

TITLE:

<ショートセッション>Big Cohen-Macaulay test ideals in equal characteristic zero via ultraproducts

AUTHOR(S): Yamaguchi, Tatsuki

CITATION:

Yamaguchi, Tatsuki. <ショートセッション>Big Cohen-Macaulay test ideals in equal characteristic zero via ultraproducts. 代数幾何学シンポジウム記録 2023, 2022: 149-152

ISSUE DATE: 2023-01

URL: http://hdl.handle.net/2433/279910 RIGHT:

Big Cohen-Macaulay test ideals in equal characteristic zero via ultraproducts

Tatsuki Yamaguchi

Graduate School of Mathematical Sciences, University of Tokyo

October 19, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let (R, \mathfrak{m}) be a Noetherian local ring.

Definition 1

R-algebra *B* is said to be a *(balanced) big Cohen-Macaulay algebra* (or simply *BCM* algebra) if every system of parameters of *R* is a regular sequence on *B*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We explain BCM regularity introduced by [Ma, Schwede 21].

Setting 1

Let (R, \mathfrak{m}) be a normal local domain of dimension d.

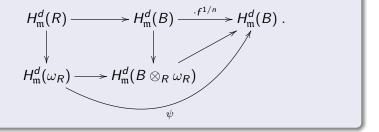
- We fix an embedding $R \subseteq \omega_R \subseteq$ Frac R. Hence we also fix an effective canonical divisor K_R .
- ② $\Delta ≥ 0$ is a Q-Weil divisor on Spec *R* such that $K_R + \Delta$ is Q-Cartier.
- Since $K_R + \Delta$ is effective and \mathbb{Q} -Cartier, there exists $n \in \mathbb{N}_{>0}$ and $f \in R$ such that $n(K_R + \Delta) = \operatorname{div}(f)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $R[f^{1/n}]^{\mathsf{N}} \subseteq R^+$ denotes the normalization of $R[f^{1/n}]$.

Definition 2 ([Ma, Schwede 21])

With notation as in Setting 1, if *B* is a BCM *R*-algebra and an $R[f^{1/n}]^{N}$ -algebra, then we define $0_{H_{m}^{d}(\omega_{R})}^{B,K_{R}+\Delta} := \text{Ker }\psi$, where ψ is the homomorphism determined by the below commutative diagram:



うつん 川川 イエット エット (日)

Definition 3 ([Ma, Schwede 21])

Moreover, if R is complete, then we define

$$\tau_B(R,\Delta) := \operatorname{Ann}_R 0^{B,K_R+\Delta}_{H^d_\mathfrak{m}(\omega_R)}.$$

We call $\tau_B(R, \Delta)$ the BCM test ideal of (R, Δ) w.r.t. B. We call (R, Δ) is BCM_B-regular if $\tau_B(R, \Delta) = R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition 1 ([Ma, Schwede 21])

Let

- (R, m) a Noetherian complete normal local domain of characteristic p > 0
- **2** $\Delta \ge 0$ a \mathbb{Q} -Weil divisor on Spec R such that $K_R + \Delta$ is \mathbb{Q} -Cartier
- Is a BCM R⁺-algebra

Then

$$\tau_B(R,\Delta)=\tau(R,\Delta).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In particular, R is strongly F-regular if and only if R is BCM_B -regular.

We fix an infinite set W. We use P(W) to denote the power set of W.

Definition 4

A nonempty subset $\mathcal{F} \subseteq P(W)$ is called a *filter* if the following two conditions hold.

- If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
- **2** If $A \in \mathcal{F}$ and $A \subseteq B \subseteq W$, then $B \in \mathcal{F}$.

Definition 5

Let \mathcal{F} be a filter on W.

- *F* is called an *ultrafilter* if for all A ∈ P(W), we have A ∈ F or A^c ∈ F.
- ② An ultrafilter \mathcal{F} is called *principal* if there exists a finite subset $A \subseteq W$ such that $A \in \mathcal{F}$.

Proposition 2

Every infinite set has non-principal ultrafilters.

Definition 6

Let

- A_w a family of set indexed by W
- **2** \mathcal{F} a non-principal ultrafilter on W

The *ultraproduct of* A_w is defined by

$$\lim_{w} A_{w} = A_{\infty} := \prod_{w} A_{w} / \sim,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $(a_w) \sim (b_w)$ if and only if $\{w \in W | a_w = b_w\} \in \mathcal{F}$.

Following [Schoutens 03], we explain approximations and non-standard hulls.

Let

- *R* be a local ring essentially of finite type over \mathbb{C} .
- 2 \mathcal{P} be the set of prime numbers
- **③** \mathcal{F} a non-principal ultrafilter on \mathcal{P} .

Then we can construct an approximation R_p and the non-standard hull R_∞ of R.

They have the following properties.

- R_p local rings essentially of finite type over $\overline{\mathbb{F}_p}$
- $R_{\infty} = \operatorname{ulim}_{p} R_{p}$
- $\textbf{ 3 } R \to R_\infty \text{ faithfully flat}$

Definition 7

Let

- $\textcircled{O} \ \mathcal{F} \ \text{a non-principal ultrafilter on } \mathcal{P}$
- 2 φ a property

Then we say $\varphi(p)$ holds for almost all p if $\{p \in \mathcal{P} | \varphi(p) \text{ holds}\} \in \mathcal{F}.$

Let *R* be a local ring essentially of finite type over \mathbb{C} .

Example 1

- dim $R_p = d$ for almost all p if and only if dim R = d.
- R_p is Cohen-Macaulay (resp. Gorenstein, regular) for almost all p if and only if R is Cohen-Macaulay (resp. Gorenstein, regular).

Let *R* be a local domain essentially of finite type over \mathbb{C} .

Definition 8 ([Schoutens 04])

We define the canonical BCM algebra $\mathcal{B}(R)$ by

$$\mathcal{B}(R) := \operatorname{ulim}_{p} R_{p}^{+},$$

where R_p is an approximation of R. (Schoutens calls this the *quasi-hull*.)

Proposition 3 ([Schoutens 04])

 $\mathcal{B}(R)$ is a BCM R-algebra and an R⁺-algebra.

Our main result is stated as follows:

Theorem 1 (Y 22)

Let

- ${\small \bigcirc} \ \ R \ \ a \ \ normal \ \ local \ \ domain \ \ essentially \ \ of \ finite \ type \ \ over \ \ \mathbb{C}$
- **3** $\Delta \ge 0$ a \mathbb{Q} -Weil divisor on Spec R such that $K_R + \Delta$ is \mathbb{Q} -Cartier
- **③** $\mathcal{B}(R)$ is the canonical BCM algebra
- **(3** \widehat{R} and $\widehat{\mathcal{B}(R)}$ are the m-adic completions of R and $\mathcal{B}(R)$
- **(3** $\widehat{\Delta}$ the flat pullback of Δ by Spec $\widehat{R} \to$ Spec R

Then we have

$$au_{\widehat{\mathcal{B}(R)}}(\widehat{R},\widehat{\Delta}) = \mathcal{J}(\widehat{R},\widehat{\Delta}),$$

(日) (日) (日) (日) (日) (日) (日) (日)

where $\mathcal{J}(\widehat{R},\widehat{\Delta})$ is the multiplier ideal of $(\widehat{R},\widehat{\Delta})$.

As an application of the preceding theorem, we proved the following.

Theorem 2 (Y 22)

Let

- R → S is a pure local C-algebra homomorphism between normal local domains essentially of finite type over C
- Q R is Q-Gorenstein
- **③** $\Delta_S \ge 0$ a \mathbb{Q} -Weil divisor such that $K_S + \Delta_S$ is \mathbb{Q} -Cartier
- ${f 0}$ ${\mathfrak a}\subseteq R$ a nonzero ideal
- $t \in \mathbb{Q}_{>0}$

Then we have

 $\mathcal{J}(S, \Delta_S, (\mathfrak{a}S)^t) \cap R \subseteq \mathcal{J}(R, \mathfrak{a}^t).$

Let R be a normal local domain essentially of finite type over \mathbb{C} .

Question 1
Let
9 $\Delta \ge 0$ a \mathbb{Q} -Weil divisor on Spec R such that $K_R + \Delta$ is \mathbb{Q} -Cartier
B a BCM R ⁺ -algebra
Then does the following hold?
$\mathcal{J}(R,\Delta)\subseteq au_{\widehat{R}}(\widehat{R},\widehat{\Delta})$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- L. Ma, K. Schwede, Singularities in mixed characteristic via perfectoid big Cohen-Macaulay algebras. Duke Math. J. 170.13 (2021)
- H. Schoutens, Non-standard tight closure for affine C-algebras. Manuscripta Math. 111, 379–412 (2003).
- H. Schoutens, Canonical big Cohen-Macaulay algebras and rational singularities, Illinois J. Math. 48, no. 1, 131–150 (2004).
- T.Yamaguchi, Big Cohen-Macaulay test ideals in equal characteristic zero via ultraproducts, arXiv:2207.04247, preprint (2022)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00