— I	о
27	0.9	22	0		0	3	0	I	62	41.7	463						
28	68.6	50			0	3	0	0	63	30.9	607						
29	4.8	96			0	2	0	I	64	26.6	65			2	I	-1	ο
30	1.9	932	2		0	2	0	0	65	0.9	742	2	<i>c</i> ₁	2	0	I	0
31	58.6	72			0	I	ο	I	66	2699.0	37040						
32	5.5	35010	8		0	I	ο	0	67	80.0	302						
33	3.0	41	8		0	0	0	I									
34	2.0	53	9														
35	0.6	70	ю	$A_1$	0	ο	0	0									

Tabelle 16.

Vergleich der berechneten und der beobachteten Wellenzahlen

der Bandkanten des o-Toluidinspektrums.

		•
<b>/</b>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
- A.		1 100
III	· ~ ~	110

$A_0 t' - t_0 = 0 q' - q_0 = 0$	$B_0 \qquad p'-p_0=1 \qquad q'-q_0=0$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = I$ ber. beob.
$\begin{array}{c ccccc} p_0 = 0 & 34605 & 34605(20) \\ p_0 = 1 & 34537 & 34538(18) \\ p_0 = 2 & 34469 & 34462(15) \\ p_0 = 3 & 34401 & 34394(13) \end{array} \begin{array}{c} p_0 = 0 & 34569 & 34569(19) \\ p_0 = 1 & 34501 & 34501(16) \\ p_0 = 2 & 34433 & 34430(14) \\ p_0 = 3 & 34365 & 34474(12) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$a_0 t' - t_0 = 0 q' - q_0 = -1$	$b_0  p'-p_0 = \mathbf{I}  q'-q_0 = -\mathbf{I}$
$q_0=0$ ber. beob. $q_0=1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$\begin{array}{cccccc} p_0 = 0 & 34337 & 34327(11) \\ p_0 = 1 & 34269 & 34259(8) \\ p_0 = 2 & 34201 & & & & & & \\ p_0 = 2 & 34201 & & & & & & & & \\ p_0 = 3 & 34133 & 35147(5) & & & & & & & & & & & & \\ p_0 = 3 & 34097 & 34107(4) & & & & & & & & & & & \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

# $\nu = 34605 + 965(p' - p_0) - 68p_0 + 268(q' - q_0) - 36q_0$

# $A_1$ -Serie $\nu = 35070 + 970(p' - p_0) - 68p_0 + 262(q' - q_0) - 36q_0$

 $l_1$ 

 $q_0 = \mathbf{0}$  ber.

f'−¢₀=1

beob.

1 1	20-0 2	$-q_0 =$	0
$q_0 = 0$ ber. bec	b. $q_0 = \mathbf{I}$	ber.	beob.
$p_0 = 0 35070 35070$ $p_0 = 1 35002 35010$ $p_0 = 2 34934 34932$ $p_0 = 3 34866 34850$	$\begin{array}{c c} p_{(35)} & p_{0} = 0 \\ p_{(32)} & p_{0} = 1 \\ p_{(30)} & p_{0} = 2 \\ p_{(28)} & p_{0} = 3 \end{array}$	35034 34966 34898 34830	35041(33) 34972(31) 34896(29) 34822(27)

$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	35778 35710 35642	35774(52) 35703(50) 35631(48)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	35742 35674 35606	35737(51) 35667(49)
	<i>c</i> ₁	$p' - p_0 = 2$	q <b>'</b> -	-q ₀ =-	I
<i>q</i> ₀ =0	ber.	beob.	<i>q</i> ₀ =1	ber.	beob.
$p_0 = 0$ $p_0 = 1$	36748 36680	36742(65) 36665(64)	$\begin{array}{c} f_0 = 0\\ p_0 = 1 \end{array}$	36712 36644	

 $q' - q_0 = -1$ 

beob.

 $q_0 = \mathbf{I}$  ber.

$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	35070 35002 34934 34866	35070(35) 35010(32) 34932(30) 34850(28)	$f_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	35034 34966 34898 34830	35041(33) 34972(31) 34896(29) 34822(27)
	<i>a</i> ₁	<i>⊉</i> ′− <i>p</i> ₀=0	q <b>'</b> -	- <i>q</i> ₀ =-	- 1
<i>q</i> 0=0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p_0 = 0$ 34772 $p_0 = 1$ 34704 $p_0 = 2$ 34636	34785(25 34702(23 34641{21

 $B_1$  $q'-q_0=0$  $-p_0 = I$ 

<i>q</i> ₀ =0	ber.	beob.	$q_0 = \mathbf{I}$	ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	36040 35972 35904 35836	36040(58) 35972(56) 35901(55)	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	36004 35936 35868 35800	36002(57) 35865(54) 35793(53)

#### Tabelle 17.

### Liste der Absorptionsbanden des m-Toluidins.

			_		Ber	nerk	ungen							Ber	nerk	ungen	
Nr	. λ	ν	Inten- sität	Þ	′ <i>−</i> ₽₀	P ₀	$q' - q_0$	90	N	. λ	ν	Inten- sität	P	′ <i>−</i> ₽₀	Po	q'-q0	90
I	2961.6	33756			0	I·	— I	0	21	0.2	90	9	$A_1$	0	0	0	ο
2	58.7	89			0	0	— I	I	22	84.6	657			I	2	— I	0
3	5.8	822	5	$a_0$	0	0	I	0	23	1.8	90			I	I	I	I
4	2.4	61			0	3	0	1	24	79.0	724			I	I	— I	ο
5	48.7	903			0	3	0	0	25	6.3	57			I	0	I	I
6	6.0	34			o	2	ο	I	26	3.6	89.	5	$b_0$	I	0	— I	0
7	3.2	67			0	2	0	о	27	67.7	861			I	2	0	I
8	ŏ.5	98			0	1	0	I	28	1.8	933	3		I	2	0	0
9	37.5	34033	7		0	I	0	0	29	58.9	68	о		I	I	0	1
Ιó	4.2	71	9		0	0	0	I	30	6.3	35000	9		I	I	0	Q
									31	3.2	38	9		I	0	0	I
11	1.4	103	9	A ₀	0	0	0	0	32	ō.6	70	IO	$B_0$	I	0	0	ο
12	25.0	71			0	2	1	0	33	40. I	200		•	I	1	- I	ο
13	19.3	245	I		0	I	- I	0	34	34.9	64	3	6	I	0	I	ο
14	0.2	81	2		0	0	-1	I	35	29.0	338		-	I	3	0	ο
15	3.2	316	2	$a_1$	0	0	I	0		-					-		
									36	2.7	417			I	2	0	0
16	07.5	84	0		0	3	0	0	37	0.3	47			I	I	0	I
17	1.2	- 458			0	2	0	0	38	17.8	78			I	I	0	0
18	2898.8	87			0	I	0	I	39	4.9	515		-	I	0	0	I
19	5.6	525	8		0	I	ο	0	40	2.4	46	9	$B_1$	I	0	0	0
20	2.9	57	2		0	0	0	1	41	2774.9	36027	3	$C_0$	2	о	0	ο

### Tabelle 18.

Vergleich der berechneten und der beobachteten Wellenzahlen der Bandkanten des m-Toluidinspektrums.

$A_0 p' - p_0 = 0 q' - q_0 = 0$	$B_0  p'-p_0=\mathbf{I}  q'-q_0=0$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} p_0 = 0 & 35965 & 35979(32) \\ p_0 = 1 & 34997 & 35000(30) \\ p_0 = 2 & 34929 & 34933(28) \end{array} \begin{array}{c} p_0 = 0 & 35031 & 35038(31) \\ p_0 = 1 & 34963 & 34968(29) \\ p_0 = 2 & 34929 & 34933(28) \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$b_0  p'-r_0=1  q'-q_0=-1$
$a_0 \qquad p'-p_0=0 \qquad q'-q_0=-1$	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$p_0 = 0$ 33757 33756 (1) $p_0 = 0$ 33791 33789 (2) $p_0 = 1$ 33757 33756 (1) $p_0 = 1$ 33723	$C_0 p' - p_0 = 2 q' - q_0 = 0$
	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
	$p_0 = 0$ 36027 36027(41) $p_0 = 0$ 35993

 $A_0$ -Serie  $\nu = 34103 + 962(p'-p_0) - 68p_0 + 278(q'-q_0) - 34q_0$ 

$\nu = 34590 + 956('p - p_0) - 68p_0 + 278(q' - q_0) - 34q_0$									
$A_1 p' - p_0 = 0 q' - q_0 = 0$	$B_1  p'-p_0=1  q'-q_0=0$								
$q_0 = 0$ ber. b ob. $q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.								
$ \begin{array}{cccccc} p_0 = 0 & 34590 & 34590(21) \\ p_0 = 1 & 34522 & 34525(19) \\ p_0 = 2 & 34454 & 34458(17) \\ q_0 = 3 & 34386 & 34384(16) \end{array}  \begin{array}{c} p_0 = 0 & 34556 & 34557(20) \\ p_0 = 1 & 34488 & 34487(18) \\ p_0 = 2 & 34420 & \\ p_0 = 3 & 34352 & \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$a_1 \not p' - p_0 = 0  q' - q_0 = -1$	$b_1  p' - p_0 = \mathbf{I}  q' - q_0 = -\mathbf{I}$								
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. be b. $q_0 = 1$ ber. be b.								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								

 $A_1$ -Serie 34590+956( $'p-p_0$ )-68 $p_0$ +278( $q'-q_0$ )-34.

# Tabelle 19.

Liste der Absorptionsbanden des p-Toluidins

					Bei	nerk	ungen							Ber	nerk	ungen	
Nr	. λ	ν	Inten- sität	P	'-1'0	P ₀	$q'-q_0$	90	Nr.	λ	ν	Inten- sität	p	'-\$0	\$P0	$q' - q_0$	90
I	3079.5	32463	о	$a_1$	Ο.	0	1	0	30	69.0	72			r	3	0	0
2	<b>6</b> 9.1	574			0	2	0	0						-	~	~	~
3	4.4	623			0	I	0	0	31	4.4	724			1	2	0	
4	0.3	67	2	$A_1$	0	0	0	0	32	1.7	55			1	1	0	1
5	44.5	837			I	I	— I	о	33	0.2	72			1	1	0	0
	-			,					34	56.3	810	9	$B_0$	I	0	0	0
6	0.0	85		$b_1$	I	0	I	0	35	1.6	70			3	1	0	0
7	34.9	940			1	3	0	0	26	10.6	0.7				•	0	
8	2.I	71			1	2	0	I	30	49.0	93	•	מ	3	~	0	
-9	29.9	95			1	2	0	0	37	7.5	917	2	$\mathcal{D}_{1}$	3	0		0
10	6.3	33034			1	I	0	ο	30	30.0	34020		<i>c</i> ₀	2	0	1	0
	- 0				_	~			39	29.3	128			2	2	0	0
11	2.8	72		n	1	0	0	I	40	0.2	64			2	1	0	1
12	1.0	92	5	$B_1$	I	0	0	0	41	4.4	85			2	т	0	0
13	14.6	162			0	0	— I	1	41	4.4	207			2		õ	ř
14	2.4	86	<b>O</b>	$a_0$	0	0	- I	0	42	2.5	207	10	C	2	0	0	
15	05.9	258			0	3	0	0	43		51	10	0.0	2	0	U	v
•6					~	~	~	~	44	10.7	52				-	~	~
10	1.9	303			0	2	U,	0	45	4.0	300			4	1	0	0
17	2999.5	29			0	1	0	1	46	2.8	21			4	0	0	T
18	7.9	47			0	1	0	0	40	0.8	45	6	F.	Ā	õ	õ	Â
19	5.1	78		,	0	0	0	I	47	07.1	88	v	~1	4	Ŭ	Ŭ,	Ŭ
20	3.4	97	7	$A_0$	0	0	0	0	40	2806 T	510			2	2	0	~
	888	440			2	×	0	T	49	2090.1	519			3	3	õ	Š
21	00.0	449			2	1	0		50	2.3	04			3	4	U	U
22	7.1	00			2	1	0		51	88.5	610			3	I	0	0
23	5.2	- 09	_	c	2	0	0	1	52	4.6	57	10	$D_{\circ}$	3	0	o	ō
24	3.1	512	5	$c_1$	2	U	0	0	52	1.2	08		0	š	τ	ō	T
25	1.8	27							55	77 4	742			5	ō	õ	ĩ
26	78.5	64			т	т	— T	0	54	5.0	62	5	F.	5	0	õ	Ô
27	10.5	610		b.	r r	ō	-1	ő	55	3.9	02	5	- 1	5		5	Ĵ
28	4·4 2 I	25	Ū	. 0	ř	4		ň	56	3.6	89						
20	0.8	~ ) 5 T			Ť.	4	0	T	·	•	-						
~9	0.0				÷			*									

## Tabelle 20.

Vergleich der berechneten und der beobachteten Wellenzahlen der Bandkanten des p-Toluidinspektrums.

 $A_0$ -Serie

$A_0  p'-p_0=0  q'-q_0=0$	$b_0 \qquad t' - t_0 = \mathbf{I} \qquad q' - q_0 = -\mathbf{I}$
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$p_0 = 2 33301 33303(10) p_0 = 2 33273 p_0 = 3 33253 33258(15) p_0 = 3 33230$	$C_0 p' - p_0 = 2 q' - q_0 = 0$
$a_0  p'-p_0=0  q'-q_0=-1$	$q_0 = \mathbf{o}$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$p_0 = 0$ 33188 33186(14) $p_0 = 0$ 33165 33162(13)	$\frac{c_1  p' - p_0 = 2  q' - q_0 = -1}{c_1  p' - p_0 = 2  q' - q_0 = -1}$
$B_0  p'-p_0=1  q'-q_0=0$	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$q_0 = 0$ ber. beob. $\dot{q}_0 = 1$ ber. beob.	$p_0 = 0$ 34028 34020(38) $p_0 = 0$ 34005
$\phi_{2} = 0.22817.33816(24)$ $\phi_{2} = 0.33704$	$D_0 \not t' - t_0 = 3  q' - q_0 = 0$
$p_0 = 1$ 33769 33772(33) $p_0 = 1$ 33746 33755(32) $p_0 = 2$ 33721 33724(31) $p_0 = 2$ 33698	$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$p_0 = 2$ 35561 35564(50) $p_0 = 2$ 35538

 $A_1$ -Serie

$\nu = 32007 + 420(\nu = \nu_0) + 40\nu_0 + 204(9 - 90) - 239$
----------------------------------------------------------------

$A_1 p' - p_0 = 0 q' - q_0 = 0$	$B_1  p' - p_0 = \mathbf{I}  q' - q_0 = 0$
$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$a_1  p' - p_0 = 0  q' - q_0 = -1$	$b_1  p' - p_0 = \mathbf{I}  q' - q_0 = -\mathbf{I}$
$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = \mathbf{I}$ ber. beob.
$p_0 = 0$ 32463 32463 (I) $p_0 = 0$ 32440	$\begin{array}{c} p_0 = 0 & 32883 & 32885 & (6) \\ p_0 = 1 & 32835 & 32837 & (5) \\ \end{array} \begin{array}{c} p_0 = 0 & 32860 & \\ p_0 = 1 & 32812 & \\ \end{array}$

$C_1  p' - p_0 = 2  q' - q_0 = 0$	$E_1  p'-p_0=4  q'-q_0=0$					
$q_0 = 0$ ber. beob. $q_0 = 1$ ber. beob.	$q_0 = 0$ ber. beob. $q_0 = I$ ber. beob.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$D_1  t'-t_0=3  q'-q_0=0$	$F_1  p'-p_0=5  q'-q_0=0$					
$q_0=0$ ber. beob. $q_0=1$ ber. beob.	$q_0 = 0$ ber, beob. $q_0 = I$ ber, boob.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

#### Tabelle 21.

Liste der Absorptionsbanden des o-Anisidinspektrums

Bemerkungen										Bemerkungen					
Nr.	λ	v	p	'-p0	Po	9'-90	90	Nr.	λ	v	p	′-₽₀	Po	9'-90	90
I	2969.6	33665	$a_0$	0	о	— I	I	13	4.4	302		0	Ι	0	0
2	2.3	748		0	4	0	0	14	1.5	37	$A_1$	0	0	0	0
3	59.9	75		0	3	0	0	15	07.6	83	$b_0$	I	0	- I	1
4	6.7	812		0	2	0	0	-	-0						
5	3.3	51		0	I	o	0	10	2893.5 89.6	550 97 ·	Bo	I	о	ο	I
6	0.4	84	$A_0$	0	о	0	0	18	79.3	721	b1	I	0	- 1	I
7	46.6	928	v	ο	2	— I	0	19	0.4	828	-				
8	2.6	74		0	I	— I	ο	20	58.2	977		I	2	0	I
9	0.1	34003	a	ο	ο	— I	0		- 			_	_ `	-	
IO	26.5	161	-					21	5.4	35011	-	1	1	0	T
	5							22	2.4	48	$B_1$	I	0	0	I
11	1.0	225		I	3	0	ο	23	30.8	315	$C_0^-$	2	0	0	0
12	17.7	64		1	2	0	0	24	2797.0	742	$C_1$	2	ο	0	ο

#### Tabelle 22.

### Vergleich der berechneten und der beobachteten Wellenzahlen

der Bandkanten des o-Anisidinspektrums.

A₀-Serie

A ₀ 1	$p' - p_0 = 0$	$q'-q_0=0$	a ₀ #	′- <i>‡</i> ₀=0	$q'-q_0 = -1$	b ₀ f'	$-p_0 = \mathbf{I}$	$q' - q_0 = -1$
	ber.	beob.		ber.	beob.	<b></b>	ber.	beob.
$p_0 = 0$	33884	33884 (6)	<i>∲</i> ₀=0	33667	33665 (1)	¢0=0	34381	34383 (15)
$p_0 = 1$ $p_0 = 2$ $p_0 = 2$	33940 33808 33770	33812(4) 33812(4)	B ₀ 1	$p_0 = I$	$q'-q_0=0$	$C_0 \neq$	$p_0 = 2$	$q'-q_0=0$
$p_0 = 3$ $p_0 = 4$	33732	33748 (2)	· · · · · · · · · · · · · · · · · · ·	ber.	beob.		ber.	beob.
			$p_0 = 0$ $p_0 = 1$	34598 34560	34597 (17) 34550 (16)	<i>†</i> ₀=0	35312	35315 (23)

 $\nu = 33884 + 714(p'-p_0) - 38p_0 + 217(q'-q_0)$ 

$A_1$	<i>p</i> ′− <i>p</i> ₀=0	$q' - q_0 = 0$	$B_1$	𝒅−≠₀=1	$q'-q_0=0$
	ber.	beob.		ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$ $p_0 = 3$	34337 34299 34261 34223	$\begin{array}{c} 34337 & (14) \\ 34302 & (13) \\ 34264 & (12) \\ 34225 & (11) \end{array}$	$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	35048 35010 34972	35048 (22) 35011 (21) 34977 (20)
<i>a</i> ₁	$t' - t_0 = 0$	$q'-q_0 = -\mathbf{I}$	<i>b</i> ₁	$\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$q' - q_0 = -1$
	ber.	beob.		ber.	beob.
$p_0 = 0$ $p_0 = 1$ $p_0 = 2$	34006 33968 33030	34003 (9) 33974 (8) 33928 (7)	∲₀=0	34717	34721 (18)

 $A_1$ -Serie  $\nu = 34337 + 711(p' - p_0) - 38p_0 + 331(q' - q_0)$ 

Ta	belle	23
----	-------	----

Liste der Absorptionsbanden des p-Anisidin

			Bemerk	ungen				Bemer	kungen
				$\overline{p'-p_0}$					p-fo
1 2 3 4	3164.6 37·4 23.9 3096.5	31590 864 32002 285	$\begin{array}{c}A_1\\A_0\\B_1\\B_0\end{array}$		6 7 8 9	56.4 17.9 2980.9 41.5	709 33126 537 986	$ \begin{array}{c} C_0 \\ D_0 \\ E_0 \\ F_0 \end{array} $	2 3 4 5
5	83.9	417	$\mathcal{C}_1$	2	10	04.1	34424	$G_0$	6



Vergleich der berechneten und der beobachteten Wellenzahlen der Bandkanten des p-Anisidinspektrums.

$\nu = 318$	A ₀ -Serie 64+420(	p'-p ₀ )		$A_1$ -Serie $\nu = 31590 + 413(p'-p_0)$						
	ber.	beob.				ber.	beob.			
$\begin{array}{cccc} A_{0} & t' - t_{0} = 0 \\ B_{0} & 1 \\ C_{0} & 2 \\ D_{0} & 3 \\ E_{0} & 4 \\ F_{0} & 5 \\ G_{0} & 6 \end{array}$	31864 32284 32704 33124 33544 33964 34384	31864 32285 32709 33126 33537 33986 34424	(2) (4) (6) (7) (8) (9) (10)	$\begin{array}{c} \mathcal{A}_1\\ \mathcal{B}_1\\ \mathcal{C}_1 \end{array}$	$t'-t_0=0$ I 2	31590 32003 32416	31590 32002 32417	(1) (3) (5)		

Nachstehend ist über die Art der Reinigung und über die Kennzeichen der verwendeten Versuchsmaterien Bericht gegeben.

Styrol: Das Kahlbaumsche Präparat wurde noch mehreremal im Vakuum abdestilliert.

Siedep. (10 mm Hg) = 35°C Siedep. (gewöhnl. Atmosph) = 140°.C  
$$n_D^{25.4°} = 1.5411$$

Da die Substanz durch Stehenlassen, besonders unter Belichtung leicht veränderlich ist, so wurde nur die frisch abdestillierte Probe jedesmal zum Photographieren verwendet.

Phenylazetylen: Das Präparat wurde nach Nef (A. 308, 268) und Straus (A. 387, 279) nach dem folgenden Schema aus Zimmtsäure hergestellt.

$$C_6H_5 - CH = CH - CO_2H \rightarrow C_6H_5 - CHBr - CHBr - CO_2H \rightarrow C_6H_5 - CH = CHBr \rightarrow C_6H_5 - CE = CH$$

Die Probe wurde von dem zugleich entstehenden Phenylvinyläthyläther durch Fraktionierung genügend getrennt, getrocknet und noch drei Mal im Vakuum abdestilliert. Zum Photographieren wurde jedesmal die frische Probe verwendet.

Siedep. 
$$_{14 \text{ mm Hg}} = 45^{\circ}\text{C}$$
 Siedep.  $_{(755.8 \text{ mm Hg})} = 140.5^{\circ}\text{C}$   
 $n_D^{22,1^{\circ}} = 1.5478$   $n_D^{25,1^{\circ}} = 1.5459$ 

Äthylbenzol: Das Kahlbaumsche Präparat "reinst" wurde nochmals fraktioniert.

Siedep. =  $I_{36}^{\circ}C$  $n_D^{20.6^{\circ}} = I_{4955}$ 

$$= 1.4955 \qquad n_D^{26.5^{\circ}} = 1.4924$$

Anilin: Das Kahlbaumsche Präparat "für Molekulargewichtsbestimmung" wurde bei gewöhnlichem Druck fraktioniert und nochmals im Vakuum abdestilliert.

Siedep. =  $185^{\circ}$ C  $n_D^{23,5^{\circ}} = 1.5825$ 

Phenol: Das Kahlbaumsche Präparat "für Molekulargewichtsbestimmung" wurde verwendet.

Anisol: Das Kahlbaumsche Präparat wurde zweimal fraktioniert.

Siedep. = 
$$154^{\circ}$$
C  $n_D^{22.0^{\circ}} = 1.5148$ 

o-Toluidin: Das Kahlbaumsche Präparat "für wissenschaftliche Zwecke" wurde beim gewöhnlichen Druck fraktioniert und nochmals im Vakuum abdestilliert.

Siedep. = 196°C 
$$n_D^{239} = 1.5684$$

m-Toluidin: Das Kahlbaumsche Präparat "reinst" wurde fraktioniert und nochmals im Vakuum abdestilliert.

Siedep. = 
$$201^{\circ}$$
C  $n_D^{23\circ C} = 1.5631$ 

p-Toluidin: Das Kahlbaumsche Präparat "für wissenschaftliche Zwecke" wurde nochmals aus Alkohol umkristallisiert.

Schmp.=45°C

o-Anisidin: Das Kahlbaumsche l'räparat wurde fraktioniert und nochmals im Vakuum abdestilliert.

Siedep. = 
$$217^{\circ}$$
C  $n_D^{22.5^{\circ}} = 1.5720$ 

p-Anisidin: Das Kahlbaumsche Präparat wurde aus Alkohol umkristallisiert.

Schmp. = 58°C
## Masao Horio.

Die vorliegende Arbeit wurde von Frühling 1929 bis August 1931 in dem Chemisch-Technischen Institut und in dem Physikalisch-Optischen Institut der Kaiserl. Universität Kioto ausgeführt.

Meinem verehrten Lehrer, Herrn Prof. Dr. I. Fukushima, auf dessen Anregung und Anleitung hin die Arbeit ausgeführt worden ist, bin ich für seine wertvollen Ratschläge sowie für sein stetes Interesse zu besonderem Dank verpflichtet.

Herrn Prof. Dr. M. Kimura möchte ich bei dieser Gelegenheit für seine zahlreichen Ratschläge und seine freundliche Einführung in die Arbeitsmethoden sowie dafür, dass er mir erlaubte, im Physikalischen Institut meine Versuche auszuführen, meinen herzlichen Dank aussprechen.

Danken möchte ich auch Herrn Dr. M. Miyanishi, Privatdozent am Physikalischen Institut, der mir bei der Untersuchung ein erfahrener und stets freundlicher Ratgeber war.

248



Photo. 2. Absorptionsspektrum des Phenylazetylendampfes





Photo. 4. Absorptionsspektrum des Anilindampfes



Photo, 6 Absorptionsspektrum des Anisoldampfes



Photo. 7. Absorptionsspektrum des o-Toluidindampfes



Photo. 8. Absorptionsspektrum des m-Toluidindampfes



Photo. 9. Absorptionsspektrum des p-Toluidindampfes