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Introductory. 

By the term " open channel " we include all rivers and artificial canals 

of whatever section in which the water flows with free surface exposed to 

the atmosphere. 

The force producing the flow, consequently, can not be produced by 

any external head, but is solely due to the slope or gradient of the channel. 

Flow of water in an open channel may be classified as follows : 

1. Steady flow. 

2. Non-steady or Variable fl.ow. 

Steady flow is such a one in which the same quantity per unit time 

passes through each cross section, so that the mean velocity in a given 

section is always constant. The steady flow is divided also into two classes. 
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a) Uniform flow b) Non-uniform flow. 

When all the water cross sections are equal and the slope of the water 

surface is parallel to that of the bed of the channel, the flow is said to be 

uniform. If the sections vary, the flow is said to be non-uniform, although 

the condition of steady flow is fulfilled. 

Uniform flow occurs mostly in artificial canal, but in natural river 

the flow is generally non-uniform. In the former case, the mean velocity 

in any section is constant, in the latter however, it varies being either 

increased or decreased. 

Non-steady or variable flow is such a one m which the mean velocity 

in a given section and its sectional area change with the time, having a 

varying quantity of flowing water per unit time. 

In the following, we will discuss only the steady flow, generally the 

case of non-uniform flow treating the uniform flow as a particular case 

of it. 



Chapter I. 

Energy curve and Critical depth. 

Energy head at any point m an open channel means the sum of the 

velocity head and the static head at that point. In considering the energy 

of flow for the whole cross section in a channel with regard to the change 

in water surface, it is convenient to take the energy head in that section, 

which is the sum of the velocity head and the static head at a point on 

the bottom of the channel axis. This n,lation may be expressed thus: 
v2 

H=-+y ........................ (l) 
2g 

v2 
m which H is the energy head in the section and 

2
g the velocity head, 

v heing the mean velocity of the section, g being the acceleration of gravity 

and y is the static head or water depth at the channel axis. 
v2 

The velocity head due to the velocity v is obviously equal to 
2
g, but 

the velocity in every point is not constant through the cross section, so for 

the entire cross section there must arise some difference between the velocity 

head due to the mean velocity and the true velocity head due to the 

individual velocities in the section. The ratio of these two depends upon 

the condition of the distribution of velocity in the section and it has been 

investigated by several authorities such as Jasmund, St. Venant, Boussinesq 

and others. 

Now, if we denote a= r:, 
2
r2 

being the true velocity head m the 
V g 

section, the value of a determined experimentally ranges from 1.0851 to 

1.1380, and 1.11 is generally accepted as a mean. 

Let 

Thus the above equation must be improved as follows 
av2 

H=-+y ........................ (l), 
2g 

Q, quantity of :fl.owing water in unit time, 
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F, area of whole cross section, 

b, breadth of water surface in the section. 

then v=-9.._, 
F 

eq. ( l) becomes 

aQZ H=~-+y ........................ (2) 
2gF2 

When the channel has a rectangular section, the water breadth b 1s 

always constant being independent of water depth, but when it has a 

parabolic section, b varies with the change I 
in water level. In the latter case, we I 

I • b I 

assume the section may be rep,cscnwd l>y ~- ----..!<---- ;J!I 
thfl following equation 

bz . 4=ay ..................... (,~) i 
where a, parameter of the parabola, Fig. 1. 

y, greatest depth at the center of the channel section. 

And from properties of the parabola, we have 

F= :by 

4 !. _:J_ 

=-13'y' 
3 

1 1 

]························<4) 

b= 2132 y2 
................................... (5) 

Henct1, for the rectangular section, 

F=b.y. 

or 

where 

H - aQ2 + --- y 
2gb2y2 

k 
=_J_ + y ................................. ( 6) y2 

y3-Hy2 +l.:1 =0 .............................. (6)1 
aQ2 

k1=--=constant. 
2gb2 

For the parabolic section, 

2 4 ½ ½ 
F=-by=-a y, 

3 3 
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H= aQ2 +y 
16 

2g X-iJy 3 

9 
9aQ2 

=-c--+Y 
32agy3 

k 
=-2 + y ............................... (7) 

y3 

or y4-Hy3 +k2 =0 ........................ (7)1 

where 
9 aQ2 

k2=- -=constant. 
32 ag 
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These equations (6) and (7) give the relation between water depth y 

and energy head H in a section of the channel, the former for rectangular 

and the latter for parabolic section. Each equation may be called the 

" equation of energy curve," since it represents the energy of flow correspon­

ding to various depths. 

Since eq. (6)1 is a cubic equation of y, there should exist three roots, 

of these, however, one comes out negatively and is useless for practical 

purposes, leaving two real positive roots. Equation (7)1 is a fourth degree 

equation of y and it has four roots generally, hut in this case only two 

real positive roots remain for practical use. 

Thus every equation of the energy curve has always two positive roots 

and for a given depth there is also one other depth having an equal value 

of energy head in a given section. ,ve call these the "alternate energy 

stages," one lower, the other higher. 

Now, let 

y1, water depth corresponding to lower energy stage, 

y2, water depth corresponding to higher energy stage. 

Then, for rectangular section, 

by (6)1 y/-Hy/+k1=0, 

Y2a-Hy2+k1=0. 

Eliminating k1 from these two, we have 

y/-Hy/-y/+Hy2'=0, 

H(y/-y/)=Y28-y/, 
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when 

H= Y23-yi3 
Y22 -Y12 

Y1=Y2=Y, 
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3y2 3 H=--=-y. 
2y 2 

Substitute this value of H in (6)11 then 
3 

y3-2y3+ k1 =0, 

Y3=2k =aQ2 
i gb2' 

v= 3J;S2· 
For the parabolic section, by (7)1 

y/-Hy1
3 +k2=0, 

Y24-Hy2s+k2=0. 

Eliminating k2 as before, we have 

y/-Hy18-y24 + Hy/=0, 

H(y/-y/)=(y/-y/), 

when 

H(y2 -Y1)(yl + Y1Y2 + Yl)= (Y2-Y1)(Y2+ Y1)(Y22 + Y12
), 

H-(Y2+Y1)(yl+Y12) 
- yl+Y1Y2+Yl ' 

Y1=Y2=Y, 
4y3 4 H=-=-y. 
3y2 3 

Substitute this value of H in (7)1, then 

4 4 ' k 0 y --y + 2= ' 
3 

4 27 aQ2 

y =3k2=--, 
32 <Jg 

y=J!; ~~~-
We know that, consequently, in an open channel of whatever section, 

when the ratio between the energy head of flow and water depth at a 

section, reaches some finite value, two alternate energy stages merge into 

one. Such water depth is usually called " critical depth " and is denoted 

by Ye• 
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Thus, for the rectangular section, 
2 y.=
3

H ............................... (8) 

y.=✓2k1 = V ;i2 

.................. (9) 
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for the parabolic section 
3 y0=-H .............................. (I0) 
4 

Ye= 1/3k2= 1/ :~ ~;2 
............. (11) 

The critical depth is quite independent of roughness and inclination 

of the channel bed, only varying with the sectional form for constant 

quantity of :fl.owing water. 

From the equations of energy curve represented by (6) ann (7), we see 

that, when water depth y becomes smaller and smaller, the energy head 

H becomes larger and larger and approaches infinity as y approaches zero, 

or when y becomes larger and larger, H becomes also larger and larger 

and at the limit it becomes infinity. 

put 

Hence there is no maximum finite value of H for any value of y. 

To determine the minimum value of H, if any, 

dH -=0. 
dy 

Differentiating the equations (6) and (6)1 

dll =l- 27.-:1 

dy y3 

= 3- 2H 
y 

differentiating the equations (7) and (7)1 

dH =l- 3k2 

dy y4 
3H =4--. 

y 
Thus, for the rectangular section, 

dH 2H 
--=0, 3---=0, 

dy y 

or 
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for the parabolic section, 

dH 
--=0, 
dy 

or 

3H 4---=0, 
y 

1- 3k2=0, 
y4 

In both cases, the water depth y correspends to the critical depth ye, 

so we may say that the energy head has its minimum value at the critical 

depth. 

Since for the rectangular section, 

dH = l- 27i1 = l- y!, 
dy ys ys 

and for the parabolic section, 

dH = l- 3k2= l- J!l, 
dy y4 y4 

so when Y< Ye, 
dH is negative, 
dy 

Y>Yc, 
dH is positive, 
dy 

and since the absolute value of !: for the same positive value of y0 -y 

and y-y0 is always greater when y < y0 than when y > y0 , the form of 

energy curve must be steeper in the former than in the latter case. The 

physical meaning is as follows : 

When water in an open channel flows decreasing its velocity along 

the direction of flow with a water depth initially less than the critical 

depth, the depth increases on the downstream in accordance with the change 

of velocity, a part of the kinetic energy being converted to potential energy 

and as until the depth reaches the critical, the rate of decrease of kinetic 

energy is greater than the rate of increase of potential energy, so total 

energy of flow becomes smaller and smaller, at the limit it has minimum 

value and beyond the critical depth the rate of decrease of kinetic energy 

is less than the rate of increase of potential energy, thus causing the total 

energy of flow to become larger and larger with less rate of change than 

the former. 
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When water flows increasing its velocity, the relations are quite the 

reverse. 

For the reasons above mentioned, if we plot generally the energy 

curve for a given condition of flow and channel, taking y as abscissa and 

H as ordinate, it may be 

shown as in the figure. 

=. 3 umin=-Yo 
2 

for the rectangular section. 

= . 4 .L.Lmtn=3Yc 

for the parabolic section. 

Lower energy stage y1< Ye• 

Higher energy stage Y2 >Ye· 

y.-Y1 < Y2-Yc• 

H 

t 

' ' ' ' ' ' I 
H H 

½~ Hmin, , 
----~-Ye----, ____ !'2 _________ J 

Fig. 2. 

When the water depth changes without any loss of energy, it should 

be transferred from one of alternate energy stage to the other. 

If we know one value of either alternate energy stage y1 or y2, the 

other value can be determined graphically by plotting the energy curve or 

it may be calculated in the following way. 

For the rectangular section :-

by eq. (6) 

The negative sign which precedes the radical may be omitted as y1 or 

y2 must be always positive. 
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by eq. (7) H k2 k2 
=-+Y1=-+Y2, 

y/ y/ 
y

2
-y1=7.:

2
(J:__J:_) =7.2Y2

3
-y~ =k (Y2-Y1)(y/ +Y1Y2+Yi2), 

yt yl y/ y/ y/ Y23 

y/ y23 -k2y/-lt2Y1Y2-k2y/=0, 

a lc2 2 k2 k2 - 0 Y1 --
3

Y1 --2Y1--- · 
Yz Y2 Y2 

To solve this equation, put y1 =X + lr,2 
, then 

3y/ 

xs-( k22 + k2 )x-( 2lc2s + lt22 + lc2)=0, 
3y2

6 yz2 27y/ 3y/ Y2 

x3 -px-q=0 

q2 PS --->O, 
4 27 

q ✓ q2 p3 
2 > 4-27, 

hence the equation, x3 -px-q=0 has only one real positive root, leaving 

two imaginary roots. 

Y1 = 3;:3 + :1 ~ +Jr-;;+ v ~ -Jr_:; .......... ... (13) 

If we use y1 for y2 and y2 for y11 the value of y2 can be obtained in 

a similar way. 



Chapter II. 

Equation of water surface curve. 

Change of water depth in the direction of flow with constant quantity 

of flowing water should be accompained by· change of velocity, which may 

be caused by one or more factors such as changes in slope of the bed, 

shape and dimension or roughness of the channel. 

Bernouilli's theorem shows that when water flows in an open channel 

from one point to another along the direction of flow, the sum of the 

velocity head, the static head and the height from any datum line at the 

first point is equal to the sum of the same quantities at the second point 

and the friction head employed to overcome the frictional resistance in 

flowing between two points. 

Consider the points on the bed along the stream axis in two sections. 

Taking a horizontal line passing through the point on the bed in down 

stream section as datum and considering the mean velocity of the whole 

section for each point, the theorem may be expressed as follows : 

av 2 

-
1
- + Y1 + lsinO 

2g 
av 2 

= 
2
; + Yd:f, .. .... (14) 

where 

v1, mean velocity at upstream 

section, Fig 3. 

v2, mean velocity at down stream section, 

y1, water depth at up-stream section along the stream axis, 

y2, water depth at down-stream section along the stream axis, 

l, distance between two sections along the stream axis, 

8, inclination of channel bed, being positive for downward slope as 

in figure and negative for upward slope, 

j, friction head between two sections. 
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By eq. (1)1 

then eq. (14) becomes 

~-H1 =lsinO-j. ....................... (15) 

i.e. change in energy head at two sections is equal to the difference of 

bottom height at one section above the other and the friction head between 

the two sections. 

In the case of uniform flow, where the section is throughout constant, 

the friction head for the distance l is generally exprssed by the following 

equation, 

where av2 

f=.-l ...................................... (16) 
c2_p 

a, wetted perimeter of the section, 

v, mean velocity of the .section, 

F, sectional area, 

c, velocity coefficient depending upon roughness, slope of channel, 

shape and dimension of section. 

Now, if we take two sections indefinitely near with distance dx along 

the direction of flow, the above equation (16) may be considered as being 

also applicable even in the case of non-uniform flow, i.e., 

friction head df= am Vm dx ...................... .. (16)1 
Cw,Fm 

Subscript m signifies the mean value in the two sections and here we 

consider that these mean values remain constant for a short distance dx. 

Therefore, change in energy head 

dH = dxsinO- df. ............. ........ (15 )1 

To deduce the equations of water surface curve, let it be assumed that 

the coefficient, c, is sensibly constant. 

Rectangular section : -

am=_!_{b+2y+b+ 2(y+dy)} =b + 2y +dy. 
2 

v =_9__(__!_ + 1 Q 2y + dy 
m 2 by b(y+dy) 2 by(y+dy) 

Fm=! {by+b(y+dy)}=b(y+ ~1/) 
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(
sinO- 17

m Q
2
(Y

2
+ydy) )dx 

dH= c2 [3",s 5 b3 4d 
) :J +2 y y 

=(sinO- 17
m !l_)ax ........................... (a) 

c2 bsy3 

neglecting differentials of the second order. 

le aQ2 
But, by eq. (6), H=____1.+ y, k1=~ --, 

y2 2g{,2 

dH-dy--dy- 1-- dy ................ (b) _ 27c1 -( aQ
2

) 

y3 gV1/ 
Equating (a) and (b), 

we have smO--- dx=l---dy, 
( 

• '7m Q2 ) aQ2 
c2 bsys gbzys 

/j Q2 
y3sin8-~-

c2 bs . 
dy=----,---dx .. .......................... (17) 

s aQ2 
y-­

g{,2 
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Putting qm = b + 2y + dy and neglecting differentials of the second order, 

we have 

or 

2Q2 Q2 
y3sin8~ --y---

c21,s 02b2 
dy=--------dx, 

aQ2 
Ys+ gt,z 

s aQ2 
y--

gb2 dx ___ ____._ ___ dy 
3. 2Q2 Q2 
ysm8--y--

gb2 c2b2 

·················ClS) 

This differential equation gives generally the relation between changes 

of water depth and distance in an open channel whose section is rectan-
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gular and we must integrate the equation between proper limits in order 

to determine the amount of change. However, as the integration is too 

complicated, it is wiser to use a simple equation for practical purposes, 

which will be mentioned later. 

As a special case, when the channel bed is horizontal, sinO must be 

equal to zero. Then eq. (18) becomes 

2Q! Q2 2Q2 Q2 
c2/}y + c2b2 c2bsY + c2b2 

dy=-----dx= -----dx, 
aQ2 -y3 y/-yB 
gb2 

or dx= 
2

~{-Y
3

Q~ dy ................................................... (19) 
-Y+-c2bs c2b2 

Integrating this equation between proper limits, 

or 

when 

This is an equatien of water surface curve showing the change of water 

depth corresponding to the change of distance in an open horizontal channel 

with rectangular section. 

Parabolic section:-

v = Q( 1 + 1 )- 3Q 2by+ydb+bdy 
m 2 : by : (b + db )(y + dy) - 4 b2y2 + by2db + b2ydy' 

1 { 2 2 . } 2 ( bdy + ydb) Fm=- -by+-(b+db)(y+dy) =- by+ · , 
2 3 3 3 2 
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= ?!!___ Q 4b2y2 + by2db + 4b2ydy , 

32 b5ys + _!j_bsy4dy + _!j_b•ysdb 
2 2 

df= <ImVm2 dx-27Q <Im b2y2 dx-27 <ImQ2 dx 
c2Fm 8 c2 liy 5 8 c2b3y3 

' 

dH=dxsin0-df=(sin0- 27 Q
2 ~)ax ............ (c) 

8 c2 b3y3 

k 9 aQ2 
But, by eq. (7), H= ;:+y, k2= 

32 
ag' 

dH=(l- 3k2)ay=(l- 27 aQ2 )ay ............... (d) 
y4 32 i3gy4 

Equating (c) and (d), we have 

( sin0- 27 Q2 ~)ax =(1-~ aQZ )ay. 
8 c2 b3y3 32 i3gy4 

Substituting 4i3y for b2 by eq. (3), 

or 

• 27 Q2 <Im sm0---.-
32 c2i3 by4 

dy= 27 aQ2 dx 
1--~ 

= 

dx 

32 i3gy4 

4 • /} 27 Q2 <Im 
ysm -327fab 

4 27 aQ2 dx, 
y-32ag 

4 27 aQ2 
y -32¾ 

27 Q2 dy, 
4 • /} <Im 

y sm -32 ~2 i3b 

but <Im=! {a+(a+da)}=a+d;, 
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<Im - a + da - a since the second term will vanish when the b~-,; 2b-,;, 
differentials of the second order are neglected. 

And although both b and a are dependent on water depth y, we may 
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assume the ratio-{-to be constant without any appreciable error for 

practical use. This is true for the channel having greater water breadth 

compared with water depth. 

Thus, integrating the equation, 

4 27 aQ2 

Y --;i,2- ·ag 
dx= -. -4--27---"-Qz_a_dy ....... : ................................. . (21) 

srn8y ---- -----
32 c2iJb 

between proper limits, we have 

( ✓--g-)( ✓B-) Y2- --- Yi+ --
B-Asin(} l__!_foo- sin8 sinH 

Vsin
5

t/B
3 

4 "( -J_!!_)( +J_!!__) Yi . (} Y2 . {} sm sm 

- ~ (,~n-' )'~ -tan-' }H Jl ....... (22) 

~ sm8 ~ sm8 

rl.( )- y B-Asin(} 
.,., Y --;--fJ + 1/ · 5fJBa Sln Sln 

in which 

!' y-✓ B l 
_!__loo- sin8 - _!__tan -i-'!l -
4 ° ✓ JJ 2 4/ B 

Y+ --;---(} ~ sin{} Sln 

see eg. (11 ). 

This is also an equation of water surface curve showing the change 

of water depth corresponding to the change of distance in an open channel 

having a parabolic section. 

As a special case, when the channel bed is horizontal, 

Then eq. (21) becomes 

sin8=0. 
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27 aQ2 
4 32T-y 

dx= g dy 
27 Q2 q ---
32 c~a b 

_ 32 c2iJb 4 . -- --(y0 -y")dy ................................. (23) 
27 Q2a 

By integration, we have 

JX2 - 32 c2iJb 4JY2 32 c2Jb JY2 4 dx-- --y dy-- -- y dy 
X1 27 Q2a • Y1 27 Q2a Y1 

X2-X1=32 
c

2

i3b {(Y2-Y1)-J___(Y26-Yi6)} ................... (24) 
27 Q2a 5 · 

or X2-X1=l=¢(Y2)-¢(Y1) ....................................... (24)1 

,1.( )- 32 c
2
i3b ( 1 5) 

y., Y -7jff Q2a Y-5 Y · 

This equation shows the relation between changes of water depth and 

distance in an open horizontal channel having a parabolic section. 

For steady uniform flow, as the water depth at every cross section is 

constant, the water surface being parallel to the bottom slope, dy must be 

equal to zero. Hence, for the rectangular section, by eq. ( L 7) and am =a, 

y3sinfJ- :
2 

-~: =0 .................................... (e) 

_Q:_= c2iy__sinfJ, 
b2y2 17 

but F=b.y. 

Hydraulic mean radius, 

Inclination of bed, 

!l-.=v2=c2RS, b2y2 

v=c✓RS. 

p by 
R=--=-·-. 

q t1 

s=sinfJ. 

Similarly for the parabolic section, by eq (21), 

y4sinfJ- 27 _Q2_ __!!__=0 .............................. (/) 
32 c2a b 
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2 -by 
Q2 3 

---=c2 --sinO 
16 ~ 3 u ' -uy 
9 

v=c✓ RS. 

see eq. (4). 

Both arrive at the same result v=cv RS which 1s the well-known 

Chezy'R formula for uniform fl.ow. 

And when dy=O, dH=O, 

dxsinO-df=O 

dxsinO=df. 

see (b ), ( d). 

see eq. (15)1• 

It shows that, in the case of uniform fl.ow, the entire fall clue to bed 

incluation is employed in overcoming the frictional resistance, and the 

energy of fl.ow in every section is always constant. 

Let y,. be the water depth which with given quantity of fl.owing water 

and bottom slope in the channel, would maintain a condition of uniform 

flow, and we call it "neutral depth." 

Next we will discuss the relations between water depth, neutral depth 

and critical depth in the case of non-'-uniform flow. 

Let, neutral depth, 

u,., wetted perimeter when y=y ... 

Rectangular section :-

y 3sin0- u,.Q
2 
=0 

" c2b3 
see eq. (e). 

Now let us assume um=u=u,. in eq. (17) for the sake of simplicity, 

this is true for greater breadth compared with water depth as in the case 

of most natural channels, and substitute y,.3sin0 for uQ2 and y0 for aQ2_ 
<}bs gb2 



Equation of water surface cui·ve. 

Then we have 

dy= yssin8-y .. ssin8 dx=sin8 ys-y,,3dx 
ys-y.3 y3-y/ 

or 
]. y3-1/ 3 

dx=---· _._cdy ............................... (26) 
sin(/ y3 -y,.3 

But, by equation (25), 

and by eq. (9) 

or 

sin(/=.JL 
ac2 

=.JL 
ac2 

b 

1/ -·--1. 
dx= ac

2 

!!___ y/ dy ........................... (26)1 
g nn 1/ -·--1 

Yn3 
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The differential equation (26) or (26)1 gives the relation between water 

depth and distance for the rectangular channel section by the terms of 

critical depth and neutral depth. 

'fhe value of y,,., however, can not be determined directly from equation 

(25), since n,. is dependent on y,.. 

n,.=2yn+b, 

(2 +b)Q2 

Y 
3sin8- y,. 0 

" c2bs ' 

c2b3sin8y,.3 -2Q2y,.-bQ2=0. 

3 2Q2 Q2 
y,,.----y ---- o, 

c2b3sin(/ n c2b2sin8 
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a/q Jt ~ a/q Jt ~ -Yn=,v -+ ----,v -- ---- ...... (2,) 
2 4 27 2 4 27 

2Q2 Q2 
where p stands for -~- and q for 

c2b3sin8 c2/hino" 

Thus the value of Yn may be determined by this equation. 

Integrating eq. (26) between proper limits, we have 
2 

Jx dx=-1-fY2 y3-y/dy 
. 8 3 3 • ' 

X1 _sm Y1Y -y,. 

Y2-Y1 +__J/__r,,_(1- y/){_!_Iog (Yz-Yn)2 (yl+y,.y1+y,.
2

) 

sinO sinO y,.3 6 (y1 -yn)2 (Y22 + YnY1 + y,.2
) 

-✓1. (tan-1!;2+y,. tan-1
,

1.+Yn)}·· .. ··<2S) 
3 3 Yn 3y,. 

'fhis equation is too complicated for practical use and therefore itlis 

more convenient to integrate the equation (26) or (26)1 by putting z for JI__ 
Yn 

y=y,.z, 

and 

or 

dy=y,.dz, 

1 
dx=-­

sinO 

=___J!__r,,_ 
sinO 

3 3 
JL ~ 

3 3 
Yn y,. dy 

y3_1 
y,.3 



wlwre 

Equation of water surface curve. 

¢( ) - YnZ + ( 1 ac
2
b ){ 1 1 (z-1)2 

z --- Yn ----- -og~-~-
sinO sinO ga,,. 6 z2 +z+ l 

_ 1 t· _1 2z + 1 } 
ii 3 an ✓ 3 · 
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If we prepare the tables giving the values of 1-100' (z-l)
2 

and 
6 t> z2 +z+ 1 

1 t _1 2z+ 1 
✓ 3 an ii 3 

computed for various values of z, the value of ¢(z) may 

be determined conveniently. 

Thus, equations (28), (28)1 and (28)2 serve for determining the change in 

water_ depth corresponding to change in distance referring to neutral depth 

which is the water depth as being a uniform flow, or the distance between 

two cross sections having given water depths in non-uniform flow and so 

these are~equations of water surface curve in an open channel with rectan­

gular cross section. 

Parabolic section :-

Let b,., breadth of water surface when y=y,,.. 

27 (T Q2 

y 4sin0---n -=0 
" 32 b,. c2i3 

see eq. (J). 

y .. =JE._ ....!!!!.. QZ ........................... (29) 
32 b,,. c2osin0 

Since the ratio ~ may be assumed as a constant, the value of y,. can 
b 

be determined by this equation, after the value of ~ is found for any 
b., 

water depth in the given section. When JL is small, the approximate 
b 

value of a may be computed by the following equations. 

or 

Substituting 

(21 ), we have 

8 y2 32 y4 

a=b+- --- -
3 b 5 b3' 

8 y2 
a=b+- -. 

3 b 

y,,.4sin0 for 
27 q Q2 

---
32 b c2iJ 

and. y.4 for 27 aQ2 

--
32 ag 

m eq. 
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4 4 
dx= y -ye dy 

sin8(y4-y/) ' 

l y4-y 4 
=- · c dy . ............................. (30) 

sin(} y4 -y,,/ 

But, by eq. (29), 

and by eq. (11), 

1 ( 4 4) 2b -4 y -Ye 
dx=a~ Ye dy 

g11,. ~(y4-y,.4) 
y,.4 

y4 
--1 

ac2b 11 4 

__ n ·: dy . .................. (30)1 

g11n L-l 
y,.4 

The (lifferential equations (30) and (31)1 for the parabolic section have 

quite the same form as that for the rectangular section, differing only in 

index, and they also give the relation between water depth and distance by 

the terms of critical depth and neutral depth. 

Intergrating eq. (30) between proper limits, we have 

As before, put z=X. 

'l'hen 

Yn 

1 dx=-­
sin0 
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By integration, 

X2-X1= ~n (z2- z1)+-~"-(l- y/){l_log (z2-l)(z1 + l) 
smO smO y,.4 4 (z1 -l)(z2+l) 

_ _!_(tan-1z2 - tan-1z1)} ......... (31)1 
2 

1 z -1 In this case, it is also convenient to prepare the tables of -log--
4 z+l 

and _l_tan-1z for computation of ¢(z). 
2 

Thus, equations (31), (31)1 and (31)2 serve for determining the change in 

water depth corresponding to change in distance referring to neutral depth, or 

the distance between two sections having given water depths in non-uniform 

flow and so these are equations of water surface curve in an open channel 

with parabolic cross section. 

· All the discUBsions investigated above are wholly restricted to the chan­

nel whose cross section is either rectangular or parabolic. If it be desired 

to apply the theory above-mentioned to a channel of trapezoidal cross section, 

we can replace it approximately by a parabolic section having the same area 

of cross section and the same width at water surface, i. e., 

sectional area 

and 

1 2 
F=2 (a + b)d = 3 by, 

y=.!!_ (a+ b)d 
4 b 
7J2 a=-. 

4y 

When the channel has greater water surface width compared with 

water depth as in the case of most natural streams, it may be replaced by 
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a rectangular section whose width should be the water surface width and 

water depth should be the average depth obtained by dividing the sectional 

area by the water surface width. 

For any other sectional form, if it can be expressed by a simple ma­

thematical equation, we can deduce all the relations in the similar way as 

already described. 



Chapter III-

Several forms of water surface curve. 

The surface curves corresponding to several kinds of flow will now be 

in ves tiga ted. 

A. Channel bottom sloping downward. 

For the rectangular channel section, 

dy (} 1,''3 - Yn3 ( -·-=sin ~'-~- 26) dx ;t/-y/ ............................... . 

Y3 

---'----1 
=_JI- (1n !/n3 ...... ••• ............ ••••••(26)1 

ac2 b y3 -·l 
y/ 

For the parabolic channel section, 

1) 

a) 

dy =sin(} Y
4

-Yn
4 

•••••••••••• •••••••••••••••••••••••• (30) 
dx y4-Yc4 

In above equations both numerator and denominator on right hand side 

being positive, dy is always positive when dx be taken as positive along 

the direction of flow. Hence water depth increases to downstream, velocity 

being reduced. 

When the water depth increase indefinitely toward the right, both 

Y3 y s y4 y 4 
1
. . . . d1'f fractions · - n and · -. " ultimately tend to the 1m1t umty, 1.e., -·-

ys-y0s y4-y/ dx 

will approach sin(}, the inclination of the channel bed. It follows that the 

water surface curve on the down stream side will approach a horizontal line. 

In the other direction, toward the left, as y is always decreas_ing, it 
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will gradually approach Yn and at the limit dy becomes zero, so that the 
dx 

surface curve tends to be assymptotic to 

the line y,.. 

This case is perhaps the form of 

backwater curve most frequently en­

countered in engineering practice, and 

corresponds to the curve created above 

a dam or other obstruction in open 

channel. 

b) Y<Y,, 

a) 

The numerator being negative and the denominator positive on the right 

hand side of the equations, dy is always negative, the water depth decreases 

to downstream, velocity being increased. Toward the right as y approaches 

Ye, the absolute value of dy becomes great- -=-------.;;;;;;;;;;;;;;~--
dx 

er or the surface curve becomes steeper and 

at the limit when y=yc, dy becomes I , 
dx ~~

1 

Y, 
--::t) so that the curve becomes vertical at , ~~/, c 

b) '~.,,,., that point. ~ 

Toward the left as y approaches y,., the absolute value of dy becomes 
dx 

less and at the limit when y=y,., dy must be equal to zero so that the 
dx 

curve becomes assymptotic to the line y,.. 

This case corresponds to the water surface curve created just above a 

sudden drop in the bottom of channel. 

c) 

Both numerater and denominator 

being negative, dy is always positive 

and hence the water depth increases to 

downstream. 

Toward the right as y approaches 

Ye, the curve becomes continuously 

steeper and approaches a condition of verticality. 
C) 
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Toward the left as y decreases, dy approaches a constant value 
dx 

(
- g <1n or g <1n) so that at the limit when y= 0, the curve m-
- ac2 b ac2 ,;: 

tersects the bottom of channel at a definite angle. Hence the curve is de­

finitely limited at both ends. Such a curve exists when water emerges from 

a sluice way with a relatively high velocity of effiux. 

2) 

d) 

Both numerator and denominator being positive, dy is always positiYe. 

As y increases indefinitely toward 

the right, the curve approaches a hori­

zontal direction, it becoming flatter. 

' " : I 
I : 

,} I 7/ 

Yn : fC 

In the other direction as y appro­

aches Ye, the curve becoming steeper it 

becomes vertical at the limit when y= Ye· 

This case corresponds to the surface 

curve obtained where an underwater 
1/,fjjj;~f,-(:%((8~1~ 

d) 

obstruction such as a dam 1s placed across a stream with a rapid slope. 

e) Y<Ye, but Y>Yn· 

The numerator being pesitive and the denominator negative, dy is 

negative. 

As y decreases indefinitely toward the 

and at the limit when y=y,., dy be­
dx 

coming equal to zero, the curve becomes 

assymptotic to the line y,.. 

Toward the left, as y approaches y0 

the curve becomes steeper and at the 

limit when y=y0, dy being -oo, the 
dx 

curve becomes vertical. 

right, the curve becomes flatter 

~---I ---.. 
I 

~ I 

e) 

This case is seen when a sudden rnsh of water occurs, such as may be 

produced by the bursting of an embankment. 

/) y<y ... 



162 JJiasao Hirano. 

Both numerator and denominator being negative, dy is positive. 

As y increases toward the right, the numerator tends to vanish 

than the denominator and at the limit when Y=Yn, dy =0, i.e., the 
dx 

becomes assymptotic to the line Yn• 

Toward the left, as y approaches 

zero, the curve will intersect the 

bottom of channel at a definite acute 

angle. 

This state is attained at a sluice 

m a stream having a slope such as 

3) 
g) 

for the rectangular channel section 

for the parabolic channel section 

Both numerator and denominator being positive, dy is positive. 

any value of y, :! has always a con­

stant value equal to sin0, so the surface 

curve makes a horizontal straight line. 

h) Y<Yc· 

Both numerator and denominator be­

mg negative, dy is positive. 

By the same reasoning as in the pre­

ceding case, the curve makes a horizontal 

line. 

B. Channel bottom level. 

Here, as sin0 is equal to zero, y,. can 

For the rectangular channel section, 

dy 

2Q2 Q2 
~y+~b2 

2 
Q2 by+l 
--............ (19) 

dx y/-y3 y/-y3 

~y+l 
-- ............ (19), 
y/-y3 

faster 

curve 

For 

h) 
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For the parabolic channel section, 

dy = 27 Q2<1 ...................... ; ••••••• (23) 
dx 32 c2Jb(y/-y4

) 

=_ff!!__ y/ ................................. (23)1 
c2ab y/-y4 

'rhe numerator being always positive and the denominator negative, dy 

1s negative. 

As y decreases toward the right, the curve becomes steeper and at the 

limit when y=y. it becomes vertical. 

Toward the left as y increases indefinitely, the curve approaches a 

horizontal direction it becoming flatter. i) 

J°) Y<Yc• 

Both numerator and denominator 

being positive, dy is positive. 

Toward the right, as y increarns, the 

curve becomes steeper and at the limit 

when y=y0 it becomes vertical. 

Toward the left, as y decreases inde­

finitely, the curve becomes flatter and at 

the limit when y=O, dy has a constant• 
dx 

Ll 
l Ye 

/////// /77/7/7/7/7//7/// // // 

½~ /," / 1/~/~/@ 
j) 

value (=_ff__ for the rectangular section; _JJ____ ~ for the parabolic section) 
ac2 ac2 b 

so that the curve intersects the bottom of channel at a definite angle. 

Hence the curve has limited length as in case c. 

This case and the preceding one corresponds closely to cases c and b, 

if in the latter, y,. has become infinite. 

This is true since as the slope of channel becomes smaller and smaller 

y,. becomes indefinitely greater. 

0. Channel bottom sloping upward. 

Here sin0 is negative and y,. must l,e put out of consideration as it has 

no physical significance. 

For the rectangular channel eection, 



164 ]}Iasao Himno. 

3. 2Q2 Q2 
y smfJ---y---

dy _ c2b3 c2b2 

-------,---- ..................... (18) 
dx 3 aQ2 

For the parabolic 

dy 
dx 

y-­
gb2 

channel section, 

4 • O 27 Q2a ysm ----
32 c2ob 

4 27 aQ2 

y - 32 i3g 

........................ (21) 

y4sin fJ - ~y / 
c2ab 

........................... (21 )1 

k) Y>Yc• 

The numerator being negative and the denominator positive, dy is 

negative. 

Toward the right as y decreases, the curve becomes steeper and appro-

aches verticality as it approaches the depth k) 

Ye• 
Toward the left, as y increases steadily, 

the curve gradually approaches -the hori­

zontal. 

l) Y<Yc· 

Both numerator and denominator being 

negative, dy is positive. 

Toward the right, as y increases, the 

curve becomes steeper and at the limit when 

y=y0 , it becomes vertical. 

'roward the left, as y approaches zero, 

dy approaches a constant value ( = j/_ or .-. 
dx c2a l) 

~) and at the limit, the curve intersects the bottom at a definite angle. 
c2ab. 

This curve has definite length also as in the cases c and J. 



Chapter IV. 

Momentum curve and Hydraulic jump. 

When a shallow stream moving with a high velocity strikes water of 

sufficient depth there is commonly produced an abrupt rise of water level 

which is called "hydraulic jump" or "standing wave." 

We see that from the several water surface curves produced in accor­

dance with the conditions of flow, when the water depth reaches the critical 

depth there occurs neassarily a change in the nature of the curve. 

With an increasing velocity, the water depth being reduced along the 

direction of :flow, the critical depth may he passed through smoothly. With 

a decreasing velocity, however, the water depth being increased, the critical 

depth can not be passed through without a heavy internal disturbance ac­

companying the hydraulic jump, except when the neutal depth and the 

critical depth are equal as represented in g and h in the preceding chapter. 

In general, the flow at a critical depth may be considered as a possible 

cource of danger, and hence worthy of special consideration. 

As already mentioned there exist two alternate stages of flow with con­

stant energy head in an open channel and if we assume no energy loss 

occurs during the flow, the water surface should be transferred from a lower 

to a higher energy stage at the hydraulic jump. 

This assumption is not correct, however, since the hydraulic jump is 

accompanied by a great tumbling of the commingling water and the pro­

duction of a white formy condition throughout the moving mass, which are 

caused by the dissipation of energy. Hence, at the hydraulic jump the 

water surface, is actually transferred from a lower stage to another a little 

lower, owing to loss of energy. 

If we can find the amount of such loss of energy, then the height of 

hydraulic jump and its location may be determined. 

For the investigation of the hydraulic jump it is convenient to apply 

Newton's second law of motion, i. e. the momentum theory. 
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According to this law, change produced in momentum by the change 

of velocity must be equal to the unbalanced force acting on the moving mass 

to retard its motion. 

Now, let 

v1, mean velocity at section 1 entering the hydraulic jump, 

v2, mean velocity at section 2 leaving the hydraulic jump, 

Q, quanitity of fl.owing water in 

w, 

g, 

a, 

Then 

unit time, 

weight of water m unit volume, 

acceleration of gravity, 

correction coefficient for square 

of mean velocity. 

mass of water fl.owing m unit time 

change m velocity 

change m momentum 

Also, let 

I 

' ' I 
I 

' ' ' ~ v2 
o I 

~V.1l : 

//7/7/7//7/1//7:V/T/T/T/7/// 

wQ =--, 
g 

P11 hydrostatic pressure on the plane of section 1, 

P 2, hydrostatic pressure on the plane of section 2, 

/, frictional resistance along the wetted perimeter or any other 

external force applied between two sections. 

Then 

the unbalanced force in the two sections = P2-P1 + f 
But frictional resistance is generally so small that it may be neglected 

in this case and here we assume that no external force is being applied 

between the two sections. 

Therefore, Newton's 2nd law shows 

awQ 
--(v1 -v2)=P2-P11 

g 

awQ awQ 
--V1 + P1 =--V2 + P2 

g g 

i. e., the sum of the momentum and the static pressure remains constant in 
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sections both entering and leaving the hydraulic jump. 

For convenience, we call here the sum of the momentum and the static 

pressure in a section the "momentum head" and in the following we will 

discuss the relation between the momentum head and the water depth m 

an open channel. 

Let M be the momentum head and F the sectional area, then 

awQ 
M=--v+P, 

g 

v= __g__' 
F 

lJI=aivQ2+P ....................................... (32) 
Pg 

lfor the rectangular section, 

water depth=y, width of section=b, 

F=by, 

and P=_!_wby2 

2 ' 

_ awQ2 wby2 

M--'----+- ................................. (33) 
byg 2 

ya- 211£ y+ 2aQ2=0 ..........•..................• (33)1 
bw gb2 

For the parabolic section, 

greatest depth at centre of the section =y, 

breadth of water surface = b, 

To find the static pressure for the whole section, consider the elemen­

tary area with breadth x, depth dh at distance y-h below the water surface. 

Static pressure for elementary area 

xdh= w(y-h)xdh, 

static pressure for whole section 

P= JY w(y -h )xdh, 
0 

but from the equation of parabola 
1 1 

x=202 h2
, 

I ' 

: ------- --b---~------- ------- --- ➔: 

~~=-= -~ 
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y 1/ 
P=wyJ xdh-wf hxdh 

0 0 

1 Jy l tJY 3 =2a' wy h'dh-2wa• h'dh 
0 0 

4½½4½½ St½ =-iJ wy --a wy =-a wy. 
3 5 15 

Hence, by equation (32) 

M 3 awQ2 8 ~t ~ ( 
=- --+-u wy• •••·····•••••·•••••·• 34) 

4 stgy½ 15 

4 _ 15 M t 45 aQ2 
_ ( 4) y ---y+----0 ............... 3 1 

8 a½w 32 t1g 

Both equations (33) and (34) show the relation between the water depth 

and the momentum head, the former l)eing for the rectangular section and 

the latter for the parabolic section. 

We call these equations the "equation of momentum curve," since it 

represents the momentum head in a section corresponding to various depths 

of flow. 

In examining the equation of momentum curve we see that when the 

water depth y becomes smaller and smaller, the momentum head M be­

comes larger and larger and approaches infinity as y approaches zero, or 

when y becomes larger and larger, III becomes also larger and larger and 

at the limit it becomes infinity. Hence there is no maximum finite value 

of 11:1 for any value of y. 

However, there might be a minimum value of M for a finite value of y. 

Differentiating eq. (33), we get 

3y2dy- 2M dy- 2Y dM=O, 
bw bw 

3y2- 2M 
bw --=----dy 2y 

bw 

For the minimum value of M, if any, dM must be equal to zero, 
dy 
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3 2 2JJJ -0 y-~--' 
bw 

M = 1-tnvy2
, 

2 
substituting the value of .ZJ.f to eq. (33)1, 

2aQ2 
ys_3ys+-- =0, 

gb2 
aQ2 

y8=--, 
gb2 

t'= a/ aQ
2 

• 
.1 ,v 9b2 
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This value of y just corresponds to the critical depth Ye (see eq. 9). 

Differentiating eq. (34)11 we get 

4 ad 45 M ½d 15 y y-_ -Y y-_ 
16 wJ½ 8 

4ys- 45 M y½ 
16 wJ½ dM ---------

dy 15 y½ 

s wJ½ 

For the minimum value of M, if any, dM =0, 
dy 

4 3_ 45 ]Jf ½ -0 y ---Y-, 
16 wa½ 

M= 64 wJ½y½, 
45 

substituting this value of M to eq. (34)1, 

y4-~y4+~ aQ2 =0, 
3 32 Jg 

4 27 aQ2 
y=- --, 

32 ag 

Y= 4/ 27 aQ2• 
,v 32 Jg 

This value of y is also equal to the critical depth Ye• see eq. ( 11 ). 

Thus we may say that in an open channel of whatever section, when 

the water depth reaches the critical, the momentum head has its minimum 

value. 
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And the m1mmum value of the momentum _head is expressed by the 

following equations. 

for the rectangular channel section, 

for the parabolic channel section, 

Equation (33)1 is a cubic equation of y and it may have at most two 

positive roots. Let us assume y{ and y; to be such positive roots. 

put 

then 

3 _ 2M + 2aQ2 
_ 0 y -b-Y -b2 - ' w g 

A= 2M, 
bw 

y~3 -Ay~+B=0 

y;3 -Ay~+B=0 

2aQ2 

B=--, 
gb2 

··························· ......... (a) 

.................•..........•..•.... (b) 

Eliminating B by subtracting (b) from (a), we have 

(y'l -y;3)-A(y~ -YD= 0, 

y~2 +y;y;+y~2 -A=0 .............................. (c) 

Similarly 

but 

by eq. (33). 

= __ 2 + _a __ +~ YI ✓ 2Qt 12 

2 - gb2y; 4 
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= _-1Li_±-1Li_J8y/ +l 
2 2 y;a 

and y'=-_1b_+_)h_ ~+l I 1' ✓ 8 3 
2 

2 2 y;3 

For any positive value of y, J Sy/ + 1 is always positive and greater 
Ys 

than 1. 

Thus y; and y~ are both positive, provided we are using only ihe 

positite sign which precedes the radical, and hence the equation of the 

momentum curve for the rectangular section has two positive roots, i. e. 

When 

by (c) 

y~= ~~(✓~+l 

y~= y~ (✓ 8y/ + 1 
2 y;3 

y~=y;=y, 

2aQ2 

3y2=A =--+Y2, 
gb2y 

a_ aQ2 
Y--b_,, 

g -

_ a/ aQ2 _ 

Y-~ gb2 -Ye· 

::~} ..................... (37) 

i. e. at the critical depth, two values of y merge into one. 

The equation of the momentum curve (34) for the parabolic section is 

much too complicated to determine how many positive roots it should have. 

In this case or for any other sectional form of channel, it is convenient to 

use the graphical method. 

Since for the rectangular section, 

awQ2 wby2 
M=-+- .................................... (33) 

bgy 2 

dM awQ2 wby 8 
( y 3

) --=---+wby=- -·-" +wby=wby 1--", 
dy bgy2 y2 ya 

anrl for thri parabolic section, 

M __ 3 awQ2 + 8 1t ½ 
---.--c--, _u wy 

4 a½ gy• 15 
··············· ...... (34) 
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dM =- 9 awQ
2 

+ia½wy½ 
dy 8 a½gy½ 3 . 

= _i_a1 wy½ (1-.'!!___ a Q
2 

) 

3 32 agy4 

4 '21· 1!_(1 y 4) =Bo wy 2 
- ~: , 

eo when dM fa negative, 
dy 

dM is positive, 
dy 

dM 
and srnce the absolute value of -- for the same positive value of Yc-Y 

dy 
and y-yc is always greater when Y<Yc than when Y>Yc• the form of the 

momentum curve should be steeper in the former than in the latter. The 

physical meaning 1s a follows : 

When water in an open channel flows decreasing its velocity along the 

direction of flow with a water depth initially less than the critical depth, 

the depth increases on the downstream in accordance with change of 

velocity, a part of the momentum being converted to static pressure and as 

until the depth reaches the critical, the rate of decrease of momentum is 

greater than the rate of increase of static pressure, so the momentum head 

becomes smaller and smaller, at the limit it has mininum value and beyond 

the critical depth the rate of decrease of momentum is less than the rate of 

increase of static pressure, thus causing the momentum to become larger 

and larger with less rate of 

change than the former. When 

water flows increasing its veloci­

ty, the relations are quite the 

reverse. 

For the reasons above men­

tioned, if we plot generally the 

momentum curve for a given 

condition of flow and channel 

taking y (water depth) as abscissa 

and M (momentum head) as or-

M 

i 

0 --Y 
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dinate it may be shown as in the 

M . 3b 2 mm.=2 WYc 

figure. 

for the rectangular section, 

= 64 wa½y i for the parabolic section. 
45 C 
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Form of momentum curve is quite analogous to that of energy curve 

but the former is situated above the latter, since M is always greater than 

H (energy head) for same water depth. 

Thus, the equation of momentum curve has always two positive roots 

and for a given depth there is always one other depth having an equal 

value of momentum head, this point falling in all cases beyond the critical 

depth. We call these the "alternate momentum stages," one lower, the 

other higher. The flow may change from one stage to the other without 

the intervention of an external force and at critical depth these two stages 

merge into one. 

Lower momentum stage y{< y0 , 

higher momentum stage y~>Yc• 

At hydraulic jump the momentum head remains constant in the sections 

both entering and leaving the jump and the water surface should be 

changed from lower momentum stage to higher momentum stage. 

Such a change, howev­

er, requires a change in 

the energy of flow. 

If we plot both 

momentum and energy 

curves m the same 

figure we can determine 

the height of hydraulic 

jump and loss of ener­

gy due to the jump 

easily for a condition 

of flow and cannel. 

Now, let 

M 

y~, lower momentum stage, 

• 
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y;, higher momentum stage, 

H' 
' 

Then, 

lower energy stage, 

higher energy stage, 

energy heaa corresponding to water depth y2, 

energy head corresponding to water depth y;. 

height of hydraulic jump 

loss of energy head due to hydraulic jump =H-H', 

loss of water depth due to hydraulic jump =y2 -y; 

We may calculate these values in the following way. 

Assume the channel section to be rectangular. 

=J 2y/ + y? - 3J/2 ··················C38)i 
y~ 4 2 

Hence, if we know either y~ or y~, the water depth at the section 

entering or leaving the hydraulic jump, then the height of the jump can be 

determined bv one of these equations. 

By eq. (6) and (9), 

H k1 k1 y/ 
=-. +Y2=-+Y1=-+Y1, 

Y2 y~ 2y~ 

by eq. (37), 

✓ 2y a y'2 1/ = ~• c_ + _1 __ _ ,t_l 

Y'1 y 2 

• 
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4Y/ + Yi- 2y1 / 2Yc
3 + Yi 

Y1 II/ Y1 4 

/2y a y2 - ,v --;;j;+ --i .................. (39) 

Change of water level in the flow with constant energy head 

=Y2-Y1• 
Change of water level in the flow with constant momentum head 

=y~-y~. 
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Equating yf and y1, y2-y~ is loss of water depth due to the hydraulic 

JUIDp. 

By eq. (12) and (9), 

Y2= 4Yc:(1+ J1+ By!), 
Y1 Ye 

and by eq. (37), 

y'2= ~1 (J1+8~f-1), 



Chapter V. 

Application to hydraulic constructions. 

Several cases of water surface curve were discussed already and each 

case is one part of a water surface curve formed by practical engineering 

construction. In most cases, the actual water surface forms a transition 

curve composed of two or more of such special curves. If the conditions of 

fl.ow are known at a particular place in a given open channel, the type of 

water surface curve existing at the place can be readily determined. The 

critical depth is computed from the quantity of water fl.owing in unit time 

and the width of water surface and the neutral depth from the quantity of 

fl.ow, sectional form, slope of channel bed and its roughness. A comparison 

of critical depth, neutral depth and actual water depth will determine im­

mediately what curve in all possible cases is obtaining. 

An example of a transition curve which is very frequently encountered 

in practice will now be shown. 

o-t------_e 
I 
I 

I ,/,/,/,/,,,;. ln-r,...+,..,..._ 

-·-·""':Jt""·-.~. ____ .... ., .... 

·--------t---t ___ l,/ : Q 
__ .J _____ _ 

The figure shown represents the flow over a wide crested dam con­

structed across the channel whose bed indination is slight. Before the con­

struction of the dam the water was flowing with the neutral depth y,,. which 

is always greater than the critical depth Ye• Since the neutral depth is quite 

independent of the bed slope and of the roughness of the channel, it has a 

constant value for a given condition of fl.ow, so the surface line representing 
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the critical depth should be parallel to the bed slope over which the water 

flows. 

In the figure, the continuous line OABCDEFG shows the actual water 

surface curve. Until point A from up-stream side the water has decreasing 

velocity, from A to D, it has increasing velocity and from there the velocity 

being reduced, after causing the hydraulic jump, the water flows down with 

neutral depth as in the original state. 

From O to A the surface curve has been general form of case a, from 

A to B, case k, from B to U, case i, from C to D, case e, from D to E, case 

c and at point E water jumping up suddenly to point F, from there the 

water flows down uniformly. Thus the actual water surface is a transition 

curve formed by a combination of several curves in special cases. 

In this case, the actual surface curve should cross the critical depth at 

point C which is the intersection of the critical depth lines for two different 

bed slope!:l, since above this point the curve being convex upward (case i), 

the water depth must be greater than the critical depth and below the point 

the curve being concave upward (case e), the water depth must be less than 

the critical depth. With an increasing velocity, the water depth being re­

duced, the critical depth may be passed through smoothly as at point C. 

With a decreasing velocity, however, such as exists at EF in the :figure, the 

water depth being increased, the critical depth can not be passed through 

without heavy internal disturbance accompanying the hydraulic jump, except 

in the case where the neutral depth and the critical depth conicide as re­

presented in cases g and h. 

The condition where the water surface crosses the critical depth at point 

C, determines the water depth at that point. If we know generally the 

water depth at a particular point the change in water depth at any other 

place can be determined by using the equations of water surface curve ac­

cording to the condition of flow. 

Here, the water depth at C, Ye, is found by eq. (9) or (11), then the 

water depth at B is determined by eq. (20) or (24), the water depth at A 

by eq. (28) or (31), amuning for the moment y,,. to stand for the depth at 

which the given quantity of water would flow uniformly in the reverse 
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direction and using the negative sign for sinO, and the water depth at 0 

and D by eq. (28) or (31). 

To determine the location of the hydraulic jump in this case, the 

neutral depth Yn at the down-stream side of the dam is given and taking 

it as the higher momentum stage y~, the height of the jump may be found 

from eq. (38). 

Then the lower momentum stage y~ or the water depth at E is de­

termined. And since the water depth at D is known, with two known 

water depths at D and E, the distance between these two points may be 

computed by eq. (28) or (31). 

In the case of a wide-crested dam, if we observe the water depth at the 

outer edge of the crest (point C in figure) the quantity of flowing water in 

unit time may be computed by eq. (9) or (11). Thus for the rectangular 

section, by eq. (9), 

Y 
=:i / aQ2-

c ~ gb2' 

Q=(+)hy} 

a=l.11, 
3 

g=32.2 ft. per see. per sec. Taking 

then Q=5.39by/i in second foot ..•......... ( 41) 

The Francis formula for the weir without end contraction. 
3 

Q=3.33bk2 

h being the head measured at up stream side a little apart from the weir, 

avoiding the water surface drop on the top of weir. Comparing these for-
a ..3 

nulas, we get Q=5.39byc2 =3.33bh2 

3 3 
0.618h"2 =yc'z, 

0.125h=yc, 

1. e. Ye 1s 27.50/4 less than h and this gives approximately the amount of 

water surface drop on the top of the weir. 

As regards other hydraulic problems, the critical depth may be used con­

veniently as a means of determining the change in the water surface curve. 

Loss of energy is necessarily accompanied by the occurrence of the hy­

draulic jump and so we may utilize such phenomena by proper construction 
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as a means of securing the desired elimination of kinetic energy due to the 

water :flowing at high velocity. In practice we observe very frequently the 

phenomenon of the hydraulic jump below many high spillway dams and 

thus we may reasonably conjecture the scouring power of the overflowing 

water at the apron of the dam being moderately reduced. 

END 




