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Splitting invariants and a π1-equivalent Zariski-pair
of conic-line arrangements

Shinzo Bannai12 (Okayama University of Science)

Abstract
This article is based on the authors talk given at the Kinosaki Algebraic Geometry

Symposium 2022. We give a brief overview of the subject of the embedded topology of
plane curves. Furthermore, we illustrate the idea of a relatively new type of invariants
called splitting invariants which prove effective in distinguishing the topology of plane
curves. We also describe a new example of a π1-equivalent Zariski-pair consisting of conic-
line arrangements of degree 7.

1 The embedded topology of plane curves and Zariski pairs
The base field in this article is the field of complex numbers C. First, we set up some notation
and explain the subject of the embedded topology of plane algebraic curves.

Let C ⊂ P2 be a plane algebraic curve, which is possibly singular and reducible. We are
interested in the embedded topology of C, i.e. the homeomorphism class of the pair (P2, C), where
a homeomorphism of pairs is defined as follows:

Definition 1.1 (Homeomorphism of pairs). Let X1, X2 be topological spaces and Y1 ⊂ X1,
Y2 ⊂ X2 be subspaces. Then the pairs (X1, Y1) and (X2, Y2) are homeomorphic as pairs if and
only if there exists a homeomorphism h : X1 → X2 such that h(Y1) = Y2. When (X1, Y1) and
(X2, Y2) are homeomorphic as pairs, we denote this by (X1, Y1) ≈ (X2, Y2).

A basic problem in this subject is to classify plane curves in terms of their embedded
topology. We first make some basic observations in this area. Let T (C1), T (C2) be tubular
neighborhoods of C1, C2. The first observation is:

(P2, C1) ≈ (P2, C2)⇒ (T (C1), C1) ≈ (T (C2), C2)
(T (C1), C1) ̸≈ (T (C2), C2)⇒ (P2, C1) ̸≈ (P2, C2)

hence the case where (T (C1), C1) ≈ (T (C2), C2) becomes important. This condition is a topo-
logical condition which is relatively complicated, so we wish to translate it into more algebraic
terms. In order to do this, we consider the combinatorics or combinatorial type of a plane curve,
defined as follows:

Definition 1.2 (Combinatorics of C). Let C ⊂ P2 be a plane curve, σ : P̂2 → P2 the minimal
good embedded resolution of C, ΓC = (VC , EC) the dual graph of σ−1(C), StrC ⊂ VC the set of
vertices corresponding to the strict transforms of the irreducible components of C, and eC : VC →
Z the Euler map (which gives the self intersection number of each irreducible component). Then
the triple (ΓC , StrC , eC) is called the combinatorics or combinatorial type of C and is denoted by

Comb(C) := (ΓC , StrC , eC).
1This article is based on joint work with M. Amram (Shamoon College of Engineering, Israel), T. Shirane
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Definition 1.3 (Equivalence of combinatorics). Let C1, C2 ⊂ P2 be plane curves such that
Comb(Ci) = (ΓCi , StrCi , eCi). The equivalence of Comb(C1) and Comb(C2) is defined by

Comb(C1) = Comb(C2)
def⇐⇒

{
∃φ : ΓC1

→ ΓC2
isomorphism of graphs s.t.

φ(StrC1
) = StrC2

, eC1
= eC2

◦ φ .

By using these concepts, we can translate topology into algebra by the following fact:

Fact 1.4. Let C1, C2 ⊂ P2 be plane curves. Then the following holds:

(T (C1), C1) ≈ (T (C2), C2)⇔ Comb(C1) = Comb(C2)

Now, curves having the same combinatorial type becomes important in the study of the
embedded topology, which leads to the following definition of Zariski pairs:

Definition 1.5 (Zariski pairs). A pair of curves C1, C2 ⊂ P2 is called a Zariski pair if the
following conditions hold.

(i) Comb(C1) = Comb(C2)

(ii) (P2, C1) ̸≈ (P2, C2)

The first example of a Zariski pair was given by O. Zariski in [19].

Example 1.6 (Zariski’s Example (1929)). Let C1, C2 be sextic curves with 6 cusps. Assume
that for C1, there exists a conic through the six cusps, where as for C2, no such conic exists.
Then, π1(P2 \ C1) ̸∼= π1(P2 \ C2) and C1, C2 is a Zariski pair.

Remark 1.7. The above example demonstrates that the embedded topology is not determined
by the combinatorics, which motivates the definition of a Zariski-pair. It also illustrates that
the position of singular points have an effect on the embedded topology. An interesting problem
is to determine what algebraic aspects of a curve have an effect on the embedded topology.

In order to understand and classify the embedded topology of plane curves, we need to
understand Zariski pairs in detail. Moreover, the following two problems become important in
this direction:

• Develop a method to construct curves having prescribed combinatorics, but with subtle
differences in terms of algebra.

• Find some suitable method to distinguish the embedded topology of curves based on the
above subtle differences.

Concerning the first problem, there are many approaches. The author together with H. Toku-
naga have utilized certain rational elliptic surfaces in order to construct curves with prescribed
combinatorics. This method will be described later. As for the second problem, the basic idea
is to find a suitable invariant. Some of the invariants that have been used are: fundamental
groups π1(P2 \ C), Alexander polynomials ∆C(t), and the existence/non-existence of certain
Galois covers branched within C. The latter two are deeply related to the fundamental group.
Some newer types of invariants have also been developed, such as the linking set ([8]) and
splitting invariants, the latter which will be describe in the following. These newer types of
invariants are independent from the fundamental group and can distinguish curves having the
same fundamental group. A nice survey of Zariski pairs is given in [2].



2 Splitting Invariants and π1-equivalent Zariski pairs
In this section, we explain the general idea of splitting invariants and provide some examples
to illustrate the idea. The importance of splitting invariants lies in the fact that (i) they are
defined and can be calculated in terms of algebraic geometry, and (ii) they can distinguish some
curves that have isomorphic fundamental groups.

Our goal is to develop a method to extract data of a plane curve C ⊂ P2. Instead of
considering the curve directly, we consider a Galois cover f : X → P2 with branch locus
B := ∆f . In the most general form, a splitting invariant of C with respect to f is any property
or data extracted from f−1(C). Since the covering f is involved, the data obtained from f−1(C)
should reflect the relation between C and B. Moreover, it should encode how C and B are
“entangled” and give information about the curve C + B. Before stating precise definitions, we
give some examples that illustrate this idea.

The first example is an example found by H. Tokunaga in [17].

Example 2.1 (Tokunaga (2012)). Let B ⊂ P2 be a smooth conic and f : P1 × P1 → P2 be the
double cover branched along B. There exist irreducible quartic curves Q1,Q2 such that

• Qi (i = 1, 2) is tangent to B at 4 distinct smooth points.

• Comb(Q1 + B) = Comb(Q2 + B)

and furthermore

f−1(Q1) : irreducible

f−1(Q2) : reducible

and moreover, the curves Q1 + B and Q2 + B form a Zariski pair.

The property of f−1(Qi) being irreducible or not can be regarded as a splitting invariant in
this case. In fact, the term splitting invariant was inspired by this phenomenon where a curve
may “split” into two irreducible components or not. Furthermore, this example leads to the
following definition:

Definition 2.2 (Splitting curve). Let C ⊂ P2 be an irreducible curve and let f : X → P2 be a
double cover. Then C is a splitting curve with respect to f if f−1(C) is reducible.

The second example (although it dates earlier) is an example found by E. Artal Bartolo and
H. Tokunaga in [4].

Example 2.3 (Artal-Tokunaga (2004)). Let f and B be as in Example 2.1Tokunaga (2012)thm.2.1.
For any d ≥ 4, there exists irreducible nodal rational curves C1, . . . , C[ d2 ] such that

• Ck (k = 1, . . . ,
[
d
2

]
) is tangent to B at d distinct smooth points,

• Comb(Ck + B) are all equivalent,

• Ck (k = 1, . . . ,
[
d
2

]
) is a splitting curve with respect to f ,



and furthermore, if f−1(Ck) = C+k + C−k (k = 1, . . . ,
[
d
2

]
), by choosing labels suitably,

the bi-degree of C+k is (k, d− k)

the bi-degree of C−k is (d− k, k).

Moreover the curves B + C1, . . . ,B + C[ d2 ] are pairwise Zariski pairs (a Zariski [d2 ]-tuple).

In this second example the bi-degree of the curves can be regarded as a splitting invariant.
This example demonstrates that the splitting property is not enough to completely distinguish
the embedded topology, and we need to consider more detailed data.

The third example is due to I. Shimada who found an equisingular family of curves with
non-connected components in [11], and T. Shirane who proved that they form Zariski multiples
in [14] by using a splitting invariant called the splitting number.

Example 2.4 (Shimada (2003), Shirane (2017)). Let E be a smooth cubic curve. Let b,m, n ∈
N, b ≥ 4 n|b, m = b

n . Let B be a smooth curve of degree b that intersects E at 3n points, each
with multiplicity m. In this case, I. Shimada computed the fundamental group and found that

π1(P2 \ (E + B)) ∼=

{
Z (3̸ | b)
Z⊕ Z/3Z (3|b)

.

He also proved that the equisingular family of such curves has d(m) connected components,
where d(m) is the number of divisors of m. Let F be the equisingular family and let F = ∪ν|mFν

be the decomposition of F . Later, T. Shirane considered cyclic covers fB : X → P2 of degree
m branched along B and proved that for each Bν ∈ Fν and fBν : X → P2,

f−1
Bν

(E) = E1 + · · ·+ Eν

for a suitable labeling of the connected components Fν . Namely, he computed the number of
irreducible components of f−1

Bν
(E). He defined the splitting number of E with respect to fν

as the number of irreducible components of f−1
Bν

(E), which can be considered as a splitting
invariant. Moreover, he proved that for each b, n,m the curves

E + B1, . . . , E + Bν , . . . , E + Bm (ν|m)

form a Zariski d(m)-tuple.

In the above example, the fundamental group is determined solely by the degree b of B,
where as for each n and m = b

n , there are d(m) curves having distinct embedded topology.
Hence the embedded topology is not determined by the fundamental group. Also, the example
demonstrates that splitting invariants can distinguish the embedded topology of curves that
have isomorphic fundamental groups.

Definition 2.5 (π1-equivalent Zariski pairs). A pair of curves C1, C2 ⊂ P2 is called a π1-
equivalent Zariski pair if the following conditions hold:

(i) C1, C2 is a Zariski pair.

(ii) π1(P2 \ C1) ∼= π1(P2 \ C2)



Many π1-equivalent Zariski pairs are known including Example 2.4Shimada (2003), Shirane
(2017)thm.2.4, for example, there are π1-equivalent Zariski pairs of sextics with simple singular-
ities in the list of [12]. Arrangements consisting of one smooth curve of degree d ≥ 4 and three
non-concurrent lines, called Atral-arrangements, also produce π1-equivalent Zariski pairs (see
[3] and [16]). These π1-equivalent Zariski pairs are given by curves containing an irreducible
component with either singularities or genus g ≥ 1. In the following, we will give an example
of a π1-equivalent Zariski pair consisting of conic-line arrangements, where every component is
smooth and rational. The key invariant that will be used to distinguish the embedded topology
is the splitting type defined by the author in [5].

Definition 2.6 (Splitting Type). Let B ⊂ P2 be a plane curve with degB = 2n, f : X → P2

be the double cover branched along B. Let C1, C2 be irreducible splitting curves with respect to
f , i.e.

f−1(C1) = C+1 + C−1 , f−1(C2) = C+2 + C−2 .

The splitting type of the triple (C1, C2;B) is defined to be

(m1,m2) = (C+1 · C
+
2 , C+1 · C

−
2 )

where we choose suitable labels so that m1 ≤ m2.

Example 2.7. Under the setting of the above definition, let C1 = C be a conic and C2 = L be
a line. Then the possible splitting types of (C,L;B) is (0, 2) or (1, 1).

Proposition 2.8. Let B1,B2 be curves of even degree and Ci1, Ci2 be splitting curves with
respect to Bi (i = 1, 2). If the triples (C11, C12;B1) and (C21, C22;B2) have distinct splitting
types, then there do not exist any homeomorphisms h : P2 → P2 such that h(B1) = B2 and
h(C11 + C12) = C21 + C22.

The splitting type, together with the above proposition allows us to distinguish the embedded
topology of many curves of the form B + C1 + C2.

After the author defined the splitting type, many other splitting invariants have been de-
veloped, especially by T. Shirane, such as the splitting number mentioned above, the connected
number ([15]) and the splitting graph ([16]).

3 Zariski pairs of conic-line arrangements of small degree
In this section, we give a list of some Zariski pairs of conic-line arrangements of small degree
that can be distinguished using the splitting type defined in the previous section. We warn
the reader that we do not claim that the list is complete, i.e. there may be other
Zariski pairs that can be distinguished using alternative methods and invariants. The basic
method in constructing the curves is the method developed by the author and H. Tokunaga,
which uses the data of the Mordell-Weil lattices of rational elliptic surfaces. While creating the
list, a π1-equivalent Zariski pair consisting of conic-line arrangements of degree 7 was found,
which we describe in detail in Example 3.2thm.3.2.



3.1 The method of construction
In this subsection, we give a rough sketch of the method to construct curves with prescribed
combinatorial data.

First, we explain how to construct a rational elliptic surface associated to a quartic curve B.
Let B ⊂ P2 be a quartic curve and let zo ∈ B be a general smooth point of B. Let Λzo be the
pencil of lines through zo. We can construct a rational elliptic surface SB,zo as in the following
diagram

XB
µ←−−−− SB

νzo←−−−− SB,zo

fB

y yf ′
B

yfB,zo

P2 ←−−−−
q

P̂2 ←−−−−
qzo

(P̂2)zo ,

where fB is the double cover branched along B, µ is the canonical resolution of singularities of
XB and νzo is the resolution of the pencil Λzo of genus 1 curves on SB that is induced by Λzo .
Then SB,zo is a rational elliptic surface with a distinguished section O, which is the exceptional
divisor of the second (final) blow-up in νzo . The set of sections MW(SB,zo) of SB,zo has an
abelian group structure with O being the neutral element.

Next, we explain how to obtain the curves. Given s ∈ MW(SB,zo), s ̸= O, the image
Cs := fB ◦ µ ◦ νzo(s) becomes a curve in P2. Furthermore, by the construction,

f−1
B (Cs) = fB ◦ µ ◦ νzo(s) + fB ◦ µ ◦ νzo([−1]s)

which shows that Cs is a splitting curve with respect to fB. Here, [−1]s is the negative of s
with respect to the group structure of MW(SB,zo). Hence, we can obtain splitting curves Cs
associated to sections s ∈ MW(SB,zo).

Finally, the height pairing ⟨•, •⟩ defined on MW(SB,zo) provides additional data reflecting
the geometry of the sections. This additional data allows us to calculate the splitting types
through the following formula due to T. Shioda [13].

Theorem 3.1 (Shioda, 1990).

⟨s1, s2⟩ = χ+ s1 ·O + s2 ·O − s1 · s2 −
∑

contrv(s1, s2)

The above formula relates the height pairing ⟨s1, s2⟩ to the intersection numbers s1 · s2 of
sections, which in turn give the splitting types of (Cs1 , Cs2 ;B). Also, the contribution term∑

contrv(s1, s2) contains information about the components of singular fibers that intersect si,
which in turn provides information about the singular points of B that Csi passes through. From
this information, we can deduce the combinatorics of Csi and B. We are interested in conic-line
arrangements, so we focus on sections where Cs is a line or a conic. In each case where the
resulting curve Cs is not a line but a (weak) contact conic, there exists a one-parameter family
of curves having the same combinatorics as Cs. We denote the family of curves corresponding to
the section s by Fs (see [6] for details). Details of these arguments can be found in [6], [5], [7].
Here, we forgo the details and provide an example to demonstrate how we can find candidates
of Zariski pairs using rational elliptic surfaces and the height pairing. This example also gives
a π1-equivalent Zariski pair.



Example 3.2. Let B = C1+C2 be the union of two smooth conics C1, C2 meeting transversally,
and let zo ∈ C1 be a general point, i.e. zo is not a nodal point of B and the tangent line at zo is not
a bitangent line of B. Then the associated rational elliptic surface SB,zo has 5 reducible singular
fibers of type I2, and by [10] the Mordell-Weil lattice MW(SB,zo) is isomorphic to (A∗

1)
⊕3⊕Z/2Z,

where A∗
1 is the dual lattice of the root lattice of type A1. Let C1 ∩C2 = {P0, P1, P2, P3}. The

strict transform of the preimages of the lines P0Pi (i = 1, 2, 3) under fB give rise to pairs of
sections (s1, [−1]s1), (s2, [−1]s2), (s3, [−1]s3) which generate the (A∗

1)
⊕3 part of MW(SB,zo).

Furthermore, the strict transform of the preimage of C2 gives rise to the torsion section t.
Hence, we have a set of generators s1, s2, s3, t of MW(SB,zo) such that

• Csi = P0Pi, (i = 1, 2, 3),

• Ct = C2,

• ⟨si, si⟩ = 1
2 , ⟨si, sj⟩ = 0 (i ̸= j).

We can obtain curves with prescribed combinatorial data related to B by using these generators.
For example:

• Csi±sj (i ̸= j) is a smooth conic passing through Pi, Pj and is tangent to both C1 and C2.

• Cs1±s2±s3+t is a bitangent line of B.

The key observation is that it is possible to choose curves having the same combinatorics,
but with differences in the height pairing. If we consider Cs1+s2 + Cs1+s2+s3+t and Cs1+s2 +
Cs1−s2+s3+t, the two curves have the same combinatorics, but there is a difference in the height
pairing:

⟨s1 + s2, s1 + s2 + s3 + t⟩ = 1

⟨s1 + s2, s1 + s2 + s3 + t⟩ = 0.

This difference in the height pairing leads to the difference of the splitting type, and it can be
computed that the splitting type of (Cs1+s1 , Cs1+s2+s3+t;B) is (0, 2) where as the splitting type
of (Cs1+s1 , Cs1−s2+s3+t;B) is (1, 1).

It is possible to compute explicit equations for the above curves.

• C1 : x− t2 = 0

• C2 : x2 − 10tx+ 25x− 36 = 0

• Cs1+s2 : x− ( 54 t
2 − 2t+ 3) = 0

• Cs1+s2+s3+t : x− ( 325 t− 256
25 ) = 0

• Cs1−s2+s3+t : x− (10t− 25) = 0

The fundamental groups of the above example has been computed by the Zariski-van Kam-
pen method using the above explicit equations, and we have our main result:

Theorem 3.3 (Amram-B-Shirane-Sinichkin-Tokunaga [1]). Under the notation of Example
3.2thm.3.2, let C = C1 + C2 + Cs1+s2 + Cs1+s2+s3+t and C′ = C1 + C2 + Cs1+s2 + Cs1−s2+s3+t.
Then C and C′ is a Zariski pair. Furthermore,

π1(P2 \ C) ∼= π1(P2 \ C′) ∼= Z⊕3.

Moreover, C and C′ is a π1-equivalent Zariski pair.



3.2 The list of Zariski pairs of conic line arrangements of small degree
In this subsection, we give a list of some Zariski pairs of conic line arrangements of small degree
that can be obtained by the method described in the previous subsection.

First, since we are considering conic-line arrangements and we are assuming degB = 4 in
order to utilize rational elliptic surfaces, so the possibilities for the components of the branch
locus B is

• B = C1 + C2 two conics,

• B = C + L1 + C2 two lines,

• B = L1 + L2 + L3 + L4 four lines.

In order to have differences in the height pairing, which leads to the difference in splitting type,
the Mordell-Weil lattice should have rank greater than 2, which narrows down the possibilities
of B to the following three cases:

• B1 = C+L1+L2 where C is a smooth conic, L1, L2 are lines all of which meet transversally.

• B2 = C1 + C2 where C1, C2 are smooth conics meeting transversally at 4 points.

• B3 = C1 + C2 where C1, C2 are smooth conics tangent at 1 point with multiplicity 2.

For a general point zo ∈ Bi, we have MW(SB1,zo) = (A∗
1)

⊕2 ⊕ (Z/2Z)⊕2, MW(SB2,zo) =
(A∗

1)
⊕3 ⊕ (Z/2Z), MW(SB3,zo) = A∗

1 ⊕ ⟨ 14 ⟩ ⊕ Z/2Z.
We define some terminology to describe the curves that will appear in the list.

Definition 3.4. A (simple) contact curve C to a curve B is a curve that has even intersection
multiplicity at all intersection points, and intersect at smooth points of B. A weak contact curve
is a contact curve that has intersection points at singular points if B. When B has degree 4, a
bitangent line is a simple contact line and a weak bitangent line is a weak contact line.

3.2.1 The case of B1 = C + L1 + L2

Let us consider the first case. We introduce the following labels to describe the curves:

{P0} = L1 ∩ L2, {P1, P2} = L1 ∩ C, {P3, P4} = L2 ∩ C

In this case, MW(SB1,zo) = (A∗
1)

⊕2 ⊕ (Z/2Z)⊕2 and we can choose generators s1, s2 of the
(A∗

1)
⊕2 part and torsion sections t1, t2, t3 so that

Cs1 = L13 = P1P3, Cs2 = L14 = P1P4, Ct1 = L1, Ct2 = L2, Ct3 = C

Furthermore, the combinatorics of the lines and conics corresponding to sections are as follows:

• Cs1+t1 : weak contact conic passing through P0, P2, P3

• Cs1+t2 : weak contact conic passing through P0, P1, P4

• Cs1+t3 : weak bitangent line through P2, P4



• Cs2+t1 : weak contact conic passing through P0, P2, P4

• Cs2+t2 : weak contact conic passing through P0, P1, P3

• Cs2+t3 : weak bitangent line through P2, P3

• Cs1±s2 : weak contact conic passing through P3, P4, tangent to L1 and C1

• Cs1±s2+t3 : weak contact conic passing through P1, P2, tangent to L2 and C1

• Cs1±s2+t2 : weak bitangent line passing through P0

• C[2]si : simple contact conic. (i = 1, 2)

Now we are ready to describe the Zariski pairs C1, C2 obtained from these curves. First, the
combinatorics of Ci is described and then the types of curves that give the components of Ci
with the desired combinatorics is described in terms of sections. We note that there may be
many choices of sections that give Zariski pairs with equivalent combinatorics, but we just give
one example for each combinatorial type. Additional Zariski pairs can be obtained by adding
further lines/conics to the listed examples, but we do not present them for simplicity.

(i) C = B1 + C2 + L3 = (C1 + L1 + L2) + C2 + L3

C2 is a simple contact conic, L3 is a line through P, P ′, where P ∈ {P1, P2}, P ′ ∈ {P3, P4}.

• C1 = B1 + C[2]s1 + Cs1
• C2 = B1 + C[2]s1 + Cs2

Note: This example was first found by Tokunaga ([18]).

(ii) C = B1 + C2 + L3 = (C1 + L1 + L2) + C2 + L3

C2 is a weak contact conic through P, P ′ where {P, P ′} = {P1, P2} or {P3, P4}, L3 is a
weak bitangent line through P0.

• C1 = B1 + Cs1+s2 + Cs1+s2+t2

• C2 = B1 + Cs1+s2 + Cs1−s2+t2

(iii) C = B1 + C2 + C3 = (C1 + L1 + L2) + C2 + C3

C2 is a simple contact conic and C3 is a weak contact conic through P0, P, P
′ where

{P, P ′} = {P1, P3} or {P2, P4}.

• C1 = B1 + C[2]s1 + Cs1+t1

• C2 = B1 + C[2]s1 + Cs2+t1

(iv) C = B1 + C2 + C3 = (C1 + L1 + L2) + C2 + C3

C2 and C3 are weak contact conics both through P, P ′ where {P, P ′} = {P1, P2} or
{P3, P4}.

• C1 = B1 + Cs1+s2 + Fs1+s2 , (Fs1+s2 ∈ Fs1+s2)

• C2 = B1 + Cs1+s2 + Cs1−s2



(v) C = B1 + C2 + C3 = (C1 + L1 + L2) + C2 + C3

C2 is a weak contact conic through P1, P2 and C3 is a weak contact conic through P3, P4.

• C1 = B1 + Cs1+s2+t3 + Cs1+s2

• C2 = B1 + Cs1−s2+t3 + Cs1+s2

3.2.2 The case B2 = C1 + C2, transversal intersection

Let B2 = C1 + C2, where C1, C2 are smooth conics intersecting transversally. Let C1 ∩ C2 =
{P0, P1, P2, P3} and zo ∈ C1 \ {P0, P1, P2, P3}. In this case, MW(SB2,zo)

∼= (A∗
1)

⊕3 ⊕ (Z/2Z).
We can choose generators s1, s2, s3 for the (A∗

1)
⊕3 part of the Mordell-Weil lattice so that the

following hold:

Cs1 = P0P1, Cs2 = P0P2, Cs3 = P0P3, Ct = C1

Furthermore the the combinatorics of the lines and conics corresponding to sections are as
follows:

• Csi+t: weak bitangent line through Pj , Pk ({i, j, k} = {1, 2, 3})

• Csi±sj : weak contact conic through Pi, Pj (i ̸= j)

• Csi±sj+t: weak contact conic through {P0, P1, P2, P3} \ {Pi, Pj}(i ̸= j)

• Cs1±s2±s3+t: simple bitangent line of C1 + C2

• C[2]si : simple contact conic. (i = 1, 2, 3)

The Zariski pairs obtained from these curves are as follows:

(i) C = B2 + C3 + L1 = (C1 + C2) + C3 + L1

C3 is a simple contact conic and L1 is a line through Pi, Pj , {i, j} ⊂ {0, 1, 2, 3}.

• C1 = B2 + C[2]s1 + Cs1
• C2 = B2 + C[2]s1 + Cs2

Note: This example was first found by Tokunaga ([18]).

(ii) C = B2 + C3 + L1 = (C1 + C2) + C3 + L1

C3 is a weak contact conic through Pi, Pj , {i, j} ⊂ {0, 1, 2, 3} and L1 is a simple bitangent
line.

• C1 = B2 + Cs1+s2 + Cs1+s2+s3+t

• C2 = B2 + Cs1+s2 + Cs1−s2+s3+t

Note: This is Example 3.2thm.3.2.

(iii) C = B2 + C3 + C4 = (C1 + C2) + C3 + C4

C3 and C4 are both simple contact conics.



• C1 = B2 + C[2]s1 + F[2]s1 , (F[2]s1 ∈ F[2]s1)

• C2 = B2 + C[2]s1 + C[2]s2

Note: This example was first found by Namba-Tsuchihashi ([9]).

(iv) C = B2 + C3 + C4 = (C1 + C2) + C3 + C4

C3 and C4 are weak contact conics both through {Pi, Pj}, {i, j} ⊂ {0, 1, 2, 3}.

• C1 = B2 + Cs1+s2 + Fs1+s2 , (Fs1+s2 ∈ Fs1+s2)

• C2 = B2 + Cs1+s2 + Cs1−s2

Note: Fs1+s2 is the family of conics having the same combinatorics as Cs1+s2 .

(v) C = B2 + C3 + C4 = (C1 + C2) + C3 + C4

C3 is a weak contact conic through {Pi, Pj} and C4 is a weak contact conics both through
{Pk, Pl}, {i, j, k, l} ⊂ {0, 1, 2, 3, }.

• C1 = B2 + Cs1+s2 + Cs1+s2+t

• C2 = B2 + Cs1+s2 + Cs1−s2+t

(vi) C = B2 + C3 + L1 + L2 = (C1 + C2) + C3 + L1 + L2

C3 is a simple contact conic of Q and L1, L2 are simple bitangent lines.

• C1 = B2 + C2[s1] + Cs1+s2+s3+t + Cs1−s2−s3+t

• C2 = B2 + C2[s1] + Cs1+s2+s3+t + Cs1−s2+s3+t

(vii) C = B2 + C3 + L1 + L2 = (C1 + C2) + C3 + L1 + L2

C3 is a weak contact conic through {Pi, Pj} and L1, L2 are simple bitangent lines of Q.

• C1 = B2 + Cs1+s2 + Cs1+s2+s3+t + Cs1+s2−s3+t

• C2 = B2 + Cs1+s2 + Cs1+s2+s3+t + Cs1−s2+s3+t

• C3 = B2 + Cs1+s2 + Cs1−s2+s3+t + Cs1−s2−s3+t

Note: We have a Zariski triple for this combinatorics. This arrangement contains Example
3.2thm.3.2 as a subarrangement.

3.2.3 The case B3 = C1 + C2, tangent at one point

Let B3 = C1 +C2, where C1, C2 are smooth conics tangent at one point and intersect transver-
sally at two other points. Let P0 be the tangent point and P1, P2 be the other two transversal
intersection points of C1 and C2. Let zo ∈ C1 \ {P0, P1, P2}. In this case, MW(SB3,zo)

∼=
A∗

1 ⊕ ⟨ 14 ⟩ ⊕ Z/2Z. We can choose generators s1, s2 for the A∗
1 ⊕ ⟨ 14 ⟩ part of the Mordell-Weil

lattice so that the following hold:

Cs1 = P1P2, Cs2 = P0P1, Ct = C1

Furthermore the conics and lines corresponding to sections are as follows:



• Cs2+t: weak bitangent line P0P2

• Cs1+t: (weak) bitangent line of C1, C2 tangent to both at P0

• Cs1±s2 : weak contact conic through P0, P2

• Cs1±s2+t: weak contact conic through P0, P1

• C[2]s2 : simple contact conic to C1 + C2 with tangent at P0

• C[2]s2+t: weak contact conic through P0, P1, P2

• Cs1±[2]s2+t: simple bitangent line of C1 + C2

• C2[s1]: simple contact conic

The Zariski pairs obtained from these curves are as follows:

(i) C = B3 + C3 + L = (C1 + C2) + C3 + L

C3 is a weak contact conic through P0 and P ∈ {P1, P2} and L is a simple bitangent line
of Q.

• C1 = B3 + Cs1+s2 + Cs1+[2]s2+t

• C2 = B3 + Cs1+s2 + Cs1−[2]s2+t

(ii) C = B3 + C3 + C4 = (C1 + C2) + C3 + C4

C3 is a weak contact conic through P0, P1 and C4 is a weak contact conic through P0, P2.

• C1 = B3 + Cs1+s2 + Cs1+s2+t

• C2 = B3 + Cs1+s2 + Cs1−s2+t

(iii) C = B3 + C3 + C4 = (C1 + C2) + C3 + C4

C3, C4 are weak contact conics both through P0, P , P ∈ {P1, P2}.

• C1 = B3 + Cs1+s2 + Fs1+s2 , (Fs1+s2 ∈ Fs1+s2)

• C2 = B3 + Cs1+s2 + Cs1−s2
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