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Disturbing Actions of a Shaft Governor. 

By 

Genjiro Hamabe. 

(Received June 3, 1914). 

The present paper is devoted exclusively to a consideration of the disturbing 

actions of a shaft governor applied to a steam engine as its speed regulator. 

In the case of a conical pendulum governor, the force at the sleeve required 

for overcoming the resistance of the regulating gear, when a movement of the 

sleeve is to commence, may be ·regarded as constant in magnitude, and, if 

there be any unbalanced force transmitted from the regulating gear to the 

sleeve in the state of equilibrium, this force is comparatively small and might 

be considered an additional loading or unloading on the sleeve. The case is 

quite different in a shaft governor. Most shaft governors in practical use are 

attached to the fly wheel, the eccentric disc being held in position by the 

governor; and on this account a comparatively large amount of resistance of 

the valve gear continuously reacts on the governor. Fluctuating and reverAing 

periodically according to the position of the crank, these forces cause the pen­

dulum of the governor to vibrate_ about its position of equilibrium, and this 

vibra~ory motion may cause a false steam distribution. Also when the load 

on the engine is altered, the relative configration of the governor changes 

accordingly and the pendulum moves from one position of equilibrium to 

another. On account oiethe inertia of the pendulum and the parts connected 

therewith this change of configuration is sometimes accompanied by a number 

of bibratory motions which way cause a serious disturbance of steam distribu­

tion. The object of this paper iA to report an investigation of the laws of 

these disturbing motions; but, before entering upon the subject proper, it is 

necessary to consider the statical conditions of the governor, i.e. the conditions 

of equilibrium under the action of several statical forces, and to give a method 

of designing it in connection therewith. In this part of the paper the 
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fluctuation of reacting forces will be neglected and a constant force, equal in 

magnitude to their mean value, will be taken as continuously acting on the 
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oscillating system. 

Fig. 1 is a diagrammatic sketch of 

a shaft governor, showing about one 

half. It is attached to and rotates with 

the crank shaft 0, as usual, and consists 

of a pair of pendulums arranged sym­

metrically with respect to 0, each pen­

dulum having its fulcrum at S and its 

centre of gravity at P. A spring F 

attached at G and, passing t}:irough 0, 

connects the pendulums. The centri­

fugal force O of each pendulum tends 

to throw it out against the force of 

Fig. 1 the spring F. The pendulum has a 

lever SQ on the opposite side of S; and the end Q of this lever is con­

nected with the eccentric centre E by means of a rad QE. In order to 

keep the le.ad of the valve constant the eccentric centre is assumed to be 

guided so as to move along a straight line AB perpendicular to the centre 

line of the crank. If the engine is unloaded either suddenly or gradually, 

the speed of the engine increases, the pendulum flies out owing to the 

corresponding increase of centrifugal force and consequently th(l steam is 

cut off earlier, diminishing the supply so as to bring down the speed to 

its proper level. On the contrary, when the pendulum swings in, owing 

to a decrease of speed, the supply of steam is incrc,t1.sed so as to bring the 

speed up again. 

I. Equilibrium of the Pendulum. 

If there were no vibratory motion of the governor, the pendulum 

would be at rest with respect to the fly wheel in a steady working condi-
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tion of the engine; and, consequently, all moments of force acting at 

several points of the pendulum would be in equilibrium. For the equili­

brium of the pendulum about its fulcrum 8, the following three moments 

must form a balancing set : the moment of the centrifugal force M. acting 

clock-wise, the moment of force of the spring Mj acting counter clock-wise 

and the moment of the mean reacting force of the valve gear Mr0 acting 

counter clock-wise. The first moment M. depends on the angular velocity 

and the position of the pendulum, the second and third moments, Mj and 

M,,0, on the position of the pendulum only. 

1 ° Moment of the centrifugal force of the pendulum : 

Let, (see Fig. 1). 

<tJ = angular velocity of the governor shaft, 

a = angle OSP, 

p = distance SP, 

9• = distance PO, 
a= distance SO, 

d = PD = perpendicular distance of, P from SO, 

m = mass of each pendulum. 

Draw SH perpendicular to OP, then 

M. = w2mr. SH. 

But, twice the area of the triangle SPO is 

r. SH= ad = ap sina. 

Therefore we have 

M. = w2 map sina. 

2° Moment of force of the spring : 

. 

(1) 

The spring is assumed to be attached to the pendulum at a point G 

m the line SP. 

Let, l = half length of the spring = OG, 

l0 = half its natural length, 

x = force of the spring caused by extension of unit length, 

b = distance S(J-, 
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h = SM= perpendicular distance of S from the centre line of the 

coil of the spring OG, 

then we have 

But since 

or 

it follows that 

m which 

lh = ab sin a 

ab sin a 
h = --l--

. ab sina 
llfj = 2xab sma - 2xl0 l , 

~ = (a2+ b2-2ab cosar½ 

1 [ 2ab cosa ]-½ 
= ✓a2+b2 1- a2+b2. . 

(2) 

If 2b ~ a, the second term in the square bracket is smaller than unity 

for all values of r1., and so the expression in the square bracket may be 

expanded into a convergent series by the binomial theorem. But in 

practice as b is very small in comparison with ; , we may neglect those 

. 2ab cosa 
terms which ·contain higher powers of 2 62 in the series. 

a+ 
Thus we obtain 

1 1 ( ab cosa ) 1 ab cosa 
T . . ✓a2 + 62 1 + a2 + b2 = - /a2 + b2 + s . 

V (a2+/,2)'2 

Substituting this m (2) 

. ab sina 
ll1j = 2'Kab sma - 2xl0 _ / 2 b2 va+ 

3° Moment of reacting forces of the valve gear : 

(3) 

These forceR may be reduced to the eccentric centre and consiE1t of the 

following: 
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( i) frictional resistance to the reciprocating motion of the_ valve gear, 

chiefly that in the stuffing hox, 

(ii) force due to inertia of reciprocating parts, 

(iii) unbalanced swam pressure on the valve spindle, 

(iv) weight of valve, valve spindle, eccentric and eccentric rod, and 

(v) centrifugal force of eccentric disc and strap. 

In a vertical engine the first four forces act in a direction parallel to the 

centre line of the engine, if the angularity of the eccentric rod is neglected, 

an<l their components in the direction of the line AB in Fig. 1, in which 

the movement of the eccentric centre takes place, vary periodically. In 

:Fig. 2, P denotes one of those forces, which is taken as positive when it 

C , , , 
I I 
I (2) 
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A. acts m the direction 
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shown hy the arrow head, 

{) the angular displace-

ment of the crank mea-

sured from its inner dead 

position 000- the cylin-

der l)eing supposed to be 

at the left han<l si<le of 
i B. 

:Fig. 2 
the figure - , a the an­

gular advance of the 

eccentriC:; and AB the direction of motion of E which is perpendicular to 

CO as mentioned aliove; then the components F' of P in the direction of 

AB, which is assumed positive when it is directed outwards, is expressed 

by 

P' = +PsinO. (4) 

( i) Denote the frictional resistance to the reciprocating motion of 

the valve gear hy ±1-'1, whose absolute value may be taken constant; then 

the component P/ of this force along AB is obtained from equation (4) 

P/ = ±P1 sin{), (5) 

where upper sign 1s to be taken for the value of {) from (; - il) to 
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( 3211: - o") ( 311:· ) ( n ) and lower sign for the value of O from 2 - a to 2 - a . 
(ii) If we neglect the angularity of the eccentric rod, the force of 

inertia P2 of the reciprocating parts is 

P2 = mvxai, 

where mv = total mass of the reciprocating system, 

x = its displacement from the mid position, taking it positive 

C 
; Q) 

____ j__ __ t __ , ___ · ·-·--
c. 

when it is to the right 

= r sin(a + 0) 

sin(J+O) = e. --'---~ (see Fig. 3). 
sina 

Hence, from equation (4) the 

component of P2 is 

Fig. 3 Pl= P2 sinO 

2 • (~ O) sinO = mvw e sm u + . ~ , 
Slnu 

(6) 

(iii) & (iv) The forces Pa and P4 (mentioned in iii & iv) are both 

constant, the first acting always in the direction of the axis of the 

cylinder, while the latter has its whole effect only when the engine is of 

the vertical type. The components of Pa and P4 are 

for a vertical engine. 

A 
I I 
i i 
i p: i ~ 

-~-+----.. -j E 

-1-+---- 1· 

i s' -.----~-
t r,5 i ! : 
\ i i ! 'ii 
\i ! I ! ,, ·-· :_+_t_ __ 

0 i i 
i i 
i 'e 

Fig. 4 

Pa' +Pi= (Pa+P4) sinO · (7) 

For a horizontal engine, if P4, 1s the weight of 

eccentric and the portion of the weight of the 

eccentric rod which has effect on the eccentric 

centre, they are 

Pa' +P4' = P3 sin0-P4, cosO. (8) 

(v) If m, is the mass of the rotating parts 
' of the valve gear, and p2 the distance· of its 

centre of gravity S from the axis of rotation 0 

(see Fig. 4), the centrifugal force P5 is 

P,. = ,m.w2p2 ; . 

and then the component of P5 in the. direction of 

..AB is 
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Pl = p5 cosa = m.w2
p2 coEa 

= m.w2y 

= m,ai(e cot a-s cos a). 

The sum of these reacting forces is 

0 

o' 
~ 

0 

IF'= P/+Pl+Pa'+ Pl+Ps'. 

7t 
2 7t 

.Fig. 5 

7 

(9) 

27t 

~p' 

' ' ~+ Ii 
~' 
2 , 
P, 

0 

Th!:) diagram _shown in Fig. 5 gives an example of the fluctuation of 

these forces, (P' 's) an<l their resultant during one revolution of the crank. 

As may be seen from the diagram, the ordinate denotes the force and the 

abscissa the angular displacement or time, since the angular velocity is 

supposed to be constant, and the area may be supposed to represent 

impulse-force into time-; consequently it also gives the change of 

momentum of· the pendulum and all other oscillating parts. But as the 

mass of these moving parts ,is constant, the area of the diagram between 

any two. ordinates gives also their change of velocity in that interval of 
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time. When the load on the engine is constant the inean configuration 

of the governor must remain unaltered and, therefore, the motion of the 

pendulum, produced by such forces, must be a periodic oscillation about 

the mean configuration, i.e. the configuration determineJ by conditions of 

equilibrium for that load; and so its velocity must assume the same value 

after each complete oscillation. This condition is satisfied when the areas 

of the diagram above and below the line 0'0', drawn at a height above 

00 representing the mean value of the forces, are equal to each other. 

The moment of this mean force Pr must be in equilibrium with the 

resultant of the other two moments M. and M_r. 
Therefore we get an equation of statical equilibrium of the governor: 

M1-M.+Mr0 = 0, (10) 
m which M. and M.r are given in equations (1) and (3); the moment Mro 

of Pr is obtained as follows:-

The area of the curve- IP' may be easily obtained by finJing the 

area of each of the P' curves : 

(i) the area of the curve Pl is, from equation (5), 
3n: 1t 

F1 = f ;/d{} = f 1~:n8d8+ f ~;sin{}d{} 
o ~-o ~-o 

- 2 2 

= 4P1 sina; 

(ii) the area of the curve Pl i_s, from equation (6), 

21t 21t 

P; = f P,'dD = f :::~ (coshin'D+sin6sin6cooli)d0 

0 0 

m.,c,i2e = ---~- . ,r cosa; 
Slnu 

(iii) & (iv) the area of the curve Pa'+ Pl is, from equation (7), 
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(v) the area of the curve P/ is, from equation (8), 

P~ = 211:m.aiy; 

and hence ~he resultant area of ~P' is 

IF= F1 + ls+ Fd J<~+.Fi; . . 
4 

n . ~ 1n.,are · • = r 1 s1nu +-· --~-. 11:+211:m.ar!J. 
tanu 

'l'he mean force Pr is 

9 

As there are two pendulums in the governor, one half of Pr is trans­

mitted to each pendulum. 

Let, q = length of the lever SQ, 
(3 = angle AEQ (see Fig. 1), 

then the moment of Pr may be taken approximately to be 

M, Pr SM' 
ro = 2 cosfJ · 

Pr (.) 
-. Q • qcosp 

2cosp 

= !Lpr 
2 

q[ 2P1 • ~ m,oie 2( ·~ ~] = -
2 
-- srn11+-

2 
~ +m.cu ecotu-sco:,;u) , 

11: tano 

where 8M' is the perpendicular distance of S from QE. 

Therefore equation (10) becomes 

(11) 

(12) 

which is an equation expressing the state of equilibrium of the governor. 

From this equation we can find the' values of the moment of centrifugal 
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force of the pendulum at different positions, and draw the characteristic 

curve of the governor. 'l'he irregularity of the governor can be found 

from the curve. Conversely, assuming a value of the permissible irregularity 

for a governor, we can determine the dimensions of the governor spring 

from the equation. 

Example 1.-Take a vertical single cylinder condensing engine with 

the cylinder 25 cm. in diameter by 25 cm. in stroke, fitted with a piston 

valve 11 cm. in diameter, running at 240 revolutions per minute under a 

Fig. 6 
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steam pressure of 6 atm. absolute. The engine is to be regulate<l by a 

shaft governor mounted on the crank shaft. The dimensions of the 

governor are as follows:-

a= 18 cm., p=12 cm., b=3 cm., q=5 cm. and e=2.6 cm. 

Determine the dimensions of the spring of the governor. 

Fig. 6 gives the valve diagram for various positions of the eccentric 

centre: 
a=45°-30', 58°, 69°, 84° and 96°, 

correspon<ling to the configurations of the governor : 

a=50°, 57°-20', 64°-40', 73°-30' and 80° respectively. 

We must first find Pr and then M;,0• 

' Taking:' P1=16 kg., P8 =12 kg. P4 =16 kg.,, 

me = 9~~ = 0.01223 and ~. = 9!1 = 0.006116; 

2P1 !L _ 16 x5 
7r • 2 - 7r = 25.5 kg. cm., 

0.01223 X 630 X 2.6 X 5 
4 

= 25 kg. cm., 

m.w2e . ~ = 0.006116 x :30 x 2.6 x 5 = 25 kg. cm., 

2 q 0.006116 X 630 X 0.6 X 5 _ 
5 8 

ko-
m,w s . 2 = 

2 
_ , . 0 • cm. 

Therefore from equation (11 ), at the different positions, of the governor 

we have 

a 48°-30' 58° 69° 84° 96° 

2P1 ~ sina 19.1 
7r 

21.6 23.8 25.4 25.4 

m,,are cob~ q 
22.1 15.6 9.6 2.6 -2.6 2 ·2 

m.w
2
e cota , i 22.1 15.6 9.6 2.6 -2.6 

2 a q m.(l)SCOS • 2 3.9 3.07 2.08 0.61 -0.61 

Mr0 in kg. cm. 59.4 49.7 40.9 30.0 20.8 
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'fhe curve of Mr0 is given in Fig. 7. 

For determining the dimensions of the springs we have still to know 

the values of 80, the permissible irregularity and W, the weight of the 

pendulum. Let us now see the influences of these values upon the 

dimensions of the spring required. 

For this purpose assume different values of 80 and W and make the 

calculations for the spring for each set· of values. In general let: 

w; and wa = angular velocities of the fly wheel at the 'innermost and 

the outermost positions of the governor respectively, 

Mzi and Mza = corresponding moments of centrifugal forces, 

MJ. and JJfJa = corresponding moments of forces of the spring, 

F. and Fa = corresponding forces of the spring, 

d = diameter of wire of the spring in centimeters, 

r = mean radius of coil in centimeters, 

n = number of turns, 

k. = allowable shearing stress of spring steel 

= 4000 kg. per sq. cm., 

G = Modulus of shearing elasticity 

= 850000 kg. per sq. cm. 

(a) a0 = 0.12, W = 12 kg.; then 

w.2 = 630x(l-
0

~
2 )2 = 557, 

(I) 2 
a ( 

0.12 ) 2 

= 630x l+-
2

- = 707, 

Mz;, = 0.01223 x 5.57 x 18 x 12 sin,50° · . 1127 kg. cm., 

111zd, = 0.01223 >< 707 x 18 x 12 sin80° · . 1839 kg. cm., 

MJ. = 1127 - 59.4 = 1068 kg. cm., 

MJa = 1839 - 20.8 = 1818 kg. cm., 

F 
1068 . 

• = ~ = 427 kg., 

1818 
Fa= ~3~ = 606 kg .. 

Therefore the value of x required 1s 



and 

Distu1·bing Actions if a Shaft Governar. 

606-427 
x = ---- = 59.7 kg. per cm. of deformation. 

2xl.5 

Taking r at 6 cm., 

d = 8 / Fa X 1• 16 _ 8 /606 X 6 16 .,_ l 7 V k. . 7 - V 4000 · 7-.- · am. 

G X d4 850000 X 1.74 

n = 64 X r1 X" = 64 ~ 63 X 59.7 .. 8··5· 

If we take: d = 1.7 cm., r = 6 cm. and 

n = 8 turns ; then 

850000 X 174 
• "= 64 x 63 J< 8 · . 64.2 kg: per cm. of deformat10n. 

1:3 

In the further calculations the actual value of x thus found will be 

taken. If we take the normal cut off at 0.25, which corresponds to the 

configuration of the governor : a= 64°-40', 

Mz,,. = 0.01223 x 630 x 18 x 12 sin(64°-40') 

= 1506 kg. cm. 

Mfn = 1506-40.9 = 1465 kg. cm., 

1465 
Fn = 2 X 1.44 = 508 kg., 

2 (l-ln) 2x (l.:._ln) Fxli = M.J 

i 

'fl, 

a 

-1.36 cm. - 87 kg. 420.7 2 .. 5 

-0.67 

0 

+0.9 

+1.6 

" - 43 
" 

465 2.72 

" 
0 508 2.88 

" + 57.7 ,, 565.7 2.97 

" 
+ 102.7,, 610.7 3.00 

MZi = 1051 + 59.4 = 1110 kg. cm., 

Mza = 1829 + 20.8 = 1850 kg. cm., 

1110 w.2 = --------- · . 548, 
0.01223 x 18 x 12 sin50° 

1850 
0.01223 X 18 X 12 sin80° .. ' 700, 

1051 kg. cm. 

1264 
" " 

1465 
" " 

1679 
" " 

1829 
" " 



14 Genjiro Hamabe. 

wi = ,I 548 = 23.4, 
' 

Wa = ,/70(f = 26,4, 

Therefore the irregularity of the governor iA 

i3 26.4- 23.4 _ 0 119 
0 = 25.1 - . ' 

a result practically the same as assumed. 

(b) i311 =0.12, W= 10 kg.; then 

d=l.6cm., r~6cm., n=8turns a 

and x = 50.4 kg. per cm. of deforma-

tion. 

(c}° i311 =0.104, W=Skg.; then 

d=l.5 cm., r;::=6 cm., n=8 turns 

and x = 38.9 kg. per cm. of deforma­

tion. 

(dl i311 =0.056, W=6 kg.; then 

d= 1.3 cm., r=6 cm., n=8 turns 

and x = 21.95 kg. per cm. of deforma­

tion. 

(d') iJu=0.094, W=6 kg.; then 

d=l.3 cm., ~·=6 cm., n=6 turns 

and x = 29.3 kg. per cm. of deforma­

tion. 

... 
{! 

C-) 

l:t) 
~ 
C 
r:-i 

II 

~ 

~ 
(S 
C) 

tr.> 

b 

C 

, 
d 
a, 

Mf 

The characteristic curves of the 

governors considered in the example 

are shown in Fig. 7. 

a n -t- i 

--· M ,PSin o<. To 

Fig. 7 
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II. Vibration of the Pendulum caused 

by Periodic Changes of the Reacting 

Forces of the Valve Gear. 

15 

Pi' in equation (5), expanded as an infinite series of trigonometrical 

functions by Fourier's theorem, becomes: 

Pi'= 2
; 1 [sin3-(sin3+¼ sin3a) cos28 

- ( cosa + ¼ cos3a) sin28 

+ ( ¼ sin3a + ! sinM) cos48 

+ (¼ cos3a + ! cosM) sin48 + ...... ] . 

The other terms are : 

mvoie 
P2' = --'-- sin( a+ 8) sin8 

sina 

- ;;~~~ cos3-cosa cos 28 + sin chin 28] , 

I's' +Pl= (Pa+ P4) sin8, 

P/ = m0w
2y. 

Summing up these forces 

IP'= [ 
2
;

1 
sinJ+ :~: +m,w2y ]+[P3 +P4] sin8 

[( 
2P1 ( • s, ¼ . · 3 s,) m ai2e ) /J - n smu+ sin u + 2~na cos2u 

+(
2
; 1 (cos3+¼cos3a)- m,~u

2

e)sin28] 

+ [ 
2
: 1 

( ¼ sin3a + ¼ sinM) cos48 

+ 
2
: 1 (¼cos3~+ l cosM) sin48]+ ....... (13) 

The moment of these forces acting on each pendulum iA in the 

form: 
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where 

Mr= !LIP' 
2 
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= A0 +B1 AinO-[.A2coA20+ B2 Ain20] 

+ [ A4 cos40 + B4 sin40] + ...... , 

q 
B1 = (Pa+ P4hj, 

[ 
2P1 • ~ • a) rnvale ] q 

.A2 = -;-( srnu + ¼sm3 + 2 tana 2 , 

[ 
2P1 m w2e ]q 

B2 = __-----;-( cosa + ¼ cos3a)- v
2 2 

, 

.A4 = 
2
:

1 
(¼ sin3a + ¼ sin5a) ~ ' 

~:. ~-. 2-~::. '.~ -~~: -~3-~ ~ -~:~). ~.:... • l 

(14) 

(15) 

In the above equations .A0 is the same as Mro m equation (11), and 

consequently it must be in statical equilibrium with M.r and Mz. The 

other terms are those moments which put the pendulum in periodic oscilla­

tion about its neutral position. 

The equation for such oscillation of the pendulum iA, neglecting the 

friction of pins : 

(16) 

where ~ = moment of force of inertia of the pendulum about it8 centre 

of suspension 

- d2a 2 

- dt2 pm. 

Substituting the values of M1, Mz and Mr from equations (3), (1) and 

(14), in ithe above equation, we have: 
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- w2amp sin a+ A0 + B1 sin{} 

- [ A2 cos20 + B2 sin20] + [ A4 cos4{} + B4 sin40] 

+ ............ =0. (17) 

Put, 

where a0 is the value of a when the pendulum 1s rn its mean position of 

oscillation and ~ is the angle of oscillation about the mean position. 

Since e should be very small, w.e may take approximately: 

sin~=~, cose = 1, sin2~ = 2~ and cos2e = 1; 

then equation (17) becomes : 

d
2e 2 ( l0 ) ( l0 )· dt2 p m + e . 2xab 1- ✓ a2 + fi2 COSao+ 2xab 1- 1/ a2 + b2 srnao 

- ~. 2x10 

a2h2 a2b2 
a cos2a0 - xl0 a sin2a0 

(a2+ b2)"2" (a2+ 02p 

- e . aiamp cosa0 - c,iamp sina0 + A0 + B1 sinO 

-[ A2 cos20 + B2 sin20] + [ A4 cos40 + B4 sin40] 

+ ............ =0. (18) 

Now the angular velocity w can not be constant unless the mass of 

the fly wheel be infinitely great: it fluctuate periodically between two 

limits w0( 1 + i) and wo( 1- i ), <J1 denoting the unsteadiness of the fly 

wheel. 

Put 

where w0 is the mean angular velocity of the fly wheel and is 11, constant, 

and 71 is a small change of angular velocity. And 

0= Jwdt = Jw0 dt + f 71dt = w0t+ JY)dt. 
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Fig. 8 

Referring to Fig. 8 let Q be the crank effort diagram drawn for a 

complete revolution of the shaft, i. e. from (} = 0 to (} = 2;r, Draw a 

horizontal straight line Q0 at a height equal to the mean height of the 

curve Q. Construct another curve fJ such that its ordinate represents the 

area .included between the curves Q and Q0, then the ordinate of the 

curve fJ also represents the · variation of the angular velocity; and, con­

sequently, 7/ is a periodic function whose law of variation is represented 

by this curve, and so may be expanded as a series of trigonometrical 

functions of wt by Fourier's theorem. Take, for the sake of simplicity, 

the first five terms of this series, then it may be written in the form: 

'1/ = E0 + E1 coswt + F1 sin wt+ E2 cos2wt + F2 sin2wt, 

in which Eu F 1, E2 and F2 must be certain fractions of w/11• If we take 

the datum line of the curve fJ at its mean height, the constant term E 0 

vanishes. Also, in the case of a single cylinder engine, E1 and F1 become 

very small compared with E2 and F2, so that they may be neglected and 

then the above equation may be put approximately: 

7J = E2 cos2wt + F2 sin2wt. 
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Since '1) itself iA a very small quantity we may put m the above 

equation 

(IJ = (1)0 = constant. 

Thus (IJ and {} may be expressed by the equation: 

(IJ = (/Jo+ E2 cos2cvot + F2 sin2(/Jof, } 

(} E2. ·p2 = (/Jul+ ~
2 

__!__ sm2(/J0t---~ cos2(/Jof, 
(!Jo 2(1Jo 

(19) 

Substituting these va\ues in equation (18), and neglecting terms of 

powers of ~ and '1) higher than the Aecond incluAive, it becomes : 

d
2

~ 2 [ ( l0 ) a
2

1.J
2 

dt2 p m + 2xab l - ✓ 2 ii cosa0 - 2xl0 Jl cos2a0 
_ a + (a2+l2)2 

- (IJ/ amp cosa0J~ + [ 2xab ( 1- ✓ ::+ 62 ) sina0 

a2b2 . 2 • ] -xl0 \ sm2a0-(IJ0 amp srna0 + A0 

(a2 + 1,2) 

- 2Wo amp sina0 (E2 cos2Wot + F 2 sin2(/Joi) 

+ ............ . 

In this equation the third term -in the left hand side vaniAheR by 

equation (12); and the coefficient of ~ in the second term hecomeR : 

2x ab( l - ✓ ~ 0 
2 ) cosao - 2xl0 a

2

b
2 

I cos2a0 
a +.l (a2+b2) 

- (/Jl amp cosa0 
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are both certain fractions of iJ1, the right hand 

side is transformed as follows : 

B . 6( E2 . 2 F2 2 ). + 6 sm OJ0t + -
2
- sm cv0t- -

2
- cos OJ0t 

OJo OJo 

+ ........... . 

= - B{ sin OJ0t + ( 2~ 0 
sin2wot- ;;

0 
cos20Jol) COSOJ0t] 

+ A{ cos20J0t-2( :!;
0 

sin20JJ- :;
0 

cos2cv0t) sin20Jot] 

+ B 2[Rin20J0t + 2( E2 sin20Jot-
2
F 2 cos20Jot) coA20Jot] 

2ctJo OJo 
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- .A.4 [ cos4 wot- 4( :/;
0 

sin2w0t - :;;
0 

cos2a1ot) sin 4w0t] 

- B4 [sin4w0t+4( :!:
0 

sin2w0t- ~o cos2w0t) cos4wot] 

+ .A.6 [ cos6 wot-6( :/;
0 

sin2a1ot- ~o cos2a1ot) sin6w0t] 

+ B6 [sin6 wot+ 6( /;:
0 

sin2w0t- ;f::
2 

cos2w0t) cos6w0t] 

+ ........... . 

= - B1 sinw0t + [.A.2 cos2w0t + B 2 sin2w0t] 

- [A4 cos4w0t + B4 sin4w0t] + [ .A.6 cos6Wot, + B6 sin6a1ot] 

+ ........... . 

+ B2 sin4wot + 2Ai cos2w0t- cos6Wot) 

+ 2Blsin2w0t-sin6w0t)-3.A.a(cos4w0t-cos8w0t) 

- 3Ba(sin4w0t- sin8Wot) + ............ ] 

+ 
2
F2 [½Bi(cosw0t+cos3wot)-.A.2sin4wot 

' Wo 

- B2(1 + cos4w0t)-2.A.bin2w0t + sin6w0t) 

+ 2Bl cos2w0t + cos6w0t) + 3A6(sin4w0t + sin8wot) 

- 3Ba( cos4w0t + cos8wJ) + ....•.....•• ] 

= -(~ .A.2 + ~ B2) 2w0 2w0 

+ ½ • ;f::
0 

B1coswot-( 1 + ½ • :/;
0 

) B1. sinw0t 

+(.A.2+2 
2
E 2 A4 +2 

2
F2 B4) cos2wot 

Ctlo Wo 

21 
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+ ............ . 

'l'herefore the above differential equation may be put into the form: 

m which 

::f + k2
~ + L = [ M1cosw0t + N1 sinw0t] 

+ [ 114 ces2w0t + N2 sin2w0t] 

+ [ Ma cos3wot + Na sin3wot] 

+ [ M4 cos4w0t + N 4 sin4wot] 

+ ............ , 

.11,,,.. 1 [ E2 4 2 • A 2 E, A 2 F2 B ] 
!L2 = - 2 - -

2
- w0 arnp smao+ 2 + -

2
--=----- 4 + -

2
- 4 , 

pm % % % 

····································. 

(20) 

l 

(21) 
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The solution of equation (20) is 

~ + t2 = 01 coskt + 02 sinkt 

[ M4 4 N 4 • 4 t] + k2-l6wo2cos Wot~k2-l6wo2 sm W2 

+ ............ ' 
m which 01 an<l 02 are both integration constants. 

23 

(22) 

The influence of the value of k2 upon the forced oscillation expressed 

by this equation must be considered, as it plays the most im1l0rtant part 

m the motion. 

Case I .-When k2 > 0 aµd k2 < wl : 

The oscillation expressed by the first two terms m equation (22) has 

a longer period than that of the third, and accordingly it has also a 

longer period than that of the combined oscillations of all the other terms. 

The amplitude of this oscillation is determined by integration constants 

01 and 02, which are difficult to find; but we may suppose that the 

oscillation is originated by the action <?f° the spring and would not take a 

considerable part in the total oscillation. '11he series following the first 

two terms in the right hand side of equation (22) has finite coefficients in 

all terms and converges rapidly. 

Case 2.-When 

'11he series converges slowly; and, moreover, there 1s a possibility of 

the denominator of the constant coefficient of some of the terms becoming 

very small, i. e. a danger of the occurrence of a resonance of the pendulum. 

A governor of such quality is useless ; and, therefore, k2 should always be 

made smaller than w0
2

• Even a governor designed with this precaution, 
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as w increases gradually from zero when the engine starts, passes such a 

dangerous point qujckly before reaching its normal speed, and therefore 

without injury. 

Case 3.-When 

The first two terms become 

and the motion represented by these terms is no more an oscillation but 

an ordinary accelerating motion. Furthermore, as the first term in the 

expression increases with t without limit, the pendulum never comes to 

rest but is displaced indefinitely. 'l'he governor of such an unstable 

equilibrium is clearly useless. 'l'herefore the governor must be designed to 

fulfill the condition, w/ > k2 >. O, for all its configurations. 

Example 2.~Requii:ed to establish the laws of vibration of ·the 

governors of example 1, the crank effort diagram of the engine being as 

shown in Fig. 8. Assume 

From Fig. 8 it can be found, that 

and 

The values of k2 and the coefficients of terms, except the first two in 

the right hand side of ~quation (22), when the pendul~m is in equilibrium 

at its normal configuration, are found by calculation and the results given 

in the table below : 
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(a) (b) (c) (d) (d') 

Weight of pend. 
in kgs. 12 10 8 6 6 

1t of spring in kg. 64.2 50.4 38.9 21.95 29.3 per cm. 

;Jg 0.12 0.12 0.104 0.056 0.094 

k2 360 330 310 200 233 

.Mi in 
0.00235 0.00247 0.00291 0.00291 0.00316 k2-w02 degrees. 

Ni ' 
k,2-wot " 8.45 9.05 10.4 10.4 11.4' 

' M2 -0.395 -0.473 -0.604 -0.783 -0.79 
/,;2-4wo2 " 

Mi 
" -0.35 -0.422 0.542 -0.7 -0.707 

/,;2-4wo2 

.J_fa 

" 0.000118 0.000138 0.000174 0.000228 0.00023 
k2-9w02 

Na 0.000112 0.000134 0.000168 0.000219 0.00022 
/,;2-9w02 " 

M4 
" -0.0174 -0.0207 -0.0258 -0.034 -0.0342 

k2-16w02 

N4 
k2-ltiwo2 " 

-0.009 -0.0108 -0.0134 -0.0177 -0.0178 

The curve of the motion expressed by each of the terms of equation 

(22) can be drawn separately. The coefficients in all terms, except those 

of sinw/, cos2w0t and sin2a>0t, are so small as to have no appreciable 

effect on the result if neglected altogether. Fig. 9, Pl. I, shows these 

curves. In the figure the curves marked N1, M2 and N2 represent terms: 

N1 . t 
k2 2 

s1nw0 , 
-Wo 

and F2 . 2 t 
/,
•2 4 2 Sln Wo 
., -w 0 

respectively; and the curve IM +N their resultant. 

It is seen from the results of calculation, that the vibration of the 

pendulum caused by the reacting forces of the valve gear rises to a degree 

which is inadmissible in a regulator. If we try, as _with a conical governor, 

to make the "energy" so great that reacting forces may be inappreciable, 
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a disproportionately heavy governor is necessitated. Therefore, we must 

remain content with a governor accompanied by vibrations, which are 

damped in pr!),ctice by frictional resistance at pins or at knife-edges which 

was not taken into account in the deduction of the equation of motion ; 

or also we must perfect some device whereby to suppress these vibrations. 

In a conical governor, also, vibrations may be caused by the varying 

reacting forces of the regulating gear; but the chief source of vibration is 

the unsteadiness due to the finite mass of the fly wheel ; hence they may 

be removed by fulfilling the con.dition that the insensibility of the 

governor should not be less than the unsteadiness of the fly wheel. But 

in the case of a shaft governor, 'which is a pure spring governor, the 

vibrations are caused by the reacting forces as well as by the influence of 

the unsteadiness of the fly wheel; and meeting the above condition would 

not sufficiently remedy the evil. To obviate this a shaft governor is often 

provided with a dash pot or an oil brake. Because of the vibration of 

the pendulum, the pins or knife edges in the governor suffer an incessant 

rubbing unnecessarily; and to stand. the severe wear they must be made 

of ample size so as not to shorten the life of the governor. Apparently it 

is impossible fully to annihilate the vibrations, and it is believed by some 

that on account of its vibrations the governor get its absolute sensitiveness, 

i.e. the least variation of angular velocity of the governor-shaft causes 

imme<liately a movement of the pendulum (Z. d. V. cl. Ing. 1899 S. 913 : 

J. Isachsen, Das Regulieren von Kraftmachinen). 

III. Motion of the Pendulum when the Load 

on the Engine Changes. 

If we do not take into account the vibration of the governor con­

sidered in II, but put A0 in place of M,., assuming the reacting forces of 

the valve gear to be steady and constant for all configurations of the 
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governor, and if we assume the dampiug effect to be in the form j !; , 
equation (16) becomes 

Put 

where a0 denotes the value of a in the new configuration of equilibrium 

and ~, denotes the small angle of deflection about a0• 

Taking sin;' = ~', cos~' = 1, sin2~' = 2~' 

and cos2;' = 1, the above equation becomes 

a2b2 
- xl0 \ sin2a0 -~'a>2amp cosao 

(a2+ b2) 

- aiamp sina0 + A0 = 0. 

Again put {1) = Wo+r/, 

where Wo is the value of w corresponding to the new configuration ao and 

r/ denotes the fluctuation of w. Since r/ is a small quantity of the same 

order as e, we may neglect terms of powers of e1 and r/ higher than the 

second inclusive, and have 

d
2e1 

2 ,- de e, 2 b(l lo ) 
dt2 p m + J7e + r.- • xa - Y a2 + b2 cosao 
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From the equation of statical equilibrium (12) the above equation 

becomes 

(24) 

Let, T = mean turning moment of the engine, 

LJT = variation of T corresponding to small fluctuation of a 

or ~'. 

T depends upon the point of cut off and this latter is, in its turn, 

governed by the position of the pendulum. Therefore T must be a certain 

function of a, so that we may write 

T=f(a). (25) 

If we draw a series of probable indicator diagrams for different points 

of cut off corresponding to different con-

figurations of the governor, we shall get a 

curve of '1' refe1Ted to a. The curve in 

Fig. 10 is the one drawn according to our 

example. It is always concave towards the 

axis of abscissa, but the curvature is very 

slight. 

For LJT we have 

4T = ~'( d/), 
da o 

where ( da \ is a value of da at the new 

configuration of equilibrium, and is re­

presented by the tangent of the angle 

between the tangent of T curve at a0 and 

the axis of abscissa. 

Also 

L11' = ldw = 1dr/ 
dt dt 

a 
ol.~ i 

Fig. 10 
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where I denotes the moment of inertia of the fly wheel. 

Therefore we have 

or 

. 29 

(26) 

( J~)
0 

has always a negative value, because T decreases when a increases 

for ordinary governors of stable equilibrium; so if we pnt 

(27) 

R is ·a positive quantity depending on a. Since the T curve in Fig. 10 is 

very nearly a straight line we may assume R to be a constant throughout 

the whole oscillation. Elliminating r/ between the two equations (24) and 

(26), we have 

where 

(28) 

The characteristic equation of the above differential equation 1s 
' 

a0x3 +3a1x2 +3a2x+a3 = 0. (29) 

If the three roots of this equation are a', fJ' and r', all of which may 

be real, or one real and two complex, the general solution of equation (28) 

becomes 

f = Ae'1.,1 + Be Wt + Oe Y'1 
; (30) 

or, in the latter case, if the pair of complex rootA he p+ig and p-ig, the 

above equation may be expressed in the form: 
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e = Aea't + ePt (D cosqt + E sinqt), (31) 

in which A, B, · 0, D and E are integration constants. 

In equations (30) and (31) the term with positive exponent increases 

with t without limit, while that with the negative exponent approaches to 

zero, as it increases. 

Therefore all real parts of the roots of the cubic equation (29) should 

be negative in our case, for otherwise e would increase without limit with 

t and a governor of such quality would be of unstable equilibrium and 

useless. To meet this condition, the constant coefficients of the terms of 

equation (29) must all be positive. But a0 and a3 are always positive for 

ordinary governors; and for a2 this condition coincides with that m IL 

Furthermore there iA a condition 

or 

after Hurwitz's law (Mathematische Annalen 1895), which includes the 

condition a1 > 0. Therefore we have a new condition for our requirement : 

a1> ~:: l 
.> R. 2(1)0ampsina 

J k2 • 

(32) 

or 

When condition (32) is fulfilled, if the three rootA are all real, there 

1s no oscillation in the movement of the governor, as can be seen from 

equation (30); and the pendulum approaches to. the new configuration of 

equilibrium gradually ; but in case of one real and two complex roots, 

equation (31) shows that the pendulum oscillates with diminishing ampli­

tude about its centre of oscillation, which displaces itself gradually to its 

new configuration. 'l'he roots of equation (29) have now to be investigated. 

In equation (29) substitute 

(33) 
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and we have 

s 3H G O Y +-z-Y+-s = , 
ao ao 

where (34) 

If the three rootR of this equation are a, p and r, there mrnit be the 

relations: 

r'=r-a1. 
ao 

If we form a cubic equation 

whose three roots Z1, Z2 and Zs are 

Z1 = (a-[3)2, 

Z2 = (P-r)2, 
Zs= (r-a)2; 

then,' from equation (35), 

Denoting 

we have three cases : 

(a).­

Then 

Z1 = (a'-/3')2
, 

Z2 = (P' - r')2, . 
Zs= (r'-a')2. 

Q>O, i.e. G2 +4H3 < O 

H<O, 

(35) 

(36) 

and the second and third terms in equation (36) become negative, hence 

it has no negative root and consequently equation (29) has three distinct 
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real roots, because if it had any complex root, there would of necessity be 

another conjugate to it, and therefore the square of their difference, or a 

root of equation (36) would be negative. 

(b).- Q=O 

In the case at least one root of equation (36) must be zero; and, 

(i) if H=J= O, 

two roots of equation (29) are equal and, 

(ii) if H=O, 

the three roots are all equal. 

(c).-

Here either one root only or all the three roots of equation (36) must 

be negative; and then equation (29) has a pair of complex roots. 

Since case (b) may be regardod as a particular case of (a), the cubic 

equation (29) has or has not a pair of complex roots according as 

or 
G2 +4H3 >0} 
G2 + 4H3 

::} 0. 

'l'he arbitrary constants must now be determined. 

(37) 

A. Case in which there is no oscillation and the motion 1s expressed 

by equation (30), 

~, = Ae7
.,, + Bi11 + Ce'Y' 1

• 

Suppose that the engine be unloaded suddenly when it is running 

steadily, and the governor is in a certain configuration flt; then the fly 

wheel will be accelerated, the · angular velocity C1J increased, and the 

governor put in motion for its new configuration a0 which is determined 

by equation (25). If we 'take this instant as the starting point of the 

motion, then at this instant d~' must be zero and the value of ~' may 
dt 

be taken as a1 - ao, which is negative in the case of unloading. 'fhe value 

of r/ also may be taken as the difference between C1J0 , which corresponds to 

the new configuration ao, and w1 which the fly wheel possessed at the very · 

moment of starting in motion. C1J0 and C1J1 are both found by putting 
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a=a0 and a=a1 in equation (12). In practice, as the governor possesses. 

some insensibility, though small, the pendulum cannot start in motion at 

w=w1 ; but at some higher value of w: 

a,/ = W1 ( 1 + ; ) , 

where e is the insensibility of the governor. Conversely, when the load of 

the engine increases, the pendulum begins to move when the angular 

velocity has • assumed a somewhat lower value than the original. But if 

the governor is absolutely sensitive, we have w/=w1• 

Putting 

and 

we get the three following relations: 

~o' = A+B+O 
and 0 = Aa'+B/3'+Cr' 
from equation (30), and 

or 

from equation (24). 

Solving the above equations we have 

A= 
{1( *1Jo'-3a2~0') +eo'/3'r'} (r' -/3') 

/3'r'(r' - /3') +r'a'(a' -r') +a' /3'(/3' -a') ' 

B= 
{i( ~1)o'-3a2~o')+~o'r'a'}(a'-r') 
/3'r'(r' - /3') + r' a'( a' - r') + a' /3'(/3' - a') ' 

{i(*7Jo' - 3a2;'o') + ~o' a' /3'}(/3' -a') 

/3' r' (r' - /3') + r' a' ( a' - r') + a' /3' (/3' - a') 

(38) 

in which a', /3' and r', the roots of equation (29), are found as follows: 
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Since in this case H < 0, as is seen from (37), we may write equation 

(34) in the form, 

y3-uy±v = 0, 

where u and v are positive and their values are 

u = I :J I and v=l_!i_l. aos , 

then its three roots are 

and therefore 

/1 = ±2Jf cos(; -¼So), 

r = ± 2 j ; cos( ; + ¼So) ; 

/1' = ±2j ; cos(; -¼So)-::, 

r' = +2Jf cos(; +¼So)-:; J 

where So is determined by the relation 

'1) 

2 
COSf = 

(39) 

B. Case in which the oscillation takes place and the motion 1s ex­

press\3d by equation (31 ), 

~, = Ae°''t + e111 ( D cosqt + E sin qt). 

In the same way as before, we get the three relations: 

~o' = A+D, 
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0 = Aa' +Dp+Eq, 

!
0 

( 11
7)0'-3ai0') = Aa'2+D(p2-q2)+E. 2pq. 

Therefore we obtain 

e''(' 2) l(aa '3 e,) '-oa a - 'P -- -1)0 - a2'-o 
D- a0 R 

- p 2+q2+a'(a'-2p) 

~ 0'a'(p2-q2-pa1)+ (p-a') !J ~1 1)o'-3aJo') 
E=----~~-~~~~~----~ 

{p2 +q2+ a', a' -2p) }q 

The roots of equation (34) are 

in which 

~= V-(½•!Jr)+J(½•¾Y+(.!frJ 

-t/(½- ii)+✓(½. !s )2+(~ r' 

q = [~-(½•¾)+✓(½•¾Y+(~Y 

+~(½• !-1 )+✓(½•~a y +(~ YJ ~3; 

and then the roots of equation (29) are 

a'= a-~ 
ao ' 

35 

(40) 
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Therefore 

r' . a1 
=Pt-iq--. 

ao 
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_ s I( G ) ✓( G )~ ( H )s _ ~ ~ ½--s + ½•-3 + -2 a ' ao a 0 a 0 s 

p = -½[v -(½- ~3 )+J(t. ~3 y +(~Y 
} 

-V(t-¼)+ J(t--£s-)2 +(f.YJ- :: ' I 
q = [V-(½• !s )+J(t• !3 J+(:Y 

(41) 

Example 3.-Required to establish the laws of motion of the pendulum 

of the governor for the engine in example 1 fitted with a fly wheel of 

I= 43 kg. m.2
; supposing that, when it is running in a steady condition 

corresponding to the configuration of the governor, a= 57°-20', it is 

suddenly unloaded to such a degree that the new configuration of equilibrium 

of the governor shall be a = 64 ° - 40'. 

From the diagram in Fig. 10 it can be found that 

( ~~ )
0 
.= 300 kg. m, per radian. 

and so 
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(1). Governor designed under case (a). 

Here the coefficients of equation (28) are: 

a0 = p2m = 1.76, 

a3 = 2RWoamp sina0 = 840. 

'rherefore 

Take 

this value of a,_ evidently satisfies condition (32), then 

G2 = (a0
2a3 -3a0a1a2 +2a/)2 .:..-,.13000000 

and 

37 

Therefore, according to unequality (37), the motion of the pendulum 

will be expressed by equation (30), in which the exponents of e, or the 

roots of equation (29), a', /3' and r' and the arbitrary constants A, B and 

0, may be obtained in the same way as in case A ; thus in the equation 

y3 
- ug±v = 0, 

u- ---! 3H I 
ao2 

= 198, 

V=I ~ I a•I 
0 

= 660; 

and 

V 

2 
cos~ =-(-;-)'"""!,- = 0.617, 

or ~ = 51°-54'. 
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From equation (39), 

Also 

= 7°-20' 

= 0.128 radian, 

= 24.3( 1 + 0·J3 
)-25.1 = - 0.4 radian per sec. 

From equation (38), 

A = 0.0318 radian, 

B = -0.0814 

0 = -0.0784 
" 

" 
Therefore the equation of motion of the pendulum is here 

e1 = 0.0318e-29•11 - 0.0814e-1•7t - 0.0784e-10t 

. The curve of this equation is given by the thick line m Fig. I la, 

Pl. IL 

If we take a1 = 15, 

'G = -7340, H = 146 

and (t• !3 y = 455000, 

( i y = 104300. 
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Therefore the motion belongs to case B, and 

✓(½•f Y+ (fr r = 747' 

v-(t-f )+J(t-f )2+ (f y = 11.23, 

v(t. ~3 )+ J(t. ~3 Y-( 1:;r = 4.2. 

Therefore, by equation (41), 

and, from ( 40), 

a'= -1.5 

p = -12.043 

q = 13.35; 

A= -0.0783, 

D = -0.0497, 

E = -0.028. 

Therefore the equation of motion becomes 

~, = -0.0783e-1
•
5
'- e-12

•
043'(0.0497 cosl3.35t + 0.028 sinl3.35t). 

The motion is shown in Fig. llb, Pl. III. 

(2). Governor designed under case (b). 

a0 = 1.47, 

02 = 162, 

a 3 = 700. 

Therefore 

Take again then 

(½ . !3 r = 3650000, 

39 
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( ~)

3 

= -3830000 . 
. ao 

Therefore the motion belongs to case .A; and from equation (39), 

a'= -41.2, 

P' = -2.2, 

r' = -5.46; 

and, from (38), 

A= 0.01, 

B = -0.108, 

a= -0.03. 

'rherefore we get the equation of motion 

~, = 0.0le-41•21 -0.108e-2•21 - 0.03e-s·461 

The curve of this equation is given in Fig. 12a, Pl. IV. 

If we take 

(t. :3 r = 148200, 

(a~Y = 218. 

Therefore the motion belongs to case B; so, putting the values of a', 

p, q, A, D and E in equation (31), we get the equation of motion 

~, = -0.083e-1•001 - e-l4.7st(0.045 cos7.94t+0.0943 sin7.94t), 

which is represented by the curve in Fig. 12b, Pl. V. 

(3). Governor designed under case (C). 

a0 = 1.17, 

02 = 121, 

a3 = 560; 

and therefore 
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(½. ~3 y = 126000, 

( i y = -222000. 

41 

Therefore the motion belongs to case A, and so we get the equation 

of motion 

~' = 0.034e-27
•
9
' -0 .067 e-2

-
1t - 0.095e-8

•
48

', 

which is represented by the curve in Fig. 13a, Pl. VI. 

If we take 

( 
G )2 . ½ • a/ = 120500, 

( ~ y = 625000. 

Therefore the motion belongs to case B, and the equation of motion is 

~, = -0.079e-1•6u-e-9•6'(-0.049 cosl6.It+0.029 sinl6.It), 

which is represented by the curve in Fig. 13b, PI. VII. 

(4). Governor designed under case (d). 

a0 = 0.88, 

a2 = 58.7, 

a3 = 420; 

and therefore 

If we take 

( ½ • !3 ) 2 ""'."" 1324000000, 

( i )3 = -1312000000. 
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Therefore the motion belongs to case B, and the equation of motion is 

e = o.001e-100
-~1 - e-1.lt(0.129 cosl.73t + 0.008 sinl.73t), 

which is represented by the curve in Fig. 14bi, Pl. VIII. 

If we take 

( G )
2 

½, -3 = 12230000, 
. ao 

(: r = -11100000. 

Therefore the motion belongs to case B, and the equation of motion is 

!' = 0.0052e-471-e-21(0.132 cos2.7t+0.0078 sin2.7t), 

which is represented by the curve in Fig. 14b2, Pl. IX. 

If we take a1 = 5, the equation of motion becomes 

~, = -0.049e-a·041-e-4·381 (0.079 cosl2t+0.0334 sinl2t) . 

. The motion is shown by the curve in Fig. 14b3, Pl. X. 

(4') Governor designed under case (d'). 

and so 

Take 

Oo = 0.88, 

a2 = 68.3, 

a3 = 420; 

a1 = 15, then 

(½ . :; y = 10240000, 

(ir = -9680000. 

The motion belongs to case B, and the equation of motion becomes 
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e1 = 0.0126e-36•28t-e-2•36'(0.1406 cos2t-0.092 sin2t), 

which is represented by the curve in Fig. 15b1, Pl. XI. 

If we take a,_ = 5, the equation of motion is 

~, = -0.0535e-2•
4
'- e-4-05t(0.0745 cosl3.8lt + 0.0306 sinl3.8lt), 

which is represented by the curve in Fig. 15b2, Pl. XII. 

43 

The results in the above examples show the manner in which the 

governors approach to their new position of equilibrium. Governors whose 

motions are given in Fig. Ila, Fig. llb, Fig. 12a, Fig. 12b, Fig. 13a and 

Fig. 13b come sooner or later to their new position. This approaching 

motion may be accompanied by some oscillation or not, but is without any 

over regulation at all. On the other hand, the governors in all other cases 

make over regulation in different degrees. But we can perceive a common 

fact that, at last, all of the governors come practically to rest in the new 

position of equilibrium after some interval of time. 

If there is no friction and no special damping device, such as an oil 

brake, the differential equation (28) loses its second term ; and thus either 

the real root or the real part of the complex roots of the characteristic 

equation becomes positive and the pendulum comes to rest no more, but 

passes to the extreme position through its entire range of path. Frictional 

resistance at pins and knife edges, in fact, act to damp the oscillation of 

the governor and in most cases they sustain the governor in a stable 

condition. 

If we denote by Mo the moment of these frictional forces about the 

fulcrum of the pendulum and assume it to be constant, equation (24) 

becomes 

(42) 

in which the constants a0, a2 and a3 are the same as in (28), and the 

constant term Mo is to have the upper sign for the outward motion of the 

pendulum and the lower sign for the reversed motion. 
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Elliminating '1)' between this equation and (26), we get 

d8~' de' 
ao dt3 + 3a2dt + a3e' = 0. (43) 

The general solution of this equation is 

e1 = A.'eAt+ eP'1(D'cosq't+ E'sinq_'t), (44) 

where 

Equation (43) is the same as (28) except that in the former the second 

term of the latter is absent, and so it seems as if it were a special case 

of (28) when a1 is taken equal to zero. But there are different J!_oints as 

regards the determination of the integration constants A.1, D' and E'. The 

most important difference is that the amplitude of the oscillation varies 

suddenly when it passes to the next stroke of the oscillation, but the state 

of the motion between both ends of one stroke is. the same as when the 

constant friction is neglected. Therefore for the first stroke of the motion 

we may determine the arbitrary constant in the same way as before, but 

in the reduction of the third boundary condition we must take equation 

(42) instead of (24) with the upper sign of the constant term, if the case 

is unloading of the engine. We haYe, therefore, the three following rela­

tions containing three arbitrary constants A.', D' and E': 

eo' =A.'+D', l 
. 0 = lA.' + p'D' +q' E', 

i 'T)o' = ao{).2.A' + (p12~q12)D' +2p'q' E1
} +a3eo' +Mo; J 

(45) 

from which A.', D' and E' are determined; Again solving the equation 
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ae -- = O = J.A' e).t + eP''( - q' D' sinq't + q' E' cosq't) 
dt 

+p'eP'1(D' cosq't+E' sinq't), 

45 

(46) 

we get the time t0 for the first stroke of oscillation ; and thus the motion 

of the pendulum in the first stroke is completely known; If the amplitude 

of the first stroke, which may be got by putting t0 in equation (44), be 

greater than ~1
0, that is if the pendulum passes through its new position 

of equilibrium to the other side to a greater distance than before, the 

governor becomes unstable. For the second stroke we can find the new 

constants in the same way by taking its initial point at the end of this 

first stroke, and so on. 

As am example, if we take 

and M;, = oi3 
x M. = 22.6 kg. cm. 

in the governor of the above example, we get, for the governor under case 

1, the curve of motion for its first stroke as shown in Fig. 16, Pl. XIII. 

And for those under cases 4' and 4, we get the curves of motion in Fig. 

17 and Fig. 18, Pl. XIII. From these curves we may see that all these 

governors have no fear of over-regulation, the value of ~, at the end of 

the first stroke being negative. Next assume so small a value as nearly 

one third for M0, and the curve becomes as shown in Fig. 18a, and even 

in this case over-regulation does not yet occur. If a positive value of ~, 

is obtained at the end of the first stroke of oscillation, over-regulation 

clearly takes place. Furthermore when ~, comes out greater than ~0
1 in its 

absolute magnitude, the initial distance of the pendulum from the new 

position of equilibrium in the second stroke is greater than that in the 

first; in the third stroke it becomes still greater, and so on; and thus the 

pendulum never comes to rest. But in this case, in which the frictional 

resistances are taken constant, it will be difficult to determine a definite 

limit like (32) in the previous case for the stable condition of the governor. 

When the load on the engine is altered, the governor commences its 

motion, shifting the eccentric to give a greater or less admission of steam 
' 
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for a _heavier or lighter load. The governor is desired to reach its new 

configuration as soon as possible, but without over-regulation. From the 

above investigations we may conclude that the governors which are 

ascertained to be stable by means of their characteristic curves, do not 

necessarily come to their new position of equilibrium ; in other words a 

governor, not fulfilling the condition (32) and having no constant friction, 

is of an unsteady character. Also some govornors may be defective on 

account of over-regulation or hunting. Moreover, if a governor be con­

structed so as to obviate these defects, too steady a governor may result, 

requiring a long time for its displacement ; and such a governor is again 

not fit for practical use. Therefore, if we have to consider the precise 

qualities necessary for a governor, its law of motion must be determined 

as above. 

In this study it is assumed that the turning moment of the engine 

at any instant has an amount corresponding to the configuration of the 

governor at that instant. This asswnption will be correct for a prime 

mover of continuous working, such as a steam or water turbine, but not 

for such as cut off their working fluid periodically, as a reciprocating 

engine. In the latter case the regulation can take place only once in a 

stroke and any displacement of the governor after the cut off has no effect 

on the turning moment of the engine till the next cut off. Therefore the 

curves drawn in the above examples do not represent the true motions of 

a governor attached to a steam engine. However, when the engine is of 

a high speed type, the governor requires a comparatively long time for its 

displacement; and so the forgoing conforms with tolerable accuracy to the 

actual facts. 



Fig. 9 
Pl. I 

0 

N, 
l: M+N 

(c) 

N1 
l: M+N 

0 



------¼ Sec--

- t 

Fig. Ila 



nL~~"-----------f---+-------t--1-===r=== 
--+t 

Fig. llb 



-------¾ Seo,--

nh-b=+~+----±===t======t===r i 
I 

-t 

! 
I 
i 

co 
N .... 
o· 

I 
i 

i 
i 

_____________________ J __ 

Fig. 12a 



-P-4 

-----¼ Sec,---

i 
i 

____________ j ___ _ 

Fig. 126 



-·-·-· ¼ Sec.-· 

---+t 

n~r-+~=+---f-=±=====t=========t======~ 

.. t 
"" .... 
o· 
I 
i 

___________________ j __ _ 

Fig. 13a 



<O 
IN .... 
o· 

I 
i 
i 

-- ______________ l 

Fig. 13b 



H 
H 
H 

i> 
,....; 
P-4 

n 
-------+ t 

Fig. 14bI 

-



- t 

Fig. 14b2 



~ ..... 
o" 

i 
i 

___________________ j, __ _ 

~t 

Fig. 14b3 



.... 
P-4 

-~--¾Sec.---· 

i 
i 
i 
i 
i 

co 
IN .... 
0 

Fig. 15b1 



·---¼Sec.---· 

co 
~ 

~ 
I 
i 

_______________ _]_ __ 

~ t, 

Fig. 1562 



n 

1<----¼Sec. 

<XI 
co ..... 
0 

. 

Fig. 16 

Fig. 18 

~ 
o. 
0 

Pl. XIII 

-¼Sec. 
n 1----~~-----+-----..--

Fig. 17 

1<----¼ Sec. 

Fig. 18a 




