
Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 14, 2014 
str. 11-17 

 

18 
 



Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 14, 2014 
str. 18-26 

 

19 
 

ALGORITHMS FOR TESTING SECURITY IN GRAPHS* 

Arkadiusz Hiler       Robert Lewoń      Michał Małafiejski 
Gdańsk University of Technology 

Department of Algorithms and System Modeling 
Gabriela Narutowicza 11/12, 80-233 Gdańsk 

e-mails: arkadiusz@hiler.pl    lewon.robert@gmail.com   mima@kaims.pl 

 
Abstract:  In this paper we propose new algorithmic methods giving with a high probability the correct answer to the decision problem of 
security in graphs. For a given graph G and a subset S of a vertex set of G we have to decide whether S is secure, i.e. every subset X of S 
fulfils the condition: |N[X]  S|  |N[X] \ S|, where N[X] is a closed neighbourhood of X in graph G. We constructed a polynomial time 
property pseudotester based on the heuristic using simulated annealing and tested it on graphs with induced small subgraphs G[S] being 
trees or graphs with a bounded degree (by 3 or 4). Our approach is a generalization of the concept of property testers known from the subject 
literature, but we applied our concepts to the coNP-complete problem. 
 
KEYWORDS:     Property tester, pseudotester, secure set, security, coNP-completeness 
 

Algorytmy testujące bezpieczeństwo zbioru wierzchołków grafu 
 

Streszczenie:  W niniejszym artykule przedstawiamy metodę weryfikowania bezpieczeństwa zbioru w grafie, dającą wysokie 
prawdopodobieństwo poprawnej weryfikacji. Problemem jest określenie, czy dla danego grafu G oraz podzbioru S zbioru wierzchołków tego 
grafu zbiór S jest bezpieczny, to znaczy każdy jego podzbiór X spełnia warunek: |N[X] ∩ S| ≥ |N[X] \ S|, gdzie N[X] jest domkniętym 
sąsiedztwem zbioru X w grafie G. Zaprojektowaliśmy pseudotester o wielomianowej złożoności obliczeniowej dla decyzyjnego problemu 
bezpieczeństwa zbioru w grafie wykorzystując m.in. koncepcję symulowanego wyżarzania. Wykonaliśmy testy dla grafów, w których podgraf 
indukowany przez zbiór S jest drzewem lub grafem ograniczonego stopnia (przez 3 oraz 4). Z uwagi na coNP-zupełność problemu 
bezpieczeństwa zaproponowane przez nas podejście jest uogólnieniem koncepcji testowania własności znanej z literatury. 

Streszczenie:      Testowanie własności, pseudotester, zbiór bezpieczny, bezpieczeństwo, coNP-zupełność 

 

1. INTRODUCTION 

The considerations in this paper are motivated by the fact 
that there exists no non-deterministic exact polynomial time 
algorithm for testing secure sets in graphs (unless NP = 
coNP), which was proved in [4]. The problem of graph 
security was introduced in [3] and is formulated as follows: 
for a given graph G = (V,E) and a given non-empty subset S 
V(G) we have to decide whether S is a secure set, i.e. every 
subset X of S fulfils the condition |N[X] � S| � |N[X] \ S|, 
where N[X] = {v � V(G): v � X �� �w�X {v,w} � 
E(G)} is a closed neighbourhood of X in graph G. 
 
For intractable optimization problems one may construct 
approximation algorithms (or even approximation schemas, 

e.g. FPTAS), but for decision problems the matter is not so 
easy, because the only correct answer given by the 
algorithm may be yes or no. What kind of approximation 
may we reach in that case? The answer comes with the 
concept of property testers, which was introduced by 
Rubinfeld and Sudan in [13], and extended by Goldreich 
[9], [10] and Raskhodnikova [12]. 
Property testers (or testers) are �-parametrized algorithms 
proposed for decision problems which are giving a correct 
answer with a given probability (which is a constant greater 
than ½ and independent from �) for a wide subset of all 
possible inputs. Smaller ��values mean that with the given 
probability the algorithm can produce the correct answer for 
a wider subset of inputs. 
In this paper we focus on algorithmic approaches to the 
problem of security in graphs. We propose a new heuristic, 



Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 14, 2014 
str. 18-26 

 

20 
 

which we called a pseudotester, because we cannot 
guarantee an independent and uniform distribution of the 
probability of choosing a valuable witness. 
 
1.1 The model and the problem definition 
 
In this section we introduce all the concepts used in the 
paper concerning the problem of testing security in graphs. 
 
Security in graphs. By SECURE(G,S) we denote the 
answer to the question: is set S secure in graph G? For a 
given subset X ⊂ S, by c(X) = |N[X] ∩ S| - |N(X) \ S| we 
mean the advantage of the defending vertices from X over 
the attacking vertices outside S. Let us define the predicate 
SEC(X) as equal to c(X) ≥ 0. Hence, by the definition of a 
secure set SECURE(G,S)  ⇔ ∀X⊂S SEC(X). 
By an attack on S={v1,… ,vk} we mean a sequence 
{A1,…,Ak} of mutually disjoint sets such that Ai ⊂ N(vi) \ S 
for all i = 1,...,k, where N(vi) = { w ∈ V(G): { v,w}  ∈ E(G)} 
is a neighbourhood of vi in G. An attack is maximal if and 
only if each vertex from the attacking set (i.e. N(S) \ S) 
belongs to the attack (sequence).  
By a defence of S we mean a sequence {D1,…,Dk} of 
mutually disjoint sets such that Di ⊂ N[vi] ∩ S for all i = 

1,…,k, where N[vi] = N(vi) ∪ { vi}. 
Following [4], we may state that S is secure in G if and only 
if every attack on S can be defended, i.e. for every attack A 
on S there is a defence D, such that |Di| ≥ |Ai| for all i = 
1,...,k. 
 

                                 
 

          Fig 1: The graph with the secure set (black nodes).  
   
The graph security problem was studied in [3] and [5]. In 
[4] the author proved the coNP-completeness of the SEC 
problem for general graphs, leaving no prospects for any  
non-deterministic polynomial time algorithm unless 
NP=coNP. In the paper [6] the authors construct a 
parametrized algorithm with the running time of 
O(2klog(2k)n), which decides if there exists a secure set of the 
size less than or equal to k in a given graph G. In [2] we 
proposed polynomial time algorithms solving the problem 
SECURE(G,S) for complete k-partite graphs, trees, cacti 
graphs and subcubic graphs. 
 

Property testing. Following [7], we sketch the concept of 
property testers for general decision problems, which is a 
generalization of the concept introduced in [13]. For a given 
decision problem Π and set of all legal inputs (instances) I 
we may precisely split I into yes-instances (Y) and no-

instances (N). Now, let DCε be a family of subsets of N, 
such that the following two ε-conditions are met: 
 

� ∀0 < ε1 < ε2 ≤ 1  DCε1 ⊂ DCε2 
� ∀i∈I  ∃ 0 < ε ≤ 1  i ∉ DCε 

 

For a given p > ½ we define a property tester Aε as an ε-
parametrized algorithm (defined for every 0 < ε ≤ 1) 
satisfying the following two probability conditions: 
 

1. Pr[Aε(i) = yes | i ∈ Y] ≥ p 

2. Pr[Aε(i) = no | i ∈ Nε] ≥ p 
 
In the following, we require our property testers to satisfy 
the probability conditions with p = 0.95 (widely used as p = 

⅔). Note that for any instance from DCε the answer given 

by the algorithm Aε has no guarantee, thus we call this set a 
don't care set. We may try to define the approximation 
property of testers as follows: the smaller the ε is, the 
greater the probability that the algorithm produces a correct 
answer with the probability of at least p. Obviously, the 
problem is much more complicated, because the key 
problem is to determine:   
 

• the complexity of the algorithm Aε in terms of the 
size of the input and 1/ε. 

• the relation between DCε and ε, i.e. how small ε is 
required to ensure the correct answer (with the 
probability of at least p) for at least δ fraction of all 
possible inputs.  
 

The above model was widely discussed in [7], where the 
authors constructed two testers for the security problem (see 
section 1.2 for more details). 
Following [12] we introduce the concept of instances being 
far (precisely ε-far) from satisfying the given property, 
formally: an instance i ∈ I is ε-far from Y if and only if i ∈ 

Nε. Property testers are therefore algorithms that distinguish 
inputs with a given property from those that are ε-far from 
satisfying the property. A useful tool for ensuring the 
probability conditions is witness lemma. Consider the 
problem Π and an input instance i ∈ I for this problem. By a 



Arkadiusz Hiler, Robert Lewoń, Michał Małafiejski, Algorithms for testing security in graphs 
 

21 
 

witness we mean i* which is a partial input of i (or a data 
structure generated based on the input, mostly with a 
significantly reduced size of the input). By a witness 
testimony we mean an answer yes or no given by the 
witness i* such that if i ∈ Y, then the testimony of the 
witness i* is exactly yes. Otherwise, if i ∈ N, then the 
testimony of witness i* is undefined (equal to yes or no). 
The witness i*  constructed for the input i ∈ N is valuable if 
and only if its testimony is no. If a single test (choosing of a 
witness) catches a valuable witness with the probability of 
at least p, then random s = 3/p independent tests (choosing 
witnesses uniformly) catch the witness with the probability 
of at least 95% (witness lemma).By the above, we proposed 
a testing model that contains a definition of ε-far, a 
definition of a witness and its testimony, an algorithm 
choosing a witness (independently and uniformly) and an 
algorithm that produces a testimony for a given witness. 
Following [7], we can sketch the model and the algorithm 
rating criteria as follows: practical and intuitive 
understanding of ε-far (i.e. how valuable the information 
that input is ε-far from satisfying a given property is to us), 
the relationship between ε and ps (the probability of 
catching a valuable witness by the algorithm), the 
complexity of the algorithm (in terms of 1/ε and the input 

size), the relationship between DCε and ε. 
Testing secure sets. Let i = (G,S) be an input instance. For 
a given 0 < ε ≤ 1 we define Nε as follows: 
 

 i ∈ Nε ⇔ min{|X|: X ⊂ S ∧ SEC(X) = no} ≤ |S| (1 - ε) 

 

It is easy to verify that the two ε-conditions defined in 
section 1.1 hold. We build our heuristic taking into account 
this definition of ε-far and our goal is to verify 
experimentally the probability conditions from section 1.1. 
Thus, our heuristic can be called a pseudotester. 
 
1.2  Previous results and our contribution 
 
In [7] we proposed two testers based on attacking sets and 
defending sets, respectively. Let us briefly discuss both of 
them. 
 
The model based on attacking sets. We take into account 
all the possible maximal attacks and require that a given 
fraction of them must be defendable. Formally, an input 
instance (the pair G and S, or equivalently S and A = N(G) \ 
S forming the graph) is ε-far from being secure if and only 
if ε fraction of maximal attacks cannot be defended. Every 
maximal attack is a witness and to check its testimony we 

can easily apply the maximum matching algorithm 
presented in [1]. Moreover, we have to ensure that our 
method guarantees a uniform and independent choosing of a 
witness. 
 
Algorithm 1.1 Attack based tester. 
 

Repeat 3/ ε times 
 Choose maximal attack A independently 
  and uniformly at random. 
 If A cannot be defended then 
  Return no  
 Else 
  Return yes  
 End If 
End Repeat 
 
Obviously, if S is secure in G, the answer is yes. Observe 
that if an input instance is ε-far from being secure, the 
probability of choosing indefensible attack is at least ε, thus 
by the witness lemma finding a witness in 3/ε tests is at least 
0.95. The detailed analysis can be found in [7]. 
 
The model based on defending sets. This model results 
from the definition of a secure set. We take into account all 
the possible subsets of S and require that a given fraction of 
them must satisfy the SEC condition. Formally, an input 
instance is ε-far from being secure if and only if the SEC 
condition is not satisfied for ε fraction of subsets of S. Every 
subset X ⊂ S is a witness and its testimony is SEC(X). We 
have to choose subsets of S uniformly and independently at 
random. 
Algorithm 1.2 Subset based tester. 
 

Repeat 3/ ε times 

 Choose subset X ⊂ S  uniformly and 
  independently at random 
 If SEC( X)  = no  then 
  Return no  
 Else 
  Return yes  
 End If 
End Repeat 
 
As previously, every secure set will be correctly determined 
and by the witness lemma (which is applicable for that 
tester) we have that finding a witness in 3/ε tests is at least 
0.95. The detailed analysis can be found in [7]. 
In this paper we are dealing with testing the security of 
subsets of G inducing trees and graphs with a bounded 
degree (∆ ≤ 3 or ∆ ≤ 4). Thus we are extending our results 
from [2] and [7]. We proposed a very promising testing 



Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 14, 2014 
str. 18-26 

 

22 
 

heuristic, and our goal was to verify the probability 
conditions for small graphs (exhaustively generated). We 
were interested in counting how many sets S (exhaustively 
generated for small |S|) with random attacking sets were no-
instances and the heuristic gave yes. In our heuristic we 
construct a candidate set that is close to being insecure, 
performing gluing and splitting operations, which give less 
false positive results than random algorithms presented in 
[7]. 

2. SECURITY PROBLEM PSEUDOTESTER 

In this section we will present our main result: the heuristic 
algorithm with the use of an improved model based on 
defending sets (i.e. a valuable witness is a subset X of S with 
SEC(X)=no). 
 
2.1  Model 
 
We are given a graph G = (V,E) and a nonempty subset S of 
V, and an attacking set A = N(S) \ S. Our goal is to 
determine SECURE(G,S). Let us recall that c(X) = |N[X] ∩ 
S| - |N(X) \ S| and define d(X) = |X|. The higher the c(X) is, 
the stronger the set X, hence we want to minimize the 
function c. Minimizing the second function d prevent us 
from terminating the algorithm too fast, with the cluster size 
equal to |S|. 
 
The definition of ε-far. Following section 1.1, let i = (G,S) 
be an input instance. For a given 0 < ε ≤ 1 we recall that: 
 

    i ∈ Nε ⇔ min{|X|: X ⊂ S ∧ SEC(X) = no} ≤ |S| (1 - ε) 
 
2.2  Algorithm 
 
Our goal is to find a valuable witness for set S in graph G. 
In the first step, we split vertex set V into mutually disjoint 
clusters {c1, c2,...,cs}. To find the witness, we glue together 
the clusters chosen on the basis of reasonable criteria. Based 
on the idea of simulated annealing, we can also sometimes 
split certain clusters into smaller clusters (e.g. singletons) 
with some decreasing probability. The algorithm consists of 
a number of rounds, where each round is either a gluing or a 
splitting cluster. If we find a valuable witness, we stop the 
algorithm (the answer is no). 
 
Remark 1. We require the instances to meet the following 
conditions: 
 

1. S is safe: SEC(S) = yes, 

2. all singletons are safe: SEC({ s}) for all s ∈ S, 
3. no useless attackers: N[S] = V, 
4. no useless defenders: N[N[A]]  = V. 

 

Let us briefly discuss these conditions to justify this 
selection. First of all, we can verify these requirements in 
polynomial time. The first and the second condition leave us 
with nontrivial instances. The third and the last one account 
for all the vertices significant to the answer. 
 
Initial clusters. The first phase of the heuristic is to 
establish the initial partition of the vertex set into clusters. 
In the general approach we split the vertex set into random 
disjoint clusters, which guarantees that we can always find a 
witness. In our tests we split the vertex set into clusters of 
single elements (singletons), because we wanted to 
eliminate unexpected random successes when testing the 
heuristic. 
 
Gluing clusters. In order to glue the clusters together, we 
use the criteria c and d, as previously defined. We calculate 
the value of c(Ci ∪ Cj) for all possible i ≠ j and find pairs 
with the minimum value. Of course, a negative value of c 
means that some X does not satisfy the SEC condition, 
therefore S is not a secure set. The algorithm objective is to 
construct a valuable witness, so the minimization of c is 
well founded. The second criterion d is used in the case of 
ambiguity of the c criterion. This will lead to a creation of 
small clusters. In case of further ambiguity, we choose a 
cluster at random. 
Splitting clusters. Our idea is to sometimes split clusters 
instead of gluing them. First of all, it ensures that any 
witness can be reached by such an algorithm (assuming that 
starting clusters were randomly generated), and secondly, 
we improve the probability of finding a valuable witness. 
Yet to ensure that our algorithm fulfils the halting property 
(no clusters to glue) we opt for the decreasing probability of 
the cluster splitting by means of splitting with the use of the 
simulated annealing concept. We introduce two functions to 
define the probability of the cluster splitting. We call them 
outer and inner probability functions. To define these 
functions, we use the average cluster size EC(r) in round r 
and bs(r) as the total number of splitting rounds before 
round r. The outer probability function g: R → [0,1] has a 
real argument, which is bs(r). We require it to be a slowly 
decreasing function tending to zero to achieve the halting 
property. Our proposal is: 
 

     g(x) = max{0, 3/2 – ex/h},  
 

where h is constant or instance dependent. 



Arkadiusz Hiler, Robert Lewoń, Michał Małafiejski, Algorithms for testing security in graphs 
 

23 
 

 
 
 
 

 
 

Fig 2: The inner probability function for h = 5000 

The inner probability function f: R → [0,1]  also has a real 
argument, which is EC(r). We require that the function f 
increases. For a given ε we can define k0 = |S|(1 - ε) and 
require that f(k0) = ½, which means that if the average size 
of the cluster is greater than k0, then the cluster is more 
likely to be split. Moreover, we require that f(k0 - p|S|) = q, 
where p, q ∈ (0,1), which defines the slope of the function 
as near to the point k0. Our candidate is the following 
function: 
 

   f(x) = ½ + 1/π arctan(c(p,q) (x - k0)) 

 

where: 
 

    c(p,q) = - tan(π(q – ½)) / p|S| 
 

 

 

 

 

Fig 3: The outer probability function for: 

 |S| = 30, ε = 0.3, p = 0.1 and q = 0.1 

 

Finally, we obtain the probability of splitting clusters in 
round r as the product of both inner and outer probability: 
f(EC(r))g(bs(r)). The decision which cluster to choose is 
also probabilistic and depends on the cluster size. In fact, 
we are dealing here with the roulette method of the 
probability distribution. The probability of the selection of 
the cluster Ci is proportional to the cluster size and equals 
|Ci| / ∑j |Cj|. 

Heuristic and tester pseudocode. We construct the tester 
TH and the heuristic H. 
 

Algorithm 2.1 The tester TH based on the heuristic H(ε, f, 
g, c, d) 
 

Repeat 3/ εtimes 

 If ¬ H( ε,f ( ε),g,c,d ) then 
  Return no  
 End If 
End Repeat 
Return yes  
 

Algorithm 2.2 Security problem heuristic schema H(ε, f, g, 
c, d) 
 

Split S into s  disjoint clusters C1,…,C s  
bs :=  0  
Repeat 
 EC := average cluster size 
 Pick at random Y or N with 
  probabilities: P( Y)  = f ( EC) g( bs ) and  
         P( N)  = 1 -  P ( Y) 
 If Y then 
  Pick one random cluster Ci  with  

   probability P( Ci )  = | Ci |  /  ∑j  | Cj | 
  Split cluster Ci  into singletons. 
  bs :=  bs + 1  
 End If 
 For every pair of distinct clusters  
  Ci , Cj  calculate c ( Ci  ∪ C j ) 
 Join both clusters with minimum c , in  
  the case of ambiguity use criterion  d  
Until there is only one cluster or there  
 is a cluster with SEC = no  
If there is a cluster with SEC = no  then 
 Return no 
Else 
 Return yes  
End If 

3. TESTS 

We have conducted numerical tests for the tester TH in 
order to verify the probability conditions from section 1.1 
for the definition of ε-far given in the same section. We 
used three virtual machines running in a cloud, each of them 
had 8 logical computation cores (hardware-backed with 
Intel Hex-Core CPUs), 160GB SSD and 16GB of RAM. 
The implementation was done in Python 2.7 and the source 
code is available on GitHub [8]. 
 
3.1  Test parameters 
 
We used five parameters in our tester TH, namely: 

• ε (as in the definition of ε-far), 
• the inner probability function f(ε, p, q), 
• the outer probability function g, 
• the first merge criterion c, 



Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 14, 2014 
str. 18-26 

 

24 
 

• the second merge criterion d. 
 

We have chosen only one candidate for the outer probability 
function g(x) = max{0, 3/2 - ex/1000}. The inner probability 
is a function f with three parameters: 
 

• ε - determines whether f reaches ½, 
• q - the value to be reached, 
• p - determines whether f reaches q. 

 
Let us consider the inner probability function f(x) = 1/2 + 
1/π  arctan(c(x - k0)), where k0 is a parameter dependent on 
the instance and equals k0 = |S|(1-ε), and c = -tan(π(q – 
½))/(p|S|). Our test cases cover four sets of p, q: (p, q) = 
(0.1, 0.1), (p, q) = (0.1, 0.2), (p, q) = (0.2, 0.1) and (p, q) = 
(0.2, 0.2). As mentioned before, we consider criteria c and d 
(both intended to be minimized) given by the formulas: c(X) 
= |N[X] ∩ S| - |N[X] \ S| and d(X) = |X|. The complexity of 
the heuristic depends on the parameter h of the function g. 
Taking a constant value of h in our tests (h = 1000) we 
guarantee that the simulated annealing process stops after a 
constant number of steps. Thus the overall complexity is 
polynomial. 
 
3.2  Test cases 
 
Generation method. In the first step, we construct the 
graph G[S] (i.e. a graph with the vertex set equal to S). We 
exhaustively generate all connected small graphs of certain 
classes using the nauty package [11]: 
 

• Trees Tn where n ≤ 16, 
• Subcubic graphs (∆ ≤ 3) SCn where n ≤ 12, 
• Subquadro graphs  (∆ ≤ 4) SQn where n ≤ 9, 

 
where n refers to the number of vertices. 
 
In table 1 we present the number of the generated graphs. 
 
n = 1 2 3 4 5 6 7 8 9 10 
Tn 1 1 1 2 3 6 11 23 47 106 

SCn 1 1 2 6 10 29 64 194 531 1733 

SQn 1 1 2 6 21 78 353 1929 12207  
 
n = 11 12 13 14 15 16 
Tn 235 551 1301 3159 7741 19320 

SCn 5524 19430     
 

  Table 1. The total number of the generated graphs. 
 
The generation method for the attacking set. In the 
second step, we attach attacking vertices A to the graph 
G[S], thus obtaining the whole graph G with V(G) = S ∪ A. 
Thus any graph S will be a candidate to be secure in graph 
G. Each full test case (i.e. the graph G[S] and the set A) is 
constructed in the following steps: 
 

• Set the average attacker degree ∆a, 
• Take the connected graph S as a base, 
• Generate the vertex set A, with |A| = |S|, 
• For each a ∈ A choose a vertex s ∈ S from the set 

{ s: SEC({ s})} independently and uniformly at 
random and add the edge {a,s}. 

• Repeat the following steps: 
• Take the attacker a ∈ A independently and 

uniformly at random. 
• Take a vertex s ∈ S from the set {s: 

SEC({ s})} independently and uniformly at 
random and add the edge {a,s}. 

• Until the set {s ∈ S: SEC({ s})} is empty or the 
average attacker degree is greater than or equal to 
∆a. 

• Verify if the constructed input instance meets the 
requirements specified in remark 1. 

 
For each generated set S construct (if possible) 100 
attacking sets. 
Test cases choice motivation. As already mentioned, the 
problem of determining whether a set S is secure in graph G 
is coNP-complete. However, for trees and subcubic graphs 
there exist polynomial time algorithms [7]. We test our 
heuristic on extended but still related graph classes. We do 
not require the graph G to be a tree (or a subcubic graph) 
but only the induced subgraph G[S] should be a tree (or a 
subcubic graph). In addition, we go a bit further and extend 
the test cases to graphs with ∆ ≤ 4. We conjecture that the 
problem for such graphs is coNP-complete. 
 
The experiment description. Obviously, our heuristic 
gives a correct answer for the secure set S in graph G (no 
valuable witness). Thus we take into consideration only 
these instances where S is not a secure set. We use an exact 
brute-force algorithm (of exponential complexity) to verify 
that such an instance is a no-instance. Additionally we find 
a valuable witness X of the smallest cardinality. Finally, we 
obtain the greatest value of ε = 1 - |X|/|S| such that the 

instance is contained in Nε. Ultimately, we start the heuristic 



Arkadiusz Hiler, Robert Lewoń, Michał Małafiejski, Algorithms for testing security in graphs 
 

25 
 

for graphs (instances) prepared in that manner. Each 
instance is associated with a proper ε. We demand that the 
probability of the yes-answer given by the ε-heuristic is less 
than 5%. 
 
Extracting hard cases. In the third step, due to the limited 
computational resources, we selected only these graph 
instances that failed each test (i.e. instance is in N and all 
tests gave the yes-answer), and which we suppose are good 
candidates for breaking the probability conditions of the 
tester. For each such instance we verified if it is a member 

of Nε by running our tester 1000 times. If the instance can 
be confirmed by the heuristic as belonging to the set Y with 
the probability greater than 0.05, we call it a hard instance. 
 
3.3  Test results 
 
Results for the average attacker degree of 1. For 
instances where the average attacker degree equals 1, our 
heuristic was almost perfect (over 99.99% of well 
recognized cases). We retested all false positive results 
carefully in order to determine whether they are instances of 

Nε. We did not find any hard instances. 
 
Results for the average attacker degree of 2. For 
instances where the average attacker degree equals 2, we 
did not find any hard instances where S is a tree. The results 
for subcubic and subquadro (∆ ≤ 4) instances are presented 
below in table 2. 
 
 

 n = 2 3 4 5 6 7 8 9 10 11 12 
SCn 1 1 0.5 0.1 0.2 0.3 0.5 0.4 0.3 0.16 0.08 

SQn 0 0 0 0 0.2 0.8 1.3 1.6    
 

 Table 2. The fraction of instances suspected to be hard.  
   The values represent the percentage of the suspected                  
        instances. 
 

After having found the instances suspected to be hard, we 
conducted additional tests in order to confirm that they 
actually are hard instances. The overall results for the 
instances confirmed to be hard are summarized in table 3. 
We skip the columns which both values equal 0%. 
 

 n = 6 7 8 9 10 11 12 
SCn 0.14 0.2 0.41 0.23 0.18 0.08 0.04 

SQn 0.13 0.61 0.93 1.12    
 

 Table 3. The fraction of instances confirmed to be hard.  
   The values represent the percentage of hard instances. 

 

Example of an instance confirmed to be hard. The graph 
presented in figure 3 is a hard instance for our heuristic. The 
set S is depicted as filled nodes whereas its indefensible 
subset is illustrated as four filled nodes with an envelope. 
Any set of the cardinality less than 4 fulfils the SEC 
condition, thus it is an ε-far instance for ε = 1 - 4/6 = 1/3. 
Note that from the very beginning we expected the 1/3-
heuristic to be an effective algorithm for that instance. 
 
 

 
 
 
 

  

                   Fig 4: Hard case for the heuristic     
 (|S| = 6, |A| = 6, the size of the smallest unsecure set: 4). 

 

Conclusions and further research. Our tests showed that 
the proposed construction of the heuristic looks very 
promising. We suspect that its high efficiency can be 
increased by the modification of the coefficients used in the 
algorithm. We definitely hope to resolve the two cases when 
G[S] is a subcubic graph or a tree. We plan to continue our 
research to give strong evidence to the conjecture that the 
security problem for these classes is in NP, or even in P. To 
improve the heuristic we consider alternative functions for 
the inner and outer probability functions. Moreover, we plan 
further tests of the heuristic for large sparse random graphs 
with a well estimated ε-far (by attaching some small hard 
instances). One of the results of the computations are hard 
instances which can be attached to the much bigger graph. 
Described technique will be helpful with the creation of 
large instances with a well estimated ε-far. 

References 

1. Blukis T. „Secure sets in graphs” (in Polish), MSc 
Thesis at Gdańsk University of Technology, 2012. 
2. Blukis T., Lewoń R., Małafiejski M., „Efficient 
algorithms for graph security testing”, IX International 
Colloquium on Graphs and Optimization (Sirmione, Italy), 
2014 (prepared to submit to special issue of Discrete 
Applied Mathematics). 
3. Brigham R., Dutton R., Hadetniemi S., „Security in 
graphs”, Discrete Applied Mathematics 2007, vol. 155, pp. 
1708-1714. 
4. Dutton R., „Secure set algorithms and complexity”, 
Congressus Numerantium 2006, vol. 180, pp. 115-121. 



Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 14, 2014 
str. 18-26 

 

26 
 

5. Dutton R., Lee R., Brigham R., „Bounds on a graph’s 
security number”, Discrete Applied Mathematics 2008, vol. 
156, pp. 695-704. 
6. Dutton R., Enciso R., „Parameterized complexity of 
secure sets”, Congressus Numerantium 2008, vol. 189, pp 
161-168. 
7. Gieniusz T., Lewoń R., Małafiejski M., „Graph security 
testing”, Journal of Applied Computer Science 2014, vol. 
22, no. 2 (in press). 
8. GitHub repository, http://github.com/ivyl/graph-security 
9. Goldreich O., Ron D., „A Sublinear Bipartitness Tester 
for Bounded Degree Graphs”, Combinatorica 1999, vol. 19, 
pp. 335-373. 
10. Goldreich O., Goldwasser S., Ron D., „Property testing 
and its connection to learning and approximation”, Journal 
of the ACM 1998, vol. 45, pp.  653-750. 
11. McKay B., nauty Software Program, Version 2.5, 
http://cs.anu.edu.au/˜bdm/nauty/, 2013. 
12. Raskhodnikova S., „Property Testing: Theory and 
Applications”, PhD Thesis at Massachusetts Institute of 
Technology, 2003. 
13. Rubinfeld R., Sudan M., „Robust characterizations of 
polynomials with applications to program testing”, SIAM 
Journal on Computing 1996, vol. 25, no. 2, pp.  252-271 


