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Estimation of the occurrence, severity, and volume of heartwood rot using 
airborne laser scanning and optical satellite data
Endre Hansen a*, Julius Wold a*, Michele Dalponte b, Terje Gobakken a, Lennart Noordermeer a 

and Hans Ole Ørka a

aFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway; bResearch and 
Innovation Centre, Fondazione Edmund Mach, San Michele All’adige, TN, Italy

ABSTRACT
Rot in commercial timber reduces the value of the wood substantially and estimating the 
occurrence, severity, and volume of heartwood rot would be a useful tool in decision-making to 
minimize economic losses. Remotely sensed data has recently been used for mapping rot on 
a single-tree level, and although the results have been relatively poor, some potential has been 
shown. This study applied area-based approaches to predict rot occurrence, rot severity, and 
rot volume , at an area level. Ground reference data were collected from harvester operations in 
2019–2021. Predictor variables were calculated from multi-temporal remotely sensed data 
together with environmental variables. Response variables from the harvester data and pre-
dictor variables from remotely sensed data were aggregated to grid cells and to forest stands. 
Random Forest models were built for the different combinations of response variables and 
predictor subsets, and validated with both random- and spatial cross-validation. The results 
showed that it was not possible to estimate rot occurrence and rot severity with the applied 
modeling procedure (pR2: 0.00–0.16), without spatially close training data. The better perfor-
mance of rot volume models (pR2: 0.12–0.37) was mainly due to the correlation between 
timber volume and rot volume.
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Introduction

Deciding whether to harvest timber from a forest or to 
allow the trees to continue to grow is one of the most 
important strategic decisions a forest manager must 
make. This decision typically relies on information 
regarding timber quality, volume increment, harvesting 
costs, and timber prices. It usually involves optimizing 
the net present value of different harvesting times. The 
optimal time for harvesting can be influenced by many 
factors, of which natural disturbances can have 
a significant effect. By incorporating the risk of distur-
bances in the decision process, the forest owner can 
adapt the forest management, especially the decision 
of when to harvest (Susaeta & Gong, 2019). Without 
information about these risks, erroneous decisions are 
made (Möykkynen & Pukkala, 2010), potentially lead-
ing to monetary losses for the forest owner.

Due to the effects of global warming, the probability 
of natural disturbances will likely increase particularly 
in coniferous forests in the boreal zone (Seidl et al.,  
2017). Among such disturbances are fungal decay 
pathogens, which can cause rot in living trees, resulting 
in reduced growth and decreased wood production. 

Studies conducted in Norway and Sweden found that 
14–25% of Norway spruce (Picea abies (L.) Karst.) trees 
harvested in final felling were affected by rot (Huse 
et al., 1994; Noordermeer et al., in press; Stenlid & 
Wästerlund, 1986; Thor et al., 2005). The national 
study of Huse et al. (1994), in Norway, showed that 
most of the rot in Norway spruce, 71%, was caused by 
the fungus Heterobasidion parviporum Niemelä & 
Korhonen. The fungi spread through the air by basi-
diospores that can infect exposed fresh wood tissue on 
stumps or wounds, or by direct root contact (Garbelotto 
& Gonthier, 2013). It usually affects the lower and most 
valuable part of the tree stem, and the occurrence of rot 
in commercial timber substantially reduces its value. 
Economic losses in Norway alone are reported to be 
€18.5 million annually (Noordermeer et al., in press).

Models for the prediction of rot occurrence based 
on empirical data have been developed in previous 
studies in Sweden (Thor et al., 2005), Finland 
(Mattila & Nuutinen, 2007), and Norway (Hylen & 
Granhus, 2018). These models predict the probability 
of rot at tree or stand level with explanatory variables 
describing climatic and edaphic conditions, forest 
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structure, and development stages. The study of Hylen 
and Granhus (2018) identified diameter at breast 
height (dbh), age, altitude, growing season tempera-
ture sum, and vegetation type as significant explana-
tory variables for the number of stems with rot 
observed at breast height. This model is, however, 
developed for use at national and regional scales, and 
its performance at an operational management level is 
currently unknown.

Wall-to-wall remotely sensed information has the 
potential to enable the mapping and monitoring of rot 
at an operational level (Lausch et al., 2016). In Norway 
spruce, rot has been shown to lead to defoliation 
(Žemaitis & Žemaitė, 2018), and close-range remote 
sensing has been used to detect differences in the 
crown condition in Scots pine affected by rot 
(Pitkänen et al., 2021). Recent research has also 
shown promising results in using remotely sensed 
data to detect attacks by bark beetles (Ips spp.) in 
Norway spruce (Abdullah et al., 2019; Bárta et al.,  
2021; Huo et al., 2021). These studies have shown 
that it is possible to detect differences in the spectral 
signatures of healthy and stressed trees, even in the 
early stages of an attack using satellite imagery.

Recent studies in Norway have used various sources 
of remotely sensed information coupled with ground 
reference data collected from cut-to-length harvesters 
to model and map rot on single-tree level (Allen et al.,  
2022a; Allen et al., 2022b; Dalponte et al., 2022a; 
Dalponte et al., 2022b) and management unit level 
(Räty et al., 2021). The work on single-tree level identi-
fied the classification of rot as a challenging task, with 
best results in terms of the kappa coefficient of 0.19–0.22 
(Dalponte et al., 2022a) and 0.19–0.27 (Allen et al.,  
2022a). The relatively poor results were explained by 
the complexity of the problem and the fact that the visual 
signs of heartwood rot are not detectable to the human 
eye. Although there are differences in the spectral signa-
tures of healthy and infected trees, there is not enough 
information to separate the two classes (Dalponte et al.,  
2022a). Furthermore, the single-tree approach has the 
drawback of not detecting all trees in the remotely sensed 
data (Dalponte et al., 2015; Kandare et al., 2017).

Hence, the area-based approach to forest inventory 
and modeling, whereby the response is modeled on 
a fixed area, is preferred to avoid systematic errors caused 
by undetected trees (Coomes et al., 2017). Räty et al. 
(2021) applied the area-based approach to model the 
volume of butt rot at the grid cell level and aggregated 
the predictions to the management unit level. 
Explanatory information included both environmental 
and remotely sensed variables. Additionally, information 
from the harvester was included in the model to analyze 
this information as a theoretical case. This included 
variables such as the harvested timber volume, number 
of harvested stems, quadratic mean dbh of harvested 
stems of Norway spruce, the difference between the 

90th and 10th percentile of the dbh distribution, and 
the proportion of harvested timber volume of Norway 
spruce. The study identified the variables describing the 
maturity of the forest, such as tree height, timber volume, 
and dbh, as the most important predictor variables.

Encouraged by the promising results in using 
multi-temporal remotely sensed data from nanosatel-
lites (Allen et al., 2022a), the area-based approach used 
by Räty et al. (2021) was in the present study expanded 
by incorporating multi-temporal remotely sensed data 
from other high-resolution optical sensors. The recent 
results on the mapping of beetle attacks using data 
from the Sentinel satellites (Abdullah et al., 2019; Bárta 
et al., 2021; Huo et al., 2021) indicated the importance 
of the data for the detection of stressed trees. The 
analysis also included bi-temporal airborne laser scan-
ning (ALS) due to the possible difference in crown 
density between healthy and infected trees (Pitkänen 
et al., 2021; Žemaitis & Žemaitė, 2018), and the ability 
of ALS to measure tree crown density (Popescu, 2007). 
Bi-temporal ALS can also indicate site index and to an 
extent soil properties (Noordermeer et al., 2018). 
Furthermore, rot volume as a response variable was 
supplemented with proportional responses of rot.

This study aimed to evaluate area-based approaches 
for estimating rot in Norway spruce trees using remotely 
sensed data. The specific objectives were to: (i) evaluate 
the use of multi-temporal remotely sensed data for 
modeling rot using the area-based approach, (ii) com-
pare three modeling approaches; grid, stand, and grid-to 
-stand, (iii) assess the effect of using spatially close data, 
and (iv) evaluate the use of proportional model 
responses, percentage of trees with heartwood rot 
(occurrence) and percentage of rot volume to the total 
timber volume (severity), in addition to rot volume.

Materials and methods

Study area

The study area of 986 square kilometers was located in 
Etnedal, Nord-Aurdal, Sør-Aurdal, and Nordre Land 
municipalities in southeastern Norway (60°94”N,09° 
56”E, Figure 1). The area is characterized by steep ter-
rain with an elevation of the harvested sites ranging 
from approximately 200 to 980 m above sea level. 
Norway spruce is the naturally dominant tree species 
in the area, especially on productive sites (i.e. sites with 
a high site index). Scots pine (Pinus sylvestris L.) and 
deciduous species, mainly birch (Betula pubescens 
Ehrh.), can be found in less productive sites or inter-
spersed in spruce-dominated sites.

Harvester data

Ground reference data were collected from 46 harvest-
ing operations using a single-grip Komatsu 931XC 
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harvester equipped with a 230 H crane and a C144 
harvester head, in the period August 2019 – 
November 2021. A total of 131,375 trees were har-
vested, 89% of which were Norway spruce, 6% Scots 
pine, and 5% deciduous, mainly birch. The harvester 
was fitted with a Septentrio AsteRx-U real-time kine-
matic Global Navigation Satellite System (GNSS) con-
sisting of two antennas that logged positions and 
rotations at a rate of one second in the National 
Marine Electronics Association (NMEA) format. The 
locations of harvested trees were recorded with 
a planimetric accuracy of around 1 m using the posi-
tions and rotations obtained from the GNSS and the 
crane extension measured by sensor hardware 
(Noordermeer et al., 2021). The harvester production 
report files contained data on geographical coordi-
nates, species and stem profile of harvested trees, and 
dimensions and assortments of individual logs.

In addition to their regular work related to harvest-
ing and processing trees, the harvester operator 
visually assessed and recorded the presence or absence 
of heartwood rot on the butt ends of processed spruce 
logs. The harvester operator did not, however, assess 
rot on non-spruce logs.

Commercial height, total tree height, timber 
volume, and rot volume were computed for each 
tree. Commercial height was calculated as the height 
along the stem profile where the tree’s last log was 
bucked and total tree height was predicted using 
a taper model. For each log, the log volume was calcu-
lated from the stem profile recorded by the harvester. 
Timber volume was calculated using empirical single- 

tree volume functions that relied on total tree height 
and dbh as predictors (Braastad, 1966; Brantseg, 1967; 
Vestjordet, 1967), and rot volume was calculated in 
the following procedure: (i) logs for which the subse-
quent log (i.e. the next log higher up the tree stem) was 
also classified as having rot, the total volume of the log, 
calculated from the stem profile, was registered as rot 
and (ii) logs for which the subsequent log was classi-
fied as having no rot, the rot volume was calculated 
from the stem profile of the lower half of the log 
length.

A summary of the single-tree harvester data is 
shown in Table 1.

Aggregation of harvester data
When conducting a forest inventory following the area- 
based approach, the inventory area is typically tessel-
lated into grid cells of the exact size as the field sample 
plots. The use of harvester data as ground reference data 
provides substantial flexibility regarding plot and grid 
cell sizes, however, research results indicate that sizes 
between 200 and 400 m2 are most appropriate 
(Maltamo et al., 2019). Accordingly, and conforming 
to operational practices in Norwegian forest inven-
tories, we used a grid cell size of 250 m2 when aggregat-
ing the harvester data. Thus, the study area was 
tessellated into grid cells and clipped by the boundary 
extent of harvested areas, creating a total of 10,304 cells. 
Cells with an area <100 m2 or with a spruce proportion  
< 70% were removed from the dataset. Furthermore, 
the harvester data were aggregated to the stands defined 
in the forest management plan. The stands were clipped 

Figure 1. Study area and harvesting operations.
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by the boundary extent of harvested areas. A total of 562 
stands were assigned harvester data. However, if the 
cells with aggregated harvester data were in sum less 
than 0.2 ha at stand level, the cells were discarded. After 
applying these filtering criteria, 3715 cells and 109 
stands were used in the analysis.

For each grid cell, timber volume and three 
measures of rot were calculated: rot occurrence, 
rot severity, and rot volume. Rot occurrence was 
calculated as the percentage of trees with heart-
wood rot, rot severity as the percentage of rot 
volume relative to the total timber volume, and 
rot volume as the timber volume (m3/ha) with 
heartwood rot. Formulas used to obtain rot occur-
rence (eq. 4), rot severity (eq. 3), rot volume 
(eq. 2), and timber volume (eq. 1) on grid and 
stand level are shown below where Rotvolumej 
and Timbervolumej are summed rot volume and 
timber volume for tree j,Presenceofrotj is a binary 
identifier for rot (0 for trees with no rot, 1 for trees 
with rot) in tree j and m refers to the number of 
trees in the cell. 

Timber volume ¼
Xm

j¼1
Timber volumej m3ha� 1� �� �

(1) 

Rot volume ¼
Xm

j¼1
Rot volumej m3ha� 1� �� �

(2) 

Rot severity ¼
Pm

j¼1 Rot volumej m3ha� 1ð Þ
� �

Pm
j¼1 Timber volumej m3ha� 1ð Þ
� �

� 100% (3) 

Rot occurrence ¼
Pm

j¼1 Presenceofrotj
� �

m
� 100% (4) 

To calculate the dominant height (Hdom) for each grid 
cell, the number of trees to be used in the calculation 
(Ndom) was determined by dividing the area of the cell 
in square meters by 100, conforming to the criteria of 
the 100 largest trees per ha. Ndom was then rounded up 
to the nearest integer and this number was used to 
select the n trees with the largest dbh. Hdom was then 
calculated as the weighted mean of these selected trees, 
where all but the last tree were assigned a weight of 1, 
and the last tree was assigned the remainder obtained 
by subtracting Ndom from the rounded-down nearest 
integer of Ndom as its weight.

Table 2 shows the statistics of the filtered and 
aggregated harvester data. The means of properties 
were quite similar for the different aggregation meth-
ods, while the variation was larger for the grid data. 
The correlation between the rot variables (rot occur-
rence, rot severity, rot volume) and timber volume was 
assessed (Figure 2). Rot occurrence and rot severity 
both had a weak correlation with timber volume. For 
the grid and stand data, the correlation coefficients 
were respectively 0.2 and 0.3 for rot occurrence and 
0.1 and 0 for rot severity. Rot volume had a moderate 
correlation with timber volume of 0.5 and 0.6 for the 
grid and stand data, respectively.

Remotely sensed and environmental data

Optical data
Optical satellite images were collected for 2017 and 
2018 from Sentinel-2 and the Planet Dove constella-
tion satellites (Planet Team, 2017). Sentinel-2 images 
have 10 bands with a spatial resolution of 10 m or 20 m 
while Dove images are of a higher resolution than 
Sentinel-2 at 3 m, but only contain four bands.

Table 1. Summary statistics (mean and range) of harvested trees.

Species n
dbh 

(mm) Height (m) Rot occurrence (%) Rot severity (%) Rot volume (m3) Timber volume (m3)

Spruce 116737 197.89 (46–661) 14.96 (2–53) 16.36 4.73 (0–181.68) 0.02 (0–1.61) 0.31 (0.31–6.75)
Pine 8160 269.54 (53–584) 18.81 (5–50) NA* NA* NA* 0.60 (0.01–3.6)
Deciduous 6478 167.34 (50–635) 14.78 (4–53) NA* NA* NA* 0.20 (0.01–4.63)

*Rot was only recorded for spruce.

Table 2. Summary of aggregated harvester data at grid and stand level.
Aggregation Property Mean Standard deviation Minimum Maximum

Grid Area (m2) 210.2 48.3 100.1 250.0
n trees (n/ha) 777.5 340.6 40.0 2520.0
Rot occurrence (%) 16.5 15.3 0.0 100
Rot severity (%) 6.5 7.1 0.0 50.8
Rot volume (m3/ha) 17.0 23.5 0.0 294.3
Timber volume (m3/ha) 246.1 151.9 7.7 1404.6

Stand Area (ha) 1.0 1.1 0.2 7.0
n trees (m3/ha) 805.7 246.2 378.7 1672.0
Rot occurrence (%) 14.3 6.6 3.4 33.4
Rot severity (%) 6.0 2.9 1.4 15.1
Rot volume (m3/ha) 15.1 10.5 2.1 51.8
Timber volume (m3/ha) 252.6 124.8 51.5 804.6
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Monthly image composites were generated for 
Sentinel-2 and Dove. Sentinel-2 image composites 
were generated in Google Earth Engine, taking the 
median value of each pixel, considering only shadow- 
free and cloud-free ones. Analytic Ortho Dove images 
were collected, corrected to surface reflectance and 
harmonized to Sentinel-2 to reduce scene-to-scene 
variability (Kington & Collison, 2022) using Planet’s 
Data API. Composites for Dove were generated using 
the R packages terra (Hijmans, 2022) and RStoolbox 
(Leutner et al., 2022). Images were co-registered 
before generating composites by taking the median 
value of each pixel not affected by cloud, haze, shadow, 
and/or snow. Due to high cloud cover, some months 
contained cells with missing data. Months in which 
more than 10% of the cells had missing data were 
removed. Specifically, this included the months of 
April, July, September, and October of 2017 and 
April, September, and October of 2018.

For each of the monthly image composites from 
Sentinel-2 and Dove, vegetation indices (VIs) were 
computed. VIs were calculated using the RStoolbox 
R package (Leutner et al., 2022). In total, 28 VIs were 
computed from the Sentinel-2 composites and 16 
from Dove (Table 3). VIs were computed for 
Sentinel-2 over seven months and Dove over eight 
months, resulting in a total of 196 and 128 computed 
variables, respectively.

Airborne lasscanning data
Two sets of ALS data were prepared for the study area. 
The first set (T1) was collected in 2007 with a point 
density of 0.7 points per m2, while the second set (T2) 
consisted of data from several acquisitions covering 
different parts of the study area in the years 2013– 
2017. The point density in these acquisitions was 
either two or five points per m2.

Figure 2. Correlations of rot variables with timber volume.

Table 3. Overview of vegetation indices computed for Sentinel-2 (S2) and Planet Dove (Dove).
Vegetation index Bands Satellite Reference

CLG Red edge 3, green S2 (A. A. Gitelson et al., 2003)
CLRE Red edge 3, red edge 1 S2 (A. A. Gitelson et al., 2003)
CTVI Red, nir S2 and Dove (Perry & Lautenschlager, 1984)
DVI Red, nir S2 and Dove (Richardson & Wiegand, 1977)
GEMI Red, nir S2 and Dove (Pinty & Verstraete, 1992)
GNDVI Green, nir S2 and Dove (A. A. Gitelson et al., 1996)
KNDVI Red, nir S2 and Dove (Camps-Valls et al., 2021)
MCARI Green, red, red edge 1 S2 (Nagler et al., 2000)
MNDWI Green, swir 2 S2 (Xu, 2006)
MSAVI Red, nir S2 and Dove (Qi et al., 1994)
MSAVI2 Red, nir S2 and Dove (Qi et al., 1994)
MTCI Red, red edge 1, red edge 2 S2 (Dash & Curran, 2004)
NBRI Nir, swir 3 S2 (Lozano-Garcia et al., 1991)
NDREI1 Red edge 2, red edge 1 S2 (A. Gitelson & Merzlyak, 1994)
NDREI2 Red edge 3, red edge 1 S2 (Barnes et al., 2000)
NDVI Red, nir S2 and Dove (Rouse et al., 1974)
NDWI Green, nir S2 and Dove (McFeeters, 1996)
NDWI2 Nir, swir 2 S2 (Gao, 1996)
NRVI Red, nir S2 and Dove (Baret & Guyot, 1991)
REIP Red, red edge 1, red edge 2, red edge 3 S2 (Guyot & Baret, 1988)
RVI Red, nir S2 and Dove (Birth & McVey, 1968)
SATVI Red, swir 2, swir 3 S2 (Marsett et al., 2006)
SAVI Red, nir S2 and Dove (Huete, 1988)
SLAVI Red, nir, swir 2 S2 (Lymburner et al., 2000)
SR Red, nir S2 and Dove (Birth & McVey, 1968)
TTVI Red, nir S2 and Dove (Thiam, 1998)
TVI Red, nir S2 and Dove (Deering, 1975)
WDVI Red, nir S2 and Dove (Richardson & Wiegand, 1977)
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ALS data were processed with the lidR package 
(Roussel & Auty, 2022) in R. Point cloud normaliza-
tion was performed using a triangulated irregular net-
work (TIN) created from echoes classified as ground. 
For each echo, the height was normalized by subtract-
ing the interpolated height of the TIN.

For each grid cell, canopy height variables includ-
ing percentiles at 10% intervals (H10, H20, . . . , H90) 
were calculated from laser echoes above a threshold of 
2 m above the ground. In addition, the mean height 
(Hmean), standard deviation (Hsd), coefficient of var-
iation (Hcv), kurtosis (Hkurt), and skewness 
(Hskewness) were calculated for echoes above the 
threshold of 2 m. Canopy density variables were cal-
culated by first dividing the range between the 95% 
height percentile and the 2 m threshold into ten ver-
tical layers of equal height. The proportion of echoes 
above each layer to the total number of echoes was 
calculated, resulting in ten canopy density metrics 
(D0, D1, . . . , D9). ALS metrics were calculated for 
T1 and T2, as well as the differences between corre-
sponding T1 and T2 metrics. Since the collection of 
ALS data for T2 was spread over several years (2013– 
2017) these differences were calculated as the relative 
change per year. The ALS metrics are hereafter 
referred to as ALS variables.

Environmental data
Forest management plans are typically revised every 
10–15 years for the majority of the productive forest 
area in Norway. The plans provide stand-level infor-
mation and are usually produced using a combination 
of remotely sensed information and field surveys. We 
collected two variables obtained from manual photo 
interpretation, i.e. site index and age, from the forest 
management plan covering the study area. Some grid 
cells intersected multiple stands, in which case the 
values of the stand with the largest overlap were 
selected.

A water table model referred to as the depth to 
water (DTW) is available at a national level 
(Hoffmann et al., 2022). The mean value in centi-
meters from the soil surface to the water table was 
extracted for each grid cell. Furthermore, ALS data 
from T1 were used to create a digital terrain model 
(DTM) with one-meter resolution using a TIN. The 
R package Terra (Hijmans, 2022) was then used to 
calculate slope, aspect, terrain ruggedness index 
(TRI), topographic position index (TPI), roughness, 
and flow direction from the DTM. In addition, the 
height above sea level was extracted from the DTM, 
and mean values were extracted for each cell.

Modeling and validation

The complete dataset contained all VIs computed 
from Sentinel-2 and Dove in the years 2017 and 2018 

(324 variables), ALS variables from T2 and the ALS 
difference variables (48 variables), environmental vari-
ables (8 variables), and variables collected from the 
forest management plan (2 variables). The variables 
were divided into four different subsets of predictor 
variables: all variables (all), only ALS variables (als), 
only VIs variables (optical), and only environmental 
variables (env).

Three approaches to modeling were used for the 
aggregated data. In the grid and stand approach, pre-
dictor and response variables (rot occurrence, rot 
severity, rot volume, and timber volume) aggregated 
to the respective levels were used for training and 
validating models. The last approach was a grid-to- 
stand approach where the models were first trained at 
grid cell-level. CV predictions and observed values at 
grid cell-level were then averaged to the respective 
stands weighted by the area of the grid cells to create 
estimates at stand-level. These stand-level values were 
then used to validate the model.

A model was created for each combination of the 
four response variables and the four subsets of pre-
dictor variables, each model was fitted with and with-
out outlier removal for grid data, totaling 32 models 
for grid-level and 16 models for stand-level. All mod-
els’ performance was assessed with random cross- 
validation (CV) and spatial CV. An overview of the 
data sources and modeling steps is shown in Figure 3.

Regression method
The random forest algorithm has become a popular and 
widely used algorithm in both classification and regres-
sion problems (Biau & Scornet, 2016). The algorithm 
presented by Breiman (2001) can handle datasets with 
a large number of variables, non-linearity, and at the 
same time having few parameters that require tuning. 
Several random forest implementations are available, of 
which we used one of the R package ranger (Wright & 
Ziegler, 2017) for computational efficiency.

Preliminary modeling using the R package 
tuneRanger (Probst et al., 2019) showed that hyper-
parameter tuning had little effect on model perfor-
mance. Therefore, the hyperparameters were fixed to 
their default values: Number of trees to 500, minimum 
node size to five, and mtry to the largest integer value, 
not greater than or equal to the square root of the 
number of predictor variables. Impurity importance 
was used for estimating variable importance measures. 
Variable importance measures were averaged across 
the folds used in the validation and then scaled accord-
ing to the greatest value on a scale from 0 to 1.

Outlier removal
To improve model robustness, outlier removal was 
attempted to remove grid cells where harvester data 
and ALS data did not match. Outlier removal was only 
applied to the grid dataset as the inaccuracy of harvester 
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data would have little effect on the stand dataset. A linear 
model with Hdom as the response and the H90 ALS 
variable from T2 as the predictor was fitted to the har-
vester grid data. Observations with a Cook’s distance 
higher than 0.5 of the mean Cook’s distance were flagged 
as outliers. These observations were removed from the 
training data but not from the validation data. Modeling 
was performed with and without outlier removal.

Validation
Two validation methods were used for assessing 
model performance. The first method was random 
k-fold CV, by which observations were randomly 
assigned to folds. The second validation method was 
spatial clustering CV, by which spatially close samples 
were assigned to the same folds. Clusters based on the 
distances between observations were created with 
k-means clustering. The k in the k-fold CV was set 
to 10 for all datasets. For the spatial CV, the average 
distance between folds was 13.0 km for the grid 
approach and 11.4 km for the stand approach, with 
minimum and maximum distances of 1.4 km and 28.0  
km for grid, and 0.5 km and 24.1 km for stand.

Machine learning models applied on spatially 
dependent datasets have been shown to overestimate 
performance when random CV is used compared to 
spatial CV (Meyer et al., 2018, 2019). By including 
both random and spatial CV we can assess the effects 
of spatially close training data.

The results were evaluated using root mean squared 
error (RMSE), relative root mean squared error 
(RMSE%), pseudo coefficient of determination (pR2) 
calculated as the squared correlation between 
observed and predicted values, and mean difference 
(MD). Additionally, a fuzzy set evaluation, as pro-
posed by Gopal and Woodcock (1994), was used on 
a scale from five to one to complement the preceding 
metrics. The fuzzy set score from five to one gives 
a percentage-wise distribution of the deviation 
between the predicted value and the observed value, 
corresponding to ≤ 10%, ≤20%, ≤30%, ≤40%, and >  
40%, respectively. This can be helpful in operational 
forest management by assessing the model perfor-
mances in terms of deviation from the true value 
within a range, eg., 0–20%. For each response variable, 
a null-model was created. Null-models for rot severity 
and rot occurrence used the average value of the 
response as a constant estimate, while rot volume 
was estimated from true timber volume and average 
rot severity.

Formulas for RMSE, RMSE%, pR2, and MD are 
shown in formulas 5–8 where yi and byi is the observed 
and predicted values of the response variable for cell i, 
� y is the observed mean of the response variable and n 
is the number of cells. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yi � byið Þ
2

n

s

(5) 

Figure 3. Schematic diagram of the data sources, modeling, and validation steps.
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RMSE% ¼
RMSE

�y
� 100 (6) 

pR2 ¼ cor y; ŷð Þ
2 (7) 

MD ¼
Pn

i¼1 byi � yið Þ

n
(8) 

Results

Performance in terms of pR2 are shown in Figure 4 for 
all models. Random CV led to higher performances 
compared to the spatial CV for all approaches. The 
drop in performance, from random- to spatial CV, 
was reduced using ALS variables as predictors for 
timber volume- and rot volume models.

The effect of outlier removal depended on the vali-
dation method. Results using the random CV, showed 
reduced performance for every model evaluated. 
Applying the spatial CV, the effect of outlier removal 

was small. However, it improved the results for some 
rot volume and rot severity models.

Performance metrics for the best-performing models 
for each response and modeling approach are shown in 
Table 4. Of the rot responses, the rot volume models 
achieved the highest pR2 values for all approaches with 
0.12, 0.14, and 0.37 and RMSE-values of 22.4, 9.9, and 
11.4 using spatial CV for grid-, stand- and grid-to-stand 
approach, respectively. The RMSEs for the grid approach 
were clearly larger than the other two, while the difference 
between stand and grid-to-stand was smaller. The per-
formance of rot occurrence and rot severity models was 
low for all approaches. The pR2 of the rot severity models 
for all approaches ranged from 0.00 to 0.01 with spatial 
CV. Rot occurrence models performed better for the grid 
and grid-to-stand approach with pR2 of 0.06 and 0.16, 
and RMSE-values of 15.0 and 7.7, respectively, while the 
stand approach had pR2 of 0.03 and RMSE of 6.6.

The predicted versus observed values for spatial CV 
of the best-performing models are shown in Figure 5. 
Timber volume models performed well, although they 
underpredicted observations with large volumes. The 

Figure 4. Performance of models.
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predictions for rot models were centered around the 
mean, underestimating small values and overestimat-
ing large ones.

Variable importance plots are shown in Figure 6. 
The best-performing models for rot occurrence and 
rot volume models are dependent on ALS variables. 
The variable Hsd and height percentiles are assigned 
high importance. The importance of ALS variables is 
lower for rot severity models and is dependent on the 
approach. The grid approach assigned high impor-
tance to environmental and optical variables, while 
the stand approach only selected environmental 
variables.

The timber volume models showed substantially 
better performance than any of the rot models, 
with pR2-values of 0.62, 0.66, and 0.80 for grid-, 
stand- and grid-to-stand approaches, respectively, 
using spatial CV. The drop in performance 
between validation methods was small compared 
to any of the rot measures when ALS variables 
were included as predictors. Height percentiles 
and Hmean from the ALS variables scored high 
on variable importance for models.

The fuzzy set evaluation scores show that, using 
spatial CV, 65% of the timber volume predictions 
were within ± 30% of the true value on grid level and 
85% at stand level using the grid-to-stand aggregation 
approach. For rot occurrence, rot severity, and rot 
volume the comparable values were 26%, 22%, and 
18% at grid level, respectively, and 47%, 41%, and 
34% at the stand level.

Comparing the results from the null-models in 
Table 5 with the best regression models (Table 4), 
the RMSEs were reduced by all regression models 
using random CV, with the exception of rot volume 
models. For rot occurrence and rot severity the RMSEs 
were reduced by 11% and 5% respectively on grid level 
and 8% and 9% on stand level. The difference in 
RMSEs was small on grid level (0%) but 14% lower 
on stand level for rot volume. For spatial CV, the 
RMSE were reduced with 2% for rot occurrence at 
grid cell level, while for rot severity and rot volume 
the RMSEs increased with 3% and 11%. At the stand 
level, there was no difference for rot occurrence while 
the RMSEs of rot severity and rot volume increased 
with 5% and 22% respectively.

Discussion

By using an area-based approach combined with multi- 
temporal data from high-resolution optical sensors, we 
were not able to build a robust model for the estimation 
of rot. With spatial CV the relative responses performed 
poorly with pR2 of rot severity ranging from 0.00 to 0.01 
and rot occurrence ranging from 0.03 to 0.16. Rot 
volume models performed better than the relative 
responses with pR2 ranging from 0.12 to 0.37.

The poor performance of the relative measures of 
rot may have been caused by a lack of predictive power 
of the used predictor variables. The classification of rot 
at single-tree level has been shown to be challenging 
when using multi-temporal imagery (Dalponte et al.,  

Table 4. Performance metrics for best-performing models.
Fuzzy set evaluation

Response Predictors CV RMSE RMSE% pR2 MD Outlier removal 5 4 3 2 1

Grid
Rot occurrence all Random 13.59 82.58 0.22 −0.58 F 0.09 0.20 0.28 0.72 0.63
Rot occurrence als Spatial 14.96 90.93 0.06 −0.86 F 0.09 0.18 0.26 0.74 0.65
Rot severity all Random 6.65 102.96 0.11 −0.33 F 0.07 0.15 0.23 0.77 0.69
Rot severity all Spatial 7.26 112.41 0.01 −1.12 F 0.08 0.15 0.22 0.78 0.71
Rot volume all Random 20.09 118.90 0.27 −0.99 F 0.07 0.15 0.22 0.78 0.71
Rot volume als Spatial 22.38 132.45 0.12 −0.93 T 0.06 0.12 0.18 0.82 0.75
Timber volume all Random 84.20 34.22 0.70 −1.66 F 0.30 0.55 0.72 0.28 0.19
Timber volume als Spatial 93.19 37.87 0.62 −0.11 F 0.26 0.48 0.65 0.35 0.24

Stand
Rot occurrence all Random 6.01 42.06 0.16 −0.14 F 0.13 0.37 0.54 0.46 0.37
Rot occurrence als Spatial 6.55 45.86 0.03 0.02 F 0.17 0.31 0.47 0.53 0.38
Rot severity all Random 2.67 44.52 0.17 −0.14 F 0.20 0.34 0.51 0.49 0.39
Rot severity env Spatial 3.07 51.10 0.00 −0.19 F 0.17 0.29 0.41 0.59 0.46
Rot volume all Random 9.23 61.02 0.23 −0.51 F 0.11 0.24 0.35 0.65 0.50
Rot volume als Spatial 9.86 65.22 0.14 −0.19 F 0.13 0.25 0.34 0.66 0.59
Timber volume als Random 62.51 24.74 0.75 1.54 F 0.39 0.65 0.83 0.17 0.07
Timber volume als Spatial 73.19 28.97 0.66 6.75 F 0.34 0.60 0.82 0.18 0.11

Grid-to-stand
Rot occurrence all Random 5.27 34.45 0.66 −1.28 F 0.34 0.52 0.65 0.35 0.25
Rot occurrence als Spatial 7.66 50.04 0.16 −1.91 F 0.16 0.31 0.46 0.54 0.37
Rot severity env Random 2.30 37.84 0.64 −0.36 F 0.31 0.50 0.64 0.36 0.28
Rot severity optical Spatial 4.08 67.00 0.01 −1.00 T 0.19 0.29 0.41 0.59 0.48
Rot volume all Random 7.43 46.70 0.70 −2.15 F 0.20 0.43 0.51 0.49 0.41
Rot volume als Spatial 11.37 71.44 0.37 −3.28 F 0.14 0.30 0.42 0.58 0.50
Timber volume all Random 40.40 15.94 0.90 −2.38 F 0.61 0.84 0.94 0.06 0.05
Timber volume als Spatial 56.83 22.42 0.80 1.09 F 0.41 0.65 0.85 0.15 0.04
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2022b) and hyperspectral imagery (Allen et al., 2022a; 
Allen et al., 2022b; Dalponte et al., 2022a). Žemaitis 
and Žemaitė (2018) found significant differences in 
crown defoliation between trees with and without rot 
damage, but noted that almost all of the morphological 
indicators were non-specific. Thus, despite the exis-
tence of detectable differences between trees with and 
without rot, other stressors may hinder our ability to 
detect these differences using remote sensing. The 
effect of such stressors may be augmented in the pre-
sent study, which was conducted at the spatial scale of 
grid cells and stands as opposed to smaller individual 
trees in the mentioned studies.

Although rot volume was the best-performing 
response of rot, its correlation with timber volume may 
cause it to be misleading. In practice, estimating rot 
volume involves two parts: estimating timber volume 

and estimating rot severity (i.e. the extent to which the 
timber is damaged by rot). The poor performance of the 
rot severity models indicated that our rot volume models 
were mainly driven by volume estimation rather than the 
estimation of rot. In this study, both rot volume and rot 
occurrence models shared the high importance of height 
percentiles with timber volume models, further high-
lighting the link with timber volume. Contrary to Räty 
et al. (2021) however, our rot volume models did not 
outperform the null-models for rot volume.

Interestingly, ALS variables such as Hsd and Hkurt 
were assigned high importance for both rot occurrence, 
rot severity, and rot volume, but not for the timber 
volume models. Räty et al. (2021) also found high 
importance of Hvar for their rot volume models. Hsd 
can be associated with stand density, stand variation, or 
used for identifying thinning, although the low 

Figure 5. Observed versus predicted values of best-performing models for spatial CV.
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performance of spatial CV makes it likely to be a result 
of spatial overfit. Rot severity had the weakest correla-
tion with timber volume and was assigned high impor-
tance to environmental, optical, and non-volume- 
related ALS variables.

Compared to rot occurrence or rot severity, rot 
volume is less useful for making decisions on forest 
management due to the correlation to timber volume. 
If the models cannot differentiate between stands with 

similar volumes, they also cannot assist in prioritizing. 
Comparing the null-models and the rot volume mod-
els shows that using the true volume and the average 
rot severity result in a pR2 of 0.41 compared to a rot 
volume model which resulted in a pR2 of 0.37. We 
therefore suggest that future studies should, in addi-
tion to rot volume, include rot occurrence or rot 
severity, as both are suitable alternatives that are useful 
in decision-making.

Figure 6. Variable importance of the best models for spatial CV.

Table 5. Null-model results. Average values of response used for prediction.
Fuzzy set evaluation

Approach Response RMSE RMSE% pR2 5 4 3 2 1

Grid Rot occurrence 15.31 93.05 NA* 0.08 0.17 0.24 0.76 0.66
Rot severity 7.06 109.31 NA* 0.07 0.15 0.22 0.78 0.70
Rot volume 20.12 119.09 0.28 0.07 0.15 0.22 0.78 0.70

Stand Rot occurrence 6.54 45.76 NA* 0.16 0.39 0.50 0.50 0.38
Rot severity 2.93 48.80 NA* 0.18 0.32 0.46 0.54 0.44
Rot volume 8.07 53.33 0.41 0.18 0.32 0.46 0.54 0.44

*Constant estimate was used for rot occurrence and rot severity.
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Dalponte et al. (2022b) found that classification 
accuracy increased when only individual tree crowns 
with an area greater than 9 m2 were included instead 
of all individual tree crowns. This was in part 
explained by the more representative spectral infor-
mation, avoiding a mixed spectral signature from 
multiple trees within a satellite pixel. Aggregating har-
vester data to larger units such as grid cells or stands 
could result in a loss of representativeness of the data, 
especially for larger units. Since the effect of rot on the 
vigor of a tree is quite low at the individual tree level, 
aggregating data to large units may obscure any 
response present at the tree level. When predicting 
rot at the stand level, factors that explain the risk of 
rot may be more important than detecting the pre-
sence of rot. This would explain the shift from pre-
dominantly optical variables to exclusively 
environmental variables when predicting rot severity 
using the grid- and stand approach, respectively. The 
stronger correlation with timber volume may obscure 
this effect for rot occurrence.

Spatial overfitting was a significant issue for all 
models estimating rot, as indicated by the drop in 
performance with spatial CV. Similarly, Räty et al. 
(2021) reported a drop in performance from a pR2 of 
0.60 to 0.37 for rot volume models when using spatial 
CV. They also found high variable importance mea-
sures for the coordinates of stands. However, we 
observed a substantial improvement in model perfor-
mance for random CV of all rot responses when using 
the grid-to-stand approach, and the performance was 
better than the stand approach. This improvement 
could be attributed to the use of spatially close training 
data, which could potentially be implemented at the 
operational management level, as local data from har-
vesters with accurate positioning systems are becom-
ing more widely available.

To our knowledge, the only comparative study is 
that of Räty et al. (2021), which used an approach 
similar to our stand approach to predict rot volume. 
They reported values of RMSE, RMSE%, and pR2 of 
15.6, 65.4, and 0.37, respectively, for their spatial CV. 
The results were similar to ours, and their increased 
RMSE and pR2 may partially be explained by the larger 
spread in rot volume and rot severity. Based on their 
variable importance plots, it is unlikely that their 
model would be able to describe rot severity better, 
as important variables are related to the volume or 
position of stands. The study of Räty et al. (2021) 
contains observations covering a broader geographical 
area of Norway than the present study. The high 
importance of stand position might indicate that 
their model can describe differences in rot between 
regions but not on a local scale.

Although the study area in this study is quite large, 
it is limited in the range of environmental variables 
compared to the study of Hylen and Granhus (2018) 

who identified growing season temperature sum, alti-
tude, and age as important predictor variables. In the 
present study, data was only collected from mature 
and harvested stands, and the models might not apply 
to younger or older forests.

The accuracies of the volume models, with values of 
RMSE of 38% and 22% at grid- and stand level, respec-
tively, were found to be similar or somewhat smaller in 
comparison to earlier studies using ALS and harvester 
data for estimating timber volumes. For instance, 
Hauglin et al. (2018) reported a relative RMSE of 
20% and 32% at high and medium productivity sites, 
respectively, using a grid cell size of 400 m2. In com-
parison, Maltamo et al. (2019) reported a relative 
RMSE of 33% at a grid cell size of 200 m2 and only 
9% at stand level.

The results presented in this study may be partially 
affected by errors in the harvester data, as discussed by 
Hauglin et al. (2018). The mentioned study noted that 
errors in tree positions could result in co-registration 
errors between harvester and ALS data. This impact 
may be expected to be greater at grid cell level due to 
the smaller area and number of trees compared to the 
stand level. Trees that were not harvested and there-
fore not registered in the data, such as retention trees, 
could lead to an underestimation of the actual volume. 
Additionally, some trees may be too large for the 
harvester head to process, and therefore manually 
felled and thus missing in the harvester data. 
However, the small effect of the outlier removal indi-
cated that errors in the harvester data had little impact 
on the models. Moreover, the point density of the ALS 
acquisitions varied between two and five echoes 
per m2, and the time of acquisition ranged from two 
to eight years before harvest. Previous studies have 
shown that the use of different sensors and pulse 
densities could significantly affect the height, density, 
and intensity variables calculated from ALS data, how-
ever, the impact on the precision forest attributes, such 
as volume and tree height has been shown to be minor 
(Næsset, 2009; Ørka et al., 2010). While Noordermeer 
et al. (2022) found no significant issues when using 
data from multiple ALS acquisitions to model timber 
volume, it remains unclear how potential sensor 
effects could impact the utility of ALS data for model-
ing rot properties. However, using multiple ALS 
acquisitions could add additional noise to the variables 
used for modeling rot properties, and a more uniform 
dataset may therefore provide better results. 
Furthermore, an eight-year time difference could 
have significant effects due to changes in both timber 
volume and rot.

Constellations of nanosatellites, such as Planet 
Dove provide imagery of high spatial and temporal 
resolutions but suffers in geometric and radio-
metric lower quality compared to Sentinel-2 
(Frazier & Hemingway, 2021). Radiometric 
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inconsistencies between images, geometric errors, 
and unusable data missed by the provided mask, 
e.g. undetected clouds, will all introduce noise in 
the data. The applied harmonization tool, the co- 
registration of images, and the aggregation of pixels 
to a higher level (grid or stand) should reduce 
noise introduced from these sources. Lower image 
quality, wide overlapping bands of the Dove Classic 
sensor (Collison et al., 2021), and the lack of bands 
can explain the weaker performance of Dove ima-
gery compared to Sentinel-2. Using newer genera-
tions of Planet’s Dove satellites and improved pre- 
processing methods of imagery could be applied in 
future studies to improve the performance.

Forest management activities can have large effects 
on the infection risk and spread of H. parviporum 
(Garbelotto & Gonthier, 2013; Pukkala et al., 2005), 
and the fungus can remain active in infected stumps 
for decades (Greig & Pratt, 1976). Thus, records of 
management history, or techniques to derive previous 
activities, could be a viable route for future studies to 
improve the performance of rot models.

Conclusions

In this study, we evaluated area-based methods for 
estimating rot in Norway spruce trees using remotely 
sensed data. Models for rot volume, rot severity, rot 
occurrence, and timber volume were developed using 
stem rot data collected by a cut-to-length harvester 
and multi-temporal remotely sensed data from the 
Sentinel-2 and Planet Dove constellation satellites 
and ALS. The models’ performance for timber volume 
was consistent with previous studies. However, for rot 
responses, the models showed relatively poor perfor-
mance, with RMSEs of 91%, 112%, and 119% at the 
grid cell level, for rot occurrence, rot severity, and rot 
volume, respectively. At the stand level, the best results 
using spatial CV were 46%, 51%, and 65% RMSE. The 
only comparative study known to us by Räty et al. 
(2021) reported an RMSE of 65% for rot volume 
using a similar approach.

The variable importance analysis showed that 
ALS was the most important source of information 
for both rot occurrence and volume. For rot sever-
ity at the grid cell level, the models also included 
optical data from the two satellite sources and 
environmental information. At the stand level, the 
models were dominated by environmental 
variables.

Including spatially close data in training 
improved the performance of models. The results 
showed reduced accuracy when predicting new 
areas and improved when observations in nearby 
stands or within stands were allowed in the 
training data.

Compared to estimates based solely on the aver-
age values of rot, the models only slightly improved 
the estimates, and only for rot volume. This effect 
can be explained by the positive correlation between 
timber volume and rot volume, and the fact that 
ALS data has proven to be a valuable data source 
for timber volume estimation. For responses less 
correlated to timber volume, such as rot severity 
and occurrence, the results indicated that the models 
were less useful.
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