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Analytical Investigation of Electrical Transient
Phenomena in Transmission Line Circuit.

By

Shigenori Hayashi.

INTRODUCTION.

The general methods of investigating transient phenomena in a trans-
mission line terminated -by impedances at both eénds, have been studied
persistently by many authorities, yet with unsuccessful results, though some
special cases have been dealt with successfully, and many brilliant results
have been obtained. For instance, surge propagation phenomena along an
infinitely long line with four distributed constants, resistance &, inductance
L, leakance (, and electrostatic capacity C per‘ unit length of the line,
have been discussed * by several authors. But when the terminal condition
of the line come into play, or which is the same thing, when the line is
of finite length, we are at a loss how to solve the question generally.
When the dissipation constants of the line, R and G, are zero, what is
called “I)’Alumbert’s method”, by means of which Hé obtained many
important results, is convenient. But this method is only effective when
reflected waves are excluded. And in the case of Z and G being neglect-
ed, the results already obtained for heat conduction phenomena are directly
applicable. Wagner® proposes a method of discussing the transient pheno-
mena in a line of finite length, with impedances at its terminals, and finds

the solutions in infinite series, but his method is not general, and only a

1. The so-called Riemann’s method is usually applied. We find this method in Riemann—
Weber’'s « Die Partiellen Differentialgleichungen Bd. 27, or in Goursat’s « Cours d’Analyse
mathematique Tome 3. _

2. WBAMS; REENREE.

3. K. W. Wagner, Electromagnetische Ausgleichsvorginge in Freileitungen und Kabeln, or
J. Biermanns, Arch. f. Elek. 1916, p. 211.



192 Shigenori Hayashi.

few cases are dealt with thereby. Though Heaviside's expansion theorem
proves itself more general, yet it is also inconvenient in the study of these
kinds of phenomena, and numerical calculation of results often becomes
impossible. Indeed, when the constants R, Z, G and C as well as the
terminal conditions of the line are taken into consideration, we shall find
it so difficult and so complicated to treat transient phenomena therein that
there is hardly any other method of solution than that proposed by
Heaviside, known as “ Operational Calculus.”* But this method is too
difficult for us to comprehend.

In course of an analytical study of Heaviside's operational calculus,
the author tried to understand the mathematical meaning of the calculus
and to modify its original form as given by Heaviside so as to make it
more convenient for practical use. For this purpose, the author investigated
transient phenomena in a finitely long transmission line terminated by im-
pedances, taking four constants R, L, G and C into consideration and
obtained some results which seem more generally applicable. than those
derived from any of the other methods mentioned above. The author has
succeeded in solving some problems left untouched by Heaviside. He
wishes to add that the present paper serves to a certain extent, to give
the analytical explanation of the operational calculus, and at the same
time, that the present results may serve to solve other physical problems
such as the conduction of heat, the propagation of sound and of electroma-
gnetic waves in space etc. also.

The present paper deals with transient phenomena in a line with the
e.nf. B2 applied at one terminal since #=o0, assuming that the initial

potential and current distributions are zero along the whole circuit.

1. FUNDAMENTAL FORMULAS.

The author’s results are as follows :—
The potential v and the current i at the instant t and at the point x on

the transmission line shown in fig. 1, due to the ean.f. Ee~ applied since

1. O. Heaviside, Electromagnetic Theory Vol. 2 & 3.



Analytical Investigation of Electrical Tvansient Phenomena elc. 193

t=0, at which time the curvent and potential in the circuit were identically

zero, are given by the following formulas -— Fig. 1

4 ¢

7=0 for 1 <x/g, \ = v

| __ ¥

ﬁ.i’0+7’1+ﬂg+ 7/3'*" """"" +Zl°nz

2(m+1)l—x 2ml+x

r4 g

for

=7, + o + 9 + Vg + ......... -*— 7j2m+1

for 2(m+1)l+x >t> 2(m+1)i—x ,

g g L

=0 for ¢<x/g,
=ttt gt + 2,

for 2(m+1)l—x 2mi+ x

o
8 &

=z.0+2.1+7.2+1.3+ """"" +Z‘2m+1'

2(m+1)/+x

for >i>

2(m+1)l—x

S

b

where

Vom =

E E-—q(zml+x)+[t . \
znjj( Py

K)

SSo S dp,

(p+20)

. _ E e—g{z(w+1)/—-.r} +p¢
o1 = 271,].
(K)

S/ dp,

Loy =

E e—g(z'nl+x) +7¢
2ny j (p+20)2

(K)

Sl /" dp,

o=

E e —7{2(m+1)I—a}+2¢
27y j (2+20)z

(K)

where the path of integration K is any closed curve which contains all the
singular points of eackh integrand, and the symbol (K) means that the integra-

tion should be done along this curve in a positive sense, and
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].= \/——[ y
=0, I, 2, 3,0cic00... ,

l=the total length of the line,

g=Zo™t,
e=the base of natural logarithum,
f==2) =2+ E+2) b (3)

Si=5/(z+2Z),
Jo=(s "'Z‘.')/("”"‘ZQ),

concentrated genetalized
impedances’ at both ends,

e= TP ERNCIT O,
g=~(Lp+R)(Cp+G),

Ly Ly=

where R, L, G and C are distributed constants of the line, resistance, izzdthla7zce,
leakage and capacity per unit lengtlh rvespectively, and the determination of the

radical sign is laken so as lo be positive when the argument of p is zero.,

2. PROOF OF THE ABOVE FORMULAS.

We suppose that the current flows in the positive direction of x, and
that the line is energized by the e.m.f. Ee=7 applied at x=o0 through the -
" concentrated impedance Z; since £=0, the other terminal being closed by
another impedance 4, as is indicated in fig. 1. The differential equa-

tions of the current 7z and the potential z are

Qv _ 0 e
ox oz
g R R (4)
P =97 Pl
-3 —c 3 46n

1. Let z» and 4 be the potential and current at a terminal of a transmission line, and
assume that the current flows from the line into the impedance which connects the line and the
earth, then we shall have the following differential equation.

A ( %) iy =v,.

a by the letter A, and we call Z(p) the generalized terminal

Replace the differential operator v

impedance of the line.
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We shall solve these fundamental equations under the initial conditions

=0
s (s5)
=0 at /=0,

everywhere in the circuit.

The solutions are found by substituting the contour integrals

in equations (4) where » and /7 are certain functions of p to be
determined by the initial and the terminal conditions of the line, and the
path of integration (K) is a closed curve in the p-plane which encloses all
the poles of these functions V' and I

Then by condition (5), the equations for V and 7 will be

av
I =(Lp+R) ],
é’j . s S )
Hence we obtain
V=.A cosh ¢x + B sinh ¢z,
..................... (8)

J=— L Asiri x+ B cosh gx),
pe g q

where 4 and B are integration constants to be determined by the terminal

conditions of the line, and

g=v(Lp+ R)(Cp+G), } ©)
............................. 9
z=V(Lp+R)/(Cp+G),
and the determination of the radical sign s taken so t/zat} (10)
......... 10
it is positive when the arguinent of p is zero.

At the terminals the following relatjons hold,
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or by equation (5), the substitution of (6) in (11) gives the following':

E
Va:: +Z ]z= =
o4 2) L 2E2 b (12)
Vier=23(#) Lo=r-
From (8) and (12), we obtain
4= _E sinh ¢/+(Z,/2) cosh ¢/
P+ d ’
U SETTPTPPRPYY (13)
-__E cosh ¢/+ (Z,/#) sinh ¢/
2+t2 4 ’

where
Zy=2Z(p), Zo=2,(p),
A=(1+ ZZy/5*) sinh gl+(Z:/2+ Zo/) cosh g/
| =(1+Z/2) (1 + Zy/3) et — (1 — 2 /) (1 — Zy/5) e,

e —
N
—y
4
~

Substituting (13) in (8), we get

e E sinh g ({—x+(Z,/2) cosh ¢ ({—x) ’
2+2 4
] L Qe (135)
J= E cosh g ({—x)+(Z/z) sinh g ({—%)
(P+f0)z 4 Fic. 2
As the path of integration of equations J}i
(6), we take a circle ABDEA shown in fig. E P\
2 of sufficiently large radius with its origin A‘:-‘ i
at p=0. The larger the radius of the circle, i :
\
the more poles of J”and / are contained in Vi
the domain bounded by this circle. Ac- °_i
cordingly we shall consider the case where "‘f"
’ ‘. '
I
1. T.J.I’A. Bromwich, Proc. London Math. Soc. |
Series 2 Vol. 15 (1916) pp. 406-448. &
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its radius tends to ‘inﬁnity. Hereafter we divide the path ABDEA. into
two parts, namely £AB and BDE, and discuss the values of SVsﬂ dp and
Slsp d dp taken along each of these paths, where AL is a straight line
distant /% from the imaginary axis, and /% is any positive finite quantity
independent of p.

Now the functions I and 7/, given by (13), reduce to the following

forms :
b‘ Eq(‘.’l-—:z:) ___f 9%
V = 5, 2 _/1)
2+ 2 ert—f
e T 16
A g7(2~2) + fz ™ ( )
TG e N
where

F=(1=2/) (1 —Zs 3)/{(I+Zl/3)(l+Zg g)},
fmtf(+ 2, e (17)
F= (U= 2/2)/(1 = 2/,

We suppose that the generalized terminal impedances Z; and Z, consist
of concentrated electrical constants. In such a case, they are rational
functions of p, and for a sufficiently large value of |p|, they can be ex-

pressed by the form :

Z(Zy OF Z)mby ptbot-b_y p=ib by pi voemveeeen e (18)

and since z= V(Lp+R)/(Cp+ (), we have, when |p| tends to infinity,
() if & =o,
(1 —=Z/) (L + Z/)=—1+0 (L)
?
(i) i b=o0 and 40,

(a=2pfa+ 2=(y L —a)[(J L +a)+o ()

where it is easily understood, from the properties of the generalized con-
centrated impedance, that &, in this case, is a certain positive quantity,

and accordingly we have

(1—=2Z/2)/(1+ Z/2) <1,
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as | p| approaches to infinity.
(iii) If =0 and &= o, then we have
(I—Z/z)/([+Z/s)=I+O(-é—).
Hence in general, we have

(1—7 z)/(1+Zl/z)=a1+o(-;—),

........................ (19)
. . 1
(1= Zy/2) /(1 + Zo/2)=ay+0 (7)
where
o< |a| L,
} ................................................ (20)
o< ||,

unless 4;=0 and é0=~/% simultaneously.

Next, we shall consider the common denominator of equations (16)
ie. (€%—f), along the arc BDE when the radius of the circle [p| tends
to infinity.

We assume that | p| increases discontinuously owing to the rule

I nm
lm——[Vf—;’“’ .......... e (21)

where 7 is a certain integer suitably chosen, and approaches to infinity to

give | p| an infinite value. Accordingly, we can write the value of p cor-

responding to the point P (see fig. 2), as follows,

.1 nr (Z48)j
p~W—2 et e (22)

On the other hand, for sufficiently large |#|, we have from (9),

Zg=lVZ-f{f+p+o(_;T)}, ............... e, (23)

where

= ~;— (iz— + %) .................................... ........ (24)
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Hence from (22) and (23), we obtain

s I\, fnm 1 (2
lg-—A+o](p >+/{ 5 08 H+og( 5 )}, .............. (25)
where
X=— T Sin 04 pl VEIC, oo (26)

And for sufficiently large value of | #|, we have on the arc BDE,
X LIVIC (bHP) coeveioeiieeeiiiie et (27)

And from (17) and (19), we obtain -

Sf=a, a2+03( ;

where

O amae | I, v e (29)
unless &= 0 and 4,= N/'é‘" simultaneously:.
Consequently, the relations (25) and (28) give the following :

expl:z X + 20 (%) +; {;m’ cos 0+ 20, (‘%)}] —ay az—-o3<71)_) ‘

Since €* is finite along the arc BDE, when |p| tends to infinity, as is

sw—f. =

evident from (27), we may neglect, for sufficiently large | | or #, the terms
involving o, (%), 02(»;—) and o, (—}I—) in the above expression. Therefore

we have

lim
n=>co

v~ f i = ~/ {e” cos (nmcosf)-— a1a2}2 + 'Xsin®(nmwcos )

=~/a¥a§——-2alags?xcos(mtcos0)+e“"‘. veriieiennnene(30)

We choose ¢ indicated in fig. 2, so that
d=n"%
And for a sufficiently large value of #,

By= 20V LC /(). ..ot e, (32)
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Hence, for sufficiently large #,

T (33)
Therefore, if P be any point on the arc BF, then

|0 £ d=n"%
And consequently it follows that

L n3, 0L n5,........

or )
Ll s L Y A
2 2 4! T 4!
Accordingly on th arc BF,
lim cos (n cos 0)=CoS (M) .....ooeiiiiiiiiiiiiii (34)

NP 0
Therefore, on the arc BF, when n tends to infinity, we can keep
the sign of —2aya,¢ X cos (nncos ) always positive by taking n odd ; (35)

or even according as the product aja, is positive or negative.

Hence on the arc BF, the relation

ln | €% —f| Zlasaaloiniiiiiiii, (36)
i =y o

is always possible, provided # or |p| tends to infinity in the above
mentioned manner. Then it comes about that, unless ;=0 and 4,= ~/ %
simultaneously, |e™ /| is always larger than a finite quantity not equal
to zero. (See (29).) On the arc BF, the following relations hold, as |2]
or n tends to infinity :

et | e,

| o)) < ¥ L0 () (@-a),

........................... (37)
L—25/% g VIO (i) 2
’Tzﬁe Slale :

And from (18), for sufficiently large |p| or #,
A=1/(1+24/7)
= V(A X &) O OU SR berr e (38)
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where () and C; are certain finite quantities that are independent} (30)
of p, and never equal to zero simultaneously.

Hence if # be chosen so that it may satisfy the condition given by (35), we

have the following relations from equations (16), (19), (36), (37) and (38).

2| 1P+ A 7] 2
P+ 20| [e7—F] [ Al {e”‘ll 7

limn

n-yeo

SVe"‘dp Z ElimS

BF 7>

B

s _ _
eV IC(htp)2—2) + l as l eV IC(tp) =

M de.
_5, @@l [ Cip+ G :

ya ElimS

nyoo

Therefore no matter whether (; is zero or not, it follows that

lim
Ny

j Ve"‘dpl 0: e (40)

Just in the same way as above developed, we can prove that

lim
Ipi>w

where OF” subtends the same angle ¢ with the imaginary axis downwards,
and # is also so chosen that it may satisfy the condition of (33).
Next at the points  and #°, (see fig. 2),

; &P | =/ SR S ) —3 ]\

ton || =timexp [ =7 2 sin 73
—ex [_ n —”%—t] ST (42):
=P\ Twre 20

lim | e™| = x/LC) ]etc, /

nyp o

and since the absolute values of &¥, ¢ etc. on the arc FDF’ are smaller
than or equal to those at the points # and £’ when 7 tends to infinity,

we can deduce the following relation from equations (42),

lim
n=» o

FDF! n—row

¢(20—2) ' qm
[rear AzzmSE},,f‘,,ol L 4 e
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R

= 1+
Lilim\ E 2 e
Ny oo J;_ ]all(laﬁ[ilcﬂ)

I

_zmty : ¢_] 2t
xp[ 7 \x-i- «/Z_(f).’-p' LCx | xdb,
since 2/—x 2> x. The double sign of the demominator is taken so that it

is plus or minus according as C, is zero or not. Therefore we have

lim

n-yco

‘Vs”‘dp:o. ................................................... (43)

FDM

Equation (43) holds for all values of x and t including
the case where x and ¢ ave simultancously equal to sero ¢ ......... (44)

if G=ko, and excluding tie same case if Gi= o.

Hence under the restriction of (44), we have

j Verdp

FDI

lim S0, i ERTOUTU (45)

nyo

Consequently, by (40), (41) and (45), we have

lim j VePdp=0. ..... ccooiiiiiii i, e (46)
nye BFDIE ) .

By a process similar to that above developed, we can also prove that

L {1e™dPp=0. .ooevvviviiiiiiiiiiiiiiei i (47)

ade j— BFDPR

Therefore the equations (6) are reduced to the following forms :

v= L lim jVa”‘dp,
Zﬂj n-»eo

EAR
T SRR R (48)
i=_'" lim j Ie7dp,
271'] n>w §pin
where 7 is chosen in the manner stated in (33).
Substituting (15) in (48), we get finally,
E . I e~ f, en~2+a)
V= oy iz_::zo Si"*‘?o I __;‘s..yqz Jirdp,
: FAB
‘ N (49)
. E . I I LR
P o fﬁﬁs(ﬁm)z —pem A
FAB
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On the other hand, we have

[{:ﬂtf!zlaliblé[ ............................................. (50)
from (28), and

lim | e~ | £ e 2HNVICL 1 (s1)

neon

everywhere on the arc £AB. Hence the expansion of (1—fe™®*)™! in

ascending powers of fe~°%, i.e.

[+ fRe™ e (52)

converges uniformly on the arc £4B8 when » approaches to infinity.
Replace the common factor (1—f¢™*%)"! of » and ¢ in equations (49)
by the above power series, then it is possible to integrate the results term

by term. Thus we obtain

Pt
V= ! lim ¢ Si(e P —f et ([ 4 [ 4 f2e ) dp,
Lt

277 w5e
, (53)
; 1z cq(—242) -2 -
7= 27rj {Z’i_“(f'i‘f)zﬁ T eI T ([ fe 4 e ) dlp.
The general terms that appear in equations (53) are
Zz'mj Vadp or lz'mj Viedp for o,
Py EAR n=>w FAR
and o e (53)a
limj Vi dp or limj L:'? dp for 1,
o ] EAE 7w EA;
where
V”ml ﬁ m e—-(?mH-x) q+pt
2+2
Vo= Sife e EFi—z) gt oo (54)
A2 n’"

M==0, T, 2, 3pereerinrnernens .

From (23)



204 Shigenori Hayashi.

lim g= ~VILC(p+p)

Hence along the arc £4B8, we have, in the limiting case where 2 tends

to infinity,

—(2ml+ x)g+pt=p(t—2ml+ x vV LC)—p(2mi+x)VLC,

R S ({55
—-(2ml—x)q+pt=p{t—(2m+xl—x)VLC}—p(sz—x)«/LC, } 2

and £, £, /5 and z approach to a; @y, (G 2+ )™, a: and N/AC respectively
as » increases without limit. (See (29), (38), (19) and (9). )

Therefore we can easily prove that

lim \ V,adp=o0,

o Joip o
) for t—2ml+xvVLC<O .oviiiiniinins (56)

o Ve

lim ~—z—a’p=0,

7> 0
v EAR
and
lim | V,edp=0,
Ny EAR

y for t—(2m+11—x)VIC<o, ..... (57)

"

Irm *”LLQ dp= 0,

n-y»

v EAB
where

=0, I, 2, Fpeeier seeerrnrnnrins .

The line integrals Sdep and S( Vi/2) dp when t—(2mi+x)v'LC > o,
and those S V2 dp and S(-Vmg/z) dp when f— {2 (m+1) l—x} ~VIC>o0, as n
tends to infinity, approach to zero when the path is along Z£AB. Hence

if we denote these integrals by the symbol S we have, in this case,

Zims = 12'm§ + lims = lz'mj e (58)
n>w JEAR n>o JEAB no>w JBDE n>cw JABDEA

On the other hand, the singular points of 17, V., V,u/z and V,./z
are of finite number, and exist in the finite domain, and moreover, these
functions 7, etc. are holomorphic functions of p in the exterior domain
of any closed curve including these singular points, since they consist of

g=Y(Lp+R)(Cp+G), 2=~(Lp+ R)/(Cp+ G) and rational functions of p.
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Hence we can replace the path ABDEA (n—>co) of (58) by any closed
curve K involving all the singular points of 17, etc..

Therefore we are led finally to the following results :

lim § (V) dp=o0 for t—(2mi+x)/g <0,
n->w AB
=§ (V) dp for t—(2ml+x)/g>0,
B
. S (59)
Zz'mS (Vo) dp=0 for Z—{z (m+l)l—x}/g<o,
ny>w JEAB

=S(£_)Vm2) dp for t-—{z (m+1)l—x}/g> o )
where
' m=0, I, 2, 3, «ervritrrrns ,
g=LO™H,
(Va)=V,1 or Vu/s,
(Va)=Vae or Va/s.

Combining (53) with (59), we see that equations (1) and (2) hold.
From (1)
v=0
i=o for t<x/g.
Hence we know that the potential and current become zero at f=o0 along
the whole line except at the point x=0, when (;=o0. This coincides with
the actual initial conditions of the line. On the other hand it is evident
from the process of deduction that results (1) and (2) satisfy our funda-
mental equations (4) and (11). Therefore the formulas (1) and (2) are

what we require.

3. SOME FEATURES OF PHENOMENA DIRECTLY ESTIMATED
FROM THE FUNDAMENTAL FORMULAS.

Before proceeding further, it will be interesting to discuss the brief
features of the propagation phenomena in the light of the fundamental
equations (1) and (2) for the potential and current.

Substituting o, 1, 2 etc. in m of the equations (1), we get
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2=0 for 2<x/g, i (61)
V=1, for (20—x)/g>t> /g, oiiiiiiiiniiniinn. (62)
v=0+7 for (2l+2)/g>t>(20—x)/g, «vvevinn... 63)
v=vytv+v, for (f—2)/g>2t>(20+2)/g oiiiinnnn. (64)

etc. .

We observe, first, from (61) and (62), that we have a true finite
velocity of propagations g=(ZC)~% No matter what the form of the
impressed e.m.f. is at the beginning of the line (¥=0), its eflect does not
reach the point x in the line until the time z=x/g has elapsed. Consequently
g=x/¢t is the Veloéity with which the wave is propagaled. This is the
strict consequence of the distributed inductance and capacity of the line,
and the volocity depends upon these constants only, since g=(ZC)~%.

The second term 2z, in equation (63) is the reflected wave of 7, from
the other terminal (x=/) due to the terminal irregularity which exists
there, since t=(2/—x)/g is the time required for an effect applied at the
beginning of the line (x=0) to reach the point x after having been reflected
at =/ And similarly it follows that the third term 2, in equatlon (64)
is the reflected wave from the sending terminal, etc.

Hereafter we shall call 7, the original potential wave and 7, and 7,
the first and second reflected potential waves, and so on; and similarly
with with the current waves.

If the line is infinitely long, we can always keep the relation (2/—x/g)> ¢,
however great £ may be. Hence the potential at the point x is given by
equations (61) and (62) solely, which are potential equations for a semi-
infinitely long transmission line. ‘

Similar conclusions may be derived for the current wave from equé-

tions (1).
4. THE FIRST METHOD OF EVALUATING ¢ AND / GIVEN
BY (1) AND {2). ‘

The forms of potential and current given by (1) and. (2) are not con-

venient for practical use as they stand, since they consist. of contour
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integrals taken in a complex pl:;me. It is necessary to express them by
some known functions.

The general terms in the expressions of v and ¢ are, by (2),

E gPt =92 . )
‘271']’[ 7’+P TPAR)Y D, oo (65)
and
E —gx
_27'[‘]‘“ (/)_'_p).yﬂfi(f)dp, ............................. e (66)

where x stands for (2m/+ ) and 2(m+1)/—x of (2), and

C(A)ZAOF T (67)

Since f, f; and f, being given by equations (3), may be converted into
(=) (= 2P/ = 2D (= 2D}, (=222 and (s— L} /(5= Z5)
respectively, and 7, Z, and z* are rational functions of g, all the functions
/ /i and f; may be written in the form of 7{p)+2U(p), where 7(p) and

U(p) are certain rational functions of . Moreover if we assume that Zim
D>

(Z, or /o) :}:N/IC:" then the functions 7(p) and U/(p) must be of the form
a+ % where s are the poles of 7" and U. And con-
sequently the funct10n Y ——— fa /i (/o) may be expressed by

]

m h akv' I m! 14 by
22 G T T DGR

k=0 =1 v=0 A=l

Hence to express » and ¢ of (1) and (2) by certain special functions,
spt e~

it is enough to evaluate two contour integrals ——I~j dp and

g Rl
1 &~
. a; © 722= 0, 2, Fpeeeriiniinns .
zwLi)(wpo)” 7 form=t, 23

We shall evaluate these contour integrals in the present section.

In the computation of the contour integrals, we assume that
1) the determination of the vadical sign is plus when the argument of p is
zero, and 2) the path of integration contains all the singular points of the
integyand.

We shall, first, consider the following integrals :
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I er G+ Cp N\t
7= 27er(Kz>+G/C(R+L;ﬁ)dﬁ’ ........................... (68)
}
where R, C, G and L are all positive quantities and
9=~ (RHALP)(CHCP). oevvveeoiiiiiiiiii (69)
Putting
F=pFp, (70)
and
_ I (R
‘”_-T(T-}_T)’ ............................................. (71)
we have
Ip+R=L (4 +),
Cp+ G=C(F Fo),
g=vICY P +a)(#—0), 0 e (72)
1 (R G
= (T~ e
Then the integral 7; becomes
I N/—Cﬁ e~ VICV I ¥0) BT —0) atpli—pt ,
L= g7 TL,) e (73)
Again introducing a new variable ¢ such that
G=NLC(F =) (74)
we obtain by the aid of (72)
,_ C+a
= S (75)
g= ai:("” where g=(LC)™%, oooiiis i, (76)
S
g
dp = qu G e, (77)
Putting
Cmre® (78)
P=XHTY, (79)
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we have
':L{<r+ ——) cos 0+ (r— * ) sin (7}, .............. (80)
g= V;‘C{-—(r———) cos 0—7 (r+m>sxn0}, ......... (81)
and

~

=%(r~— é) sin 8.

From (78) we see that, for a constant value of », ¢ deseribes a system of
concentric cireles with centre at the origin. The corresponding images in
the p/-plane may be obtained by eliminating 6 from the equations (82).
The result is

4 X* 47

A

This equation represent a system of confocal ellipses with £ as the common

3 P U v, (83)

foci. In the special case where ¢ describes a circle of radius o, viz., when
2

7 ~— =0,

»

the image in the p/-plane becomes a segment between the common foci.

Therefore as long as

Fig. 3. Fig. 4.
.z—pl;me 2/ —plane
¥ '

212
\ \/
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the points p/=+¢ are fully in the interior of the elliptic path, the image
in the p'-plane of the circle of radius » described by ¢. Here we remark
that the points /= ¢ are the singular points of the integrand of equation
(73)-

When the argument of p is zero, / must be positive, for by (70) we
have p'=p+p, and p=0. In order that p' may be positive, # must be
equal to 2xm, by (80), where # is any integer. Hence we obtain f=2um
when the argument of p is zero. On the other hand, by assumption 1), ¢
must be positive when the argument of p is zero. Therefore ¢ must be
also positive when @=27u7. Accordingly substitute #=2z7 in (S1), then
‘the value of g obtained thereby should be positive. Thus we have the

following relation :—
(%)
7

F O e e e e (85)

or

Since condition (84) is satisfied by (85), we may say that relation (85)
is the necessary and sufficient condition for # in order to satisfy assumstion
1) as well as. our requirement that the points ¢ should be contained in
the domain bounded by the ellipse given- by (83). Hence if the ellipse
shown by (83) be taken as the path of integration of 7; in equation (73),
r must be taken smaller than ¢, or in other words, if ' be transformed
into ¢, the path of integration of 73, taken in the ¢-plane, should be a
circle having a radius smaller than o.

It follows from equation (80) that, if ¢ describes a circle with radius »
in the negative sense, then ' describes an elliptic path in the positive
sense so long as relation (85) is satisfied. Hence the integral obtained by
substituting (75), (76) and (78) in equation (73) should be integrated in
the negative sense along any circular path K. with radius smaller than o.

Hence we have .
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C _, 1 20 =0 F=t x4
7;—_—/‘/-1-.:5 p Zn_jjdc —C2 25 L’Xp{— 2 -g_-'{' 2 [}
(K,

s

=N/§ e—ht z;jj‘(o%g vip l:—;—{(l"*";") C_*_(g_?)—?‘}:l, ......... (86)

where (K,—) denotes that the integration should be done in the negative

sense along the closed path KA.

Putting

u=<t+ —;;—) ¢/z2,

we have finally

— 0+) )
C 1 du F—22/3 o
- —=- g7 pt _ R 7 N TR 8
7, N/ 7 27rjj ” ex;ﬁ(u+ v a (87)
because 7, ¥ and g are all positive quantities. And since
v £—x'/g !
174 —X°/7 5 Y
Zﬂjj 2 e.rp(u+T— a‘>=10 (N E=Z G, oo (88)

where 7, is Bessel function of the first kind and of order zero with im-

aginary argument, we have

_ 1 eE [ GHCp

hi= zrrjj 2+G/C R+Lp)dP
B (89)
/~/—5 -pt V 2 2/ 2
=N € LoV E—2*/g).
Next we shall consider the following integral :

L[ e G opn

T‘_ijmp+po\k+lip>d' ................................. (99)

1. In general we bave (Whittaker and Watson: Modern Analysis p. 355,)
)

1 I n (0+'Il 1 22
n (2) = — s z P f— =) dt.
/u(2) 21:]('2 ) ”‘ﬁ( 4:)‘/

Putting #=o0 and z==;, we obtain

(0+% o
: lo(a)=.2:1_jjt_e’p<t+ a )z/t,

4
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By a slight change we have

i (G+Cp

T=Ti+(G/C— )d
=Tt G/ "’°)j(x)(p+p)(p+6/6)kk+£z>

Since the integrand of equation (89) is a continuous function of p and ¢

along the path of integration (K), we may integrate both its sides with

respect to ¢ after multiplying them by ¢**. Thus we have

g~ et tpo) ¢ G+ Cp {Ta’
27f/ (z>+z>o) (2+G/C) \R+Lp )

I [ e~ &+ tpo) z/y G+ Cﬁ )’l‘d

Tz ) (2420 (2+G/C) \ R+ Ly
=~/ %f PO [V E—[ @) Bty o (92)
zlg
or
I e‘qI'Hﬂ G+ Cp d
277 K(p+po)(p+ G/C) R+L]>) ?
_N/~—~ a"zotj go—p)? / (0“‘/5“—-,1: /gz) At + e~ poli—a19) [v ......... (93)
zlg
where
v I —q%+paig G4 Cp o
Ti= 277]!(())(?"’]70)(?4‘6/6) <R+Lp)dp ........................ (94)

Evidently in the finite exterior domain of the path (K), the integrand of
75 is holomorphic; hence the value of 73 remains unchanged when the
path is replaced by a circle of infinitely increasing radius with its centre

at the origin. Denoting such a circular path by K, we have

. P e—qm+p:r/g (,-}-Cp
‘TlY?l_pl‘i’ij (2420 (p+G/C) R+Lp “’”\
(K%
i | g~ qatpalg l
1477
—,mij (7% 2] 12+ G/C] ’ris|
(A%)
—gxtpx %
— i | emowteelo | C+G/p1Pap
S ,((IKI;%//J! TE GO T Rip) 9%
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On the other hand, for a sufficiently great value of |p|, we have, by
assumption 1),

o —(RC+GL)~RG/p x
P T R 1T GAPT 1 VIC
Hence '
. \__ RC+GL
[’{zlziw( —qr+pr/e)= VI Fr et e (96)

Therefore we have

I - R(H-G—Lz —?
am | Ty | L lim Wj e iIc. N/f - dfi=o,
1]

|pr>w

or

T oo 00 e e (97)
Substituting (97) in (93), we get

T e—9atnt G+ Cﬁ
zwj (7420 (5+G/C) +15)
/\/—? ~pe! t(p-—p)l VE 2208
WA je I@VEZZT oo, ©8)
a/y

It follows from (91) and (98) that

L (& GG v
To= 21:]"((5)-%0 (R+Lp>dp

—VE v i

. — . .
+ (% ——po>~/~j€— e"’°’js“’°“"‘10(o NE-P]EVdt (99)
: xlg
Since the integrand on the left hand side of equation (98) and its derivatives
are continuous with respect to x and p on the path of integration (X),
and the term on the right hand side is also continuous with respect to x,
we may differentiate both sides with respect to x. Such differentiation

gives the following :—
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I e‘qx‘l'ﬂ
Ts:“z”ﬁj T
(K)

¢ 2 _ 2272
= gPottPo—paly 4 ox gmPot) olpo=p) fl(a‘/t —* /’g2) Alyereineinnnn ([OO)
g vE=zlg @

where 7/ is Bessel function of the first kind and of unity order with

S
%19

imaginary argument.

Equation (99) may be written as follows :

1 [ B G+ Cp\:
L= 271']'](1£+p0 <1<+Lp>dP

= 3
=G o TR (Gmp ) [ i =

xg

Since the integrand on the left hand side of the above equation and its
derivatives with respect to g, are continuous functions of g, and p along its
path of integration, and the terms on the right hand side are also con-
tinuous in regard to p,, we differentiate both sides (#--1) times with respect
to o, and we obtain the following result:

I [ e G Cp\t
hi= ij(gg war (Txis) @

I G _E ’ - 5T w7 o ;
=7,7_—I)T{(—5 —po)~/ A j (o) PO [y (VT =27 gD dr
‘ xlg

C ‘ s o) e y o
+N/T (n—1) e‘”"‘j (2—7)? glwemp)= lo(ax/rz—,lﬁ/g')dr}‘..(IOI)
g
for 7 > 2.
The integrand on the left hand side and its derivatives on the path of
integration, and the terms on the right hand side are continuous functions

of p and p,. Hence, differentiating both sides (z—1) times with respect to

Po we get,
T - I Pt iar z
= Ay

=;{(t—x/g)n—1 g~ Pett(Pa—p) 2y

(n—1)!

¢ VET A
+% e"’°‘j(t——r)”" glpo=ps LoV T—2/8) dr } ............... (102)
fel

‘\/‘r?——x‘/g2

#lg
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~ The results obtained above may be summarized as follows : —

i et G4 Cpnd
. T a
27y (Ig)p+po)" (R-I-Lﬁ) 7

R , _ ¢ [ U ——
=v@§;wawv?:3%gv+(%*ﬁOV%gf”j”wwkwv?—xﬂfﬂi

g
for n=1 ’ ’ : ?(103)
: N/? - t{(G )St —~1 o (po—p)= T 8
w=T—— TN TEWNWF— t—) i@ [ (g P — & dr
(n—D) N Z c2))¢=) V(o =27/g")
t ———— e ——
+(n— ])X(Z_T)n_zs(prmt[o(dﬂ/‘r")—-xg/gﬂdr}
2/g ,
for n > 2,
and
1 g euhpt
L e
257 | (pep
(%)
= (,,—:I)‘r{(f —x/g) Tt eTrt el e (104)
g SR
OF mpa|(p— g1 rompr 4y (0‘\/:%2 ) }
+ i j(l‘ )y e Noreype dr

zlg
for 2 > 1, where we assume that o!=1.
The formulas (103) and (104) are what are required and will convert
v and ¢ given by (1) and (2) into elementary functions and integrals in-
volving them. The forms of 7;, 7;, 73 and 7 are easily computable with
the aid of a planimeter or integraph, or by numerical integration, since
Iy(x), Ii(x) and &* are all tabulated with respect to #, although it is im-

possible to express these integrals by finite terms of elementary functions.

5. THE SECOND METHOD OF EVALUATING
» AND i GIVEN BY (1) AND (2).

In the preceding section we referred to the contour integrals and to
their evaluation, be means of which v and 7 in (1) and (2) can be brought to

clementary known functions. But sometimes the above results of integration
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‘become practically inconvenient. For instance if p, be a real negative
quantity, then the factor ¢~# takes a great value, while ¢®~""/ (v F—47/5%)
retains a small magnitude, for suitably chosen 7z and x. Hence some errors
cannot be avoided in the numerical calculation of le(”f‘”‘lo(a«/ F—2/g%,
and the amount of the errors will be magnified whemr/lg multiplied by ™,
In such a case another evaluation of v and ¢ is necessary. In the present
section we shall show another meth-d of evaluating v and ¢ by an infinite
series of /7, functions.

As discussed in the preceding section, the terms v, and 7,, which

compose 7 and 7, are generally formed of

— e_Pt d
Zn].jH(p, 2)ETFI G, (1035)

(K
where /A is a rational funtion of » and =z

Transform p to #/ by relation (70), then we have

erj {(l’ P)N/L p+g }a’p’, ..................... (106)

where we assume that

(=)o

The further transformation of p/ to another new variable ¢, by relation (74),

gives (75), (76) and (77). Substituting (75), (76) and (77) in (106), we get

the following :
n= sl et
exp l:-o—{ t+%){+(
< 5

where the path of integration A is, as discussed in the preceding section,

6

L o+¢ } &—a’

C a—¢ 2

20

Z'- }] BE, il (107)

a circle with radius smaller than ¢ and the center at the origin, and the
integration should be done in the negative sense along this circle. The
smaller the radius of the circle » compared with ¢, the greater are the

axes of the ellipse shown by (83), which is the path of integration on the
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Z-plane of equation (105). Hence taking » sufficiently small, the singular
points of the integrand in equation (106) are fully included in the elliptic
path.  Therefore we may take, as the path of integration K. in (107), a
circle of infinitesimal radius with centre at the origin. Thus we get from

(107) the following :

To= ;-Pt j(°;}{_<c+_~> % Z_—_g_ } ,,?2_&52
el

:,: )C_,_(t__g.)Ci}:l Ac. oo (108)

Here A, a rational function of ¢, should have the form of

e )

where £, P, and P, are polynomials of ¢, and the degree of £, with
respect to { is lower than that of £
Assume that A()=1+a,ql+ oo + @™, then we can expand
I
V249

verges uniformly on the circular path of integration of (108), since it is

in an ascending power series of (@, &+ -+ oo +ay¢™), which con--

always possible, as previously disscussed, to choose the radius of the circle
r so as to keep the relation of {a, &+ - +a,¢*| <1. Therefore

is expansible in the ascending power of ¢ on the above path.

1
F(Z)

Or resolving into partial fractions, we get

H= P1+§ ; @ "‘Z,),,, .................................... (110)

where ¢, is the #-ple root of Py(¢)=o0, and 4,, is a constant independent

_r
(Cn - C )m

on the path of integration of (108), is possible. Hence in the above

of ( Also in this case, the expansion of in the ascending power

of Cn

two cases, // may be expanded finally on the path of integration of (108)

in the following power series :—

H-———zgnC". ...................................................... (111)

Substituting this /7 in (108), we know that our question is reduced to a
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single problem, namely, how to calculate the contour integral

‘7=_2-;7j(0?,_1 exp [%{(H_o%)c_’_(,_%)_?}] ag, ... (112)

which, by transforming ¢ to x by the relation z=(¢+x/g)¢/2, can easily
be evaluated as follows :

©+) 2 2 o
_ 2" I el (F—2"/g") " }
‘7-"7 —(t+ x/g)n_ ‘—'——Zﬂj.j‘ u €Ip {Z{+-—~——4u du

l—x ? e
=0(t+,‘f§z7') ]:!:n(a\/t'_x-/g-)’

as ¢, g and x are positive quantities and 7/,=/7_,.

Hence we know the following rule :—

(A) To cvaluate the contour integral of the form (105), transform p to
L by the relations (70) and (74), then we get (108). Expand H of (108) in
the ascending power of £, and substitule the result in (108), then the tntegrand
of (108) becomnes a power series of ¢ whick is integrated immediately term by
term by the relation (113). Thus the required integral shown by (105) is
cvaluated in a series of 1, functions.

The above is the same as the following, but the latter is sometimes
more convenient than the former.

Transform ¢ in (108) to of, then we get
S L I+C o(1-¢)
fo= Iﬂjj { (C+h) / } 202
' [ x x\ 1
exp l:?{(hi— ;(r—)c-i- (t-—-?)?}] e, ... (114)

Also in this case, A is expansible in the ascending power of ¢ on the path

of integration of the above integral. Hence the question is reduced to the

calculation of
o)
o 1 n~1 » A T O
T T (G TS, e

1. See foot note (1) in the preceding section,




Analytical Investination of Electrical Transient Phenomena etc. 219

which is calculated as follows :

—(1=*/& g VEZ 2T
7, (z‘+’x/g) Iy (0V =22 i, (116)

Hence we get another rule for the integral of (103).

(B) Transform p to £ by the relation /):%(C +——2—~)—p, then the
integral of (105) is transformed to (114). Expand 1 of (114) in the as-
cending power of £, then the integrand of (114) except the exponential function
becomes a power series of {, whickh is integrated immediately term by term by
(116), and thus we get the evalution of the requived integral (105).

Rules (A) and (B) and the contour integrals calculated in the preceding
section may play important roles in the investigation of electrical transient
phenomena in a transmission line circuit, which shall be minutely discussed
in the following sections, and these two rules must be interesting from the
mathematical point of view, because they propose a method of expanding

certain functions in series of 7, functions.

6. POTENTIAL AND CURRENT AT THE POINT » FOR THE
INTERVAL (2/—x)/g>¢>0 DUE TO THE EM.F. Eere
AT x=o0, WHEN THE IMPEDANCE Z IS ZERO.

An e.m.f. is directly applied to the line at the terminal x=o0, then we
have Z;=0 and fi=1. Hence by (1) and (2), the current and potential at

the point x, due to the e.m.f. £Z:77 are given by the following equations ;

=0 for z<x/g,

E (e ™ 2/—x x
= : -dp for ———>¢t> —,

27y Jv(g.[.ﬁo /p lor < >tr> 7 ’

,.........(117)

=0 for t<x/g, :
_E (e G+ N\ 2l—x x
_Zﬂ].j(£+p0\k,+£]j>dp for " >> i

Substituting (103) and (104) in the above equations, we obtain the

required solutions in known functions. Thus we have
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=0 for t<v/g,

VGRS —xz/,é’z)
Vl—xt/g

S

_ ¢
= FePoftwo—rlaly 4 E_O'g, e—petje(po—r')*
z/y

2/—x x

for > 2

b o

i=o0 for t<x/g, S (118)

_EN/—L* (o P—x*/g )+E( ﬁo>~/“‘€_”°’

2

je(”"‘f‘)’lo(a *—x*/g%)dr  for 2~ 1"—>z“ i

b S

z/g

Putting p,=0 in (118), we get the potential and the current due to the

direct eem.f. £, and their values are

=0 for t<x/g, \
: NE_ D _
=E3-Pz/y+EE_’E Pt ]‘(‘7 _ :’U/‘,f,’) dr for 2[—x >t>i,
& y TP—x? /g g g
/g
i=0 for z<x/g, . (110)
C _, g
=By S U FR R B ~—j F Lo T ) de
xlo
for 2—% > F
g £

These results coincide with those already obtained by J.R. Carson and
the present author. We know from the above equations that the potential
and the current at the point x increase discontinuously from null to Ze™#/
and £ N/ _Lg £~ respectively just after the propagating waves have reached
the point x.

Next we shall consider the case where the applied e.m.f. has the

damped oscillatory form of
e=FEE™¥sin (@f+¢). oo (120)
In this case we may write

e=imaginary part of [, el
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Hence the potential and the current at the point x, due to this e.m.f. are
obtained as follows. Substitute E=F’* ond gy==a—jw in v and 7 of (118),
then the imaginary parts of the results give the required solutions. Thus
we obtain

=0 for t1<x/g,

=imaginary part of I:Eo g% gm(emidtmaln)=taly

+ E,¢* ——e =g
O

tje(a—jw)t—pr L(Jvl;‘zﬂ;g/zgz) a’J

z/g

= FyeU=aln=rlogin {w(t—x/g)+ ¢}

t4 ] «/ __ 2
+ E25 | emsmnmrgin {a(t—1) + @} ’(" ML C=2/8)
£ x /g
x/g
for 2[_x>z‘>*;f—
g g’
i=0 for 2<x/g, L(121)

=imaginary part of [EO &9? N/ % e oV P—2*/g%)

+ E,e9% (% —a +jw)~/-]€e‘<““")"J'e(“‘j“'”"" G Vﬁ—aa?Tg;)dr]

=/g

= EO\/% sin g /(o V' E—2*/g%)

N/ ¢ j g =T—pT {(% —_ u) sin (w. t—T+ ?)

+ w cos (w. z——~+ga)}]0(a«/r'— x*/g%)dr  for

>t>-——
g

The potential and the current at the point x just after the propagating
waves have reached that point, are got by putting z=x/g in the above
formulas corresponding to (2/—x)/g>¢>x/¢. Hence we have

Vt:z/g+0=E0 sin SDE—M/G R

. . I
tyeaigro=2Fy sin ge PWN/T‘

The transient value of the e.m.f. at the beginning instant of application is
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by (120),

0= FEy sin ¢.
From (rz2) and (123) we see that the fronts of the potential and the
current waves due to any damped oscillatory e.m.f,, are uniquely determined
by the transient magnitude of the e.m.f. at the beginning instant of applica-
tion, and are quite independent of the damping constant as well as of the
frequency of the applied e.m.f.,, and they propagate along the transmission
line, being damped by the factor =t

Next, the potential and the current at the point x due to the

sinusoidal e.m.f.

e=Fsin (w!+ )

are given by substituting «=o0 in (r21), namely,

7=0 for t<x/g
. - ox 4 . PV )
= Fye~"9sin { w{t—x/g)+ ot +bOTjs““ sin{w(t-7)-¢ }/’(”_x/f%ﬁ/‘f—)dr
> oy -xg
o HTE s E
& &
i=0 for t<x/g (125)

- C . 5 -3 o f l_ G . —
_—..Lfo/-%smgoe ”]f,(ax/t-—x-/g-)+E%/Tjs/ -"{—65111(_<u.1:—r+50)
% g
21:;&: > t_>—:1;—.

S S

-I'wcos(w.;-!-go)}lo(a Vil—2'/g)dr for

We shall discuss the mode of the current wave more precisely.
Neglectiug, for the sake of simplicity, the line leakage, we get from the

above

i=0 for t<x/g,

= EON/—ZC;—sin pe M LAV E-2/g)

— — - S 126
F Ego / % j e cos(w. =7 + ¢) (AN T=Z ) dr | (126)
xlg

for 2[—x

> E
o

& &
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where

_ R
2_7. ............................................................ (127)

When the applied em.f. is
e=FE,sin @, ..cooevr.., JEUUR TP T TP TT T RO UP RSP RRPPN R (128)
then, putting ¢=o0 in (126), we obtain
i=o0 for t<x/g,
<( e
= EOwN/Tj e~ cos {w(t—1)} L(AV =2 [g%)dr

/g

2=% 5> E
" o

S S

for

and when the applied e.n.f. is

e=FE,cos wl,
the substitution of ¢=~12t—- in (126) gives
i=0 for 1<x/g,

S .,
= EON/—C—G‘”]O(X Vﬁ—f/g“)—[i},wN/-g— e sinw -1V AV =27 /g’)dr

L L i {131)
zl:x > t>—f—.

S S

for

The full lines of fig. 5 show the current at x==200 kilometers for
several values of ¢, due to the sinusoidal e.m.f. e=sin (w/+ ¢) k.v. and the
chain line shows the same current due to the direct e.m.f. of 1 k... These
are computed, by equations (126), (129) and (131), for the line with the
constants

R=102/km., L=2,5 mh./km, C=0,008 pf./km., G=0, ...... (132)

the frequency of the applied e.m.f. being 285 cycles per second.
Next put py=—jw, E=FE,” and t=rco in the 7 formula of (118) cor-
responding to (2/—x)/g>¢>x/g, then the imaginary part of the result

thus obtained represents the steady value of the current at the point z of
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Fig. 5.

: Current induced at x=200 k.m. due to e=sin (wf+9p) k.v.

Current induced at x=200k.m. due to e=1 k.v.
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a semi-infinitely long transmission line due to the sinusoidal em.f. e=F

sin (w2 4+ ¢).

(%)i=eo =imaginary part of I:EO e”"(—g— + jtu) N/ TC e"““js"“‘”‘“‘)‘lo(a v~ x“’/gi)a’r:l

=imaginary part of [EO gfirte)

z/g

G0t G o aiesEcirer :I
Lio+ R

The last part of the above equation may be written as follows:

Lt = [ cos (wt+ @)+ 71 sin (wi+ ¢,).—

Hence we get

(70)i=e =1 sin (w2+ @),

...........................................

where ¢, depends upon o, ¢, L, €, R, G and x, and [/ is given by
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I= ' E,elorts) | GO+ G o tarmvciorer
Ljw+ R

(134)

2 9 2y}
= EO(%) exp [— N/%_{ V(P +R)(Co’+ Gg)+RG—w"’LC}i|

When the direct e.m.f. £, is applied, we obtain the current at x by putting

w=0 in the above formula. Thus we have

If the line leakage is neglected,

Tom=Ey—C0 __exp| — / L CovV P+ B—LCa} |,
(P’ + RE)® 2

...... (136)
[Zc]e=0=o0.
Substituting the numerical values given by (132) in (136), we get
I-0=0,905 X 107% =% L7 amp.,
oo, l .............................. (137)

From fig. 5 we know the following :— .

The current at the point x=200 4. remains null, until the time
t=x/g has elapsed, which is spent by the effect sent from x=o till it
reaches the point considered. At t=x/g, except the case ¢=0, currents
increase suddenly to the values shown in the figure, and vary continuously
thereafter. Fig. 5 is plotted, assuming that the direct e.m.f. and the
amplitude of the sinusoidal e.m.f. are each 1 k... The figure shows that
the direct e.m.f. induces the greatest current for a short duration after the
wave reaches the point under consideration. But if we neglect the line
leakage, the current due to the direct e.m.f. dies away as time passes on,
and it converges to zero in its stationary state.

We shall consider the case where the sinusoidal e.m.f. e=sin (w?+¢)
k.v. of a frequency of 285 cycles is applied.

The figure shows that the wave front of the current becomes greatest when
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¢=n/2, i.e., when the em.f. is applied to the line at its maximum value,
From the curves corresponding to ¢=m/4, ¢=37/4 etc.,, we know that the
wave fronts of the generated currents depend only upon the transient value
of the emf. at the first instant of application. Also we know that the
nearer ¢ approaches to zero from 7/2, the more diminished is the rate at
which the induced currents near the wave fronts die away, and when 904_-.40,
the current even increases from the value of the front for a short time.
This is because the nearer ¢ approaches to zero from 7/2, the longer the
increasing state of the applied e.m.f. continues.

Thus the transient value of the current due to a sinusoidal e.m.f.
takes various forms, in proportion to the transient value of the em.f. at
the beginning of application. But as time passes on, currents in such forms
converge ultimately to a single oscillating value with amplitude of 0.307

amperes as seen from (137).

7. REFLECTION OF INCOMING WAVES BY CRITICAL
RESISTANCE.

When the dissipation constants of the line, &£ and G are null, the
incoming electric waves are completely absorbed in a resistance which
terminates the line to the earth with the magnitude ~'Z/C, and thus re-
flected waves are completely rejected. The analytical verification of this
fact has already been accomplished by many authorities, and the terminal
resistance 'with the above mentioned magnitude is called the critical
resistance. This theory is often applied to many experiments in order to
exclude reflected waves. But we must notice that it is true only when
the dissipation constants of the line are omitted, and nothing is known
about the case where these constants are taken into account. Nowadays,
many experiments on transmission lines are pursued, however, under the
assumption that the incoming waves may be completely excluded by the
critical resistance, even when the line resistance reaches some amount.
But I cannot agree with this assumption. The nature of the critical
resistance should be more minutely investigated theoretically.

In the electric circuit, whose receiving end is terminated by the
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resistance R, as shown in fig. 6, the first reflected potential wave at the
point » produced by the terminal resistance due to the e.m.f. Ze ™ applied

at x=o0 since z=0 is given by

I E—q(i’l—z)-H:t 4 f / l 8
7,1__2”]_[ e fifedp for t>(20—x)/g, oo (138)

(&)

where, if we neglect the line leakage for the sake of simplicity,
=Y (Lp+R)/(CP),
g="(Lp+R)Cp,

f1=l’
= F= Ry
f= 2+ R’

Putting x=/ in (138), we get the first reflected potential wave at the point

B, which is given by

U=

E T o R,
— 2/_[].[ S+ p AR, dp for £>0/g. ..ol (140)
(K)

Putting, further, /=0 in (140), we get the first reflected potential wave at
B, when the incoming potential wave at the same point takes the form of
Ee™¥ for 1>0.

vy =

E j‘ e z—RK,

— 2 ,,)P*'PO TR, dp for 2>0....... e (141)
"

When the incoming potential wave is rectangular, we get the reflected

potential wave at B, by putting g,=0 in the above equation.

Uy = —

E & z—R,
— - d, f e
27 j-(,gfﬂ'j’“ pry for ¢>o0 (142)

A)  Reflected  potential wave due 1o incoming rectangular potential
wave. )

For the sake of brevity, we assume that the form of the incoming
potential wave is rectangular, then the reflected potential wave at B is

given by (142). Next we shall consider the case where R, possesses the

critical value; i.c.
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R0=~/%. ............................................................... (143)

Putting (139) and (143) in (142), we get

, P (Lp+1€) ~/‘
O j(m Lp+[€) N/ L

dp

261/“ ZC;‘/I’<LPC-?R % L(L TR)—% ‘%}5”’”’1’- (144)

On the other hand, by (103), we have

zﬂj'[ (Lp_*_R)dp /— el N (145)
where

_ R

)‘_T' ............................................................... (127)

And we know that

1 P
YT j€7 dp= 2;7[5’#‘1? o (146)

(K) (&)

Differentiating both sides of (145) with respect to ¢, we obtain finally,

—M
s j (2 2 (zp ~/ — OO+ LD} oo (147)
Hence substituting (145), (146) and (147) in (144), we get

a=E [ { L)+ 1, A =1] o (148)

From (148) we get the following conclusions, when the form of the
incoming potential wave is rectangular.

1) The reflected potential wave produced by the critical resistance is
determined solely by the ratio A=R/(2l), and is independent of the
electrostatic capacity C of the line.

2) The critical resistance flattens the front of the reflected potential

wave instantly, and disconfinuity in the front is ‘completely rejected, even



Analytical Investigation of Electrical Transient Phenomena etc. 229

when the incoming potential wave takes the rectangular form ; because, for

sufficiently small 2, we may write

Thus we know that the critical resistance is effective for ﬂ’attenin‘g the
front of the reflected wave.
Fig. 7.

Reflected potential wave produced by critical resistance when rectangular
potential wave Z comes in

Time in mili 4ec.
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3) Fig. 7 is plotted from equation (148), which shows that the re-
flected potential wave increases with time, when the ratio A=R/(2L)
becomes great. Hence when R/L is large, the value of the reflected wave
is not so small that it may be possibly neglected, even just after the
reflection takles place. " Hence we cannot assert generally that an experi-
ment pursued under the assumption that the critical resistance may be
effective for the rejection of reflected waves, can really show the actual
phenomena without errors.

4) In the stationary condition, the reflected wave takes the form
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him ~zr]=E[him e {L,(0)+ L)} —1]
>co

>

Hence we know that the reflected potential wave approaches to the same
magnitude as the incoming wave but with different sign, as time goes on.
B) Reflected potential wave due to the incoming potential wave.

In this case, the reflected potential wave is given by (141), i.e.,

,1=__fj ‘ (Lp+R> ~/L
27y ﬁ 2o (_,;ﬁHg) ~/_

E j{z(je LPO)N/ Cr \ (151)

LY L c p+p0\Lp+R
y)
+2L Z Cp \t 2L R—20p 1 }a’
RN C\Gr®)"7 & nl?
for 2> 0. ‘

But from (103) we have

I e”

277 zﬁ+po\Lp+Je>"'P ~/ A "“fo(”)—fﬂ/ _e_putj TG & - (152)

and evidently

I v
2”]jﬁ+ﬁo B e (153)
Substituting (146), (152) and (153) in (151), we have finally

V1=-—E{—s'“11 (zz>+~’j—°%5—5‘“lo(zt)

+—~——(21_{’°)7’° et j PR [ (A) dt + A;p - e—w} """""" (154)

for > 0.

In the special case where the incoming potential wave has the form of

Ly sin (wt+ @) for £ >0, we shall get the first reflected potential wave by
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taking the imaginary part of the result obtained by the substitution of

E=FEg/ and py=—jw in the above equation. Hence we have

7,=imaginary part of £, 5”{&“"‘]](25‘)+jwl—_*__'l e~ 1(2)

z . . ¢ 2 . v
+ CAHOO j swe—'nm,(x:)dz——“;l‘iaw'}, .................. (155)
or ’
— : Y wcos p+Asing \
v, =Fy{sin e~/ (2)+ y e~ 1, (28)
+ —a’-st‘_zl cos (wi—7+ ¢)—wsin (wf—t+ gp)] e~ Iy(2r)dr
A Jo- ’ ......(156)
__ wcos (wt+ )+ 4sin (wi+ @) }
: A
for - > o. . /

Putting £=0 in the above equation, we get

(D110 T 00 et et e (157)
. Therefore we know that the front of the reflected wave is immediately
flattened by the -critical resistance, even when the front of the incoming
potential wave .is discontinuous.

C) Reflected potential wave due to incoming potential wave of extra
igh frequency. '

The reflected wave is also given by (156). But this formula is some-
what inconvenient for numerical calculation when /2 becomes large. We
shall transform it into an easily calculable form.

By integration by parts, we have

—A

j et 7, (20) a’t:;’_‘..)_{ e [y (A) — 1 — A j Qwo-wfl(zz)dz}, ......... (158)
(1
@

0

Putting this relation in (154), we have ﬁnally‘

i A
PR -2t . - ]
= E{e ]l(h‘) —0 3 13 ]0(71)4- —y

(22— 2080 —mpt (tmamrrt 7 (o g\ oo crmmeeemenes (159)
+—(-;—>0—_—7)— a4 joe( M fl(/lt)dt} |

e")"ot

for ¢>o.

This is the first reflected potential wave corresponding to the original
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wave E¢™*(t>0). And the wave produced by the first reflection when
Eysin (wt+ ¢) (£>0) come in, is given by the imaginary part of the nesult
obtained by the substitution of E=Z«”* and py=—je in the above equa-
tion. Thus we have

=Eo{sin;ae‘“],(h)+ A(Asin ¢ —w cos @) e 7(30)

A2+ 2
__ A[Asin (w24 ¢)—w cos (wt+ ¢)]
£+’ 5(160)
+ T—{T—_j [)w sin (wt—t + @) + (&’ + 24) cos (wi—7 + ;0)] _'“fj(h)d‘l'}
for t>o.

When 2/|,| and 4¢ are negligibly small compared with unity, we have
from (159), '
2

7/1;_—7([ ere) E for 2> 0, voiiiiiiiiiiniienn, (161)
because, in this case, we have
Y, 2 P 2 i
M () =2, e M (A=, TPt T TP
l( ) 2 po_z 0( ) po . [70—/1 po

*(2;“7’3)f0 -Wj' 0o [ (A dt = — ‘Po"ew 2 4
—
0

= _E{(pot— )+ e‘N}.

Bquation (161) corresponds to the case where the incoming potential wave
takes the form of £ e™?’. Therefore to get the first reflected potential
wave when Esin (w!+¢)(t >>0) comes in, put E=FEe# and py=-—jw in

(161), then its imaginary part gives the required solution, i.e.,

Zf,gzi{cos (wt+ ¢)—cos gcv}E0 for ¢>o0. .. (162)
w

When the incoming wave has infinitely high frequency, we get the
reflected potential wave by putting w=co in (160), i.e.,

lim v, = Eo{sin pe M1 ()

w->

+ lim

wrm o +

jt[lw sin(@.2—7+¢)+(w*+248) cos(w.L- T+ go)] e‘”[,(lr)a’r}
0
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= E.,{sin. pe= 1,(10)

—Zz'm[ — O o5 (=T + ) MR+ 2

¢ P d
. : 2=7 + @)——(e"* L(At))dr
w>om 12 +w AZ + o j:os ((U T 90) d:. (E ‘1( ))

2 2
+ b ta sin ge~X 1,(A)

A4+ o

24+ o? d 4
T AN (67 £y(A2))——- cos (w+ go))
_ & +28 [ — d® [ _is ]}
-;J(mj:os (wt—7+¢) e (e VA (Zr))dr

- E.){ +sin peM 7, (A)—sin g, (21,‘)},

or

LI D3T20. ciiiesieeiineneeaiieres it trteetensiearrercraraaranaanees (163)

w>o
From the above results, we get the following conclusions :-—

1) The higher the frequency of the incoming wave, the smaller the
magnitude of the reflected wave becomes, and the absorption of the incoming
wave by the critical resistance is completely realized for a wave of extra
high frequency. From (162) we see that the magnitude of the reflected
potential wave decreases in proportion as the frequency of the incoming
wave increases. Thus we know that the higher the frequency of the
incoming wave, the smaller the magnitude of the reflected wave produced
by the critical resistance becomes.

2) Fig. 8 is the graph of (162), which shows that the reflected wave
near its wave front has the greatest magnitude when ¢ =0, and the smallest
when ¢=m/2, and its magnitude decreases as ¢ approaches to #/2 from
zero. The front of the incoming wave is Z;sin ¢, which increases as ¢
varies from zero to /2. Hence we know that, when a sinusoidal poten-
tial wave of certain amplitude comes in, the smaller its wave front is, the
greater the magnitude of the reflected wave produced by the critical
resistance near the wave front.

3) From (160), it is known that the reflected potential wave is
uniquely determined by the ratio A=R/(2L) as well as the frequency and
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Fig. 8.
Reflected potential wave produced by critical resistance when sinusoidal
potential wave of high frequency £ sin (w#+9) comes in
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the phase angle of the incoming wave, and it is independent of the capacity
of the line.
D) Relation between the frequency of the incoming wave and the steady
reflected potential wave. .
Next we shall consider the steady value of the first reflected potential
wave. Putting f=co in (1354), we obtain its steady value due to the e.m.f.

et o
Ee=?" and it is given by

(V)= —E{@_—f_w’i - j‘ s gy (ry e 22 e—m»},...m (164)

0
if the real part of g, > o.

Now we have

ji"”“’*‘”’]o(lt)dtz -7 .~<cos L+jsin —), ..................... (165
wvu 2

0

where

0=tan“<2%>,

”='\/[ +4 A; .
e

«
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The steady reflected potential wave due to the incoming potential
wave Fgsin (wf+¢) (12> 0) is given by the imaginary part of the result
obtained by the substitution of £=/7¢/* and py=—jw in (164), and it is
calculated with the aid of (165) as follows.

(71)e= =imaginary part of [ye#? {—(—Zizi%?)—jﬁ sj“”jZ“(j‘"""‘)’ 1y (42) dt— —Aj;—](—"— ej"”}
0 4 '

wvu . 0\ . © oV oy '
_-—]:0{(1— y 51n—2—)smwt+<7— 3 cos—é—)coswt}....(l67)

And its amplitude is given by

2

Vj:EON/hJ%(/@r)H )

This formula shows that the amplitude of the steady first reflected potential

(168)

wave is uniquely determined by the ratio K/(wl), and it increases from

zero to £, as R/(wl) varies from zere to infinity.
8. REFLECTION OF INCOMING WAVES BY

TERMINAL CONDENSER.

We shall show an example of the second method described in section

5, which will bring o and 7, given by (1) and (2), into real known

functions.
Fig. o. We assume that the receiving end of the
A+ £ —*B transmission line is terminated by a condenser
_T'E.Ex—_» _—J_Ce of capacity (,, and that the direct emf. £ is
T / l 7 directly applied at the beginning of the line.
Then the first reflected potential and current
waves at x and # are, by (1) and (2),
o= —zﬁTjj%L Sy, for t>y/g
R RITCITTIPPRPRITRR (169)
=L (Ll marie gy, for >3/

2ay) p

(&) d
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where

el (27.) (170)

y=2{—x, fi=1 and ﬁ:m.

Assuming that no line leakage exists, we get

__(R+Ip\t
0_(———6} e e (171)

Apply rule (B) of section 5, and change p to ¢, then by (171) £ is

tranformed to

fo= I+::::§—Cz O P PR PRRTRRPRR (172)
where
C
/=_2T, m__ﬁ T e (173)

Hence by (114), 7, and 7 are reduced to the following forms:

(04)

o __ 4aml 1+
7=—FEe? 271']-,((I 1+2ml—/ (1-0)¢

exp [%{(H —i';)c + (t—~i/7)%}:| dr

for t>9/g,

04+

o ] C _4mf  \1+C
Z"'EN/_[e ' 271';‘[([ 2+2ml—C /) 1—¢

o[ D)

for >y/g.

Let the roots of {*—2m¥&—1=0 be ¢, and ¢, then we have

Li=m+ vV +1, }

Ge=m— V' + 1.

Since .
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1+¢ = _r . A + B
(=00=¢/6)(1-¢/) m 1—¢ 1=¢/0 1-¢/G]
1—¢ I 2
_ﬁ+ ,
(=0¢ 1-{
where
A ['—Cg B___ CI_I s
(1=C) (&= (1=8) (6 —E)
the integrals of (174) are transformed to the following :—
@) 4 5 )
—_ Fe—M RS 4N - 4 __ 4
n=—Ee 2#/‘[{ ¢ +<2 m) 1—-C  1=C/C0 1=¢/C )
A2 EARS
[ D) (- 2) )] o
for > .
% > ...(176)
) /e
L -n T RS 2m 1 £
zl"E“/ 2nj j{ R -—C/Cl>
J -
exp I:?{ t+~g—)¢'+(t %>?}] ac
for ¢>y/g.
By rule (B), expand I—I-C’ I—IC/Cl and I—IC_'/C:’ in the ascending
power of ¢, and we get :
(0+)
y = — Jre—At T
1 [Tl )2 SO CH L YC
a I A o
exp I: - {<t+ g>c+<t 7 }] de for ¢>y/g,
0+ (177)

i) gl v e B 2]
exp [7{<t+ —i:—)c+ (t-— i})—c—}] ac for >y/g.
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Since £, {;= —1, the above v, and 7, are, after termwise integration with

the aid of (116), reduced to the following forms:—

n=1

0y = — e [lo{lc‘y(t)}+(2-——)27 12,00}

4A512( Py LA 0} 48522( JRevara Ac(t)}]

n=1

for t>j//g,P ...... (178)

Z;=E~/ % e-“[lo{k‘y(t)} «/”2,”:_ 1 {Z( VT L (D)

—-ranaiE o] o o

where

— t=y/& d A DV s s
7 (Hy/g and  &,()=~E=F/g oo, (179)

Ly, I, I, 15, I, and Z; are computed and tabulated for small values of the
argument, and 7, gererally decreases for small arguments as » increases,
and has a simple asymtotic expansion for large arguments. It is therefore
a simple matter to compute and to express in graphs, a representative set
of curves which show the current and potential waves for various values. of

L, C, G, R, C, and y. But when {{, | is great as compared with unity,
the series 2(——)"{, 7ol 146,(8)}, whicl is involved in 2, and # formulas,
will conver,é:el slowly, and its numerical calculation will become troublesome.
Hence we need some device which will render the calculation of such a
series easier. For this purpose we proceed as follows :—

We know the following relation

, exp{%~ ( l—»——)} Zu”jﬂQ

R==0

Put u=;¢y, and s=;¢,(s), then we get finally
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[ )]

=1 {%,()} +Z( (SR T VRV I OIS

n=

since 7,(x)=7_,(x). Therefore we have the following result :—

Sierenmisoron[- - Der(+7)2)]

n=I

—L{%,0)} Z( Ve LA O} (180)

+o

If |&r,| > 1, the series 2(—)”("‘;';"],,{25,J(t)} will converge rapidly, and
n=|

will be easily calculable. Hence if we use the term on the right hand side

of the equation (180) for the calculation of 2( YL {26 (0}, the
n=1

numerical computation will be done easily when |Z7,|> 1. We shall take
an example. ,

If the incoming potential wave at the receiving end takes the form of
L (¢ >0), and if the condition of the circuit is assumed to be the same as
above discussed, we shall get the corresponding first reflected potential
wave at the receiving terminal by putting r=/=o0 in the z; formula of
(178). Thus we have

+o +oo
oy — Ee | 110+ (2= -4 ) V00 + 44t D=1 e 1,00
4 " m=1 n=|

+oo
L COUIACH! SIS
n=l

We take, for instance, a loaded submarine cable 200 n.m. long, with

the constants
=3 8/nm., C=o,4 pf/nm, L=0,050 %k /nm. and G=o.
In this case {; and ¢ are )

c1=2)724) C2=—0;368-

Therfore the series Z(-!—)"cz w(At) converges rapidly, whlle the series
2( ey, (%) converges so slowly for suitably chosen # that we shall

n=1
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find it laborious to execute its numerical computation. Putting (180) in

(181), we get finally,

+ el
v]:/;s-u{_((-4Bc2)/0(1z)—(2—%)§1n(zz)_4A51§(_)"gg/n(m o
152

+o 2
+ 484’22({:[”(15)— 4BLE e.rp{ —ﬁzicjﬂ. ).t} for ¢>o.

n=1 1
since we have, from (175), & Co=—1.

This last result is convenient for numerical calculation. Now the
cable in the present case is very long, and therefore all the reflected
potential waves except o, are so little influential upon the receiving end
compared with 7y for a transient short interval that we may represent the
condenser potential v by ‘the sum of the original and the first reflected
components, excluding the effects of other reflected waves. Thus we have,

for small values of ¢ greater than zero,
VD = U e (183)

Fig. 10 gives a representative curve illustrating the form of the condenser
potential in response to the above described constants as well as the

incoming potential wave %,

Fig. 10

Condenser potential due to rectangular incoming potential wave £

.§E 1T
§ - H--

° 1 2 3 4 5

Next we shall consider the current at the condenser terminal due to
the direct em.f. £ at xr=o. Put x=/ in the 7 formula of (178), then we
get the first reflected current wave at the receiving end, and in the case

of line leakage being neglected, the original current wave at the same end
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is given by (119), i.e.,

75=E~/Tc_‘e‘*’lo{2€y(t)} ........................................ (184)

For just the same reason as stated above, if the cable is very long, the
current of the condenser terminal is given, for a short interval, by /=7, +4,.

Hence the required value of the current is

. C - 2112 +°°>,,n WNom 7§38
ZSE~/7‘—S )’[2 fo(h)*mg(") =& ]n{)-¢z(’)}:|»~-~(185)
Fig. 11.

Received current at condenser terminal due to direct e.m.f. Z applied
at the beginning of the line.

- e
2116, %‘, & /»/
L~
\ /a'sﬁ/g
I
2 ~
§ 0.8 .29 aso 0.3/ a3z 033

Thme ire aec. rrrr—se
for small values of ¢ greater than //g.

In this case we have |{7;| <t for a comparatively long duration ;
therefore we had better use the above expression of ¢ itself than change its
form with the aid of (180). Tig. 11 is the graph of the received current
due to the direct e.m.f. /£ applied at the beginning of the cable which
possesses the above mentioned constants. From the curve we see that the
current is zero until #=//g at which time it jumps to the value 2Z£+vC/L

¢~*19 suddenly. It then begins to increase.

In conclusion, I wish to express my sincere gratitude to Prof. Risaburd
Torikai and Prof. Toshizd Matsumoto of the Kyodto Imperial University,

under whose guidance 1 have completed this paper.






