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Abstract

The emission of CO, into the atmosphere is one of the major causes of the greenhouse effect, which has a devastating effect
on the environment and human health. Therefore, the reduction of CO, emission in high concentration is essential. The
Rotating Packed Bed (RPB) reactor has gained a lot of attention in post-combustion CO, capture due to its excellent rate of
mass transfer and capture efficiency. To better understand the mechanisms underlying the process and ensure optimal design
of RPB for CO, absorption, elucidating its hydrodynamics is of paramount importance. Experimental investigations have
been made in the past to study the hydrodynamics of RPB using advanced imaging and instrumental setups such as sen-
sors and actuators. The employments of such instruments are still challenging due to the difficulties in their installation and
placement in the RPB owing to the complex engineering design of the RPB. The hydrodynamics of the RPB can be affected
by various operational parameters. However, all of them cannot be evaluated using a single instrumental setup. Therefore,
the experimental setups generally result in a partial understanding of the flow behavior in the RPB. The cons and pros of
experimental methods are reported and critically discussed in this paper. Computational Fluid Dynamics (CFD), on the
other hand, is a powerful tool to visually understand the insights of the flow behavior in the RPB with accurate prediction.
Moreover, the different multiphase and turbulence models employed to study the hydrodynamics of RPB have also been
reviewed in-depth along with the advantages and disadvantages of each model. The models such as Sliding Mesh Model
(SMM) and rotating reference frame model have been adopted for investigating the hydrodynamics of the RPB. The current
research gaps and future research recommendations are also presented in this paper which can contribute to fill the existing
gap for the CFD analysis of Rotating Packed Bed (RPB) for CO, absorption.

Abbreviations E Enhancement factor

RPB  Rotating packed bed MEA Monoethanolamine

CFD  Computational fluid dynamics VOF  Volume of fluid

SMM  Sliding mesh model RSM  Reynolds stress model
PCC  Post-combustion carbon capture DES  Detached Eddy simulation
PIV Particle image velocimetry MRF  Multi reference frame

RTD  Residence time distribution

. . Nomenclature
MRT Mean residence time

A Gas-liquid interfacial area (m*/m?>)
a, Effective interfacial area (m?*/m?)
a, Surface area of the 2 mm diameter bead per unit
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Diffusivity of CO, in water A (m?/s)

Diffusion coefficient in the liquid phase ( m*/s)
Hydraulic diameter (m)

Packing diameter (m)

Cross-diffusion constant.

Enhancement factor of the gas—liquid flux due to
the chemical

Froude number

Volume force (N)

Gravitational acceleration (m/s%)

Galilei number

Generation of the turbulent kinetic energy due to
buoyancy

Generation of the turbulent kinetic energy
Grashof number

Inert gas molar flow rate (kmol m, h™")
Solubility coefficient (kmol/kpa m?)

Gas side mass transfer coefficient (mol
Pa'm2s7!)

Liquid side mass transfer (m/s)
Pseudo-first-order rate constant (s~
Second-order rate constant of reaction (M~'/s™!)
Superficial mass velocity of the liquid (kg/m?hr)
Liquid flow rate (m’/s)

Pressure difference (Pa)

Pressure drop due to friction (Pa)

Centrifugal pressure drop (Pa)

Liquid density (Kg/1)

Pressure drop due to sudden change in volume
(Pa)

Total pressure (Pa)

Volumetric flow of the gas (L/min)

Radial coordinate (m)

Radial coordinate (m)

Rate of absorption of A per unit volume (mol/m?
s)

Reynolds number

Inner radius of the packing (cm)

Outer radius of the packing (cm)

Stripping factor

Schmidt number

Temperature (K)

Liquid Flow rate (m?/s)

Characteristic flow rate per unit area (m3/s)
Volume of the packing (m?)

Inlet velocity of the solvent (m/s)

Kinematic viscosity (Pa s)

Characteristic kinematic viscosity (Pa s)
Volume of liquid in packing (m?)

Total volume of packing (m?)

Weber number

Mole fraction of solute in the inlet liquid stream
Mole fraction of solute in the outlet liquid stream
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v Mole fraction of CO, in gas

\D Mole fraction of CO, in outlet gas

Y, Constant associated with the dissipation of k
Y, Constant associated with the dissipation of o,
Z Packing height (m)

€L Liquid Holdup

) Density of the liquid (g/m?)

1y Dynamic viscosity of the liquid (Pa s)

c Surface tension (N/m)

Y Contact angle (degree)

® Angular velocity (rad/s)

o Volume fraction

o, Prandtl numbers

e} Liquid side thickness (m)

) Pore dimeter (m)

1 Introduction

Greenhouse gases have become a matter of serious concern
in the twenty-first century because of the rapid increase
in industrialization which demands a massive amount of
power and energy. To meet those energy requirements, coal
is widely used in the power sector. The huge consumption
of coal for power generation produces greenhouse gases up
to 46% worldwide and therefore is considered the single
biggest contributor to the greenhouse gases [1]. There exist
different CO, capturing approaches such as pre-combustion
capture, oxyfuel and post-combustion carbon capture (PCC).
Among these most widely adopted technologies, post-com-
bustion carbon capture has gained a lot of attention due to its
ease of application, low capital, and energy requirement [2].
Another most highlighted advantage of this technology is its
ability to handle the high volume of CO, enriched gases and
its retrofit nature; therefore, no radical change is required
in the current industrial setup to adopt this technology [3].
Numerous techniques such as adsorption [4], membrane
separation [5], cryogenics [6], absorption (Chemical and
Physical), [7] and calcium looping carbon capture have been
proposed and employed by the industries to reduce the emis-
sion of CO, to the atmosphere. Each of the remedial tech-
niques has its limitations and disadvantages that outweigh its
advantages. For example, adsorption is a useful technique as
it does not discharge liquid waste effluent, however, it does
not have a high adsorption capacity for CO, [8, 9]. Simi-
larly, cryogenics is suitable for the CO, enriched gaseous
stream, but its high energy consumption does not make it
an economical choice [10]. Likewise, membrane separation
is a simple and cost-effective technique, but the plasticiza-
tion at high temperature and the trade-off between selectiv-
ity and permeability create barriers to its commercializa-
tion [11]. Therefore, among various proposed techniques,
absorption has emerged as the most effective, mature and
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reliable CO, capturing technique with promising capturing
capacity [12]. Based on the type of attractive forces between
CO, and the solvent, the absorption process can be classified
into two categories, i.e., physical and chemical absorption.
The favorable conditions for the physical absorption are
the high pressure and low temperature, which require high
energy consumption. This high consumption of energy to
achieve those conditions results in an increase in the opera-
tional cost and thus makes the process uneconomical [13].
On the other hand, chemical absorption involves a chemical
reaction between the solvent and the CO,. The intermediate
product formed as a result of chemical reaction, which binds
the CO, with the solvent by forming a weak chemical bond.
This weak bond can be dismantled to release the captured
CO, when subjected to heat. Moreover, chemical absorption
is more advantageous than the physical absorption due to its
high absorption capacity and can handle gaseous streams
having CO, partial pressure greater than 15% [14].

The selection of an appropriate solvent is a crucial factor
that determines the feasibility as well as the efficiency of
the absorption process. Based on the chemical and physical
nature of absorption, the solvent can be categorized into
chemical and physical solvents. Chemical solvents are those
solvents that bind the CO, molecules by undergoing a chem-
ical reaction with CO,. The efficiency of the solvents can
be predicted by their CO, absorption rate. As the reaction
between solvent and CO, proceeds, the reduction of equi-
librium partial pressure occurs, which increases the rate of
absorption. One of the highlighted drawbacks of chemical
solvents is the high energy consumption for the regeneration
of solvent by breaking the bonding between the solvent and
the CO, molecules [15, 16]. On the other hand, for physical
solvents, the absorption of CO, is based on Henry's law, i.e.,
the amount of CO, dissolved in the solvent is proportional to
the partial pressure of CO, above the solvent. The favorable
condition to absorb the CO, is high pressure. Therefore, the
desorption of gas can be done to regenerate the solvent by
reducing the pressure [17].

The gas—liquid mass transfer majorly depends upon
the configuration of the chemical reactor. Conventionally,
packed bed reactors are being used for the chemical absorp-
tion of CO,. This is the simplest configuration in which the
CO,-containing gases are passed through the fixed bed of
the reactor. There are different packing structures available
for this purpose. However, the major disadvantages inher-
ent with this technology are the high capital, operational
cost, high thermal efficiency penalty, low mass transfer rate
and the use of concentrated amine-based solvent [18-21].
Lawal et al. [22] studied the post-combustion capturing of
CO, through dynamic simulation and found that at least two
packed columns were required with a minimum height up
to 7 m and a diameter of 9 m each to achieve the captur-
ing efficiency of CO, up to 90%. They concluded that this

specification of the column will lead to higher capital and
operational cost and therefore, will increase the electricity
cost by up to 50%. Riboldi and Bolland [23], while studying
the performance of the packed bed reactor to capture CO,
emitted from the coal power plant, found that the packed bed
reactor imposes higher pressure drop even at a low gas flow
rate; thus is not an effective absorber for the CO, absorption.

Alternatively, Rotating Packed Bed Reactor (RPB) is a
process intensification device which was first introduced by
HiGee Technology in 1990s. Rotating packed bed (RPB)
has paved its way into various industrial processes such as
separation and chemical reaction, distillation, stripping,
absorption, production of nanoparticles, etc. The schematic
diagram of a typical rotating packed bed is shown in Fig. 1
[24]. During the rotation of RPB, the rotor injects the liquid
into the packing. The liquid passes through the packing of
the RPB due to the shear force exerted on the liquid by the
rotor and split into thin films and droplets which increases
its surface area. This increase in the surface area, not only
increases the mass transfer rate between the fluids but also
reduces the reactor size and energy consumption [25, 26].

The conventional RPB consists of two major components,
i.e., the rotor with the porous packing enclosed in a casing
and the liquid distributor which inject and distribute the liquid
homogeneously in the packing. The centrifugal acceleration
produced by the rotor enhances the gas—liquid macromixing
and provides better mass transfer between gas—liquid interface.

The RPB can be classified into different categories based
on the following criteria.

a. Phase contact type (counter-current, co-current, Cross

current).
b. Number of rotor stages
c. Type of the rotor
d. Rotor orientation
e. Type of packing
v1
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Fig. 1 Schematic diagram of RBP. 1. Liquid inlet, 2. Gas outlet, 3.
Gas inlet, 4. Hull, 5. Packing, 6. Liquid distributor, 7, rotating shaft,
8. Seal, 9. Liquid outlet, 10. Cavity zone [27]
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The selection criteria of RPB among the different types is
based on the type of chemical process, the rate of mass trans-
fer, liquid holdup, mean residence time, operational cost,
pressure drop, ease of maintenance and the type of fluids
[18, 28-30]. Furthermore, foam and wire mesh are being
used conventionally as packing materials in RPB. The selec-
tion of packing material in RPB is based on the viscosity of
the fluid. For the high viscosity fluids, wire mesh packing
is more effective and provides better mass transfer rate as
compared to the counterparts.

To the best of our knowledge, there exist very scarce data
in the literature that critically highlights all the efforts made
for the study of hydrodynamic parameters using experimen-
tal and empirical modelling. Moreover, the current scientific
literature lacks to point out the pros and cons of the Com-
putational Fluid Dynamics method to study the hydrody-
namic parameters of the RPB, i.e., especially for the mass
transfer performance of RPB. The previous studies do not
completely address the critical aspects of the hydrodynam-
ics of RPB in a single review such as the effect of different
packing structures and RPB designs on the hydrodynamic
parameters of the RPB, different approaches to estimate the
mean residence time, advantages and disadvantages of dif-
ferent multiphase models, selection of suitable rotating refer-
ence frame model for different geometries and the reactive
modeling of the CFD. This systematic review aims to criti-
cally analyze the experimental and CFD approach to study
the hydrodynamics of the RPB. In the first section of the
review, the hydrodynamic parameters such as liquid holdup,
pressure drop, effective interfacial area, liquid residence
time and mass transfer modelling by experimental methods
in combination with the empirical modelling is reviewed
critically. The later section focuses on the CFD studies, i.e.,
multiphase modelling of RPB, employment of turbulence
models and the reactive modeling of CO, absorption.

2 Hydrodynamics of RPB
2.1 Experimental Studies

The hydrodynamic modeling provides useful information
for all the changes thatoccur in the process with time. The
rate of mass transfer is an important factor for the design
and optimization of RPB for post-combustion CO, capture
and depends on the hydrodynamics of the gaseous and liquid
phases in RPB [27]. Hence, many researchers have tried to
investigate the hydrodynamics of RPB by different non-inva-
sive techniques such as high-speed photography and X-ray
computed micro-tomography [31-33]. Yang et al. [32] used
the X-ray Computed Tomography technique to study the
hydrodynamics of CO, absorption in laboratory-scale RPB.
The results were in the form of tomographic cross-sectional
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images and they found that the rotational speed and the sol-
vent concentration had a considerable effect on the maldis-
tribution of solvent around the packing region in RPB. The
intensity of the X-ray was affected by the material of the
reactor and was unable to provide any information regard-
ing the flow characteristics of liquid films and liquid drop-
lets. Yan et al. [34] studied the hydrodynamics of RPB by
using colored water. The void cavities in the packing were
filled with paper to investigate the liquid flow pattern of the
colored water in RPB. This approach is cost-effective as it
does not require any high-speed camera or the X-ray setup.
However, this experimental setup can only capture the film
flow within the RPB and no information regarding pore and
droplet flow can be achieved using this technique. Likewise,
Bongo et al. [35] employed the optical imaging technique
by using Particle Image Velocimetry (PIV) to get the visu-
als of the velocity vectors of the liquid using the projec-
tions of the particles carried by the liquid. Burn et al. [36]
used non-invasive techniques to study the hydrodynamics of
absorptionby investigating the fluid flow using a high-speed
stroboscopic photography setup. The Wen et al. [37] used
a high-speed camera to capture the film flow behavior in
vertical quadrangular fibers and horizontal elliptical fibers
(VQHE) and the packing composed of circular fibers (V-H()
in the RPB. The captured image exhibited the transition of
liquid ligaments into droplets and liquid film as shown in
Fig. 2. However, the non-invasive techniques were unable to
provide detailed and accurate flow characteristics of the RPB
and were expensive due to the special instrumental setup
[34]. The experimental studies to investigate the hydrody-
namics of the RPB are shown in Table 1.

2.2 Empirical Modeling of Hydrodynamic
Parameters

2.2.1 Liquid Holdup

The liquid holdup in the RPB is the ratio of the volume of
the packing zone to the volume of the liquid in the pack-
ing zone. This is an important hydrodynamic parameter
that depicts the resilience of the packing zone to the liq-
uid phase and is a crucial parameter for determining the
mass transfer rate as well as the interfacial surface area.
The value of the liquid holdup varies in each of the pack-
ing zone, i.e., the inner and outer zone has high liquid
holdup while the bulk zone has comparatively low liq-
uid holdup [39]. This critical variable primarily depends
on various factors such as the inlet velocity of the liquid,
solvent concentration, rotational speed and the contact
angle of the packing. Yang et al. [32] and Grob et al. [40]
used the advanced X-ray and Gamma-ray CT techniques,
respectively, to determine the liquid holdup in the RPB.
Both techniques have provided key information about the
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Fig.2 Liquid flow transition
behavior in the RPB [37]

liquid holdup. However, the employment of these tech-
niques is practically and economically not possible due to
the expensive technical setup and the complex engineering
design constraints in RPB. Therefore, various empirical
models have been developed to calculate the liquid holdup
in the RPB. However, all of these correlations are non-
generic and, therefore, cannot be applied to all packing
types and RPB configurations.

Burns et al. [41] placed an electrode in the packing of
RPB and used the measurements of electrical resistance
between the electrodes to develop the model for the predic-
tion of liquid holdup in a highly porous packing. This model
took into account the kinematic viscosity of the solvent and
the rotational speed of the RPB. The experimental setup
proposed by Burns et al. [41] is complicated and expensive
as it requires the special set of equipment. Lin et al. [42]
assumed that the liquid flow within the RPB is film flow
and developed a correlation for the liquid holdup. The cor-
relation is based on the measurement of the pressure drop
and was relatively easy to calculate. Hendry et al. [43] used
the empirical correlation (Eq. 1) to determine the liquid
holdup in both the counter and co-current setup of the RPB.
However, this is the simplest model and does not consider
liquid—gas interaction in the RPB and thus, does not predict
the accurate liquid holdup in the RPB.

e, = 12.159Re**?Ga™ "' Ka =001 (1)

As the packing of the RPB is complex and the flow within
the different zones cannot be assumed accurately, therefore,
all the empirical correlations lag in their reliability and accu-
racy. Various proposed empirical correlations to determine
the liquid holdup are summarized in Table 2.

2.2.2 Liquid Residence Time

Liquid residence time is an important aspect as it has signifi-
cant effect on the mass transfer performance of the reactor
and therefore affects the overall efficiency of the reactor. The
liquid residence time can be optimized and can be employed
for the scale up of the RPB [46]. The liquid residence time in
the RPB can be measured by the Residence Time Distribu-
tion (RTD) data. Residence Time Distribution characterizes
the ability of micro-mixing in the RPB and the study can
be performed by monitoring the concentration of the tracer
species at the outlet of the RPB over a certain period of
time [47]. Guo et al. [46] used an experimental setup for the
RTD study on the liquid flow in the RPB. The electrodes
were placed on the rotor and the electrical pulse of the tracer
species was monitored. They found that the operational
parameters such as the liquid flow rate and the rotational
speed of the RPB have considerable influence on the RTD.
Likewise, Emami-Meibodi et al. [48] used the conductivity
pen to detect the concentration of the tracer species at the
outlet of the RPB and proposed a RTD model to calculate
the liquid residence time. Their proposed model is a follow:

E(t) = % @)

\%
= 3)
however the model was based on the assumptions i.e., (i)
volume of the pipes is so small that they can be neglected
and (ii) there exists a solution gradient the feeding tank. The
proposed model shows a good agreement with the experi-
mental data with only a 2.5% difference. The mean residence
time (MRT) of the RPB lies within the range of 0.4-1 s [46,
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Table 2 Correlations for liquid holdup estimation in RPB

Sr.no. RPB configuration Packing specification

Operating conditions

Liquid Holdup Correlation References

1 Cross Flow Blade packing
Surface area: 1900 1/m

Void Fraction: 0.89

Surface area of the packing:
840 1/m
Void Fraction: 0.954

Metal mesh sheet

Surface area of the packing:
663 1/m

Void Fraction: 0.801

Wire mesh packing

Surface area of the packing:
497 1/m

Void Fraction: 0.95

Glass beads

2 Cross flow

3 Counter-current
Current—current

4 Counter-current

5 Counter-current

Liquid velocity: 0.5-3.5 cm/s
Rotor Speed: 200 m/s?

Liquid flow rate: 0.378 m3.h™!
Gas flow rate: 60 m>.h™! Vo
Rotor Speed: 600 RPMs

Liquid flow rate:3.83 x 107> m%/s

e, = 0.039(B)™"° (UE )0'6 ( v )0'22 [44]

VO

Gas inlet velocity: 3.12-7.07 m/s ¢ = 21_3u2?46u502‘°‘5m*0‘148 [45]
Liquid velocity: 0.86—4.44 m/s ’
Rotor Speed: 300-1500 RPMs

Solvent: Water
Rotor speed: 500-2500 RPMs
Liquid flow rate: 2580 mL/min

e = 12.159Re*PGa 001 K2 0010 [32]
€ = 2 x 100 [40]

_ [ﬁ / ::’hdr] a, [42]

Gas flow rate: 150-1150 m>/s €, =L~
Rotor Speed: 91.11 rad/s

49, 50]. There are various factors other than the operational
parameters which may affect the MRT such as the packing
structure, RPB design, rate of the chemical reaction, phases
interactions, packing wall adhesions, etc. Moreover, the opti-
mum performance of RPB for the absorption of CO, can be
achieved by adjusting the operational parameters, suitable
selection of packing and the optimum RPB design [51].

2.2.3 Dry Pressure Drop

Dry pressure drop refers to the loss of gas pressure in the
absence of liquid and, therefore, is an essential parameter to
be considered to quantify the resistance offered by the pack-
ing and energy consumption to run the absorption process in
RPB. To overcome the high-pressure drop, additional blow-
ers and fans are required in the upstream, which increases
the operational cost of the process [52]. Moreover, this
parameter is also important to determine the parasitic load
of the CO, absorption process and, thus, affects the feasibil-
ity of the absorption process in the RPB. The dry pressure
drop in RPB is always higher than that of the packing bed
reactor. But this can be compensated by the smaller reac-
tor requirement due to its high mass transfer efficiency. In
general, there are four zones in RPB that have significantly
high-pressure drops as shown in Fig. 3

The main factors to contribute to the pressure drop are
(1) the friction forces on gas molecules exerted by the pack-
ing and the solvent due to adhesion and the intermolecu-
lar forces between gas and the liquid, (ii) centrifugal head
and (iii) increase in tangential velocity due to the change
in area in the radial direction [53]. The total pressure drop,
therefore, is the sum of pressure drop due to friction (AP;),

centrifugal pressure (AP,) and the (AP, ), due to sudden
change in the area.

Hendry et al. [43] calculated the pressure drop in RPB
by the experimental setup and developed one-dimensional
pressure drop model. However, the model cannot predict
the pressure drop in all RPB’s configurations. Likewise, Lin
and Jian [54] studied the effect of operational parameters,
i.e. liquid flow rate, gas flow rate and the rotor speed on the
pressure drop and found that the pressure drop in the RBP
increases with the increase in the gas flow rate and rotor
speed but remains unchanged with the change in liquid flow
rate. Moreover, they also developed empirical correlation for
calculating the pressure drop in the RPB which is as follow

F2
AP = —VLXfW(RD -R) @)
2 (8 —h )

Low pressure drop is favorable for any absorption process
in the RPB. Optimum engineering design and selection of

.,

E AP APf

] Lp,,i

Fig.3 Zones for pressure drop in RPB
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suitable packing material can help to achieve the low pres-
sure drop in the RPB [55, 56]. Therefore, a detailed study
of the pressure drop is important for the scale-up and the
feasibility analysis of this process intensification technique
for CO, absorption.

2.2.4 Effective Interfacial Surface Area

Interfacial surface area is the area of contact between gas
and liquid and is the region where the mass transfer between
the phases takes place. This important attribute is an essen-
tial prerequisite to determine the size of the RPB to achieve
the desired rate of the mass transfer between the gas and
the liquid [57]. The flow within the RPB is complex and is
different from the conventional packed bed reactor. There-
fore, various empirical and semi-empirical models have been
proposed by the researchers. Im et al. [58] modified the cor-
relation proposed by Billets and Schultes [59] by introducing
the centrifugal acceleration in the correlation. Tsai and Chen
[60] reported that the effective interfacial surface area can be
increased up to 34% by using static baffles in the RPB. This
increase in the effective interfacial area increases the overall
mass transfer coefficient in the RPB. The correlations pro-
posed for the calculation of RPB are summarized in Table 3.

2.3 Mass Transfer Modeling of CO, Absorption

Various experimental methods, in combination with the
empirical correlations, have been employed to study the
mass transfer performance of the RPB. The mass transfer
between gas-liquid interface depends on various factors
such as rotational speed (RPM), solvent concentration,
contact angle, gas—liquid flow rates and the operational
temperature [65]. The mass transfer mechanism inside the
RPB is complex and therefore, no theoretical model can
be developed to predict the mass transfer coefficient at any
stage and zone of contact within the RPB. The volumetric
gas and liquid side mass transfer coefficients are the two
most important parameters while designing and optimiz-
ing the performance of RPB for the absorption process.
Researchers have made various assumptions and devel-
oped different mass transfer models to predict the mass
transfer coefficients at the gas—liquid interface.

Neumann et al. [66], due to the complex packing struc-
ture of the RPB, used the gas—liquid effective interfacial
area as a considerable variable for the approximation of
liquid side mass transfer in the RPB. The effective interfa-
cial area was calculated using the expression below:

Table 3 Correlations for the interfacial surface area along with packing specifications

Sr.no. Classification  Packing Specification Interfacial area correlation References
of RPB
1 Counter current Packing type: Stainless 2 = — Ra [61]
Flow steel ¢ CuvVbakCu
2 Counter current  Packing type: small mesh 15 (ad. )05 ((edy =02 o2, \OTP 1 g2 \TOH [58]
Flow stainless steel a, <aP h) ( e ) ( - ) (mﬂdh )
Porosity (m*/m?): 0.76
Specific Surface Area (m%/
m’): 213.2
3 Counter current Packing type: Raschig ring, 6 \O7 L, \O a2\ 005 2 \02 [62]
Flow Spherical rings, rods P 1 —exp _1'45(5_[) (E) (ru)zplz ) ( o, )
4 Counter current Packing type: Stainless a=2 [57]
Flow steel v
Void fraction: 0.97
Specific Surface Area (m%
m’): 499.7
5 Two-stage Packing type: Nickle foam 4 = A [63]
counter cur-  Void fraction: 0.956 M
rent Specific Surface Area (m%
m’): 342
Pore diameter: 5.08 mm
6 Counter Cur-  Packing type: Stainless % = 66510Re™ 4 We! 2 Fr=021 =074 [64]
rent steel wire mesh o
Void fraction: 0.94, 0.93,
0.94, 0.942

Specific Surface Area (m%
m?): 500, 450, 430, 385
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ANco pck

Aopp = 5)

VPC{T)COZ \/ Kon-.Con~Drco,

Likewise, Chen et al. [67] proposed the liquid side mass
transfer correlation, which was valid for both Newtonian
and non-Newtonian fluids. The correlation proposed by
the Chen et al. [67] is as follows:

K ad,

<1 _093Y0 _ 1.13&> = 0.65Sc” Re*7Gr* we?
Da, Vv, V.
(6)
Sun et al. [68] developed a mass transfer model to esti-
mate the overall liquid side mass transfer coefficient for
the simultaneous reactive absorption of CO, and NH; in
the RPB. The predicted mass transfer coefficients were close
to the experimental data and were within the bias range of
10%. Various proposed correlations to determine the mass
transfer are summarized in Table 4.

2.3.1 Mass Transfer Modelling of Reactive CO, Absorption

The absorption of CO, into an appropriate solvent (such
as MEA, K,CO3, etc.) is a physio-chemical process. The
absorption of CO, is considered physical if the absorption
is based on Henry’s law and the selectivity of CO, in a sol-
vent occurs without any chemical reaction [81]. On the other
hand, chemical absorption occurs as a result of the chemical
reaction between solvent and CO, [82]. Enhancement factor
(E) is a key parameter to predict the nature of absorption,
i.e., chemical or physical. The E is the ratio of mass transfer
rate due to the chemical reaction to the mass transfer rate
without the chemical reaction. The absorption of CO, is con-
sidered as the physical absorption if the E < 1. Likewise,
if the E > 1, the absorption is considered as the chemical
absorption [83, 84].

Jasmine et al. [85] developed a mass transfer model
(Eq. 8) to study the effect of chemical reaction on the mass
transfer performance of the RPB using MEA as a solvent.
Kga = Kapp

€ 7
Hco, mea - @

The apparent pseudo-first-order reaction rate constant
(kypp) and Henry’s law constant (Heg,_ygs) Were incor-
porated into the mass transfer model to predict the overall
volumetric mass transfer coefficient. They found that the
instantaneous reversible reaction affects the mass transfer
rate and the predicted results were close to the experimental
data. Yi et al. [86] developed a mass transfer model (Eq. 2.9)
by considering the effect of reaction between diethanolamine
(DEA) and K,CO;.

ki
)
k; =D = - ®)
VTP
D.2) D
k) =kouCoy + kpeaCpea )

Based on this model and by comparing the calculated
results with experimental data, they concluded that the mass
transfer rate is much higher in the end zone region of the
RPB as compared to the other regions.

The experimental method is an expensive and time-
consuming approach. Furthermore, the results are also very
difficult to be reproduced and thus, decrease the validity of
the results. Similarly, data obtained by theoretical or ana-
Iytical approach is not realistic as a lot of assumptions need
to be made to simplify the mathematical models due to the
complexity of the process. Therefore, the mass transfer rate,
liquid holdup, effective interfacial area and pressure drop
obtained by the theoretical or analytical methods do not
cover all the parameters of consideration and, thus, cannot
be used for the practical applications. For the semi-empirical
method, there exists very limited data in the literature and
cannot be used for determining the mass transfer rate due to
lack of generalization in the mathematical models and their
respective governing equations.

3 CFD Studies

CFD has proved itself as a cost-effective tool in modern-
day engineering as it can solve complex fluid flow problems
without compromising the accuracy and reproducibility.
It has a promising potential to evaluate the hydrodynamic
parameters and mass transfer rate by substantially declining
the time and cost. Furthermore, CFD provides a detailed
and graphical demonstration of data i.e., occurrence of flow
separation or deviation of any set parameter from the maxi-
mum or minimum limit, which is not possible to achieve
with the rest of the available techniques [87]. CFD analysis
of the RPB can provide useful information about the hydro-
dynamic parameters such as liquid holdup, liquid residence
time, pressure drop and liquid dispersion.

3.1 Effect of Operational Parameters
on Hydrodynamics of RPB

The liquid holdup is one of the most important parameters to
study the hydrodynamics of the RPB. The value of the liquid
holdup () determines the resistance offered by the packing
to the liquid within the flow domain, the possibility of liquid
to be flooded and the gas—liquid interfacial area [51]. Xie

@ Springer
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et al. [27] investigated the liquid holdup of 50 wt% MEA
solution by varying the operational conditions such as the
rotational speed, inlet velocity and MEA concentration and
found that the rotational speed has a significant effect on
the liquid holdup performance of RPB. At higher rotational
speed, the MEA ligaments were transformed to tiny droplets
and were not under the influence of any resistance offered
by the packing. Therefore, the residence time of MEA in
the RPB decreased up to 70% when the rotational speed
was increased to 1500 rpm, thus also decreased the liquid
holdup of MEA. There are various operational parameters
that can influence the liquid holdup in the RPB such as
the inlet velocity, solvent concentration and packing-solvent
contact angle. However, among these parameters, the inlet
velocity has a minor effect on the liquid holdup in the RPB
[27]. Xie et al. [27] also reported that the concentration
of the MEA has a noticeable effect on the liquid holdup as
with the increase in concentration, the dynamic viscosity
increases considerably. This increase in viscosity improves
the adhesion of the solvent with the packing surface, which
increases the residence time and the liquid holdup. Similarly,
Zhang et al. [88] reported that hydrophobic packings at the
entrance of the packing can reduce the liquid holdup up to
an optimum level which can avoid the possible flooding of
the solvent at the inlet location. They also concluded, as a
result of the 3D CFD simulation of RPB, that at low rota-
tional speed, the packing offers noticeable resistance for the
incoming liquid and, thus, exhibits high residence time. The
effect of different rotational speeds on the liquid holdup can
be seen in Fig. 4 and the equations to calculate the mean
residence time are summarized in Table 5.

Shi et al. [89] used the Residence Time Distribution
(RTD) method to calculate the MRT. After the achievement
of pseudo-steady state, a tracer with the same physical prop-
erties as of the water was injected into the RPB through the
inlet with the volume fraction of 1 for a very short instance
of time, i.e., 0.01 s. The volume fraction of the tracer at
the outlet was then monitored continuously to get the RTD
curve. Likewise, Burn et al. [41] calculated the mean resi-
dence time as a function of the liquid holdup. The liquid
holdup was determined by installing the resistance measur-
ing detectors to measure the liquid holdup resistance in the
RPB. The value of the liquid holdup was then used in Eq. 1
of Table 5.

The mass transfer within the RPB depends on how long
the gas and liquid come in contact with each other and,
therefore, is very crucial in determining the potential of
RPB for the CO, absorption. To achieve an optimum resi-
dence time, the gas flow rate is used to tune the gas resi-
dence time whereas, the liquid residence time can be tuned
by various operational parameters such as the liquid velocity,
rotational speed and nature of the packing [92]. Yang et al.
[93] studied the liquid residence time by varying the center

distance between the packing layers (Ad) and found that
by decreasing the center distance, the liquid residence time
increases due to an increase in its surface area which even-
tually enhances the mass transfer between the gas-liquid
phase. This increase in the mass transfer is advantageous
to achieve high removal capacity. The effect of the packing
structure on the residence time can be seen in Fig. 5.

Whang et al. [94] studied the effect of droplet velocity
on the average residence time of the liquid in the RPB and
found that change in the rotational speed and liquid inlet
velocity can alter the mean residence time of the liquid, as
shown in the Fig. 6.

Malinowska et al. [95] studied the pressure drop as a
function of rotational speed in the porous packing in the
RPB using a 3D CFD model. The CFD results of two turbu-
lence model, i.e. RNG k — ¢ and Standard k — € were com-
pared with the experimental data. The CFD results started to
deviate from the experimental data with the increase in the
gas flow rate. However, the discrepancy was less than 20%,
which lies within the acceptable limits of error.

3.2 Effect of Packing Structure
on the Hydrodynamics of RPB

The type of the packing structure has a considerable effect
on the hydrodynamics and mass transfer efficiency of RPB
and is, therefore, considered a key parameter to evaluate the
efficiency of RPBs. These packing in general can be catego-
rized as wire mesh and foam packing. The wire mesh struc-
ture is subcategorized as structured, unstructured, weaved
meshed, knitted meshed and zigzag wire mesh packings.
Different packing structures of RPB are shown in Fig. 7.
Based on the mass transfer coefficient, wire mesh pack-
ing offers more promising performance as compared to its
counterparts [67]. Qammar et al. [96] compared the mass
transfer efficiency and hydrodynamics of different wire mesh
packings by experimental study and found that zigzag wire
mesh structure exhibited the highest mass transfer as com-
pared to the conventional wire mesh packing. This packing
structure also offers low-pressure drop, which decreases the
operational cost and makes the process more economical.
The advantages and disadvantages of different RPB packing
structures are summarized in Table 6.

Moreover, due to the complex packing structure of the
RPB, it is difficult to develop an exact packing geometry
for the CFD study. Therefore, a lot of simplifications and
assumptions are required to be made to develop a simpli-
fied structured geometry. Due to these assumptions, accu-
rate prediction of the fluid flow behavior around the packing
material cannot be obtained by the CFD study [98]. Square
wire mesh packing and circular wire mesh packings are the
most widely used geometries for the hydrodynamic study of
RPB by CFD. Due to the short computational time and ease
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Fig.4 Effect of different opera-
tional conditions on the liquid l

holdup [90, 91]

]A

I 1.00e+00

[
7.50e-01

Q,=100 L/h

5.00e-01

2.50e-01

1.00e-05

Table 5 Equations for Liquid residence time in RPB

No. Equation

Description Proposed by

~ 8 -
1 t~ o, — 1)
= Ud
= 2mr
— (r,—rp)

! 2

S It
T IR

g, = liquid holdup of the liquid Burns et al.
U= superficial liquid velocity [41]
r, = inner radius of the pack-
ing
r; = outer radius of the pack-
ing
d = width of the injection
nozzle

F; = volume fraction of tracer
at the outlet at time t;

Shi et al. [89]

@ Springer
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of geometry development, 2D geometric models have been
employed extensively for the CFD analysis of RPB [50, 89,
93, 98, 102-106]. The different 2D geometry designs of RPB
are shown in Fig. 8.

However, the prediction of the hydrodynamic parameters
such as liquid holdup, residence time and maldistribution
with the 2D model is not as accurate as the 3D model. There-
fore, various studies have been done so far using the 3D CFD
models. Goa et al. [103] used the 3D model to study different
characteristics of liquid flow behavior, such as maldistribution
of liquid, mean residence time and specific surface area and
concluded that the simulated results showed a better agreement
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Fig. 5 Effect of packing struc-
ture on the residence time: a
Ad=3 mm; b Ad=2.5 mm [91]
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Fig.6 Residence time distribu- 020
tion in RPB at different droplet I o
velocities and rotational speeds. 017
auy=0.5 m/s, N=300 rpm; g:g W
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(c)

with the experimental data compared to the results of the 2D
CFD model. However, to reduce the complexity of the 3D
model, the packing was simplified without considering the
effect of horizontal wire meshes which makes the results less
realistic. Likewise, Zhang et al. [107] used the 3D CFD model
to study the droplet breakup behavior using a single 3D layer
of the packing. They did not study other attributes of liquid
flow behavior in a fully developed region of RPB. Despite the
complexities in the 3D model, Zhang et al. [88] tried to study
the characteristics of liquid flow within the RPB using 3D

. 1.00e+00
&

7.50e-01

- 5.00e-01

L 250e-01

1.00e-05

(b)

(d)

wire mesh packing (considering the effect of horizontal wire
meshes) as shown in Fig. 9 and found that the computed flow
pattern obtained as a result of 3D simulation showed a good
agreement with the experimental data. However, the differ-
ence between the previous CFD data is within 30%, which
they claimed is due to the difference in the packing structure.

@ Springer
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Fig.7 a Unstructured wire
mesh [97], b structured wire
mesh [98], ¢ zigzag wire mesh
[96], d foam packing [98] and e
knitted wire mesh [98]

3.3 Effect of Different RPB Designs
on the Hydrodynamics Parameters

The selection of the appropriate RPB design plays a vital role
in the process design and optimization as the employment
of the suitable configuration can save energy consumption

Table 6 Advantages and disadvantages of different RPB packing
structures

Packing type Advantages Disadvantages References
Structured/ High mass High-pressure [99]
unstructured transfer drop
wire mesh Can handle
high viscosity
liquids

Can deal with a
high flow rate
of gases

Foam packing Less costly Low specific area [100]

High-pressure

drop
Knit wire mesh ~ High mass High-pressure [101]
transfer drop

High surface area

Zigzag wire mesh Higher mass Low effective [98]

transfer gas—liquid
Low-pressure interfacial area
drop

@ Springer

and can improve the quality of the process. The design of the
RPB can significantly affect the hydrodynamic parameters
such as the pressure drop, liquid holdup, mean residence
time and the liquid dispersion. Bai et al. [108] proposed a
novel spherical design of the RPB as shown in the Fig. 10
and studied the effect of operational conditions on the liquid
holdup, liquid mean residence time and the pressure drop.
Furthermore, they reported that unlike the conventional RPB
design, the rotational speed does not have any significant
effect on the liquid holdup of the spherical RPB. Similarly,
the pressure drop in the spherical RPB was found to be lower
than the conventional RPB up to 35%. Therefore, the appli-
cation of RPB at low rotational speed can reduce the energy
consumption for any application. The application of spheri-
cal RPB is more suitable which requires very short liquid
residence time. However, for the case when the rate of CO,
absorption is low due to slow chemical reaction between the
solvent and the CO, or the diffusion mechanism, this design
of the RPB will not be a good selection due to its shorter
residence time as compared to the conventional RPB.

The mass transfer efficiency of the RPB can also be
intensified by adding any obstacle in the fluid path within
the cavity zone of the RPB. Shi et al. [89] used the static
baffles in the RPB to reduce the droplet size in the RPB
for better dispersion and the mass transfer rate as shown in
Fig. 11. The employment of the baffles in the RPB pack-
ing can reduce the flow path in the RPB and therefore also
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Fig.8 2D CFD models with different packing structures and arrange-
ment (a) square wire mesh packing with no stationary or cavity zone
[91], b square wire mesh packing (3 mm X 3 mm) with cavity [104], ¢

©65.5mm

(a)

‘'Ooocpboooo
DO0OD0DO0DOODD
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ooooooood
DooDoOO0OOd
DooDoOoODODOD
ocooooonaoo
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(d)

circular wire mesh packing (@=0.5 mm) with no cavity zone [27] and
d square wire mesh packing (0.5 mm X 0.5 mm) with cavity [102]

A2 1.28 mm

(b) (c)

Fig.9 3D model of RPB as proposed by Zhang et al. [88]: a entire flow domain, b cross-sectional view of the flow domain at 45° and ¢ cross-

sectional view of packing wire

reduce the mean residence time of the liquid [109, 110].
Another drawback that limits the application of RPB for the
gas-liquid separation is the low angular slip velocity of the
gas phase around the rotor. The use of static baffles in the
RPB can cope with this drawback of RPB. Sung and Chen

[55] developed static baffles in RPB packing and found that
using baffles in the packing can provide 117% more volu-
metric gas-transfer mass transfer coefficient as compared to
the conventional RPB.
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Fig. 10 Spherical RPB design proposed by Bai et al. [108]

3.4 Multiphase Phase Modeling in RPB

Multiphase models have been used extensively to simultane-
ously predict the interaction of more than one phase in the
RPB. The Volume of Fluid (VOF) and the Eulerian model
are the two most commonly used models to predict the flow
characteristics (flow pattern) in the RPB.
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(@)

the second ring

of packings

the first ring

of packings

3.4.1 Eulerian Approach

The Eulerian model has been used extensively for the CFD
simulation of the various conventional reactors, such as
packed bed reactor and fluidized bed reactor to predict the
flow behavior and interaction of multiphase simultaneously.
Some prominent advantages of this approach are (i) it does
not require too small grids and therefore, can simulate the
whole reactor by focusing on the fluid flow throughout the
whole bed, (ii) more efficient for steady-state simulation and
does not require high computational time and power, (iii)
this model assumes both liquid and gaseous phases as indi-
vidual phases [111]. However, the Eulerian model does not
consider the drag forces between the gas—liquid, gas—solid
and solid-liquid interfaces and thus is not able to predict
the flow behavior around the packing of the RPB accurately
[112, 113]. The porous media model has been used exten-
sively in combination with the Eulerian model to predict the
flow behavior in packed bed reactor [114, 115]. But due to
the high porosity of wire mesh and cylindrical diameter of
packing the porous media model cannot be used to predict
the flow behavior and gas—liquid interaction in the RPB.
Kolodziej and Lojewska [113] experimentally investigated
the flow pattern through wire mesh packing and the con-
ventional spherical packing and found that the flow through
the wire meshing packing was entirely different from the
spherical packing. There are very few studies reported so far,
which have used the Eulerian Model for the CFD study of
RPB. Lu et al. [112] developed a new porous media model
for the CFD analysis of gas—liquid (air—water) two-phase
system and found that this model cannot accurately predict
the flow behavior within the RPB due to the assumption
made to simplify the mathematical model. The application
of the Eulerian model and the main findings are summarized

i=4

static baffle

Fig. 11 a Contour of volume fraction with static baffles [89] and b blade baffle design [55]
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in Table 7. Therefore, a more realistic model is required to
be developed with minimum assumptions that can accurately
predict the flow characteristics such as flow behavior and
pattern and should include drag forces, interfacial area and
can quantify the mass transfer in the RPB.

3.4.2 Volume of Fluid (VOF)

The volume of fluid (VOF) is one of the most capable
multiphase models to analyze and track the gas—liquid
interface in two-phase flow [102, 117]. This model uses
a single set of momentum equations by considering both
the liquid and the gas as a single phase and can predict the
volume fraction of each fluid (gas and liquid) through-
out the domain. The most highlighted advantages of this
model are (i) the flow distribution of liquid can be ana-
lyzed using this model, (ii) the solution by this model is
independent of interaction between different phases and
(iii) can analyze all three types of flows, i.e., film flow,
rivulet flow and droplet flow within the flow domain
[93]. However, there are also some disadvantages associ-
ated with the application of this model, such as (i) it can-
not be useful for the simulation of a whole reactor as it
requires very tiny grids that need more time and computer
resources to be simulated, (ii) VOF only emphasizes the
numerical solution of liquid that flows along the pack-
ing side and (iii) it requires more computational time as
compared to the Eulerian model [116]. Shi et al. [89]
predicted the flow pattern of the RPB using the Volume
of Fluid (VOF) model in combination with the sliding
mesh model (SMM) and Reynolds stress model (RSM) to
predict the liquid distribution (Fig. 12). They predicted
the velocity fields and liquid volume distribution of fluid
around the packing area within the RPB. The results
showed that VOF was an effective model to understand
the liquid—gas interface, which helped to predict the lig-
uid—gas velocity distribution in the RPB.

Xie et al. [27] used Volume of Fluid (VOF) along with
the SST k-omega model to investigate the liquid flow
behavior in RPB for CO, (physical) absorption. The
results exhibited that the VOF model could successfully
simulate the liquid flow pattern by tracking the gas—liquid
interface around the packed area of RPB. Based on the

Table 7 Main findings of the Eulerian model

validation of simulated data, Xie et al. [27] concluded that
the VOF model has promising potential and is capable to
analyze the hydrodynamics of industrial RPB using 3D
CFD modeling. Ouyang et al. [106] and Guo et al. [103]
used realized k-epsilon model in combination with the
VOF model to simulate the gas-liquid phases in RPB.
They found it an effective approach to capture the gas—lig-
uid interfaces and analyze instantaneous flow informa-
tion such as liquid film and droplet flow in the RPB.
Yang et al. [93] employed the VOF model to study the
gas-liquid mass transfer in the RPB. They concluded that
the gas—liquid interface cannot be predicted accurately
because the computational grids in their conducted study
were not small enough to capture the gas—liquid interfaces
accurately. The reported research shows that Volume of
Fluid (VOF) is the most suitable model to investigate the
hydrodynamics of multiphase flow in the RPB [89, 93,
102, 118].

3.4.3 Turbulence Modeling in RPB

There are several factors that affect the accuracy of the CFD
results. The selection of an appropriate turbulence model is
one among them, and the model selection should be based
on its adaptability [38]. The standard k-¢, SST k-w, Reyn-
olds stress model (RSM), and the Detached Eddy Simulation
Turbulence Model (DES) are the most commonly employed
models for turbulent flow prediction. Each turbulence model
has its own limitation and uses the different set of bound-
ary conditions. Guo et al. [102] studied the micro-mixing
efficiency in RPB using Reynolds Stress Model (RSM) by
simulating the volume fraction of liquid and the concentra-
tion distribution. The effect of rotational speed and liquid
velocity were studied to investigate their influence on the
micro-mixing efficiency of the RPB. The simulated results
exhibited good agreement with the experimental data. As
the Reynolds Stress Model (RSM) uses five (2D flow) and
seven (3D flow) additional equations, it demands more time
and computational memory [119]. Xie et al. [27] applied
the Standard and SST k-omega model for the closure of the
Navier—Stokes equation for simulating the physical absorp-
tion of CO, in RPB using MEA as a solvent. The liquid
holdup predicted by the Standard and SST k-omega models

Sr.no. Phases Main findings References
1 Gas-liquid Eulerian model, in combination with the developed porous media model does not predict the flow pattern [112]
around the packing
2 Gas-liquid The porous media model is based on liquid film flow assumption and insufficient information in the mathemat- [116]
ical model limits the credibility of predicted flow characteristics
3 Gas-liquid The Eulerian—Lagrangian approach only predicts the droplet characteristics of H,S in RPB and does not [94]

explain well the Ligament flow
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Fig. 12 The maldistribu- -
tion of the liquid phase in

the packing area (t=0.5s): a

N=500 rpm, u=0.5 m/s; b

N=900 rpm, u=0.5 m/s; and ¢

N=900 rpm,u=2 m/s. [89]
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was within 5% of the holdup obtained by the RSM model.
Yang et al. [120] employed the Realizable k-epsilon and
Standard k- epsilon turbulence models to optimize the sin-
gle (gas) phase flow in the RPB. The standard k- epsilon
model showed a better agreement with the experimental
data as compared to the Realizable k-epsilon model. How-
ever, the agreement was good only for low rotational speed,
i.e., rotational speed < 1000 rpm. Table 8 summarizes the
multiphase and turbulence model used so far for the CFD
analysis of RPB.

3.4.4 Rotating Reference Frame
The rotational speed of the RPB has a significant effect on

the hydrodynamics of the RPB. Therefore, it is necessary
to adopt a suitable rotating reference frame model that can
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incorporate the effect of rotation and can be proven an effi-
cient model in investigating the hydrodynamics of RPB.
The sliding mesh model (SMM) is a completely unsteady
method that can be employed effectively for the CFD analy-
sis of RPB. Shi et al. [89] used SMM to visualize the liquid
pattern in the RPB by generating a dense gravity environ-
ment using this model and found that the simulated results
showed a good agreement with the experimental data. On
the other hand, researchers have also used the moving refer-
ence frame for considering the rotation of the RPB [27, 105,
106, 121]. Both the single rotating reference frame and mul-
tiple reference frame have been used for this purpose. For
the CFD geometry having more than two interfaces, multi-
ple reference frame is the only available model to employ
for the unsteady state simulation. For example, Lui et al.
[98] concluded that moving reference frame is an effective
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way to study the flow behavior at the rotor-cavity interface.
However, when there is only a single interface, single rotat-
ing reference frame can be adapted to study the liquid flow
characteristics. Xie et al. [27] employed a single reference
frame along with a UDF to control the movement of the inlet
to investigate the hydrodynamics of the RPB and concluded
that the moving reference frame (MRF) is a useful method
when studying the flow behavior at rotor-cavity interface.
Both MRF and SMM are found to be effective when simulat-
ing the rotating packed bed. However, if the geometry con-
tains more than one zone i.e., stationary and rotating zones,
the MRF is the only model available that can be employed
to predict the hydrodynamics of gas—liquid in RPB.

3.4.5 Reactive CFD Modeling of CO, Absorption

There exists very limited data for the CFD analysis of
the reactive absorption of CO, which incorporates the
effect of chemical reaction on the mass transfer rate of the
RPB. Sebastia-Saez et al. [122] studied the mass trans-
fer rate by employing micro-scale CFD modeling of CO,
absorption in packed bed column using the volume of
fluid multiphase model. The formation of the carbamate
(RNH*COO™) was considered as the rate-controlling
step, which described the complete reaction kinetics of
the chemical absorption of CO,. The consumption of
the MEA and production of carbamate during the chemi-
cal reaction between MEA and CO, was incorporated
into the source terms using the UDF. Considering the
formation of the carbamate (RNH*COOQO™) as an irrevers-
ible reaction, the rate of the reaction was calculated by
the following equation:

R = K[CO,|[RNH,] (10)

reaction

where, K was the forward rate of reaction, which is 24,984
m’kmol™'~![122, 123]. Gbadago et al. [124] studied the
reactive absorption of CO, in industrial packed bed adsorber
using the Eulerian (porous media approach) multiphase
model in combination with standard k-epsilon turbulence
model. The simulated results of pressure-drop and absorp-
tion efficiency were compared with the experimental data of
the pilot plant absorber. The simulated results showed 5.2%
deviation from the experimental data. However, no attempt
has been made to study the effect of reaction on the absorp-
tion of CO, in the RPB.

To sum up the discussion, CFD has found its suc-
cessful application to study the flow characteristics
of gas and liquid in the RPB. Unlike the experimental
approach, this approach does not require sophisticated
engineering tools to predict the hydrodynamics. In addi-
tion, a single unit of RPB for the experimental study
does not allow any modification in the physical structure

of the RPB such as change in packing type, number of
injecting nozzles, size of injecting nozzles and the RPB
configuration, etc. to study the effect of these param-
eters on the hydrodynamics of the RPB. Similarly, to
scale up the laboratory setup to study the flow char-
acteristics and mass transfer performance of RPB for
the industrial application is a time taking approach. On
the other hand, CFD is capable of handling these sorts
of challenges. Moreover, CFD provides both the visual
contours and quantified parameters for the hydrodynam-
ics parameters which provide a better insight of the flow
behavior which is favorable attribute for the designing
and optimization of the RPB. The comparison of CFD
results and the experimental data revealed that CFD has
the ability to efficiently predict the mass transfer perfor-
mance and the hydrodynamics of the RPB on lab scale
as well as on the industrial scale. However, predictive
potential of CFD is very sensitive to the selection of
turbulence model, number of grids and the geometric
configurations, i.e., 2D or 3D.

4 Conclusion and Future perspective
The conclusion of the review is as follows.

a. The experimental methods have been employed widely
to study the hydrodynamics of RPB. However, this
approach is expensive and has a lot of engineering prob-
lems, such as the installation of technical instruments
in RPB for capturing the hydrodynamics of RPB. On
the other hand, the analytical correlations used with the
experimental methods are based on assumptions that
effect the prediction of the hydrodynamics of RPB.

b. The application of the rotating packed bed reactor is a
promising approach to control the depletion of CO, into
the atmosphere. The process of CO, absorption can be
more cost-effective and efficient by the optimization of
process parameters such as rotating speed, solvent con-
certation, contact angle and the solvent inlet velocity.
Mass transfer is one of the most important aspects while
considering and optimizing the efficiency of RPB which
can be quantified by incorporating an appropriate mass
transfer model into the governing equations.

c. Among various approaches to study the hydrodynam-
ics of the RPB, CFD is the most effective way to study
and investigate the hydrodynamic parameters such as
liquid hold up, liquid residence time, pressure drop,
etc. The 3D packing structure of RPB is complex,
therefore, assumptions have been made in the past to
simplify the CFD model. In order to understand the
actual hydrodynamics of RPB, 3D CFD model with
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minimum possible assumptions is required to develop
for the in-depth CFD analysis of RPB.

d. The Volume of Fluid (VOF) is the most effective model
to predict the volume fraction of each CO, and solvent
throughout the flow domain. However, the VOF model
requires more computational time as compared to the
Eulerian model. Eulerian model in combination with the
suitable porous media model can be used to reduce the
computational time. However, there exists no suitable
porous media that can be used to model the porous mesh
packing structure of RPB.

e. The selection of a suitable turbulence model is neces-
sary to accurately predict the flow for its adaptability.
Reynold Stress Model (RSM) is the most accurate tur-
bulence model for the CFD analysis of RPB. Moreover,
this model requires much more computational time as
compared to its counterparts. On the other hand, there
exist two-equation models such as k-omega and k-epsi-
lon which have also shown a good agreement with the
experimental data.

f. The validation of the CFD model for the analysis of CO,
absorption is a great challenge nowadays. As there exist no
data in the literature which contains the experimental data of
CO, absorption that can be utilized for the model validation.

g. The absorption of CO, is a physio-chemical process.
All the previously reported studies have only considered
the physical absorption of the CO, to study the flow
characteristics of CO, and solvent. However, to accu-
rately predict the flow behavior of fluid in RPB, reactive
absorption of CO, must need to be considered and the
effect of reaction on mass transfer within the reactor
must need to be studied in detail.

h. The mass transfer rate in the RPB depends on differ-
ent RPB configurations. The detail understanding of
the fluid behavior in different configurations need to be
developed yet to practically utilize the potential of the
RPB for the selected applications.
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