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Abstract

The many extreme oil price episodes that have occurred in the past have

sparked an ongoing debate as to the main drivers of oil price fluctuations and

their effects on the economy. The literature has widely discussed the important

role played by fundamental supply and demand as a key contributor to oil

price fluctuations. This thesis, however, is concerned with the opposite effect

— that of the crude oil price effect on oil supply and demand. There is a

feedback loop between crude oil supply, demand, uncertainty, and oil prices.

While demand is strongly influenced by global economic activity, supply is

more complicated, being the result of exploration activities in the past. These,

again, are strongly influenced by oil prices. In addition, there is an uncertainty

issue that affects oil prices. Uncertainty is captured by the public interest in

unexpected circumstances that disrupt supply and demand, leading to oil price

fluctuation. However, little attention has been paid by the existing literature

to exploration activity and the specific uncertainty measures for the global oil

market.

This thesis addresses the relationship between crude oil price, exploration,

production, and uncertainty. Chapter 2 emphasises the importance of explo-

ration activity in the oil market, taking the case study of a mature petroleum

province, the Norwegian Continental Shelf, from 1966 to 2019. Chapter 2 con-

tributes to the academic literature in two ways. First, by providing a toolbox

for applying a Monte Carlo simulation to capture the effect of exploration

activity. Second, empirically analysing the relationship between exploration
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activity and crude oil price. The simulation results illustrate that the more

frequent the oil discovery, the more exploration activity there will be, as well as

a shorter waiting time between oil discoveries. A longer waiting time between

discoveries is necessary for finding a large discovery, which is less frequently

found than small discoveries. By applying an Autoregressive Distributed Lag

(ARDL) model, this study finds a long-run relationship between crude oil price,

exploratory effort, and efficiency. Oil price does not affect exploratory efficiency

in the short term; only exploratory effort does that. However, the long-run

relationship between crude oil price and exploration influences oil supply in

the future. A structural break causes negative effects on exploratory efficiency,

and the model with a break in 2008 confirms the long-run relationship between

oil price, exploratory effort, and efficiency.

The discussion of the oil supply side is presented in Chapter 3. Chapter 3

contributes to the literature by investigating the asymmetric effect of crude oil

price shocks, looking at whether oil price increases and decreases have different

effects on global oil supply and demand. Applying the basic ARDL and non-

linear ARDL for time series data comprising world crude oil production, the

Baltic Dry Index (BDI), and real oil prices from January 1985 to December

2019, this chapter finds a long-run equilibrium relationship between crude oil

price, supply, and demand. The result suggests that oil price increases have a

stronger effect on world oil production and the BDI than on oil price decreases.

Adding a structural break in January 2009 confirms the long-run relationship

and the stronger impact of oil price increases on global demand.

In addition, there is an uncertainty component that cannot be explained

by supply and demand. This lacuna is explored in Chapter 4, contributing

to the literature on uncertainty in two ways. First, by constructing a newly

proposed Google Trends-based Uncertainty (GTU) index specific to the global

oil market uncertainty measure. Second, empirically analyse the relationship

between uncertainty, exploration, and crude oil price. The study finds that the
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GTU index, which measures intensified public interest at times of uncertainty,

is closely related to crude oil price movements, particularly when oil prices

drop. The GTU index can capture unexpected events associated with marked

spikes or drops in the crude oil price, as occurred during the global financial

crisis in 2008-09, the oil price drop in 2014-2016, and Coronavirus in 2020.

The chapter’s empirical analysis applying time-varying Granger causality and

Vector Autoregressive (VAR) for the GTU index, oil rig counts (disaggregating

between the world and North America), and the crude oil price from January

2004 to April 2020 suggests that uncertainty indices Granger cause rig counts

and oil price and bidirectional causality between oil price and rig counts in

most of the uncertainty indices. Uncertainty negatively affects oil prices and

rig counts. Further, that oil price negatively affects uncertainty and positively

affects rig counts.

This study undertakes an academic exercise to understand exploration

activity, which can be applied to other petroleum regions. Furthermore, un-

derstanding the effect of exploration activity and how it is affected by oil

price movements reveals insights that will be of assistance to the preliminary

study of exploration in the frontier areas. The asymmetric effect analysis offers

implications for the supply side by suggesting that it is necessary to boost world

oil production in the long term to overcome extreme oil price increases and to

ensure the security of supply to meet the strong global demand. The newly

proposed GTU index provides a specific measure of uncertainty in the global

oil market, is easy to construct, and results in a distinct index that captures

how public interest, is of components that cannot be captured by supply and

demand, contributes to oil price shocks.
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Chapter 1

Introduction

Oil is the primary energy input for industry and its price is historically

subject to fluctuation. These two factors motivate the large body of literature

that attempts to analyse the relationship over time between crude oil prices

and the macroeconomy. Early literature by Hamilton (1983, 1985) primarily

identifies oil price shocks as contributing to most of the major recessions

experienced by the United States (US). This view considers oil price increase

to be an exogenous shock caused by supply disruption arising from geopolitical

conflicts, such as the Suez Crisis (January 1957 – February 1957), OPEC

embargo (November 1973 – February 1974), and the first Persian Gulf War

(August 1990 – October 1990).

The more recent literature presents new insight, which is that oil price

shock should be viewed as an endogenous shock due to strong demand growth,

particularly in Asia, and market concern about future oil supply (Kilian, 2009).

These two demand shocks cause an increase in oil price spikes that is more

persistent and substantial than that which is caused by supply disruption. The

difference between these two demand shocks is that market concern shock

causes an immediate effect on the real oil price, whereas the global demand

shock has a delayed effect. The argument is that the fluctuation in demand for

1
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global industrial commodities and uncertainty about the future oil shortages

are the major contributors to oil price shocks. Oil price episodes caused by

such demand and uncertainty shocks have occurred after the Iranian revolution

(1979), the Venezuelan oil strike and second Gulf War (2003), the Global

Financial Crisis (2008), and the oil price decline between 2014 and 2016 (Kilian

and Murphy, 2014; Baumeister and Kilian, 2016b). Gronwald (2016) explains

the temporary explosions in oil price in 1990–91, 2005–06, and 2008–09 as the

result of the change in fundamental supply and demand, and the low price

elasticities of supply and demand. Revisiting the role of supply and demand,

Baumeister and Hamilton (2019) find that supply shock has a larger effect

on the decline in economic activity than had been identified in Kilian (2009);

Kilian and Murphy (2014) which argue that supply shock plays a minor role in

explaining oil price fluctuation.

Aside from the supply and demand factors, market expectation is also

historically believed to be an essential factor contributing to oil price increase.

Kilian (2009) calls this type of shock a ‘speculative demand shock’ since it

is one that cannot be explained by supply and demand shocks. This factor

is associated with uncertainty and it plays an important role, even more so

once crude oil became a global commodity trading instrument. The underlying

supply and demand are insufficient for explaining this type of shock, as it

depends on unanticipated market behaviour. Uncertainty shock is of concern

to the oil industry’s upstream businesses, policymakers, traders, and investors

due to the complications of measuring it.

Supply shock is the outcome of fluctuations in crude oil exploration

and production activities. Exploration activity determines future production,

making it a critical stage and one that requires consideration ahead of oil

production. However, recent research mainly pertains to oil production, with

only a few studies investigating the relationship between exploration and crude

oil price. These include Toews and Naumov (2015), who emphasise the strong
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positive significant relationship between global drilling activity and the oil price.

That being said, the existing literature on oil exploration mainly focuses on

predicting the remaining US oil reserves (such as work done by Smith (1980);

Cleveland and Kaufmann (1991); Laherrere (2002)), and is thus comes from

the fields of petroleum geology, engineering, and other statistics-based work.

The oil exploration literature contains comprehensive analyses of the mature

petroleum provinces (e.g., Kemp and Kasim (2003) and Mohn and Osmundsen

(2008)). Kemp and Kasim (2003) incorporate geological factors with economics

in their UK Continental Shelf simultaneous equations model, while Mohn

and Osmundsen (2008) propose an econometric model for the exploration and

appraisal drilling activity in the Norwegian Continental Shelf. Mohn and

Osmundsen (2008) conclude that oil price has a long-term effect on exploratory

effort, and that licensing policy and the historical success discovery rate exert

a short-term effect on exploration activity. Another study by Ewing (2017)

applies US data to an examination of oil price fluctuation on the newly proved

reserves. The lack of studies in the economic literature combining economics

with geological components of oil exploration motivates this thesis to examine

exploratory effort and efficiency in response to crude oil price fluctuation.

The large body of existing literature discusses mainly the relationship

between fundamental oil supply, oil demand, and crude oil price in a short-term

and linear relationship. The earlier literature applies reduced form vector

autoregression to predict the variable of interest, with a model that captures

feedback effects to show how the current and past values of the variable of

interest affect each other (Enders, 2015). Sims (1980) applies the model in

the macroeconomy to predict real fluctuation by variances in money stock,

industrial production, and wholesale price innovations. Hamilton (1983) adds

the role of oil to the macroeconomy variables previously discussed in Sims

(1980), and finds that GNP growth decline (leading to recession) followed oil

price increases between 1948 and 1972. Later, the literature in the oil market
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model commonly applies the structural vector autoregression model (see (Kilian,

2009; Ratti and Vespignani, 2015). However, this model requires all variables

to be stationary and has the limitation of not being capable of analysing the

long-run relationship.

Certain works do consider the analysis of the long-run relationship, for

instance, Kolodzeij and Kaufmann (2014). The cointegrated vector autore-

gression model is applied to disentangle the long-run relationship from the

short-run. However, the cointegrated model does not allow a mix of stationary

and non-stationary variables, such as often occurs in time series, and it is

thus most suitable for variables integrated with the same order. Furthermore,

most studies assume that the oil price shocks have symmetric effects on supply

and demand. However, positive or negative oil price shocks may differently

affect the global oil market variables. A positive shock may have a stronger

or weaker effect on the supply and demand; hence, an asymmetric effect. The

recent literature discusses the asymmetry application in the macroeconomic

field, examining, say, how the macroeconomic variables respond to a spike or

drop in oil price and the effects of economic expansion and downturn, but there

is less discussion specific to oil supply and demand response. It is also essential

to understand the long-run relationship between oil price, supply, and demand

because the deviation that causes disequilibrium in the short run is corrected

in the long run. Distinguishing between short- and long-run relationships helps

the decision maker and potential investor make short-, medium-, and long-term

strategies for the unexpected oil price fluctuation.

The terms ‘crude oil price’ and ‘uncertainty’ are closely linked. The

existing studies interpret uncertainty as relating to market expectation, public

interest, or sentiment indicators about future oil prices. Pindyck (1980) defines

uncertainty as the unknown random fluctuation of the future value of demand

and available reserves with known current demand and reserves. Kellogg (2014)

interprets uncertainty as the market expectation of future oil price volatility
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in a study that analyses the effect of uncertainty on exploration investment

behaviour. The author finds that when the expected volatility of future oil

price increases, drilling activities in Texas decline. Another interpretation

of uncertainty as a market concern is defined by Alquist and Kilian (2010)

and Kilian and Murphy (2014). The authors define uncertainty as to market

behaviour where crude oil is purchased for future consumption as the result of

an anticipated shortfall in future oil supply.

The focus of the existing literature on uncertainty measures macroeco-

nomic, financial, and policy indicators, and there is no specific index to measure

global oil market uncertainty by linking oil exploration, production, and oil

price. The current measure of uncertainty is commonly approached by using

macroeconomic indicators and forecast-based volatility (Jurado et al., 2015;

Rossi and Sekhposyan, 2015), crude oil inventories (Kilian and Murphy, 2014),

and the traditional near-term volatility indices. Most of these uncertainty

indices are not directly linked to unexpected circumstances affecting oil price

movements, being mainly constructed from macroeconomic variables and tai-

lored to disaggregate country-based data. There have been recent attempts to

connect market expectation and unexpected events by approaching uncertainty

via media-based (newspaper or internet) query volume. Most research focuses

on proposing the macroeconomic uncertainty index, with only a few studies

suggesting a direct uncertainty index for the global oil market. Such studies

include the work done by Guo and Ji (2013), which employs Google search

volume to measure market concern about oil price and demand components.

This thesis has three main discussions of the relationship between explo-

ration, production, uncertainty, and crude oil price shocks. It thus addresses

the shortcomings in the global oil market literature, as illustrated in Figures

1.1 and 1.2. Figure 1.1 shows there is a feedback loop between crude oil supply,

demand, uncertainty, and oil prices. In the short run, supply and demand

determine oil prices. While demand is strongly influenced by global economic
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Figure 1.1: Overview of the thesis

activity, supply is more complicated, being a result of exploration activities

in the past. These, again, are strongly influenced by oil prices. Thus, in the

long run, the direction of oil supply influences changes. In addition, there is an

uncertainty issue that affects oil prices. The uncertainty is captured by public

interest in the unexpected circumstances that disrupt supply and demand,

leading to oil price fluctuation.

There are a number of research questions addressed in this thesis. The first

two are: how does exploration activity behaviour over time? How does crude oil

price fluctuation affect exploration? These two research questions are discussed

in Chapter 2, which emphasises the role of oil exploration. Chapter 3 asks what

is the relationship between crude oil supply, demand, and oil prices? How do
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positive and negative shocks in the crude oil price affect supply and demand

differently? These research questions focus on crude oil production, measuring

oil supply in the long run and the asymmetric effects of oil price shocks on

supply and demand. Finally, Chapter 4 discusses uncertainty measures in the

global oil market and the relationship with the crude oil price by asking three

research questions. First, how can the Google Trends-based Uncertainty index

be used as a measure of global oil market uncertainty and what difference might

the construction of a more refined GTU index make to the literature and its

findings? Second, what precisely do these GTU indices measure, and how do

their measurements compare to those of the existing indices? Third, what is

the relationship between uncertainty, crude oil price, and exploration?

Figure 1.2: Time series of crude oil price, rig counts, and Google Trends

The starting point of this thesis is Chapter 2, which takes oil prices as given

in focusing on how they affect oil exploration. A Monte Carlo simulation exercise

is carried out to capture the effect over time of exploration activity in a mature

petroleum province. An empirical estimation addresses the relationship between

oil exploration and oil price. While the interaction between oil exploration and

production will be left for future research, it will be acknowledged that there
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are some lags between exploration and the actual production.

The discussion of the supply-side captured by world crude oil production

is presented in Chapter 3. Chapter 3 extends the literature by applying the

asymmetric model for world oil production, global demand, and crude oil price

relationship. The econometric framework is carefully chosen to distinguish

long-run equilibrium from the short-run dynamic relationship.

The role of uncertainty in capturing other components that cannot be ex-

plained by fundamental supply and demand is discussed in Chapter 4. Chapter

4 approaches global oil market uncertainty through public interest by imple-

menting the newly proposed Google Trends-based Uncertainty (GTU) index.

The first section of Chapter 4 presents the construction of the GTU index and

offers a comparison between the predictability of GTU and the benchmark in-

dices on oil price and exploration. The second section analyses the relationship

between uncertainty, oil price, and exploration.

The visual time series plot illustrated in Figure 1.2 summarises the entire

thesis. The plot shows a relationship between crude oil price and world rig

counts, with the latter measuring exploration activity. The figure indicates a

strong co-movement between these two variables; in particular, when crude oil

prices drop, rig counts also dramatically decline, as can be seen in the cases of

the post-Global Financial Crisis in 2009, the oil price decline in 2016, and the

Coronavirus outbreak in 2020. In addition, there is also a strong relationship

between crude oil prices and Google Trends, indicating that public attention

increases when the oil prices show large movements. The increase in public

attention is particularly strong when crude oil prices decline. Again, this is

illustrated in the post-Global Financial Crisis in 2009, the oil price decline in

early 2015 and 2016, and the Coronavirus outbreak in 2020.

In terms of contribution to the literature, Chapter 2 contributes to the

literature on exploration and crude oil price in two ways. First, by studying

the effect of exploration activity and second, by examining how they respond
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to the oil price movements. The existing literature uses the common measures

for exploration activity, namely rig counts and exploration wells (Dahl and

Duggan, 1998; Kemp and Kasim, 2006; Mohn, 2008; Mohn and Osmundsen,

2008; Kellogg, 2011; Ringlund et al., 2008; Anderson et al., 2014; Toews and

Naumov, 2015; Skjerpen et al., 2018). Mohn (2008) uses exploration wells as a

proxy for exploratory effort; this yields efficiency through expected success rate

and average discovery size. As Mohn (2008) suggests, it is essential to identify

discovery rate and size separately to understand the sign of the exploratory

effort and efficiency to the oil price fluctuation. Thus, this thesis conducts the

simulation exercises by applying Monte Carlo to understand the expected time

in between two discoveries are made and the discovery size distribution in a

mature Norwegian Continental Shelf (NCS). The time between two discoveries

(measured in days) results from the exploration activity, depicting the lag

between discovery and subsequent discovery. It has the advantage of being

easily interpreted by prospective investors or the public, and their investment

decision-making processes can gain insight from this measure. Applying a

mature petroleum province, where peak exploration and production cycles have

been reached and are gradually declining, helps the researcher approach the

particular distribution type of the petroleum region.

The simulation utilises NCS discovery size and the time in between two

discoveries are made for data from July 1967 to September 2019, to which

the Monte Carlo simulation is applied. Monte Carlo simulation employs a

large number of random variables to replicate a complex real system (Tho-

mopoulos, 2013). The benefit of applying Monte Carlo is that it takes into

account uncertainty in the future discovery size and the time in between two

discoveries output. Monte Carlo simulation with 10,000 replication generates

the likelihood of the future discovery size and time in between two discoveries

to understand exploration activity behaviour through a statistical distribu-

tion. The Information Criteria for the Goodness-of-Fit tests result indicate
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that the most suitable distribution type is lognormal for NCS discovery size,

while exponential distribution is most appropriate for the time in between two

discoveries. The simulation allows the parameters to vary to capture changes in

exploration activity by looking at three scenarios: base case, lower, and higher

value of parameters. First, the base case scenario uses the NCS historical data

parameters, log mean and standard deviation for discovery size, and the rate

of time between discoveries. The simulation repeats this in a second step but

choosing lower value parameters, while the final step is to apply values with

higher parameters than the base case but drawn from the same distribution.

A toolbox for Monte Carlo simulation is developed in Chapter 2. This

can be used to study the distribution of other oil-producing regions. For the

NCS case study, the simulation findings indicate that it is more frequent to

discover oil in a shorter time between one and subsequent discoveries with

a smaller average discovery size. The more exploration activity, the shorter

will be the time in between a specific and subsequent discoveries, and the

higher the probability density. High exploration activity is represented by

more discoveries in a shorter time between two discoveries. Based on the base

case scenario, the simulation result shows 90% probability that time between

discoveries will be shorter than 316 days. For the same probability percentage,

the high value of the parameter (i.e., a high exponential rate) indicates the

time in between two discoveries to be shorter than 255 days, while for the

low parameter scenario, it is shorter than 339 days. The larger the discovery

size, the lower the probability density of finding it. The simulation exercise

aligns with the mature petroleum province, where giant oil discoveries are

found infrequently and at the beginning of the cycle. These are followed by

discoveries that are more frequent but of a smaller size. The base case scenario

shows that the 90% probability of discovery size is for less than 93.67 million

standard cubic metres of recoverable oil equivalents (Sm3 o.e.). Looking at the

high parameter value, the results indicate that the discovery size is less than
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137.01 million Sm3 o.e. In contrast, the low discovery size scenario results in the

discovery size being smaller than 76.11 million Sm3 o.e. These results are in line

with statistics released by Norwegian Ministry of Petroleum and Energy and

Norwegian Petroleum Directorate (2022) that the total preliminary estimate of

discoveries in 2021 is 85 million Sm3 o.e. This implies that confidence can be

placed in the ability of the Monte Carlo simulation to predict discovery size.

The second part of Chapter 2 analyses how the exploratory efficiency

variable reacts to the oil price changes. A structural break is taken into

account to capture the shocks in the data series. The later life-cycle (more

mature basin) is associated with a smaller discovery size, referring to oil’s

characteristic as an exhaustible resource. A high oil price stimulates more

exploration activity by increasing the number of exploration wells or rig counts.

Consequently, this study expects that oil price positively affects exploration

activity, reduces the time in between discoveries, and positively affects the

discovery size. The empirical estimates conclude that a long-run equilibrium

relationship is present between exploratory effort, efficiency, and crude oil

price. Incorporating the Auto-Regressive Distributed Lag (ARDL) model with

a structural break confirms the presence of the long-run relationship between

exploratory effort, efficiency, and crude oil price. Taking into account a break

year in 2008, the ARDL empirical results suggest that a 1% increase in oil price

is associated with a one-day reduction in the time between discoveries in the

long run. A 1% increase in the real oil price is associated with an increase in

discovery size by 1% in the long run.

Understanding the response of exploration to the oil price shocks has

implications for policy by providing investors and government with insights

on how long it takes to make a new oil discovery. It is suggested that pol-

icy instruments take this into account when boosting exploration activities.

The feedback loop between oil exploration, production, and crude oil price

motivates further discussion on the interaction between supply, demand, and
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price. Understanding oil production response to high and low oil prices in the

short and long run also helps with decision making about how much oil to

produce, how much to store, and whether to sell now or later. Despite the

development of other sources of alternative energy, crude oil exploration and

production still play a crucial role in ensuring the security of supply such that

oil supply can meet the demand. Recognising and incorporating uncertainty in

the global oil market helps predict other pieces of information that are driven

by unanticipated events. The empirical results of these studies can be used in

sensitivity analysis to help the decision-making process.

Furthermore, the results from the analysis of NCS discovery create a

different approach to studying the effect of exploration activity. Chapter

2 provides a reproducible Monte Carlo simulation toolbox to simulate oil

discovery size and time in between discoveries that can be applied, through

expert judgment, to other regions with or without historical data.

The application of the Chapter 2 analysis is for disaggregated data, in that

the discovery data for a mature petroleum province is tailored to the geological

characteristics. In contrast, Chapters 3 and 4 apply the time-series model to

worldwide data to understand oil market behaviour within a broader global

scope. The critical role of the exploration stage motivates further analysis

of the oil production stage, which represents oil supply response to oil price

shocks. This analysis is presented in Chapter 3, which analyses the relationship

between supply, demand, and oil price.

Chapter 3 contributes to the oil prices, supply, and demand literature by

presenting asymmetric analysis to understand whether a positive or a negative

shock has more significant and dominant effects on the global oil market. It

also examines the presence of long-run relationships. The second contribution

of Chapter 3 is its analysis of time series properties, most particularly with

regard to whether or not the series are stationary and whether there is a

structural break in the relationship across the oil prices, suuply, and demand.
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It is essential to understand time series properties because failing to specify the

appropriate model leads to misspecification in determining the global oil market

model. The time series properties are examined by applying the structural

break unit root test to accommodate the extreme jump and drop in the series.

In addition, a structural break is applied in the relationship across the oil

prices, supply, and demand. This chapter applies the specific model of the

structural break unit root test proposed by Enders and Lee (2012), which offers

a better approach for examining to whether the type of the break is sharp or

smooth. Another benefit of applying this test is that the researcher does not

need to have a priori knowledge of how many breaks occurred in each series.

Supremum Wald test estimates the structural break of real oil prices occurred

in January 2009 and this is taken into account in the empirical model as it has

a strong reason, following Global Financial Crisis. The results confirm mixed

order of integration among oil market variables. An ARDL model is carefully

applied to allow mixed stationary and non-stationary series. The analysis

presents the basic ARDL and the asymmetry ARDL (i.e., the non-linear ARDL

or NARDL) models. The basic ARDL model assumes that the shocks among

variables are symmetrical. In the asymmetry model, on the other hand, the

shocks are decomposed into partial positive and negative shocks. The presence

of a long-run relationship is analysed in each model.

The finding indicates a significant relationship between oil supply, demand,

and oil price in the long-run equilibrium. Adding a break in January 2009

confirms the strong significance of the long-run equilibrium relationship across

those three variables. It emphasises that supply and demand play a major role

in the real price of crude oil in the long term, something that has mostly been

underestimated in previous studies. The empirical analysis uses data on world

oil production, Baltic Dry Index (BDI), and real crude oil price from January

1985 to December 2019. BDI is a bulk dry freight rates-based index, and it is a

leading indicator of fluctuation in the global business cycle, indicating global
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demand. The index covers 31 shipping routes worldwide, using various vessel

capacities and specifications.

The long-run relationship between world oil supply, global demand, and

crude oil price is present in the basic ARDL model. When they are too high,

relative to the equilibrium, they will be adjusted to decrease in the next period

so as to return to equilibrium. In the asymmetric ARDL model, the long-

run relationship between oil demand, oil supply, and oil price is present and

significant. However, positive and negative demand shocks have an effect of

similar magnitude on supply and oil price, so the effect is somewhat symmetrical.

Oil prices shocks on supply and demand are asymmetrical, as are supply shocks

on oil price and demand. The results present a negative relationship between

world oil supply and oil price, and a positive relationship between global demand

and oil price in the long run. A positive relationship is found between world

oil supply and demand. The main findings in the asymmetric analysis are that

positive crude oil price shock has contributed more than negative shock to

global oil supply and demand in long-run equilibrium. Further, positive oil

supply shock has a stronger effect than negative oil supply shock on global

demand and oil price, supporting the view of asymmetry. The positive global

demand shock is as strong and significant as the negative one, which causes a

more symmetrical effect on the global supply and oil price, even though the

long-run relationship is still substantial.

Incorporating the ARDL and NARDL models with a break gives a clear

understanding of the effects of the break on crude oil prices, supply, and demand

and whether positive or negative shocks have stronger interaction with the

break. The interaction between the break and crude oil prices and between the

break and global demand is significant. The interaction between the break and

crude oil production is insignificant in the short run. In the asymmetric model,

positive and negative demand shocks are significant on the oil prices, while

negative supply shock is found to be stronger in affecting oil prices than the
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positive supply shock. Both positive and negative supply shocks significantly

affect global demand, and none of the breaks is significant to the supply. The

supply is less responsive to changes in economics compared to crude oil prices

and global demand. World oil production cannot be adjusted quickly, and it

may take longer to respond to economic changes.

The long-run relationship and asymmetric effects discussed in Chapter 3

offer some implications. First, though oil production is insufficiently flexible for

it to be adjusted in the short term, a mechanism to tailor it in the long term is

necessary to overcome high crude oil prices. Maintaining the security of supply

is also crucial; in this case, it is necessary to boost world crude oil production

to ensure that supply meets the strong global demand. These implications

are also linked to Chapter 2 in that exploratory effort and efficiency are also

required to boost additional reserve growth. Here, finding new oil fields and

having a shorter time between discoveries plays an important role. Second,

as demand shocks have symmetric effects, oil prices are expected to fluctuate

whenever strong or sluggish global demand occurs. The oil exploration and

production companies and governments can use the high demand signal to speed

up exploration and production activities, and they can thus benefit from the

high oil prices. In contrast, policymakers need to consider an effective inventory

mechanism to overcome low demand and low oil prices. Regular reviews of the

estimated and actual crude oil storage utilisation rate are necessary to minimise

the risk of oversupply.

The findings from Chapter 3, which emphasise the importance of demand

shock and positive supply shock on oil price fluctuation, support the earlier

work by Baumeister and Kilian (2016b). Their study argues that the cause of

the oil price drop between June and December 2014 was 55% predictable due to

positive oil production and negative global demand shocks. They also conclude

that the remaining 45% was attributed to unpredictable shocks related to oil

price expectation and unexpected slow global demand. This unpredictable
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shock is interpreted in terms of market concerns associated with uncertainty,

which is discussed in Chapter 4.

The considerable attention given by the literature to measuring uncertainty

has tended to adopt a macroeconomic perspective, which has resulted in the

macroeconomy and policy uncertainty measure. The traditionally applied

uncertainty index is the volatility index, a commonly used index based on the

short-term volatility expectation as priced by the United States Oil Funds,

such as OVX for crude oil price and VIX for stock market volatility. The

earlier literature applied conditional forecast error based on oil price change to

propose oil price uncertainty, as seen in work done by Lee et al. (1995) and

Elder and Serletis (2010). The remaining studies mostly apply forecast-based

or newspaper coverage-based analysis for macroeconomy, policy, or financial

uncertainty. Jurado et al. (2015) use common macroeconomic indicators and

apply conditional volatility of future values to construct a macroeconomic

and financial uncertainty index. The recent literature measures economic

policy uncertainty through a newspaper-based approach. Baker et al. (2016)

construct the economic policy uncertainty index by quantifying the frequency

of terms related to economic, policy, and uncertainty in the newspapers of

various countries. The US economic policy uncertainty index finds that policy

uncertainty is associated with larger stock market volatility. Davis (2016)

extends the work of Baker et al. (2016) by incorporating the weighted-average

GDP of 21 countries to measure national economic policy uncertainty in a

global index.

The newspaper coverage-based uncertainty index concept can be adopted

for an internet search-based index. It derives from the notion that individuals

search for what they are interested in by typing search terms (i.e., keywords)

into a website browser’s search box. Keywords with high relative frequency

reflect higher public interest in these terms. Most studies follow prior non-

internet-based literature in their construction of internet search-based indices
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for the macroeconomy, policy, or general uncertainty. Castelnuovo and Tran

(2017) provide a comprehensive procedure for constructing a Google search-

based macroeconomy uncertainty index. A few studies have applied a Google

search-based index for oil price uncertainty, such as Qadan and Nama (2018);

Li et al. (2019); Guo and Ji (2013); Ji and Guo (2015). However, Qadan and

Nama (2018) and Li et al. (2019) only apply a basic oil price index to measure

investor sentiment. The studies of Guo and Ji (2013) and Ji and Guo (2015) are

comprehensive in terms of the oil market literature. However, some search terms

in Guo and Ji (2013) are not applied correctly when it comes to approaching

oil demand uncertainty; for instance, the search term ‘oil production’ measures

oil demand and ‘gas price’ measures oil price uncertainty. Likewise, Ji and

Guo (2015) use the search terms ‘Libyan war’ and ‘OPEC conferences’ to

approach expectations on the oil price, even though these search terms are

directly associated with oil supply rather than with market expectations of the

oil price.

Motivated by the absence in prior literature of an index for global oil

market uncertainty, Chapter 4 contributes to the literature in several ways,

the first of which is to use Google Trends to capture public interest in specific

aspects of oil prices via five newly-constructed indices: oil price, oil supply,

oil demand, oil investment, and oil market-specific, with only the oil price

index being a basic model. The remaining indices are more nuanced, being

constructed by considering important keywords related to oil supply, oil demand,

and oil investment. Second, Chapter 4 analyses the uncertainty impact on

oil market-specific variables, most notably crude oil price and oil exploration;

this perspective is relatively unknown in the existing studies, which are mostly

interested with uncertainty’s effect on macroeconomic variables. In this study,

North America’s rig counts are analysed separately from worldwide rig counts.

North America plays a major role in the non-conventional drilling for exploration

and production, and its volume is significant compared to the rest of the world.
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Third, Chapter 4 carefully compares the current macroeconomic, financial,

and economic policy indices and the newly proposed uncertainty measures

to understand the performance of the index in predicting global oil market

variables. Fourth, the newly constructed index gives an overview of worldwide

oil market uncertainty; in this, it differs from a country-specific index that is

restricted to the application of certain countries.

The application of Google Trends measures public interest. When there is

uncertainty, public interest in oil prices is high. The newly proposed index relies

on psychological behaviour in the digitised era, where information is generally

sought from the internet. As the most widely used web browser, this chapter

chooses Google search. Google Trends is a web-based free service provided by

Google that indicates the relative frequency of search queries to identify the

most popular (i.e., trending) search terms. In addition to being free, open to

the public, and easy to navigate, Google Trends offer flexibility. For instance,

the researcher can compare up to five search terms in each round, can filter

the data according to region, and can extract the frequency (from daily up

to yearly). Worldwide data is chosen as the focus of the study, from which

a global benchmark uncertainty measure is proposed. The measure improves

understanding of the causality relationship between exploration activity and

oil price.

The first section of Chapter 4 describes the important contributions of

the newly proposed Google Trends-based Uncertainty (GTU) index, comparing

its correlation with the established uncertainty indices, such as the oil volatil-

ity index and indices related to the macroeconomy, global economic policy,

geopolitical risk, and world uncertainty. This study applies monthly data from

January 2004 to April 2020 to construct five proposed GTU indices; these

go from basic to more refined. The five indices are constructed by carefully

selecting search terms to measure public interest in the global oil market, basic

GTU oil price, GTU oil supply, GTU oil demand, GTU oil investment, and
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GTU oil market-specific. The final measure is the most complex, aggregating

the first four components.

The contribution of uncertainty impact on oil market-specific variables

is analysed in the second part of Chapter 4. The existing studies are mostly

interested in the uncertainty effect on macroeconomic indicators. Jurado

et al. (2015) conclude that uncertainty shocks cause a large decline in real

activity, such as production, hours worked, and employment. Baker et al.

(2016) also find that policy uncertainty shock reduces investment, output,

and employment in policy-sensitive sectors. A vector autoregression model is

applied because of the interest in examining the dynamic relationship between

uncertainty shock and oil market-specific variables in the short term. Public

interest will become particularly intense when there is uncertainty due to

unexpected circumstances, and this type of uncertainty shock tends to occur in

the immediate and short term. The estimation expects GTU indices to have

consistent results compared to the benchmark uncertainty impulse response

for oil price and exploration. Eight separate models allow the researcher to

compare how the different uncertainty measures affect crude oil price and

exploration. Each model consists of certain essential variables: the number

of rig counts, crude oil price, and one uncertainty measure. There are three

existing benchmark indices (oil volatility, macroeconomy, and global economic

policy uncertainty) and five newly proposed ones.

The contribution of Chapter 4 in carefully comparing the existing and

the newly proposed uncertainty measures are applied by providing correlation

measures, time series plots, and impulse response functions. First, the newly

proposed GTU indices positively correlate with the benchmark indices, which

are the oil volatility and macroeconomy uncertainty indices. GTU indices can

capture unexpected events associated with crude oil price spikes and drops

during, for instance, the global financial crisis 2008–09, the oil price drop in

2014–16, and Coronavirus in 2020. Second, GTU indices have signs that are
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consistent with the benchmark indices in the regression relationship with the

oil price and rig counts. Thus, uncertainty has significant negative effects on oil

price fluctuation and rig counts; oil price shocks negatively affect uncertainty

but this is only significant for a few uncertainty indices; and oil price shocks

positively and significantly affect the rig counts of the world and North America.

The rig counts positively and significantly affect oil price, particularly in the

world model, but they do not significantly affect uncertainty.

The main contribution of Chapter 4 is the construction of the GTU index

capturing public interest in the global oil market, which is intensified when

there is uncertainty due to remarkable events in oil price episodes. The internet

search-based engine as a transmission channel links market concerns in supply,

demand, investment, and the oil market. This newly constructed index can

explain the variation in the fluctuation in oil price and exploration activity,

which emphasises the role of uncertainty on oil price shock as illustrated in

Figure 1.1.

The concluding chapter of the thesis summarises the main findings and the

lessons learnt from the analysis and discussion in the three empirical chapters of

oil price shocks, exploration, production, and uncertainty. It also outlines how

this study benefits researchers, policymakers, investors, and business sectors,

particularly those related to the oil business’s upstream. The insights into the

economic policy implications and further research directions consequent to this

research are presented in this chapter.



Chapter 2

Exploration activity and the crude

oil price: evidence from the mature

petroleum province

2.1 Introduction

Since the early 1970s, there have been at least eight extreme oil price

episodes: 1979–81, 1985–86, 1990–91, 1998, 2001, 2008–09, 2014–16, and

2020–22. It is therefore unsurprising that research is interested in uncovering

the main drivers of oil price fluctuations. Hamilton (2011) explains that the

key factors contributing to previous oil price fluctuation episodes are related to

supply disruption arising from geopolitical conflicts in the Middle East. For

instance, oil price peaks in 1980 and 1990 are associated with the Iranian

revolution and the first Persian Gulf War, respectively. In addition, growth in

petroleum demand combined with declining production is another contributing

factor, as seen in the extreme oil episode in 2007–08, when mature petroleum

provinces such as the UK, Norway, and the Gulf of Mexico were in decline. An

associated major event in 1997–98 was the Asian financial crisis, which caused

21
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a reduction in oil demand, which has been presumed to be the cause of the

crude oil price drop at that time (Baumeister and Kilian, 2016a). The decline

in oil price between 2014 and 2016 can be explained by the expected positive

shock in oil supply (33% of the total decline) and negative shock in demand

(22% of the total decline), while the remainder is due to unexpected oil market

expectation (Baumeister and Kilian, 2016b).

The interaction of petroleum demand and supply as an explanation of

extreme oil price fluctuations can be visually explained (see Figure 2.1). The

global petroleum supply and demand data reflect these findings; the lines

representing global consumption and production exhibit an upward trend. They

are often very close to each other and most of the time they intersect. However,

production rises between 1997 and 1998 are associated with lower consumption,

and crude oil prices dropped. Other gaps occur in 2006–07 and 2009–10, when

consumption is more prominent than production. In these periods, oil prices

exhibit an extreme increase. Later, between 2014–16, production quantities

outstrip consumption and oil price experiences another significant decline during

this period.

Source: EIA (2021), amended from Gronwald (2016)

Figure 2.1: Global petroleum production, consumption, and crude oil price

So much for the well-established effect of oil supply on oil prices. This

chapter, however, is concerned with the opposite effect – that of oil price changes
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on oil supply. This research’s motivation derives from recent micro-level research

that indicates that it is oil exploration rather than crude oil production that

responds to oil price increases (Anderson et al., 2018; Mauritzen, 2017). Among

the extant work that uses drilling activity as the proxy for exploratory effort,

Toews and Naumov (2015) key empirical findings are that ‘a 10% increase in

the oil price significantly increases global drilling activity by 4%’. Mohn and

Osmundsen (2008) find a significant long-term relationship between drilling

effort and crude oil price in the Norwegian Continental Shelf (NCS), and they

also note that the long-term elasticities of oil price on exploration are modest

in a highly regulated petroleum province with high taxation. Anderson et al.

(2018) proposes a modified Hotelling resource extraction model, noting that the

resource owner does not decide when to produce oil, but rather when to drill; it

is geological constraints that determine production from existing wells. While

Anderson et al. (2018) use data from Texas, Mauritzen’s (2017) empirical study

analyses NCS production data and argues that production in the existing field

is not affected by high oil price in the short term but rather by a lag, estimated

to be between two and four years. When it comes to short-term hedging against

oil price fluctuation, oil producers prefer to use financial instruments or storage.

There is a feedback loop between crude oil price turbulence, oil supply,

and demand. Supply and demand determine today’s price, but there is also a

link between today’s and tomorrow’s supply because of the exploration channel.

Thus, current exploration activity is an essential determinant of future supply,

which makes a critical contribution to oil price movements. Depending on

which direction the global economy takes, and how future crude oil demand

develops, there may be further extreme oil price periods in the future. Industry

observers such as McKinsey & Company (2021) report that new crude oil

production of 38 million barrels per day, or 23 million barrels per day under

the energy transition scenario, is required to meet demand in 2040. Rystad

Energy, a Norwegian energy consultancy, reports that the global oil and gas
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Source: Rystad Energy ECube, UCube, research and analysis (December 2021)

Figure 2.2: Global discoveries for 2021 on course to lowest in decades

discoveries were equivalent to 4.7 billion barrels of oil in 2021, the lowest level

since 1946 (see Figure 2.2). The low size of discoveries has started to evince

concerns about a supply gap in the crude oil market. Despite these trends, the

relationship between exploration and oil price is insufficiently recognised in the

academic literature, although there are signs of improvement.

Various methods of estimating oil discovery and production have been

proposed, including geological engineering, mathematical geoscience-based, or

economics-based forecasting. Hubbert (1962) portrays the oil discovery and

production profile as a bell-shaped curve with a single peak during the cycle.

Later, a creaming method was developed; this is based on proportional sampling

between the probabilities of successfully making a discovery and the size of

the discovery; this method become well-known for forecasting resource size.

Kaufman et al. (1975); Smith (1980); Lillestøl and Sinding-Larsen (2017) all

apply the creaming model. This model finds that the common distribution

profile of a mature petroleum province is a lognormal distribution, in which

the giant discovery size is located in the earlier period. Smith and Paddock

(1984) propose a discovery model in which the decline in expected discovery

size follows exponential decay. MacDonald et al. (1994) propose a nonlinear

polynomial regression to forecast the discoveries volume in Canada’s Western



2.1. Introduction 25

Sedimentary Basin. These methods are based on the petroleum fields’ geological

and statistical properties, so they fail to explain the exploration response to oil

price shock. When the research objective is to examine how oil price movements

affect oil discovery, further econometric estimates are required to link these

with oil price.

Recent studies in oil discovery forecasting contribute to the literature

by applying the time-series econometrics model. The UK Continental Shelf

(UKCS) and NCS are the North Sea’s two most productive oil reserves. Kemp

and Kasim (2003) integrate physical and economic variables for the UKCS

application. Their work emphasises the importance of the feedback effects

of exploration and appraisal, development, production, reserves, price, and

investment. Kemp and Kasim (2006) extend previous work by incorporating

exploration cost and efficiency. Mohn (2008); Mohn and Osmundsen (2008)

make contributions to the analysis of exploration activity in the NCS in their

work on exploratory effort and efficiency for highly regulated oil provinces.

Their studies define exploratory effort as drilling activity represented by the

number of exploration (i.e., wildcat and appraisal) wells. Their comprehensive

works take into account licensing policy and technological changes, as well as

effort and efficiency.

Two research questions are addressed in this chapter. First, how does

exploration activity behaviour over time? Second, how does crude oil price

fluctuation affect exploration? Then, this chapter answers the research questions

and advances research in this area via two steps: The first numerical step looks

at how exploratory effort leads to exploratory efficiency. The exploratory effort

mainly affects the frequency of discoveries, which is, in turn, determined by

factors such as the oil price and tax regimes. This chapter studies how the

frequency of discoveries is translated into exploratory efficiency, adopting the

definition of exploratory efficiency as the yield of exploratory effort, which is

discussed in the earlier studies by Iledare and Pulsipher (1999); Kemp and
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Kasim (2003); Mohn (2008), and Mohn and Osmundsen (2008). The second

step is empirical estimation and it analyses the relationship between oil prices,

exploratory effort, and efficiency. The second step empirically analyses the

relationship of the geological-based variables applied in the first step and

takes into account the real oil prices as an economic variable. Most of the

earlier literature defines it as the proxy of exploratory effort by how many

oil rig counts or oil exploration wells are drilled. The exploratory effort is

affected not only by the petroleum region’s geographical condition but also by

economic variables, such as crude oil price (Anderson et al., 2018; Toews and

Naumov, 2015; Mauritzen, 2017). Thus, it motivates the second step to carry

out an empirical estimation for waiting time, discovery size, exploration well

counts, and crude oil price. The third and final step would be to analyse how

discoveries translate into future production, but this is a matter for further

research. However, the chapter takes into account the very long lags between

the discovery of an oil field and the beginning of production from that field;

in the case of the NCS, this lag is longer than three years and can take up to

fifteen years (Norwegian Ministry of Petroleum and Energy and Norwegian

Petroleum Directorate, 2022).

The first part of this study captures the exploratory efficiency as the

result of the exploratory effort by modelling the time between successful oil

discoveries and the discovery size. The time between successful oil discovery

is interesting from an economic perspective as it indicates the result of the

exploratory effort, which determines future supply, as well as an indicator of

the result of investment in oil exploration. The shorter time between discovery

accelerates oil production, and as a consequence, it increases the supply side.

This study expects that high oil price reduces the time between oil discovery

(waiting time) in the economic model. EIA (2019) reports that low oil price

leads to the delay of the time to complete a well for economic reasons. This

thesis applies the time between oil discovery to represent exploratory efficiency,
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contributing to the existing literature, which mainly uses Yield per Effort

(YPE), average success rate, and average discovery size. The earlier research

in the oil exploration model applies Logistic Curve Fit by Hubbert (1962)

and Exponential Decline Curve Fit by Hubbert (1967). Hubbert (1967) uses

cumulative drilling to construct YPE measuring the quantity of oil discovered

per foot of exploratory wells drilled. It uses the Hubbert Unit, measured in 108

feet of exploratory drilling, instead of the time unit for the Exponential Decline

Curve Fit. The Hubbert Unit does not give information on the year to a certain

discovery size. Therefore, it motivates this study to provide information about

the discovery year associated with the discovery size for a more straightforward

interpretation.

The current literature focuses on cumulative exploration and production

to predict the remaining reserves in a particular region (Smith, 1980; Reynolds,

2002; Fiévet et al., 2015; Lillestøl and Sinding-Larsen, 2018). In comparison, this

study makes innovative use of the Monte-Carlo simulation to answer the first

research questions by obtaining the predicted waiting time between discoveries

and size for a sequence of discoveries in the mature petroleum provinces. The

frequencies of waiting time between discoveries and discovery size generated

form the suitable distribution and help to understand the behaviour of the

exploratory efficiency over time. The approach applied in this study is generally

flexible, as different distributions for discovery size can be used to model

other oil-producing regions. The datasets are taken from the 141 sequence

discoveries in the NCS from 1967 to 2019. NCS data was chosen because Norway

has initiated wildcat exploration drilling since 1966. Most mature petroleum

provinces have reached the peak of their exploration and production cycles

and are currently gradually declining. Thus, the researcher can more readily

approach the particular distribution type of the petroleum region. Although it

is well known that the size of the discovery follows a lognormal distribution, this

study uses a statistical test to choose the proper distribution, this being crucial
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Source: Norwegian Ministry of Petroleum and Energy and Norwegian Petroleum
Directorate (2022)

Figure 2.3: Accumulated resources on the Norwegian continental shelf

to the goodness–of–fit of simulating the discovery profile. The distribution also

takes into account that the larger size of promising fields are discovered in the

early basin life-cycle, as illustrated by the historical trend of NCS discoveries

where the large discoveries were mainly made at the beginning of the exploration

phase in 1969 (Ekofisk), 1974 (Statfjord), 1979, and 1983 (Troll). Note that

there are a few exceptions to this, such as Ormen Lange in 1997 and Johan

Sverdrup in 2010, as illustrated in Figure 2.3.

The Monte-Carlo simulation result provides a clear link between ex-

ploratory effort and efficiency parameters. Initially, a longer time is required to

discover a larger size field in an oil province; then, discovery size gets smaller

albeit the discoveries are more frequent and there are shorter waiting times

between them, reflecting high exploratory effort. Consequently, it takes a

shorter time to reach the last discovery. The NCS simulation result shows that

lognormal and Weibull distributions have good fit with the discovery size of

NCS. Meanwhile, exponential and gamma distributions have a good fit for

simulating the waiting time between a specific discovery and the one that is



2.1. Introduction 29

subsequent to it.

The second part of this chapter conducts an empirical estimation to

analyse the interaction between exploratory effort, efficiency, and oil price. It

contributes to the literature by splitting the waiting time between discovery

and discovery size to clearly understand the effect of oil price fluctuations on

exploratory effort and efficiency, as suggested by Mohn (2008). The exploratory

effort variable is taken into account to ensure consistency with the existing

literature. The waiting time between discoveries and discovery size is regressed

on the exploration wells and crude oil price by applying an Autoregressive

Distributed Lags (ARDL) model. The long-run relationship and short-run

dynamics are distinguished in the empirical model. The empirical estimates

show the importance of distinguishing between waiting time and discovery size.

A structural break is taken into account to capture the negative shock

in the sample period. A long-run relationship is found between exploratory

effort, efficiency, and oil price in both basic ARDL and ARDL with break

models. A break in 1981 is found for the waiting time between discoveries and

a break in 1999 for discovery size. A break year in 2008 is also estimated in the

model as the series contain extreme shocks by crude oil price during Global

Financial Crisis. The model with a structural break confirms the presence of the

long-run relationship between exploratory effort, efficiency, and crude oil price.

The empirical results are consistent with the simulation exercise regarding

the relationship between exploratory effort and efficiency. Crude oil price and

the number of exploration wells relate negatively to the waiting time between

discoveries in the long run. When the oil price is high, it stimulates exploration

activity, leading to more exploration wells and a higher frequency of discoveries.

The more frequent the discoveries are, the shorter the waiting time between

them. Crude oil price relates positively to discovery size, whereas exploration

well number relates negatively to it. This result is consistent with Mohn (2008),

who posits that the positive relationship between oil price and discovery size is
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due to the incentive to discover the bigger new resources that are mainly found

in a frontier petroleum province. As exploration wells increase in number and

are more frequently discovered, the discovery size gets smaller. In the short

term, crude oil price does not significantly affect exploratory efficiency, whereas

exploratory effort does.

The remainder of this chapter is organised as follows: Section 2.2 provides

some background and reviews the existing literature. Sections 2.3 and 2.4

present the data and methodology, respectively. Section 2.5 illustrates the steps

to select the underlying distribution type of waiting time between discoveries

and discovery size. Section 2.6 reviews the simulation and empirical models for

exploratory effort, efficiency, and crude oil price, and section 2.7 concludes the

analysis.
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2.2 The literature on exploratory effort and effi-

ciency

Exploration activity is an important stage in a future oil supply as the

current exploration determines the oil production rate. Besides, exploration

activity also affects the oil reserves as oil is an exhaustible resource. The

importance of exploration activity motivates various approaches in previous

research to estimate the remaining or undiscovered reserves. Geological and

economics-based are two strands in the well-established modelling framework in

oil exploration. This section describes what existing literature mainly focuses

on and the methodology applied to estimate the reserves.

Many established works of literature have attempted to model exploratory

efforts by applying various proxies. Several proxies to measure exploratory

efforts include the number of wells drilled, exploratory footage drilling, time

trend (Arps et al., 1971), discovery rate, cumulative discoveries, resource price,

exploration expenditure, finding, and extraction costs (Power and Jewkes, 1992).

Arps et al. (1971) applies cumulative footage drilling as the independent variable

to predict the ultimately recoverable resources. Osmundsen et al. (2010) use

the average drilled meters per day as the proxy of drilling productivity for

Norwegian oil activities and conclude that oil price increase causes the decline in

drilling productivity. Swierzbinski (2013) defines two factors; cost of extractions

and resource prices are essential to measuring resource scarcity. Contrary to

the benchmark Hotelling’s model that the cheapest cost is extracted at the

early phase and cost rises over time for the exhaustible resources, Swierzbinski

(2013) argues that technological advance leads to decreased extraction cost over

time.

The most applied methodology to forecast discovery and production is

the curve fitting technique, including the growth curve. The initial work in
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geological-based modelling is by Hubbert (1962). Hubbert (1962) initially

proposed the US ultimate recoverable resources and production rate projection

through the growth curve. Hubbert’s model is well-known as a symmetric

bell-shaped production curve. Some critics of Hubbert’s model are that the

reserve growth has a different magnitude on its rate than the reserve decline

rate, leading to the asymmetric discovery and production curves rather than

the symmetric one (Sorrell et al., 2010). Arps et al. (1971) emphasises two

fundamental thoughts in the exploration concepts: decline in drilling efficiency

and the growth in future discovered reserves. The higher the exploratory efforts,

the higher the exploration results in a steep increase at the beginning and end

with a more gradual rise up to the ultimate recoverable resource with some

economic limit as the constraint. An economic limit becomes the threshold

between the proved reserves and the accumulation of undiscovered resources.

The recent research applies the creaming curve technique, including

Lillestøl and Sinding-Larsen (2018), that uses a creaming curve with max-

imum likelihood estimation to obtain a reasonable prediction within the mature

part of the Norwegian Continental Shelf. Hallack and Szklo (2019) apply a

creaming curve variant to assess exploratory potential in Brazil. They argue

that a creaming curve is suitable to model the petroleum province where the

field data are limited. In their model, the creaming curve variant considers a

recovery factor to estimate a discovery size by field. On the contrary of curve

fitting applicability in forecasting, Sorrell and Speirs (2014) argue that curve

fitting techniques tend to underestimate the ultimately recoverable resources.

The curve fitting technique neglects factors other than geological aspects.

Another commonly applied methodology to estimate the size of remaining

reserves than curve fitting is a probabilistic distribution. The existing research

classifies the oil field size based on whether the resources are technically and

economically viable to recover. However, there is no consensus regarding the

giant and dwarf fields thresholds, and every author justifies their choice. Some
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research classifies 50Gb (Höök and Aleklett, 2008); 50Mb (Fiévet et al., 2015) for

the giant fields. Barouch and Kaufman (1976) proposes a postulate for sampling

without replacement from the hydrocarbon pools for Canada that makes a future

discovery conditional on the previous discovery size. Arps and Roberts (1958)

also propose that the frequency-density distribution can estimate the expected

future drilling, and the drilling process is random. Adapted from Kaufman

et al. (1975) and Barouch and Kaufman (1976), Eckbo et al. (1978) and Smith

(1980) extend the work for the application in the North Sea. Particularly,

Smith (1980) apply a probabilistic distribution to estimate remaining reserves

in the Norwegian petroleum province. Lee and Wang (1983) use Monte Carlo

to simulate the probability distributions of random geological variables in the

Canadian sediment basin. Fiévet et al. (2015) extend the work of Smith (1980)

to model the discovery rate for the discovery in Norway and the UK by Poison

distribution process and fit to the logistic curve to obtain the respective time

distribution. They follow the two fundamental notions that the discovery rate

depends on the size of the oil field, and the resource is finite that discovery rate

leads to a smaller size and tends to zero.

Some authors propose the exponential decline of the discovery rate and

agree that the distribution type of the discovery size mainly follows a lognormal

distribution. Meanwhile, some follow other distributions such as gamma and

Pareto distribution.Kaufman et al. (1975) argue that a lognormal distribution

is suitable for describing the size of the petroleum reservoirs in Alberta, Canada.

Beall (1976) also assumes that the lognormal is reasonable to approximate the

petroleum reservoirs in the North Sea. Smith and Paddock (1984) model the

discovery size as exponential decay. They assume that the exponential decay

rate is based on cumulative historical discoveries, and the expected size of the

last discovery would be the minimum economic discovery size. Bohling and

Davis (1993) presents oil discovery sequence simulation following lognormal,

gamma, and Pareto distribution and concludes that the model with either



2.2. The literature on exploratory effort and efficiency 34

distribution tends to simulate more large fields than the actual discovery.

The literature investigates the model of the discovery and exploratory

efforts in disaggregated data, well or field-based observations. The decision

to apply disaggregate data is based on the fact that the geological condition

varies among regions. Classifying the study based on the maturity area of

the resources is also common. Most of the well-established research considers

mature petroleum provinces such as the Norwegian Continental Shelf, the UK

Continental Shelf, the US and Canadian basins, the Gulf of Mexico and other

developing countries such as Brazil and India. Power and Jewkes (1992) propose

a discovery efficiency parameter in applying the Western Canada sedimentary

basin. They argue that an improvement in the exploration efficiency can reduce

the exploratory effort but not maximise the total discovery when executed in the

early phase of the exploration. MacDonald et al. (1994) estimate the cumulative

discovery volume in Canada’s Western Sedimentary Basin by applying a linear

regression of third-degree polynomial. The cumulative discovery volume is

forecasted based on the well counts. Höök and Aleklett (2008) investigate the

decline rate of Norwegian oil production and found that annually giant fields

decline by 13%, and the smaller fields decline rate is faster by 40% annually.

Rao (2000) conceptualises an integrated optimisation model of exploration and

extraction for the application in India. The research combines the optimal

rate of extraction to estimate the discovery rate that results in the simulated

production-to-reserve ratio for the policy decision-making process.

The literature then has developed and considered the economic and other

factors, such as technological progress and politics, into the model. Ramsey

(1980) emphasises the crucial issue of the optimisation exploration process

rather than the optimal depletion of the exhaustible resources. Its contribution

to the economic literature is by investigating the exploration firms’ behaviour

and arguing that large firms tend to explore new discovery areas and then

proceed by smaller firms until no exploration as the field is decayed. Some
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extensions of Hubbert’s model that incorporate economic factors are Kaufmann

(1991), and Cleveland and Kaufmann (1991). Cleveland and Kaufmann (1991)

modify Hubbert’s original projection on the US ultimate oil recovery and rate

of production by accounting for a non-random drilling in Yield per Effort curve

and incorporating political and economic factors. Pesaran and Samiei (1995)

evaluate the performance of the original Hubberts’ model and its extensions by

Kaufmann (1991) and Cleveland and Kaufmann (1991) from an econometric

point of view.

Reynolds (2002) extends Hubbert’s oil discovery and production model to

include technology and regulation changes. The model applies a non-time-series

cumulative discovery quadratic Hubbert curve and structural shift variables.

Forbes and Zampelli (2002) propose empirical estimation of the technological

changes on the exploratory success rate. Managi et al. (2006) argue that

exploratory effort and technological changes significantly affect the discovery

at the field level. They apply the average drilling distance per exploratory well

and the number of exploratory and development wells as the exploratory effort

proxies in the application of Gulf Mexico.

As the economic factors are incorporated into the exploration model, the

study of the relationship between oil market variables, such as crude oil price,

exploration cost, and other financial instruments, has developed. Through

the empirical analysis, Pesaran (1990) argues that oil price strongly affects

UKCS exploration and production. Dahl and Duggan (1998): Oil prices affect

geophysical and drilling activities. They approach oil exploration through

wildcat wells drilled, the success rate percentage of commercially viable wells,

and the average oil reserve per successful well. Farzin (2001) argues that future

oil price significantly affects the additions to proven reserves from existing fields

in the US. A 10% increase in real oil price leads to a 1% increase in proven

reserves. Forbes and Zampelli (2002) also conclude that the oil price has a

significant positive effect on the US onshore exploratory success rate. Applying
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a VAR framework to the US data, Ewing (2017) classifies the discoveries based

on its sources; extensions to reserves, new field discoveries to reserves, and new

reserves discovered in the oil field to reserves to the shocks of crude oil price

and 10-year Treasury bond. Ewing (2017) argues that the extensions-to-proved

reserves respond more substantially to the oil price fluctuation than the new

discoveries. Meanwhile, the new field discoveries and new reservoirs discovered

in oil fields respond positively to the interest rate changes.

Kemp and Kasim (2003) design an econometric model incorporating

exploration and production activities, reserves, price, cost, and taxation to

apply mature petroleum province of the UK continental shelf (UKCS). Having

extended their previous work, Kemp and Kasim (2006) adds the effects of tech-

nology and exploration efficiency on discovery. They argue that the cumulative

number of exploration and appraisal wells, cumulative discoveries, exploration

failure rate, and time trend is significant in describing the UKCS exploration

efficiency behaviour. Mohn and Osmundsen (2008) found that a 1% rise in oil

price increases Norwegian exploration well by 0.20% in the short run. In the

long run, they found that an increase in oil prices from the previous year also

leads to the rise of a Norwegian exploration well by 0.21%. Toews and Naumov

(2015) applied a structural VAR to estimate the oil price shocks to the drilling

activity. They argued that a 10% increase in oil price shocks leads to increased

UK exploration well and drilling costs by 4% and 3%, respectively. Skjerpen

et al. (2018) argue that oil price and rig rates have a positive relationship, and

the oil price has to stay high for some time to affect the rig rates considerably.

This study differs from the previous literature and contributes to the liter-

ature. The contribution of this study provides a new alternative proxy for the

exploratory effort, the waiting time simulation between discovery. The current

establishes literature applies maximum likelihood probability distribution and

the exponential decay of historical means of discovery rate that cannot obtain

the time distribution. The scope of this research is limited to the exploratory
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effort of the new discovery fields and does not include the growth of the existing

fields.

This study also provides a tool in R-software to simulate the waiting time

in a particular petroleum province. The benefit of applying this tool is that

it does not require extensive numerical programming. Applying disaggregate

Norwegian Continental Shelf (NCS) field-based discovery data, the parameter

of the declining rate can be estimated. This study runs the Mean Absolute

Percent Error (MAPE) and bias tests to evaluate the accuracy of the simulated

values. The other benefit is that when the historical data is unavailable, or

there are not enough observations, the predicted parameters from the experts

can be inputted into the tools to obtain a simulated waiting time.

The second contribution is that this study analyses the relationship be-

tween the exploratory effort applying the waiting time between discoveries

and the global oil market variables, remarkably crude oil price. Hence, the

linkage between geological and economic factors is not missing. Furthermore,

the consistency and reliability of this new proxy can be identified by comparing

the results with the well-established exploratory effort variables, such as the

number of the exploration well and rig counts.
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2.3 Oil discovery data and descriptive statistics

This section is organised into two parts. The first part discusses the data

employed in the simulation of Norwegian Continental Shelf (NCS) oil discovery

sequences. The second part examines the data used in the empirical analysis of

the relationship between exploratory effort, efficiency, and crude oil prices. The

main focus of this study is to determine the time between one discovery and

the next (i.e., waiting time), and then to create a future discovery simulation

profile. This study provides a simulation toolbox for more straightforward flow

for estimating a future discovery. Appendix A.1 shows the code of the discovery

size and waiting time simulation.

The waiting time obtained from the first part of the section reflects the

exploratory efficiency. The next subsection provides the data for the regression

of the waiting time on the number of exploration wells, and crude oil price.

The average discovery size is included in the second regression to distinguish

the effect from time between one and subsequent discoveries. The motivation

for the empirical analysis is mainly to understand the consequences of oil price

fluctuation on exploratory efficiency, as the result of exploratory efforts.

2.3.1 Norwegian Continental Shelf (NCS) discovery se-

quences

This subsection describes the NCS discovery sequence as the basis of

the simulation process. In this study, the term ‘discovery’ is based on the

assumption that successful discovery of a new field will lead to production.

Thus, oil production growth from an existing field and the findings from fields

that are later abandoned are not considered. The order of discovery, the

discovery date, and the size of the field discoveries in million Standard cubic

metres of oil equivalents (mill Sm3) are the three essential components for
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modelling the sequence of the discovery simulation.

Figure 2.4: Norwegian Continental Shelf oil discoveries 1967-2019

Figure 2.5: Norwegian Continental Shelf oil discovery waiting time

The simulation takes into account the historical data of 141 NCS discovery

sequences from July 1967 to September 2019. The discovery dates and sizes

are obtained from the Norwegian Petroleum Directorate (NPD) database.1

1https://factpages.npd.no/en/discovery/TableView/Overview
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Figures 2.4 and 2.5 illustrate the time series plot of Norwegian oil discovery

sizes and waiting time. The waiting time is the time difference between one

discovery and the next, and thus it results from exploratory effort. Based on

the probability distribution of NCS discovery sequences, this study simulates

the discovery size and waiting time between discoveries. At the beginning of

the observations, there are more large discoveries than there are during the rest

of the period. Figure 2.5 shows that it takes longer to make a discovery in the

early period. However, small size discoveries are made more frequently found

than large ones.

Table 2.1: Descriptive statistics of NCS discovery data

Summary statistics Size (million Sm3) Waiting time (days) Dates

Min 0.02 0 09-07-1967
Max 578.69 899 27-09-2019
Mean 41.08 136.24 20-08-1997
1st Quartile 2.29 37.75 25-12-1983
Median 7.90 88.00 03-05-1998
3rd Quartile 24.10 176.25 27-10-2011
Estimated sd 95.8753 157.7070
Estimated skewness 3.7873 2.3760
Estimated kurtosis 18.2672 9.7494

Table 2.1 contains the descriptive statistics of discovery size and waiting

time. The average successful discovery size for the Norwegian field between

1967 and 2019 is 41.08 million Sm3 (equivalent to 258 million barrels), with an

average waiting time between one and the subsequent discovery being 136 days.

The standard size for a giant discovery is 500 million barrels Nehring (1978);

Zou (2013), although Fiévet et al. (2015) uses the assumption of a giant field

size of 50 million barrels. The biggest discovery (namely, Statfjord discovered

in 1974) is 578.69 million Sm3 (or equivalent to 3.6 Giga barrel).

2.3.2 Exploratory effort, efficiency, and crude oil price

Turning to the relationship between exploratory effort, efficiency, and

crude oil price. Two separate equations are estimated for waiting time (wt) and

discovery size (s), with each equation containing the crude oil price (op) and the
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total of exploration wells (w). The hypothesis is that the waiting time between

discoveries has a negative relationship with the oil price, while discovery size

has a positive relationship with the oil price. The high oil price motivates more

exploratory effort, proxied by more exploration wells, which is associated with

a shorter time between discoveries. The high oil price also stimulates producers

to find oil in a frontier area that, unlike a mature area, offers the prospect of

making a larger size discovery. However, as discoveries become more frequent,

the depletion rate becomes more associated with a smaller discovery size.

This subsection employs the yearly data from 1968 to 2019 for empirical

analysis, and the discovery waiting time and size values are transformed into

average annual data. The number of exploration wells is obtained from the

Norwegian Petroleum Directorate (NPD) database.2 The crude oil price data

is available on the Energy Information Administration website.3 The real oil

price is applied by adjusting the nominal oil price with the U.S. Consumer

Price Index (CPI) to account for global inflation. The CPI series are obtained

from the U.S. Bureau of Labor Statistics and available from the U.S. EIA.4

As for the robustness test, the purchasing power parities (PPP) are applied

as an adjustment factor of nominal oil price to deal with the exchange rate

fluctuations for non-US fluctuations. PPP is obtained from the OECD stat

and measured in Norwegian Krone per U.S. dollar.5

The correlation between the waiting time and other exploratory effort

variables are illustrated in Figures 2.6-2.7 and Table 2.2. For correlation and

time-series plot purposes, this subsection applies yearly data from 1995 to 2020.

The oil rig counts data for Norway are available on Baker Hughes website; these

are also averaged yearly.6 Exploration costs annual data are obtained from

the Oil and Gas Department of Norway’s Ministry of Petroleum and Energy.7

2https://factpages.npd.no/en/wellbore/Statistics/EntryYear
3https://www.eia.gov/outlooks/steo/realprices/
4https://www.bls.gov/cpi/data.htm
5https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm
6https://rigcount.bakerhughes.com/intl-rig-count
7The exploration cost data was requested to the corresponding email to OED −
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However, due to insufficient observations of rig counts and exploration costs

time series, these are not included in the empirical regression. Table 2.2 shows

that the NCS average waiting times have negative correlations with discovery

size and other exploratory efforts, namely the number of exploration wells, rig

counts, exploration costs, and crude oil price. Meanwhile, the crude oil price

has a positive correlation with discovery size and the other exploratory efforts.

Table 2.2: Pairwise correlation between waiting time, other exploratory efforts,
and crude oil price

waiting time size well rig cost oil price
waiting time 1
size -0.341 1
well -0.764 0.195 1
rig -0.147 -0.011 0.096 1
cost -0.755 0.277 0.811 0.076 1
oil price -0.581 0.372 0.530 0.179 0.691 1

Figures 2.6 and 2.7 support the evidence that in most periods, waiting time

moves in an opposite direction to the oil price and the number of exploration

wells. Figure 2.6 shows that when crude oil prices rise between 1995 and 2008,

the waiting time between discovery decreases. After 2011, particularly between

2015 and 2016 and also after 2019, crude oil prices tend to drop. In these

periods, the waiting time fluctuates. It then increases after 2019. Norwegian

oil rig counts show an increasing trend from 1995 to 2001, then a decreasing

trend up to 2008, as shown in Figure 2.7. In these periods, the average waiting

times show an opposite trend; they decrease from 1995 to 2001 and increase

from 2001 to 2008. After 2008, rig counts increase, and waiting times decrease.

Then both remain relatively level with just slight fluctuations during 2009-2019.

After 2019, the Norwegian oil rig counts decrease and waiting times increase.

Figure 2.7 illustrates a more straightforward interpretation, in that the number

of oil exploration wells has an increasing trend from 1995 to 2009, while the

waiting times decrease. The waiting time fluctuates a little between 2010 and

2019, whereas exploration wells show a decreasing trend after 2015. In 2020,

Fakta@oed.dep.no and received on 12 February 2021
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the number of exploration wells stayed low while the waiting time increases.

Figure 2.6: The Norwegian oil discovery waiting time and crude oil price

Figure 2.7: The Norwegian oil discovery waiting time and exploration well
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2.4 Methodology

This chapter is organized into two main parts. The first parts deals with

the simulation, setting out the tests run to fit the distribution type. The second

part is empirical, in which the effect of oil price on exploratory effort and

efficiency is estimated.

2.4.1 Monte Carlo simulation

Monte Carlo simulation aims to emulate a complex system that is difficult

to practically and physically replicate by constructing a mathematical model

(Thomopoulos, 2013). The essential principle of Monte Carlo simulation is

applying a large number of random sampling. First, each input variable requires

random variates. Second, a computation is run based on the pre-defined model.

Each random input yields random outcomes. Third, the steps are repeated

thousands of times to obtain thousands of outcomes. The flow requires a

large number of random inputs to generate a large number of samples. This

subsection utilises R software to run the Monte Carlo simulation in the following

few steps:

1. Generate a random number between 0 and 1 for 141 sequences following

the best fit distribution to obtain:

• the discovery size expected values

• the discovery time between one and subsequent discovery (waiting

time) expected values

2. Repeat the process for 10,000 times of replication for each distribution.

3. To obtain the time distribution of each discovery, set the initial date as

the first discovery date, then add the expected waiting time as generated

by step 1.
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4. Combine the expected value of discovery size with the expected waiting

time value, according to their respective matrices location.

5. The simulation can also be applied when there is no historical data avail-

able by giving an estimate of the parameter. Specify the new parameter

estimates for each distribution.

6. Repeat step 1 to step 4.

7. Test the goodness-of-fit statistic of the new simulated discovery size and

waiting time by applying a Kolmogorov-Smirnov test. The test aims to

test whether the simulated data have a distribution that is similar to the

actual data.

Step 1 to 4 constitute the base scenario that employs the parameters fitted to

the actual data. Steps 5 to 7 offer flexibility in allowing the simulation to be

applied when there is no data available. However, these steps are also beneficial

for sensitivity analysis to test the practicability of using waiting time as a proxy

for exploratory efficiency to capture the effect of exploratory effort.

The probability distribution of the discovery size and waiting time is

selected based on the smallest value of information criteria among a few

candidates of probability distributions. After choosing the distribution, the

parameter values need to be estimated. Thomopoulos (2013) emphasises

four critical step of preliminary tests to be met by each random variable in

the simulation: test for independence to avoid autocorrelation, calculate the

statistical measures, choose the candidate of probability distributions, estimate

parameters for the selected distribution, and test the goodness-of-fit.

2.4.1.1 Independence test

The aim of testing the independence of the sample is to obtain valid

estimates. This subsection applies the BDS independence test proposed by
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Broock et al. (1996). The test considers a pair of points and a distance ϵ

that has a benefit of being invariant to the underlying series distribution. The

probability of distance c1(ϵ) being less than or equal to distance ϵ is identical

for any points. For multiple pairs of points, the joint probability of every pair

of points is cm(ϵ) with m being the dimension, i.e., the number of consecutive

data points applied. The assumption of independence is when cm(ϵ) = cm1 (ϵ).

The probability is defined by the ratio of the number of sets that satisfies

the ϵ condition and the total number of sets. For n observations of the data

series x, the statistics of the correlation integrals cm,n is the following,

cm,n(ϵ) =
2

(n−m+ 1)(n−m)

n−m+1∑
s=1

n−m+1∑
t=s+1

m−1∏
j=0

Iϵ
(
xs+j, xt+j

)
(2.1)

where subscript s and t are observation points that create sets of pairs, and

indicator function Iϵ is

Iϵ(x, y) =

 1, if |x− y| ≤ ϵ

0, otherwise 0

Then, the test statistic is the following.

bm,n(ϵ) = cm,n(ϵ)− c1,n−m+1(ϵ)
m (2.2)

The null hypothesis is that the observations of the series are independent and

close to zero. The maximum dimension applied in this study is three, and

bootstrap probability is used to give more accuracy in a small sample through

a large number of repetitions.

2.4.1.2 Statistical measures

Statistical measures that are useful for selecting the probability distribu-

tions are minimum, maximum, mean, median, standard deviation, skewness,
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kurtosis, and quartile. The following equations define skewness and kurtosis

(Casella and Berger, 2021):

sk(x) =
E
[(
x− E(x)

)3]
var(x)

3
2

, with unbiased estimator ŝk =

√
n(n− 1)

n− 2

m3

m
3
2
2

(2.3)

kr(x) =
E
[(
x− E(x)

)4]
var(x)2

, k̂r =
(n− 1)

(n− 2)(n− 3)

(
(n+ 1)

m4

m2
2

− 3(n− 1)
)
+ 3

(2.4)

where mk is given by mk = 1
n

∑n
i=1

(
xi − x̄

)k, and where m2,m3, and m4 are

empirical moments with n number of observations and x̄ is the mean value of

variable x.

2.4.1.3 The candidate of continuous probability distributions and

parameter estimates

The parametric distributions defined in Figures 2.10 and 2.11 follow a

distribution that is closer to four distributions of the observations: lognormal,

Weibull, gamma, and exponential, as shown by skewness and kurtosis plots in

Figures 2.8 and 2.9.

1. Lognormal

Suppose x is a variable with a lognormal distribution and y is a variable

with normal distribution, their relation would be the following:

y = ln(x);x = ey (2.5)
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x ∼ ln(µy, σ
2
y) (2.6)

y ∼ N(µy, σ
2
y) (2.7)

µy = ln
[ µ2

x√
µ2
x + σ2

x

]
(2.8)

σ2
y = ln

[
1 +

σ2
x

µ2
x

]
(2.9)

where ln denotes natural logarithm (Thomopoulos, 2013).

2. Gamma

The density for Gamma distribution is defined by the following.

f(x) =
xk−1θke−θx

Γ(k)
; x ≥ 0 (2.10)

where Γ(k) is the Gamma function and is

Γ(k) =

∫ ∞

0

tk−1e−tdt; for k > 0, (2.11)

and the mean and variance are the following:

µ =
k

θ
(2.12)

σ2 =
k

θ2
(2.13)

A random variate for Gamma distribution depends on whether the value

is k < 1 or k > 1.

3. Weibull

The Weibull density is defined by the following equation with two param-

eters k1 and k2.

f(x) = k1k
−k1
2 xk1exp

[
−
( x
k2

)k1]
; x > 0 (2.14)
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The cumulative distribution function is given by

F (x) = 1− exp
[
−
( x
k2

)k1]
; x > 0 (2.15)

and the expected value and variance are the following.

E(x) =
k2
k1

Γ
( 1

k1

)
(2.16)

V (x) =
k22
k1

[
2Γ
( 2

k1

)
− 1

k1
Γ
( 1

k1

)2]
(2.17)

Obtaining a random uniform variate from u ∼ U(0, 1) and setting it to

F (x), results in a random x from the Weibull distribution.

x = k2

[
− ln(1− u)

] 1
k1 (2.18)

4. Exponential

As x decreases, the probability density f(x) also decreases. The largest

value is at x = 0.

f(x) = θe−θx, for x ≥ 0 (2.19)

The cumulative distribution function F (x) is the following.

F (x) = 1− e−θx, for x ≥ 0 (2.20)

The mean and variance are shown in Equation 2.21 and 2.22.

µ =
1

θ
(2.21)

σ2 =
1

θ2
(2.22)

Then, obtaining a random variate from u ∼ U(0, 1) and setting it to be
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equal to F(x), the random variate of x is the following:

x = −1

θ
ln(1− u) (2.23)

Related to other distributions, the density shape is exponential when the

parameter from Weibull distribution k1 ≤ 1 or when the parameter from

Gamma distribution k = 1.

2.4.1.4 Model selection by information criteria

Information criteria are used to determine the model selection by measuring

the distance of the model specification from the true model (goodness-of-fit).

The commonly used information criteria are Akaike Info Criterion (AIC) and

Schwarz Criterion (SC). The AIC and SC are based on the log-likelihood

function and are adjusted by different penalty functions, in which SC is more

parsimonious than AIC. Equations 2.26 and 2.27 describe the AIC and SC,

respectively.

∣∣∣∣∑̂ ϵ

∣∣∣∣ = det

(
1

T − (pk + d)

∑
t

ϵ̂tϵ̂′t

)
(2.24)

l =
−T
2
k(1 + log(2π)) + log

∣∣∣∣∑̂ ϵ

∣∣∣∣ (2.25)

AIC =
−2l

T
+

2N

T
(2.26)

SC =
−2l

T
+
Nlog(T )

T
(2.27)

where T is the number of observation, p is the number of the lags, k is the

number of the endogenous variables, d is the number of the exogenous variables

(e.g., intercept), N is the total number of parameter estimated in all equations,

N = k(pk + d), Σ̂ϵ is the determinant of the residual covariance, and l is the
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log of the likelihood function. The optimal model chosen is the one that has

the smallest value of information criteria.

2.4.1.5 The goodness-of-fit statistics

Goodness-of-fit is applied to the Norwegian oil discovery size and waiting

time data to measure the distance between the fitted parametric distribution

and the empirical distribution function. This subsection employs Kolmogorov-

Smirnov (KS), Cramer-von Mises (CvM), and Anderson-Darling (AD) statistics

defined by D’Agostino and Stephens (1986). 8

The KS test assumes that the distribution parameters are known, while

CvM and AD tests do not consider the a priori knowledge of the distribution

parameters. CvM and AD tests estimate the parameters from the data by

maximum likelihood. The null hypothesis H0 and the alternative H1 of each

test are as follows:

H0: The data comes from the specified distribution.

H1: At least one value does not match the specified distribution.

The following formulas describe the computational formula for each test.

1. Kolmogorov Smirnov (KS) statistic

max(D+, D−) with

D+ = max
i=1,...,n

( i
n
− F (xi)

)
, D− = max

i=1,...,n

(
F (xi)−

i− 1

n

)
(2.28)

2. Cramer-von Mises (CvM) statistic

CvM =
1

12n
+

n∑
i=1

(
F (xi)−

2i− 1

2n

)2
(2.29)

8The tests are generated in R-software utilising the fitdistrplus R-package proposed by
Delignette-Muller et al. (2015)
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3. Anderson-Darling (AD) statistic

AD = −n− 1

n

n∑
i=1

(2i− 1)[lnF
(
xi
)
+ ln

(
1− F (xn−i+1)

)
] (2.30)

where F is theoretical cumulative distribution to be tested, which must be

continuous distribution, F (x) is the Cumulative Distribution Function (CDF)

for the specified distribution, D is test statistic, n is sample size, and i is the

-th sample with data sorted in ascending order.

2.4.1.6 Autoregressive Moving Average (ARMA) forecast model

The basic ARMA model is applied to compare the error between the

forecast and simulation results. The first step is to consider an autoregressive

equation with the p-th order, AR(p),

Yt = ρ0 + ρ1Yt−1 + ...+ ρpYt−p + xt

where xt is a white-noise process following the MA(q) process and is expressed

by the following equation:

xt =

q∑
i=0

θiϵt−i, (2.31)

The ARMA(p, q) equation is obtained by combining the moving average

MA(q) with the autoregressive AR(p). The ARMA(p, q) equation is described

in Equation 2.32, where p is the order of autoregressive and the q is the order

of moving average (Enders, 2015).

Yt = ρ0 +

p∑
i=1

ρiYt−i +

q∑
i=0

θiϵt−i (2.32)
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2.4.1.7 Evaluation test

The predicted value of the numeric vectors for discovery size and waiting

time are evaluated by measuring the differences from the actual values through

the Mean Absolute Error (MAE) test. Equation 2.33 describes the formula of

the MAE test.

MAE =
1

n

n∑
t=1

|yt − ŷt| (2.33)

2.4.2 Empirical framework

2.4.2.1 Unit root test

A unit root test is carried out to examine the stationarity of the series

whether or not the variables are all integrated in the same order. A weak

stationarity condition occurs when the mean and autocovariance do not depend

on the time. The unit root test is important because standard inference cannot

be applied when any of the regression series are integrated. The unit root test

result is useful to determine the suitable empirical model, for instance, the

Auto-Regressive Distributed Lag (ARDL) model is suitable when there are

mixed of stationary and nonstationary variables. Vector autoregression (VAR)

requires all variables to be stationary, while cointegrated VAR requires all to be

integrated of the same order. This chapter applies the standard Dickey Fuller

(DF) unit root test proposed by Dickey and Fuller (1979).

2.4.2.2 Structural break test

This chapter applies three structural break tests: supremum Wald, expo-

nential Wald, and recursive. Andrews (1993) proposes the test for a structural

break by testing the stability of the coefficients over time. This structural

break applies the supremum Wald tests that utilises the maximum sample of
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the test.9 Suppose π is the break-point and lies within the range of β1 and β2,

the Supremum and exponential Wald test statistics WT are given by

Supremum WT = sup
β1≤π≤β2

WT (π) (2.34)

Exponential WT = ln

[
1

π2 − π1 + 1

π2∑
π=π1

exp

(
1

2
WT (π)

)]
(2.35)

The null hypothesis is no break or the stability of the parameter,

H0 : βt = β0 (2.36)

and the alternative hypothesis is

H1 : βt =

β1(π) for t = 1, .., Tπ

β2(π) for t = Tπ+1, ..., T

(2.37)

The limiting distributions of the test statistics are

Supremum WT →d sup
λ∈[ε1,ε2]

W (λ) (2.38)

Exponential WT →d ln

[
1

ε2 − ε1

∫ ε2

ε1

exp

(
1

2
W (λ) dλ

)]
(2.39)

W (λ) =

(
Bk(λ)− λBk(1))

′
(Bk(λ)− λBk(1)

)
λ(1− λ)

(2.40)

where, Bk(λ) is a vector of k-dimensional independent Brownian motions,

ε1 = β1/T, ε2 = β2/T, and λ = ε2(1− ε1)/{ε1(1− ε2)}.
9The test is documented in Stata using estat sbsingle command (StataCorp, 2017).
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2.4.2.3 Autoregressive Distributed Lag (ARDL)

This chapter applies the ARDL approach to examine the relationship

between time between one and subsequent discoveries and the oil market vari-

ables. The benefit of applying ARDL is its capacity to deal with a mixed order

of integration among variables. Inference can be drawn for mixed integration

and also without knowing whether the variables are integrated of order zero

I(0) or one I(1). ARDL will not be applicable when any variable integrated

of order 2, I(2), as it causes spurious estimates. Hence, the unit root test is

still important to carry out to ensure there is no variable integrated of order 2,

I(2), in the ARDL estimates.

ARDL time series consider the relationship of the contemporaneous and

lagged values for both dependent and independent variables. The general

ARDL model is expressed as Equation 2.41.

yt = a0 + a1t+

p∑
i=1

ϕi yt−i +
k∑

j=1

q∑
i=0

β
′

j,i xj,t−i + ϵt (2.41)

The yt is the dependent variable, x1, ..., xk are k explanatory variables, with p

and q being the lags of the dependent and explanatory variables, respectively.

This study investigates the relationship between exploratory effort, efficiency,

and crude oil price. Two equations are estimated with waiting time between

discoveries (wt) and discovery size (s) as the dependent variable yt in the first

and second equation, respectively. The x1, ..., xk is the number of exploration

wells (w) and crude oil price (op) as the regressors. The linear trend t is

assumed to be zero because the graphical interpretation of the series does not

exhibit any trend.

The optimal lags p and q are obtained by minimising the value of informa-

tion criteria AIC or SC, as described in Equations 2.26 and 2.27. The constant

term is a0, the error term is ϵt, and the respective coefficients a1, ψi, βj,lj are
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the coefficients of the linear trend t, lags of yt, and lags of the k explanatory

variables xj,t.

Table 2.3: ARDL model deterministic cases

Case Number Description

1 no constant, no trend
2 restricted constant, no trend
3 unrestricted constant, no trend
4 unrestricted constant, restricted trend
5 unrestricted constant, unrestricted trend

2.4.2.4 Autoregressive Distributed Lags in Error-Correction form

(ARDL-EC) and ARDL with a break

The basic ARDL equation follows Equation 2.41 with two explanatory

variables (k = 2): exploration well and real oil price. The empirical study in

this chapter runs two single ARDL equations for waiting time and discovery

size as dependent variables. In the first ARDL equation, yt is the waiting time

between discoveries as the dependent variable, and x1, x2 are the number of

exploration wells and crude oil prices as the explanatory variables. The second

ARDL equation applies discovery size as yt, with x1, x2 being exploration wells

and the oil price.

ARDL-EC is a way of parameterising the regressors in the long-run

relationship. The bounds testing by Pesaran et al. (2001) is a post-estimation

regression to examine the existence of the long-run equilibrium relationship

without specifying whether the order of integration for each variable is integrated

order zero I(0) or one I(1). ARDL-EC allows the relationship between the

variables in the long run to be pure I(0), I(1), or cointegrated, which refers to

the condition when the linear combination of nonstationary variables becomes

stationary in the long run. The two equations follow case three from Table 2.3,

which is unrestricted constant and no trend. The dependent variable is in the

first difference form and Equation 2.41 is split into three main components:
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speed-of-adjustment, long-run coefficients, and short-run coefficients. Equation

2.42 describes the ARDL-EC parameterisation based on Engle and Granger

(1987); Hassler and Wolters (2006); Kripfganz et al. (2018).

∆yt = a0 + a1t− α(yt−1 − θxt−1) +

p−1∑
i=1

ψyi∆yt−i + ω
′
∆xt +

q−1∑
i=1

β
′

xi ∆xt−i + ϵt

(2.42)

The speed-of-adjustment α represents how much the dependent variable

needs to adjust from the previous period to revert to equilibrium in the current

period, and it is given by α = 1−
∑p

j=1 ϕi where ϕ refers to the coefficient of

the lagged dependent variable in Equation 2.41. As the test distribution is not

standard, the critical values of the speed-of-adjustment follow Kripfganz et al.

(2018). The long-run coefficients θ is given by θ =
∑q

j=0 βj

α
and represents the

effects of the independent variables on the dependent variable in equilibrium.
10 The short-run coefficients, ψ, ω′ , β ′ indicate short-term fluctuations of the

explanatory variables on the dependent variables.

The long-run equilibrium or cointegration evidence requires both F -

statistics and t-statistics to be rejected. The bounds testing calculates the

F -statistics of the joint null hypothesis that the speed of adjustment and the coef-

ficients of the lagged explanatory variables are zero HF
0 : (α = 0)

(∑q
j=0 βj = 0

)
.

The F -statistics are then compared to the critical values. This chapter follows

Kripfganz et al. (2018) for the finite-sample and asymptotic critical values that

provide more efficient estimates, regardless of the lag length or the number of

short-run coefficients. If the F -statistics is rejected, then the value of t-statistics

needs to be checked. The null hypothesis is that the coefficient of the speed of

adjustment is zero H t
0 : α = 0.

Chapter 2 considers the ARDL model with a structural break as the data
10The Stata command estat ectest proposed by Kripfganz et al. (2018) is applied to obtain

the coefficient estimates of ARDL-EC
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series contain a few shocks mainly due to oil price fluctuation. As the time

series applies annual data, which results in a relatively small sample size of

53, the model takes into account a break in intercept only to avoid overfitting

issues when there are too many regressors in a small sample size. The model

with a structural break takes the following form in Equations 2.43 and 2.44 for

the basic ARDL and ARDL-EC with the break, respectively.

yt = a0 + a1t+

p∑
i=1

ϕi yt−i +
k∑

j=1

q∑
i=0

β
′

j,i xj,t−i + γ0bt + ϵt (2.43)

∆yt = a0 + a1t− α(yt−1 − θxt−1) +

p−1∑
i=1

ψyi∆yt−i + ω
′
∆xt

+

q−1∑
i=1

β
′

xi ∆xt−i + γ0bt + ϵt (2.44)

A dummy variable (b) represents the break in crude oil price, oil exploration

well counts, and waiting time between discoveries in the first equation and oil

price, well counts, and discovery size in the second equation. It takes a value of

1 from the estimated break date onwards and a value of 0 from the beginning

of observation until before the estimated break date. The coefficient estimate

of a break in intercept is denoted as γ0. The estimated breakpoint for each

equation is obtained based on the supremum Wald test by Andrews (1993).
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2.5 Distribution type of NCS oil discovery size

and time between discoveries

This section describes the properties of NCS discovery size and time

between discoveries from which the underlying distribution data type can

be assessed and a candidate selected for the distribution for the simulation.

Figures 2.8 and 2.9 illustrate the plot of the square of skewness and the kurtosis

of the observations as proposed by Cullen and Frey (1999), while empirical

distribution plots help to fit the distribution set by the data . The plots are

generated by utilising the package fitdistrplus in R (see Delignette-Muller et al.

(2015) for more detail).

Figure 2.8: Skewness and Kurtosis of NCS oil discovery size

Figures 2.8 and 2.9 illustrate more clearly the skewness and kurtosis

values mentioned in Table 2.1; these are useful to explain the distribution

type. Skewness measures the symmetry of the data, while kurtosis identifies

the fatness of the data set’s tail. The skewness and kurtosis are respectively

linked to third and fourth moments from the central value, and show how far

the data is distributed relative to the benchmark of normal distribution. A
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Figure 2.9: Skewness and Kurtosis of NCS time between discoveries

convention used in this scope is that a normal distribution has zero skewness

and a kurtosis of three. Figures 2.8 and 2.9 also describe some predefined

distributions (other than the normal distribution), namely uniform, logistic,

exponential, gamma, and Weibull distributions. This is to narrow down the

candidates for distribution selection. The possible distribution values for the

data sets are shaded in a dark blue circle shaped by the yellow bootstrapped

values.

A zero value of skewness implies symmetric empirical distribution, and

it implies a non-symmetric distribution for non-zero skewness value. Both

discovery size and waiting time data have non-zero positive values of skewness.

That indicates that the data are asymmetric, skewed right, and have a right

tail that is longer than the left. The high positive kurtosis (relative to the value

of three) for both waiting time and size indicates the heavy-tailed distributions

relative to the normal distribution.

Discovery size observations show that the distribution lying within lognor-

mal, gamma, Weibull, and the time in between one and subsequent discovery

observations are quite close to the exponential distribution. Hence, the prede-

fined distributions adopted for the empirical and theoretical distribution plots
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Figure 2.10: Empirical and theoretical NCS oil discovery size distribution

Figure 2.11: Empirical and theoretical NCS time between discoveries distribu-
tion

are Weibull, lognormal, gamma, and exponential, as shown in Figures 2.10

and 2.11. Figure 2.10 clearly illustrates a cumulative distributive function and
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empirical probabilities, indicating that lognormal and Weibull are close to the

discovery size observation points. The exponential and Weibull distributions

are close to the time in between discoveries observations, as shown by Figure

2.11. However, a further goodness-of-fit test must be employed to obtain the

distribution with the best fit for discovery size and waiting time.

Table 2.4: Goodness-of-fit criteria for discovery size and time between discoveries
distribution

Information Criteria Lognormal Weibull Gamma Exponential

NCS discovery size
AIC 1158.183 1174.196 1198.729 1331.781
SIC 1164.081 1180.094 1204.627 1334.730

NCS discovery waiting time
AIC 1653.161 1649.132 1649.838 1648.192
SIC 1659.030 1655.001 1655.707 1651.127

Table 2.4 summarises the information criteria of the predefined distribu-

tions for NCS discovery size and time between discoveries. Based on AIC and

SIC, the smallest value for the information criteria is a lognormal distribution

for discovery size, and the exponential distribution for time between one and

subsequent discovery. Therefore, fur further analysis, this study considers

lognormal and exponential distributions for size and time between discoveries,

respectively, as the preferred distribution.
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2.6 Simulation results and analysis

This section presents and analyses the Monte Carlo oil discovery simula-

tion results (see Subsection 2.6.1) and the ARDL empirical analysis (Subsection

2.6.2). The NCS discovery sequence is adopted as the sample of observations

illustrating discovery behaviour in the mature petroleum province. The sim-

ulation has certain objectives. First, it models the underlying distribution

profile and forecasts the oil discovery sequences by simplifying the real system.

Second, the simulation obtains and quantitatively understands the exploratory

efficiency in the NCS mature petroleum province by identifying discovery size

and time between one and subsequent discovery (i.e., waiting time) parameters

under the same parent distribution. Third, the simulation captures the changes

in the exploratory effort via parameter changes to understand the impacts of

exploratory effort on waiting time and discovery size. The empirical analysis

examines quantitatively how crude oil price fluctuation affects the waiting time

and discovery size, drawing on the number and size of exploration wells to

capture exploratory effort.

2.6.1 Simulation of discovery waiting time and size in a

mature petroleum province

Subsection 2.6.1 focuses on the simulation results of the discovery sequences

for the NCS mature petroleum province. This study simulates discovery size

and the time between discoveries to simplify the real and complex oil discovery

problem. As explained in Section 2.5, for best fit, the simulation follows a

lognormal distribution for NCS discovery size and an exponential distribution

for waiting time. There are three sets of discovery sequence simulations that

aim to capture the changes in exploratory efforts. The first set of Monte

Carlo simulations, which is the base scenario, is based on discovery size and
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the waiting time parameters generated by the 141 NCS discovery sequential

sampling. The other two sets of simulations apply different parameters of

discovery size and waiting time but with the same distribution as the NCS

series. The second set of simulations applies parameter values that are lower

than the base scenario’s, while the third set uses parameter values that are

higher than those of the base.

Before proceeding with the simulation for parameter changes, the inde-

pendence of the series in the base scenario needs to be tested. Table 2.5 shows

the BDS independence test for NCS actual discovery size and waiting time

between discoveries. The BDS statistic cannot reject the null hypothesis that

the series are independent. The test concludes that the size and waiting time

data are independent. Five sets of simulated size and waiting time samplings

are also tested for their BDS independence, and these results also confirm the

independence of the simulated discovery sequences. Hence, the simulated data

can be further analysed.

Table 2.5: BDS Independence test

Series BDS Statistic Bootstrap Probability
waiting time (wt)
NCS data 0.015 0.215
Simulated data #1 0.037 0.079
Simulated data #2 0.021 0.314
Simulated data #3 0.029 0.186
Simulated data #4 -8e−4 0.864
Simulated data #5 0.034 0.150

size (s)
NCS data -0.002 0.821
Simulated data #1 -0.022 0.686
Simulated data #2 -0.017 0.716
Simulated data #3 -0.024 0.341
Simulated data #4 0.018 0.456
Simulated data #5 -0.006 0.972

The base scenario reports the discovery size mean as 1.98 (in logarithmic

value) with a standard deviation of 2.00; the exponential rate of waiting time

between discoveries is 0.0073. Then, parameter changes are employed to capture

changes in exploratory effort. For consistency of analysis, the high and low

parameters of discovery mean and rate are determined by values that give the
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same distribution as the NCS discovery sequences (by trial error). The KS,

AD, and CvM tests are applied to examine whether the simulated and actual

NCS discovery size and waiting time sequences are from the same distribution.

Those goodness-of-fit tests are applied to randomly taken samples (e.g., 1st,

100th, 500th, 1, 000th, 5, 000th, and 10, 000th replication) for each set of the

simulated sequence. The null hypothesis (that simulated and actual series are

drawn from the same population) fails to be rejected at 5% significance level

for most of the samples (for details, see Appendix A.1). Hence, the analysis to

capture exploratory effort through parameter changes can proceed further.

Deciles help understand the probability of the true value of the random

variables. As the sample is continuous data, the probability is given to the

range of the discovery size and waiting time values. Tables 2.6-2.8 describe

the three parameters and their decile values in three sets of discovery size and

waiting time simulations. The simulated waiting time is the simulated lag time

(in days) between one discovery and the discovery that follows it, which is

the result of the exploratory effort. Summing simulated waiting time into an

initial discovery date results in the simulated discovery date, which is useful for

identifying the last date of discovery. Knowing the last discovery date makes it

easier to understand the big picture of how exploratory effort affects discovery

size and waiting time.

Table 2.6: Decile of simulated discovery size

log-mean log-sd 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
1.7675 2.00 0.45 1.09 2.05 3.53 5.85 9.73 16.74 31.56 76.11
1.9801 2.00 0.56 1.34 2.53 4.35 7.22 11.96 20.59 38.83 93.67
2.3575 2.00 0.81 1.95 3.69 6.36 10.55 17.52 30.05 56.71 137.01

Table 2.7: Decile of simulated discovery waiting time

Rate 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.0068 15.41 32.71 52.31 74.96 101.75 134.59 176.81 236.65 338.73
0.0073 14.44 30.68 49.09 70.22 95.18 125.91 165.48 221.37 316.35
0.0090 11.66 24.79 39.66 56.73 77.04 101.82 133.71 178.54 255.32
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Table 2.8: Decile of simulated discovery dates

Rate 0.10 0.20 0.30 0.40 0.50
0.0068 30-01-1968 21-02-1980 16-09-1987 13-06-1996 16-10-2006
0.0073 17-01-1968 12-05-1979 19-06-1986 14-08-1994 04-04-2004
0.0090 06-01-1972 30-01-1977 28-10-1982 31-05-1989 02-04-1997

Rate 0.60 0.70 0.80 0.90
0.0068 20-06-2019 05-10-2035 10-11-2058 03-04-2098
0.0073 12-02-2016 23-05-2031 18-12-2052 12-08-2089
0.0090 26-10-2006 16-02-2019 06-06-2036 24-01-2066

The average NCS discovery size is in the upper quartile of the discovery

size distribution, and the average waiting time is in the second quartile (the

details are in Table 2.1). The simulated discovery size is also in the upper

quartile. Applying the NCS parameter, the random variables of simulated

discovery size have a 90% probability of being less than 93.67 million Sm3.

Meanwhile, 90% of the simulation result for the waiting time is less than 316

days, with a probability of the final discovery being made before August 2089.

Taking the value of the giant oil field as greater than 500 million barrels 11The

standard size for giant discovery draws on Nehring (1978) and Zou (2013), and

500 million barrels is equivalent to 79.49 million Sm3, there is 90% probability

that discovery size will be less than this.

An interesting finding comes from the other waiting time and discovery

date parameters. The 90% probability of simulated waiting time is less than

339 days for the low parameter, and less than 255 days for the high parameter.

A low exponential rate leads to a longer waiting time between discoveries, and

it causes a 90% probability of the final discovery being made before April

2098. In contrast, a high exponential rate results in a shorter waiting time

and simulates 90% probability of the final discovery being before January 2066.

The waiting time is an effect of the frequency of exploratory effort. To answer

the question about the impact of the exploratory effort on waiting time, the

more frequent or greater the exploratory effort, the shorter the time between

one and subsequent discovery, and the shorter the waiting time (i.e., it has a
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lower value) that leads to final oil discovery.

(a) Density of simulated discovery size (b) Empirical Cumulative Distribution
Function of simulated discovery size*

(c) Density of simulated waiting time (d) Empirical Cumulative Distribution
Function of simulated waiting time*

Figure 2.12: Density and Empirical Cumulative Distribution Function of
simulated size and waiting time

*The vertical green line shows the 5% upper quantile.

Figures 2.12a and 2.12c show the density of simulated discovery size and

waiting time. In Figure 2.12a, the standard deviations are kept constant for

the three sets of simulations as the focus is on the discovery size changes.

Meanwhile, the standard deviation changes represent the spread and affect the

shape rather than the location of the density. As illustrated in Figure 2.12a,

the larger the discovery size, the lower the probability density. The density

figure shows that the probability of finding a smaller oil field size is higher than

that of finding a bigger field. Figure 2.12b depicts the empirical cumulative

distribution function for the simulated discovery size. The green line shows

the 5% upper quantile or 95% confidence level of the NCS parameter-based
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simulation, i.e., 95% of the confidence level that the mean of discovery size lies

below 194.13 million Sm3.

Figure 2.12c shows that the higher the exponential rate, the higher the

probability density. The probability density of a shorter waiting time is higher

than that of a longer waiting time. The density figure shows more frequency

(associated with more exploratory effort) for the higher exponential rate and

the shorter waiting time. To sum up, the probability of making findings with a

shorter time between one and subsequent discoveries and a smaller discovery size

is high in the application of simulated NCS discovery. The 95% confidence level

for NCS parameter-based simulation describes the true waiting time parameter

between discoveries as lying below 411 days. Subsection 2.6.2 presents the

estimation of empirical analysis, applying an ARDL framework to understand

the quantitative relationship between exploratory effort, efficiency, and crude

oil price.

Table 2.9: Mean Absolute Error (MAE) comparison of the Monte Carlo simu-
lation and the ARMA(1,1) estimation

(a) NCS-based simulation

Variable Actual Simulated Lower limit Median Upper limit
mean mean (5th percentile) (50th percentile) (95th percentile)

size 41.0806 53.1841 0.0007 0.0048 0.0354
waiting time 136.2357 137.3913 0.0072 0.0510 0.0365

(b) In-sample ARMA(1,1) forecast

Variable Actual Forecasted Lower limit Median Upper limit
mean mean (5th percentile) (50th percentile) (95th percentile)

size 41.0806 45.7725 0.0654 0.1354 0.5213
waiting time 136.2357 156.5412 0.4091 0.2402 0.5896

This study applies the mean absolute error (MAE) test to evaluate the

relative error between the Monte Carlo simulated data and the actual data.

MAE calculates the deviation by the average difference between the simulated

and actual discovery sizes and waiting times as an absolute value. The closer

the value to zero, the more desirable the prediction (Abraham and Ledolter,

1983). However, there is no cut-off value from which one can conclude that

the forecasted values are good or bad for a model. However, relative error is
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helpful in comparing the models. In this study, the Monte Carlo simulation

error is compared with the in-sample ARMA forecast to assess the accuracy of

the proposed simulation model.

Table 2.9 shows the MAE values taken from the NCS-based simulation

with 10,000 replication and the in-sample ARMA(1,1) estimation. The MAE

values for lower limit (5th percentile), median (50th percentile), and the upper

limit (95 th percentile) are useful to evaluate the range of the average error

of the simulation. The Monte Carlo simulation obtains lower values of MAE

than those forecast by in-sample ARMA for the 5th, 50th, 95th percentiles of

discovery size and waiting time. In this case, the measure of accuracy is the

simulated data based on NCS-parameters, thus: discovery size log-mean of

1.9801, log-standard deviation of 2, and exponential rate of 0.0073. The mean

of the lower, median, and upper limit of the simulated data as compared to

actual size and waiting time is described in Table 2.1. MAE values for discovery

size simulation range from 0.07-3.5% and are from 0.72-5.10% for the waiting

time between discoveries. The in-sample ARMA(1,1) forecast results in quite

large error values of between 6.5-52% for discovery size and 24-59% error for

waiting time estimation. This error comparison improves the confidence level

of the true mean in the proposed Monte Carlo simulation for discovery size and

waiting time between discoveries.

Combining the simulated discovery size and waiting time for each replica-

tion into a discovery sequence plot allows for a more straightforward interpre-

tation of the exploratory effort in a mature petroleum province. Figures 2.13 -

2.15 illustrate the simulation of discovery sequence randomly taken from 1th,

100th, 500th, 1,000th, 5,000th, and 10,000th replications of NCS-based, low, and

high parameters. The sequence of NCS-based parameters has few outliers for

sizes above 200 million Sm3. The low mean of average size parameter (shown

in Figure 2.14) has fewer sizes above 200 million Sm3 and the low exponential

rate has final simulated discovery years that are further away than those of the
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Figure 2.13: Simulated NCS discovery size and year

NCS parameters. In contrast, the simulation plots of the high mean of average

size parameter, as illustrated in Figure 2.15, show more discovery sizes above

200 million Sm3 than the NCS-based one, and the high exponential rate has a

shorter last oil discovery year. To conclude, for high exponential rate, more

exploratory effort leads to a reduction in waiting time between discoveries and

causes a shorter time to the last oil discovery. The simulation exercises verify

that the waiting time and discovery size are the results of exploratory effort.
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Figure 2.14: Simulated discovery size and year (low mean of discovery size and
rate)
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Figure 2.15: Simulated discovery size and year (high mean of discovery size
and rate)
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2.6.2 Empirical results of exploratory effort, efficiency,

and crude oil price

The second part of the analysis discusses the relationship between ex-

ploratory effort and efficiency in NCS, as a mature petroleum province and the

crude oil price. A careful examination investigates the effect of the crude oil

price (op) changes on the waiting time between discoveries (wt) and discovery

size (s), incorporating the number of oil exploration wells (w) as the proxy of

exploratory effort; these are commonly used in the established literature.

One of this chapter’s main contributions is to take into account the

time between one and subsequent discovery as an alternative approach for

reflecting exploratory efficiency. The difference between waiting time and

existing measures such as exploration wells and rig counts is that the waiting

time between discoveries is the result of exploratory effort, thus, a shorter

waiting time is expected. In contrast, the exploration well count and rig count

both directly proxy for exploratory effort. The more exploratory effort, the

higher the number of exploration well and rig count, which leads to a shorter

time between discoveries. The economic interpretation of the oil market is

that a high crude oil price reflects more demand for crude oil at a given rate

of supply. Increased demand boosts the number of exploration wells or rigs,

causing a shorter waiting time between discoveries. Therefore, it is expected

that the empirical estimation finds that waiting time has an opposite sign to

that of the exploration wells and crude oil price.

Figures 2.16 and 2.17 respectively show the simulated waiting time taken

from the NCS-based parameter simulation for two of the oil market variables,

namely crude oil price and Norwegian oil exploration wells. The time series plot

illustrates that simulated waiting time increases when real oil prices and the

exploration well count drop after 2010. The waiting time results from the lag

time in days between one discovery and another. For the graph and estimation
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Figure 2.16: The simulated Norwegian oil discovery waiting time and crude oil
price

Figure 2.17: The simulated Norwegian oil discovery waiting time and oil
exploration well

purposes, the waiting time series is averaged yearly. The high value of waiting

time reflects the longer waiting time between discoveries. When the oil price

is low, the number of exploration wells is also low, and it takes a long time

between findings as there is no incentive to explore new fields. However, high
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oil price boosts new exploration, increasing the number of oil exploration wells

and shortening the time between oil discovery.

Table 2.10: Unit Root Test for NCS discovery, exploratory effort, and crude oil
price variables

Variable ADF
Level log-level First difference Log first difference

wt -5.108∗∗∗ -4.158∗∗∗ -5.187∗∗∗ -7.482∗∗∗
s -0.982 -3.880∗∗∗ -3.656∗∗∗ -3.842∗∗∗
w -3.226∗∗ -2.187 -8.652∗∗∗ -7.271∗∗∗
op -1.844 -1.345 -12.251∗∗∗ -11.417∗∗∗

Notes:
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
Variables expressed as wt is the waiting time between discoveries, s is the oil discovery
size, w is the oil exploration well counts, and op is the real oil price.

Table 2.11: ARDL estimation for exploratory effort, efficiency, and crude oil
price

(i) wtt (ii) lst
Coefficient estimates
(ϕi, β

′

j,i)

wtt−1 -0.007 (0.121)

wtt−2 0.221∗ (0.118)

lst−1 0.580∗∗∗ (0.164)

lst−2 -0.314∗ (0.180)

lwt -35.394 (57.375) -2.355∗∗∗ (0.763)

lwt−1 -144.437∗∗ (62.790)

lwt−2 -27.050 (65.505)

lwt−3 139.993∗∗∗ (47.527)

lopt -53.947 (33.958) 0.568 (0.444)

(a0)
Constant 597.081∗∗ (242.909) 8.213∗∗∗ (2.605)

Observation 50 50
F-statistic 5.68 6.70
Prob (F-statistic) 0.0001 0.0007

Notes:
Standard Error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
The notation "l" indicates natural logarithmic of the variable,
e.g. lwt indicates logarithmic value of exploration wells at period t.

The unit root test is conducted to test the stationarity of the series and the

results are shown in Table 2.10. The ADF test shows that there is mixed order
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Table 2.12: ARDL estimation in error correction form for exploratory effort,
efficiency, and crude oil price

(i) D.wtt (ii) D.lst
(i) Case 3
Bound Test H0: no level relationship
F-stat‡ 7.404∗∗∗ 6.359∗∗
t-stat‡ -4.280∗∗ -4.073∗∗

(ii) Adjustment factor
(-α)‡

wtt−1 -0.786∗∗∗ (0.184)
lst−1 -0.734∗∗∗ (0.180)

(iii) Long-run (θ)

lwt−1 -85.106 (56.610) -3.209∗∗∗ (0.957)

lopt−1 -68.640∗ (37.432) 0.774 (0.561)

(iv) short-run
(ψyi, ω

′
, ψ

′

xi)

D.wtt−1 -0.221∗ (0.118)

D.lst−1 0.314∗ (0.180)

D.lwt -35.394 (57.375) -2.355∗∗∗ (0.763)

D.lwt−1 -112.943∗ (60.474)

D.lwt−2 -139.993∗∗∗ (47.527)

D.lopt -53.947 (33.958) 0.568 (0.444)

(a0)
Constant 597.081∗∗ (242.909) 8.213∗∗∗ (2.605)

Observations 50 50

Notes:
Standard error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
‡The approximate p-values applied for speed-of-adjustment
coefficient is based on Kripfganz et al. (2018)

of stationarity of variables in level and log-level. The waiting time between

discoveries is stationary at 5% significance level. In contrast, real oil price is

not stationary at either level or log-level. Size is stationary and exploration

well is not stationary at log-level. All variables are stationary at first difference

and log first difference, so that the variables are integrated at a maximum order

of one.

The ARDL framework is applied because it has the necessary flexibility to

overcome the case of mixed order of integration. Table 2.11 reports the results

from estimating ARDL model. It shows the empirical estimation of two single
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equations, with waiting time and discovery size as the dependent variables

in each of the equations. The explanatory variables in each equation are the

number of exploration wells and real oil price. It is essential to disaggregate

waiting time and size because the high oil price affects the two differently. It is

expected that a high oil price has a negative link with time between discoveries

(shorter waiting time) and a positive link with discovery size. The optimal lag

is chosen based on AIC, and it results in the model with ARDL(2,3,0) for the

waiting time equation. Lag two is for waiting time, lag three is for number

of exploration wells, and there is no lag for oil price. The ARDL(2,0,0) is

applied for the discovery size equation, with lag two for size and no lag for

both exploration well count and oil price.

Exploration wells and oil prices negatively affect the waiting time between

discoveries. A 1% increase in the number of exploration wells from two years

previously significantly reduces the waiting time between discoveries by 1.4

days. While, a 1% increase in real oil price shortens the waiting time by 0.5

days although this is not statistically significant. The second equation for

discovery size shows that oil price has a positive relationship with the discovery

size, whereas exploration wells have a negative relationship. A 1% increase in

the number of exploration wells reduces the discovery size in the same year by

2.36%, while a 1% oil price increases the size by 0.57% but, again, this is not

statistically significant in the short run.

Table 2.11 reports the bounds test result, adjustment factor, long-run

equilibrium, and short-run dynamics coefficients. The first column of Table 2.11

presents the model estimated with the waiting time between discoveries as the

dependent variable and the second column presents the log of discovery size as

the dependent variable. The Pesaran et al. (2001) bounds test result indicates

that a long-run equilibrium relationship is present among waiting time, the

exploration well counts, and crude oil price. Panel (i) of Table 2.11 reports

that the F-statistic and t-statistic of the adjustment factors are larger than
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the bounds test critical values at a 5% significance level. The null hypothesis

that the level relationship does not exist is rejected for both equations; hence,

there is enough evidence to support the long-run relationship of waiting time,

exploration well counts, and real oil price at the level and so does discovery

size well, and real oil price.

In Panel (ii) of Table 2.12, The adjustment factor (−α) shows how the

dependent variable changes when the three variables deviate from their long-run

equilibrium. The adjustment factors for the two equations are all negative and

statistically significant, which means that the estimated error correction forms

represent stable relationships. The dependent variable of the prior period is

too high relative to the long-run equilibrium, so it is necessary to decrease its

value in the current period to revert to equilibrium. The adjustment factors of

0.786 and 0.734 suggest a rapid adjustment of the last year’s waiting time and

discovery size deviation, respectively, from the equilibrium.

In Panel (iii) of Table 2.12, the long-run equilibrium relationship is pre-

sented for the two equations. In the first column of Panel (iii), the long-run

equilibrium for waiting time indicates that the coefficient is negative and signif-

icant for the exploration well counts and oil price shocks. A 1% increase in oil

price relates negatively with the waiting time between discoveries by 0.7 days,

while a 1% increase in well counts relates negatively with the waiting time by

0.9 days. The second column of Panel (iii) shows the long-run equilibrium for

discovery size. The coefficient is positive for crude oil prices and negative for

exploration well counts. A 1% increase in real oil price relates positively to the

discovery size by 0.77%, and a 1% increase in well counts relates negatively to

the discovery size by 3.2%. Panel (iv) shows that in the short-run relationship,

waiting time is significantly affected by exploration well counts in the past one

and two years, while oil price does not significantly affect waiting time between

discoveries in the short run. Exploration well in the current year significantly

affects discovery size, while oil price does not significantly affect discovery size
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in the short run.

Consistent with the literature, the crude oil price has a positive relationship

with discovery size. Mohn (2008) argues that high oil price triggers exploration

activity in the frontier area, with a prospecting aim of finding a larger size

discovery than is available in the mature province. In the long run, a 1%

increase in oil price is associated with a discovery size that is 0.77% larger,

and a 1% increase in exploration wells is associated with a reduction in size of

3.2%. A rapid adjustment of 73.4% is necessary for discovery size in the current

period to correct the deviation from the previous period. Similar to the case of

waiting time, crude oil price also does not significantly affect discovery size in

the short term, and exploration wells significantly affect the discovery size in

the same period. A 1% increase in the number of exploration wells decreases

discovery size by 2.36%.

2.6.2.1 The empirical ARDL model with a structural break

Table 2.13 shows the rejection of the null hypothesis of no structural break

in supremum and exponential Wald tests, indicating the structural break’s

present. The tests result in the estimated break year in 1981 for the waiting

time equation and 1999 for the discovery size equation. The negative shock

of crude oil prices during the Global Financial Crisis 2008 can also affect the

examined data series. Hence, three estimated break years are estimated in

the ARDL model and presented in Table 2.14. Table 2.14a applies a dummy

variable value of 0 from 1968 to 1980 and a value of 1 from 1981 to 2019.

The coefficient estimates (γ0) of the break year are statistically significant for

both waiting time and discovery equations. One of the strong reasons that

the break occurred in 1981 is because there were first discoveries, Asgard in

the Norwegian Sea, which became an important Norway’s petroleum industry,

following a big accident near the Ekofisk area in 1980. The structural break in

1999 follows the large NCS discovery size of Ormen Lange, and the break year
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of 2008 represents Global Financial Crisis. Table 2.14b presents the ARDL

estimates with an estimated break year in 1999. Table 2.14b presents the

ARDL estimates with an estimated break year in 1999. A dummy variable

value of 1 is applied for 1999 onwards, and a value of 0 from 1968 to 1998. For

this case, the coefficient estimate of the break is only statistically significant

for discovery size, as indicated earlier in the supremum wald test. A similar

result is obtained when the estimated break year is in 2008, as shown in Table

2.14c, in which the break in discovery size is significant.

Table 2.13: Structural break test result for waiting time between discovery,
discovery size, exploration well, and crude oil price

Equation Supremum wald Exponential wald Estimated break year

wt 43.545∗∗∗ 18.668∗∗∗ 1981
s 13.351 5.411∗ 1999

Notes:
Standard error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
The critical value of Wald test is based on Hansen (1997)
and the critical value of recursive test
is based on Ploberger and Krämer (1992).

Among the model with estimated break years presented in Tables 2.14a-

2.14c, the relationship between waiting time between discoveries, well counts,

and oil price is consistent in terms of the sign and statistical significance. The

real oil price in the current year and the exploration well from the previous

year are statistically significant on the waiting time between discoveries. The

high oil price and more oil exploration well count reduce the time between

findings. Oil exploration companies have the motivation to discover more oil

and increase the exploratory effort indicated by more exploration well, which

leads to a shorter time between oil discoveries. The three estimated break years

also confirm the positive relationship between crude oil price and discovery size.

Real oil prices in the current year significantly affect the average oil discovery

size. Based on the break year in 1999 for discovery size, the exploration well

significantly affects the size with three years lag. In terms of the relationship

between well and size, after including a break, a positive relationship is found.
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Table 2.14: ARDL estimation with a structural break for exploratory effort,
efficiency, and crude oil price

(a) Estimated break year in 1981

(i) wtt (ii) lst
Coefficient estimates
(ϕi, β

′

j,i, γ0)

wtt−1 -0.104 (0.133)
wtt−2

lst−1 0.291∗∗ (0.139)

lwt -56.797 (52.733) 0.086 (0.641)

lwt−1 -189.139∗∗∗ (56.460)

lopt -80.565∗∗ (32.715) 0.382 (0.467)

bt 156.016∗∗∗ (43.954) -1.321∗∗ (0.633)
(a0)
Constant 1255.100∗∗∗ (195.981) 0.973 (1.962)

Observation 48 53
F-statistic 10.13 4.22
Prob (F-statistic) 0.0000 0.0056

Standard Error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
The notation "l" indicates natural logarithmic of the variable,
e.g. lwt indicates logarithmic value of exploration wells at period t.

Offshore Norge (2017) states that the peak oil production in Norway was in

2000, with a new government scheme introduced to stimulate exploration. That

could be one of the reasons for an overall positive relationship between well

and size after the break in short run, with more findings in new fields.

The consistency in the long-run equilibrium relationship is presented

in Table 2.15 for the ARDL model with a break year in 2008. Adding a

structural break in the model confirms the consistency of both equations’

long-run equilibrium relationship. There is a long-run equilibrium relationship

between the waiting time, oil exploration well counts, and oil price, as well

as between discovery size, well, and oil price, as indicated by a rejection of

Bounds test in Panel (i). The long-run equilibrium is found to be stronger

in discovery size than the waiting time equation. Panel (ii) shows the sign of

adjustment factors are negative and statistically significant for both equations.

It is indicated that there is a rapid adjustment by 74.5% at current year when
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(b) Estimated break year in 1999

(i) wtt (ii) lst
Coefficient estimates
(ϕi, β

′

j,i, γ0)

wtt−1 -0.035 (0.146)

lst−1 0.229∗ (0.122)

lst−2 -0.341∗∗∗ (0.122)

lst−3 0.092 (0.123)

lst−4 -0.393∗∗∗ (0.119)

lwt -14.616 (57.454) -1.103 (0.687)

lwt−1 -130.642∗∗ (58.886) 1.506∗ (0.818)

lwt−2 -1.481∗ (0.788)

lwt−3 1.446∗∗ (0.586)

lopt -120.157∗∗∗ (38.247) 2.823∗∗∗ (0.726)

lopt−1 -1.440∗ (0.823)

bt 52.357 (32.944) -2.624∗∗∗ (0.536)
(a0)
Constant 1152.838∗∗∗ (218.481) -2.053 (1.831)

Observation 51 53
F-statistic 6.71 5.08
Prob (F-statistic) 0.0001 0.0001

Standard Error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
The notation "l" indicates natural logarithmic of the variable,
e.g. lwt indicates logarithmic value of exploration wells at period t.

the waiting time deviates from the equilibrium in the previous year and by

69.9% adjustment for discovery size. Panel (iii) shows that the sign of coefficient

estimates in the long-run relationship is consistent with the model without a

structural break, except for well and size relationship. A 1% increase in crude

oil price relates negatively with the waiting time by a day and relates positively

with discovery size by 1%. A 1% increase in the exploration well counts relates

negatively to the waiting time by a day and relates positively with discovery

size by 1.36%. The negative relationship between well and discovery size is

found in the short run. As indicated in Panel (iv), the break is statistically

significant for the discovery size equation, which causes a reduction in the size.

As a robustness test, the nominal oil price is adjusted with Purchasing

Power Parities (PPP) to overcome the exchange rate fluctuations for non-
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(c) Estimated break year in 2008

(i) wtt (ii) lst
Coefficient estimates
(ϕi, β

′

j,i, γ0)

wtt−1 0.013 (0.149)

wtt−2 0.242∗ (0.141)

lst−1 0.301∗∗ (0.143)

lwt -28.747 (59.056) -0.236 (0.766)

lwt−1 -141.342∗∗ (64.387) 1.188 (0.759)

lwt−2 -19.555 (68.136)

lwt−3 113.744∗∗ (52.481)

lopt -71.647∗ (41.010) 2.120∗∗ (0.834)

lopt−1 -1.393 (0.890)

bt -6.727 (48.596) -1.491∗∗ (0.659)
(a0)
Constant 693.220∗∗ ( 312.015) -4.118 (2.888)

Observation 48 49
F-statistic 4.73 3.37
Prob (F-statistic) 0.0004 0.0084

Standard Error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
The notation "l" indicates natural logarithmic of the variable,
e.g. lwt indicates logarithmic value of exploration wells at period t.

US fluctuations. The detailed result of the model is presented in Table A.1,

Appendix A.2. It shows that the long-run equilibrium relationship is present

among waiting time, exploration well counts, and real oil price, and so does

discovery size, exploration well counts, and real oil price. The adjustment

factor is negative and statistically significant, indicating a stable equilibrium

relationship. The sign coefficient estimates are also consistent with the model

applying U.S. CPI as a deflator of nominal oil price. In the long run, real oil

price relates negatively to the waiting time between discoveries and positively

to discovery size. Exploration well counts relate negatively to the waiting time

and discovery size in the long run.

The simulation and empirical results align with the economic intuition

that high oil price boosts exploratory effort. As a consequence, the waiting

time is shorter, with many exploration companies being incentivised to explore.
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Table 2.15: ARDL estimation in error correction form with a structural break
in 2008 for exploratory effort, efficiency, and crude oil price

(i) D.wtt (ii) D.lst
(i) Case 3
Bound Test H0: no level relationship
F-stat‡ 4.821∗ 8.113∗∗∗
t-stat‡ -3.764∗∗ -4.897∗∗∗

(ii) Adjustment factor
(-α)‡

wtt−1 -0.745∗∗∗ (0.198)
lst−1 -0.699∗∗∗ (0.196)

(iii) Long-run (θ)

lwt−1 -101.875 (74.557) 1.361 (1.145)

lopt−1 -96.167∗ (49.397) 1.040 (0.727)

(iv) short-run
(ψyi, ω

′
, ψ

′

xi, γ0)

D.wtt−1 -0.242∗ (0.140)
D.lst−1

D.lwt -28.747 (59.056) -0.236 (0.766)

D.lwt−1 -94.189 (65.237)

D.lwt−2 -113.744∗∗ (52.481)

D.lopt -71.647∗ (41.010) 2.120∗∗ (0.834)

bt -6.727 (48.596) -1.491∗∗ (0.659)

(a0)
Constant 693.220∗∗ (312.015) -4.118 (2.888)

Observations 48 49

Notes:
Standard error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
‡The approximate p-values applied for speed-of-adjustment
coefficient is based on Kripfganz et al. (2018)

The negative relationship between the discovery size and the exploration wells

must be interpreted more carefully. Exploration well count is associated with a

decline in size because the higher frequency of the lower average discovery size

is associated with the result of more exploratory effort. The giant discovery

size is mostly discovered during the early life cycle of the basin, then, as more

discoveries are made (more exploratory effort), the discovery size is smaller.

However, as suggested by Mohn (2008), this must be interpreted carefully when

taking into account exploration risk. Mohn (2008) suggests that in response
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to high oil price, the risk appetite is high, and there is an increase in the

exploratory effort in the frontiers area with high expected discovery size.
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2.7 Conclusion

Chapter 2 attempts to answer two research questions: First, how does

exploration activity behaviour change over time? Second, how does crude oil

price fluctuation affect exploration? This study contributes to the existing

academic literature in two ways. First, it emphasises the important role played

by oil exploration in determining future oil supply in the long run. It does this

by conducting a simulation exercise to uncover the effect of exploratory effort.

Second, it includes the economic variable of oil price in the exploration model.

The empirical ARDL framework is applied to understand how exploratory

effort and crude oil price fluctuation affect exploratory efficiency in the long

and short run.

To address the first research question, a Monte Carlo technique is applied

to simulate two variables in a mature petroleum province (i.e., NCS): the time

in between two discoveries are made and discovery size. The simulation exercise

applies parameter changes in order to capture the changes in exploratory effort,

which are illustrated by the density shape and matrix statistical analysis. A

key finding in the simulation of waiting time is that the more frequent the

exploratory effort, the shorter the waiting time between discoveries and the

shorter the time required to reach the last discovery. The simulation of discovery

size finds that it is more frequent to discover small discovery sizes than large

ones. Combining these outcomes implies that a shorter waiting time between

discoveries leads to more findings of the smaller discovery size. The smaller

discovery size is found after the giant one, and the discoveries are more frequent.

The results are consistent with economic intuition and the existing literature,

which assert that giant discovery is mainly found in the earlier basin life-cycle,

and is less frequently found than the small discovery.

As regards the second research question (i.e., how crude oil price fluctua-

tion affects exploration), the ARDL empirical model is applied to analyse the
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relationship between crude oil price, exploratory effort, and efficiency. The em-

pirical estimates conclude that a long-run relationship is present between crude

oil price, exploratory effort, and efficiency. Crude oil price affects exploratory

efficiency in the long run but not in the short run. In contrast, exploratory

effort significantly affects efficiency in the short run. The empirical analysis

offer a clearer interpretation of how oil prices and exploratory effort affect

efficiency when the waiting time and size estimates are distinguished. The

relationship between discovery waiting time and oil price must be interpreted

carefully. In the long run, oil price and the number of exploration well relate

negatively to the time in between discoveries. The short-run dynamics also

show a negative relationship between crude oil price and waiting time. The

crude oil price negatively affects the waiting time because a high oil price

triggers oil producers to drill more. As exploratory effort increases frequency,

the number of exploration wells increases, and this is associated with a reduced

waiting time between discoveries. The effect of exploratory effort on waiting

time between discoveries can be captured significantly over three years. The

empirical result suggests that oil price relates positively to the discovery size

in the long-run. The short-run dynamics support the existing literature that

suggests there is a positive relationship between crude oil price and discovery

size. A high oil price incentivises oil producers to discover potential frontier oil

fields, which are of a relatively larger size than the existing fields. The more

frequent exploratory effort is associated with a smaller average discovery size,

which explains the negative relationship between exploration well and size.

This study develops a toolbox for Monte Carlo simulation that can be

adjusted to data from a different oil region. For instance, in the simulation

result of NCS, there is a very high probability that the average waiting time

between oil discoveries is less than ten months, with the average discovery

size being smaller than the giant discovery. A similar exercise can be applied

to the other petroleum provinces to comprehend the range of the parameter
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changes. The lesson learnt from this case study of a mature petroleum province

is also helpful to initial studies looking at the exploration plan in the frontier

fields with higher risk. For instance, the simulation exercise illustrates the

probability of a specifically-sized well being discovered within certain periods.

Applying the same framework, the parameters of Monte Carlo simulation can

be approached by using the estimates of what has most likely occurred in

order to establish the confidence level of certain discovery sizes and the lag

time between such discoveries in the frontier fields, irrespective that there is

less historical data. The empirical result acknowledges a long-run relationship

between exploratory effort, efficiency, and oil price. Together, these affect how

future oil supply responds to crude oil price shocks. Understanding this will

assist decision makers to design policy measures that boost exploration activity

in response to extreme oil price movements.



Chapter 3

World oil production, global

demand, and the crude oil price:

evidence of the asymmetric effect

3.1 Introduction

The role of supply and demand has been extensively discussed in the

current literature on the global oil market. Global demand is associated with

global economic activity, while crude oil supply is a result of current production

and past exploration activity. Most of the recent literature asserts that demand

plays a more significant role in crude oil price shock than supply even though,

historically, oil supply disruption has had significant impact on crude oil price

fluctuation. Previous studies by Kilian (2009); Kilian and Murphy (2014)

strongly assume that oil supply causes only small and temporary shocks in

the crude oil price increase whereas aggregate demand plays an important

role in causing large and persistent shocks to the rise of oil prices. However

Baumeister and Hamilton (2019) propose a weakening of this assumption in a re-

examination of the roles played by supply and demand. These authors conclude

89
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that the supply-side plays an essential role during historical oil price movement.

They note that the effect of strong supply was important to the oil price collapse

in 2014–16 and that strong demand led to the oil price bounce-back later in

2016. Kolodzeij and Kaufmann (2014) evaluate the robustness of Kilian’s (2009)

conclusion about the unimportance of oil supply by disaggregating OPEC and

non-OPEC production, and they find a negative long-run relation between

OPEC and non-OPEC production and oil price. Ratti and Vespignani (2015)

argue that OPEC production is more responsive to oil price shock in the new

industrial age (i.e., from 1997 to 2012) compared to the 1974 to 1996 era, which

is responsive to non-OPEC production.

Previous studies have several shortcomings in their modelling of the

relationship between crude oil price, supply, and demand. First, the crude

oil price is assumed to affect global oil supply and demand symmetrically,

which ignores the different effects of oil price increases and oil price decreases.

It is necessary to take this asymmetric effect into account when advising oil

producers how to overcome an extreme rise and drop in oil prices by anticipating

and adjusting oil production. The extant literature that does consider the

asymmetric effect on oil prices is mainly concerned with the economic activity

that influences global demand, with scant attention being given to discussing the

asymmetric effect of crude oil price on global oil supply. The literature suggests,

for example, that a rise in crude oil price is associated with a slow business cycle

(Hamilton, 1983, 2003; Sadorsky, 1999; Apergis et al., 2015). Mork et al. (1994)

find evidence of an asymmetric relationship between the increase and decrease

in oil prices and GDP growth in the industrialised countries between 1967 and

1992, particularly for the US, Japan, and Norway. Sadorsky (1999) concludes

that oil price volatility shocks have asymmetric effects on industrial production

and real stock returns. Hamilton (2003) argues that oil price increases are

more significant that oil price decreases in predicting GDP growth. Lardic and

Mignon (2008) also support the earlier literature in finding that an increase in
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oil price is more damaging to economic activity than a decrease. Apergis et al.

(2015) find evidence of an asymmetric long-run relationship between oil price

and US economic growth.

Second, most current literature only analyses the relationship between oil

price, supply, and demand in the short run, and there is a strong assumption

that production does not respond to oil price shocks. This is true to an extent,

given that production is not flexible enough to make adjustments in the short

term, but it is essential to take the long-run relationship into account. Further,

there is a lag of a few years between the completion of an oil exploration

stage and actual production. Analysing this by applying a structural VAR

model requires the variables to be treated in the first difference, eliminating

the long-run relationship. Only a few studies take into account the long-

run relationship between oil price, supply, and demand, including Kolodzeij

and Kaufmann (2014) who examine the long-run relationship between OPEC

production, non-OPEC production, the real economic activity index, and oil

price. There is therefore a gap in the literature concerning how the global oil

supply, represented by world oil production, responds to oil price movements.

Third, in most of the literature, the stationarity property of the variables

is tested using the standard unit root test. Furthermore, a structural break

is rarely incorporated in the empirical model, while it is essential given that

the time series, remarkably crude oil price and global demand, contains several

extreme fluctuations. This leads to a bias when there are breaks in the time

series. Applying a unit root test that accommodates structural breaks and

taking into account an estimated break date in the empirical model can address

this. Such a test is also necessary to determine which empirical model is

suitable for analysing the relationship among the variables. In the case that

the variables are mixed stationary and non-stationary, neither structural VAR

nor cointegrated VAR model can be applied. This is because structural VAR

requires all variables to be stationary, and cointegrated VAR requires all
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variables to be integrated in the same order.

Therefore, there are clearly shortcomings in the current literature. This

chapter attempts to address these by answering two research questions: what

is the relationship between crude oil supply, demand, and oil prices? How

do positive and negative shocks in the crude oil price affect oil supply and

demand differently? This study is interested in identifying whether any long-

run equilibrium exists between world oil production, global demand, and

crude oil price. The long-run relationship could have policy implications for

oil producers’ decision-making, such as whether to invest in more extensive

capital and technological change, whether to adjust the volume of the oil

produced, stored, and exported, and how to assess the investment strategy with

regard to the expected growth in oil price. Secondly, this study investigates

whether asymmetric effects matter in the global oil market. The importance of

accounting for an asymmetric effect will improve understanding of which crude

oil price changes (i.e., spikes versus drops) have a more noticeable impact on

the global oil supply and demand. World oil production and economic activity

may react differently to positive and negative shocks in the crude oil prices.

The main differences between this study and the existing literature, most

notably Kilian (2009)’s work, are threefold. First, there is the treatment of the

time series variables used; second, it uses a unit root test that accommodates

the possible breaks and takes into account a structural break in the empirical

analysis; and third, it identifies the asymmetric effect that decomposes the

shocks into partial positive and negative changes.

In more detail, this study first provides an alternative empirical solution

to the structural VAR model proposed by Kilian (2009) and Kilian and Murphy

(2014) by examining the global oil market variables in levels so that the

long-run relationship is taken into account. The treatment of the variables

in levels contrasts with Kilian (2009), whose analysis uses first differences.

Variables in the first difference eliminate the long-run relationship between
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world oil production, global demand, and oil price, creating a tendency to

underestimate the supply-side’s role. As one of the objectives is to analyse the

long-run equilibrium relationship, applying variables in levels is preferred to

first differences so as to avoid losing the long-run relationship.

Second, this study checks the structural breaks in the temporal dynamics

of each time series and the relationships across the three series. A unit root test

that considers the possibility of the structural break in each series is utilised

to determine the suitable econometric framework. This chapter applies the

Enders and Lee (2012) unit root test, which uses a Fourier transformation to

identify possible breaks. The benefits of applying the Enders and Lee (2012)

unit root test are as follows. First, there is no need to specify the number of

the breaks nor the time when they occur, and second, it is sufficiently flexible

to be able to cope with both sharp or smooth breaks. The Enders and Lee

(2012) unit root test results indicate that the variables are in a mixed order

of integration, with oil production and global demand being I(0), and crude

oil price being I(1). In this case, the modelling needs to accommodate the

mixed order of integration among the underlying variables in levels. Hence,

the use of the ARDL framework, in which this study differs from Kolodzeij

and Kaufmann (2014). The ARDL framework has the flexibility to deal with

the mixed non-stationary and stationary issues. ARDL can obtain consistent

estimates for long-run equilibrium whether the underlying variable is stationary

or not, as long as it is not integrated at order 2: I(2) (Pesaran and Shin, 1997).

The other advantage of applying the ARDL framework is that it can disentangle

the short-run and long-run equilibrium relationship through its error correction

form.

A structural break is incorporated in the ARDL model, and the estimated

break date is January 2009, following the Global Financial Crisis. The break

is found to be strong in global demand and crude oil prices, which causes a

reduction in both demand and oil prices. Crude oil production is not affected
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by the break as the oil production cannot be adjusted quickly and it may take

longer to respond to the economic changes. Adding a model with a break also

confirms the presence of the long-run equilibrium relationship between supply,

demand, and oil price. The ARDL model with a break also has a consistent

sign in the coefficient estimates compared with the model without a break.

Third, the asymmetric effect is taken into account in the empirical model.

The variables are decomposed into partial positive and negative changes, and

asymmetry represents the difference between a positive and negative change in

the variables. The asymmetric effect is modelled by non-linear ARDL (NARDL)

proposed by Shin et al. (2013), distinguishing the long-run equilibrium from

the short-run dynamics relationship. The monthly time series of world oil

production, the Baltic Dry Index, and the real oil price from January 1985

to December 2019 are estimated in the basic ARDL and asymmetric ARDL

(NARDL). Both the basic and asymmetric ARDL models support the presence

of a long-run relationship between world oil production, global demand, and

crude oil price, except that the oil price response to asymmetrical oil production

and demand is weak.

Adding a structural break in the NARDL model also confirms that the

break is significant in global demand and crude oil prices. The interaction of

the break with the positive and negative global demand shocks strongly affects

the crude oil price, while the break interaction with the negative shock of oil

supply on oil prices is stronger than with the positive shock. The interaction

of the positive and negative supply shocks significantly affect global demand.

Consistent with the model without a break, supply does not respond to the

break in the short run. NARDL model with a break in January 2009, also

confirms that the long-run equilibrium relationship exists. In the NARDL with

a break, the positive and negative shocks are significant on the crude oil prices

in the long run, while supply shocks are not. The positive supply and price

shocks are significant in global demand.
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The remainder of the sections is organised as follows. Section 3.2 discusses

the existing literature on crude oil production, global economy, and real oil

price. Section 3.3 describes the data and variables applied in this chapter. The

econometric framework of basic ARDL and NARDL is described in Section

3.4. Section 3.5 presents the empirical results, and Section 3.6 concludes the

chapter.
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3.2 The literature on crude oil price and produc-

tion and contribution of the study

Many studies have investigated the cause of crude oil price fluctuation

since crude oil become a global market in the early 1980s. They have been

applying different models that are mainly employing the VAR approach. In

past studies, refer to Hamilton (2003) and Kilian (2008), crude oil supply shocks

are widely believed to play an essential role in real oil prices. This view has

become an open debate since the global oil market developed then this notion

has been reinvestigated in the current research.

The analysis of more recent oil price fluctuation has been brought into the

existing literature by Kilian (2009) seminal paper that identifies the effects of

underlying demand and supply shocks in the global crude oil market between

1973 and 2009. Kilian (2009) analyses the effects of the oil supply and demand

on the oil price by applying structural VAR. In that seminal paper, three main

structural shocks have been employed: flow supply, aggregate demand, and

precautionary demand shocks. Kilian (2009) argues that the effects of the real

oil price vary depending on the shocks to drive the oil price fluctuation and

emphasises the importance of aggregate demand and precautionary demand

that play an essential role and contribute more to driving historical oil price

fluctuation. Flow supply shock represents a disruption in the global oil supply

proxied by changes in crude oil production. Flow demand is associated with the

boom in the global business cycle that causes an increase in crude oil demand

as the primary energy. Kilian (2009) constructs the real economic activity

index and utilises the index to represent global demand. The precautionary

demand refers to the forward-looking behaviour of oil above the ground. Kilian

(2009) applies the real acquisition of the U.S. imported oil price to proxy

the fluctuation in speculative demand. This type of shock is caused by the

expectation of an oil supply shortage relative to oil demand in the future.
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3.2.1 The extension of global crude oil market model

Many pieces of literature extend Kilian (2009) seminal paper to explain

the crude oil price fluctuation. The first extension takes into account the spec-

ulation role that has been extended by Kilian and Murphy (2014). The second

extension disaggregates the production data into several categories: OPEC

and non-OPEC, crude oil exporter and importer countries, and conventional

and unconventional oil production. The third extension considers the reduced-

form VAR model as the extended work of structural VAR in Kilian (2009)

to compare the price elasticity between those models and create the oil price

forecast. Another extension includes incorporating other factors contributing

to the crude oil price shocks by varying the sample period, data sets, data

treatment, and methodology that lead to different results.

3.2.1.1 The role of speculation

The role of speculation has been taken into account in Kilian and Murphy

(2014) to extend Kilian (2009). Crude oil stock as the proxy of the speculation

reflects the market expectation of the availability of the future oil supply. The

market expectation also includes anticipating future events that trigger the

shift in the crude oil inventories above the ground.

Based on the economic theory, Kilian and Murphy (2014) extends the

previous Kilian (2009)’s work to understand better the dynamic effects of the

shocks on real oil price by restricting the sign of the response of global crude

oil market variables to each shock. The negative flow supply shocks shift the

supply curve to the left, causing a rise in crude oil prices and drops in global

demand. The positive flow demand shocks cause the demand curve to shift

to the right, implying the increase in real oil price and triggers in crude oil

production increase. A positive speculative demand shock is associated with

the jump in inventories that expect the high oil price as the news about future
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supply shortages. This shock is associated with market concern that shifts

oil prices. Kilian and Murphy (2014) do not put any sign restriction on the

inventories as the effect is still unclear. Oil stocks decrease as global demand

drops. However, inventories can also rise to anticipate the jump in oil prices.

By incorporating speculative demand shock in the global oil market model,

the supply shocks contribute to the oil price shocks compared to the previous

result in Kilian (2009). Then, they conclude that although speculation did not

play an essential role in the oil price fluctuation between 2003 and 2008, there

were some episodes in the past, namely after the Iranian revolution in 1979,

after the OPEC collapse in 1986, and after the Iraqi invasion of Kuwait in 1990

that speculative shocks affect the oil price decline.

3.2.1.2 The use of disaggregated data

The second extension includes disaggregating the production data based on

producer characteristics, namely OPEC and non-OPEC, exporter and importer

countries, and conventional and unconventional oil production. OPEC and

non-OPEC have different methods of setting their production criteria and quota

that trigger them to respond differently to the crude oil price shock. Ratti

and Vespignani (2015) argues that OPEC production exhibited a positive and

significant response to the crude oil price shock from 1997 to 2012 but no

significant response in the previous era, from 1974 to 1996. A 1% rise in the

real oil price increases the non-OPEC oil production by 0.05% over 1997-2012.

Non-OPEC production showed a positive and significant response to the crude

oil price from 1974 to 1996 but no considerable response from 1997 to 2012. A

1% rise in the real oil price increases the non-OPEC oil production by 0.02%

from 1974-1996.

Cologni and Manera (2014) identify a positive and significant relationship

between oil price fluctuation and some of the OPEC countries, namely Saudi

Arabia, Algeria, and Kuwait, and no significant relationship between oil price



3.2. The literature on crude oil price and production and
contribution of the study 99

and most of the non-OPEC countries except Norway, Mexico, and Canada from

January 1995 to December 2009. In the smaller quarterly sample size between

1984 and 2002, Dees et al. (2008) also conclude that non-OPEC production

has little response to the real oil price changes with a 1% rise in real oil price

increasing oil production 0.02% for most non-OPEC countries. Mexico and the

U.S exhibit elastic supply, with their production increases by 5.5% in response

to a 1% rise in real oil price. They argue that this high elasticity is driven

by capability of a large number of producers to increase production in the

U.S. and by the incentive to grow the revenues in Mexico. By disaggregating

the production data into crude oil exporter and importer countries, Vu and

Nakata (2018) find that the response to the global oil market differs between

oil exporter and importer countries.

The most recent extension of the world oil market model disaggregates

production into conventional and unconventional oil production. Conventional

and unconventional crude oil production have different technology and method-

ology to extract crude oil due to their distinct characteristic. Many studies

investigate the response of unconventional oil production to crude oil price

shocks focusing on the U.S. scale since the U.S. is the biggest contributor

to the world’s unconventional oil production. Unconventional oil production,

particularly tight oil, has been developed in the U.S. as the most significant

global unconventional oil producer since 2000, followed by unconventional

Canadian oil production such as oil sands, tight and shale oil, and bitumen

since 2005. Tight oil accounted for approximately 61% of the total U.S. crude

oil production in 2018 (EIA, 2019) and 8% of total world crude oil production.

Tight oil, shale oil, and oil sands accounted for 65% of Canadian oil production

and 1.5% of the world’s crude oil production in 2016 (NEB, 2018).

Kilian (2017) argues that the fracking boom in the U.S is not the main

reason for the oil price decline between 2014 and 2015. Prest (2018) extends

Kilian (2017) work by using U.S. crude oil production, world oil production, and
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oil rig count series and supports the view of Kilian (2017) that little evidence

on the effects of U.S shale on the oil price drop during 2014-2016, despite the

weak global economic activities that drive the oil price decline in that period.

3.2.1.3 Reduced-form VAR implementation

Reduced form VAR can be applied to forecast and examine the magnitude

of the shocks contributing to the oil price decline in a certain period. Baumeister

and Kilian (2016b) use reduced-form VAR to investigate the cause of the oil

price decline in the episode between June and December 2014. The model

can predict oil prices and highlight the cause of the oil price decline caused by

negative demand shock, positive supply shock, unpredictable shocks due to oil

price expectations, and the unexpected global economic slowdown. Applying

structural and reduced-form VAR models will give different magnitudes on the

price elasticity impact.

3.2.1.4 The difference in the time series data treatment

Various research treats the time series data differently, such as focusing

on the specific length of the sample period, applying the series in level or

first difference, and considering the structural break over the period. The

well-established current studies commonly examine the production response

within the short to medium sample period and treat the data as non-stationary;

I(1) in level. Kilian (2009) transforms the series into the first difference to be

stationary and apply VAR in the first difference, while cointegrated VAR in

level is applied in Kolodzeij and Kaufmann (2014) work. Implementing the VAR

in the first difference eliminates the adjustment term and cointegrating vectors

of the long-run equilibrium. Only the short-run dynamics relationship can

be examined using this model. The cointegrated VAR model can identify the

long-run equilibrium relationship among the variables. However, cointegrated

VAR cannot be applied in the mixed order of integration among the variables,
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e.g., I(1) and I(0).

In the time series, there is a circumstance called the structural break in

which the data sets’ fluctuation over time may exhibit mean, trend, or slope

shifts. The consequences of those shifts will lead to spurious regression, and the

model will be misspecified. The inclusion of the structural break has been well

described in the current literature, such as in Fan and Xu (2011) and Banerjee

et al. (2017), with the common finding that by considering a structural break, the

driving force of the oil price fluctuation and the relationship among the variables

within the particular period can be more precisely identified. The results may

significantly differ before and after the structural break. Dividing the entire

sample into several subsamples gives a more straightforward interpretation

than the general conclusion obtained from the total sample without considering

the break. The application of structural break can be in the unit root test for

each series and the relationship of the variables in the long-run equilibrium.

Fan and Xu (2011) incorporate structural break in the unit root test for

crude oil data series and argue that structural break is essential to understand

the main drivers of the oil price fluctuation in the short-run and long-run time

horizon. Their work analyses the crude oil market using data from January

2000 to September 2009 and finds two breaks in March 2004 and June 2008.

The break test is based on the moving-estimate test by Chu et al. (1995). The

structural break test by Lee and Strazicich (2003) is also applied and obtains the

breaks in September 2004 and February 2005 for the level shifts or September

2001 and July 2008 for the level and slope trend changes. They argue that

the driving factors across the oil price fluctuation are significantly distinct

in the different periods. Before the first break; between January 2000 and

March 2004, the main drivers were caused by various short-term factors such

as speculation and geopolitical events, between the first break and the second

break; from March 2004 to June 2008, they were caused by financial market

and speculation, and after the second break-in June 2008, they were caused by
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supply and demand changes. Those short-term factors interact with each other

and form the supply and demand fundamentals in the long term. Without

considering the structural break, all of the factors seem to be significant. It fails

to show the fundamentals in each episode with the multicollinearity possibility

and lower explanatory power that leads to less accurate interpretation.

Other studies applying structural break for modelling oil price volatility

are by Salisu and Fasanya (2013). Their study applies structural break by

Narayan and Popp (2010) in the unit root test and then asymmetric GARCH to

model the oil volatility. As the work examines crude oil price characteristics, the

model is univariate series, and other factors are not considered. Furthermore,

the data treatment also employs crude oil price in growth rate instead of level.

The current literature’s limitation focusing only on break in stationarity test

motivates this chapter to investigate the structural break in the regression

model with multivariate series.

3.2.1.5 The inclusion of other factors in the modelling

Different proxies lead to different outcomes; for instance, applying other

factors affecting crude oil price as the independent variables, the various proxies

for global demand, and crude oil price fluctuation analysis at the country

level. Other factors that may affect the rise and drop of crude oil prices are

also investigated with different modelling approaches. These factors include

geopolitical events, financial market conditions, OPEC capacity and behaviour,

and downstream factors. Kaufmann et al. (2004); Dées et al. (2007); Dees et al.

(2008) apply dynamic OLS, and Fan and Xu (2011) use a multifactor market

model to estimate the relationship among those other factors.

Existing studies apply various indices to global demand, such as Kilian

(2009) ’s index, Baltic Dry Index (BDI), industrial production, real GDP, and

commodity index as the demand proxies. Some existing literature also focuses

on analysing the production response to the crude oil price at the country level.
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Anderson et al. (2014) argue that oil production from the existing wells in

Texas does not respond to the oil price fluctuation of spot and futures prices,

and the geological constraints mainly cause this. They apply regression in

the first difference and conclude that a one percentage point increase in the

expected rate of the oil price increase causes the decline in oil production in

Texas by 0.1% between 1990 and 2007. One percentage point increase in the

oil price decreases the oil production by 0.4% when the spot price is applied.

None of those estimated coefficients is statistically significant. Moreover, they

support Kilian (2009) finding that unanticipated positive demand shock causes

an immediate rise in oil price while production increases but not immediately.

For a large shock, the gradual increase in production will cause a gradual fall

in oil prices.

3.2.2 The contributions to the existing literature

Based on the current empirical findings discussed above, certain gaps have

been found in the existing literature. First, the robustness of the unit root test

was applied to conclude the stationarity of the variables. Then, it leads to the

suitability of the modelling approach to understand the relationship among the

variables. Second, the importance of structural break in the cointegrating vector

has not been taken into account. Third, they do not allow the asymmetric

response of oil production to the long-run equilibrium. Fourth, the structural

break is rarely discussed in the empirical model to understand the relationship

between supply, demand, and crude oil prices, while there have been many

extreme oil price fluctuations.

The current studies most likely found that all series are integrated order

one in a relatively short-term sample period, then apply VAR. However, VAR

is less powerful since it cannot distinguish between short-run and long-run

dynamic relationships. Furthermore, VAR is appropriate if all the series are

stationary in level or I(0). Another difference in modelling includes a standard
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cointegration approach that can identify the long-run relationship among the

variables. However, the standard cointegration model also has the shortcoming

that all series are supposed to be integrated in the same order. Hence, these

models do not appropriate when there is evidence of a mixed order of integration;

I(0) and I(1). Alternatively, the ARDL model allows the data series to be

integrated in the mix order as long as they are not I(2). Moreover, apriori-

knowledge of the sign restrictions of the variable is not required in the ARDL

model.

This research investigates three objectives; first, this chapter contributes to

the methodological application of the structural break in the global oil market.

The stationarity of the time series incorporating the structural break is examined

using different testing methods, notably, the Enders and Lee (2012) test that

does not require determining the break dates or the number of the breaks. A

structural break is taken into account not only in the temporal dynamics of

each time series but also in the relationships across the world oil production,

global demand, and crude oil prices. A supremum Wald test is applied to

estimate the break date to be incorporated in the ARDL model. Third, this

study examines the asymmetric response of crude oil production to the crude oil

price deviation from long-run equilibrium. Lastly, the production response to

the deviation from long-run equilibrium is analysed with the structural break.
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3.3 Global oil market data and descriptive anal-

ysis

3.3.1 Description of the data

This section describes the crude oil supply, demand, and real crude oil

price data examined in the empirical analysis. The datasets are time series from

January 1985 to December 2019, consisting of monthly data for the (logged)

level of world crude oil production (prod) as a proxy for world oil supply, the

(logged) level of Baltic dry index (BDI) as a proxy for global demand, and the

(logged) level of the real acquisition cost of imported oil price (op) as a proxy

for the crude oil price.

Monthly observations of world crude oil production are used to measure

global crude oil supply; these are obtained from the U.S. Energy Information

Administration (EIA).1 The supply proxy is used to indicate concern about the

physical availability of crude oil. The world crude oil production is measured

in Million barrels per day (Mb/d).

Figure 3.1: World crude oil production

1https://www.eia.gov/international/data/world
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The global demand is proxied by the Baltic dry index (BDI), a composite of

the dry bulk shipping market index; this measures the fluctuation in the global

business cycle. The monthly series is available on the Baltic exchange website.2

The index considers the freight rates for carrying various bulk dry commodities

across 31 routes worldwide. BDI is measured as a cost, so the nominal value is

deflated by Consumer Price Index (CPI) for all urban consumers, thus taking

into account the inflation rate throughout the years. The underlying motivation

for using BDI is that the freight rate increases when the demand for cargo

increases, and the demand for cargo increases when the global business cycle

increases. The CPI series are obtained from the U.S. Bureau of Labor Statistics,

and they are also available from the U.S. EIA.3

Figure 3.2: Baltic Dry Index

The crude oil price is proxied by the U.S. refiner acquisition cost of

imported crude oil in USD per barrel; this is obtained from the U.S. EIA.4

The real price is preferred to the nominal price because the real price takes

into account the inflation rate, which is more useful for long-term fluctuation

analysis. Thus, the nominal crude oil price is deflated by Consumer Price Index

(CPI) for all urban consumers to generate the real price.
2https://www.balticexchange.com/en/data-services/market-information0/dry-

services.html
3https://www.bls.gov/cpi/data.htm
4https://www.eia.gov/outlooks/steo/realprices/
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The data employs the same proxies for supply and oil price as Kilian

(2009), but it differs in two ways. First, this study specifies all variables in levels

instead using first differences. In contrast, Kilian (2009) specifies world crude

oil production in percentage changes. Applying the variables at first differences

eliminates the long-run relationship between oil production, demand, and oil

price. Second, this study uses a different proxy for global demand. The use of

freight rates as a common proxy for global demand has been discussed in the

existing literature, mainly to assess variation in global economic growth (see

Klovland (2004); Fan and Xu (2011)). Klovland (2004) finds an asymmetry

relationship between the economic activity cycle and shipping freight rate. The

close relationship between the business cycle, commodity prices, and freight

rates is mainly due to the positive freight rate cycles. In addition to choosing

the leading indicators for economic growth, Fan and Xu (2011) choose BDI

over other proxies such as world oil inventory because BDI can capture the

demand pressure between 2000 and 2009, a period when the world oil supply

was relatively stable.

Both BDI and the real economic activity index proposed in Kilian (2009)

are dry bulk ocean freight rate-based indices that are positively correlated, with

the correlation value of 0.91. However, this section prefers BDI to Kilian’s real

economic activity index because BDI is available in level with original positive

value. BDI is also available in a daily, weekly, and monthly frequency that is

more flexible for analysing short- and long-term fluctuation. In contrast, Kilian

(2009) constructs the index in growth rates then are then linearly detrended;

this construction is more suitable for cyclical short-run relationships rather

than for long-run relationships. Further, as it is a growth rate, Kilian’s index

consists of negative and positive values which are harder to interpret in the

data transformation.
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Figure 3.3: Crude oil price

Table 3.1: Descriptive statistics of crude oil market data

Variable Mean Median Min Max Standard Skewness Kurtosisdeviation

prod 69027.85 68745.75 51,324.41 84611.27 8318.348 -0.026 1.887
bdi 2680.714 2217.607 344.413 13,725.52 2025.344 2.577 11.209
op 57.842 45.534 15.634 159.686 31.068 1.072 3.184
lprod∗ 11.135 11.138 10.846 11.346 0.122 -0.190 1.948
lbdi∗ 7.691 7.704 5.842 9.527 0.619 0.225 3.515
lop∗ 3.928 3.818 2.749 5.073 0.501 0.320 2.239
∗ l in variable denotes logged level.

3.3.2 Descriptive analysis of data

The time series plot of crude oil production is illustrated in Figure 3.1.

World crude oil production exhibits an increasing trend throughout the ob-

servations from 1985 to 2019. Figure 3.2 shows that BDI is relatively stable,

with few fluctuations. There is an extreme peak in October 2007 and May

2008 and a sudden drop in October 2008, which occurred in the Global Finan-

cial Crisis period. During the Global Financial Crisis, the global demand for

commodities dropped, which can be expected to lower the shipping cost, as

represented by the low index level. As illustrated in Figure 3.3, crude oil price

fluctuates over time, mainly exhibiting peaks in July 2008 and extreme drops in
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December 1998, December 2008, and February 2016. Fan and Xu (2011) argue

that before June 2008, the main drivers of the oil price fluctuation are bubble

accumulation, speculation, and episodic events due to attacks or wars. After

June 2008, supply and demand play an essential role in oil price fluctuation.

Ratti and Vespignani (2015) support the argument that strong global demand

is the primary driver of high oil prices between 1997 and 2012. Baumeister and

Kilian (2016b) conclude that the oil price decline after June 2014 is caused by

a positive supply, weakening global demand, and an unpredictable component

due to oil price expectation shocks.

Table 3.1 illustrates the descriptive statistics of the variables. None of the

variables shows symmetrical distribution, as indicated by the non-zero values

in their skewness. Taking a natural logarithm makes the data less skewed by

pulling the high extreme values closer to the median, leading to nearly zero

skewness value and reducing the heavy tails. The BDI and crude oil price are

positively skewed; both variables have extremely high values. They have long

right tails relative to the left tails, which means a large number of low indices

and oil prices, and there are only a few values of high indices and prices. In

contrast, world oil production is negatively skewed in that production volumes

have a left tail that is slightly longer relative to the right tail, indicating that

high oil production has a larger frequency than low oil production. The kurtosis

value of oil production is light-tailed relative to the normal distribution, as

indicated by its kurtosis value of less than three. The BDI and crude oil price

are heavy-tailed relative to the normal distribution. The large kurtosis value

indicates more outliers, extreme values of BDI, and real oil prices that are

further away from the sample mean.

3.3.3 Unit root tests

This section applies the standard Augmented Dickey-Fuller (ADF) test

and a test proposed by Enders and Lee (2012) to accommodate the possible
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breaks in the variables. The standard ADF test is described in Dickey and

Fuller (1979). This section applies ADF by including a constant and linear

time trend specification, as follows:

∆yt = a0 + α yt−1 + a2t+ β1∆yt−1 + ...+ βp∆yt−p + ϵt (3.1)

where a0 is the constant, t is the time trend, α and a2 are the estimated

parameters, p is the chosen lag length, β is the coefficient of the lagged

independent variable, and ϵt is the white noise. The joint hypothesis of the

unit root to be tested is a0 = α = a2 = 0.

The existing studies commonly apply standard ADF for testing unit root.

However, the drawback of the ADF test is that it tends to reject the null

hypothesis of unit root when the series contains a structural break, which may

lead to spurious regression. From a visual inspection, the BDI and real oil

price indicate possible breaks. Thus, the unit root test with structural break is

applied to overcome the inaccurate rejection of the null hypothesis. The most

suitable global oil market model is then determined, as follows.

3.3.3.1 Enders and Lee (2012) test

Enders and Lee (2012) develop a unit root test that utilises the Fourier

approximation to capture structural breaks in the series. The basic concept of

this approach is that it modifies the ADF test with a deterministic term that

can replicate the type of break. One of the benefits of this test is it can capture

breaks without knowing a priori the form of the breaks. This deterministic

term is in the form of trigonometric components, with a small number of

frequency components that can capture the non-linear trend, gradual breaks,

and a sharp break. The test’s other benefit is that it requires no assumption

about the number of breaks and the break dates. Hence, the test uses only a

few parameters and it minimises power loss compared to the traditional unit
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root test with dummy variables (Becker et al., 2004; Enders and Lee, 2012).

Fourier approximation begins with the deterministic term d(t) in a modi-

fication of the Dickey-Fuller (DF) unit root test in Dickey and Fuller (1979).

Enders and Lee (2012) express the data generating process (DGP) and its

subsequent regression based on a single frequency. In this study, multiple

frequencies are applied to better represent an unknown deterministic term

function. Then, Equation 3.3 describes Fourier expansion in deterministic term

d(t) with multiple frequencies,

yt = d(t) + ρyt−1 + γt+ εt (3.2)

d(t) = α0 +
n∑

k=1

αk sin
(2πkt

T

)
+

n∑
k=1

βk cos
(2πkt

T

)
; n ≤ T

2
(3.3)

where α0 is the constant, αk and βk measure amplitude and displacement of

the sinusoidal component of deterministic term, n is the number of cumulative

frequency, and T is the total number of observations. Substituting Equation

3.3 into Equation 3.2 yields Equation 3.4.

yt = α0 + γt+
n∑

k=1

αk sin
(2πkt

T

)
+

n∑
k=1

βk cos
(2πkt

T

)
+ et (3.4)

et = ρ et−1 + εt (3.5)

The null hypothesis is that the unit root is presence ρ = 1 with alternative

hypothesis ρ < 1. The parameters of α0, γ, αk, and βk do not depend whether

the null hypothesis is true (ρ = 1) or not. Then, the distribution of the tests

under null and alternative hypotheses are invariant to these four parameters.

By imposing this null hypothesis restriction, the test statistic is obtained by
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estimating the model in first differences, as shown in Equation 3.6.

∆yt = δ0 +
n∑

k=1

δk ∆sin
(2πkt

T

)
+

n∑
k=1

ζk ∆cos
(2πkt

T

)
+ ut (3.6)

The detrended series Ŝt is constructed using estimated coefficients δ̂0, δ̂k, and

ζ̂k,

Ŝt = yt − ψ̂ − δ̂0t−
n∑

k=1

δ̂k sin
(2πkt

T

)
−

n∑
k=1

ζ̂k cos
(2πkt

T

)
(3.7)

where

ψ̂ = y1 − δ̂0 −
n∑

k=1

δ̂k sin
(2πk
T

)
−

n∑
k=1

ζ̂k cos
(2πk
T

)
. (3.8)

As y1 is the first observation of yt, subtracting yt with ψ̂ results in Ŝ1 = 0. The

regression of the unit root test with structural break to obtain the Lagrange

Multiplier (LM) t-statistic is obtained through detrended series in Equation

3.7.

∆yt = ϕŜt−1 + d0 +
n∑

k=1

dk ∆sin
(2πkt

T

)
+

n∑
k=1

zk ∆cos
(2πkt

T

)
+ εt (3.9)

The nonstationary case is when ϕ = 0 and the LM test statistic is given by

τLM = t− statistic for null hypothesisϕ = 0. (3.10)

3.3.3.2 Unit root tests result

Table 3.2 reports the results from the ADF and Enders and Lee (EL) unit

root tests with multiple frequencies (n = 3). The results show that the variables

in level have a mixed order of integration at the 5% significance level. Both

tests confirm that world oil production in levels and log-levels are stationary.

The time series visual inspection shows that world oil production exhibits an

increasing trend and no possible breaks. Both tests reject the null hypothesis

of unit root for BDI in levels, except that the ADF test fails to reject BDI in
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log-levels. Then, both tests fail to reject the null hypothesis of unit root for

the crude oil price. The BDI and crude oil price indicate the possibility of the

breaks, particularly during 2008–09 and 2014–16, as shown in Figures 3.2 and

3.3, respectively. Applying the EL test for the series with the possibility of the

break is more powerful than the standard ADF unit root test. All variables are

stationary in first differences, indicating that the maximum order of integration

is order one.

Table 3.2: Unit root test for world crude oil production, BDI, and crude oil
price

Variable ADF EL
Level Log-level first difference Log-first difference Level Log-level first difference Log-first difference

prod -5.418∗∗∗ -5.365∗∗∗ -6.014∗∗∗ -6.161∗∗∗ -5.686∗∗ -5.647∗∗ -25.714∗∗∗ -25.620∗∗∗
bdi -3.490∗∗ -2.907 -12.594∗∗∗ -9.792∗∗∗ -5.996∗∗∗ -6.523∗∗∗ -12.510∗∗∗ -17.041∗∗∗
op -2.702∗ -2.612∗ -10.801∗∗∗ -15.783∗∗∗ -4.339 -3.508 -11.102∗∗∗ -13.422∗∗∗

∗, ∗∗, and ∗∗∗ p-value is significant at 10%, 5%, and 1% significance level, respectively.
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3.4 Methodology

This section illustrates the empirical framework for analysing the long-run

equilibrium relationship between world oil production, BDI, and crude oil price.

The ARDL approach is applied as it gives flexibility for dealing with stationary

and nonstationary variables. First, this section presents the basic ARDL model

in three single ARDL equations, with world oil production, BDI, and real oil

price as the dependent variables. The aim is to examine the consistency of the

long-run equilibrium presence and the sign of the response between variables.

The ARDL in error-correction form is presented to give a more straightforward

interpretation of world oil production, BDI, and oil price response to the

global oil market variables. It distinguishes the short- and long-run equilibrium

relationship. The interaction between variables might fluctuate in the short run,

which causes mixed sign responses to the previous lags. If there is cointegration,

the explanatory variables are, in the long run, forcing the dependent variable

into equilibrium. Thus, the long-run equilibrium relationship is a helpful way

of interpreting the relationship among the variables.

Second, this section presents the asymmetric effects of the global oil market.

The supply, aggregate demand, and crude oil price fluctuations decompose into

partial positive and negative changes, from which it may be understood whether

positive or negative shocks play an important role in supply, demand, and crude

oil price. Then, the asymmetric result in the error-correction representation is

also presented to distinguish long-run and short-run asymmetric effects.
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3.4.1 The ARDL and ARDL in Error-Correction form

(ARDL-EC)

The ARDL equation follows Equation 2.41, while the error correction form

follows Equation 2.42, each with two explanatory variables (k = 2).

yt = a0 + a1t+

p∑
i=1

ϕi yt−i +
k∑

j=1

q∑
i=0

β
′

j,i xj,t−i + ϵt (2.41)

The yt is the dependent variable, x1, ..., xk are k explanatory variables, with p

and q being the lags of the dependent and explanatory variables, respectively.

The optimal lags p and q are obtained by minimising the value of information

criteria AIC, as described in Equation 2.26. The constant term is a0, the error

term is ϵt, and the respective coefficients a1, ψi, βj,lj are the coefficients of the

linear trend t, lags of yt, and lags of the k explanatory variables xj,t.

The empirical study in this chapter runs three single ARDL equations for

world oil production, BDI, and crude oil price. In the first ARDL equation, yt

is world oil production (the dependent variable), and x1, x2 are the BDI and

crude oil price (the regressors). The second ARDL equation applies BDI as

yt, with the other variables of world oil production and crude oil price being

x1, x2. The third equation applies crude oil price as the dependent variable

yt, and world oil production and BDI are the regressors x1, x2. The world oil

production, BDI, and oil price equations follow case five of the deterministic

terms, namely unrestricted intercept and unrestricted time trend. Based on

graphical interpretation, world oil production exhibits an increasing time trend

t. Empirically, the time trend presence for each series is tested using linear

regression, and it shows a statistically significant trend presence for world oil

production. The ADF test with trend specification confirms that world oil

production and crude oil price equations exhibit a significant deterministic

trend. World oil production and real oil price also have a positive and significant
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time-trend, but have low magnitude in the short-run ARDL model.

The regression expects that crude oil production negatively relates to

crude oil price and positively relates to BDI. BDI relates positively to crude oil

price and production. The crude oil price relates negatively to supply, which

means a drop in crude oil production is associated with the oil price. Crude oil

price relates positively to global demand.

∆yt = a0 + a1t− α(yt−1 − θxt−1) +

p−1∑
i=1

ψyi∆yt−i + ω
′
∆xt +

q−1∑
i=1

β
′

xi ∆xt−i + ϵt

(2.42)

The speed-of-adjustment α represents how much the dependent variable

needs to adjust from the previous period to revert to equilibrium in the current

period, and it is given by α = 1−
∑p

j=1 ϕi where ϕ refers to the coefficient of

the lagged dependent variable in Equation 2.41. As the test distribution is not

standard, the critical values of the speed-of-adjustment follow Kripfganz et al.

(2018). The long-run coefficients θ is given by θ =
∑q

j=0 βj

α
and represents the

effects of the independent variables on the dependent variable in equilibrium.

The short-run coefficients, ψ, ω′ , β ′ indicate short-term fluctuations of the

explanatory variables on the dependent variables.

The long-run equilibrium or cointegration evidence requires both F -

statistics and t-statistics to be rejected. The bounds testing calculates the

F -statistics of the joint null hypothesis that the speed of adjustment and the coef-

ficients of the lagged explanatory variables are zero HF
0 : (α = 0)

(∑q
j=0 βj = 0

)
.

The F -statistics are then compared to the critical values, which follows Kripf-

ganz et al. (2018) for the finite-sample and asymptotic critical values that

provide more efficient estimates, regardless of the lag length or the number of

short-run coefficients. If the F -statistics is rejected, then the value of t-statistics

needs to be checked. The null hypothesis is that the coefficient of the speed of

adjustment is zero H t
0 : α = 0.
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Equations 3.11 and 3.12 describe the ARDL and ARDL in error correction

form models with a structural break. A dummy variable (b) represents the

break in crude oil price, global demand, and supply incorporated in the ARDL

model. It takes a value of 1 from the estimated break date onwards and a value

of 0 from the beginning of observation until before the estimated break date.

The estimated breakpoint for each equation is obtained based on the supremum

Wald test by Andrews (1993). If the estimated break date for three equations

results in different dates, the date on which the strongest jump occurred in the

data series will be used as a dummy variable. The breaks in intercept and slopes

are considered, with the coefficient estimates γ0 for a break in intercept and γj

for the break in slopes. The interaction of the break in slopes is denoted by bxt,

which is the multiplication of the break date dummy b and the regressors xt.

yt = a0 + a1t+

p∑
i=1

ϕi yt−i +
k∑

j=1

q∑
i=0

β
′

j,i xj,t−i + γ0bt +
k∑

j=1

γj bxt + ϵt (3.11)

∆yt = a0 + a1t− α(yt−1 − θxt−1) +

p−1∑
i=1

ψyi∆yt−i + ω
′
∆xt+

q−1∑
i=1

β
′

xi ∆xt−i + γ0bt +
k∑

j=1

γj bxt + ϵt (3.12)

The Supremum Wald test statistics WT is given by Equation 3.13.

Supremum WT = sup
β1≤π≤β2

WT (π), (3.13)

where π is the break-point and lies within the range of β1 and β2. The null

hypothesis is no break or the stability of the parameter,

H0 : βt = β0 (3.14)
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and the alternative hypothesis is

H1 : βt =

β1(π) for t = 1, .., Tπ

β2(π) for t = Tπ+1, ..., T.

(3.15)

The limiting distributions of the test statistics are

Supremum WT →d sup
λ∈[ε1,ε2]

W (λ) (3.16)

3.4.2 Nonlinear Autoregressive Distributed Lags (NARDL)

Shin et al. (2013) proposes NARDL(p, q) by extending the basic ARDL

model as proposed by Pesaran and Shin (1997) and Pesaran et al. (2001) to in-

corporate a feature that distinguishes the asymmetric effects of the explanatory

variables. The asymmetric effects disentangle the explanatory variables into

lags of the dependent variable and lags of the positive and negative growth of

the regressors. The NARDL model identifies the positive or negative changes

in world oil production, BDI, and crude oil price in the following equation:

yt = a0 + a1t+

p∑
i=1

ϕi yt−i +
k∑

j=1

q∑
i=0

(
β+′

j,ix
+
t−i + β−′

j,ix
−
t−i

)
+ εt (3.17)

where xt is a k x 1 vector of regressors: xt = x0 +x
+
t +x−t . The partial positive

is defined as the lagged value of the partial positive added by the positive

changes, and the partial negative is the lagged value of partial negative added

by the negative changes (or subtracted by the decrease from the previous to

current period). NARDL in error correction (NARDL-EC) representation is
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defined by Equation 3.18.

∆yt = a0 + a1t− α
(
yt−1 −

k∑
j=1

θ+
′

j x
+
t−1 −

k∑
j=1

θ−
′

j x
−
t−1

)
+

p−1∑
i=1

ψy,i∆yt−i

+
k∑

j=1

(
ω+′

j ∆x+t + ω−′

j ∆x−t
)
+

k∑
j=1

q−1∑
i=1

(
ψ+′

xj,i∆x
+
t−i + ψ−′

xj,i∆x
−
t−i

)
+ εt (3.18)

∆yt = a0 + a1t− αξt−1 +

p−1∑
i=1

ψy,i∆yt−i +
k∑

j=1

(
ω+′

j ∆x+t + ω−′

j ∆x−t
)

+
k∑

j=1

q−1∑
i=1

(
ψ+′

xj,i∆x
+
t−i + ψ−′

xj,i∆x
−
t−i

)
+ εt (3.19)

where α = 1 −
∑p

i=1 ϕi, ψyi = −
∑p

i=l+1 ϕi for l = 1, ..., p − 1, β+′

j,i =∑q
i=0 β

+′

j,i , β
−′

j,i =
∑q

i=0 β
−′

j,i , ω
+′

j = β+′

j,0, ω
−′

j = β−′

j,0, ψ
+′

xj,i = −
∑q

i=l+1 β
+′

j,i , for

l = 1, ..., q− 1, ψ−′

xj,i = −
∑q

i=l+1 β
−′

j,i , for j = 1, ..., q− 1, and for k = 2, the non-

linear error correction term is ξt−1 = yt−1−θ+
′

1 x
+
t−1−θ+

′

2 x
+
t−1−θ−

′

1 x
−
t−1−θ−

′

2 x
−
t−1,

where θ+
′

j = β+′

j,1/α and θ−
′

j = β−′

j,1/α are the asymmetric long-run parameters.

The NARDL model with a structural break is expressed in Equations 3.20

and 3.21, for NARDL and NARDL-EC with the break, respectively.

yt = a0 + a1t+

p∑
i=1

ϕi yt−i +
k∑

j=1

q∑
i=0

(
β+′

j,ix
+
t−i + β−′

j,ix
−
t−i

)
+ γ0bt

+
k∑

j=1

(
γ+

′

j bx+t + γ−
′

j bx−t
)
+ εt, (3.20)

where γ+
′

j and γ−
′

j denote the coefficient estimates of the positive and negative
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shocks of the independent variables, respectively.

∆yt = a0 + a1t− α
(
yt−1 −

k∑
j=1

θ+
′

j x
+
t−1 −

k∑
j=1

θ−
′

j x
−
t−1

)
+

p−1∑
i=1

ψy,i∆yt−i

+
k∑

j=1

(
ω+′

j ∆x+t + ω−′

j ∆x−t
)
+

k∑
j=1

q−1∑
i=1

(
ψ+′

xj,i∆x
+
t−i + ψ−′

xj,i∆x
−
t−i

)
+ εt

(3.21)

∆yt = a0 + a1t− αξt−1 +

p−1∑
i=1

ψy,i∆yt−i +
k∑

j=1

(
ω+′

j ∆x+t + ω−′

j ∆x−t
)

+
k∑

j=1

q−1∑
i=1

(
ψ+′

xj,i∆x
+
t−i + ψ−′

xj,i∆x
−
t−i

)
+ γ0bt +

k∑
j=1

(
γ+

′

j bx+t + γ−
′

j bx−t
)
+ εt

(3.22)

The interaction between break and positive shock of the independent variable is

denoted with bx+t , whilst bx−t represents the break interaction with the negative

shock of the independent variable.
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3.5 Empirical result: the relationship between

world oil production, demand, and crude oil

price

This section reports the results of the estimations of the ARDL models

described in Section 3.4. The basic ARDL result is presented in Subsection

3.5.1 (referring to Equation 2.41), with the error-correction representation in

Subsection 3.5.1.1 (referring to Equation 2.42). The results of the asymmetric

ARDL extension to the basic model are reported in Subsection 3.5.2, with the

error-correction representation in Subsection 3.5.2.1.

3.5.1 The basic ARDL results

The optimal lag lengths of the variables for each of the three ARDL

equations are chosen based on AIC. The first equation, for world oil production,

has an optimal lag length of ARDL(1,0,3), with lag one for world production as

the dependent variable (lprod), and lags zero and three for BDI (lbdi) and crude

oil price (lop), respectively, as the independent variables. The optimal lag length

for the second equation is ARDL(2,0,2), with BDI as the dependent variable

with lag two. World oil production and crude oil price are the independent

variables with lags zero and two, respectively. The third equation is the crude

oil price equation with optimal lag length ARDL(3,1,1). Crude oil price is

the dependent variable with lag three, while world oil production and BDI, as

independent variables, both have lag one. Although the optimal lag length

according to AIC differs across three equations, this chapter aligns the lag

structure across the three equations by setting the lag length to be the longest

suggested by AIC for each equation so that the three equations are consistent.

For the three equations, the longest lags are lag one for world oil production,

lag two for BDI, and lag three for the crude oil price. Thus, the final world



3.5. Empirical result: the relationship between world oil
production, demand, and crude oil price 122

oil production equation applies ARDL(1,2,3), while the BDI equation applies

ARDL(2,1,3), and the crude oil price equation applies ARDL(3,1,2).

Table 3.3: ARDL estimation for world oil production, BDI, and crude oil price

lprodt lbdit lopt

Coefficient estimates
(ϕi, β

′

j,i)

lprodt 0.690 (0.856) -1.032∗∗∗ (0.336)

lprodt−1 0.842∗∗∗ (0.026) -0.164 (0.853) 0.596∗ (0.337)

lbdit 0.002 (0.003) 0.056∗∗∗ (0.020)

lbdit−1 -0.003 (0.004) 1.043∗∗∗ (0.050) -0.010 (0.028)

lbdit−2 0.004 (0.003) -0.118∗∗ (0.050) -0.025 (0.020)

lopt -0.022∗∗∗ (0.007) 0.356∗∗∗ (0.124)

lopt−1 0.022∗ (0.012) -0.094 (0.216) 1.408∗∗∗ (0.050)

lopt−2 0.011 (0.012) -0.197 (0.216) -0.554∗∗∗ (0.081)

lopt−3 -0.013∗ (0.007) -0.054 (0.123) 0.106∗∗ (0.048)

(a1)
t 1.7e-04∗∗∗ (2.8e-05) -7e-04 (5e-04) 5.7e-04∗∗∗ (2e-04)

(a0)
Constant 1.666∗∗∗ (0.277) -4.979 (4.996) 4.551∗∗ (1.971)

Observations 418 418 418
F-statistic 6315.86 517.68 2295.76
Prob (F-statistic) 0.0000 0.0000 0.0000
Adjusted R2 0.9927 0.9179 0.9803
Root MSE 0.0103 0.1779 0.0706

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.3 summarises the results from estimating the three ARDL equa-

tions for world oil production, BDI, and the crude oil price. The first column

of Table 3.3 presents the model estimated with the log of oil production as a

dependent variable. The coefficient of crude oil price in the current period is

significantly negative and the coefficients of the lags of oil production and time

trend are significantly positive. The coefficients of oil price and the lag of BDI

are significantly positive in the second column, which is the model with the log

of BDI as the dependent variable. In the third column, where oil price is the

dependent variable, the coefficient of oil production is significantly negative

and the coefficients of BDI, time trend, and lag of oil price are significantly
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positive.

Economic theory suggests that quantity demanded decreases along the

demand curve when the price rises. As the price rises, quantity supplied also

increases along its own curve. When the demand curve expands, it shifts to the

right and causes a price increase, whereas when the supply curve expands to the

right, the price decreases. A crude oil price increase is associated with a decrease

in world oil production and an increase in global demand. In the current period,

a 1% rise in crude oil price significantly decreases oil production by 0.02% and

increases the global demand by 0.36%. The increase in global demand leads to

higher oil production and prices. A 1% rise in global demand increases world

oil production and real oil price by 0.002% and 0.06%, respectively. The world

oil production increase causes a decline in oil price and increases global demand.

A 1% rise in crude oil production causes the real oil price to decline by 1.03%,

increasing global demand by 0.69%.

Table 3.4: Structural break test result for world crude oil production, BDI, and
crude oil price

Equation Supremum Wald statistic Estimated break date

lprod 45.3497∗∗∗ April 1990
lbdi 71.9102∗∗∗ January 2012
lop 46.1463∗∗∗ January 2009

Notes:
Standard error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
The critical value of Wald test is based on Hansen (1997).

Table 3.4 shows the structural break test applying supremum Wald for

the three equations. The first column refers to the dependent variable in

each ARDL equation, i.e. lprod indicates the log of oil production as the

dependent variable. The supremum Wald statistics for all equations reject

the null hypothesis of no structural break, suggesting the coefficients in the

regression vary over time. The supremum Wald tests estimate various break

dates for each equation; in April 1990 for the production equation, January

2012 for the BDI equation, and January 2009 for the oil price equation. Based
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on visual interpretation, the time series plots of BDI and real oil prices, shown

in Figures 3.2 and 3.3, depict extreme peaks and drops in mid-2008, while

the crude oil production time series (refer to Figure 3.1) shows an increasing

trend without extreme shifts. The estimated break date in January 2009 is the

closest one following the extreme episode in mid-2008. The following model

applies a structural break taking into account a break date in January 2009

following big shocks due to Global Financial Crisis. The dummy variable takes

a value of 0 from January 1985 to December 2008 and 1 from January 2009 to

December 2019.

Table 3.5: ARDL with a structural break model for world oil production, BDI,
and crude oil price

lprodt lbdit lopt

Coefficient estimates
(ϕi, β

′

j,i, γ0, γj)

lprodt 0.807 (0.849) -0.900∗∗∗ (0.327)

lprodt−1 0.833∗∗∗ (0.028) -0.448 (0.849) 0.495 (0.331)

lbdit 0.003 (0.003) 0.080∗∗∗ (0.020)

lbdit−1 -0.003 (0.004) 1.019∗∗∗ (0.050) -0.013 (0.028)

lbdit−2 0.003 (0.003) -0.139∗∗∗ (0.050) -0.013 (0.020)

lopt -0.022∗∗∗ (0.008) 0.356∗∗∗ (0.125)

lopt−1 0.022∗ (0.013) -0.060 (0.214) 1.362∗∗∗ (0.049)

lopt−2 0.011 (0.013) -0.184 (0.213) -0.509∗∗∗ (0.079)

lopt−3 -0.013∗ (0.007) -0.063 (0.122) 0.076 (0.047)

bt 0.014 (0.019) 16.964∗∗∗ (5.855) 9.095∗∗∗ (2.141)

b*lprodt -1.472∗∗∗ (0.508) -0.759∗∗∗ (0.185)

b*lbdit -0.002 (0.003) -0.068∗∗∗ (0.017)

b*lopt 3.7e-04 (0.003) -0.115∗ (0.061)

(a1)
t 1.7e-04∗∗∗ (3e-05) -2.77e-04 (5.5e-04) 4.96e-04∗∗ (2e-04)

(a0)
Constant 1.757∗∗∗ (0.293) -3.099 (5.126) 4.100∗∗ (2.014)

Observations 417 417 417
F-statistic 4715.48 398.21 1834.32
Prob (F-statistic) 0.0000 0.0000 0.0000
Adjusted R2 0.9927 0.9197 0.9814
Root MSE 0.0103 0.1759 0.0684

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01



3.5. Empirical result: the relationship between world oil
production, demand, and crude oil price 125

The ARDL model with a break date in January 2009 is presented in Table

3.5. The break in intercept indicated by bt is statistically significant in the

equations, with BDI and oil price as the dependent variable. Furthermore,

the breaks in slope also show the statistical significance in BDI and oil price

equations. The presence of the break in the slopes has negative effects on

oil prices and global demand. The break interactions with global demand

and oil production strongly affect crude oil prices, indicated by the statistical

significance of b*lbdit and b*lprodt in Table 3.5. The break in oil production

and price also significantly affect global demand, denoted by the significance of

b*lprodt and b*lopt in the equation with BDI as the dependent variable. The

break in oil price and demand has little non-significant effects on oil production.

The little effect of the breaks can be explained by the long lags between oil

discovery and production start date. The following error correction form and

asymmetric ARDL retain the break in the model to compare the significance

and consistency with the basic model without a structural break.

3.5.1.1 ARDL in error correction interpretation

Table 3.6 reports the bounds test result, adjustment factor, long-run

equilibrium, and short-run dynamics coefficients. The Pesaran et al. (2001)

bounds test result indicates that a long-run equilibrium relationship is present

among world oil production, BDI, and crude oil price for all three equations.

The top section of Table 3.6 reports that the F-statistic and t-statistic of

the adjustment factors are larger than the bounds test critical values at a

5% significance level for three equations. The null hypothesis that the level

relationship does not exist is rejected; hence there is enough evidence to support

the long-run relationship at the level of crude oil production, BDI, and real oil

price.

The long-run equilibrium relationship denoted by coefficient θ in Table

3.6 represents a contemporaneous relationship among world oil production,
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Table 3.6: ARDL estimation in error correction form for world oil production,
BDI, and crude oil price

D.lprodt D.lbdit D.lopt

(i) Case 5
Bound Test H0: no level relationship
F-stat‡ 12.129∗∗∗ 6.434∗∗ 6.181∗∗
t-stat‡ -6.014∗∗∗ -4.083∗∗ -4.023∗∗

(ii) Adjustment factor
(-α)‡

lprodt−1 -0.158∗∗∗ (0.026)
lbdit−1 -0.075∗∗∗ (0.018)
lopt−1 -0.039∗∗∗ (0.010)

(iii) Long-run (θ)

lprodt−1 7.047 (5.785)) -11.144∗∗ (4.774)

lbdit−1 0.020∗∗∗ (0.006) 0.544∗∗∗ (0.179)

lopt−1 -0.015∗ (0.009) 0.152 (0.320)

(iv) short-run (ψyi, ω
′
, ψ

′

xi)

D.lprodt 0.690 (0.856) -1.032∗∗∗ (0.336)

D.lbdit 0.002 (0.003) 0.056∗∗∗ (0.019)

D.lbdit−1 -0.004 (0.003) 0.118∗∗ (0.050) 0.025 (0.020)

D.lopt -0.022∗∗∗ (0.007) 0.356∗∗∗ (0.124)

D.lopt−1 0.002 (0.008) 0.251∗ (0.134) 0.447∗∗∗ (0.048)

D.lopt−2 0.013∗ (0.007) 0.054 (0.123) -0.106∗∗ (0.048)

(a1)
t 1.7e-04∗∗∗ (2.8e-05) -7e-04 (5e-04) 5.7e-04∗∗∗ (2e-04)

(a0)
Constant 1.666∗∗∗ (0.277) -4.979 (4.996) 4.551∗∗ (1.971)

Observations 418 418 418

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
‡The approximate p-values applied for speed-of-adjustment
coefficient is based on Kripfganz et al. (2018)

BDI, and real oil price, how three variables are related in the long run. The

consistency of sign and magnitude is checked across the three equations by

converting two equations so that the three equations express the same variable

(oil price) as a function of the other two variables (demand and supply).

Equations 3.23-3.25 are the error correction forms derived from the cointegrating

vectors in Table 3.6, Panel (iii). The cointegrating vector of the supply and
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demand equations is expressed in Equations 3.23 and 3.24, respectively. As an

illustration, the second column of Panel (iii) gives production as the dependent

variable, with BDI and oil price as independent variables in the long-run

relationship. To obtain Equation 3.23, the equation in Panel (iii) is rearranged

such that the oil price is on the left-hand side of the equation, with production

and BDI on the right-hand side. That would be applied to BDI as the dependent

variable in the third column of Panel (iii). Oil price is on the left-hand side while

production and BDI are on the right-hand side to obtain Equation 3.24.Equation

3.25 is taken from the fourth column of Panel (iii) without rearrangement, as

the oil price is already on the left-hand side. Hence, the magnitude of the three

variables can be compared. For all three equations, the coefficient is positive

and greater for demand; in contrast, it is negative and smaller for supply.

lprodt−1 = 0.020 lbdit−1 − 0.015 lopt−1

⇐⇒ lopt−1 = −67.219 lprodt−1 + 1.319 lbdit−1 (3.23)

lbdit−1 = 7.047 lprodt−1 + 0.152 lbdit−1

⇐⇒ lopt−1 = −46.368 lprodt−1 + 6.580 lbdit−1 (3.24)

lopt−1 = −11.144 lprodt−1 + 0.544 lbdit−1 (3.25)

The coefficients in Equations 3.23-3.25 should be interpreted carefully, and

the interpretation is helpful for the sign and magnitude consistency checking

across three equations to understand how they relate each other in the long-run

relationship. The cointegrating vector from the supply equation represents

how supply relates to demand and oil price as presented in the first line of

Equation 3.23 interpreted as a 1% increase in oil prices relate negatively with

the production by 0.015% in the long run. Supply appears to exhibit a small

response in percentage, but sample variance (0.015) relative to the sample mean

for supply (11.144) is also small. Thus, a 1% response can be bigger in terms
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of the sample. Comparing the coefficient of production in Equations 3.23 and

3.25 (-67.219 and -11.144, respectively), Equation 3.23 requires price to adjust

by a magnitude of six times larger to the supply shock.

The consistency check based on magnitudes shows that demand shock is

associated with a greater price change compared to supply shock. Comparing

the coefficient of BDI in Equations 3.24 and 3.25 (6.580 and 0.544, respectively),

Equation 3.24 indicates that oil price requires to adjust by a magnitude of

twelve times larger to the demand shock.

The adjustment factor (−α) shows how the dependent variable changes

when the three variables deviate from their long-run equilibrium. The adjust-

ment factors for the three equations are all negative and statistically significant,

which means that the estimated error correction forms represent stable rela-

tionships. The dependent variable of the prior period is too high relative to

the long-run equilibrium and so it is necessary to decrease its value in the

current period to revert to the equilibrium. When the world oil production is

1% higher than the level of the long-run equilibrium, it decreases by 0.16% in

the subsequent period. In addition, if the BDI is 1% higher than its level at the

long-run equilibrium, it decreases by 0.08% in the subsequent period. Finally,

when the oil price is 1% higher than its level at the long-run equilibrium,

it declines by 0.04% in the subsequent period. However, these adjustment

factors are not directly comparable because the supply’s 1% deviation from the

long-run equilibrium is not identical to a 1% deviation in demand or oil price.

Equations 3.26-3.28 describe the adjustment factor across the three equa-

tions to enable direct comparison when considering a 1% deviation in the oil

price, where sr refers to the short-run dynamics. The comparison of adjustment

factors is interpreted carefully. The long-run equilibrium relationship is defined

in terms of the dependent variable; for instance, Equation 3.26 tells the adjust-

ment factor for the supply equation, which describes how much supply changes

when log supply is one unit higher than the level at the long-run equilibrium.
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Similarly, the adjustment factor for the price equation in Equation 3.28 shows

how much price changes when the log oil price is one unit higher than the level

at the long-run equilibrium. As an illustration, the adjustment factor in the

first row of Equation 3.26 is derived from Panel (ii) of Table 3.6, with the long

run coefficients from Panel (iii). The adjustment factor for price in the third

row of Equation 3.28 is taken directly from Panel (ii) of Table 3.6 without any

rearrangement. The Equation 3.26 is rearranged so that a unit of log price in

the supply equation (Equation 3.26) can be compared with a unit of log price

in the price equation (Equation 3.28). The three equations show that crude

oil price adjusts more (the coefficient of -0.039 in Equation 3.28) when the

three variables deviate from the long-run equilibrium. Supply (the coefficient

of -0.002 in Equation 3.26) is the slowest in changing (0.06 times less than

price) when the three variables deviate from long-run equilibrium. Demand

(the coefficient of -0.011 in Equation 3.27) is faster to adjust than supply but

is still 0.29 times slower than the oil price.

D.lprodt = −0.158 (lprodt−1 − 0.022 lbdit−1 + 0.014 lopt−1) + sr

⇐⇒ D.lprodt = −0.158 lprodt−1 + 0.004 lbdit−1 − 0.002 lopt−1 + sr

⇐⇒ D.lprodt = −0.002 (lopt−1 + 79 lprodt−1 − 2 lbdit−1) + sr (3.26)

D.lbdit = −0.075 (lbdit−1 − 7.047 lprodt−1 − 0.152 lopt−1) + sr

⇐⇒ D.lbdit = −0.075 lbdit−1 + 0.529 lprodt−1 + 0.011 lopt−1) + sr

⇐⇒ D.lbdit = −0.011 (lopt−1 + 48.091 lprodt−1 − 6.818 lbdit−1) + sr (3.27)

D.lopt = −0.039 (lopt−1 + 11.144 lprodt−1 − 0.544 lbdit−1) + sr (3.28)

The short-run dynamic relationship indicates that crude oil price signifi-

cantly affects world oil production and BDI. A 1% rise in real oil price increases

the BDI by 0.36% and decreases the oil production by 0.02%. World oil pro-
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duction and BDI also exert statistically significant effects on the short-run

crude oil price. A 1% increase in oil production decreases the real oil price by

1.03%, and a 1% BDI rise increases the crude oil price by 0.06%. The positive

linear time trend is statistically significant for world oil production and crude

oil price.

Table 3.7 presents ARDL model with a structural break in error correction

form. The model with a break in January 2009 shows the presence of the long-

run equilibrium relationship as indicated by the rejection of the Bounds test

for all three equations in Panel (i) of Table 3.7. The results confirm consistency

with an earlier model without a break in terms of the sign of the coefficients.

The adjustment factor (−α) in Panel (ii) is negative and statistically significant

for all equations, which indicates the stable relationship for the dependent

variable to respond when the three variables deviate from long-run equilibrium.

The long-run coefficients (θ) also have consistent signs with the model without

a break.

The sign of the long-run relationship between oil price, production, and

demand varies as the ARDL approach in this thesis does not rely on the sign-

identifying assumptions as applied by Kilian (2009); Kilian and Murphy (2014).

Baumeister and Hamilton (2019) suggests relaxing the assumption on the sign

restriction as it affects the magnitude of price elasticity on demand and supply.

In the ARDL model, the long-run relationship does not represent causality

between variables. However, it models the equilibrium relationships of demand,

supply, and price after testing for the presence of long-run equilibrium and

how the three variables move in response to the deviation from the long-run

equilibrium. One of the possible reasons for the negative relationship between

oil prices and production in the short run is that the rise of crude oil prices

affects transportation costs, which may slow down oil production activity at

the current period. The second reason is that it takes some time to adjust

production volume. A high oil price will give the incentive to find more oil
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Table 3.7: ARDL estimation with a structural break in error correction form
for world oil production, BDI, and crude oil price

D.lprodt D.lbdit D.lopt

(i) Case 5
Bound Test H0: no level relationship
F-stat‡ 12.133∗∗∗ 9.499∗∗∗ 14.155∗∗∗
t-stat‡ -6.013∗∗∗ -5.122∗∗∗ -6.225∗∗∗

(ii) Adjustment factor
(-α)‡

lprodt−1 -0.168∗∗∗ (0.028)
lbdit−1 -0.119∗∗∗ (0.023)
lopt−1 -0.072∗∗∗ (0.012)

(iii) Long-run (θ)

lprodt−1 3.012∗∗ (3.993)) -5.657∗∗ (2.702)

lbdit−1 0.022∗∗ (0.010) 0.751∗∗∗ (0.135)

lopt−1 -0.014 (0.012) 0.412∗ (0.243)

(iv) short-run (ψyi, ω
′
, ψ

′

xi, , γ0, γj)

D.lprodt 0.807 (0.849) -0.900∗∗∗ (0.327)

D.lbdit 0.003 (0.003) 0.080∗∗∗ (0.020)

D.lbdit−1 -0.003 (0.003) 0.139∗∗∗ (0.050) 0.013 (0.020)

D.lopt -0.022∗∗∗ (0.007) 0.356∗∗∗ (0.125)

D.lopt−1 0.002 (0.008) 0.247∗ (0.133) 0.434∗∗∗ (0.047)

D.lopt−2 0.013∗ (0.007) 0.063 (0.122) -0.076 (0.047)

bt 0.014 (0.019) 16.964∗∗∗ (5.855) 9.095∗∗∗ (2.141)

b*lprodt -1.472∗∗∗ (0.508) -0.759∗∗∗ (0.185)

b*lbdit -0.002 (0.003) -0.068∗∗∗ (0.017)

b*lopt 3.7e-04 (0.003) -0.115∗ (0.061)

(a1)
t 1.7e-04∗∗∗ (3e-05) -2.77e-04 (5.5e-04) 4.96e-04∗∗∗ (2e-04)

(a0)
Constant 1.757∗∗∗ (0.293) -3.099 (5.126) 4.100∗∗ (2.014)

Observations 417 417 417

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
‡The approximate p-values applied for speed-of-adjustment
coefficient is based on Kripfganz et al. (2018)

through exploration and it takes a few years to start producing from new

fields. The production volume adjustment depends on the existing geographical

condition (i.e. existing fields’ capacity) and could also be affected by worldwide



3.5. Empirical result: the relationship between world oil
production, demand, and crude oil price 132

geopolitical issues considering world data sets are applied in this study.

3.5.2 The asymmetric ARDL (NARDL) results

Asymmetry represents the difference between a positive and negative

change in world oil production, BDI, and crude oil price. The variables in the

basic ARDL model are decomposed into partial positive and negative changes

in the NARDL model. The optimal lag lengths for each equation follow the

basic ARDL model as described in Subsection 3.5.1. In the first equation, world

oil production has the lag length of NARDL(1,2,2,3,3): lag one for world oil

production as the dependent variable, and lags two and three for the positive

and negative changes of BDI and crude oil prices respectively, as the explanatory

variables. Copying across those same lag lengths for the variables, the BDI

equation follows NARDL(2,1,1,3,3) with lag two for the BDI as the dependent

variable and lags one and three for the regressors, world oil production and

crude oil price. The crude oil price equation follows NARDL(3,1,1,2,2) with lag

three for oil price and lags one and two for the positive and negative changes

in oil production and BDI, respectively.

Table 3.8 presents the results from estimating NARDL for the three

equations. In the first column of the table, the estimated NARDL for world oil

crude production shows that the partial positive changes in crude oil price in

the current period and one period prior are statistically significant to the world

oil production. The second column shows that a negative change in oil price for

the current period is statistically significant to BDI. In the third column, the

estimated NARDL for crude oil price shows that the partial negative changes in

oil production in the current period and one period prior, and negative change

in BDI in the current period are statistically significant to the crude oil price.

World oil production and BDI time trends are also statistically significant.
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Table 3.8: NARDL estimation for world oil production, BDI, and crude oil
price

lprodt lbdit lopt

Coefficient estimates
(ϕi)
lprodt−1 0.835∗∗∗ (0.028)

lbdit−1 1.026∗∗∗ (0.050)

lbdit−2 -0.127∗∗ (0.050)

lopt−1 1.393∗∗∗ (0.050)

lopt−2 -0.531∗∗∗ (0.082)
lopt−3 0.098∗∗ (0.049)

(β+′

j,i , β
−′

j,i )
lprod+

t 1.189 (1.580) -0.073 (0.626)

lprod+
t−1 -0.176 (1.528) -0.375 (0.608)

lprod−
t 0.160 (1.489) -1.862∗∗∗ (0.566)

lprod−
t−1 0.312 (1.509) 1.469∗∗ (0.567)

lbdi+t 0.003 (0.006) 0.037 (0.038)

lbdi+t−1 -0.003 (0.008) 0.002 (0.055)

lbdi+t−2 0.004 (0.006) -0.017 (0.039)

lbdi−t 0.002 (0.005) 0.069∗∗ (0.031)

lbdi−t−1 -0.003 (0.007) -0.018 (0.046)

lbdi−t−2 0.004 (0.005) -0.028 (0.032)

lop+
t -0.052∗∗∗ (0.014) 0.144 (0.242)

lop+
t−1 0.047∗∗ (0.022) 0.023 (0.381)

lop+
t−2 0.017 (0.022) 0.031 (0.378)

lop+
t−3 -0.017 (0.013) -0.145 (0.230)

lop−
t 0.006 (0.012) 0.467∗∗ (0.199)

lop−
t−1 -0.004 (0.020) -0.156 (0.352)

lop−
t−2 0.011 (0.020) -0.340 (0.351)

lop−
t−3 -0.009 (0.012) 0.014 (0.200)

(a1)
t 3.9e-04∗∗∗ (1e-04) -0.005∗∗ (0.002) 8.6e-04 (6.4e-04)

Continued on next page
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Table 3.8 – Continued from previous page

lprodt lbdit lopt

(a0)
Constant 1.691∗∗∗ (0.289) 2.195∗∗∗ (0.668) -0.110 (0.166)
Observations 418 418 418
F-statistic 3634.20 312.87 1473.58
Prob (F-statistic) 0.0000 0.0000 0.0000
Adjusted R2 0.9929 0.9183 0.9802
Root MSE 0.0102 0.1774 0.0706

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.9 presents NARDL estimates with a structural break in January

2009. The presence of the breaks causes a reduction in BDI and oil prices.

The break in intercept (bt) is statistically significant in BDI and oil price

equations. The break interaction with BDI, both positive and negative shocks

in slope (b*lbdi+t and b*lbdi−t ), is strongly significant in the oil price equation,

whilst the break interaction with the negative shock of production (b*lprod−
t )

is stronger than with the positive shock of production (b*lprod+
t ). The BDI

equation shows that the break interaction with positive and negative shocks in

production is significant, while the break interaction with the prices (b*lop+
t

and b*lop−
t ) is not. None of the breaks in the production equation is significant,

and the magnitude is very small. The estimates with a break imply that crude

oil price is affected much by the global demand that shocks both demand boom

and drops and the disruption due to production decline. The production does

not respond to the breaks because, in the short run, the elasticity of supply is

inelastic. It takes a long time for production to respond to price and demand

shocks.
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Table 3.9: NARDL estimation with a structural break for world oil production,
BDI, and crude oil price

lprodt lbdit lopt

Coefficient estimates
(ϕi)
lprodt−1 0.825∗∗∗ (0.029)

lbdit−1 0.983∗∗∗ (0.051)

lbdit−2 -0.132∗∗ (0.051)

lopt−1 1.331∗∗∗ (0.049)

lopt−2 -0.469∗∗∗ (0.079)
lopt−3 0.052 (0.048)

(β+′

j,i , β
−′

j,i , γ0, γ
+
j , γ

−
j )

lprod+
t 1.209 (1.565) 0.341 (0.606)

lprod+
t−1 -0.117 (1.513) -0.725 (0.587)

lprod−
t 0.887 (1.492) -1.685∗∗∗ (0.546)

lprod−
t−1 3.7e-04 (1.494) 1.576∗∗∗ (0.547)

lbdi+t 0.001 (0.006) 0.058 (0.039)

lbdi+t−1 -0.003 (0.008) -0.006 (0.052)

lbdi+t−2 0.005 (0.006) 0.008 (0.039)

lbdi−t 0.003 (0.005) 0.097∗∗∗ (0.030)

lbdi−t−1 -0.004 (0.007) -0.020 (0.044)

lbdi−t−2 0.004 (0.005) -0.013 (0.032)

lop+
t -0.054∗∗∗ (0.014) 0.088 (0.241)

lop+
t−1 0.047∗∗ (0.022) 0.022 (0.376)

lop+
t−2 0.017 (0.022) -0.029 (0.372)

lop+
t−3 -0.015 (0.014) 0.035 (0.232)

lop−
t 0.010 (0.012) 0.484∗∗ (0.205)

lop−
t−1 -0.004 (0.020) -0.068 (0.350)

lop−
t−2 0.013 (0.020) -0.299 (0.347)

lop−
t−3 -0.012 (0.012) -0.157 (0.207)

bt 0.038 (0.026) 34.960∗∗ (14.941) 14.722∗ (8.005)

b*lprod+
t -3.057∗∗ (1.334) -1.238∗ (0.724)

Continued on next page
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Table 3.9 – Continued from previous page

lprodt lbdit lopt

b*lprod−
t -5.140∗∗ (2.122) -2.325∗∗∗ (0.649)

b*lbdi+t -3.9e-04 (0.004) -0.096∗∗∗ (0.026)

b*lbdi−t 7.48e-04 (0.003) -0.074∗∗∗ (0.018)

b*lop+
t -0.008 (0.006) -0.192 (0.126)

b*lop−
t -0.008 (0.005) -0.094 (0.105)

(a1)
t 4.86e-04∗∗∗ (1.47e-04) -0.006∗∗ (0.003) 0.002∗∗ (8e-4)

(a0)
Constant 1.762∗∗∗ (0.304) 3.005∗∗∗ (0.828) -0.147 (0.236)
Observations 417 417 417
F-statistic 2764.98 242.91 1191.20
Prob (F-statistic) 0.0000 0.0000 0.0000
Adjusted R2 0.9929 0.9208 0.9819
Root MSE 0.0102 0.1747 0.0675

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

3.5.2.1 NARDL in error correction interpretation

Table 3.10 reports the results of the bounds test and presents the estimated

NARDL in error correction form. In Panel (i) of Table 3.10, the bounds

test indicates that the NARDL model also supports the presence of long-run

asymmetry in world oil production and BDI equations because the F-statistic

and t-statistic are large enough to reject the null hypothesis at a 5% significance

level. The joint null hypothesis is that there is no long-run relationship in the

asymmetry model. However, the long-run asymmetry is weak for the crude

oil price equation. The F-stat and t-stat are within the inconclusive range of

10% critical values, but neither are large enough to reject the null hypothesis

at a 5% significance level, and nor are they small enough not to reject the null

hypothesis. The long-run relationship is present for the crude oil price because
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the long-run coefficients of partial positive and negative supply and demand

changes are statistically significant. However, the similar magnitudes of the

positive and negative supply and demand changes cause no asymmetry effect

on the oil price.
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Table 3.10: NARDL estimation in error-correction form for world oil production,
BDI, and crude oil price

D.lprodt D.lbdit D.lopt

(i) Case 5

Bound Test H0: no level relationship
F-stat‡ 7.150∗∗∗ 5.175∗∗ 3.658
t-stat‡ -5.914∗∗∗ -4.718∗∗ -3.663

(ii) Adjustment factor (-α)‡

lprodt−1 -0.166∗∗∗ (0.028)
lbdit−1 -0.101∗∗∗ (0.021)
lopt−1 -0.040∗∗∗ (0.011)

(iii) Long-run (θ+
′

j , θ−
′

j )

lprod+
t−1 10.020∗∗ (4.589) -11.172∗∗ (5.039)

lprod−
t−1 4.668 (5.203) -9.825∗ (5.361)

lbdi+t−1 0.021∗∗ (0.008) 0.535∗∗ (0.213)

lbdi−t−1 0.020∗∗∗ (0.007) 0.569∗∗∗ (0.188)

lop+
t−1 -0.029∗∗∗ (0.011) 0.533∗∗ (0.266)

lop−
t−1 0.017 (0.016) -0.142 (0.453)

(iv) short-run (ψy,i, ω
+′

j , ω−′

j , ψ+′

xj,i, ψ
−′

xj,i)

D.lbdit−1 0.127∗∗ (0.050)

D.lopt−1 0.433∗∗∗ (0.049)

D.lopt−2 -0.098∗∗ (0.049)

D.lprod+
t 1.189 (1.580) -0.073 (0.626)

D.lprod−
t 0.160 (1.489) -1.862∗∗∗ (0.566)

D.lbdi+t 0.003 (0.006) 0.037 (0.038)

D.lbdi+t−1 -0.004 (0.006) 0.017 (0.038)

D.lbdi−t 0.002 (0.005) 0.069∗∗ (0.031)

D.lbdi−t−1 -0.004 (0.005) 0.028 (0.032)

D.lop+
t -0.052∗∗∗ (0.014) 0.144 (0.242)

D.lop+
t−1 -2.6e-04 (0.014) 0.114 (0.240)

D.lop+
t−2 0.017 (0.013) 0.145 (0.230)

D.lop−
t 0.006 (0.012) 0.467∗∗ (0.199)

Continued on next page
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Table 3.10 – Continued from previous page

D.lprodt D.lbdit D.lopt

D.lop−
t−1 -0.001 (0.013) 0.326 (0.219)

D.lop−
t−2 0.009 (0.012) -0.014 (0.200)

(a1)
t 3.9e-04∗∗∗ (1e-04) -0.005∗∗ (0.002) 8.6e-04 (6e-04)
(a0)
Constant 1.691∗∗∗ (0.289) 2.195∗∗∗ (0.668) -0.110 (0.166)

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

‡Lower-bound and upper bound critical values are based on Kripfganz et al. (2018)
that covers a broader model specification and can be used for any number of
short-run coefficients.

In Panel (iii) of Table 3.10, the long-run equilibrium relationship is pre-

sented for the three equations. In the first column of Panel (iii), the long-run

equilibrium for world oil production indicates two main things. First, the

coefficient is negative and significant for the positive oil shock, while being

positive but not significant for the negative oil shock. Second, the estimated

coefficients are very small; a 1% increase in oil price relates negatively with oil

production by 0.03%, while a 1% decrease in oil price relates positively with oil

production by 0.02% (which is not significant). In the second column of Panel

(iii), the estimated long-run equilibrium for BDI shows two things. First, BDI

indicates a positive and significant relationship with the positive oil shock. A

1% increase in oil price relates positively to the BDI by 0.53%. Second, BDI

indicates a weak and insignificant relationship with the negative oil shock. A

result similar to that of oil production equation is obtained, indicating that

both supply and demand have a stronger link to positive oil price shock than

to negative oil price shock.

In the third column of Panel (iii), the estimated long-run equilibrium for

crude oil price indicates that the three equations generally report a positive

relationship between oil price and oil demand, and a negative relationship

between oil price and oil production, which is as expected. There are however
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two exceptions. First, a positive relationship between oil production and

negative oil price shock is implied by the model of oil production, and second,

a negative relationship between oil demand and negative oil price shock is

implied by the model of oil demand. Nonetheless, these relationships are weak.

Crude oil price indicates a stronger link with the positive and negative supply

shocks than with the positive and negative demand shocks.

Turning to consistency of the magnitude of the estimated long-run relation-

ship across the three equations, this is expressed in Equations 3.29-3.33 for the

supply and oil price relationship, and Equations 3.34-3.38 for the demand and

oil price relationship. These equations in the error correction form represent

the cointegrating vectors on how the positive and negative shocks of supply,

demand, and oil prices are related in the long run. To elaborate on the elasticity

of price to demand and supply change comparison process, Equations 3.29-3.33

express the long-run relationship between oil price and supply. This is derived

from three single equations: Equations 3.29 and 3.30 are based on the supply

equation in second column, Panel (iii) of Table 3.10; Equations 3.31 and 3.32 on

the demand equation derived from the third column, Panel (iii); and Equation

3.33 is based on the price equation in fourth column, Panel (iii).

The interpretation of the coefficient estimates in Equations 3.29-3.30

represent how supply relates to the positive and negative oil price shocks in the

long run. Similar to the magnitudes in the long-run relationship of symmetric

ARDL earlier, production relates to the positive and negative oil price shocks in

a small magnitude in terms of percentage, as shown in the first line of Equation

3.29 (0.029 and 0.017, respectively). The sample variance is small relative

to the sample mean for partial positive and negative supply shocks. Thus, a

1% response can be greater in terms of the sample. By way of example, the

consistency of the magnitude of the estimated long-run relationship is checked

by comparing the coefficient of -33.973 in Equation 3.29 (positive supply) with

the coefficient of -11.172 in Equation 3.33 (price). Price impact’s magnitude
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is thus three times that of positive supply. By then comparing the other

coefficients between the equations, it may be identified which of the three gives

the largest magnitude, which offers a consistency check.

lprodt−1 = −0.029 lop+t−1 + 0.017 lop−t−1

⇐⇒ lop+t−1 = −33.973 lprodt−1 + 0.586 lop−t−1 (3.29)

⇐⇒ lop−t−1 = 59.553 lprodt−1 + 1.706 lop+t−1 (3.30)

10.020 lprod+t−1 + 4.668 lprod−t−1 = −0.533 lop+t−1 + 0.142 lop−t−1

⇐⇒ lop+t−1 = −18.815 lprod+t−1 − 8.765 lprod−t−1 + 0.266 lop−t−1 (3.31)

⇐⇒ lop−t−1 = 70.466 lprod+t−1 + 32.828 lprod−t−1 + 3.754 lop+t−1 (3.32)

lopt−1 = −11.172 lprod+t−1 − 9.825 lprod−t−1 (3.33)

0.021 lbdi+t−1 + 0.020 lbdi−t−1 = 0.029 lop+t−1 − 0.017 lop−t−1

⇐⇒ lop+t−1 = 0.729 lbdi+t−1 + 0.677 lbdi−t−1 + 0.586 lop−t−1 (3.34)

⇐⇒ lop−t−1 = −1.278 lbdi+t−1 − 1.187 lbdi−t−1 + 1.706 lop+t−1 (3.35)

lbdit−1 = 0.533 lop+t−1 − 0.142 lop−t−1

⇐⇒ lop+t−1 = 1.878 lbdit−1 + 0.266 lop−t−1 (3.36)

⇐⇒ lop−t−1 = −7.033 lbdit−1 + 3.754 lop+t−1 (3.37)

lopt−1 = 0.535 lbdi+t−1 + 0.569 lbdi−t−1 (3.38)

Likewise, Equations 3.34–3.38 express the long-run relationship between oil

price and demand, which comes from three single equations: Equations 3.34

and 3.35 are based on the supply equation in second column, Panel (iii) of

Table 3.10; Equations 3.36 and 3.37 on the demand equation derived from BDI
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equation in third column, Panel (iii); and Equation 3.38 on the price equation.

Comparing, for example, the coefficient of 1.878 in Equation 3.36 (positive

demand) to the coefficient of 0.535 in Equation 3.38 (price impact), then the

impact of price is 3.5 times larger in magnitude than that of positive demand.

By comparing the other coefficients between the equations, it may be identified,

as a consistency check, which out of the three gives the largest magnitude.

Taking oil price as the dependent variable, the impacts on oil price of

positive and negative demand shocks are greater than those exerted by supply

shocks. From Equations 3.37 and 3.38 it may be seen that oil price needs to

increase 13 times per unit of negative change in BDI. The coefficient is negative

for the positive and negative supply shocks on price for all three equations

(refer to Equations 3.29 and 3.31). The sign for the relationship that positive

and negative supply shocks have on negative change in oil price is positive

(refer to Equations 3.30 and 3.32), implying that a decrease in oil price relates

positively to supply shock, which also reflects a negative relationship. The

coefficient is positive for positive and negative demand shocks on price (refer

to Equations 3.34 and 3.36). Likewise, a negative sign for the relationship that

positive and negative demand shocks have on negative change in price means

that a decrease in oil price negatively relates to demand shock. These signs do

not represent causality, but the interaction across positive and negative shocks

when they deviate from long run equilibrium.

Panel (iv) of Table 3.10 shows the short-run dynamics of the three equa-

tions. The first column indicates that the coefficients of demand in the supply

equation are small. It implies that supply exhibits a limited contemporaneous

response to demand shift. The coefficients of oil price in the supply equation

are also small. Supply responds negatively to the positive oil price shock by

0.05% for a 1% increase in oil price. In contrast, in the second column, large

coefficients of supply in the demand equation imply that demand responds

rapidly (contemporaneously) to the supply shock, and this is more so for a pos-
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itive supply shock than for a negative supply shock. Global demand responds

rapidly to a negative oil price shock. A 1% decrease in oil price increases global

demand by 0.47%. In the third column, the impacts of negative shocks in

supply and demand on the oil price are significant. Oil price responds more

rapidly to supply and demand disruptions than to positive supply and demand

shocks.

The adjustment factors are reported in Panel (ii) of Table 3.10. Adjustment

factors for the three equations are all negative and statistically significant, which

means that the estimated relationships are stable in their error correction forms.

When the world oil production is 1% higher than the long-run equilibrium level,

it decreases by 0.17% in the subsequent period. If the BDI is 1% higher than

the long-run equilibrium level, it decreases by 0.10% in the subsequent period.

Finally, when the oil price is 1% higher than the long-run equilibrium level, it

declines by 0.04% in the subsequent period.

The sign and magnitude of the three equations is examined for consistency

as illustrated in Figure 3.4-3.6. The three equations have consistent signs but

differ in their magnitudes depending on the partial positive or negative changes.

Crude oil price relates negatively with oil production and positively with BDI,

and oil production relates positively with BDI. Figure 3.4 shows that a larger

magnitude of price adjustment is required for the positive supply shock (as

shown by the solid line), and a larger supply adjustment is necessary to adjust

to a positive price shock (as shown by the dashed line). A larger oil price

adjustment is also required to adjust to a negative demand shock (as shown by

the solid line) and a larger demand adjustment is needed for the positive oil

price shocks (as shown by the dashed line), as illustrated in Figure 3.5. Figure

3.6 shows that supply needs a similar adjustment to positive and negative

demand shocks (as shown by the solid line), and that demand requires a larger

adjustment for the positive supply shock (as shown by the dashed line).

Table 3.11 presents NARDL model with a structural break in error cor-
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Figure 3.4: Oil price and supply adjustment

Figure 3.5: Oil price and demand adjustment

rection form. The model with a break in January 2009 shows the presence

of the long-run equilibrium relationship as indicated by the rejection of the
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Figure 3.6: Oil supply and demand adjustment

Bounds test at 1% significance level for all three equations in Panel (i) of Table

3.11. The NARDL results confirm consistency with NARDL without a break

in terms of the sign of the coefficients. The adjustment factor (−α) in Panel

(ii) is negative and statistically significant for all equations, which indicates

the stable relationship for the dependent variable to respond when the three

variables deviate from long-run equilibrium. The long-run coefficients (θ) also

have consistent signs with the model without a break. In the long run, both

positive and negative demand shocks are significant on the crude oil price.

Their magnitudes are nearly similar, causing no dominant effect on oil prices

by either positive or negative demand shocks. In the long run, the positive

shocks of supply and oil prices are significant on demand.
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Table 3.11: NARDL estimation with a structural break in error-correction form
for world oil production, BDI, and crude oil price

D.lprodt D.lbdit D.lopt

(i) Case 5

Bound Test H0: no level relationship
F-stat‡ 7.399∗∗∗ 7.189∗∗∗ 9.744∗∗∗

t-stat‡ -5.978∗∗∗ -5.678∗∗∗ -5.976∗∗∗

(ii) Adjustment factor (-α)‡

lprodt−1 -0.175∗∗∗ (0.030)
lbdit−1 -0.150∗∗∗ (0.028)
lopt−1 -0.085∗∗∗ (0.014)

(iii) Long-run (θ+
′

j , θ−
′

j )

lprod+
t−1 7.303∗∗ (3.445) -4.505∗ (2.381)

lprod−
t−1 5.939 (3.891) -1.275 (2.463)

lbdi+t−1 0.021∗ (0.012) 0.698∗∗∗ (0.112)

lbdi−t−1 0.015 (0.012) 0.751∗∗∗ (0.196)

lop+
t−1 -0.029 (0.018) 0.780∗∗∗ (0.226)

lop−
t−1 0.038 (0.024) -0.257 (0.574)

(iv) short-run (ψy,i, ω
+′

j , ω−′

j , ψ+′

xj,i, ψ
−′

xj,i, γ0, γ
+
j , γ

−
j )

D.lbdit−1 0.132∗∗ (0.051)

D.lopt−1 0.417∗∗∗ (0.047)

D.lopt−2 -0.052 (0.048)

D.lprod+
t 1.209 (1.565) 0.341 (0.606)

D.lprod−
t 0.887 (1.492) -1.685∗∗∗ (0.546)

D.lbdi+t 0.001 (0.006) 0.058 (0.039)

D.lbdi+t−1 -0.005 (0.006) -0.008 (0.039)

D.lbdi−t 0.003 (0.005) 0.097∗∗∗ (0.030)

D.lbdi−t−1 -0.004 (0.005) 0.013 (0.032)

D.lop+
t -0.054∗∗∗ (0.014) 0.088 (0.241)

D.lop+
t−1 -0.002 (0.014) -0.006 (0.240)

D.lop+
t−2 0.015 (0.014) -0.035 (0.232)

D.lop−
t 0.010 (0.012) 0.484∗∗ (0.205)

Continued on next page
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Table 3.11 – Continued from previous page

D.lprodt D.lbdit D.lopt

D.lop−
t−1 -5.17e-04 (0.013) 0.455∗∗ (0.219)

D.lop−
t−2 0.012 (0.012) 0.157 (0.207)

bt 0.038 (0.026) 34.960∗∗ (14.941) 14.722∗ (8.005)

b*lprod+
t -3.057∗∗ (1.334) -1.238∗ (0.724)

b*lprod−
t -5.140∗∗ (2.122) -2.325∗∗∗ (0.649)

b*lbdi+t -3.9e-04 (0.004) -0.096∗∗∗ (0.026)

b*lbdi−t 7.48e-04 (0.003) -0.074∗∗∗ (0.018)

b*lop+
t -0.008 (0.006) -0.192 (0.126)

b*lop−
t -0.008 (0.005) -0.094∗ (0.105)

(a1)
t 4.86e-04∗∗∗ (1.47e-04) -0.006∗∗ (0.003) 0.002∗∗ (8e-04)
(a0)
Constant 1.762∗∗∗ (0.304) 3.005∗∗∗ (0.828) -0.147 (0.236)

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

‡Lower-bound and upper bound critical values are based on Kripfganz et al. (2018)
that covers a broader model specification and can be used for any number of
short-run coefficients.

Figure 3.7 illustrates the dynamic multipliers of oil supply, global demand,

and crude oil price. The blue asymmetry line indicates the cumulative impact of

the partial positive and negative changes. The green and red lines respectively

represent the cumulative impacts of a positive and negative unit change. In the

figure, the red line refers to a long-run decrease (negative value of the long-run

negative effect) for a more straightforward interpretation of the asymmetric

effects.

The asymmetry line in Figure 3.7a shows that both positive and negative oil

price changes following supply reduction have a greater magnitude for positive

change than for negative. The oil production impacts appear to be greater

after a positive change in demand in the short run. However, the accumulated

impacts of positive and negative changes in demand do not substantially differ
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in the long run. The similar magnitudes cause the overall effect of cumulative

global demand on world oil production to be more symmetrical. Figure 3.7b

illustrates that positive supply shock has a dynamic impact on demand that

is greater than the impact of a negative supply shock. However, the effect of

the oil price shock on global demand shows that a positive oil price shock has

a positive impact on demand. In contrast, a negative oil price shock initially

has a negative effect on demand, but the effect turns positive after 16 periods.

Figure 3.7c shows that negative supply change has a greater positive impact on

oil price than that exerted by positive supply change in the short-run (i.e., up

to around 20 periods). However, in the long run, a positive supply shock has

a negative impact on oil prices that is greater than the positive impact of a

negative supply change. The oil price impacts appear to be greater for negative

demand change than for positive demand change in the short run. However,

there is no substantial difference in the accumulated impacts of positive and

negative demand change in the long run.

Figure 3.8 illustrates the dynamic multipliers of oil supply, global demand,

and crude oil price for the NARDL model with a break in January 2009.

Comparing it with the model without a break, the asymmetric effects in the

model with a structural break are larger, particularly the positive shocks of oil

price and production on global demand and the positive supply shock on the

oil price. The positive and negative global demand shocks are significant but

are symmetric.

The asymmetry line in Figure 3.8a shows that positive demand effects

on supply are larger than the negative demand changes in the short run. In

the long run, the accumulated impacts of positive changes in demand appear

to be larger than the negative demand shocks on supply. The negative oil

price changes have a slightly larger magnitude on supply than the positive

shock but are overall insignificant. Figure 3.8b illustrates that a positive supply

shock impacts demand more than a negative supply shock. The effect of the



3.5. Empirical result: the relationship between world oil
production, demand, and crude oil price 149

oil price shock on global demand shows that a positive oil price shock has a

positive impact on demand. In contrast, a negative oil price shock initially has

a negative effect on demand, but the effect turns positive after ten periods.

The overall asymmetric effects of oil price on demand are negative for the first

five months, then turn positive. Figure 3.8c shows that positive supply change

has a greater negative impact on oil price than negative supply change in the

short-run (i.e., up to around 20 periods). The oil price impacts appear slightly

greater for negative demand change than for positive demand change in the

short run. However, there is no substantial difference in the accumulated effects

of positive and negative demand change in the long run.

To sum up, having taken into account the joint null hypothesis of no long-

run asymmetry relationship, the crude oil price exerts a statistically significant

long-run asymmetrical effect on world oil supply, which is mainly caused by

the positive shock of oil price. The fact that the effect is only seen in the long

run is plausible as it is difficult to adjust production volume in the short run in

response to sudden fluctuations in the global oil market. Crude oil price also

has an asymmetric effect on global demand, with a significant impact exerted

by positive oil price shock. World oil supply, and in particular partial positive

changes to this, has significant asymmetric effects on global demand in the

long run. Meanwhile, the long-run effects of global demand shock on the world

oil supply have a more symmetrical effect. Global oil supply and demand also

have symmetric effects on crude oil price in the long run.
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(a) Asymmetric effects of global demand and oil price on world oil supply

(b) Asymmetric effects of world oil supply and oil price on global demand

(c) Asymmetric effects of oil market variables on crude oil price

Figure 3.7: World oil supply, global demand, and oil price dynamic multipliers



3.5. Empirical result: the relationship between world oil
production, demand, and crude oil price 151

(a) Asymmetric effects with a structural break of global demand and oil price on
world oil supply

(b) Asymmetric effects with a structural break of world oil supply and oil price on
global demand

(c) Asymmetric effects with a structural break of oil market variables on crude oil
price

Figure 3.8: World oil supply, global demand, and oil price dynamic multipliers
with a structural break
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3.6 Conclusion

This chapter attempts to address two research questions: what is the

relationship between crude oil supply, demand, and oil prices? And how do

positive and negative shocks in the crude oil price affect oil supply and demand

differently? In answering these research questions, this study contributes to

the existing literature in three ways. First, the previous studies examine only

short-run dynamics using first differences, whereas this study examines long-run

relationships by applying the variables in levels. Second, the stationarity of

the variables is carefully tested using a Fourier approximation-based unit root

test that can accommodate the presence of structural breaks in variables. Most

existing studies pay little attention to the stationarity of the variables in their

application of the standard unit root test. This risks losing power when the

series contains structural breaks. Furthermore, taking possible breaks in a time

series into account is essential when choosing the appropriate empirical model.

The unit root test indicates that crude oil price and BDI are non-stationary

whereas world oil production is stationary. Thus, the ARDL model is applied

to overcome the issue of mixed non-stationary and stationary variables. Third,

this study examines the asymmetric effects in the relationship between global

oil supply, demand, and crude oil price by applying the NARDL model.

The basic model of ARDL, interpreted with error correction, distinguishes

long-run equilibrium from short-run dynamics relationships. The result finds a

long-run relationship between global oil supply, demand, and crude oil price.

In the long run, an increase in real oil prices is associated with a decline in

world oil production and an increase in BDI. Furthermore, an increase in BDI is

associated with increases in crude oil price and world oil production in the long

run. When adjustment factors are compared across oil production, BDI, and

oil price equations, it is evident that oil price must adjust more when the three

variables deviate from the long-run equilibrium. In terms of short-run dynamics,
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the results imply that global oil supply and demand significantly affect crude

oil price. Also that, oil prices significantly affect supply and demand, with a

larger effect on demand in the short run.

The NARDL model accommodates the asymmetric effect by decomposing

changes in the global oil production, BDI, and crude oil price into partial

positive and negative changes. The NARDL error correction result finds a

significant relationship among the three variables in the long run. Both supply

and demand show a stronger link to a positive oil price shock than to a negative.

Crude oil price relates negatively to the partial positive and negative supply

shocks, and it relates positively to the partial positive and negative demand

shocks. The oil price link to the positive supply shock is stronger than it is to

the negative one, whilst its link to the positive demand shock is as strong as

its link to the negative shock.

Turning to the relationship between supply and demand in the long-run

equilibrium, supply links as strongly to the positive demand shock as it does

to the negative one. The magnitude of the effect from a positive demand shock

is similar to that from a negative demand shock, which means that the link

between partial shocks is similarly balanced. Demand relates positively to

positive and negative supply shocks, and it has a stronger link to a positive

supply shock. The adjustment factor in the NARDL model requires more

adjustment for demand when the three variables deviate from the long-run

equilibrium. For the short-run dynamics of NARDL, the crude oil price impacts

appear to be greater for demand changes that are negative than if they are

positive. Demand impact is larger for negative oil price change. In contrast,

supply impact is greater for positive oil price change, but is rather modest in

magnitude.

The estimated asymmetric effects are consistent with the economic theory

that an oil price increase is more significant to the economy than an oil price

decrease. The empirical analysis in this chapter emphasises the supply-side
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role, which has been underestimated in most current literature. A long-run

relationship between oil supply, demand, and oil price should be acknowledged,

even if the crude oil price has little effect on world oil production in the short

run. Analysing asymmetric effects is essential for understanding whether a

positive or negative shock has a more dominant and significant impact on

the global oil market in the short and long run. This analysis is beneficial

because it allows industry to anticipate oil price fluctuation due to either a

drop in the short-run global supply and demand or a surge in long-run supply.

The asymmetric analysis allows oil producers and industrial manufacturers to

initiate an appropriate response to the fluctuated oil price in the short run. In

the long term and in response to the high oil price, the security of supply needs

more attention to ensure that supply can meet global demand. In addition, the

analysis is useful for assessing whether to immediately produce and sell more

crude oil, or to hedge the price of crude oil production.

Two major events, COVID-19 and the Russia-Ukraine war happened in

2020 and 2022, respectively, after the thesis chapter was drafted. It would

be interesting to examine their impacts on the global oil market for further

research. Extending the observations to mid-2022 may have a few consequences,

such as additional break dates in the temporal dynamics of each series and

the relationship across oil production, demand, and oil price. Extending data

sets may also affect the magnitudes of the asymmetric effects caused by many

negative shocks throughout the observations. One of the potential challenges

for such an extended analysis is that the break dates that occurred at the end of

the sample period (e.g. Russia-Ukraine war) cannot be identified promptly due

to the insufficient observations after a specified break date in the sub-sample.

The researcher will have to wait for enough observations to be included in the

last possible break date. In addition to further research, uncertainty is one of

the factors that can affect the relationship between supply, demand, and price.

Further analysis of uncertainty and the oil market is discussed in Chapter 4.



Chapter 4

Global oil market uncertainty, oil

exploration, and crude oil price: an

application of Google Trends

4.1 Introduction

Crude oil is critical to industry; thus, fluctuations in the crude oil price

play a significant role in national and global economic growth and downturn.

Over time, the behaviour pattern of the crude oil price is idiosyncratic. In the

1990s it was stable. It then began an upward trend from the turn of the century

until 2008. From 2008 to 2010 there were extreme fluctuations caused by the

Global Financial Crisis (GFC) and the Great Recession. In 2011, after these

dramatic periods, crude oil prices remained stable until mid-2014, when there

was another fluctuation episode which lasted until 2016. It then settled down

until the end of 2019, when there was another period of fluctuation which has

lasted to date. The most recent lowest price point for crude oil was in April

2020, when the WTI spot price was -37 USD per barrel and the Brent spot

price was 9 USD per barrel.

155
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A growing literature identifies the underlying causes of crude oil price

behaviour. Kilian (2009) argues that the oil price surge has, as its underlying

cause, the type of shock being experienced. Kilian (2009) also emphasises

the importance of the global aggregate demand to the crude oil price. That

is, demand corresponds to a strong economy. He also notes the impact of

precautionary demand, which is the demand that refers to concerns about

shortages in future supply. The types of shock and their consequential effects

are not the same across the various episodes of turbulence. For instance, the

increase in the crude oil price after 1979 was due to a combination of strong

demand and a rise in precautionary demand. However, the oil price jump after

2003 was mainly driven by strong demand. Baumeister and Kilian (2016b)

investigate the decline in the crude oil price from mid to end 2014 and conclude

that there are predictable and unpredictable components causing the decline.

The predictable components reflect the slowdown of the global economy and the

expected oil production surplus. Meanwhile, the unpredictable components are

associated with a combination of oil price expectation shock (via a drop in oil

inventories) and the unpredictable economy. Hence, some crude oil fluctuation

episodes are associated with uncertainty.

Given the role played by uncertainty in oil price volatility, the measures

of uncertainty have received considerable attention in the recent literature. In

a broader definition, the term ‘uncertainty’ refers to the unexpected outcome

of various future circumstances that might apply to the economy, the financial

markets, and geopolitical sectors. Three main approaches have been identified

in the existing literature as measuring uncertainty as a transmission channel

that affects crude oil price volatility. First, financial market-based uncertainty;

second, macroeconomic uncertainty; and third, economic and policy uncertainty.

However, there is no particular method and approach for measuring uncertainty

as it specifically relates to oil demand and supply. The financial uncertainty

typically approaches this by utilising a stock market volatility index as a proxy
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for measuring uncertainty, such as the crude oil volatility index (the so-called

OVX index) which represents the near term option price of the crude oil as priced

by the United States Oil Fund. In the current macroeconomic and political

fields, current studies have two approaches for measuring uncertainty. The first

is an indirect measure based on volatility in the forecasting of macroeconomic

variables (Jurado et al., 2015; Rossi and Sekhposyan, 2015; Scotti, 2016) and

the second is a direct measure of the public interest in discussions taking

place in the media, particularly newspapers, reports, and the internet (Davis,

2016; Baker et al., 2016). Such public interest is measured by the frequency of

keyword use.

In the global oil market, uncertainty reflects market concern about unex-

pected oil demand and supply; this concern affects the behaviour of the market,

particularly in relation to the decision-making process about investments, such

as oil exploration activity. In this study, the scope of uncertainty is not limited

to speculation for the purpose of gaining future profit by crude oil hedging. It

is more about unexpected circumstances in the short term, and the dramatic

events that have attract public interest and consequences for the oil market.

There is no exact procedure to measure the specific type of global oil mar-

ket uncertainty that arises from supply and demand. It is therefore crucial

to supplement the extant literature with an exploration of the interlinkage

between oil market uncertainty and global oil market variables. From this,

understanding can be gained, particularly for investors and decision-makers,

about the uncertainty effects. Therefore, in a thorough examination of the

global oil market framework, it is essential to take into account market concerns

about supply and demand uncertainty and to examine how they affect the

global oil market.

As the literature has not yet established an uncertainty measure specific

to the oil market and its linkages to oil exploration, this study proposes to

create a Google Trends-based uncertainty measure (i.e., the GTU index) for the
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global oil market. It analyses the effects of the GTU index on oil exploration

and crude oil price. This study aims to answer three research questions. First,

what difference might the construction of a more refined GTU index make to

the literature and its findings? Second, what precisely do these GTU indices

measure, and how do their measurements compare to those of the existing

indices? Third, what is the relationship between uncertainty, crude oil price,

and exploration?

Google Trends, a Google product, is one of the new direct measures of

uncertainty. Google Trends captures, for a particular time and region, the

number of searches made using a specific search term, which it can then rank

according to its popularity. Now that internet technology is in the maturity

stage, the broader public regard a web-based search engine as one of the

most convenient ways of gathering news and updates. Google remains the

most popular and widely used search engine. The notion of constructing an

uncertainty index based on Google Trends is that the search index reflects

public interest by measuring how frequently the public seek out information

using this web-based search engine when there is uncertainty. The higher the

uncertainty surrounding a particular topic or keyword, the more likely it is that

the public will access the internet to search for it, and thus the frequency of the

keyword will rank higher in Google Trends. Google trends thereby measures the

direct observations of individuals’ spontaneous behaviour towards uncertainty.

Google is the search engine platform that is, globally, most widely used.

It is thus capable of capturing global public interest, and it generates a large

number of observations. The data provided by Google Trends, as well as being

directly observable, are free to access and publicly available. Furthermore,

Google Trends has sufficient flexibility for it to be applied in various sectors,

including the specific oil market field. Finally, GTU indices are, relatively

speaking, easier to construct than the other uncertainty benchmarks that

require extensive computational demand. It is therefore understandable that
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the literature on uncertainty measures has been extended from its traditional

newspaper-base into an internet-based proxy, and also that the benefits and

flexibility offered by the Google Trends-based approach have seen its utilisation

as an index measuring uncertainty in the macroeconomic and financial market

literatures for specific countries (for details, see Da et al. (2011); Dzielinski

(2012); Castelnuovo and Tran (2017); Tran et al. (2019); Bilgin et al. (2019)).

Meanwhile, the current established literature focuses on five primary out-

comes. First, there is a growing literature on the construction of macroeconomic,

financial, and policy uncertainty measures. However, the literature developing

an uncertainty proxy specifically for the global oil market remains scarce. To

date, oil market uncertainty has been approached by looking at oil price volatil-

ity, utilising stock market indices and forecast-based oil prices. Second, the

existing research in GTU has focused on crude oil price as a single component

(see Qadan and Nama (2018); Li et al. (2019)) when constructing the basic GTU

index. This approach is too restrictive to be an effective uncertainty measure

as it neglects other related factors in the global oil market, most particularly

supply and demand. Third, the focus of existing research mainly discusses the

consequences of oil production, oil demand, and crude oil price shock on the

uncertainty indices; it does not look at the effects of uncertainty on the global

oil market. Only a small number of studies analyse the relationship between

uncertainty and the global oil market (Kang and Ratti, 2013; Kang et al., 2017;

Qadan and Nama, 2018). In assessing the global oil market, the extant studies

approach uncertainty through a financial, macroeconomic, or policy uncertainty

proxy instead of by identifying a specific proxy for the oil market that reflects

oil supply and demand. Fourth, the existing studies analyse the uncertainty

effects on the macroeconomy, stock market, and crude oil production. The

effects of uncertainty on world oil exploration have not yet been explored. Fifth,

the construction of uncertainty indices and their application have thus far been

for a specific country (e.g. U.S., Australia, Italy, Turkey, and New Zealand).
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As yet, no index of oil market uncertainty has had the capacity for worldwide

application.

This research contributes to filling the gap in the existing studies in three

ways. First, by its construction of a GTU that is a proxy measure of uncertainty

specifically related to the global oil market. This research also extends the

current literature by accommodating oil price as a single entity uncertainty

measure and also by incorporating oil investment, oil supply, and oil demand

as the main components of the measures in the proposed GTU indices. Second,

after explaining how the indices are constructed, this study then compares

the results obtained from the GTU indices to those of the existing uncertainty

measures. From this, the study examines whether the GTU indices can offer

a new approach for proxying global oil market uncertainty. Third, this study

analyses the GTU oil market uncertainty effects on two specific oil market

variables: oil exploration and crude oil price. This fills a gap not only in the

oddly scant literature on oil market specific uncertainty but also in the literature

on oil exploration. Furthermore, this research utilises worldwide data rather

than data related to a specific country; it thus has greater generalisability than

the findings from the current country-specific literature.

This study constructs the GTU oil market specific indices by extending

the work of Guo and Ji (2013); Qadan and Nama (2018); Li et al. (2019)

using the procedure proposed by Castelnuovo and Tran (2017). As well as

the basic GTU index that incorporates a single oil price component (hereafter,

‘GTU oil price’), there are two more refined types of GTU index proposed

in this study. The first type relates to specific components. Thus, there are

indices for GTU oil investment, GTU oil supply, and GTU oil demand, with

each component being distinguished. The second type aggregates the three

distinguished components into one comprehensive uncertain measure, termed

the ‘GTU oil market specific’ index. Within the scanty oil market uncertainty

literature, some studies construct GTU based on the basic index only, which
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means the uncertainty measure is restricted to only one component. While

the basic index from Google Trends has already been applied as a proxy of oil

market uncertainty (see (Qadan and Nama, 2018; Li et al., 2019)), these studies

utilise either ‘oil price’ and its variant (‘price of oil’) or ‘Brent’ as the search

term in Google Trends. This does not take into consideration other factors

that might affect the global oil market. This approach is highly restrictive

and limits the measure of global oil market uncertainty. Guo and Ji (2013) is

the only paper that constructs GTU for oil demand. However, their choice of

search terms does not actually reflect oil demand. For instance, their study

utilises the phrase ‘oil production’ for the GTU oil demand component, which

is inappropriate given that oil production reflects oil supply rather than oil

demand.

This study applies Granger Causality and the Vector Autoregressive (VAR)

framework to analyse the effect of the GTU index as a measure of uncertainty

in oil exploration and the crude oil price in the short run. Crude oil price is one

of the main indicators in the global oil market. The base model applies the U.S.

real acquisition cost of imported crude oil price as the global oil price proxy,

while the Brent real oil price is applied for the robustness test. Oil exploration

is an important parameter for measuring investment activity in the oil market

sector. Furthermore, and as argued in the well-established literature (Kellogg,

2014; Toews and Naumov, 2015), oil exploration significantly responds to crude

oil price. This research will examine how oil market uncertainty affects global

oil exploration with dominant non-conventional and conventional oil resources.

Oil rig counts, representing global oil exploration, will be distinguished into

North America (i.e., the U.S. and Canada) oil rig counts because of the shale

oil boom in North America since the 2000s, and rest of the world rig counts

(dominated by traditional oil exploration).

The findings of this research confirm that GTU indices hit high points at

times when dramatic circumstances occurred; such occurrences would therefore
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be an interesting warning indicator. The uncertainty shocks are evident in

the public reaction to three remarkable fluctuations in crude oil price over

the past two decades. These followed the GFC and recession during 2008–09,

an oil price drop in 2015–16, and the Coronavirus pandemic in 2020. The

newly proposed GTU has positive and high correlation values with existing

uncertainty benchmark indices; for example, the correlation with OVX oil

volatility index is 0.83, while the correlation with macroeconomy uncertainty

index proposed by Jurado et al. (2015), JMU, is 0.74. The positive and high

correlation between GTU and the existing benchmark indices, particularly

OVX and JMU, confirm the ability of the GTU index to capture dramatic

events that lead to uncertainty shocks.

The unidirectional Granger causality from uncertainty to crude oil price

is found in most of the uncertainty indices. This study also finds causality

from most of the uncertainty indices to world oil exploration, but not for the

North American oil exploration. This finding can be seen as conventional

world oil exploration being more affected than non-conventional exploration

by uncertainty. The tight oil exploration activity typical of the U.S. tends to

exploit the big size of oil fields at the beginning of the boom era. Exploration

activity declines over time and is more focused on continuing with existing

projects rather on making new discoveries. Hence, uncertainty does not affect

new exploration activity much in North America. The causality from crude

oil price to oil exploration in all uncertainty models is expected. Exploration

responds more than production to crude oil price fluctuation in the short run

(Toews and Naumov, 2015; Kilian, 2009; Kilian and Murphy, 2014).

The impulse response functions show that uncertainty affects oil explo-

ration and crude oil price. The unanticipated increase in GTU index causes a

significant decline in world oil exploration, but it is less significant for North

American oil exploration. The crude oil price shocks have a significant and

positive response on world and North America oil exploration. The unexpected
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rise in GTU index also causes a negative response on the crude oil price. Com-

pared to the benchmark uncertainty indices, the newly proposed GTU indices

better explain the variability in oil exploration and crude oil price. Overall,

uncertainty shocks contribute more to variability in world oil exploration than

to variability in North America oil exploration. GTU oil supply contributes 14%

to world oil exploration while the highest contribution to the North America

oil exploration is made by GTU oil market specific, and that is only 6%.

This chapter is organised as follows. Section 4.2 discusses the literature

on the well-established uncertainty indicators, which are set as the benchmark.

Section 4.3 describes the existing uncertainty benchmark measures and global

oil market data. Section 4.4 goes into detail about how the proposed GTU

indices measure uncertainty. Section 4.5 presents the VAR framework. Section

4.6 presents empirical analysis on the relationship between uncertainty, world

and North American oil exploration, and crude oil price. Section 4.7 concludes

the chapter and suggests potential avenues for future research.
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4.2 The literature on uncertainty measures and

contribution of the study

The impact uncertainty has on various economic, financial, and geopoliti-

cal activities has prompted the academic literature to focus on how to measure

uncertainty. However, there is no universally accepted methodology for quan-

tifying uncertainty. The well-established literature measures uncertainty in a

variety of ways based on the financial markets, forecasting, and public interest.

The financial market-based uncertainty measures apply various options,

futures contracts, and other asset products to the exchange market. Forecast-

based measures include estimating forecast error, standard deviation, or the

variance of the variable of interest (see, for instance, Elder and Serletis (2010);

Bachmann et al. (2013); Jurado et al. (2015); Rossi and Sekhposyan (2015);

Jin (2019); Ahmadi et al. (2019)). Finally, the public interest measure relies on

capturing the trends in behaviours reflecting market concern, which includes

how frequently the public discuss and react to certain topics reported by the

media. The source of data for this measure might be a country report, or

newspaper-based (Baker et al., 2016; Davis, 2016; Ahir et al., 2018; Caldara

and Iacoviello, 2018), or internet-based (Dzielinski, 2012; Guo and Ji, 2013; Ji

and Guo, 2015; Bontempi et al., 2016; Castelnuovo and Tran, 2017; Qadan and

Nama, 2018; Li et al., 2019; Tran et al., 2019; Shields and Tran, 2019). The

main notion is that the discussion of certain popular topics attracts attention

from the public, leading them to seek out information about those topics. A

higher public tendency to access such information reflects a higher degree of

uncertainty.

Returning to the literatures on the financial uncertainty measures, the

most common such measure is the stock market index. One of the typical indices

commonly used, particularly in the oil market, is the crude oil price volatility
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Figure 4.1: The Uncertainty Benchmark Measures for full sample period

OVX index. The OVX index measures short-term (i.e., 30-day) volatility in the

market’s expectation of the WTI price traded in the United States Oil Fund

(CBOE, 2020). The oil volatility index has the advantage of measuring market

behaviour as it relates to investment portfolios; thus, it can capture periods

when investors are uncertain about the oil price. However, not all the volatility

in the stock market index is a reflection of uncertainty. The fluctuation of the

index can be associated with the heterogeneity of the risk and return assessment

of the asset portfolio. Figure 4.1 shows that significant spikes in the OVX index

may be seen in December 2008, February 2015, February 2016, and April 2020.

The graph illustrates the high financial uncertainty occurring during the Great

Recession of 2007–09, the crude oil price downturn in early 2015 and 2016,

and the Coronavirus pandemic peak in April 2020. The graph also indicates
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Figure 4.2: The Uncertainty benchmark measures for sample period: May 2007-April
2020

that the financial uncertainty index reaches a peak when the crude oil price

fluctuates either in the high or the low state.

Macroeconomic uncertainty has been widely discussed in the literature

through both direct and indirect measures of macroeconomic variables. The

direct measure reflects the directly observable uncertainty events perceived by

the public; for instance, via newspaper or internet-based uncertainty indices.

The country report or newspaper-based indices focus more on how the media

or journalists interpret and write the news, whereas the internet-based index

focuses on the individual actions of the news recipients, which reflect how they

perceive the news (Bontempi et al., 2016). As regards the indirect measures of
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uncertainty, these are derived from a latent process that is independent of any

observable economic indicators (Bontempi et al., 2016). For example, Jurado

et al. (2015) construct their macroeconomic uncertainty index based on the

conditional volatility of the forecast value of various macroeconomic categories.

This particular forecast-based method requires the input of large datasets

and it has the advantage of reducing bias in the sampling. However, the

forecast-based method is not directly linked to uncertainty as a function of

public interest. Furthermore, it requires intensive computational resources

to treat the data (Bontempi et al., 2016). Compared to the OVX index,

Jurado’s macroeconomic uncertainty index produces fewer and less frequent

spikes and it is less volatile, but it tends to capture business cycle episodes with

larger magnitudes and more persistent effects. As shown by Figure 4.1, the

macroeconomic uncertainty index indicates four significant spikes in December

1974, April 1980, October 2008, and April 2020. These peaks are associated

with the 1973–75 recession, the early 1980s recession, the Great Recession of

2007–09, and the Coronavirus pandemic peak in April 2020. Like financial

market uncertainty, macroeconomic uncertainty reaches high points when crude

oil prices are in a high or low state.

The policy uncertainty index has been proposed by Baker et al. (2016) and

extended by Davis (2016) via a newspaper-based direct measure. The index is

made up of the relative frequency of three words related to economic, policy,

and uncertainty terms in newspapers of 21 countries; the chosen countries are

those that contribute for two-thirds of global output. For the global measure,

Davis (2016) extends the work of Baker et al. (2016) by weighting the GDP

average of each country. The newspaper-based uncertainty index has the benefit

of being a directly observable measure of public reaction to a particular topic

or event covered by the media. However, it requires the researcher to have

access to the newspaper archives and to use a specific tool to count the words.

Compared to the other uncertainty indices, as shown in Figure 4.1, the global
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economic policy uncertainty index exhibits many peaks with upward trends

in September 1998, September 2001, March 2003, October 2008, August 2011,

September 2015, June 2016, January 2017, December 2018, August 2019, and

April 2020. These peaks correspond respectively with the Asian Financial

Crisis, the 9/11 attack, Iraq invasion by the U.S., the Great Recession, the

Eurozone crisis of mid-2011 to early 2013, the Chinese stock market bubble of

mid-2015 to early 2016, the Brexit referendum, U.S President Trump’s election,

the U.S dollar debt risk to emerging markets (Kupelian and Jakeman, 2018),

the U.S-China trade tension (IMF, 2019), and the Coronavirus pandemic.

Other uncertainty measures include geopolitical and world uncertainty

indices. The geopolitical risk index proposed by Caldara and Iacoviello (2018)

is a newspaper-based index focusing on global tensions, including military,

war, threats, and nuclear incidents. As shown in Figure 4.1, the significant

peaks occurred in April 1986, January 1991, October 2001, March 2003, and

January 2020. These are associated with the nuclear accident at the Chernobyl

plant, the Gulf War of 1990–91, the 9/11 attack, the Iraq invasion of 2003,

and the U.S-Iran tension of 2020. The world uncertainty index proposed by

Ahir et al. (2018) is a country report-based index measuring the general term

of uncertainty as captured by the Economist Intelligence Unit through the

keyword ‘uncertainty’. This index has fewer peaks, in terms of both magnitude

and frequency, than the other uncertainty indices. These occur in May 2003,

December 2012, and January 2020, corresponding with the SARS outbreak, the

Iraq invasion, the eurozone debt crisis, and the early phase of the Coronavirus

pandemic.

The financial, macroeconomic, and global economic policy uncertainty

indices all capture two significant spikes of uncertainty: the Great Recession of

2007–09 and the Coronavirus pandemic peak in April 2020. The uncertainty

indices are also high when crude oil prices are extremely high, such as during

the oil crisis and the recession in 1973–74, the Iranian revolution in 1979, the
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Iran-Iraq war and the recession in 1980, and the Great Recession of 2007–09.

But they are also high when oil prices in low such as during the oil price drop

in early 2015–16 and Coronavirus pandemic in early 2020.

The literature on oil price behaviour also emphasises some episodes when

oil price fluctuation has much more significant effects on the economy compared

to other episodes. Immense contributions made by oil price shocks to the U.S

macroeconomy prior to the 2008 were seen during the oil crisis in 1973–74, the

Iranian revolution in 1979, and the Gulf War in 1991 (Gronwald, 2008; Hamilton,

2011). This view indicates that uncertainty, oil prices, and the economy may

reinforce each other. However, the financial market uncertainty index is the

only index that captures uncertainty during the crude oil price downturn in

early 2015–16. To align the indices with the specification of their measures, it

can be noted that the geopolitical risk index captures political events and is

thus not directly capable of capturing the significant breaks in economic-related

events, while the world uncertainty index measures various forms of general

uncertainty ranging from global outbreaks to domestic economic and political

uncertainty.

Despite this array of uncertainty measures, there is no specific uncertainty

measure for the global oil market. Some of the established literature defines

uncertainty as related to market expectation, precautionary demand, and

speculation on forward-looking price; examples of these include the work of

Apergis and Miller (2009); Kilian (2009); Alquist and Kilian (2010); Kaufmann

(2011), and their extensions (Baumeister and Peersman, 2013; Fattouh et al.,

2013; Kilian and Murphy, 2014; Yin and Zhou, 2016; Jin, 2019). The expectation

of the future market is associated with concern about the lack of future supply

and its higher future price, which trigger the market to make immediate

purchases of crude oil. This research believes that the spread of the future price

can predict the current price, and views uncertainty as speculation to gain

profit. Thus, the most common proxy used to measure oil price uncertainty
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is crude oil inventory, which refers to the crude oil stock above ground. The

existing studies also approach oil market uncertainty through the variance of

the oil price forecast, as proposed by Elder and Serletis (2010). These authors

measure oil price uncertainty as to the standard deviation of in the forecast error

of oil price changes by applying the Generalised Autoregressive Conditional

Heteroskedasticity (GARCH) framework. Baumeister and Peersman (2013),

on the other hand, argue that uncertainty is derived from the greater oil price

volatility that stimulates the crude oil options in the derivative market. Jo

(2014) also models the oil price uncertainty through the volatility of the forecast

error with but uses the stochastic volatility approach rather than the GARCH

process. Kellogg (2014) applies future options of the oil price as a measure of

oil price uncertainty.

The remaining uncertainty literature takes a very different approach

to those outlined above for defining oil market uncertainty. It interprets

uncertainty as public reaction, captured by the internet, to certain dramatic

circumstances, which leads to oil price fluctuation. This measure derives a

news-based direct measure of uncertainty from the widely used web-based

search engine, Google. Google has created a product called Google Trends,

which captures the popularity of certain keywords (hereafter referred to as

search terms) relative to other ‘Googled’ search terms.

However, the extant implementations of Google Trends-based uncertainty

(GTU) mostly measure macroeconomic uncertainty (Bontempi et al., 2016;

Castelnuovo and Tran, 2017; Tran et al., 2019; Shields and Tran, 2019) and

economic-financial uncertainty (Da et al., 2011; Dzielinski, 2012; Bilgin et al.,

2019). For example, Da et al. (2011) use the GTU index to capture the stock

market and conclude that an increase in GTU financial market uncertainty

contributes to higher stock price. Dzielinski (2012) captures economic uncer-

tainty based on GTU and finds a significant relationship with the stock market

return. Bontempi et al. (2016) construct a GTU index for the macroeconomy
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from macroeconomy-related search terms, which is in line with previous work

by Baker et al. (2016). The authors apply the VAR framework to examine the

relationship between GTU index and U.S. macroeconomic variables and find

that uncertainty significantly reduces output in the short term.

Castelnuovo and Tran (2017) construct the GTU macroeconomic index for

the U.S and Australia. Their work confirms the positive correlation between

their GTU index and the existing uncertainty measure for both countries. They

also conclude that uncertainty causes a significant increase in the unemployment

rate and a reduction in price. In an extension of the work of Castelnuovo and

Tran (2017), Bilgin et al. (2019) develop GTU economic and financial indices for

Turkey and conclude that an increase in GTU macroeconomic shocks decreases

the stock market return and increases the interest rate and unemployment

rate. Tran et al. (2019) and Shields and Tran (2019) extend the works of

Bontempi et al. (2016) and Castelnuovo and Tran (2017) by investigating

macroeconomic uncertainty at different regional levels. Shields and Tran (2019)

use disaggregated data on U.S. state-level uncertainty and find a heterogeneous

effect of uncertainty in the macroeconomy due to variations in fiscal policy

and industry composition. Tran et al. (2019) propose a GTU index for the

New Zealand macroeconomy and conclude that the GTU index is capable of

predicting the GDP of New Zealand.

Meanwhile, the few contributions made by Google Trends-based indices

to the extant oil market literature are limited to work by Guo and Ji (2013),

Ji and Guo (2015), Qadan and Nama (2018), and Li et al. (2019). Current

studies incorporate Google Trends to approach the crude oil market in two ways.

First, by constructing a basic measure that has oil price as its only component.

Second, by incorporating specific events that may lead to oil price fluctuation.

Such studies use Google Trends to examine the effects of market concerns

on the various oil price markets. For example, Guo and Ji (2013) apply oil

price, oil demand, financial crisis, and the Libyan war as the market concerns
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captured by the GTU to measure short- and long-run relationships with the

Brent price. They extend this research by investigating the oil market through

oil-related event search terms. Thus, ’Hurricanes’ are a proxy for supply shock,

’global financial crisis’ proxies for aggregate demand shock, and the ’Libyan

war’ and ’OPEC conferences’ proxy for precautionary demand (Ji and Guo,

2015). Qadan and Nama (2018) apply Google Trends for the search term ’oil

price’ and its variants, such as ‘crude oil’ and ‘price of oil’. They regard this

as an alternative investment sentiment indicator and examine its causality on

oil returns. Li et al. (2019) use ’Brent’ as the search term in Google Trends

to measure public concerns about various oil price markets, namely the WTI,

Brent, Dubai, and Daqing oil markets.

4.2.1 Uncertainty and crude oil price

The extant literature commonly applies the VAR framework or its exten-

sions to address the following two types of research questions. The first analyses

the predictability of uncertainty to oil market variables. Thus, Baumeister

and Kilian (2016b) apply reduced form VAR to predict the cause of the oil

price decline between mid to end 2014 and argue that inventories contribute

to the unpredictable components of the decline. The second examines the

relationship between uncertainty and other variables of interest by decomposing

their variances into the shocks contributing to other variables. Such studies

focus more on the effect of oil market shocks (e.g., oil price and oil production

shocks) on uncertainty rather than on the consequences of uncertainty shocks

for the global oil market. For example, Kang and Ratti (2013) find that an oil

price increase due to precautionary demand is associated with an increase in

the U.S. economy and policy uncertainty. However, a crude oil price increase

due to global demand causes a decline in uncertainty.

Meanwhile, Degiannakis et al. (2018) do not support the argument that oil

price shock leads to higher uncertainty, but rather argue that the uncertainty
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response to oil price shock is time-varying, having a short- to medium-run

positive response at the beginning of the sample and a negative response

in the latter part of sample. Furthermore, they find that the response of

the uncertainty indices to oil price shock is heterogeneous. The positive

response derives from macroeconomy uncertainty, the negative response derives

from financial and commodity-related uncertainty, and economic and policy

uncertainty has no response to oil price shock. They also argue that the

relationship between uncertainty and oil price in the long term is insignificant.

A few of the contributions that examine the effect of uncertainty on the

crude oil price find that the crude oil price responds negatively to uncertainty

shocks in most of the sampled period, with some positive responses only in

specific periods. For instance, Bekiros et al. (2015) confirm that economic policy

uncertainty can forecast crude oil price changes. Li et al. (2019) investigate the

various types of investor attention indices, including Google Trends, and find

unidirectional Granger causality from investor attention to the WTI oil price.

Kang and Ratti (2013) find that between eleven and fifteenth months after

the shock, oil price has a significant negative response to economic and policy

uncertainty. Aloui et al. (2016) also apply an economic policy uncertainty

index and investigate its effect on the crude oil price return. They find that

uncertainty has a positive effect on the crude oil return prior to the global

financial crisis and Great Recession. However, over the entire sample, the crude

oil return responds negatively to the uncertainty shock.

An increase in uncertainty triggers lower productivity and, in consequence,

a lower demand for crude oil. Bloom (2009) uses the simulated method of

moments model for firm-level data arguing that a higher uncertainty makes firms

pause the hiring and investment activity temporarily, generating a rapid drop

and rebound in output, employment, and productivity growth. Jurado et al.

(2015) use hours worked and industrial production instead of labour productivity

and find that a large macro uncertainty shock leads to a decline in production
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hours and employment. Macro uncertainty explains much larger during a

recession than expansion. By applying forward refining margin volatility from

future prices of commodities as the market uncertainty measure, Dunne and Mu

(2010) find that an increase in market-level uncertainty reduces the probability

of investment in the US oil refinery, which supports the finding of Dixit and

Pindyck (1994) through their real-options approach that uncertainty causes

the delay in the investment decision making. Empirically, they find that the

probability of investment is reduced by 11% for one standard deviation of

refining margin uncertainty.

The work of Antonakakis et al. (2014) supports the significant negative

response of crude oil price to the economic policy uncertainty shock. Qadan and

Nama (2018) apply some sentiment indicators, one of which is the sentiment

index developed by Baker and Wurgler (2007). The other indicators are the

financial stress index, OVX, and VIX. They find that the oil price response to

these indicators is a significant decrease. Qadan and Nama (2018) also find that

oil price responds temporarily and negatively to the Consumer Confidence Index,

and positively to economic policy uncertainty and the consumer sentiment

index.

Qadan and Nama (2018) confirm that there is a bidirectional Granger

causality between GTU oil price for the U.S. and oil price returns. Guo and

Ji (2013) find a significant short-run relationship between GTU for oil-related

events, namely the financial crisis and the Libyan war, and the Brent oil

price. Following their earlier study, Ji and Guo (2015) conclude that the

uncertainty effects on crude oil price are contingent on the type of uncertainty

event. Market concerns related to financial crisis and an increase in OPEC

production, as measured by GTU, cause a significant negative response in oil

price returns; meanwhile, GTU shocks due to hurricanes, the Libyan war, and

OPEC production cuts lead the positive response on oil price returns volatility.
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4.2.2 Uncertainty and economic activity

The existing literature mainly discusses the impact of uncertainty on

investment as part of economic activity. There are two main conclusions from

this discussion. First, as found by Antonakakis et al. (2016), uncertainty can

predict investment. This study finds that economic policy uncertainty is able to

predict sustainable returns to investment, particularly after the global financial

crisis period. Second, there is a negative relationship between uncertainty and

investment, with an increase in uncertainty triggering a decline in investment

activities.

Most of the studies approach investment activities through macroeconomy

indicators such as industrial production, GDP, expenditure, and employment

rate. Sadorsky (1999) argues that oil price and oil price volatility play significant

roles in economic activity (proxied by industrial production and GDP) between

January 1986 and April 1996. Oil price volatility causes a decline in company

earnings; this is associated with the role of oil as a production cost. Bloom

(2009) applies stock market volatility index as the proxy of uncertainty and

concludes that higher uncertainty causes firms to pause their investment activity.

Jo (2014) concludes that oil price uncertainty causes a significant drop in real

activity, which is proxied by industrial production. Jurado et al. (2015) find that

their macroeconomic uncertainty index is correlated with real activity proxied

by industrial production, working hours, and employment; they also find that

an increase in the uncertainty index reduces real activity. Davis (2016)’s finding

also supports the view that uncertainty shock decreases industrial production,

which represents a country’s economic activity.

Some of the studies consider expenditure decrease to be a measure of

economic activity slowdown. Elder and Serletis (2010) look at crude oil fore-

casting dispersion and conclude that higher uncertainty in oil prices leads to a

steep decrease in mining expenditure. Leduc and Liu (2016) argue that a rise
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in uncertainty shock behaves like a negative aggregate demand shock, which

drives a decline in investment expenditure. Moore (2017) finds that higher

uncertainty decreases the growth in machinery and equipment investment.

Uncertainty shocks exert economic activity impacts that are of different

magnitudes and lengths depending on the type of uncertainty. Extending

the work of Jurado et al. (2015), Ludvigson et al. (2015) find that not all

uncertainty measures are alike; a financial market uncertainty shock causes

a sharp and persistent decline in the business cycle, whereas macroeconomic

uncertainty responds endogenously to a business cycle shock. Supporting the

Ludvigson et al. (2015) findings, Ahmadi et al. (2019) argue that oil price

uncertainty has different effects on investment and that these depend on the

source of uncertainty. Uncertainty in oil price driven by the global demand

causes a negative response on investment. Financial market uncertainty causes

a negative effect on investment with a one-year lag. Basu and Bundick (2017)

argue that financial market uncertainty shocks worsen the large drop in output

and investment during the Great Recession. Caldara and Iacoviello (2018)

also examine the relationship between uncertainty and the U.S. economy and

conclude that uncertainty in geopolitical risk causes a decline in U.S. investment

for up to one year after the shock.

Meanwhile, there are only a few studies that investigate uncertainty shocks

on the global oil market, particularly oil exploration. Cortazar et al. (2003)

argue that uncertainty in price and geological aspect leads to the shut- down

of investment in natural resources. The investment schedule is affected by

current expectation of the price and by technical exposure; the schedule can

be paused and resumed at any point depending on cash flow. Baumeister and

Peersman (2013) contribute to the oil exploration literature by concluding that

oil price volatility increases the uncertainty that leads to the postponement of

investment in exploration and development. Kellogg (2014) finds and argues

that firms reduce their drilling rate in response to oil price volatility.
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As for the relationship between oil price and investment activity, the

current research finds a positive relationship between these two measures. A

rise in oil price leads to an increase in investment activity. Elder and Serletis

(2010) confirm that the higher oil price induces a dramatic rise in mining

expenditure. In the global oil market, Toews and Naumov (2015) apply a

structural VAR and find that a 10% rise in crude oil price increases global

drilling activity by 4%. Khalifa et al. (2017) apply a quantile regression

framework and also argue that a positive relationship exists between oil price

returns and changes in rig counts, with a lag of one quarter. Chen and Linn

(2017) measure oil investment using drilling rig as the proxy, and conclude that

drilling rigs respond positively to the future oil price; this however is mainly

found in the regions dominated by private oil companies.

4.2.3 Contribution of the study

This study is intended to answer three research questions. First, what

difference will the construction of a more refined GTU index make to knowledge

about the effect of uncertainty on the global oil market? Second, what precisely

do such GTU indices measure and how do they compare to the existing

uncertainty indices? Third, how does oil market uncertainty affect the global

oil market variables, most particularly crude oil price and oil exploration?

The GTU index is more appealing than the standard uncertainty measure

used in the literature in a few ways. First, the GTU index is constructed

based on the relevant terms in the oil market, which distinguishes it from the

existing indices that mainly utilise macroeconomics, financial, and political

variables in their construction. Second, the GTU index is constructed in a more

nuanced index, accommodating supply, demand, and investment than the basic

oil price index, as indicated in earlier studies. Third, the GTU data source has

a more adjustable frequency (daily, weekly, monthly, and annually) and region

to generate, which has more comparative advantage than the macroeconomics-
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based index, some of which are published quarterly. Comparing the GTU

index and the financial-based uncertainty index, both can be obtained daily,

but since OVX is based on oil price volatility only, it does not consider other

components such as oil demand, supply, and investment. Another advantage,

constructing the GTU index is less numerical and relatively simple than other

indices requiring a heavy computational procedure. The GTU data source is

free and publicly accessible, making it more flexible for the public to measure

interest within a specific time and region. Fourth, for further empirical analysis,

oil exploration is taken into account in its relationship with the GTU index and

oil price to understand how uncertainty affects the oil market, as exploration

responds stronger to oil price shocks than production.

The first contribution of this study is to shed light on the uncertainty

literature by proposing a GTU index that is specific to the global oil market

and that covers oil supply, demand, and investment. Following construction

of the indices, this study compares them with the existing uncertainty indices.

This research provides a more refined and specific index as a measure of oil

market uncertainty measure; it thus fills the gaps in the literature on oil market

uncertainty. The current approach to oil market uncertainty relies on the

forecast-based index of oil price and oil inventory, or on other uncertainty

indices such as macroeconomic, financial, and economic policy indices. These

are not designed to directly or specifically measure how uncertainty impacts on

oil market variables.

The second contribution of this study is its analysis of the performance

of the GTU indices. These are constructed for basic GTU oil price and three

independent components: oil supply, oil demand, and investment. The fifth

and final index aggregates all components into one oil market-specific index. By

accommodating these components, the GTU indices can not only encompass

the critical role played by supply and demand in the oil market but can also

produce a more robust estimation of what precisely the indices measure.
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While the existing measures construct a Google Trends-based index for

the oil market, these have significant limitations. The first index is based

on a simple measure of oil price as a single component (see, for instance,

Qadan and Nama (2018) and Li et al. (2019)). Their GTU indices are based

on the Google Trends search term ‘oil price’ and its variants (e.g., ‘brent’).

This type of basic Google Trends index does not take into account the supply

and demand factors. Therefore, the shortcomings of this approach are its

restrictiveness and the possibility of bias. The second index used by the extant

literature approaches the GTU oil market by references to specific events that

have occurred over time. The work of Guo and Ji (2013), which is the most

comprehensive work carried out so far on the GTU oil market, utilises this type

of index. Their study proposes four factors as the components to construct four

types of market concerns: oil price, oil demand, financial crisis, and the Libyan

war. However, there are difficulties with the search terms they have chosen for

the oil demand component. First, they include ‘oil production’ as part of the

oil demand component; this is inappropriate and causes misinterpretation. Oil

production is associated with the amount of oil being drilled from the oil fields

for transportation, storage, and supply. Therefore, ‘oil production’ would be a

more suitable proxy for oil supply rather than oil demand. Second, they also

include ‘oil consumption’ in the oil demand component. Crude oil demand is

not the same as oil consumption. Crude oil demand refers to the raw crude

oil required for the economic activity, with much of it going to storage; oil

consumption, on the other hand, encompasses the final products of refineries

and other processing plants. These do not reflect raw crude oil. Hence, crude

oil demand is better proxied by economic activity indicators such as industrial

production, the Baltic Dry index, and Kilian (2009)’s real economic activity

index. Third, the search term ‘gas price’ is used in the oil price component.

Again, this is not suitable. It would be more appropriate to define a new

component of energy price in the construction of the index rather than to

include ‘gas price’ in the oil price category.
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The choice of the Libyan war and the OPEC conference as the precaution-

ary demand proxies by Ji and Guo (2015) also has shortcomings. Precautionary

or speculative demand in crude oil is not the main motive behind the Libyan

war, which was actually driven by political tension. Hence, this proxy is not

directly associated with the crude oil price precautionary demand. Furthermore,

OPEC conferences result in a decision to increase or cut the production quota.

OPEC decisions are therefore more suitable indicators of supply shock rather

than of precautionary demand shock.

The third contribution of this research is that it analyses the effect of

uncertainty on the global oil market and takes into account oil exploration as

a parameter of the global oil market that is extremely scarce in the existing

literature. Furthermore, applying the disaggregated data for North America

and world oil exploration gives more insight into how countries with dominant

non-conventional oil production methods respond differently from the rest of the

world to oil price shocks. This study chooses oil exploration proxied by the oil

rig count to represent investment activity. The rig count is not only a measure

for drilling activity, which obviously determines future oil production, it is also

an important indicator widely used in the industry to measure sentiment. Oil

exploration is far more responsive than oil production to a crude oil price shock;

as such, it is a factor with clear importance for crude oil pricing.

The current literature focuses on the impact of global oil market shocks

on uncertainty, and discusses crude oil production rather than exploration,

save for one stream of literature that discusses the uncertainty effect on the

macroeconomy. Kang and Ratti (2013) and Kang et al. (2017) focus on the

effect of the economic policy uncertainty shocks on crude oil production. The

crude oil production response is different from the oil exploration activity

because it is not easy to adjust world oil production. It therefore tends to

have little or no response to uncertainty shocks in the short run. It is therefore

unsurprising that Kang and Ratti (2013) find that economic policy uncertainty
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shock does not significantly affect crude oil production. However, the U.S. oil

production responds differently to world oil production, with a shortage of

world production triggering the U.S. production (Kilian, 2009). Kang et al.

(2017) extend Kang and Ratti (2013)’s work by disaggregating the data for U.S.

and non-U.S. crude oil production. While non-U.S. oil production does not

respond to an economic policy uncertainty shock, U.S. oil production responds

positively in the short run to such uncertainty shocks.

Lastly, the newly proposed GTU index is an oil market uncertainty index

that has worldwide scope rather being restricted to a specific country. The

extant literature constructs its indices for specific countries (i.e., the U.S,

Australia, Italy, New Zealand, and Turkey), which significantly reduces their

generalisability, and rules them out for use in an investigation of the global

measure of uncertainty.

The macroeconomic, financial, and economic policy uncertainty indices

will be used as the benchmark indices in this study to compare the behaviour

and performance of the newly proposed GTU index for the oil market. First,

this study examines the correlation between the proposed GTU oil market

indices and the benchmark indices. Second, this study investigates the response

of the uncertainty benchmark indices to the global oil market shocks. Third, it

examines whether the response of the GTU indices to global oil market shocks

aligns with the well-established literature.
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4.3 Uncertainty measures and oil market data

This study constructs the Google Trends-based Uncertainty (GTU) mea-

sure for the global oil market and then identifies how the various uncertainty

measures relate to each other and to oil market data. The uncertainty measures

proposed by this work are the GTU indices, and the benchmark indices are

the Crude Oil Exchange Traded Fund (ETF) Volatility index (OVX), Jurado’s

macroeconomy uncertainty index (JMU), and the Global Economic and Pol-

icy Uncertainty (GEPU) index as the benchmark indices. All uncertainty

benchmark series are depicted in Figures 4.1 and 4.2.

The OVX index is a stock market-based index of the near-term crude oil

price volatility in the United States Oil Fund. The index is provided daily by

the CBOE and is available from the website of the Federal Reserve Bank of St.

Louis.1 OVX measures the performance of WTI spot price changes and thus,

it can be utilised as a short-term stock market uncertainty benchmark. The

JMU index measures U.S. macroeconomic uncertainty based on the conditional

volatility of unforeseen macroeconomy variables. This index is obtained from

Jurado et al. (2015) and is updated on Ludvigson’s website.2

The GEPU index measures the economic and policy uncertainty of 21

countries weighted by their average GDP. The chosen countries are those that

contribute to two-thirds of global output. Each specific country’s EPU index

is measured via a process developed previously by Baker et al. (2016), and it

involves counting in each country’s newspaper articles the relative frequency of

set terms related to ‘economic’, ’policy’, and ’uncertainty’. The GEPU index

was constructed by Davis (2016) and is updated on the website of Baker, Bloom
1CBOE crude oil ETF volatility indices are retrieved from FRED, Federal Reserve Bank

of St. Louis; https : //fred.stlouisfed.org/series/OV XCLS.
2Jurado et al. (2015) macroeconomic uncertainty indices can be retrieved from https :

//www.sydneyludvigson.com/data − and − appendixes particularly in the link: UNCER-
TAINTY DATA: Updated macro, real, financial uncertainty indexes 1960:07-2019:12.
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and Davis.3

Section 4.4 illustrates the construction of the various specifications of

the GTU indices. These are GTU oil price (GTUop), GTU oil market-specific

(GTUoms), GTU oil investment (GTUoi), GTU oil supply (GTUos), and GTU

oil demand (GTUod). The raw data is obtained from Google Trends, and the

GTU indices are constructed by extending Castelnuovo and Tran (2017) work

specific to the oil market field.4

The oil market data consist of oil exploration and crude oil price. Ex-

ploration is measured by the number of oil rig counts for the world (rigw)

and for North America (rigna), which are obtained from the Baker Hughes

rig counts. 5 This research disentangles oil rig counts into North America

(i.e., the U.S. and Canada), and the rest of the world. The reason behind the

disaggregation is that non-conventional shale oil has dominated the U.S. and

Canada since 2000, affecting both exploration and production activities. Thus,

this study distinguishes the effects for countries dominated by non-conventional

oil resources from those of countries with conventional oil resources.

The rig count data series for the rest of the world consists of the number of

active drilling rigs for exploring or developing oil. The data cover the majority

of the world’s oil exploration and production, excepting the U.S. and Canada,

and do not include gas and miscellaneous drilling purposes. Also excluded from

the data series are specific countries characterised by civil and political tensions

such as Iran, North Korea, Sudan, mainland China, Russia, the Caspian region,

Sudan, Cuba, and Syria. The North America rig counts consist of U.S. and

Canada oil rig counts, and again do not include gas and miscellaneous drilling.
3Baker, Bloom and Davis’s website publish various specification of EPU in-

dices in their website https : //www.policyuncertainty.com/index.html. For global
EPU indices, it comes from the link: Download Global EPU Data in https :
//www.policyuncertainty.com/media/Global_Policy_Uncertainty_Data.xlsx.

4Google Trends is retrieved from https : //trends.google.com/trends/?geo = GB.
5Oil rig counts are available in Baker Hughes rig count website; https :

//rigcount.bakerhughes.com/static−files/7cd718fb−605d−45a0− b0f7−6a4060aff3c8
for rest of the world and https : //rigcount.bakerhughes.com/static − files/6b00c4d1 −
5592− 4f11− 8124− 3a98cb30a173, for North America.
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Crude oil price (op) is measured by the U.S. real acquisition cost of

imported crude oil, the price being obtained from the U.S. Energy Information

Administration (EIA). The series is expressed in real value after being deflated

by U.S. CPI from the U.S. Bureau of Labor Statistics to incorporate the rate

of inflation.6 Figure 4.3 shows the time series of oil market variables.

The empirical analysis utilises monthly data from May 2007 to April 2021

for the OVX model and from March 1998 to April 2021 for the JMU and GEPU

models. The newly proposed GTU empirical model utilises the sample period

from January 2004 (when Google Trends data first became available) to April

2021. All variables are in log differences since uncertainty is associated with a

short term effect. Thus, taking log differences does not cause a problem as the

long-run relationship is not the main interest in this chapter.

This study also applies Geopolitical Risk (GPR) and World Uncertainty

Index (WUI) series for the for the purposes of testing correlation among the

various uncertainty indices. The GPR index is a newspaper-based index that

incorporates terms related to geopolitical conflict in 11 international papers.

It is constructed by Caldara and Iacoviello (2018) at monthly intervals. The

WUI index is a text mining-based index that computes the term ’uncertain’ as

reported by the Economist Intelligence Unit for 143 countries. The WUI index

is generated by Ahir et al. (2018) at quarterly intervals. The updated GPR and

WUI data series are retrieved from the website of Baker, Bloom and Davis.7

6Crude oil price is retrieved from https : //www.eia.gov/outlooks/steo/realprices/ with
the CPI data is from https : //www.bls.gov/cpi/tables/supplemental − files/historical −
cpi− u− 202005.pdf (for all urban consumers).

7GPR indices are updated in Baker, Bloom and Davis’s website with the download
link: https : //www.policyuncertainty.com/gpr.html and WUI indices are in https :
//www.policyuncertainty.com/wuiquarterly.html.
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(a) World oil rig counts

(b) North America oil rig counts

(c) Crude oil prices

Figure 4.3: World oil rig counts, North America oil rig counts, and crude oil
prices
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4.4 Google Trends-based Uncertainty (GTU) in-

dices: construction, comparison, and discus-

sion

The main objective of this study is to propose GTU indices as new

alternative indices for the global oil market. They measure uncertainty from

freely accessible sources using a simple and relatively straightforward data

treatment. The fundamental idea is when the public are interested in certain

topics, particularly when there is uncertainty, they seek out specific information

through a Google web search. Google Trends capture the relative frequency of

specific search terms in comparison to the overall sample of search terms for a

particular time and region. The higher the level of uncertainty, the higher the

value of the search term in Google Trends.

The second objective of this research is to compare the trends disclosed

by the newly proposed GTU indices against those of the other well-established

uncertainty indices. This will be discussed in the next section. Finally, the

third objective is to analyse how existing uncertainty benchmark indices and

how different GTU index specifications affect the global and North American

oil markets through exploration activity and crude oil price. This analysis is

presented in the empirical section.

This study approaches uncertainty as the observable measure of public

interest in the global oil market as demonstrated through internet access. The

focus of this research is to construct a measure of uncertainty via public concern;

this measure is thus more direct than the forecast-based measure. The proposed

new uncertainty index is associated with current significant events that, rather

than affecting future market expectation, affect the global oil market in the

short-term. Google Trends shows the frequency of certain search terms relative

to the total number of user queries. The more intensely the public accesses
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Google to look for certain search terms indicates the level of public interest in

those particular words, and thus the level of public uncertainty about them.

4.4.1 The newly proposed GTU indices

This section outlines the construction of the newly proposed GTU indices.

There are three specifications of the GTU index proposed in this study. First,

GTU oil price is proposed as the underlying index that measures public uncer-

tainty about oil price. The GTU oil price is the most straightforward index as it

applies ’oil price’ as the only search term in its construction. The second index

measures uncertainty for oil investment, oil supply, and oil demand. The third

uncertainty measure is oil market-specific. The second and third specifications

make a novel contribution to the existing literature that applies a basic index

of oil price uncertainty (Guo and Ji, 2013; Qadan and Nama, 2018; Li et al.,

2019). Another contribution of this research is that it utilises a basic GTU oil

price as the benchmark, which it extends into more refined multi-components

specific to the oil market.

There are a few reasons why the term ‘oil’ is preferred to ‘petroleum’ in

obtaining Google search volume. Comparing ‘petroleum investment’ and ‘oil

investment’ from January 2004 to May 2022 indicates that ‘oil investment’

fluctuates more than ‘petroleum investment’ when there are major events (i.e.,

a Major explosion at BP’s Texas and a major earthquake hit Fukuoka, Japan in

March 2005, Global Financial Crisis in June 2008, Coronavirus in April 2020) as

depicted in Figure 4.4a. Secondly, comparing ‘petroleum exploration’ and ‘oil

exploration’, Figure 4.4a shows the search term ‘oil exploration’ also fluctuated

more than ‘petroleum exploration’, particularly in June 2008. Both search

terms captured a small peak in February 2016. The search term ‘petroleum

exploration’ has been stable, except in May 2012. Hence, in this case, using

the search terms ‘oil’ represents more public interest by its fluctuation than

using the search term ‘petroleum’. Besides, petroleum is the refinery product
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(a) Search term ’petroleum investment’ and ’oil investment’

(b) Search term ’petroleum exploration’ and ’oil exploration’

Figure 4.4: Search term ’petroleum’ and ’oil’ comparison in Google Trends

of crude oil, so ‘oil ‘ is closer to the term ‘crude oil’ if the interest is to study

crude oil exploration and investment.

The methodology of generating the second and third specifications of the

indices follows the procedure by Castelnuovo and Tran (2017). Equations 4.2

and 4.3 illustrate the step, with some authorial modification of the rescaling

procedure and notation. The initial step is to identify the search terms for

each uncertainty specification. The choice of search terms is based on their

relevance to the oil market. In order to construct GTU oil investment, GTU oil

supply, and GTU oil demand, the multi-search terms described in Table 4.1 are

applied, together with ’oil price’ as the benchmark search term. The following
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specification constructs GTU oil investment, GTU oil supply, and GTU oil

demand as three independent indices. The final specification aggregates these

three components into a more refined and comprehensive index called GTU oil

market-specific.

Table 4.1: Base Search Terms for GTU Oil investment, GTU Oil Supply, and
GTU Oil Demand

Category Search Terms

GTU oil investment oil investment oil exploration oil project drilling
GTU oil supply oil supply oil production shale oil OPEC
GTU oil demand industrial production global economy economic growth recession

GTU index measures public interest; it is intensified when major events

occur during a specific period. In uncertain times, people search on the internet

more frequently, leading to the high value of the index. For example, when

there is a pandemic, oil prices drop for a couple of months, and the average

monthly price reached 19 USD per barrel in April 2020. The public is interested

in searching for ‘oil price’, and it shows that in April 2020, Google Trends for

search term ‘oil price’ is 100, which is the maximum value. Following the drop

post-COVID-19, oil price increased and reached above 100 USD per barrel

in March 2022, and the GTU index also peaked at 81. The other example is

during Global Financial Crisis, GTU peaked in October 2008 when oil price

fluctuated from 169 USD per barrel in June 2008, then a sudden drop to 49

USD per barrel in December 2008. The GTU index peaks when the oil prices

fluctuate, particularly when extremely low oil prices exist. Thus, the GTU

index acts as the bridge between public interest and uncertainty.

The following sub-section describes the construction of the basic GTU oil

price index and the GTU indices for oil investment, oil supply, oil demand, and

oil market-specific. All the indices rely on values generated by Google Trends,

where yi,j is the relative frequency of search term i in the group of words j,fi,j

is the highest point in a particular time and region fj. Google Trends rescales

the relative frequency value to a range of 0 to 100. The value 100 reflects the
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most popular term compared to other terms in the specific search group. For

words that are less popular than other words, Google Trends generates their

value as ’< 1’, while words with insufficient data are designated as 0. This

study uses the ’worldwide’ search region, given that it examines the global

oil market. The frequency chosen is monthly frequency from January 2004 to

April 2020.

yi,j = 100
fi,j

max(fj)
(4.1)

4.4.1.1 GTU oil price

The basic GTU index that applies a single search term or phrase was

introduced to the existing literature for the primary purpose of forecasting,

particularly in macro-finance fields. Qadan and Nama (2018) examine the

popularity of the single phrase ’oil price’, and its variants ’crude oil’ and ’price

of oil’ in Google Trends to reflect investor sentiment in response to the crude oil

price volatility returns. Similarly, Campos et al. (2017) use the search term ‘oil

prices’ and find that Google Trends search volume indices have a positive and

statistically significant relationship with the crude oil implied volatility indices

(OVX). Other research uses search terms other than ‘crude oil’. For example,

Li et al. (2019) apply the single term ’Brent’ as the keyword and analyse its

causality effect to various types of crude oil price. Afkhami et al. (2017) utilise

the most popular energy commodities-related keywords from Google Trends as

proxies for investor attention, and investigate their capability to predict energy

commodity prices.

In this study, the basic GTU oil price will be used as the benchmark

for the more advanced global oil market indices. To generate a basic index

for GTU oil price, the search term i in Equation 4.1 refers to ‘oil price’. In

this case, it is a single search term with no comparison against other search

terms. Therefore the group of words j is no longer applied. GTU oil price finds

the value generated by Google Trends for ‘oil price’ in the ‘worldwide’ group
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Figure 4.5: GTU oil price index

(a) GTU oil price index and crude oil
price

(b) GTU oil price index and rig counts

Figure 4.6: GTU oil price index and global oil market variables

from January 2004 to April 2020 and applies this for further empirical analysis.

Figure 4.5 shows that there is one peak between January 2004 to July 2014,

two peaks between August 2014 to November 2019, and a final peak in April

2020. Specifically, the first peak was in October 2008 with a peak value of 55,

the second and third were in January 2015 (value of 49) and January 2016

(value of 57). The last peak was also the highest, being in April 2020 with the

maximum possible value of 100.

The graphical analysis, as depicted in Figure 4.6a, shows that Google

Trends captures high search frequency for ’oil price’ by internet users in periods

when oil prices fluctuated. Crude oil price reached a high peak of 150 USD per

barrel in July 2008; this was caused by strong global demand. It hit low values

of 49 USD per barrel and 30 USD per barrel during the economic slowdown

in January 2015 and the drop in the global stock market in January 2016
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respectively, and hit the lowest point of 16 USD per barrel in April 2020, which

was when the Coronavirus pandemic was reaching its peak. Hence, the GTU

indices confirm that the public tend to search for more information when there

is uncertainty, and this leads to the high values for the GTU oil price indices

regardless of whether oil prices are high or low. The uncertainty measures in

this Google Trends scope relax Killian’s (2009) assumption that uncertainty

is to do with speculation for the purpose of accumulating crude oil stock in

readiness for a high oil price in the future, by showing that the highest level of

uncertainty actually occurs when a global slump in economic activity causes

the oil price to drop.

4.4.1.2 GTU oil investment, GTU oil supply, and GTU oil demand

Of the existing literature, only Guo and Ji (2013) utilise more than one

component in their oil market search terms. They employ four components (oil

price, oil demand, financial crisis, and Libya war) in their study, and they find a

long-run equilibrium relationship between Brent oil price and the public concern

for oil prices and oil demand through their Google Search Indices. One of the

drawbacks of their study is that they include ’oil production’ as a search term

in the oil demand component. This is not appropriate given that oil production

represents oil supply rather than oil demand. Furthermore, the inclusion of

’oil consumption’ in the oil demand component is also not fit for purpose as

oil demand does not equal oil consumption. Crude oil demand is not solely

used to fuel economic activities but also counts towards inventory. Petroleum

consumption, however, refers to the consumption of refined petroleum products,

i.e., motor gasoline, jet fuel, kerosene, distillate fuel oil, residual fuel oil, LPG,

and other petroleum liquids. Petroleum is a mixture of crude oil, natural gas,

and other liquids, whereas crude oil is the liquid component of petroleum.

Oil consumption refers to refined crude oil consumption (‘oil’ is more specific

than ‘petroleum’), as using petroleum will take into account the significant
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proportion of natural gas and other liquids in the hydrocarbon.

To construct GTU oil investment, GTU oil supply, and GTU oil demand,

this study utilises the search term i from the categories provided in Table

4.1, while the group of words j refers to other search terms within that same

category. Then, referring to Equation 4.2, yi,j is the frequency of search term i

in round j = 1 for oil investment, j = 2 for oil supply, and j = 3 for oil demand

(referencing Castelnuovo and Tran (2017), with notational adjustment by the

author).

yi = yi,j
y∗b
yb,j

(4.2)

This study constructs the GTU indices by applying ’oil price’ as the

benchmark for linking one search term with another within the same search

rounds. ‘Oil price’ is used because it has the highest frequency and is the most

volatile among these three groups. Besides, the term ’oil price’ is the global oil

market variable that attracts the most interest.

In the oil investment group, the term ’oil investment’ has second-highest

frequency after ’oil price’, while ’OPEC’ and ’global economy’ are second-highest

in the oil supply and oil demand groups respectively. As Google Trends only

allows five search terms in each round, four search terms from the Table 4.1

categories and the benchmark term ’oil price’ are input in each round. Hence,

y∗b in Equation 4.2 is the frequency of ‘oil price’ as a benchmark generated

for GTU oil price in the previous step, y∗b,j is the frequency of ’oil price’ in

every round j, and yi denotes the frequency of a particular search term. The

monthly GTU oil market index is obtained by summing up the frequencies of

a particular search term, as illustrated by Equation 4.3. The results are then

rescaled to the maximum values of the GTU indices in each category in order

to have the same scale for all GTU measures, as shown in Equation 4.4.

gtuj∗ =
N∑
i=1

yi (4.3)
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gtuj = 100
gtuj∗

max(gtuj∗)
(4.4)

(a) The Google Trends components for
GTU oil investment

(b) GTU oil investment index

Figure 4.7: GTU oil investment

(a) GTU oil investment and crude oil
price

(b) GTU oil investment and rig counts

Figure 4.8: GTU oil investment and the global oil market variables

The GTU oil investment, GTU oil supply, and GTU oil demand indices

exhibit fairly similar trends, showing the same major peaks over time. The

highest peak is in April 2020 and there are other high peaks in October 2008,

January 2015, and January 2016. The similarity derives from the dominant

effect of the search term ‘oil price’. Otherwise, the terms that contribute most

to these peaks are ‘oil price’, ‘recession’, ‘drilling’, and ‘OPEC’, causing the

largest magnitude of GTU oil demand which is more fluctuated than GTU oil

investment and oil supply. One thing that is crucial to GTU construction is

to distil, from all of the available search terms, the few that best represent

the category of uncertainty. It is not so much that a specific number of search

terms is required, but rather that the search terms selected are popular in a
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certain category. As specific search terms become accessed more often, Google

Trends gives their relative frequency a higher value. The interaction between a

few high frequency search terms produces an uncertainty trend that is more

dynamic than if many weaker search terms were used. In the case of the weak

frequency terms, no matter what quantity is used, their values will not be

meaningful as that of the single search term that dominates the whole sample.

Hence, it is better to focus on selecting the proper search terms rather than

to use a scatter-gun technique with numerous keywords that, in the end, have

small or zero frequency values.

The high uncertainty in oil investment, demand, and supply almost always

occur when there is a crude oil price shock, regardless of whether it is positive

or negative. Although GTU indices in this study share major peaks that are

similar to those of the basic GTU oil price, some of the GTU indices, depending

on the uncertainty measure, exhibit peak points that are more significant and

distinguishable from those of the others. Meanwhile, GTU oil price tends to

have a flatter trend during periods when GTU oil investment shows a more

dynamic fluctuation trend. One particular example from GTU oil investment is

associated with oil exploration, such as drilling activities. Figure 4.8b explicitly

shows that GTU oil investment declines when the rig counts increase. i.e., from

mid–2005 to early 2008, early 2010 to mid–2014, and from 2016 until the end

of 2017. On the other hand, GTU oil investment rises when the rig counts

drop (from the end of 2014 to early 2016, from the end of 2017 to the end

of 2018, and in April 2020). Hence, GTU oil investment can capture public

interest in oil exploration when there is uncertainty. The higher the level of oil

exploration, the lower the uncertainty. This aligns with Chen and Mu (2021),

which provide an empirical analysis of the return-volatility relationship in 19

commodities, including crude oil. The asymmetric threshold and exponential

GARCH models are applied, and their findings argue that crude oil volatility

is higher following a negative demand shock, which is a leverage effect. The
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role of OPEC in controlling the production quota and the low marginal cost

from the oil-producing countries cause the complexity of the crude oil market

structure. Meanwhile, the inverse leverage effect of the positive relationship

between volatility and return is found for most commodities with more inelastic

demand and supply.

GTU oil demand, apart from the four significant peaks shared with

basic GTU oil price, has another peak in January 2008. At this time, public

uncertainty is expressed in a search for more information about the recession,

which causes a spike in GTU oil demand. This peak gives the information that

January 2008 is the start of the Great Recession period that followed a sharp

increase in crude oil prices. Thus, GTU oil demand goes up while crude oil

price drops; this may indicate that recession follows crude oil price fluctuation.

Meanwhile, the GTU oil supply is less fluctuated compared to other GTU

indices. GTU oil supply increases sharply in January 2015 following the drop

in the world and North America rig counts.

(a) The Google Trends components for
GTU oil demand

(b) GTU oil demand index

Figure 4.9: GTU oil demand

4.4.1.3 GTU oil market specific

The GTU oil market-specific index is an umbrella index that takes into

account the three GTU components: GTU oil investment, GTU oil supply, and

GTU oil demand, which it aggregates into a single value index. To generate



4.4. Google Trends-based Uncertainty (GTU) indices:
construction, comparison, and discussion 197

(a) GTU oil demand and crude oil price (b) GTU oil demand and rig counts

Figure 4.10: GTU oil demand and the global oil market variables

(a) The Google Trends components for
GTU oil supply

(b) GTU oil supply index

Figure 4.11: GTU oil supply

(a) GTU oil supply and crude oil price (b) GTU oil supply and rig counts

Figure 4.12: GTU oil supply and the global oil market variables

the indices, it simply sums the values of GTU oil investment, GTU oil supply,

and GTU oil demand. As shown in Equation 4.5, j∗ = 1 refers to GTU oil

investment, j∗ = 2 is GTU oil supply, and j∗ = 3 is GTU oil demand. Then the

result is rescaled by its maximum value to the range of 0 to 100, as illustrated

in Equation 4.6. Thus, all GTU indices with various specifications have the
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Figure 4.13: GTU oil market specific index

(a) GTU oil market specific index and
crude oil price

(b) GTU oil market specific index and rig
counts

Figure 4.14: GTU oil market specific index and global oil market variables

same scale.

gtuoms∗ =
N∑

j∗=1

gtuj∗ (4.5)

gtuoms = 100
gtuoms∗

max(gtuoms∗)
(4.6)

The three components of GTU indices interact together and form the

GTU oil market-specific index. The GTU oil market-specific index shows,

in addition to the main peaks already noted, fluctuation in November 2007.

This fluctuation implies the beginning of a recession period, and it also shows

that oil demand contributes significantly to the construction of the GTU oil

market-specific index.

Overall, the most dramatic spike for all specifications of the GTU indices

is in April 2020, reaching the maximum value of 100 when the Coronavirus hit
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Figure 4.15: GTU indices for oil price, oil investment, oil supply, oil demand,
and oil market specific

its global peak. The pandemic has exerted a tremendous impact on the world’s

economy. Global economic activity ceased during the various lockdowns, and

companies were less likely to start a new drilling project. At this time, the

crude oil price drops significantly to 16 USD per barrel, which is its lowest

point in a decade, lower even than the drop during the Global Financial Crisis

period. People access Google to search for ‘oil price’ most frequently during

the Coronavirus peak that triggered the low oil price. The Coronavirus period

indicates that high uncertainty is not limited to times when the crude oil

price is high, but can also occur when the crude oil price is low. While the

Global Financial Crisis and the Great Recession era imply that there is high

uncertainty when the crude oil price peaks, it is noteworthy that the magnitude

of the uncertainty is more significant during a period when the oil price is in

a low state. Hence, uncertainty during this period is more reflective of the

economic slowdown leading to an oil price drop rather than of speculation on

future high oil price. The weak economy is associated with a drop in investment

activities, and the GTU indices indicate that uncertainty rises when the rig
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counts drop by the end of 2014 to mid–2016, and in April 2020.

4.4.2 Descriptive statistics

The descriptive statistics of the uncertainty measures and the oil market

variables in levels are shown in Table 4.2. The different specifications of the

GTU indices have average values over time of between 18.37 and 35.07, with

the values of GTU oil price being the lowest and GTU oil investment being the

highest. There is an extensive range of minimum and maximum values that

are between 5 and 100. The statistics indicate that, on average, the GTU oil

investment index has up to 35% of the overall popularity of the search terms

over time. The interpretation of the highest mean value of 100 indicates that

in a certain period, the search term that determines the GTU index is the

one that is most popular relative to the other terms in a Google web-based

search. GTU oil demand and GTU oil price are slightly more volatile that the

other GTU indices. Their standard deviation is higher than the other GTU

specifications, while the standard deviation of GTU oil investment and GTU oil

market-specific are lower than the others. When the GTU indices are compared

to the benchmark uncertainty indices, the volatility of the financial market

uncertainty index is moderate, in which it is comparable to the GTU indices.

The geopolitical risk, global economic policy, and world uncertainty indices are

more volatile than the others, while the Jurado’s macroeconomy uncertainty

index is the least volatile.

All the uncertainty series have long right tails and positive skewness. This

is also the case for certain oil market variables in levels, i.e., world and North

America rig counts, and crude oil price. The uncertainty variables have a

substantial kurtosis value that indicates their distributions are more peaked

than the normal distribution. They also have heavier tails than the normal

distribution (i.e., they are leptokurtic) while the oil market variables have less

kurtosis than a normal distribution (platykurtic) in levels. The Jarque-Bera



4.4. Google Trends-based Uncertainty (GTU) indices:
construction, comparison, and discussion 201

test statistic measures the deviation of skewness and kurtosis from the normal

distribution. The probability of Jarque-Bera shows the null hypothesis of

normal distribution. The null hypothesis of the normal distribution is rejected

at 5% significance level for all uncertainty indices and oil market variables,

indicating that none of the series has a normal distribution.
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Table 4.2: Descriptive Statistics (level)

GTUop GTUoi GTUos GTUod GTUoms OVX JMU GEPU GPR WUI rig rigna op

Mean 18.367 35.072 23.061 25.208 27.601 37.380 0.968 118.951 85.552 17011.27 732.643 679.297 65.081
Median 14.500 32.900 21.250 22.556 25.398 33.150 0.953 105.899 66.164 14223.15 740.500 461.875 58.022
Max 100.000 100.000 100.000 100.000 100.000 154.437 1.323 344.158 545.094 59100.97 1080.000 1840.750 150.114
Min 5.000 22.349 11.667 10.526 15.316 16.678 0.882 47.224 23.702 4396.794 395.000 137.600 14.697
Std.dev 12.574 10.301 11.578 12.583 11.180 17.429 0.065 55.740 63.745 8802.704 169.574 485.020 31.188
Skewness 2.500 2.601 2.579 2.668 2.721 3.290 2.544 1.372 3.012 1.482 0.007 1.028 0.517
Kurtosis 13.102 12.759 13.888 13.386 14.247 19.289 11.329 5.045 16.548 5.933 2.304 2.830 2.288
Jarque-Bera 1037.563∗∗∗ 998.713∗∗∗ 1185.396∗∗∗ 1113.414∗∗∗ 1274.895∗∗∗ 2006.011∗∗∗ 1055.819∗∗∗ 129.756∗∗∗ 3884.151∗∗∗ 261.594∗∗∗ 5.376∗∗ 47.204∗∗∗ 17.455∗∗∗
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4.4.3 Correlation between GTU indices and other uncer-

tainty benchmark measures

This section examines how the different measures of uncertainty are

correlated with the GTU indices, the objective being to find the benchmark

for modelling the relationship between uncertainty and the crude oil price and

exploration activity variables in the next section. The correlation between the

newly proposed GTU indices and the various other uncertainty benchmarks

(i.e., financial market, macroeconomy, global economic and policy, geopolitical

risk, and world uncertainty) are investigated as shown in Table 4.3. The GTU

indices have a positive correlation with the other uncertainty measures, and the

correlation ranges are from 0.02 to 0.83. Overall, the various specifications of the

GTU indices are highly correlated with the financial market and macroeconomy

indices, and less correlated with the economic and policy, geopolitical risk, and

world uncertainty indices.

The GTU indices are positively and highly correlated with the oil volatility

index, with a range of 0.63 to 0.83. The time series plot of GTU and OVX

also shows peaks points that are nearly the same over time. The correlation

ranges between GTU and the JMU macroeconomy uncertainty indices are

between 0.42 and 0.74. The positive correlation between the GTU indices

and these two mainstream uncertainty indices is consistent with the existing

literature, as is their magnitude. Jurado et al. (2015) examine the correlation

between their macroeconomy index and the oil volatility index, and find a

positive correlation with the value of about 0.50. An interesting finding is

that Castelnuovo and Tran (2017) construct a GTU index for macroeconomic

uncertainty and find that it too has a high correlation (0.63) with Jurado’s

macroeconomy indices. This implies that the different specifications of the

GTU indices have a consistently higher and positive correlation with Jurado’s

macroeconomy indices. The GTU indices also have a positive correlation with
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GEPU, with ranges of 0.12 to 0.27. The GTU indices have a positive and low

correlation with the geopolitical index, with ranges of 0.05 to 0.26. Meanwhile,

the world uncertainty index is negatively correlated with the GTU, oil volatility,

and macroeconomy uncertainty indices.

Based on graphical analysis, Figure 4.16 depicts the time series plot

between the GTU indices and the other uncertainty measures. In this case,

the GTU oil market-specific index is taken to illustrate the correlation with

the benchmark uncertainty indices. Across the measures, the GTU oil market-

specific, financial market, macroeconomy, and global economic policy indices

peak in the Global Financial Crisis (GFC) period whereas the geopolitical

risk and world uncertainty indices do not. This indicates that the GTU,

macroeconomy, economic policy, and financial market indices are sensitive to

the global economy and can capture the economic uncertainty that occurred

between 2008 and 2009 very well. Aside from the GFC period, the GTU indices

mimic the financial market uncertainty index until the next peak point in 2015

and 2016. This point occurs during a period of sluggish global demand and

low crude oil price. The last outbreak point for both indices occurs in March

to April 2020, which correlates with the Coronavirus pandemic.

The time series plot also indicates that even if the indices have a similar

movement trend over time, the GTU indices move before the benchmark

financial uncertainty index, save for a few lags. Both indices communicate that

public interest is high during the peak point, triggering the public to gather

information as quickly as possible. But Google Trends can be accessed freely

at any time, which means that its trend movement is quicker compared to

that of the financial market uncertainty index, which can only be derived after

particular trading occurs. A similar behaviour pattern is found in the GTU

and Jurado’s macroeconomy time series plot. They both experience peaks in

2008, 2015, 2016, and 2020, but the GTU series moves a few lags before the

macroeconomy uncertainty index. This is because the macroeconomy index
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involves many macroeconomic variables where the values are generated in

response to (and therefore after) the breakpoint.

The time series trend then also confirms the positive and high correlation

between GTU and the two other benchmark indices, the financial market and

macroeconomy uncertainty indices, as shown in Table 4.3. These measures

approach uncertainty with different measurement parameters and objectives.

However, they are interconnected in that they aim to explain the uncertainty

evinced towards major dramatic events that affect economic and financial

circumstances. Therefore, it is expected that there is a positive correlation and

similar trend between these uncertainty indices, particularly in the wake of

unprecedented major events that lead to an economic slowdown.

Neither the geopolitical risk nor the world uncertainty indices are sensitive

to the GFC period. Initially, the geopolitical risk index is fairly stable, then it

exhibits an upward trend line from 2013 to 2018; this corresponds to the Syrian

war and the Paris attacks. The world uncertainty indices show a few spikes in

2012, 2015, and 2017 which correspond to the European crisis, Brexit, and U.S.

presidential election, respectively. In support of the low and sometimes negative

correlation results, the plots indicate that there are no co-movements between

the GTU indices and either the geopolitical risk or the world uncertainty

indices. One possible reason for this is that these two indices are negatively

correlated with the other benchmark indices, probably because they measure

the general term of ‘uncertainty’ or they are focused on specific events that

have a broad scope and exert little to no effect on the economy generally, and

more specifically on the oil market.

The empirical analysis will therefore focus on the financial market (OVX),

Jurado’s macroeconomy (JMU), and the global economic policy (GEPU) indices

as the benchmark models and will analyse whether the newly proposed GTU

indices behave consistently with these benchmark indices. The more consistent

the behaviour of the GTU indices regarding the oil market variables, the more
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confident the literature can be in utilising the GTU indices as an alternative

new uncertainty measure.

Table 4.3 illustrates that the GTU and the benchmark uncertainty mea-

sures have a negative correlation with oil rig counts. The magnitudes of the

correlation for GTU indices to world oil rig counts are from 0.28 to 0.39. The

GTU indices have a slightly higher correlation with the North America rig

counts (i.e., from 0.37 to 0.50). These ranges are in line with the financial

market and macroeconomy uncertainty correlations with oil rig counts, which

are between 0.28 and 0.58. The correlations between all uncertainty measures

and the crude oil price are negative. The range of the correlation between the

various specifications of the GTU indices and oil price is between 0.32 and

0.53, which is comparable to the correlation of the financial market and global

economic policy uncertainty indices with the oil price.

The rig counts have a positive correlation with the crude oil price, being

0.56 for world rig counts and 0.48 for the North America rig counts. Various

specifications of the GTU indices have a high correlation to each other, ranging

from 0.85 to 0.99. The high correlation among GTU indices is caused by the

dominant effect of the search term ‘oil price’, which plays an essential role as

the benchmark even if other search terms are less popular than the benchmark.

By way of illustration, ‘recession’ is applied as one of the search terms in GTU

oil demand and shows higher popularity among other terms within the same

group. Thus, the search term ‘recession’ is dominant to other search terms

in the oil demand component. But when the correlation between GTU oil

price and GTU oil demand is examined, it shows that GTU oil price is 85%

correlated with GTU oil demand which is less than the correlation between

GTU oil price and the other GTU indices. This indicates that since both ‘oil

price’ and ‘recession’ search terms are dominant, the oil price correlation is not

as strong as when ‘oil price’ is linked with another less-dominant search term.

Then, it can be concluded that two dominant search terms interacting with



4.4. Google Trends-based Uncertainty (GTU) indices:
construction, comparison, and discussion 207

each other cause lower correlation than when a single dominant search term is

utilised.
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Table 4.3: Pairwise correlation between uncertainty indices and oil market variables (in level)

GTUop GTUoi GTUos GTUod GTUoms OVX JMU GEPU GPR WUI rig rigna op

GTUop 1
GTUoi 0.955 1
GTUos 0.985 0.966 1
GTUod 0.854 0.870 0.862 1
GTUoms 0.951 0.974 0.972 0.951 1
OVX 0.631 0.676 0.655 0.833 0.756 1
JMU 0.424 0.541 0.469 0.743 0.617 0.748 1
GEPU 0.269 0.123 0.192 0.211 0.186 0.082 -0.102 1
GPR 0.258 0.102 0.189 0.054 0.116 -0.173 -0.176 0.488 1
WUI 0.082 -0.041 0.025 -0.030 -0.016 -0.082 -0.112 0.620 0.375 1
rig -0.365 -0.277 -0.347 -0.385 -0.354 -0.278 -0.286 -0.237 -0.195 -0.048 1
rigna -0.389 -0.374 -0.399 -0.500 -0.447 -0.466 -0.576 0.002 -0.029 0.040 0.855 1
op -0.531 -0.317 -0.460 -0.416 -0.417 -0.325 -0.089 -0.412 -0.464 -0.316 0.557 0.477 1
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(a) GTU Oil Market Specific and Oil Volatility Indices

(b) GTU Oil Market Specific and Jurado’s Macroeconomy
Indices

(c) GTU Oil Market Specific and Global Economic Policy
Indices
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(d) GTU Oil Market Specific and Geopolitical Risk Indices

(e) GTU Oil Market Specific and World Uncertainty Indices

Figure 4.16: The GTU Oil Market Specific Indices and Other Existing Uncer-
tainty Measures

4.5 Methodology

This study applies a VAR framework to investigate the effects of uncer-

tainty on two global oil market variables: oil exploration and crude oil price.

Augmented Dickey-Fuller (ADF) and Enders and Lee (EL) Fourier unit root

tests are employed, using the detailed methodology described in the previous

chapter on crude oil price and oil production (Chapter 3, Subsection 3.3.3).

Enders and Lee (2012) unit root test has distinct features compared to other

tests, i.e. Zivot and Andrews (1992) and Narayan and Popp (2010), such as

the flexibility with the break form to accommodate the either smooth or sharp
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break, no need to know how many breakpoints, and no need to know when the

breaks occur. Zivot and Andrews (1992) is too restrictive that it can only deal

with one break point in the series. Narayan and Popp (2010) has the flexibility

as Enders and Lee (2012) test in terms of no prior knowledge when the breaks

occur. However, Narayan and Popp (2010) test limits the number of the breaks

into two breaks in level and slope. For comparison purposes, the Narayan and

Popp (2010) unit root test is presented in Appendix B.2.

The stationarity conclusion drawn based on ADF and EL tests follows

these procedures: determining the optimal frequency and lag length, using the

F-test to test the null hypothesis of linearity, and using the EL test result to

conclude the unit root properties of the data series if the F-test statistic rejects

the null hypothesis; otherwise, the standard ADF test is used to conclude. The

critical values of F(k) single frequency refers to Enders and Lee (2012), Table

1, Panel c.

4.5.1 VAR framework

VAR estimation is conducted to estimate the effects of uncertainty on oil

exploration and crude oil price. The causality effect is estimated through the

Granger Causality test. Then, impulse response and variance decomposition are

generated to predict the contribution of uncertainty shocks to the variability of

oil exploration and crude oil price. The VAR model takes into account the past

values of the dependent variable and the other variables to estimate the current

value of the variable of interest, and it treats all variables as endogenous. The

reduced form VAR model with a lag from p=1 up to lag q can be represented

by the equation:

xt = A0 +

q∑
p=1

A1xt−p + et (4.7)
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In a matrix algebra representation, equation 4.7 can be written as follows.
x1t

x2t

x3t

 =


A10

A20

A30

+


A11(L) A12(L) A13(L)

A21(L) A22(L) A23(L)

A31(L) A32(L) A33(L)



x1t−1

x2t−1

x3t−1

+


e1t

e2t

e3t

 (4.8)

where xt is a 3 x 1 vector of endogenous variables: xt =
[
x1t, x2t, x3t

]
=[

rigt, opt, unct

]′
. Ai0 is the element i of vector A0 which is a 3 x 1 matrix of

intercept terms. Aij(L) are the elements in row i and column j of the matrix

A− 1, which are 3 x 3 matrices of lag coefficients in the lag operator L. eit is

the element i of the vector et, a 3 x 1 matrix of white noise disturbances. The

variable rigt refers to the time series of world rig count rigw and North America

rig count rigna and the unct refers to each of uncertainty indicators; ovx, jmu,

gepu, gtuop, gtuoi, gtuos, gtuod, and gtuoms. Each equation has zero expected

value of error: E(eit) = 0.

4.5.1.1 Granger Causality test

The term Aij(L) indicates the coefficients of variable j and the lagged

values of variable i which can be expressed into individual elements aij(1), aij(2),

aij(3), ..., aij(q) for lag p = 1 up to p = q. Variable j does not Granger cause

variable i if all coefficients of the Aij(L) are equal to zero. In this setting,

ai1j1 = arig op, ai1j2 = arig unc, ai2j1 = aop rig, ai2j3 = aop unc, ai3j1 = aunc rig, and

ai3j2 = aunc op, where rig is rig counts (world and North America), op is crude

oil price, and unc is the uncertainty index (benchmark and GTU indices).

aij(1) = aij(2) = aij(3) = ... = aij(q) = 0 (4.9)

Hence, the null hypothesis is H0 : Aij(L) = 0. The Granger causality direction

is from variable j to variable i. The null hypothesis can be rejected if there are

one or more values in Equation 4.9 that are not zero significantly. The rejection
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of null hypothesis means that the past value of variable j helps to forecast the

current value of variable i. This chapter also considers the structural break

and formally tests the break applying Supremum Wald (swald) and Supremum

Likelihood-Ratio (slr) as described in Subsection 2.4.2.2. If the short-run

parameter stability of the null hypothesis is rejected, then the time-varying

Granger causality test is applied.

The VAR-based time-varying Granger causality are sequences of Wald

statistics and bootstrapped-based critical values as proposed by Shi et al. (2018,

2019). The time-varying Granger causality test, Wald statistics is calculated

from the subsamples of the observation. Referring to the VAR(q) expression in

Equation 4.7, the Wald statistic imposed by the null of no Granger causality

from variable x1 to x2 is defined as

W = [Rvec(Â)]
′
[R(Ω̂⊗ (X ′X)−1R′)]−1[Rvec(Â)], (4.10)

where R is the coefficient restriction matrix and vec(Â) is the row vectorised

coefficients of Â. Let the total number of observations as T , the starting point

of the regression sample be f1, the ending point is f2, and fw = f2 − f1. The

Wald statistic is denoted by W f2
f1

, where τ1 = [f1T ], τ2 = [f2T ], τw = [fwT ],

and the minimum required observations to estimate VAR is τ0 = [f0T ]. There

are three procedures to detect non-constant causal relationship and generate

the sequences of statistics: forward expanding, rolling, and recursive evolving

windows. This study applies rolling window procedure, suggested by Swanson

(1998) which its start point is τ1 = τ2− τ0+1 and the end point τ2 = τ1+ τ0−1.

The window size is assumed to be fixed and it equals to τ0. The test statistic

is the supremum Wald statistic sequence and is expressed as

SWf (f0) = sup
f2=f,f1∈[0,f2−f0]

(Wf1,f2). (4.11)
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4.5.1.2 Impulse response function

Impulse response function is used to examine the effects of a one time

shock on all the current and future endogenous variables through the dynamic

of the VAR. Impulse response can be obtained by transforming the VAR as

Equation 4.8 into the Vector Moving Average (VMA) representation (Enders,

2015). 
x1t

x2t

x3t

 =


x̄1

x̄2

x̄3

+

∞∑
n=0


a11 a12 a13

a21 a22 a23

a31 a32 a33


i 
e1t−i

e2t−i

e3t−i

 (4.12)

The vector of errors et can be written in the form of the sequences of the shocks

εt, where et = B−1εt,

xt = x̄+
∞∑
n=0

An
1B

−1εt (4.13)


x1t

x2t

x3t

 =


x̄1

x̄2

x̄3

+

∞∑
n=0


ϕ11(n) ϕ12(n) ϕ13(n)

ϕ21(n) ϕ22(n) ϕ23(n)

ϕ31(n) ϕ32(n) ϕ33(n)



ε1t−n

ε2t−n

ε3t−n

 (4.14)

and where ϕij(n) = An
1B

−1,

xt = x̄+
∞∑
n=0

ϕnεt−n (4.15)

The coefficients of ϕij(n) are the impulse response functions, and a visual

interpretation can be obtained by plotting the ϕij(n) against i.

As the information in matrix A1 is not sufficient for identifying all pa-

rameters in the VAR system, the model requires the imposition of additional

restrictions to identify the impulse responses. One of the identification re-

strictions is the Choleski decomposition, which decomposes the residuals in

the triangular form. A theoretical assumption is required to determine which
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variable has no contemporaneous effect on other variables and also the conse-

quent order of the variables. Furthermore, it is essential to understand that the

ordering procedure is based on the correlation coefficients between et. Thus,

if the correlation coefficient between e1t and e2t is ρ12, the significance of ρ12

may be tested by specifying the null hypothesis of no correlation between e1t

and e2t; h0 : ρ12 = 0. If ρ12 is statistically significant, the impulse response

function is obtained through that particular ordering (Enders, 2015). To test

the robustness of the model, this study also does reordering of the variables,

with the results being available in Appendix B.5.

4.5.1.3 Variance decomposition

Variance decomposition describes the variation of each endogenous vari-

able into the shock components of other variables in the VAR system. It

provides information as to the proportion to which the shocks contribute to

one endogenous variable, including the variable’s own shocks as well as those of

the other variables. The n-step-ahead forecast error is the difference between

the realisation and the forecast value.

xt+n = µ+
∞∑
i=0

ϕiεt+n−i (4.16)

xt+n − Etxt+n =
n−1∑
i=0

ϕiεt+n−i (4.17)

For the x1t sequence:

x1t+n − Etx1t+n = ϕ11(0)εx1t+n + ϕ11(1)εx1t+n−1 + ...+ ϕ11(n− 1)εx1t+1

+ ϕ12(0)εx2t+n + ϕ12(1)εx2t+n−1 + ...+ ϕ12(n− 1)εx2t+1

+ ϕ13(0)εx3t+n + ϕ13(1)εx3t+n−1 + ...+ ϕ13(n− 1)εx3t+1 (4.18)
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Hence, the n-step-ahead forecast error of x1t+n is σx1(n)2, which consists of the

shocks of εx1t, εx2t, and εx3t as follows.

σx1(n)
2 = σx1(n)

2
[
ϕ11(0)

2 + ϕ11(1)
2 + ...+ ϕ11(n− 1)2

]
+ σx2(n)

2
[
ϕ12(0)

2 + ϕ12(1)
2 + ...+ ϕ12(n− 1)2

]
+ σx3(n)

2
[
ϕ13(0)

2 + ϕ13(1)
2 + ...+ ϕ13(n− 1)2

]
(4.19)
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4.6 Empirical Results and Analysis

This study applies reduced form VAR to analyse the effects of uncertainty

on oil exploration activity and the crude oil price. The main section of the

empirical results deals with Granger causality, impulse response, and variance

decomposition of the oil market to uncertainty shock. Prior to undertaking

VAR analysis, a unit root test is conducted. The optimal lag length selection

for each model (ranging from three to twelve lags) is described in Appendix

B.1 and the significance of the variables in the VAR equations is reported in

Appendix B.3. An autocorrelation test is performed to ensure the model is

free from serial correlation at the chosen lag, and the results are shown in

Appendix B.4. The order of the variables in the base model of VAR is as

follows: rig counts, oil price, and uncertainty index. Oil rig count does not

respond contemporaneously to crude oil price and uncertainty shocks because

there is a lag in the time required to adjust the exploration project. Oil price

and uncertainty do however receive contemporaneous effects from exploration

activity changes, and uncertainty responds contemporaneously to oil price and

rig count changes. For robustness test purposes, Brent price is applied as the

proxy for the crude oil price (see Appendix B.5), and the variables in the VAR

estimation are reordered into rig counts, uncertainty, and oil price.

4.6.1 Unit Root Test

A unit root test is performed to examine the stationarity of each series

before estimating the relationship between the uncertainty measures, both

benchmark and newly proposed GTU, and the global oil market variables.

Table 4.4 shows that the ADF unit root test using intercept only results in non-

stationarity at 5% significance level for all variables in levels, except for the JMU

index. Meanwhile, the ADF test with intercept and trend suggests stationarity

for the GEPU and JMU indices. The results for JMU are as expected, given
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that Jurado et al. (2015) construct their macroeconomy uncertainty indices to

be stationary in levels.

In addition, the EL test is carried out to control for structural breaks in

the crude oil price, rig count, and uncertainty index time series. Enders and

Lee (2012) unit root test have distinct features compared to other tests (i.e.

Zivot and Andrews (1992); Narayan and Popp (2010)), such as the flexibility

with the break form to accommodate either smooth or sharp break, no need

to know how many breakpoints, and no need to know when the breaks occur.

Zivot and Andrews (1992) are too restrictive that the test can only deal with

one break point in the series. Narayan and Popp (2010) have the flexibility as

Enders and Lee (2012) test in terms of no prior knowledge when the breaks

occur. However, Narayan and Popp (2010) test limit the number of the breaks

into two breaks in level and slope. Narayan and Popp (2010) indicate stationary

results for all variables at level, including oil price, which is a sceptical result,

as oil prices have been through many fluctuation periods. The Narayan and

Popp (2010) test result is presented in Table B.2, Appendix B.2.

The ADF and Enders and Lee (2012) result is presented in Table 4.4.

Comparing the F -stat and the critical values of F (k) single frequency in

Table 1, Panel c, Enders and Lee (2012), F -stat with a null hypothesis of

linearity is rejected for OVX, world rig counts, and oil price. Thus, for these

variables, Enders and Lee (2012) test in Panel (b), Table 4.4, is used to examine

the unit root properties of the data series, while the rest of the variables

apply the standard ADF test provided in Panel (a), Table 4.4. The null

hypothesis of the Enders and Lee (2012) test is that there is a unit root with

unknown breakpoints. Following these steps, the final result generates the

mixed stationary of variables at level, with OVX, North America rig counts,

and oil price being non-stationary. The results of both tests suggest that all

variables are stationary in first difference and log first difference.

Based on Figure 4.3, the world oil rig counts exhibit structural breaks
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Table 4.4: Unit root test for uncertainty and oil market variables

(a) ADF t-statistics

Level Log-level First difference Log-first difference

JMU -3.601∗∗ -3.506∗∗ -10.748∗∗∗ -10.470∗∗∗
OVX -3.477∗∗∗ -4.195∗∗∗ -9.917∗∗∗ -8.987∗∗∗
GEPU -3.407∗∗ -3.670∗∗ -6.411∗∗∗ -8.554∗∗∗
GTUop -4.478∗∗∗ -4.033∗∗∗ -9.652∗∗∗ -15.997∗∗∗
GTUoi -5.738∗∗∗ -4.820∗∗∗ -9.589∗∗∗ -12.317∗∗∗
GTUod -3.681∗∗ -3.763∗∗ -9.695∗∗∗ -9.534∗∗∗
GTUos -4.563∗∗∗ -4.156∗∗∗ -9.864∗∗∗ -12.167∗∗∗
GTUoms -4.279∗∗∗ -4.122∗∗∗ -9.809∗∗∗ -12.112∗∗∗
rigw -2.090 -2.399 -4.992∗∗∗ -4.789∗∗∗
rigna -2.620 -2.329 -4.812∗∗∗ -5.141∗∗∗
op -3.470∗∗ -2.584 -10.808∗∗∗ -15.849∗∗∗

(b) Enders and Lee (2012) t-statistics

Level Log-level First difference Log-first difference

JMU -4.268∗∗ -4.285∗∗ -10.336∗∗∗ -6.267∗∗∗
OVX -2.657 -1.886 -6.594∗∗∗ -4.236∗∗∗
GEPU -5.386∗∗∗ -4.207∗∗∗ -10.352∗∗∗ -8.436∗∗∗
GTUop -4.650∗∗∗ -3.803∗∗∗ -9.112∗∗∗ -6.969∗∗∗
GTUoi -4.522∗∗∗ -4.745∗∗∗ -8.946∗∗∗ -8.803∗∗∗
GTUod -2.513 -2.325 -4.334∗∗ -9.305∗∗∗
GTUos -4.681∗∗∗ -3.934∗∗∗ -9.731∗∗∗ -6.009∗∗∗
GTUoms -3.226∗∗ -3.917∗∗∗ -12.770∗∗∗ -9.256∗∗∗
rigw -4.211∗∗ -4.513∗∗ -5.050∗∗∗ -4.788∗∗∗
rigna -2.635 -3.951∗ -7.560∗∗∗ -7.546∗∗∗
op -3.120 -3.370∗ -6.413∗∗∗ -5.104∗∗∗

(c) Enders and Lee (2012) F-statistics

Level Log-level First difference Log-first difference

JMU 3.831 3.785 3.007 3.036
OVX 4.071∗∗ 3.262∗∗∗ 14.238∗∗∗ 0.662
GEPU 5.168 3.715∗∗∗ 11.940∗∗∗ 0.756
GTUop 2.765 2.361 4.115 1.702
GTUoi 2.658 2.133 3.636 2.155
GTUod 5.078 3.074∗∗∗ 14.319∗∗∗ 2.358
GTUos 2.827 2.440 1.285 1.313
GTUoms 3.949 2.670∗∗∗ 6.256 1.591
rigw 8.396∗∗∗ 4.196 7.048∗∗∗ 0.809
rigna 6.550 9.327∗∗ 1.122 0.533
op 4.084∗∗∗ 3.247 5.994 4.885

in trend while the crude oil price series indicates breakpoints in the intercept.

These possible breaks may cause bias when using the ADF test to confirm the

stationarity results. The Enders and Lee (2012) test, being able to overcome

changes in either intercept or trend due to possible breaks over time, would
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be more appropriate. This study treats all uncertainty indices, the rig counts,

and the crude oil price as stationary in log first difference to analyse the

short-term relationship among the variables. Kilian and Murphy (2014) define

the characteristic of a market concern shock (i.e., one related to speculative

demand) is that it has a large and immediate effect on oil price and a temporary

effect on economic activity.

Table 4.5: Structural break test result

Model Equation World rig counts North America rig counts
swald slr swald slr

JMU
rig 42.18∗∗ 44.62∗∗ 105.18∗∗∗ 111.81∗∗∗
op 74.96∗∗∗ 75.44∗∗∗ 110.22∗∗∗ 116.46∗∗∗
JMU 41.03∗∗ 43.49∗∗ 97.17∗∗∗ 104.33∗∗∗

OVX
rig 76.06∗∗∗ 77.28∗∗∗ 92.77∗∗∗ 115.15∗∗∗
op 51.73∗∗∗ 56.06∗∗∗ 104.75∗∗∗ 125.60∗∗∗
OVX 27.51 32.03 88.61∗∗∗ 111.36∗∗∗

GEPU
rig 34.68 37.30 126.61∗∗∗ 133.68∗∗∗
op 55.20∗∗∗ 57.36∗∗∗ 111.33∗∗∗ 120.42∗∗∗
GEPU 25.29 27.66 44.96 54.75

GTUop

rig 68.65∗∗∗ 70.47∗∗∗ 83.40∗∗∗ 100.54∗∗∗
op 54.96∗∗∗ 58.14∗∗∗ 107.66∗∗∗ 122.56∗∗∗
GTUop 41.24∗∗ 45.03∗∗ 68.59∗∗ 85.87∗∗∗

GTUoi

rig 71.85∗∗∗ 75.44∗∗∗ 83.49∗∗∗ 100.63∗∗∗
op 47.42∗∗ 52.66∗∗∗ 73.37∗∗∗ 90.72∗∗∗
GTUoi 35.07 40.14 58.50 75.24∗∗∗

GTUos

rig 86.89∗∗∗ 90.97∗∗∗ 81.81∗∗∗ 99.02∗∗∗
op 54.26∗∗ 61.20∗∗∗ 75.70∗∗∗ 93.04∗∗∗
GTUos 47.05∗ 54.02∗∗ 49.51 65.29∗∗

GTUod

rig 68.10∗∗∗ 69.98∗∗∗ 76.72∗∗∗ 94.05∗∗∗
op 57.83∗∗∗ 60.79∗∗∗ 83.78∗∗∗ 100.90∗∗∗
GTUod 41.59∗∗ 45.37∗∗ 56.63 73.21∗∗∗

GTUoms

rig 73.21∗∗∗ 76.64∗∗∗ 83.33∗∗∗ 100.47∗∗∗
op 50.51∗∗ 55.67∗∗∗ 78.86∗∗∗ 96.15∗∗∗
GTUoms 41.63 46.87∗∗ 54.29 70.64∗∗

Notes:
swald: Supremum Wald test
slr: Supremum likelihood ratio test

Each VAR equation for both rig count models is tested using swald and

slr tests to examine the break in its relationship. The swald and slr tests are

presented in Table 4.5. There are mixed rejections of the null hypothesis of no

structural break, but the break in a relationship is mainly found when rig and

oil price are the dependent variables. In the world rig count model, based on the
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swald test, t-statistics are rejected at a 5% significance level for all equations in

JMU, GTU oil price, and GTU oil demand. A similar result is obtained in the

slr test with t-statistics of GTU oil supply, and the GTU oil market-specific

model is also rejected. For the rest of the OVX, GEPU, and GTU oil investment

models, the equations with rig counts and oil price as dependent variables are

mostly rejected, and equations with uncertainty indices as dependent variables

are not rejected. Based on the swald test, JMU, OVX and GTU oil price

equations are rejected for the North America rig count model. The rejection

of the t-statistics is found when rig and oil price are the dependent variables.

GEPU and most of the GTU indices as dependent variables are not rejected.

Based on the slr test, all t-statistics in each equation are rejected, except the

GEPU equation. Thus, a time-varying Granger Causality is considered because

most short-run parameters’ stability is rejected.

4.6.2 Time-varying Granger causality test

This section conducts time varying Granger causality tests to examine

whether uncertainty helps to predict oil exploration activity and crude oil

price in accommodating instability of the short-run parameters. The Granger

causality test is carried out on VAR three-variable models consisting of the

rig counts, oil price, as well as one of the following uncertainty indices: JMU

macroeconomy uncertainty, OVX oil volatility uncertainty, GEPU economic

policy uncertainty, and the five newly-proposed GTU indices (GTU oil price,

GTU oil investment, GTU oil supply, GTU oil demand, and GTU oil market-

specific). The Granger causality test includes a lag of uncertainty to understand

whether past uncertainty values help forecast the current value of oil exploration

activity and crude oil price.

Table 4.6 presents the results of testing time-varying Granger causality for

uncertainty indices, rig counts, and oil price for the world and North America

exploration models. The second column of Panel (a) and (b) in Table 4.6
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describes that uncertainty Granger causes rig count as the null hypothesis of

oil price does not Granger cause rig count is rejected. The third column shows

that rig count Granger causes uncertainty in benchmark indices. Meanwhile,

the causality from rig count to GTU indices is weak for the world exploration

and is stronger from North America rig counts to all uncertainty indices. A

similar direction of Granger causality is found between uncertainty and oil

price.

Table 4.6: Time Varying Granger Causality test between uncertainty and global
oil market

(a) World oil exploration activity model
Uncertainty
indices8

H0: Uncertainty
does not Granger
cause rig count

H0: Rig count
does not Granger
cause uncer-
tainty

H0: Uncertainty
does not Granger
cause oil price

H0: Oil price
does not Granger
cause uncer-
tainty

H0: Oil price
does not Granger
cause rig count

H0: Rig count
does not Granger
cause oil price

JMU 29.298∗∗∗ 19.305∗∗∗ 89.943∗∗∗ 45.970∗∗∗ 41.755∗∗∗ 117.356∗∗∗
OVX 48.407∗∗∗ 48.890∗∗∗ 57.953∗∗∗ 47.752∗∗∗ 69.116∗∗∗ 81.965∗∗∗
GEPU 30.424∗∗∗ 39.526∗∗∗ 24.240∗∗∗ 35.951∗∗∗ 116.358∗∗∗ 48.543∗∗∗
GTUop 16.371∗∗∗ 11.037 12.457∗ 13.283∗∗ 56.462∗∗∗ 7.904
GTUoi 23.276∗∗∗ 12.546∗ 33.227∗∗∗ 13.123∗ 60.252∗∗∗ 14.847∗∗

GTUos 23.156∗∗∗ 14.109∗ 32.188∗∗ 12.892∗ 70.796∗∗∗ 17.661∗∗∗
GTUod 22.347∗∗∗ 11.551∗ 11.327∗∗ 16.426∗ 48.054∗∗∗ 7.801
GTUoms 22.683∗∗∗ 13.374∗ 31.101∗∗∗ 10.589∗ 53.074∗∗∗ 14.252∗∗

(b) North America oil exploration activity model
Uncertainty
indices9

H0: Uncertainty
does not Granger
cause rig count

H0: Rig count
does not Granger
cause uncer-
tainty

H0: Uncertainty
does not Granger
cause oil price

H0: Oil price
does not Granger
cause uncer-
tainty

H0: Oil price
does not Granger
cause rig count

H0: Rig count
does not Granger
cause oil price

JMU 257.286∗∗∗ 42.157∗∗∗ 215.662∗∗∗ 71.205∗∗∗ 263.899∗∗∗ 140.378∗∗∗
OVX 127.196∗∗∗ 68.760∗∗∗ 195.167∗∗∗ 77.463∗∗∗ 176.894∗∗∗ 215.226∗∗∗

GEPU 308.689∗∗∗ 345.789∗∗∗ 189.684∗∗∗ 283.607∗∗∗ 484.403∗∗∗ 175.689∗∗∗

GTUop 42.117∗∗∗ 17.240∗∗∗ 45.235∗∗∗ 28.948∗∗∗ 43.531∗∗∗ 30.487∗∗∗
GTUoi 141.388∗∗∗ 32.811∗∗∗ 48.463∗∗∗ 34.070∗∗∗ 77.163∗∗∗ 43.818∗∗∗
GTUos 108.215∗∗∗ 47.924∗∗∗ 77.221∗∗∗ 53.710∗∗∗ 63.003∗∗∗ 39.262∗∗∗
GTUod 100.945∗∗∗ 39.803∗∗ 88.078∗∗∗ 31.376∗∗∗ 78.165∗∗∗ 51.084∗∗∗
GTUoms 121.878∗∗∗ 38.007∗∗ 75.152∗∗∗ 38.432∗∗∗ 62.872∗∗∗ 46.795∗∗∗

The uncertainty indices Granger cause oil price as shown in the fourth

column of Table 4.6 as the null hypothesis of uncertainty does not Granger

cause oil price is rejected for all equations. The fifth column indicates that oil

price Granger causes uncertainty benchmark indices for the world exploration

model. However, the causality from oil price to GTU indices in the world

exploration model is weak. Oil price Granger causes all uncertainty indices for

the North America exploration model. The last two columns show rig count
8Endogenous variables in VAR equations are world rig counts, crude oil price, and one of

the uncertainty index; e.g. rigw op OVX; rigw op GTUoms; etc.
9Endogenous variables in VAR equations are North America rig counts, crude oil price,

and one of the uncertainty index; e.g. rigna op OVX; rigna op GTUoms; etc.
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and oil price causality. Oil price Granger causes rig count in both exploration

models, and rig count Granger causes oil price in all uncertainty equations in the

North America exploration model and most uncertainty equations in the world

exploration model. A bidirectional causality is present in each null hypothesis

in the exploration model of North America, which means the past value of

uncertainty helps predict the current value of rig counts and oil price. The past

value of rig counts is helpful in predicting the current value of uncertainty and

oil price.

Overall, causality effects between various specifications of the GTU indices

and the global oil market are consistent with benchmark measures and the

existing studies. A strong causality from the GTU index to rig counts and oil

price is expected. The causality effect from most of the uncertainty indices to

the crude oil price shows that when public interest in some particular topics

is intensified and there is uncertainty about the global oil market, it may

change public decision-making in the oil market; thus, global oil supply and

demand will be affected. When there are global supply and demand shocks,

a consequence of this information gathering by a concerned public affects the

investment insights and contributes to the fluctuating oil price, which leads

to changes in oil exploration activity. Rig counts Granger cause uncertainty

indices in both exploration models because the public will try to seek out

information through an intensified web-based search when there is uncertainty

in exploration.

The findings of the bidirectional causality between the GTU indices and

crude oil price are expected and also support the finding of previous studies

such as Guo and Ji (2013), Li et al. (2019), and Qadan and Nama (2018).

Guo and Ji (2013) report that most of their Google Trends indices Granger

cause Brent oil price. Qadan and Nama (2018) find that most of the investor

sentiment indices, including Google Search Volume Index (GSVI), OVX, and

Economics Policy Uncertainty (EPU) indices, significantly Granger-cause oil
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price returns using monthly data from 1986 to 2016. Their work also finds

bidirectional causality between GSVI for ‘oil price’ and oil price return, which

this thesis also confirms the results of bidirectional causality between GTU

indices and oil price in both world and North America exploration models.

Qadan and Nama (2018) argue that searching for information on the internet

drives oil price volatility, and the volatility causes the investor to intensify

their searching. Li et al. (2019) apply GSVI for various crude oil price markets.

Their findings confirm a causality effect from GSVI to most of the spot crude

oil prices (taken from the WTI, Brent, Daqing, and Dubai oil price markets).

Their findings also argue that there is bidirectional causality from GSVI to

WTI future crude oil return, but only unidirectional causality to other types of

oil price markets.

The strong Granger causality from crude oil price to world and North

America rig counts is economically plausible, as a high oil price will likely induce

exploration activity. This finding also aligns with the literature that finds crude

oil price shock significantly affects drilling activity (Toews and Naumov, 2015;

Khalifa et al., 2017). The rig count is found to be Granger-causes oil price in all

equations, except GTU oil price and GTU oil demand in the world exploration

model.

The Granger causality findings thus confirm that the GTU index is one of

the uncertainty measures that can help predict the changes in crude oil price

and rig counts. As this study measures Google Trends-based uncertainty in a

more comprehensive index that covers uncertainty in oil investment, demand,

and supply, it improves on the previous studies that only apply basic search

terms such as ’oil price’ or ’Brent’.



4.6. Empirical Results and Analysis 225

4.6.3 VAR and Impulse responses to rig counts, oil price,

and uncertainty shocks

GTU index is constructed specifically for the global oil market uncertainty,

and its construction incorporates the components of oil investment, oil supply,

and oil demand. Other existing uncertainty measures are mainly based on

macroeconomic and financial variables that are not directly associated with

the oil market variables. The construction of the GTU index does not claim to

be a better index but provides a new alternative public interest measure in the

global oil market with a simple method compared to other uncertainty measures,

which require computational intensive procedures. The VAR estimates are

provided in Appendix B.3. and the predictive power of the econometric model

is tested by calculating the RMSE obtained from the VAR estimates. Table

4.7 shows that the RMSE of benchmark and GTU indices are nearly similar.

On average, the GTU indices have less error value than JMU and GEPU to

predict rig counts and less than OVX and GEPU to predict oil prices.

Table 4.7: Root Mean Squared Error (RMSE) of the predicted rig counts, crude
oil price, and uncertainty

(a) World oil exploration activity model

Predicted variable VAR model

OVX JMU GEPU GTUop GTUoi GTUos GTUod GTUoms

Rig counts 0.0242 0.0252 0.0253 0.0249 0.0249 0.0245 0.0246 0.0248
Oil price 0.0925 0.0803 0.0897 0.0909 0.0878 0.0887 0.0914 0.0883
Uncertainty 0.1700 0.0059 0.1655 0.2526 0.1475 0.2089 0.1951 0.1732

(b) North America oil exploration activity model

Predicted variable VAR model

OVX JMU GEPU GTUop GTUoi GTUos GTUod GTUoms

Rig counts 0.0521 0.0769 0.0864 0.0642 0.0623 0.0637 0.0615 0.0617
Oil price 0.0935 0.0768 0.0899 0.0907 0.0893 0.0903 0.0917 0.0902
Uncertainty 0.1741 0.0056 0.1683 0.2529 0.1476 0.2131 0.1990 0.1770

Figures 4.17 and 4.18 show the point estimates of the impulse response

functions in the forecasting horizon 36 months to a shock constructed using

a Cholesky decomposition method. The impulse responses of a variable are
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indicated on the left-hand side to shocks shown along the top of the figure

in each row; for example, the impulse response of the OVX index to a one-

standard-deviation world exploration shock is presented in the last row and the

first column in Figure 4.17a. As for illustration, the OVX as a benchmark and

a newly constructed GTU oil market specific indices are presented. Thus, the

consistency of the model with the extant economic literature can be checked.

The first column of Figures 4.17 and 4.18 illustrate the responses of an en-

dogenous variable to world and North America exploration shocks, respectively.

The first row and first column show that unexpected exploration shocks cause

a sharp decline in the rig counts upon impact. The declined effect exhibits

a reversal between 2nd and 7th months in the world exploration model and

between 4th and 13th months in the North America model. The North America

rig counts respond more significantly to the exploration shocks over periods

than the world.

The unexpected oil price shocks have positive and statistically significant

effects on rig counts from 4th month in both world and North America, as

depicted in the first row and second column of Figures 4.17a and 4.18a. The

world rig counts responses to oil price shocks decay in the 20th month, while they

are more persistent for North America rig counts. The unanticipated shock in

crude oil price triggers a large, significant, immediate, and transitory response

to the rig counts. With the prevalence of shale and tight oil exploration in North

America, it would be of more benefit to carry out exploration activity when the

crude oil price is high. A high oil price leads to the economic growth that will

trigger a high demand for crude oil. Hence, the preference for embarking on an

investment project with a view to maximising profit rather than postponing

the venture. The significant response of exploration activity to oil price shock

is also consistently described in Figure 4.3, which shows that as oil prices

increase up to mid–2008, rig counts also rise sharply. Rig counts then decrease

after the end of 2014 after a drop in crude oil price. Overall, the exploration
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(a) OVX model

(b) GTU oil market specific model

Figure 4.17: Response to Cholesky one-standard deviation shock in world oil explo-
ration model

activity response to an uncertainty shock indicates the expected sign after

controlling the crude oil price variable in VAR. The significant positive response

of rig counts to the crude oil price shock is also consistent with the economic

literature, such as discussed in Kellogg (2014); Toews and Naumov (2015).
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(a) OVX model

(b) GTU oil market specific model

Figure 4.18: Response to Cholesky one-standard deviation shock in North America
oil exploration model

The first row and third column show that world rig counts respond

negatively and statistically significant to the uncertainty shocks in 3rd month

for OVX and 2nd month for GTU index, then decay after 19th month. The

North America rig counts response to uncertainty shocks are significant on 3rd
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for OVX and 4th for GTU and are persistent.

The second row and first column depict that crude oil price responds

negatively and is statistically significant to the world exploration shocks between

2nd and 7th month. An unexpected shock for North American exploration is

only statistically significant on oil price after 9th month, and the effect is

more persistent than to world exploration shock that decays after 26th month.

The second column and second row indicate oil price shocks give a significant

negative drop to the real oil price for up to four months, and the effects are

dissolved after 28th month for the world exploration model, and it takes longer

effect in North America exploration.

The third column and second row show that an unexpected oil market

uncertainty shock is negative and significant on oil price between the 2nd and

8th months for both exploration models, then exhibits partial reversal after

the 8th month. The crude oil price response to an unanticipated shock to the

uncertainty indices is only transitory in both the world and the North American

exploration models. The significantly large magnitude of the oil price decline in

response to uncertainty shock implies that when the public gives high attention

to certain dramatic events, this drives a significant reduction in investment. The

higher the level of uncertainty, the slower the business cycle. As investment also

plays an essential role in the business cycle, it eventually exerts a substantial

effect on the crude oil price. It then leads to lower demand for crude oil and

induces a decline in crude oil price. These findings are consistent with Qadan

and Nama (2018), who employ other uncertainty indices and find a significant

negative response of crude oil price to most of the financial uncertainty indices,

such as investor sentiment index, consumer sentiment index, and financial

stress index. The effect of the GTU shocks on oil exploration and crude oil

price is expected and consistent with the benchmark models, i.e., the OVX, oil

volatility index.

The impulse responses of GTU oil market-specific uncertainty to one
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standard deviation shock are presented in the last row in Figures 4.17 and

4.18. An unexpected oil exploration disruptions on the GTU index are negative

and significant only in the 2nd period in response to the world exploration

shock and insignificant to the North American exploration shock. The GTU

oil market’s specific uncertainty responses to an unexpected oil price shock are

significant and negative in the first three months of both exploration models.

Then, it exhibits a reversal to positive effect from the 3rd to 30th month for the

world exploration model, and it takes more than 36 months for the uncertainty

response to decay in the North America model. An unanticipated oil market-

specific uncertainty shock causes a sharp decline in the GTU index up to

3rd period. The decline indicates a slight increase between the 3rd and 7th

months for the world exploration model, and it takes a more prolonged increase

up to the 13th month for the North America exploration model. The shock

causes a gradual, cumulative decline in the GTU index following these increases

and decay in 18th and 31st months for the world and North America models,

respectively. Overall, impulse response functions of GTU oil market specific

and oil market variables give similar characteristics of the impulse response by

the OVX as an uncertainty benchmark index.

The negative relationship between uncertainty and crude oil price is

consistent with the graphical interpretation shown in Figure 4.14a. The graph

indicates that in most of the periods when the oil price drops, the GTU index

rises. The GTU index reflects public interest in dramatic events. The cases of

political conflict and pandemic lead to a low oil price while also triggering high

public interest.

Robustness tests are carried out by reordering the variables into uncertainty

index, rig count, and crude oil price, and also by using Brent price as a crude

oil proxy. The impulse response graphs, as shown in Figures B.3-B.6 in the

appendices B.5.1, are consistent with the main results in showing a significant

negative response by exploration activities in both the world and North America
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to shocks in the GTU, as well as in the benchmark indices. The responses of

crude oil prices with this reordering also show significant negative and transitory

responses to the uncertainty shocks, as depicted in Figures B.5-B.6. Figures

B.7a-B.9b explicitly show that applying Brent price also gives results that

are consistent with the main findings, being a significant negative response

of exploration and crude oil price to the uncertainty shocks, and a significant

positive response of exploration activity to the crude oil price shock. The

consistency of the GTU indices against the benchmark indices in impulse

response functions proves the capability of the newly proposed GTU indices to

measure uncertainty, particularly in the global oil market.

4.6.4 Forecast error variance decomposition of oil market

to uncertainty shock

Forecast error variance decomposition (FEVD) decomposes the endogenous

variables into the shocks of each VAR component. This section carries out

variance decomposition to understand the extent to which uncertainty shock

affects the variation in rig counts and crude oil price for three years ahead. Table

4.8 illustrates that, among the benchmark models, Jurado’s macroeconomy

uncertainty index contributes most to variance in the world and North America

oil exploration activity (19.59% and 29.45%, respectively). This result implies

that macroeconomy uncertainty is better able to forecast investment activity

for a particular country than for the world as a whole.

The newly proposed GTU can explain the variance of world and North

America exploration activity in the three-year ahead forecast within the range

of 6-14%. GTU oil supply and GTU oil investment shocks contribute more

than basic GTU oil price to explaining world oil exploration activity. GTU

oil supply shock contributes largely to the variance of world oil rig counts (at

14.43%) while GTU oil investment shock contributes to the variance of North
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America exploration (13.81%). All the newly proposed GTU indices contribute

more than the basic GTU oil price to the North America rig counts.

Table 4.8: Forecast Error Variance Decomposition

(a) World exploration activity model

shocks10 rig op
εovx 9.40 2.68
εjmu 19.59 22.07
εgepu 1.96 3.68
εgtuop 10.77 10.66
εgtuoi 11.23 12.29
εgtuos 14.43 11.08
εgtuod 5.87 4.22
εgtuoms 9.07 4.89

(b) North America exploration activity model

shocks11 rig op
εovx 15.72 12.15
εjmu 29.45 26.13
εgepu 3.00 4.33
εgtuop 11.19 6.35
εgtuoi 13.81 9.20
εgtuos 12.56 6.68
εgtuod 12.05 6.59
εgtuoms 13.23 6.63

The contribution of the uncertainty benchmark indices to the crude oil

price shows that Jurado’s macroeconomy uncertainty index contributes most

to the variance of crude oil price in world and North America exploration

activities, at 22.07% and 26.13%, respectively. GTU indices contribute about

4-12% to the crude oil price in the world and North America exploration activity

models. Among GTU shocks, GTU oil investment has the largest contribution

to the crude oil price, being 12.29% and 9.20% in the world and North America

exploration activities models, respectively.

Overall, the contribution of uncertainty shock to exploration activity in the
10The variation of the uncertainty shock to the world rig counts and crude oil price for

3-years ahead with the variables ordering; world rig counts, crude oil price, and one of the
uncertainty index. For instance; variables ordering rigw op ovx, the variation of ovx shock to
world rig count is 9.4% and to oil price is 2.7%.

11The variation of the uncertainty shock to the North America rig counts and crude oil
price for three-years ahead with the variables ordering; North America rig counts, crude oil
price, and one of the uncertainty index. For instance; variables ordering rigna op ovx, the
variation of ovx shock to North America rig count is 4.8% and to oil price is 5.2%.
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North America model exhibits a magnitude that is similar to its contribution to

the world exploration model. The decomposition of the uncertainty shocks to

oil exploration can be distinguished between the world and North America as

the presence of shale oil exploration in North America causing less sensitivity

to uncertainty shocks.

To summarise, first, the GTU indices for the oil market can, like the

macroeconomy and financial market uncertainty measures, predict global oil

market variables such as oil exploration and crude oil price. Second, the

capability of the uncertainty indices to predict the variation of world exploration

activity is similar to their capability to predict North America oil exploration

activity. Third, the proposed GTU indices, particularly GTU oil investment,

are better at explaining variation in the global oil market than the basic GTU

oil price is. Therefore, the newly proposed GTU indices behave consistently

with the existing benchmark indices and can be used as the new uncertainty

indices for a global oil market. This offers a contribution to the scant literature

on oil market uncertainty.
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4.7 Conclusion

Prior work approaches oil market uncertainty indirectly, using financial

and macroeconomic indicators rather than a direct measure specific to the oil

market. This study proposes and constructs GTU, a concise index for the

oil market based on Google Trends. The newly proposed GTU index directly

measures public interest in oil investment, oil supply, and oil demand at the

times when dramatic events have occurred and crude oil prices have fluctuated.

The GTU index is flexible, free to access, and easy to construct compared to

the existing benchmark, which requires heavy computation. It is based on the

notion that public uncertainty is reflected in internet-search intensity; thus,

increased searching about particular topics implies that greater public attention

is being given to those topics.

This study contributes to the literature not only by constructing the new

index, but also in presenting a comparison analysis against the benchmark

indices. Further, it analyses how the uncertainty index affects oil exploration

activity and the crude oil price. The findings of this study suggest that GTU

indices exhibit consistent results that positively correlate with the benchmark

indices, particularly with Jurado’s macroeconomy and the oil volatility uncer-

tainty indices. The GTU index captures three significant peaks (i.e., the Great

Recession of 2008–09, the economic slowdown of 2015–16, and the Coronavirus

pandemic of 2020). These are also captured by the benchmark macroeconomy

and financial uncertainty indices, which increases confidence in the GTU index

as a measure of oil market-specific uncertainty. The consistency of the results

with the benchmarks instils confidence that the GTU index can be an alter-

native new index for measuring uncertainty via public attention, providing a

bridge to the oil market variables.

A further contribution to the literature links crude oil price and oil

exploration activity to the GTU index. Exploration plays an essential role in



4.7. Conclusion 235

the oil market not only as a determinant of future production but also as a

sentiment indicator that reflects investment activity in the oil market. This

study distinguishes between world and North America exploration activities

because the former is primarily associated with conventional oil exploration,

while the latter is associated with non-conventional exploration. Thus, the

GTU oil investment index can go further than the basic GTU oil price index

in explaining variance in exploration activity and oil prices. Although the oil

investment index shows major peak points that are similar to those of the basic

index, it exhibits more distinguished and significant peak points that provide

more information that nuances the explanation of exploration activity and oil

price. For instance, in the period when rig counts decline and there is a drop

in the crude oil price (i.e., between the end of 2014 and early 2016), GTU oil

investment shows a more significant upward trend than does the basic GTU oil

price. On the other hand, when rig counts and crude oil price rise (between

mid–2005 and early 2008, and from early 2010 to mid–2014), the GTU index

exhibits a decline trend that is steeper than that of the flatter GTU oil price.

Unanticipated GTU shocks cause significant and negative responses in oil

exploration activity and crude oil price. Distinguishing world oil exploration

from North American oil exploration allows for a more straightforward interpre-

tation of this by showing that uncertainty affects North America exploration

activity as significantly as it affects world exploration activity. As high uncer-

tainty leads to economic slowdown, this also causes a low demand for crude oil.

In consequence, crude oil price also declines significantly in response to the high

uncertainty. An unanticipated shock to the crude oil price exerts a strongly

significant positive effect on the exploration activities in both the world and

North America; this is consistent with the theoretical perspective that a high

oil price triggers more investment activity as producers seek to gain more profit

rather than take the risk of postponing it. A robustness test that reorders the

variables and applies Brent prices gives results that are consistent with those
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of the base model.

GTU shock can explain the variance in exploration activity and crude

oil price with the same degree as the macroeconomy and financial market

uncertainty benchmark indices do. In the models for world and North America

oil exploration activities, GTU oil investment contributes more to the oil

market variables than other specification. As the new measure of uncertainty,

GTU index behaves as a conduit between public attention about dramatic

events and the global oil market variables. The GTU index is useful for

measuring uncertainty that has an impact on exploration activity and crude oil

price fluctuation. Future research could investigate the ability of the GTU oil

investment index to affect macroeconomic indicators. Furthermore, applying the

GTU oil market-specific index to the oil-exporting and oil-importing countries

could be an interesting task for future studies.



Chapter 5

Conclusion

The fluctuations in oil price since the 1970s has prompted a number of

studies to discuss the relationship between oil price and the macroeconomy,

mainly focusing on the US. Indeed, ever since crude oil became a globally-

traded commodity, dramatic changes in its price have impacted on the economy

and the financial markets, triggering ongoing debate as to the drivers of the

enormous price fluctuations. Most researchers agree that they are driven by

the interaction of supply and demand, however this is only the case in the

short run. In the long run, demand is determined by global economic activity,

while supply is driven by exploration activity in the past. While there is some

literature on this, there are not many empirical studies. In addition, supply

disruptions such as the Suez Crisis (January 1957–February 1957), the OPEC

embargo (November 1973–February 1974), and the first Persian Gulf War

(August 1990–October 1990) have caused oil prices to increase. The crude oil

market is thus often considered to be a political market because geopolitical

developments matter to it. This also explains why the term ‘uncertainty’ is

often used in discussions about the crude oil market.

Understanding the feedback loop between oil supply, demand, uncertainty,

and price is important to understand the direction that the future oil market

237
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might take. This thesis sheds light on that relationship, not only in the short

run but also in the long run. It thus fills a gap in the existing literature,

which is mainly concerned with the short-term supply and demand, and also

focuses on oil production rather than exploration. Through Chapter 2’s study

on exploration activity simulation, this thesis takes into account the role of

exploration in determining oil supply in the future. The economic variable,

crude oil price, is also accounted for in the empirical analysis to understand

how much its movements affect exploration activity. Finally, the thesis takes

into consideration the fact that it takes a few years for actual oil production to

commence once the exploration phase has been completed.

Turning to the impact of crude oil price shocks on supply and demand,

most of the literature assumes that spikes and drops in the crude oil price have

symmetrical effects on supply and demand. Chapter 3 of this thesis discusses

the supply side, captured by world oil production, and reveals an important

insight into whether positive or negative oil price shocks have a dominant

impact on supply and demand. This contributes to the current literature, as

does the chapter’s exploration of the long-run relationship between supply,

demand, and oil price. This addresses a shortcoming in the literature, which

focuses more on the supply role in the short term.

Supply and demand are clearly fundamental to setting the price of oil,

but the term ‘uncertainty’ is also closely linked to the crude oil price. Much

of the literature allows the concept of uncertainty into the global oil market

model as a means of capturing unexpected factors that contribute to oil price

fluctuation and which supply and demand cannot explain. The literature defines

uncertainty as market expectation, public interest, or sentiment indicators about

future oil prices. However, it is challenging to measure uncertainty through

direct observation, and so the current studies approach uncertainty through

forecast-based oil price volatility or forecast-based macroeconomic indicators.

There is therefore no uncertainty index specific to the global oil market that
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links uncertainty to oil price, supply, and demand; this is a knowledge gap that

Chapter 4 of this thesis aims to fill.

In response to gaps in the existing literature, Chapter 2 attempts to

capture exploratory efficiency as a result of exploratory effort. It does this

through the simulation case of a mature petroleum province, the Norwegian

Continental Shelf, and investigates empirically how this is affected by the crude

oil price fluctuation. A Monte Carlo simulation is applied to generate the

discovery size and time between discoveries sequence. The benefit of applying

Monte Carlo simulation is that it does not require extensive numerical analysis

and can generate a simulation resembling a complex system. The simulation

results find, with high confidence, that the average time between one and

the next successful oil discovery is less than ten months, with the average

discovery size being smaller than the past giant discoveries. The key findings

from the simulation exercises are twofold; first, the intervening time between oil

discoveries gets shorter as they occur more frequently, capturing more frequent

exploratory effort. Second, on average, larger size discoveries are made with

less frequency than the smaller size. Hence, the most common pattern for oil

discovery is for smaller discoveries to be made more frequently and with a

shorter time between one and the next discoveries.

The effect of crude oil price movements on exploratory efficiency is also

analysed in Chapter 2. A long-run relationship is found between exploratory

effort, efficiency, and crude oil price. Adding a structural break during Global

Financial Crisis in 2008 confirms the presence of the long-run equilibrium rela-

tionship. The empirical analysis concludes that high crude oil price is associated

with more exploration wells and a shorter time between two discoveries in the

long run. A high oil price incentivises oil producers to drill more often. A high

oil price is also associated with a larger discovery size. The result supports the

argument by Mohn (2008) that the positive relationship between oil price and

size is because high oil price gives an incentive to explore frontier areas where
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there is the prospect of making a larger size discovery than is available in a

mature field.

The findings from Chapter 2 contribute to the academic literature by

developing a toolbox for Monte Carlo simulation that can be applied to other

petroleum provinces. Further, the base case scenario can use the findings from

this study; for instance, the insight that there is 90% probability of average

waiting time being shorter than 316 days with a discovery size of less than 94

million standard cubic metres of oil equivalents. The simulation also identifies

the last discovery date by reference to the discovery rate (i.e., the last discovery

to be earlier than 2089 for the base case parameter). It allows the researcher to

capture the result of exploration activity in various petroleum regions by simply

varying the parameters. Second, the distribution profile of the oil discovery

can be adjusted according to the profile of the focal petroleum region. This

piece of information is particularly useful for a preliminary study of exploration

activity in new frontier areas.

Chapter 3 provides insights into the broader scope of world oil production

(representing global oil supply) and its interaction with the crude oil price

and global demand. The chapter emphasises the role of supply in the long

term, asymmetric effects, and structural break, something that have been

underestimated in the existing literature. The empirical framework is carefully

chosen to accommodate the mixed stationary and non-stationary variables in

levels. The empirical findings from the basic Autoregressive Distributed Lags

(ARDL) model are that a long-run relationship is present between world oil

supply, global demand, and crude oil price. Incorporating the estimated break

in January 2009 confirms the long-run equilibrium relationship between crude

oil prices, supply, and demand. Oil price relates negatively with oil production,

and positively with global demand in the long run, while global demand relates

positively with world oil production. The common view that supply does not

respond to the oil price shock is more relevant to the short run supply, given
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that oil production is not very flexible. The finding indicates that a change

in demand is associated with a greater change in oil price, while a change in

supply is less so. Further, an increase in oil price is associated with a slight

reduction in world oil production, whereas its association with demand is of

greater magnitude. Oil price will make a large adjustment when the oil supply,

demand, and oil price deviate from the level in long-run equilibrium.

Consistent with the basic ARDL model, further analysis via an asymmetric

ARDL model shows that the long-run equilibrium between world oil supply,

global demand, and oil price is significant. Three key findings are made in

the asymmetric analysis. First, supply and demand indicate a stronger link to

positive oil price shocks. Second, crude oil price relates negatively to positive

and negative supply shocks, and positively to positive and negative demand

shocks. Third, oil prices have a stronger link to positive and negative supply

shocks than to positive and negative demand shocks. There is no substantial

difference in the accumulated impacts of positive and negative changes in

demand on the oil price. However, the oil price impacts appear to be greater for

negative change in demand than for positive change in demand in the short run.

After considering a structural break in the asymmetric ARDL model, the results

confirm that the interaction of the break with positive and negative global

demand shocks is significant on the crude oil prices. The break interaction with

the negative supply shock affects oil prices more strongly than the positive

supply shock. Both positive and negative supply shocks strongly affect demand,

whilst the oil supply does not respond to the structural break in the short run.

Incorporating uncertainty in the global oil market is crucial to capturing

unprecedented events that fundamental supply and demand cannot explain.

Chapter 4 proposes an uncertainty index based on Google Trends (GTU),

which captures public interest in oil price, investment, supply, and demand.

The GTU indices measure uncertainty through directly observable data. This

contrasts with the existing indices, which are mainly derived from forecast-
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based macroeconomic variables. The newly proposed GTU index draws on

individuals’ use of a web-based search engine to seek out information. This

behaviour is intensified when there is uncertainty. High public interest in a

topic is captured by the increased frequency with which individuals use the

internet to ‘Google’ specific information, using keywords related to the topic.

Uncertainty about a specific topic is therefore represented by high relative

frequency volume of the topic’s search terms in Google Trends.

The newly proposed GTU index can be used as a alternative index for

measuring uncertainty in the global oil market and for predicting oil price

fluctuation. When the GTU indices are compared with the benchmark uncer-

tainty indices, there is a positive correlation between the GTU index and the

benchmark indices, particularly the oil volatility (OVX) and Macroeconomy

Uncertainty (JMU) indices proposed by Jurado et al. (2015). Furthermore,

empirical analysis examining the relationship between uncertainty, exploration,

and crude oil price indicates that the impulse response functions of the GTU

index also illustrate consistent results with the benchmark indices.

From the findings from Chapter 4, it may be concluded that the GTU

indices behave as a transmission channel of market concern about the unex-

pected worldwide events that significantly impact on oil price. Using rig counts

as the exploration activity proxy and disaggregating these counts into world

and North America rig counts (to account for the dominant non-conventional

shale oil in North America), there is a significant negative relationship between

uncertainty and oil price in the short term. The explanation of the interac-

tion between uncertainty, oil price, and exploration is that high uncertainty

causes a slowdown in the economy. The economic downturn then triggers a

lower demand in business sectors, leading to a drop in oil prices. A negative

relationship is also found between uncertainty and exploration activity. A

project’s cash flow would be affected by high uncertainty, leading to a decision

to delay or cancel the project. As a consequence, a decline occurred in the
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upstream investment. The empirical findings also indicate that exploration

activity relates positively and significantly to oil price shocks for all uncertainty

index models. The empirical findings from Chapter 4 confirm the importance

of crude oil price on the exploratory efforts, which was suggested in Chapter 2.

The future direction of the oil market is associated with the role crude

oil plays in the energy transition. The energy transition initiatives and the

uncertainty in future demand have thus become a crucial issue for the oil-

producing countries, who must decide whether to keep finding new reserves

and producing oil to fill the supply gap, or to leave the oil underground. From

the supply side, a shift to clean energy by the industrial sectors and strong

government policy towards energy transition will slow down the world oil

production growth.

Current global attention is concerned with the peak oil. Historically, peak

oil was perceived as a supply issue in a theory going back to Hubbert (1962), who

argues that production peak follows a bell-shaped curve. The notion is that the

once the peak has been reached, the production rate will decline whilst demand

continues to rise. Oil prices have historically been strongly associated with

concerns about peak oil supply. However, this theory is now open to criticism

since it underestimated the additional reserve growth from non-conventional

oil production. Thus, as a result of the development of non-conventional oil

production and the strong global economy post–2000, concern about peak oil

switched to the issue of peak oil demand. Crude oil price and demand shock

are strongly influenced by each other, as evidenced by the extreme oil pricing

episode of the Global Financial Crisis and, more recently, the Coronavirus

pandemic of 2020 which caused a collapse in global demand, hitting the oil price

in consequence. Indeed, in April 2020, the monthly average real price of crude

oil reached its lowest level of 18 USD per barrel. This negative demand shock

also had the consequence of delaying energy projects and reducing spending in

upstream investment (International Energy Agency, 2022). Post-pandemic and
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in the medium term, the International Energy Agency (2022) forecasts that the

emerging economies (most particularly China, India, and certain other Asian

countries) will contribute to more than 90% of the growth in global oil demand

between 2019 and 2026. On the demand side, a rebound in oil demand after

the 2020 pandemic has prompted an increase in world oil production to meet

it.

The analysis of the world oil supply, demand, uncertainty, and crude

oil price shocks in this thesis provide an academic exercise that is related

to the role of crude oil in the energy transition. The result from Chapter 2

indicates that a reduction in exploration activity in the mature basin will cause

a longer time between oil discoveries. In addition, a high oil price increases

exploration activity and reduces the time between discoveries. The toolbox

for the simulation of the variable of interest in exploration can usefully be

applied to other petroleum provinces to illustrate the average time between

oil discoveries and the discovery size. It is necessary to take such findings into

account when analysing supply forecast as a factor contributing to a slowdown

in the global oil supply. Through the sequence of discoveries, the simulation

exercise also helps illustrate how much reserve growth is required to fill the

supply gaps. McKinsey & Company (2021) reports that oil production needs

to add 38 million barrels per day if it is to meet demand by 2040, and that

even if the energy transition scenario is accelerated, new oil production of 23

million barrels per day will still be required to meet global demand. Thus,

policy measures are required to boost exploration and production activities in

the frontier petroleum provinces, leading to a shorter time between discoveries

and additional reserve growth to fill the gaps in meeting demand.

The presence of a long-run equilibrium between global oil supply, demand,

and crude oil price, and the asymmetric effect disclosed in Chapter 3 are useful

for illustrating the long-term oil market outlook. The asymmetric analysis

reveals two things. First, both supply and demand are more strongly linked to
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positive oil price shock than to negative oil price shock. Second, demand and

oil price are more strongly linked to positive supply shock than to negative

supply shock. However, the elasticity of long-run price to supply is very small,

while global demand change is associated with a higher oil price. In the medium

term, the International Energy Agency (2022) forecasts that there will be a

strong rise in demand up to 2026, sparked by a recovery in post-pandemic

economic activity and by rising populations and incomes in Asian countries.

The finding of Chapter 3 provides an insight that a positive demand shock

is associated with an increase in oil price. Another spike in oil price is then

expected during the global demand rebound. Linking this finding with an

energy transition scenario characterised by more stringent policy measures, a

slowdown in demand is expected in the longer term. Thus, it is also expected

that crude oil prices will experience another period of low episodes following

this negative demand shock.

The asymmetric findings can have some relevant policy implications. First,

a policy measure that is conducive to an acceleration of the exploration and pro-

duction phases is required, particularly to overcome the high oil price scenario.

The implementation of a stable policy is not only necessary for supporting ex-

isting projects but is also required to boost investment if technological progress

is to be achieved. Second, national governments should design policy that can

respond to positive or negative oil price shocks, particularly when these hit

during a period of economic stagnation or recession. Although the short-run

effects of oil price shocks are less significant than the long-run effects, policy-

makers must be aware of how a sudden enormous shortfall in world oil supply

or global demand contribute to the crude oil price fluctuation. At the very least,

business portfolio diversification is required to reduce oil sector dependency,

especially in the resource-rich countries.

The discussion of uncertainty in Chapter 4 focuses on the measurement of

public interest in the global oil market. The key finding is that the GTU index
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captures the intensification of public interest when there is uncertainty due to

unexpected circumstances. Public interest becomes particularly intense when

the oil price declines. The International Energy Agency (2022) reports that

there have been a few reasons for the increase in uncertainty about oil demand.

These are related to oil exploration and oil production projects: cancellation,

delay, low number of projects approved in the pandemic era, low oil price, and

government policy to speed up the deployment of the energy transition scenario.

The newly proposed GTU index provides a new measure that captures public

interest in the oil market, which can be linked to extreme oil price movements,

particularly when crude oil prices are low.

There are also policy implications from the findings from Chapter 4.

Policymakers must anticipate market behaviour, as when there are disruptions,

the public tends to behave irrationally. Without an immediate response from

government, public reaction to disruption will deteriorate the economy and

contribute to the crude oil price shock. Second, the policymakers can incorporate

the uncertainty component into their sensitivity analysis and use the findings

from the base case scenario in the oil market model to make a better strategy

for investing in exploration activity. GTU oil investment and GTU oil supply

have higher predictability for the world and North America exploration models;

thus, these indices can be used as a proxy in extending research on crude oil

production. Overall, this thesis illustrates the importance of a feedback loop

between supply, demand, uncertainty, and oil price, which is relevant to further

research on the role of oil in the energy transition scenario.



Appendix A

Exploration activity and the crude

oil price: evidence from the mature

petroleum province

A.1 R code for Norwegian oil discovery simula-

tion

\begin{singlespace}

#NPD data

R_npd_disc_2 <- read_excel("PHD/ABERDEEN_1stYear/

Edited␣data/R_npd_disc_2.xlsx")

View(R_npd_disc_2)

year <- R_npd_disc_2$year

seq <- R_npd_disc_2$seq

recov <- R_npd_disc_2$recov

lrecov <- log(recov)

#Data and descriptive statistics

#Packages for date and data table formatting

247
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library(data.table)

library(dplyr)

library(lubridate)

year <- ymd(as.Date(year))

#Plot of discovery size

par(mfrow=c(1,1))

plot(year ,recov ,xlim=as.Date(c("1967 -07 -09","2024 -12 -31")),

ylim=c(0,800), type="line",col="red",xlab="Year",

ylab="Discovery␣size␣[mill␣Sm3]")

par(mfrow=c(2,1))

plot(year ,recov ,xlim=as.Date(c("1967 -07 -09","2024 -12 -31")),

ylim=c(0,800), type="line",col="red")

plot(year ,lrecov ,xlim=as.Date(c("1967 -07 -09","2024 -12 -31")),

ylim=c(0,800), type="line",col="red")

#Fit distribution of NPD data

library(fitdistrplus)

#Discovery size

plot(recov , pch =20)

plotdist(recov , histo = TRUE , demp = TRUE)

descdist(recov , discrete=FALSE , boot =500)

#summary statistics

#------

#min: 0.02 max: 578.69

#median: 7.9

#mean: 41.08057

#estimated sd: 95.87531

#estimated skewness: 3.78726

#estimated kurtosis: 18.26716

summary(recov)
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# Min. 1st Qu. Median Mean 3rd Qu. Max.

# 0.02 2.29 7.90 41.08 24.10 578.69

fit_w <- fitdist(recov , "weibull")

fit_g <- fitdist(recov , "gamma")

fit_ln <- fitdist(recov , "lnorm")

fit_e <- fitdist(recov , "exp")

gofstat(list(fit_w, fit_g, fit_ln, fit_e), fitnames =

c("weibull",

"gamma", "lnorm", "exp"))

#Goodness -of-fit statistics

# weibull gamma lnorm exp

#Kolmogorov -Smirnov statistic 0.1003794 0.1674752 0.03934430

# 0.3846621

#Cramer -von Mises statistic 0.2822424 1.0168108 0.02963787

# 7.9361813

#Anderson -Darling statistic 1.7561936 5.2021768 0.19628837

# 52.3348718

#

#Goodness -of-fit criteria

# weibull gamma lnorm exp

#Akaike ’s Information Criterion 1174.196 1198.729 1158.183

# 1331.781

#Bayesian Information Criterion 1180.094 1204.627 1164.081

# 1334.730

summary(fit_ln)

#Fitting of the distribution ’ lnorm ’ by maximum likelihood

#Parameters :

# estimate Std. Error

#meanlog 1.980080 0.1685455

#sdlog 2.001367 0.1191795
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#Loglikelihood: -577.0916 AIC: 1158.183 BIC: 1164.081

#Correlation matrix:

# meanlog sdlog

#meanlog 1.000000e+00 2.854558e-10

#sdlog 2.854558e-10 1.000000e+00

par(mfrow=c(2,2))

plot.legend <- c("Weibull","gamma","lognormal","exponential")

denscomp(list(fit_w, fit_g, fit_ln, fit_e),

legendtext = plot.legend)

cdfcomp (list(fit_w, fit_g, fit_ln, fit_e),

legendtext = plot.legend)

qqcomp (list(fit_w, fit_g, fit_ln , fit_e),

legendtext = plot.legend)

ppcomp (list(fit_w, fit_g, fit_ln , fit_e),

legendtext = plot.legend)

# Waiting time

for (i in 1:141){

deltat <- year - lag(year)

}

deltat <- as.numeric(deltat)

View(deltat)

par(mfrow=c(1,1))

plot(deltat ,type="line",col="dark␣blue",xlab="Sequence

of␣discovery",

ylab="Waiting␣time␣(days)")

t <- deltat [2:141]

df.t <- data.frame(t)

library("writexl")

write_xlsx(df.t,"C:\\ Users\\estit\\ Documents \\PHD\\
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ABERDEEN_1stYear \\R\\t.xlsx")

plot(t, pch =20)

plotdist(t, histo = TRUE , demp = TRUE)

descdist(t, discrete=FALSE , boot =500)

#summary statistics

#------

#min: 0 max: 899

#median: 88

#mean: 136.2357

#estimated sd: 157.707

#estimated skewness: 2.375989

#estimated kurtosis: 9.74944

summary(t)

#Min. 1st Qu. Median Mean 3rd Qu. Max.

# 0.00 37.75 88.00 136.24 176.25 899.00

summary(year)

# Min. 1st Qu. Median Mean 3rd Qu.

# "1967 -07 -09" "1983 -12 -25" "1998 -05 -03" "1997 -08 -20"

# "2011 -10 -27"

# Max.

# "2019 -09 -27"

fit_w_t <- fitdist(t[t>0], "weibull")

fit_g_t <- fitdist(t[t>0], "gamma")

fit_ln_t <- fitdist(t[t>0], "lnorm")

fit_exp_t <- fitdist(t[t>0], "exp")

gofstat(list(fit_w_t, fit_g_t, fit_ln_t, fit_exp_t),

fitnames = c("Weibull", "gamma", "lognormal", "exponential"))

#Goodness -of-fit statistics

# Weibull gamma lognormal

# exponential

#Kolmogorov -Smirnov statistic 0.04587222 0.05537463 0.06341836
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# 0.06654069

#Cramer -von Mises statistic 0.05189915 0.07795903 0.12572442

# 0.11642037

#Anderson -Darling statistic 0.35880368 0.47135138 0.89568718

# 0.65373694

#

#Goodness -of-fit criteria

# Weibull gamma lognormal

# exponential

#Akaike ’s Information Criterion 1649.132 1649.838 1653.161

# 1648.192

#Bayesian Information Criterion 1655.001 1655.707 1659.030

# 1651.127

summary(fit_exp_t)

#Fitting of the distribution ’ exp ’ by maximum likelihood

#Parameters :

# estimate Std. Error

#rate 0.007287789 0.0006062372

#Loglikelihood: -823.0962 AIC: 1648.192 BIC: 1651.127

par(mfrow=c(2,2))

plot.legend <- c("Weibull","gamma","lognormal","exponential")

denscomp(list(fit_w_t, fit_g_t, fit_ln_t, fit_exp_t),

legendtext = plot.legend)

cdfcomp (list(fit_w_t, fit_g_t, fit_ln_t, fit_exp_t),

legendtext = plot.legend)

qqcomp (list(fit_w_t, fit_g_t, fit_ln_t, fit_exp_t),

legendtext = plot.legend)

ppcomp (list(fit_w_t, fit_g_t, fit_ln_t, fit_exp_t),

legendtext = plot.legend)
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# Simulation of oil discovery

# Simulated 141 discovery size (10 ,000 replication) -

# NCS parameters

set.seed (93)

sim.ln.141 <- replicate(n=10000 , expr=rlnorm(n=141,

meanlog =1.980080 , sdlog =2.001367))

par(mfrow=c(1,1))

hist(sim.ln.141)

df.sim.ln.141 <- data.frame(sim.ln.141)

library("writexl")

write_xlsx(df.sim.ln.141,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\sim.ln.141. xlsx")

# KS test simulated and actual discovery size distribution

ks.test(recov ,sim.ln.141[,1], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and sim.ln.141[ , 1]

#D = 0.12057 , p-value = 0.257

#alternative hypothesis: two -sided

ks.test(recov ,sim.ln.141[ ,100] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and sim.ln.141[ , 100]

#D = 0.049645 , p-value = 0.995

#alternative hypothesis: two -sided

ks.test(recov ,sim.ln.141[ ,500] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and sim.ln.141[ , 500]
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#D = 0.11348 , p-value = 0.3241

#alternative hypothesis: two -sided

ks.test(recov ,sim.ln.141[ ,1000] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and sim.ln.141[ , 1000]

#D = 0.056738 , p-value = 0.9771

#alternative hypothesis: two -sided

ks.test(recov ,sim.ln.141[ ,5000] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and sim.ln.141[ , 5000]

#D = 0.085106 , p-value = 0.6868

#alternative hypothesis: two -sided

ks.test(recov ,sim.ln.141[ ,10000] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and sim.ln.141[ , 10000]

#D = 0.06383 , p-value = 0.9362

#alternative hypothesis: two -sided

#Quantile

install.packages("matrixStats")

require(matrixStats)

library(matrixStats)

probs <- c(0.10, 0.25, 0.375, 0.5, 0.625, 0.75, 0.90)

quant.lnl41 <- matrix(sim.ln.141, nrow = 141, ncol = 10000)

q.ln141 <- rowQuantiles(quant.lnl41 , probs = probs)

View(q.ln141)

df.q.ln141 <- data.frame(q.ln141)

write_xlsx(df.q.ln141 ,"C:\\ Users\\estit\\ Documents \\PHD\\
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ABERDEEN_1stYear \\R\\ quantile_ln141.xlsx")

#MAPE test for simulated disc size

install.packages("Metrics")

require(Metrics)

library(Metrics)

mape(recov ,sim.ln.141[ ,1])

# [1] 53.73598

mape(recov ,sim.ln .141[ ,100])

# [1] 67.74372

mape(recov ,sim.ln .141[ ,500])

# [1] 75.28714

mape(recov ,sim.ln .141[ ,1000])

# [1] 19.56513

mape(recov ,sim.ln .141[ ,5000])

# [1] 38.93405

mape(recov ,sim.ln .141[ ,10000])

# [1] 67.87165

# Changing parameters (meanlog and sdlog)

# low mean and sd

set.seed (932)

ln.l <- replicate(n=10000 , expr=rlnorm(n=141, meanlog =1.7675 ,

sdlog =1.5))

par(mfrow=c(1,1))

hist(ln.l)

df.ln.l <- data.frame(ln.l)

write_xlsx(df.ln.l,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ln.l.xlsx")

# KS test simulated and actual discovery size distribution
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ks.test(recov ,ln.l[,1], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.l[, 1]

#D = 0.13475 , p-value = 0.1545

#alternative hypothesis: two -sided

ks.test(recov ,ln.l[,100], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.l[, 100]

#D = 0.14184 , p-value = 0.1172

#alternative hypothesis: two -sided

ks.test(recov ,ln.l[,500], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.l[, 500]

#D = 0.13475 , p-value = 0.1545

#alternative hypothesis: two -sided

ks.test(recov ,ln.l[,1000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.l[, 1000]

#D = 0.13475 , p-value = 0.1545

#alternative hypothesis: two -sided

ks.test(recov ,ln.l[,5000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.l[, 5000]

#D = 0.14894 , p-value = 0.08763

#alternative hypothesis: two -sided

ks.test(recov ,ln.l[,10000], alternative="two.sided")
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#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.l[, 10000]

#D = 0.15603 , p-value = 0.0646

#alternative hypothesis: two -sided

#Quantile

quant.lnl <- matrix(ln.l, nrow = 141, ncol = 10000)

q.lnl <- rowQuantiles(quant.lnl , probs = probs)

View(q.lnl)

df.q.lnl <- data.frame(q.lnl)

write_xlsx(df.q.lnl ,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_lnl.xlsx")

#MAPE test for simulated disc size

mape(recov ,ln.l[,1])

#[1] 11.08655

mape(recov ,ln.l[ ,100])

#[1] 9.591367

mape(recov ,ln.l[ ,500])

# [1] 12.7842

mape(recov ,ln.l[ ,1000])

# [1] 13.98826

mape(recov ,ln.l[ ,5000])

# [1] 9.406069

mape(recov ,ln.l[ ,10000])

# [1] 46.04467

# high mean and sd

set.seed (933)

ln.h <- replicate(n=10000 , expr=rlnorm(n=141, meanlog =2.3575 ,
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sdlog =2.1500))

par(mfrow=c(1,1))

hist(ln.h)

df.ln.h <- data.frame(ln.h)

write_xlsx(df.ln.h,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ln.h.xlsx")

# KS test simulated and actual discovery size distribution

ks.test(recov ,ln.h[,1], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.h[, 1]

#D = 0.099291 , p-value = 0.4904

#alternative hypothesis: two -sided

ks.test(recov ,ln.h[,100], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.h[, 100]

#D = 0.15603 , p-value = 0.0646

#alternative hypothesis: two -sided

ks.test(recov ,ln.h[,500], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.h[, 500]

#D = 0.14894 , p-value = 0.08763

#alternative hypothesis: two -sided

ks.test(recov ,ln.h[,1000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.h[, 1000]

#D = 0.078014 , p-value = 0.7842
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#alternative hypothesis: two -sided

ks.test(recov ,ln.h[,5000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.h[, 5000]

#D = 0.14894 , p-value = 0.08763

#alternative hypothesis: two -sided

ks.test(recov ,ln.h[,10000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: recov and ln.h[, 10000]

#D = 0.12057 , p-value = 0.257

#alternative hypothesis: two -sided

#Quantile

quant.lnh <- matrix(ln.h, nrow = 141, ncol = 10000)

q.lnh <- rowQuantiles(quant.lnh , probs = probs)

View(q.lnh)

df.q.lnh <- data.frame(q.lnh)

write_xlsx(df.q.lnh ,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_lnh.xlsx")

#MAPE test for simulated disc size

mape(recov ,ln.h[,1])

# [1] 517.3936

mape(recov ,ln.h[ ,100])

# [1] 43.27765

mape(recov ,ln.h[ ,500])

# [1] 140.5207

mape(recov ,ln.h[ ,1000])

# [1] 290.6018
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mape(recov ,ln.h[ ,5000])

# [1] 356.3883

mape(recov ,ln.h[ ,10000])

# [1] 126.5435

# Density of various discovery size parameter

par(mfrow=c(1,1))

plot(density(ln.l), main="Density␣simulated␣discovery␣size

(Lognormal␣distribution)",col="blue",xlim=c(110 ,3000) ,

ylim=c(0 ,0.32))

lines(density(sim.ln.141),col = "red")

lines(density(ln.h),col = "orange")

legend("topright", c("mu =1.7675␣s=1.50","mu =1.9801␣s=2.00",

"mu =2.3575␣s=2.15"),col = c("blue","red","orange"), lty = 1)

# Simulated waiting time (10 ,000 replication) - NCS parameters

set.seed (411)

sim.t.141 <- replicate(n = 10000, expr = rexp(n = 141,

rate = 0.007287789))

par(mfrow=c(1,1))

hist(sim.t.141)

df.sim.t.141 <- data.frame(sim.t.141)

write_xlsx(df.sim.t.141,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\sim.t.141. xlsx")

# KS test simulated and actual discovery waiting

# time distribution

ks.test(t,sim.t.141[,1], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and sim.t.141[ , 1]
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#D = 0.068338 , p-value = 0.8981

#alternative hypothesis: two -sided

ks.test(t,sim.t.141[ ,100] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and sim.t.141[ , 100]

#D = 0.1959 , p-value = 0.009109

#alternative hypothesis: two -sided

ks.test(t,sim.t.141[ ,500] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and sim.t.141[ , 500]

#D = 0.043668 , p-value = 0.9993

#alternative hypothesis: two -sided

ks.test(t,sim.t.141[ ,1000] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and sim.t.141[ , 1000]

#D = 0.04306 , p-value = 0.9995

#alternative hypothesis: two -sided

ks.test(t,sim.t.141[ ,5000] , alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and sim.t.141[ , 5000]

#D = 0.072036 , p-value = 0.8592

#alternative hypothesis: two -sided

ks.test(t,sim.t.141[ ,10000] , alternative="two.sided")

# Two -sample Kolmogorov -Smirnov test

#

#data: t and sim.t.141[ , 10000]

#D = 0.13987 , p-value = 0.128
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#alternative hypothesis: two -sided

# Simulated discovery dates taken from 1st, 100th, 500th,

# 1,000th, 5000th, and 10,000th replication

library(lubridate)

date0 <- ymd(as.Date(’1967 -07 -09’))

for (i in 1:141){

date0 <- ymd(as.Date(’1967 -07 -09’))

dat.sim.t.141.1 <- date0+cumsum(sim.t.141[ ,1])

dat.sim.t.141.100 <- date0+cumsum(sim.t.141[ ,100])

dat.sim.t.141.500 <- date0+cumsum(sim.t.141[ ,500])

dat.sim.t.141.1000 <- date0+cumsum(sim.t.141[ ,1000])

dat.sim.t.141.5000 <- date0+cumsum(sim.t.141[ ,5000])

dat.sim.t.141.10000 <- date0+cumsum(sim.t.141[ ,10000])

}

df.sim.t.141 <- data.frame(dat.sim.t.141.1 , dat.sim.t.141.100 ,

dat.sim.t.141.500 , dat.sim.t.141.1000 , dat.sim.t.141.5000 ,

dat.sim.t.141.10000)

View(df.sim.t.141)

write_xlsx(df.sim.t.141,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\dat.sim.t.141. xlsx")

# Quantile of waiting time

qe <- rowQuantiles(sim.t.141, probs = probs)

View(qe)

df.qe <- data.frame(qe)

write_xlsx(df.qe,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_exp141.xlsx")

#MAPE test for simulated waiting time

mape(t[t>0],sim.t.141[1:139 ,1])
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# [1] 3.992272

mape(t[t>0],sim.t.141[1:139 ,100])

# [1] 3.356068

mape(t[t>0],sim.t.141[1:139 ,500])

# [1] 4.374441

mape(t[t>0],sim.t.141[1:139 ,1000])

# [1] 3.084268

mape(t[t>0],sim.t.141[1:139 ,5000])

# [1] 3.395689

mape(t[t>0],sim.t.141[1:139 ,10000])

# [1] 5.127476

# Quantile of simulated discovery dates

date0 <- ymd(as.Date(’1967 -07 -09’))

for (i in 1:141){

date0 <- ymd(as.Date(’1967 -07 -09’))

dat.qe.10 <- date0+cumsum(qe[,1])

dat.qe.25 <- date0+cumsum(qe[,2])

dat.qe.37.5 <- date0+cumsum(qe[,3])

dat.qe.50 <- date0+cumsum(qe[,4])

dat.qe.62.5 <- date0+cumsum(qe[,5])

dat.qe.75 <- date0+cumsum(qe[,6])

dat.qe.90 <- date0+cumsum(qe[,7])

}

df.qe <- data.frame(dat.qe.10,dat.qe.25,dat.qe.37.5,dat.qe.50,

dat.qe.62.5,dat.qe.75,dat.qe.90)

View(df.qe)

write_xlsx(df.qe,"C:\\ Users \\ estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_datexp141.xlsx")

# Changing parameters
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# low rate

set.seed (412)

el <- replicate(n = 10000, expr = rexp(n = 141,

rate = 0.0068))

par(mfrow=c(1,1))

hist(el)

df.el <- data.frame(el)

write_xlsx(df.el,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\el.xlsx")

# KS test simulated and actual discovery waiting time

# distribution

ks.test(t,el[,1], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and el[, 1]

#D = 0.12401 , p-value = 0.2301

#alternative hypothesis: two -sided

ks.test(t,el[,100], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and el[, 100]

#D = 0.10274 , p-value = 0.4487

#alternative hypothesis: two -sided

ks.test(t,el[,500], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and el[, 500]

#D = 0.082877 , p-value = 0.7201

#alternative hypothesis: two -sided

ks.test(t,el[,1000], alternative="two.sided")
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#Two -sample Kolmogorov -Smirnov test

#

#data: t and el[, 1000]

#D = 0.074316 , p-value = 0.8326

#alternative hypothesis: two -sided

ks.test(t,el[,5000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and el[, 5000]

#D = 0.081358 , p-value = 0.7411

#alternative hypothesis: two -sided

ks.test(t,el[ ,10000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and el[, 10000]

#D = 0.15344 , p-value = 0.07317

#alternative hypothesis: two -sided

# Simulated discovery dates taken from 1st, 100th, 500th,

# 1,000th, 5000th, and 10,000th replication

for (i in 1:141){

date0 <- ymd(as.Date(’1967 -07 -09’))

dat.el.1 <- date0+cumsum(el[,1])

dat.el.100 <- date0+cumsum(el[ ,100])

dat.el.500 <- date0+cumsum(el[ ,500])

dat.el.1000 <- date0+cumsum(el[ ,1000])

dat.el.5000 <- date0+cumsum(el[ ,5000])

dat.el .10000 <- date0+cumsum(el[ ,10000])

}

df.el <- data.frame(dat.el.1,dat.el.100,dat.el.500,

dat.el.1000,dat.el.5000 ,dat.el .10000)
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View(df.el)

write_xlsx(df.el,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\dat.el.xlsx")

# Quantile of waiting time

qel <- rowQuantiles(el, probs = probs)

View(qel)

df.qel <- data.frame(qel)

write_xlsx(df.qel ,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_el.xlsx")

#MAPE test for simulated waiting time

mape(t[t>0],el[1:139 ,1])

# [1] 3.526484

mape(t[t>0],el [1:139 ,100])

# [1] 3.745263

mape(t[t>0],el [1:139 ,500])

# [1] 3.452338

mape(t[t>0],el [1:139 ,1000])

# [1] 3.031484

mape(t[t>0],el [1:139 ,5000]])

# [1] 5.208759

mape(t[t>0],el [1:139 ,10000])

# [1] 5.233531

# Quantile of simulated discovery dates

for (i in 1:141){

date0 <- ymd(as.Date(’1967 -07 -09’))

dat.qel.10 <- date0+cumsum(qel[,1])

dat.qel.25 <- date0+cumsum(qel[,2])

dat.qel .37.5 <- date0+cumsum(qel[,3])
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dat.qel.50 <- date0+cumsum(qel[,4])

dat.qel .62.5 <- date0+cumsum(qel[,5])

dat.qel.75 <- date0+cumsum(qel[,6])

dat.qel.90 <- date0+cumsum(qel[,7])

}

df.qel <- data.frame(dat.qel.10,dat.qel.25,dat.qel.37.5,

dat.qel.50,dat.qel.62.5 ,dat.qel.75,dat.qel .90)

View(df.qel)

write_xlsx(df.qel ,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_datel.xlsx")

# high rate

set.seed (413)

eh <- replicate(n = 10000, expr = rexp(n = 141,

rate = 0.0090))

par(mfrow=c(1,1))

hist(eh)

df.eh <- data.frame(eh)

write_xlsx(df.eh,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\eh.xlsx")

# KS test simulated and actual discovery waiting time

# distribution

ks.test(t,eh[,1], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and eh[, 1]

#D = 0.079433 , p-value = 0.7672

#alternative hypothesis: two -sided

ks.test(t,eh[,100], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test
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#

#data: t and eh[, 100]

#D = 0.12579 , p-value = 0.2163

#alternative hypothesis: two -sided

ks.test(t,eh[,500], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and eh[, 500]

#D = 0.082928 , p-value = 0.7194

#alternative hypothesis: two -sided

ks.test(t,eh[,1000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and eh[, 1000]

#D = 0.15187 , p-value = 0.07827

#alternative hypothesis: two -sided

ks.test(t,eh[,5000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and eh[, 5000]

#D = 0.050557 , p-value = 0.9939

#alternative hypothesis: two -sided

ks.test(t,eh[ ,10000], alternative="two.sided")

#Two -sample Kolmogorov -Smirnov test

#

#data: t and eh[, 10000]

#D = 0.10046 , p-value = 0.4776

#alternative hypothesis: two -sided

# Simulated discovery dates taken from 1st, 100th,

500th, 1,000th , 5000th, and 10,000th replication
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for (i in 1:141){

date0 <- ymd(as.Date(’1967 -07 -09’))

dat.eh.1 <- date0+cumsum(eh[,1])

dat.eh.100 <- date0+cumsum(eh[ ,100])

dat.eh.500 <- date0+cumsum(eh[ ,500])

dat.eh.1000 <- date0+cumsum(eh[ ,1000])

dat.eh.5000 <- date0+cumsum(eh[ ,5000])

dat.eh .10000 <- date0+cumsum(eh[ ,10000])

}

df.eh <- data.frame(dat.eh.1,dat.eh.100,dat.eh.500,

dat.eh.1000,dat.eh.5000 ,dat.eh .10000)

View(df.eh)

write_xlsx(df.eh,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\dat.eh.xlsx")

# Quantile of waiting time

qeh <- rowQuantiles(eh, probs = probs)

View(qeh)

df.qeh <- data.frame(qeh)

write_xlsx(df.qeh ,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_eh.xlsx")

#MAPE test for simulated waiting time

mape(t[t>0],eh[1:139 ,1])

# [1] 2.760516

mape(t[t>0],eh [1:139 ,100])

# [1] 3.792903

mape(t[t>0],eh [1:139 ,500])

# [1] 2.576815

mape(t[t>0],eh [1:139 ,1000])

# [1] 2.147273
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mape(t[t>0],eh [1:139 ,5000])

# [1] 4.13765

mape(t[t>0],eh [1:139 ,10000])

# [1] 3.230472

# Quantile of simulated discovery dates

for (i in 1:141){

date0 <- ymd(as.Date(’1967 -07 -09’))

dat.qeh.10 <- date0+cumsum(qeh[,1])

dat.qeh.25 <- date0+cumsum(qeh[,2])

dat.qeh .37.5 <- date0+cumsum(qeh[,3])

dat.qeh.50 <- date0+cumsum(qeh[,4])

dat.qeh .62.5 <- date0+cumsum(qeh[,5])

dat.qeh.75 <- date0+cumsum(qeh[,6])

dat.qeh.90 <- date0+cumsum(qeh[,7])

}

df.qeh <- data.frame(dat.qeh.10,dat.qeh.25,dat.qeh.37.5,

dat.qeh.50,dat.qeh.62.5 ,dat.qeh.75,dat.qeh .90)

View(df.qeh)

write_xlsx(df.qeh ,"C:\\ Users\\estit\\ Documents \\PHD\\

ABERDEEN_1stYear \\R\\ quantile_dateh.xlsx")

# Density for various parameters

par(mfrow=c(1,1))

plot(density(el), main="Density␣simulated␣waiting␣time

(Exponential␣distribution)",col="blue",xlim=c(0,1000),

ylim=c(0 ,0.009))

lines(density(sim.t.141),col = "red")

lines(density(eh),col = "orange")

legend("topright", c("k=0.0068", "k=0.0073", "k=0.0090"),

col = c("blue","red","orange"), lty = 1)



A.1. R code for Norwegian oil discovery simulation 271

# Plot simulated discovery size and waiting time taken from

# 1st, 100th, 500th, 1,000th, 5000th, and 10,000th

replication

# NCS parameter

par(mfrow=c(3,2))

plot(dat.sim.t.141.1 , sim.ln.141[,1], xlim=as.Date(c

("1967 -07 -09","2030 -12 -31")),ylim=c(0,1800), type="line",

col="dark␣blue",xlab="Simulated␣discovery␣year

(1st␣replication)",ylab="Simulated␣discovery␣size␣(mill

Sm3)")

plot(dat.sim.t.141.100 , sim.ln.141[ ,100] , xlim=as.Date(c

("1967 -07 -09","2030 -12 -31")),ylim=c(0,1800), type="line",

col="purple",xlab="Simulated␣discovery␣year␣(100th

replication)",ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.sim.t.141.500 , sim.ln.141[ ,500] , xlim=as.Date(c

("1967 -07 -09","2030 -12 -31")),ylim=c(0,1800), type="line",

col="dark␣green",xlab="Simulated␣discovery␣year␣(500th

replication)",ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.sim.t.141.1000 , sim.ln.141[ ,1000] , xlim=as.Date(c

("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,1800), type="line",col="orange",

xlab="Simulated␣discovery␣year␣(1,000th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.sim.t.141.5000 , sim.ln.141[ ,5000] , xlim=as.Date(c

("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,1800), type="line",col="pink",

xlab="Simulated␣discovery␣year␣(5,000th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.sim.t.141.10000 , sim.ln.141[ ,10000] , xlim=as.Date(c

("1967 -07 -09","2030 -12 -31")),ylim=c(0,1800), type="line",
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col="dark␣red",xlab="Simulated␣discovery␣year␣(10 ,000th

replication)",ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

# low parameter (discovery size ln.l; waiting time el)

par(mfrow=c(3,2))

plot(dat.el.1,ln.l[,1],xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,500), type="line",col="dark␣blue",

xlab="Simulated␣discovery␣year␣(1st␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.el.100,ln.l[,100],xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,500), type="line",col="purple",

xlab="Simulated␣discovery␣year␣(100th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.el.500,ln.l[,500],xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")), ylim=c(0,500), type="line",col="dark␣green",

xlab="Simulated␣discovery␣year␣(500th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.el.1000 ,ln.l[,1000], xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,500), type="line",col="orange",

xlab="Simulated␣discovery␣year␣(1000th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.el.5000 ,ln.l[,5000], xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,500), type="line",col="pink",

xlab="Simulated␣discovery␣year␣(5,000th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.el.10000 ,ln.l[,10000], xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,500), type="line",col="dark␣red",

xlab="Simulated␣discovery␣year␣(10 ,000th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

# high parameter (discovery size ln.h; waiting time eh)
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par(mfrow=c(3,2))

plot(dat.eh.1,ln.h[,1],xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")), ylim=c(0,3000), type="line",col=

"dark␣blue",xlab="Simulated␣discovery␣year

(1st␣replication)",ylab="Simulated␣discovery␣size

(mill␣Sm3)")

plot(dat.eh.100,ln.h[,100],xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")), ylim=c(0,3000), type="line",col="purple",

xlab="Simulated␣discovery␣year␣(100th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.eh.500,ln.h[,500],xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")), ylim=c(0,3000), type="line",col=

"dark␣green", xlab="Simulated␣discovery␣year

(500th␣replication)", ylab="Simulated␣discovery

size␣(mill␣Sm3)")

plot(dat.eh.1000 ,ln.h[,1000], xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,3000), type="line",col="orange",

xlab="Simulated␣discovery␣year␣(1000th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.eh.5000 ,ln.h[,5000], xlim=as.Date(c("1967 -07 -09",

"2030 -12 -31")),ylim=c(0,3000), type="line",col="pink",

xlab="Simulated␣discovery␣year␣(5,000th␣replication)",

ylab="Simulated␣discovery␣size␣(mill␣Sm3)")

plot(dat.eh.10000 ,ln.h[,10000], xlim=as.Date

(c("1967 -07 -09","2030 -12 -31")),ylim=c(0,3000),

type="line",col="dark␣red",xlab="Simulated␣discovery

year␣(10 ,000th␣replication)",ylab="Simulated␣discovery

size␣(mill␣Sm3)")

\end{singlespace}
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A.2 Robustness test

Table A.1 reports the ARDL with a structural break in the error correction

form by adjusting the nominal oil price with the PPP of Norway to obtain real

oil price. Column (i) presents the ARDL estimates in error correction form

of waiting time between discoveries as the dependent variable, and Column

(ii) shows the estimates of discovery size as a dependent variable. Panel (i)

reports that the F-statistic and t-statistic of the adjustment factors are larger

than the bounds test critical values at a 1% and 10% significance level for

waiting time and discovery size, respectively. The null hypothesis that the

level relationship does not exist is rejected; hence there is enough evidence to

support the long-run relationship at the level of waiting time, exploration well

counts, and real oil price, and so does for discovery size, exploration well, and

real oil price.

The adjustment factor (−α) shows how the dependent variable changes

when the three variables deviate from their long-run equilibrium. The adjust-

ment factors for the two equations are all negative and statistically significant,

which means that the estimated error correction forms represent stable rela-

tionships. The dependent variable of the prior period is too high relative to

the long-run equilibrium, so it is necessary to decrease its value in the current

period to revert to equilibrium. The long-run equilibrium relationship denoted

by coefficient θ in Table A.1 represents a contemporaneous relationship between

variables. The sign of the coefficient estimates is consistent with the model

applying U.S. CPI as an adjustment inflation rate of oil price. A 1% real

oil price relates negatively with the waiting time by 0.2 days and positively

with discovery size by 0.31%. A 1% increase in exploration well counts relates

negatively with the waiting time by 0.9 days and with discovery size by 0.1%.
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Table A.1: ARDL estimation with a structural break in error correction form
for exploratory effort, efficiency, and adjusted PPP real oil price

(i) D.wtt (ii) D.lst
(i) Case 3
Bound Test H0: no level relationship
F-stat‡ 6.024∗ 47.203∗∗∗
t-stat‡ -3.382∗ -11.057∗∗∗

(ii) Adjustment factor
(-α)‡

wtt−1 -0.666∗∗∗ (0.197)
lst−1 -0.812∗∗∗ (0.074)

(iii) Long-run (θ)

lwt−1 -93.123 (80.750) -0.113 (0.286)

lopt−1 -20.790 (51.338) 0.310∗ (0.172)

(iv) short-run
(ψyi, ω

′
, ψ

′

xi)

D.wtt−1 -0.276∗∗ (0.126)
D.lst−1

D.lst−2

D.lst−3

D.lwt -64.311 (62.221) -0.092 (0.232)

D.lwt−1 -138.679∗∗ (64.022)

D.lwt−2 -143.843∗∗∗ (50.575)
D.lwt−3

D.lopt -13.849 (36.184) 1.012∗∗∗ (0.223)

bt 9.218 (51.960) -0.582∗∗∗ (0.187)

(a0)
Constant 387.750∗ (224.679) -0.075 (0.602)

Observations 50 50

Notes:
Standard error in parentheses; ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
‡The approximate p-values applied for speed-of-adjustment
coefficient is based on Kripfganz et al. (2018)



Appendix B

Global oil market uncertainty, oil

exploration, and crude oil price:

An application of Google Trends

B.1 The optimal lag length selection

The optimal lag length selection is chosen based on information criteria.

Apart from information criteria explained earlier in Equation 2.26 and 2.27,

the sequential modified likelihood ratio (LR) test can be applied in the VAR

estimation. The LR test is applied based on the log likelihood function and has

the hypothesis that lag l coefficients are jointly zero using Wald (χ2) statistic

(Lütkepohl, 1991, cited by EViews, 2019). The test starts from the maximum

lag then decreases by one lag until the hypothesis can be rejected at 5% critical

value (which is marked by an asterisk in Table B.1).

The optimal lag chosen is the smallest value of information criteria. First,

AIC and SC are considered, however if the optimal lag obtained by the AIC or

SC is too short (e.g. 1 or 2 lags), the lag obtained by the LR test is applied for

the VAR estimation to avoid autocorrelation of the model.

276
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The endogenous variables applied in VAR estimates are in log-differences.

Figure B.1 and B.2 show the time series of uncertainty, rig counts, and crude

oil price in log-differences.

Figure B.1: Uncertainty indices (log differences)

The equation of the LR test is given by,

LR = (T −m)
{
log
∣∣∣∑ ϵ, l − 1

∣∣∣− log
∣∣∣∑ ϵ, l

∣∣∣ } χ2(k2) (B.1)

where T is the number of observation, p is the number of the lags, k is the

number of the endogenous variables, m is the number of parameters estimated in

each equation and m = (pk+ d) (refer to Equation 2.24); Σϵ is the determinant

of the residual covariance, l is the log of the likelihood function.
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Figure B.2: Oil market variables (log differences)
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Table B.1: VAR optimal lag length based on information criteria

(a) World exploration model

VAR equation Lag LR AIC SC

rigw op jmu 6 29.815∗ -13.994∗ -13.318
rigw op ovx 6 23.463∗ -7.529∗ -7.595∗
rigw op gepu 6 27.877∗ -7.114∗ -6.407
rigw op gtuop 6 31.285∗ -6.219∗ -5.325
rigw op gtuoi 7 24.962∗ -7.348∗ -6.310
rigw op gtuos 8 19.373∗ -6.643∗ -5.460
rigw op gtuod 6 30.028∗ -6.795∗ -5.901
rigw op gtuoms 7 21.626∗ -7.045∗ -6.007

(b) North America exploration model

VAR equation Lag LR AIC SC

rigw op jmu 12 54.618∗ -11.866∗ -10.761
rigw op ovx 12 40.383∗ -5.736∗ -3.680
rigw op gepu 12 35.263∗ -4.452∗ -3.055
rigw op gtuop 12 62.562∗ -4.154∗ -2.379
rigw op gtuoi 12 64.300∗ -5.334∗ -3.559
rigw op gtuos 12 63.941∗ -4.552∗ -2.777
rigw op gtuod 12 59.046∗ -4.764∗ -2.989
rigw op gtuoms 12 64.613∗ -5.008∗ -3.233



B.2. Unit root test 280

B.2 Unit root test

Table B.2 presents the unit root test based on Narayan and Popp (2010).

The result indicates stationary results for all variables, including oil price

in level, which is a sceptical result, as oil prices have been through many

fluctuation periods.

Table B.2: Narayan and Popp (2010) Unit Root Test for Uncertainty and Oil
Market Variables

Level Log-level First
difference

Log-first
difference

JMU -5.653∗∗∗ -5.662∗∗∗ -12.329∗∗∗ -11.958∗∗∗
OVX -6.596∗∗∗ -6.636∗∗∗ -13.917∗∗∗ -12.711∗∗∗
GEPU -7.859∗∗∗ -7.488∗∗∗ -13.223∗∗∗ -11.001∗∗∗
GTUop -7.129∗∗∗ -6.725∗∗∗ -18.157∗∗∗ -17.197∗∗∗
GTUoi -7.847∗∗∗ -6.967∗∗∗ -17.142∗∗∗ -14.414∗∗∗
GTUod -6.669∗∗∗ -6.431∗∗∗ -20.316∗∗∗ -14.064∗∗∗
GTUos -7.451∗∗∗ -6.781∗∗∗ -18.204∗∗∗ -15.148∗∗∗
GTUoms -7.065∗∗∗ -6.654∗∗∗ -19.113∗∗∗ -15.867∗∗∗
rigw -6.588∗∗∗ -6.737∗∗∗ -17.898∗∗∗ -17.806∗∗∗
rigna -6.728∗∗∗ -5.795∗∗∗ -10.896∗∗∗ -8.476∗∗∗
op -5.918∗∗∗ -5.192∗∗ -15.799∗∗∗ -17.190∗∗∗

B.3 VAR estimates

Tables B.3 - B.4 show the significance of the dynamic lag of the independent

variables in VAR estimates.
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Table B.3: VAR estimates for world exploration activity

(a) Endogenous variables: rigw op ovx
rigw,t opt ovxt

rigw,t−1 -0.026 (0.072) -0.316 (0.275) 0.702 (0.505)

rigw,t−2 0.037 (0.067) 0.109 (0.258) -0.499 (0.474)

rigw,t−3 0.072 (0.066) 0.253 (0.254) 0.859∗ (0.467)

rigw,t−4 0.077 (0.069) -0.099 (0.264) 0.301 (0.485)

rigw,t−5 0.064 (0.069) 0.026 (0.266) -0.534 (0.489)

rigw,t−6 0.191∗∗∗ (0.069) -0.501∗ (0.266) 0.860∗ (0.488)

opt−1 0.024 (0.026) 0.431∗∗∗ (0.100) -0.188 (0.184)

opt−2 0.008 (0.028) -0.012 (0.107) -0.040 (0.197)

opt−3 0.058∗∗ (0.028) 0.059 (0.107) -0.215 (0.197)

opt−4 -0.036 (0.029) -0.049 (0.111) 0.257 (0.204)

opt−5 0.073∗∗ (0.028) -0.125 (0.108) 0.161 (0.199)

opt−6 0.062∗∗ (0.025) -0.063 (0.095) -0.051 (0.174)

ovxt−1 -0.037∗∗∗ (0.014) -0.132∗∗ (0.055) 0.061 (0.101)

ovxt−2 -0.044∗∗∗ (0.015) 0.131∗∗ (0.057) -0.161 (0.104)

ovxt−3 -0.013∗ (0.015) 0.131∗∗ (0.057) -0.220∗∗ (0.106)

ovxt−4 -0.010∗ (0.015) 0.012 (0.056) -0.090 (0.103)

ovxt−5 0.005 (0.015) -0.065 (0.056) 0.079 (0.104)

ovxt−6 -0.008 (0.014) -0.066 (0.055) 0.021 (0.101)

Constant 6.8e-5∗∗ (0.002) -0.001 (0.007) 0.005 (0.012)

Observations 175 175 175
RMSE 0.024 0.093 0.170

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(b) Endogenous variables: rigw op jmu
rigw,t opt jmut

rigw,t−1 -0.041 (0.054) -0.141 (0.173) 0.005 (0.013)

rigw,t−2 0.025 (0.053) -0.192 (0.169) 0.001 (0.012)

rigw,t−3 0.116∗∗ (0.052) 0.191 (0.167) -3.5e-4 (0.012)

rigw,t−4 0.064 (0.052) -0.032 (0.166) 0.012 (0.012)

rigw,t−5 0.092∗ (0.052) -0.056 (0.167) -0.001 (0.012)

rigw,t−6 0.167∗∗∗ (0.052) -0.231 (0.165) 0.018 (0.012)

opt−1 0.046∗∗ (0.018) 0.410∗∗∗ (0.056) 0.010∗∗ (0.004)

opt−2 0.025 (0.020) -0.164∗∗∗ (0.062) 0.005 (0.005)

opt−3 0.058∗∗∗ (0.019) -0.002 (0.062) 0.003 (0.005)

opt−4 -0.008 (0.020) -0.062 (0.062) 0.007 (0.005)

opt−5 0.030 (0.019) 0.021 (0.060) -0.002 (0.004)

opt−6 0.048∗∗∗ (0.017) -0.034 (0.055) 0.006 (0.004)

jmut−1 -0.366 (0.239) -4.921∗∗∗ (0.761) 0.861∗∗∗ (0.056)

jmut−2 -0.301 (0.327) 1.572 (1.043) -0.025 (0.077)

jmut−3 -0.069 (0.327) 2.444∗∗ (1.042) -0.058 (0.077)

jmut−4 -0.084 (0.329) -2.208∗∗ (1.050) -0.037 (0.077)

jmut−5 0.524 (0.332) 0.854 (1.058) 0.030 (0.078)

jmut−6 -0.435∗ (0.262) -1.210 (0.834) 0.002 (0.061)

Constant 3.1e-4 (0.001) 0.004 (0.004) 4.5e-5 (3.3e-4)

Observations 317 317 317
RMSE 0.025 0.080 0.006

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(c) Endogenous variables: rigw op gepu
rigw,t opt geput

rigw,t−1 0.003 (0.057) -0.147 (0.201) -0.544 (0.371)

rigw,t−2 0.040 (0.056) -0.097 (0.199) -1.098∗∗∗ (0.367)

rigw,t−3 0.139∗∗ (0.056) 0.154 (0.199) -0.273 (0.367)

rigw,t−4 0.052 (0.055) -0.068 (0.196) 0.126 (0.361)

rigw,t−5 0.067 (0.055) -0.064 (0.195) 0.803∗∗ (0.360)

rigw,t−6 0.155∗∗∗ (0.054) -0.257 (0.192) 1.125∗∗∗ (0.355)

opt−1 0.070∗∗∗ (0.016) 0.466∗∗∗ (0.059) -0.158 (0.109)

opt−2 0.048∗∗∗ (0.019) -0.206∗∗∗ (0.066) 0.024 (0.122)

opt−3 0.054∗∗∗ (0.019) -0.028 (0.068) 0.307∗∗ (0.125)

opt−4 -0.020 (0.019) -0.049 (0.069) 0.052 (0.128)

opt−5 0.037∗∗ (0.019) 0.008 (0.067) 0.293∗∗ (0.124)

opt−6 0.043∗∗ (0.017) 0.003 (0.062) -0.081 (0.114)

geput−1 0.002 (0.009) -0.054∗ (0.031) -0.270∗∗∗ (0.058)

geput−2 0.012 (0.009) -0.033 (0.032) -0.240∗∗∗ (0.059)

geput−3 0.025∗∗∗ (0.009) -0.012 (0.034) -0.162∗∗∗ (0.062)

geput−4 0.007 (0.009) -0.038 (0.033) -0.036 (0.061)

geput−5 0.002 (0.009) -0.038 (0.033) -0.035 (0.060)

geput−6 0.009 (0.009) 0.033 (0.032) 0.050 (0.058)

Constant -9.3e-4 (0.001) 0.004 (0.005) 0.007 (0.009)

Observations 298 298 298
RMSE 0.025 0.090 0.165

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(d) Endogenous variables: rigw op gtuop

rigw,t opt gtuop,t

rigw,t−1 -0.022 (0.065) -0.343 (0.239) 0.737 (0.663)

rigw,t−2 0.022 (0.064) 0.031 (0.234) -1.188∗ (0.650)

rigw,t−3 0.071 (0.064) 0.008 (0.233) 0.717 (0.648)

rigw,t−4 0.048 (0.064) 0.140 (0.232) 0.525 (0.646)

rigw,t−5 0.041 (0.064) 0.072 (0.233) 0.645 (0.647)

rigw,t−6 0.208∗∗∗ (0.063) -0.244 (0.229) -0.047 (0.636)

opt−1 0.054∗∗∗ (0.019) 0.528∗∗∗ (0.068) -0.104 (0.190)

opt−2 0.042∗∗ (0.021) -0.236∗∗∗ (0.078) 0.299 (0.216)

opt−3 0.061∗∗∗ (0.022) -0.023 (0.079) 0.098 (0.219)

opt−4 -0.016 (0.022) -7.7e-4 (0.080) 0.114 (0.222)

opt−5 0.037∗ (0.022) -0.069 (0.079) 0.292 (0.218)

opt−6 0.063∗∗∗ (0.019) -0.022 (0.070) 0.062 (0.193)

gtuop,t−1 -0.018∗∗∗ (0.007) -0.075∗∗∗ (0.025) -0.108 (0.069)

gtuop,t−2 -0.014∗∗ (0.007) 0.024 (0.026) -0.077 (0.072)

gtuop,t−3 -4e-4 (0.007) -0.024 (0.026) -0.020 (0.071)

gtuop,t−4 0.001 (0.007) -0.018 (0.026) -0.082 (0.071)

gtuop,t−5 -0.009 (0.007) 0.015 (0.026) 0.011 (0.072)

gtuop,t−6 -0.005 (0.007) -0.074∗∗∗ (0.025) 0.096 (0.071)

Constant -3e-4 (0.002) 0.004 (0.006) 0.009 (0.017)

Observations 215 215 215
RMSE 0.025 0.091 0.253

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(e) Endogenous variables: rigw op gtuoi

rigw,t opt gtuoi,t

rigw,t−1 -0.046 (0.067) -0.494∗∗ (0.243) 0.370 (0.407)

rigw,t−2 -0.003 (0.065) 0.017 (0.231) -0.571 (0.389)

rigw,t−3 0.066 (0.064) -0.058 (0.226) 0.529 (0.380)

rigw,t−4 0.057 (0.064) 0.127 (0.227) 0.369 (0.382)

rigw,t−5 0.038 (0.064) 0.020 (0.228) 0.340 (0.383)

rigw,t−6 0.203∗∗∗ (0.065) -0.403∗ (0.228) 0.073 (0.383)

rigw,t−7 0.058 (0.065) 0.513∗∗ (0.231) -0.199 (0.388)

opt−1 0.057∗∗∗ (0.019) 0.493∗∗∗ (0.067) -0.152 (0.112)

opt−2 0.037∗ (0.021) -0.204∗∗∗ (0.076) 0.271∗∗ (0.127)

opt−3 0.062∗∗∗ (0.022) -0.034 (0.077) -0.091 (0.130)

opt−4 -0.006 (0.022) -0.012 (0.078) 0.223∗ (0.131)

opt−5 0.040∗ (0.022) -0.009 (0.077) 0.062 (0.130)

opt−6 0.063∗∗∗ (0.022) -0.118 (0.077) 0.007 (0.129)

opt−7 0.015 (0.020) 0.053 (0.069) 0.051 (0.116)

gtuoi,t−1 -0.035∗∗∗ (0.012) -0.138∗∗∗ (0.041) -0.087 (0.069)

gtuoi,t−2 -0.027∗∗ (0.012) 0.050 (0.043) -0.193∗∗∗ (0.073)

gtuoi,t−3 -0.016 (0.013) -0.069 (0.046) -0.038 (0.077)

gtuoi,t−4 -0.005 (0.013) -0.047 (0.046) -0.148∗ (0.078)

gtuoi,t−5 -0.005 (0.013) 4.9e-5 (0.046) 0.042 (0.077)

gtuoi,t−6 -0.019 (0.013) -0.156∗∗∗ (0.046) 0.007 (0.077)

gtuoi,t−7 0.009 (0.013) -0.170∗∗∗ (0.045) -0.090 (0.076)

Constant -4.6e-4 (0.002) 0.004 (0.006) 0.003 (0.010)

Observations 214 214 214
RMSE 0.025 0.088 0.147

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(f) Endogenous variables: rigw op gtuos

rigw,t opt gtuos,t

rigw,t−1 -0.046 (0.067) -0.464∗ (0.242) 0.359 (0.571)

rigw,t−2 -0.037 (0.068) 0.017 (0.245) -1.211∗∗ (0.577)

rigw,t−3 0.018 (0.065) 0.095 (0.234) 0.735 (0.551)

rigw,t−4 0.056 (0.064) 0.221 (0.231) 0.651 (0.543)

rigw,t−5 0.022 (0.064) -0.021 (0.231) 0.197 (0.544)

rigw,t−6 0.180∗∗∗ (0.063) -0.351 (0.228) 0.276 (0.537)

rigw,t−7 0.003 (0.064) 0.588∗∗ (0.232) -0.688 (0.547)

rigw,t−8 0.047 (0.064) -0.465∗∗ (0.231) 0.012 (0.545)

opt−1 0.044∗∗ (0.019) 0.522∗∗∗ (0.070) -0.135 (0.165)

opt−2 0.048∗∗ (0.021) -0.200∗∗∗ (0.076) 0.338∗ (0.180)

opt−3 0.063∗∗∗ (0.022) -0.037 (0.078) -0.050 (0.183)

opt−4 -0.013 (0.022) -0.005 (0.080) 0.216 (0.188)

opt−5 0.045∗∗ (0.022) -0.018 (0.079) 0.217 (0.185)

opt−6 0.072∗∗∗ (0.022) -0.134∗ (0.079) 0.008 (0.186)

opt−7 -0.009 (0.022) 0.059 (0.079) 0.061 (0.187)

opt−8 0.063∗∗∗ (0.019) -0.008 (0.070) 0.217 (0.165)

gtuos,t−1 -0.029∗∗∗ (0.008) -0.094∗∗∗ (0.030) -0.022 (0.071)

gtuos,t−2 -0.018∗∗ (0.009) 0.036 (0.031) -0.162∗∗ (0.073)

gtuos,t−3 -0.006 (0.009) -0.048 (0.032) -0.110 (0.076)

gtuos,t−4 -0.007 (0.009) -0.012 (0.033) -0.083 (0.078)

gtuos,t−5 -0.015∗ (0.009) 0.035 (0.032) 1e-4 (0.076)

gtuos,t−6 -0.009 (0.009) -0.099∗∗∗ (0.032) 0.064 (0.075)

gtuos,t−7 -0.007 (0.009) -0.089∗∗∗ (0.033) -0.074 (0.076)

gtuos,t−8 0.003 (0.009) 0.044 (0.032) 0.032 (0.076)

Constant -6.4e-4 (0.002) 0.003 (0.006) 0.004 (0.014)

Observations 213 213 213
RMSE 0.025 0.089 0.209

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(g) Endogenous variables: rigw op gtuod

rigw,t opt gtuod,t

rigw,t−1 -0.021 (0.065) -0.309 (0.242) 0.695 (0.516)

rigw,t−2 0.045 (0.064) 0.034 (0.238) -0.905 (0.507)

rigw,t−3 0.084 (0.064) 0.009 (0.237) 0.356 (0.505)

rigw,t−4 0.042 (0.063) 0.187 (0.236) 0.348 (0.503)

rigw,t−5 0.039 (0.064) 0.083 (0.236) 0.584 (0.504)

rigw,t−6 0.205∗∗∗ (0.062) -0.277 (0.231) 0.380 (0.494)

opt−1 0.047∗∗ (0.019) 0.491∗∗∗ (0.072) -0.168 (0.152)

opt−2 0.047∗∗ (0.021) -0.201∗∗ (0.079) 0.092 (0.169)

opt−3 0.058∗∗∗ (0.022) -0.020 (0.080) 0.026 (0.170)

opt−4 -0.023 (0.022) 0.005 (0.082) 0.122 (0.175)

opt−5 0.030 (0.022) -0.032 (0.081) 0.250 (0.173)

opt−6 0.060∗∗∗ (0.019) -0.036 (0.070) 0.180 (0.149)

gtuod,t−1 -0.028∗∗∗ (0.009) -0.111∗∗∗ (0.033) -0.134∗ (0.071)

gtuod,t−2 -0.018∗ (0.010) 0.028 (0.035) -0.139∗ (0.075)

gtuod,t−3 0.004 (0.009) -0.006 (0.035) -0.097 (0.075)

gtuod,t−4 -9.8e-4 (0.010) 0.002 (0.036) -0.140∗ (0.076)

gtuod,t−5 -0.015 (0.010) 0.048 (0.037) 0.070 (0.079)

gtuod,t−6 -0.012 (0.010) -0.039 (0.036) 0.184∗∗ (0.077)

Constant -2.6e-4 (0.002) 0.003 (0.006) 0.009 (0.013)

Observations 215 215 215
RMSE 0.025 0.091 0.195

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(h) Endogenous variables: rigw op gtuoms

rigw,t opt gtuoms,t

rigw,t−1 -0.041 (0.072) -0.488∗ (0.258) 0.538 (0.505)

rigw,t−2 0.019 (0.069) -0.054 (0.246) -0.856∗ (0.483)

rigw,t−3 0.071 (0.068) -0.013 (0.242) 0.598 (0.474)

rigw,t−4 0.040 (0.068) 0.215 (0.243) 0.458 (0.476)

rigw,t−5 0.042 (0.068) -0.011 (0.243) 0.346 (0.477)

rigw,t−6 0.207∗∗∗ (0.068) -0.429∗ (0.242) 0.229 (0.475)

rigw,t−7 0.040 (0.068) 0.509∗∗ (0.244) -0.311 (0.479)

opt−1 0.049∗∗ (0.020) 0.489∗∗∗ (0.072) -0.143 (0.141)

opt−2 0.041∗ (0.023) -0.180∗∗ (0.081) 0.214 (0.159)

opt−3 0.062∗∗∗ (0.023) -0.046 (0.082) -0.042 (0.161)

opt−4 -0.015 (0.023) 0.010 (0.083) 0.185 (0.163)

opt−5 0.035 (0.023) -0.018 (0.083) 0.160 (0.162)

opt−6 0.063∗∗∗ (0.023) -0.130 (0.082) 0.043 (0.162)

opt−7 0.015 (0.021) 0.045 (0.074) 0.080 (0.144)

gtuoms,t−1 -0.034∗∗∗ (0.011) -0.119∗∗∗ (0.038) -0.073 (0.075)

gtuoms,t−2 -0.023∗∗ (0.011) 0.041 (0.040) -0.158∗∗ (0.079)

gtuoms,t−3 -0.004 (0.012) -0.056 (0.041) -0.089 (0.081)

gtuoms,t−4 -0.004 (0.012) -0.031 (0.042) -0.114 (0.082)

gtuoms,t−5 -0.012 (0.012) 0.033 (0.042) 0.061 (0.082)

gtuoms,t−6 -0.014 (0.012) -0.116∗∗∗ (0.042) 0.083 (0.083)

gtuoms,t−7 0.007 (0.012) -0.142∗∗∗ (0.041) -0.033 (0.081)

Constant -3.9e-4 (0.002) 0.004 (0.006) 0.004 (0.012)

Observations 214 214 214
RMSE 0.025 0.088 0.173

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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Table B.4: VAR estimates for North America exploration activity

(a) Endogenous variables: rigna op ovx
rigna,t opt ovx

rigna,t−1 0.206∗∗∗ (0.067) 0.054 (0.121) 0.007 (0.225)

rigna,t−2 -0.135∗∗ (0.061) 0.063 (0.110) -0.113 (0.205)

rigna,t−3 -0.101∗ (0.061) -0.084 (0.110) -0.039 (0.205)

rigna,t−4 -0.031 (0.062) 0.201∗ (0.111) -0.047 (0.207)

rigna,t−5 -0.022 (0.062) -0.147 (0.111) 0.179 (0.207)

rigna,t−6 -0.004 (0.062) 0.185∗ (0.111) -0.606∗∗∗ (0.206)

rigna,t−7 -0.105∗ (0.062) -0.062 (0.111) 0.240 (0.206)

rigna,t−8 -0.070 (0.061) 0.238∗∗ (0.109) -0.127 (0.203)

rigna,t−9 -0.037 (0.061) -0.080 (0.109) 0.116 (0.204)

rigna,t−10 -0.288∗∗∗ (0.059) -0.046 (0.107) 0.029 (0.198)

rigna,t−11 0.159∗∗ (0.063) 0.114 (0.113) -0.271 (0.211)

rigna,t−12 0.329∗∗∗ (0.054) -0.136 (0.098) 0.233 (0.182)

opt−1 0.137∗∗ (0.059) 0.447∗∗∗ (0.106) -0.254 (0.197)

opt−2 0.082 (0.064) -0.020 (0.114) 0.066 (0.213)

opt−3 0.200∗∗∗ (0.062) 0.003 (0.112) -0.130 (0.208)

opt−4 0.134 (0.066) -0.089 (0.118) 0.199 (0.220)

opt−5 0.220∗∗∗ (0.066) -0.151 (0.119) 0.285 (0.222)

opt−6 0.119∗ (0.068) -0.104 (0.122) -0.076 (0.227)

opt−7 0.119∗ (0.067) -0.148 (0.120) 0.143 (0.224)

opt−8 0.087 (0.066) 0.124 (0.119) 0.018 (0.222)

opt−9 0.099 (0.067) -0.304∗∗ (0.120) 0.661∗∗∗ (0.223)

opt−10 0.009 (0.066) -0.066 (0.119) -0.102 (0.222)

opt−11 0.209∗∗∗ (0.063) -0.092 (0.113) 0.160 (0.211)

opt−12 0.007 (0.060) 0.008 (0.107) 0.150 (0.200)

ovxt−1 -0.114∗∗∗ (0.032) -0.124∗∗ (0.057) 0.035 (0.106)

ovxt−2 -0.143∗∗∗ (0.033) 0.162∗∗∗ (0.060) -0.122 (0.111)

ovxt−3 -0.062∗ (0.034) 0.110∗ (0.062) -0.192∗ (0.115)

ovxt−4 -0.104∗∗∗ (0.036) 0.009 (0.064) -0.244∗∗ (0.119)

ovxt−5 -0.063∗ (0.037) -0.069 (0.066) 0.060 (0.123)

ovxt−6 -0.050 (0.036) -0.074 (0.064) 0.072 (0.119)

ovxt−7 -0.015 (0.036) -0.062 (0.064) -0.089 (0.120)

ovxt−8 -0.038 (0.036) 0.130∗∗ (0.065) -0.248∗∗ (0.121)

ovxt−9 -0.010 (0.034) -0.082 (0.062) 0.273∗∗ (0.115)

ovxt−10 -0.012 (0.034) -0.079 (0.061) 0.181 (0.113)

ovxt−11 -0.052 (0.034) -0.026 (0.061) -0.082 (0.113)

ovxt−12 -0.067∗∗ (0.033) 0.108∗ (0.059) -0.067 (0.111)

Constant 0.006 (0.004) -0.004 (0.007) 0.004 (0.012)

Observations 169 169 169
RMSE 0.052 0.093 0.174

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(b) Endogenous variables: rigna op jmu
rigna,t opt jmu

rigna,t−1 0.109∗∗ (0.047) -0.117∗∗ (0.047) 0.005 (0.003)

rigna,t−2 -0.228∗∗∗ (0.047) 0.022 (0.047) 7.8e-04 (0.003)

rigna,t−3 -0.196∗∗∗ (0.048) -0.133∗∗∗ (0.048) -0.003 (0.004)

rigna,t−4 -0.046 (0.049) 0.017 (0.049) -4.9e-04 (0.004)

rigna,t−5 -0.030 (0.048) -0.034 (0.048) -0.002 (0.004)

rigna,t−6 -0.091∗ (0.047) -0.054 (0.047) -0.005 (0.003)

rigna,t−7 -0.062 (0.047) -0.013 (0.047) -0.001 (0.003)

rigna,t−8 0.041 (0.046) 0.091∗∗ (0.046) -0.003 (0.003)

rigna,t−9 -0.061 (0.045) -0.089∗∗ (0.045) -0.005 (0.003)

rigna,t−10 -0.158∗∗∗ (0.045) -0.047 (0.045) -0.001 (0.003)

rigna,t−11 0.066 (0.045) -0.008 (0.045) 0.003 (0.003)

rigna,t−12 0.290∗∗∗ (0.042) -0.024 (0.042) 2.2e-04 (0.003)

opt−1 0.150∗∗∗ (0.050) 0.477∗∗∗ (0.050) 0.008∗∗ (0.004)

opt−2 0.183∗∗∗ (0.057) -0.188∗∗∗ (0.057) 0.002 (0.004)

opt−3 0.181∗∗∗ (0.057) 0.027 (0.057) 0.003 (0.004)

opt−4 0.201∗∗∗ (0.057) -0.092 (0.057) 0.002 (0.004)

opt−5 0.273∗∗∗ (0.058) 0.065 (0.058) -0.002 (0.004)

opt−6 0.154∗∗∗ (0.059) -0.024 (0.059) 0.006 (0.004)

opt−7 0.237∗∗∗ (0.059) 0.089 (0.059) -0.003 (0.004)

opt−8 0.137∗∗ (0.060) 0.037 (0.059) 0.005 (0.004)

opt−9 0.155∗∗∗ (0.059) -0.012 (0.058) -8e-04 (0.004)

opt−10 0.149∗∗ (0.058) 0.100∗ (0.058) 0.006 (0.004)

opt−11 0.153∗∗∗ (0.056) 0.030 (0.056) 0.002 (0.004)

opt−12 0.082 (0.053) 0.010 (0.053) 0.009∗∗ (0.004)

jmut−1 0.590 (0.684) -4.246∗∗∗ (0.683) 0.854∗∗∗ (0.050)

jmut−2 -1.761∗ (0.921) 2.150∗∗ (0.920) -0.055 (0.067)

jmut−3 -0.548 (0.929) 1.588∗ (0.927) -0.016 (0.067)

jmut−4 -0.447 (0.931) -2.135∗∗ (0.929) -0.040 (0.068)

jmut−5 -0.869 (0.940) 0.384 (0.938) 0.019 (0.068)

jmut−6 0.173 (0.937) -2.355∗∗ (0.935) -0.048 (0.068)

jmut−7 -1.928∗∗ (0.939) 1.745∗ (0.937) 0.036 (0.068)

jmut−8 1.399 (0.947) -0.892 (0.945) -0.045 (0.069)

jmut−9 -0.871 (0.955) 1.510 (0.953) 0.046 (0.069)

jmut−10 1.237 (0.959) -0.796 (0.957) -0.089 (0.070)

jmut−11 0.032 (0.967) 0.074 (0.965) 0.066 (0.070)

jmut−12 -0.742 (0.757) -0.268 (0.756) -0.016 (0.055)

Constant 8.9e-04 (0.004) 0.002 (0.004) 5.9e-05 (2.7e-04)

Observations 401 401 401
RMSE 0.077 0.077 0.006

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(c) Endogenous variables: rigna op gepu
rigna,t opt gepu

rigna,t−1 0.157∗∗∗ (0.055) -0.133∗∗ (0.058) 0.104 (0.108)

rigna,t−2 -0.182∗∗∗ (0.055) 0.031 (0.058) -0.004 (0.108)

rigna,t−3 -0.168∗∗∗ (0.056) -0.098∗ (0.058) -0.128 (0.109)

rigna,t−4 -0.026 (0.057) 0.003 (0.060) 0.086 (0.112)

rigna,t−5 0.023 (0.057) 0.046 (0.059) -0.071 (0.110)

rigna,t−6 -0.112∗∗ (0.056) -0.056 (0.058) -0.293∗∗∗ (0.109)

rigna,t−7 -0.061 (0.057) 0.021 (0.059) 0.096 (0.111)

rigna,t−8 0.052 (0.055) 0.125∗∗ (0.058) 0.061 (0.108)

rigna,t−9 -0.096∗ (0.054) -0.075 (0.056) -0.172 (0.105)

rigna,t−10 -0.184∗∗∗ (0.054) -0.072 (0.056) 0.290∗∗∗ (0.104)

rigna,t−11 0.100∗ (0.055) 0.019 (0.057) 0.025 (0.106)

rigna,t−12 0.297∗∗∗ (0.050) -0.025 (0.052) -0.055 (0.098)

opt−1 0.242∗∗∗ (0.058) 0.486∗∗∗ (0.060) -0.082 (0.112)

opt−2 0.239∗∗∗ (0.065) -0.192∗∗∗ (0.068) -0.099 (0.128)

opt−3 0.208∗∗∗ (0.067) -0.012 (0.070) 0.136 (0.131)

opt−4 0.269∗∗∗ (0.067) -0.005 (0.070) -0.070 (0.131)

opt−5 0.271∗∗∗ (0.069) 0.058 (0.072) 0.159 (0.135)

opt−6 0.185∗∗∗ (0.070) 0.015 (0.073) -0.003 (0.137)

opt−7 0.194∗∗∗ (0.071) 0.034 (0.073) -0.061 (0.138)

opt−8 0.083 (0.070) -0.013 (0.073) 0.357∗∗∗ (0.137)

opt−9 0.124∗ (0.071) -0.070 (0.074) -0.064 (0.138)

opt−10 0.072 (0.070) 0.068 (0.072) 0.226∗ (0.135)

opt−11 0.166∗∗ (0.067) -0.018 (0.069) 0.049 (0.130)

opt−12 0.065 (0.063) -0.019 (0.066) 0.057 (0.123)

geput−1 -0.050 (0.031) -0.051 (0.032) -0.230∗∗∗ (0.060)

geput−2 0.025 (0.032) -0.026 (0.033) -0.213∗∗∗ (0.062)

geput−3 -0.053 (0.032) 8.9e-04 (0.034) -0.228∗∗∗ (0.063)

geput−4 0.013 (0.033) -0.066∗ (0.035) -0.078 (0.065)

geput−5 0.004 (0.033) -0.028 (0.035) -0.105 (0.065)

geput−6 0.028 (0.033) 0.030 (0.035) -0.025 (0.065)

geput−7 0.001 (0.033) -0.050 (0.035) -0.104 (0.065)

geput−8 0.046 (0.033) 0.033 (0.035) -0.054 (0.065)

geput−9 0.009 (0.033) -0.036 (0.034) 0.049 (0.065)

geput−10 -0.020 (0.032) 0.001 (0.034) 0.084 (0.063)

geput−11 -0.003 (0.031) -0.018 (0.033) 0.067 (0.061)

geput−12 -0.020 (0.031) -0.013 (0.032) 0.068 (0.060)

Constant -0.004 (0.005) 0.005 (0.005) 0.006 (0.009)

Observations 292 292 292
RMSE 0.086 0.090 0.168

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(d) Endogenous variables: rigna op gtuop

rigna,t opt gtuop,t

rigna,t−1 0.136∗∗ (0.061) -0.123 (0.086) -0.034 (0.240)

rigna,t−2 -0.187∗∗∗ (0.060) 0.014 (0.084) 0.039 (0.235)

rigna,t−3 -0.087 (0.061) -0.158∗ (0.086) -0.272 (0.239)

rigna,t−4 -0.070 (0.061) 0.106 (0.087) 0.078 (0.241)

rigna,t−5 -0.088 (0.059) -0.010 (0.084) -0.110 (0.233)

rigna,t−6 -0.038 (0.057) -0.050 (0.080) -0.156 (0.224)

rigna,t−7 -0.099∗ (0.056) 0.065 (0.079) -0.002 (0.221)

rigna,t−8 -0.009 (0.054) 0.159∗∗ (0.077) 0.207 (0.213)

rigna,t−9 -0.156∗∗∗ (0.052) -0.017 (0.074) -0.210 (0.206)

rigna,t−10 -0.192∗∗∗ (0.050) -0.069 (0.071) 0.114 (0.197)

rigna,t−11 0.062 (0.052) 0.050 (0.073) -0.184 (0.204)

rigna,t−12 0.382∗∗∗ (0.047) -0.075 (0.067) 0.016 (0.186)

opt−1 0.191∗∗∗ (0.052) 0.498∗∗∗ (0.073) -0.095 (0.203)

opt−2 0.194∗∗∗ (0.059) -0.190∗∗ (0.084) 0.275 (0.234)

opt−3 0.270∗∗∗ (0.059) -0.088 (0.084) 0.002 (0.234)

opt−4 0.193∗∗∗ (0.061) 0.080 (0.086) 0.270 (0.238)

opt−5 0.263∗∗∗ (0.062) -0.017 (0.088) 0.201 (0.246)

opt−6 0.141∗∗ (0.064) -0.044 (0.090) 0.376 (0.250)

opt−7 0.210∗∗∗ (0.064) 0.098 (0.090) -0.022 (0.252)

opt−8 0.046 (0.065) -0.044 (0.092) 0.391 (0.256)

opt−9 0.142∗∗ (0.063) -0.049 (0.089) -0.106 (0.248)

opt−10 0.075 (0.061) 0.040 (0.087) 0.063 (0.242)

opt−11 0.189∗∗∗ (0.058) -0.059 (0.082) 0.202 (0.228)

opt−12 0.093∗ (0.056) -0.060 (0.079) 0.171 (0.219)

gtuop,t−1 -0.039∗∗ (0.018) -0.070∗∗∗ (0.026) -0.044 (0.072)

gtuop,t−2 -0.053∗∗∗ (0.019) 0.029 (0.027) -0.132∗ (0.074)

gtuop,t−3 -0.075∗∗∗ (0.019) -0.037 (0.027) -0.009 (0.075)

gtuop,t−4 -0.013 (0.020) -0.036 (0.028) -0.091 (0.079)

gtuop,t−5 -0.043∗∗ (0.020) -0.009 (0.029) -0.031 (0.080)

gtuop,t−6 -0.040∗∗ (0.020) -0.079∗∗∗ (0.028) 0.034 (0.077)

gtuop,t−7 -0.015 (0.020) -0.053∗ (0.028) -0.092 (0.078)

gtuop,t−8 -0.055∗∗∗ (0.020) 0.005 (0.028) 0.018 (0.078)

gtuop,t−9 0.007 (0.019) -0.032 (0.027) -0.066 (0.076)

gtuop,t−10 -0.012 (0.019) 0.037 (0.027) 0.032 (0.075)

gtuop,t−11 -0.040∗∗ (0.019) -3.7e-04 (0.027) -0.050 (0.075)

gtuop,t−12 -0.050∗∗∗ (0.019) -0.016 (0.027) 0.137∗ (0.074)

Constant 0.005 (0.004) 0.004 (0.006) 0.010 (0.016)

Observations 209 209 209
RMSE 0.064 0.091 0.253

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(e) Endogenous variables: rigna op gtuoi

rigna,t opt gtuoi,t

rigna,t−1 0.126∗∗ (0.061) -0.106 (0.087) -0.073 (0.144)

rigna,t−2 -0.165∗∗∗ (0.060) -0.027 (0.086) -0.001 (0.142)

rigna,t−3 -0.086 (0.061) -0.135 (0.087) -0.119 (0.144)

rigna,t−4 -0.034 (0.061) 0.041 (0.087) -0.019 (0.144)

rigna,t−5 -0.073 (0.059) -0.017 (0.085) -0.026 (0.141)

rigna,t−6 -0.028 (0.057) -0.035 (0.081) -0.153 (0.134)

rigna,t−7 -0.069 (0.056) 0.034 (0.081) -0.025 (0.133)

rigna,t−8 0.006 (0.054) 0.193∗∗ (0.077) 0.168 (0.128)

rigna,t−9 -0.166∗∗∗ (0.052) 0.006 (0.075) -0.115 (0.123)

rigna,t−10 -0.175∗∗∗ (0.050) -0.077 (0.071) 0.016 (0.118)

rigna,t−11 0.062 (0.051) 0.059 (0.073) -0.119 (0.121)

rigna,t−12 0.381∗∗∗ (0.048) -0.086 (0.068) 0.014 (0.113)

opt−1 0.182∗∗∗ (0.051) 0.484∗∗∗ (0.073) -0.199 (0.121)

opt−2 0.172∗∗∗ (0.058) -0.185∗∗ (0.083) 0.326∗∗ (0.137)

opt−3 0.297∗∗∗ (0.058) -0.066 (0.083) -0.126 (0.138)

opt−4 0.179∗∗∗ (0.061) 0.045 (0.087) 0.278∗ (0.144)

opt−5 0.269∗∗∗ (0.063) 0.046 (0.090) 0.134 (0.148)

opt−6 0.151∗∗ (0.063) -0.079 (0.091) 0.226 (0.150)

opt−7 0.190∗∗∗ (0.064) 0.128 (0.091) 0.050 (0.151)

opt−8 0.022 (0.065) 0.009 (0.093) 0.289∗ (0.154)

opt−9 0.142∗∗ (0.063) -0.040 (0.090) -0.003 (0.149)

opt−10 0.063 (0.061) 0.061 (0.088) 0.011 (0.146)

opt−11 0.144∗∗ (0.058) -0.039 (0.083) 0.251∗ (0.137)

opt−12 0.096∗ (0.055) -0.065 (0.079) 0.156 (0.131)

gtuoi,t−1 -0.090∗∗∗ (0.030) -0.132∗∗∗ (0.043) -0.103 (0.072)

gtuoi,t−2 -0.127∗∗∗ (0.032) 0.073 (0.046) -0.214∗∗∗ (0.076)

gtuoi,t−3 -0.143∗∗∗ (0.034) -0.080∗ (0.048) -0.025 (0.080)

gtuoi,t−4 -0.023 (0.037) -0.053 (0.053) -0.200S∗∗ (0.087)

gtuoi,t−5 -0.077∗∗ (0.038) -0.057 (0.054) -0.012 (0.089)

gtuoi,t−6 -0.044 (0.037) -0.144∗∗∗ (0.053) -0.078 (0.087)

gtuoi,t−7 -0.023 (0.037) -0.145∗∗∗ (0.053) -0.120 (0.088)

gtuoi,t−8 -0.102∗∗∗ (0.038) 0.024 (0.054) -0.063 (0.089)

gtuoi,t−9 0.011 (0.037) -0.045 (0.053) -0.018 (0.088)

gtuoi,t−10 -0.007 (0.036) 0.056 (0.052) -0.054 (0.086)

gtuoi,t−11 -0.105∗∗∗ (0.035) 0.021 (0.051) 0.026 (0.084)

gtuoi,t−12 -0.092∗∗∗ (0.035) -0.008 (0.050) 0.196∗∗ (0.082)

Constant 0.004 (0.004) 0.003 (0.006) 0.004 (0.009)

Observations 209 209 209
RMSE 0.062 0.089 0.148

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(f) Endogenous variables: rigna op gtuos

rigna,t opt gtuos,t

rigna,t−1 0.115∗ (0.061) -0.101 (0.086) 0.006 (0.203)

rigna,t−2 -0.181∗∗∗ (0.059) -0.014 (0.084) -0.043 (0.198)

rigna,t−3 -0.073 (0.060) -0.140 (0.086) -0.027 (0.202)

rigna,t−4 -0.069 (0.060) 0.118 (0.085) 0.017 (0.201)

rigna,t−5 -0.094 (0.059) -0.003 (0.084) -0.060 (0.197)

rigna,t−6 -0.013 (0.057) -0.054 (0.080) -0.241 (0.189)

rigna,t−7 -0.104∗ (0.056) 0.066 (0.080) 0.082 (0.188)

rigna,t−8 -0.008 (0.054) 0.180∗∗ (0.077) 0.053 (0.182)

rigna,t−9 -0.142∗∗∗ (0.053) -0.032 (0.075) -0.102 (0.176)

rigna,t−10 -0.197∗∗∗ (0.050) -0.017 (0.071) 0.115 (0.168)

rigna,t−11 0.046 (0.052) 0.032 (0.073) -0.233 (0.172)

rigna,t−12 0.393∗∗∗ (0.048) -0.102 (0.067) 0.042 (0.159)

opt−1 0.172∗∗∗ (0.052) 0.487∗∗∗ (0.074) -0.068 (0.175)

opt−2 0.205∗∗∗ (0.059) -0.178∗∗ (0.084) 0.252 (0.199)

opt−3 0.274∗∗∗ (0.060) -0.077 (0.086) -0.037 (0.202)

opt−4 0.184∗∗∗ (0.062) 0.058 (0.087) 0.189 (0.206)

opt−5 0.256∗∗∗ (0.063) 0.017 (0.089) 0.193 (0.210)

opt−6 0.150∗∗ (0.064) -0.087 (0.090) 0.178 (0.213)

opt−7 0.202∗∗∗ (0.064) 0.086 (0.090) 0.129 (0.213)

opt−8 0.055 (0.065) -0.008 (0.092) 0.274 (0.218)

opt−9 0.153∗∗ (0.063) -0.079 (0.090) -0.058 (0.211)

opt−10 0.067 (0.062) 0.039 (0.088) -0.037 (0.206)

opt−11 0.164∗∗∗ (0.059) -0.068 (0.083) 0.258 (0.196)

opt−12 0.099∗ (0.056) -0.067 (0.079) 0.146 (0.187)

gtuos,t−1 -0.053∗∗ (0.022) -0.094∗∗∗ (0.031) -0.018 (0.073)

gtuos,t−2 -0.068∗∗∗ (0.023) 0.042 (0.032) -0.169∗∗ (0.076)

gtuos,t−3 -0.095∗∗∗ (0.023) -0.044 (0.033) -0.041 (0.078)

gtuos,t−4 -0.021 (0.025) -0.034 (0.035) -0.107 (0.083)

gtuos,t−5 -0.066∗∗∗ (0.025) -0.010 (0.036) -0.042 (0.085)

gtuos,t−6 -0.051∗∗ (0.025) -0.082∗∗ (0.035) 0.010 (0.083)

gtuos,t−7 -0.027 (0.025) -0.088∗∗ (0.036) -0.099 (0.084)

gtuos,t−8 -0.064∗∗ (0.025) 0.025 (0.036) 0.067 (0.084)

gtuos,t−9 0.023 (0.025) -0.034 (0.035) -0.102 (0.083)

gtuos,t−10 -0.015 (0.025) 0.032 (0.035) -0.029 (0.083)

gtuos,t−11 -0.060∗∗ (0.024) 0.007 (0.034) -0.005 (0.081)

gtuos,t−12 -0.061∗∗∗ (0.024) -0.001 (0.033) 0.127 (0.079)

Constant 0.004 (0.004) 0.003 (0.006) 0.006 (0.014)

Observations 209 209 209
RMSE 0.064 0.090 0.213

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(g) Endogenous variables: rigna op gtuod

rigna,t opt gtuod,t

rigna,t−1 0.118∗ (0.062) -0.081 (0.092) 0.057 (0.199)

rigna,t−2 -0.169∗∗∗ (0.060) 0.036 (0.089) 0.145 (0.194)

rigna,t−3 -0.078 (0.061) -0.089 (0.090) 0.043 (0.196)

rigna,t−4 -0.067 (0.060) 0.127 (0.089) -0.064 (0.194)

rigna,t−5 -0.102∗ (0.058) -0.039 (0.086) -0.032 (0.188)

rigna,t−6 -0.057 (0.056) -0.049 (0.083) -0.087 (0.181)

rigna,t−7 -0.105∗ (0.056) 0.064 (0.083) -0.069 (0.180)

rigna,t−8 0.014 (0.054) 0.159∗∗ (0.080) 0.246 (0.174)

rigna,t−9 -0.144∗∗∗ (0.052) 0.037 (0.077) -0.186 (0.167)

rigna,t−10 -0.184∗∗∗ (0.049) -0.071 (0.073) 0.049 (0.159)

rigna,t−11 0.040 (0.050) 0.035 (0.075) -0.181 (0.163)

rigna,t−12 0.364∗∗∗ (0.046) -0.085 (0.069) 0.086 (0.150)

opt−1 0.147∗∗∗ (0.051) 0.467∗∗∗ (0.075) -0.114 (0.163)

opt−2 0.189∗∗∗ (0.057) -0.148∗ (0.084) 0.211 (0.183)

opt−3 0.274∗∗∗ (0.057) -0.058 (0.084) -0.048 (0.183)

opt−4 0.180∗∗∗ (0.059) 0.031 (0.087) 0.116 (0.190)

opt−5 0.234∗∗∗ (0.060) -0.034 (0.089) 0.153 (0.194)

opt−6 0.128∗∗ (0.060) -0.091 (0.090) 0.226 (0.195)

opt−7 0.203∗∗∗ (0.061) 0.022 (0.091) 0.135 (0.197)

opt−8 0.065 (0.062) -0.049 (0.092) 0.242 (0.200)

opt−9 0.182∗∗∗ (0.060) -0.084 (0.090) -0.095 (0.195)

opt−10 0.071 (0.060) 0.012 (0.089) -0.002 (0.193)

opt−11 0.168∗∗∗ (0.057) -0.091 (0.085) 0.240 (0.185)

opt−12 0.105∗ (0.054) -0.051 (0.080) 0.080 (0.173)

gtuod,t−1 -0.072∗∗∗ (0.023) -0.105∗∗∗ (0.034) -0.144∗ (0.074)

gtuod,t−2 -0.101∗∗∗ (0.025) 0.040 (0.037) -0.121 (0.080)

gtuod,t−3 -0.112∗∗∗ (0.025) 5e-04 (0.038) -0.016 (0.082)

gtuod,t−4 -0.007 (0.027) -0.002 (0.041) -0.067 (0.089)

gtuod,t−5 -0.079∗∗∗ (0.028) 0.021 (0.041) 0.037 (0.090)

gtuod,t−6 -0.068∗∗ (0.028) -0.071∗ (0.041) 0.099 (0.089)

gtuod,t−7 -0.047∗ (0.028) -0.084∗∗ (0.041) 0.026 (0.089)

gtuod,t−8 -0.080∗∗∗ (0.028) -0.025 (0.041) 0.125 (0.090)

gtuod,t−9 0.018 (0.028) -0.019 (0.042) 0.025 (0.090)

gtuod,t−10 0.009 (0.028) 0.035 (0.041) -0.055 (0.089)

gtuod,t−11 -0.048∗ (0.027) -0.025 (0.041) 0.043 (0.088)

gtuod,t−12 -0.073∗∗∗ (0.026) 6e-04 (0.039) 0.131 (0.084)

Constant 0.005 (0.004) 0.003 (0.006) 0.006 (0.013)

Observations 209 209 209
RMSE 0.062 0.092 0.199

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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(h) Endogenous variables: rigna op gtuoms

rigna,t opt gtuoms,t

rigna,t−1 0.119∗ (0.061) -0.102 (0.089) -0.025 (0.174)

rigna,t−2 -0.178∗∗∗ (0.060) -0.001 (0.087) 0.050 (0.171)

rigna,t−3 -0.085 (0.060) -0.122 (0.088) -0.036 (0.173)

rigna,t−4 -0.059 (0.060) 0.086 (0.088) -0.025 (0.172)

rigna,t−5 -0.095 (0.058) -0.020 (0.085) 0.012 (0.167)

rigna,t−6 -0.033 (0.056) -0.047 (0.082) -0.164 (0.160)

rigna,t−7 -0.093∗ (0.055) 0.054 (0.081) 0.003 (0.159)

rigna,t−8 0.002 (0.054) 0.178∗∗ (0.078) 0.161 (0.154)

rigna,t−9 -0.154∗∗∗ (0.051) 0.009 (0.075) -0.142 (0.147)

rigna,t−10 -0.180∗∗∗ (0.049) -0.063 (0.072) 0.057 (0.140)

rigna,t−11 0.048 (0.050) 0.046 (0.074) -0.167 (0.144)

rigna,t−12 0.381∗∗∗ (0.047) -0.093 (0.068) 0.040 (0.134)

opt−1 0.158∗∗∗ (0.051) 0.475∗∗∗ (0.075) -0.115 (0.147)

opt−2 0.177∗∗∗ (0.058) -0.162∗ (0.084) 0.265 (0.165)

opt−3 0.285∗∗∗ (0.058) -0.072 (0.085) -0.074 (0.166)

opt−4 0.183∗∗∗ (0.060) 0.041 (0.088) 0.215 (0.172)

opt−5 0.247∗∗∗ (0.062) 0.011 (0.090) 0.170 (0.176)

opt−6 0.153∗∗ (0.062) -0.092 (0.090) 0.184 (0.177)

opt−7 0.204∗∗∗ (0.062) 0.076 (0.091) 0.010 (0.179)

opt−8 0.048 (0.064) -0.009 (0.093) 0.252 (0.182)

opt−9 0.171∗∗∗ (0.062) -0.063 (0.090) -0.063 (0.177)

opt−10 0.071 (0.061) 0.045 (0.089) -0.020 (0.174)

opt−11 0.152∗∗∗ (0.058) -0.060 (0.084) 0.257 (0.165)

opt−12 0.103∗ (0.054) -0.053 (0.079) 0.115 (0.156)

gtuoms,t−1 -0.078∗∗∗ (0.026) -0.118∗∗∗ (0.037) -0.081 (0.073)

gtuoms,t−2 -0.108∗∗∗ (0.027) 0.056 (0.040) -0.166∗∗ (0.078)

gtuoms,t−3 -0.128∗∗∗ (0.028) -0.041 (0.041) -0.035 (0.081)

gtuoms,t−4 -0.015 (0.031) -0.037 (0.045) -0.115 (0.088)

gtuoms,t−5 -0.087∗∗∗ (0.031) -0.013 (0.046) 0.014 (0.090)

gtuoms,t−6 -0.059∗ (0.031) -0.107∗∗ (0.045) 0.021 (0.088)

gtuoms,t−7 -0.032 (0.031) -0.116∗∗ (0.045) -0.060 (0.089)

gtuoms,t−8 -0.091∗∗∗ (0.031) 0.006 (0.046) 0.075 (0.089)

gtuoms,t−9 0.017 (0.031) -0.030 (0.045) -0.026 (0.089)

gtuoms,t−10 -0.004 (0.030) 0.046 (0.045) -0.040 (0.087)

gtuoms,t−11 -0.074∗∗ (0.030) 0.003 (0.044) 0.035 (0.086)

gtuoms,t−12 -0.085∗∗∗ (0.029) 0.006 (0.043) 0.164∗∗ (0.083)

Constant 0.005 (0.004) 0.003 (0.006) 0.005 (0.011)

Observations 209 209 209
RMSE 0.062 0.090 0.177

Notes:
Standard errors are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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B.4 Autocorrelation test

In order to detect whether or not the model is misspecified, the autocorre-

lation test is conducted. The test is conducted by regressing the residual of the

VAR model (from Equation 4.7) into the independent variables and the lagged

of the residuals that is so-called auxiliary regression.

êt = γ0 + ρ1 ˆet−1 + ρ2 ˆet−2 + ...+ ρq ˆet−q + γ1xt + ut (B.2)

The presence of autocorrelation in the error term causes the OLS standard

error and t-statistic are no longer valid and the estimated OLS coefficients and

variances will be biased and inconsistent due to the presence of lagged dependent

variables. Hence, it requires a corrected t-test by applying a Lagrange Multiplier

(LM) t-statistic as to the following (Søren, 2003).

LM =

(
T − pk −m− p− 1

2

)
log

(
Ω̂

Ω̃

)
(B.3)

T is the total observations, p2 is the degree of freedom, k is the lag length, m

is the number of restrictions, Ω̂ denotes variance estimate from VAR equation,

and Ω̃ denotes variance estimate from auxiliary regression. The t-statistic is

distributed as χ2 distribution with the degree of freedom p2. The null hypothesis

is of no serial correlation at lag order q; H0 : ρ1 = 0, ρ2 = 0, ..., ρq = 0 with the

critical values as described in Edgerton and Shukur (1999). Table B.5 provides

the information about the autocorrelation LM test of each VAR model using

lag length determined in Appendix B.1.

Table B.5 shows that the null hypothesis is rejected at 5% significance

level at the specified lag based on Table B.1 so that there is no autocorrelation

in all VAR specification.
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Table B.5: Autocorrelation test

VAR endogenous variables LR stat Prob

rig op ovx 6.991 0.638
rig op jmu 10.175 0.337
rig op gepu 7.963 0.538
rig op gtuop 9.761 0.370
rig op gtuoi 12.210 0.202
rig op gtuos 5.846 0.755
rig op gtuod 14.418 0.108
rig op gtuoms 5.007 0.834
rigna op ovx 9.829 0.365
rigna op jmu 14.627 0.102
rigna op gepu 7.869 0.547
rigna op gtuop 5.389 0.799
rigna op gtuoi 3.884 0.919
rigna op gtuos 7.604 0.575
rigna op gtuod 15.922 0.069
rigna op gtuoms 7.537 0.581

B.5 Robustness test

Robustness test is carried out to ensure the consistency of the empirical

results.

B.5.1 Reordering variables

The first robustness test carries out reordering the variables to check

whether contemporaneous response between variables in the impulse response

functions are consistent. In this robustness test, this study does the reordering

variables into oil rig count, uncertainty index, and crude oil price. The rig

count is assumed not to have a contemporaneous response to the uncertainty

and crude oil price, and uncertainty responds to rig count but does not have

a contemporaneous response to the oil price. Meanwhile, the crude oil price

responds contemporaneously to rig count and uncertainty shocks. Figure B.3 -

B.6 show that all impulse responses are consistent with the order in the base

empirical model. Exploration activities and crude oil price have a significant

negative response to the GTU shocks.
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(a) Rig count response to OVX shock (b) Rig count response to JMU shock

(c) Rig count response to GEPU shock (d) Rig count response to GTU oil price
shock

(e) Rig count response to GTU oil invest-
ment shock

(f) Rig count response to GTU oil supply
shock

(g) Rig count response to GTU oil demand
shock

(h) Rig count response to GTU oil market
specific shock

Figure B.3: World oil exploration activity responses to various uncertainty
shocks (reordering: uncertainty - rig count - oil price)
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(a) Rig count response to OVX shock (b) Rig count response to JMU shock

(c) Rig count response to GEPU shock (d) Rig count response to GTU oil price
shock

(e) Rig count response to GTU oil invest-
ment shock

(f) Rig count response to GTU oil supply
shock

(g) Rig count response to GTU oil demand
shock

(h) Rig count response to GTU oil market
specific shock

Figure B.4: North America oil exploration activity responses to various uncer-
tainty shocks (reordering: uncertainty - rig count - oil price)
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(a) Oil price response to OVX shock (b) Oil price response to JMU shock

(c) Oil price response to GEPU shock (d) Oil price response to GTU oil price
shock

(e) Oil price response to GTU oil invest-
ment shock

(f) Oil price response to GTU oil supply
shock

(g) Oil price response to GTU oil demand
shock

(h) Oil price response to GTU oil market
specific shock

Figure B.5: Crude oil price responses to various uncertainty shocks (reordering:
uncertainty - rig count - oil price) - world exploration activity model
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(a) Oil price response to OVX shock (b) Oil price response to JMU shock

(c) Oil price response to GEPU shock (d) Oil price response to GTU oil price
shock

(e) Oil price response to GTU oil invest-
ment shock

(f) Oil price response to GTU oil supply
shock

(g) Oil price response to GTU oil demand
shock

(h) Oil price response to GTU oil market
specific shock

Figure B.6: Crude oil price responses to various uncertainty shocks (reordering:
uncertainty - rig count - oil price) - North America exploration activity model
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B.5.2 Brent oil price

The robustness test also applies brent price as the proxy of crude oil

price. Unanticipated shock in GTU also gives significant negative responses on

exploration activities and crude oil price.

(a) World exploration activity response to
GTU oil market specific shock

(b) North America exploration activity re-
sponse to GTU oil market specific shock

Figure B.7: Rig count response to GTU oil market specific shock (Brent price model)

(a) World exploration activity model (b) North America exploration activity
model

Figure B.8: Rig count response to Brent price shock
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(a) World exploration activity model (b) North America exploration activity
model

Figure B.9: Brent price response to GTU oil market specific shock
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