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Abstract 

Acute leukemia (AL) is the most common cancer in children. It accounts for one-
third of cancer cases in patients <16 years of age, and its frequency is slowly rising 
for unknown reasons. AL is a heterogeneous disease that can broadly be categorized 
into lymphoid (ALL) or myeloid (AML) subtypes. In children, ALL accounts for 
~80% and AML for ~20% of all AL cases. AL originates from a single immature 
hematopoietic stem/progenitor cell (HSPC) following the acquisition of genetic 
changes that allow it to retain proliferative potential but lose responsiveness to 
normal differentiation cues. Chromosomal rearrangements that create fusion genes 
with aberrant transcriptional regulatory activities are frequently associated with 
childhood AL. The most common chromosomal translocations of pediatric 
leukemia, including ETV6-RUNX1 (E/R) and MLL-rearrangements (MLL-r), have 
a prenatal origin. MLL-r are believed to be sufficient to drive leukemogenesis 
without the need for secondary events. Despite that, neonatal leukemia is very rare, 
accounting for <1% of childhood leukemia cases, and the disease incidence rises 
thereafter. This led us to wonder if some prenatal signals, such as those mediated by 
LIN28B, could function as tumor suppressors against aggressive leukemia 
development. 

LIN28B is a master regulator of fetal hematopoiesis with expression restricted to 
the prenatal period that declines shortly after birth. In Paper I, we interrogated the 
impact of LIN28B on MLL-r AML using a mouse model that co-expresses both 
genes. Our findings demonstrated that LIN28B can significantly impede MLL-r 
AML, even in the presence of additional mutations in RAS or MSN, the latter which 
was identified and characterized in Paper III. Further analysis revealed that the 
tumor suppressor activities of LIN28B are largely driven by positive regulation of 
the c-MYB suppressor MYBBP1A. Overexpression of MYBBP1A recapitulated 
the tumor suppressor effects of LIN28B, while its knockout eradicated them. Thus, 
we propose a developmentally-restricted tumor suppressor axis mediated by 
LIN28B that restricts MLL-r AML and perhaps other AML subtypes with MYB 
involvement. The natural decline of LIN28B expression postnatally provides a 
window for leukemogenesis. 

In contrast to MLL-r that associate with few secondary mutations, a multistep 
genetic process is well established for E/R leukemogenesis, which can take over a 
decade to happen. E/R is the most common translocation in pediatric B-ALL but 
rarely seen in adults. In Paper II, we generated an inducible mouse model for E/R 
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and characterized its pre-leukemic state. Induction of E/R resulted in expansion of 
HSCs and corrupted B-lymphopoiesis. This sharply contrasts normal HSCs activity, 
as we showed in Paper IV, contribute robustly to all lineages in steady state. By 
comparing fetal and adult E/R HSCs, we found that while E/R disrupted HSC 
differentiation in both, fetal cells had a higher competitive advantage. This was 
particularly evident in a setting of viral mimicry, where the pool of fetal HSPCs was 
remarkably expanded and generated high numbers of B-cell progenitors. Further 
analysis revealed that E/R fetal HSPCs displayed higher expression and immune 
checkpoint activity compared to adult HSPCs. These findings suggest that pre-
leukemic cells may evade immune surveillance and persist for a prolonged period 
before transformation, highlighting the potential of immune modulation as a 
therapeutic strategy. 

Overall, the work presented in this thesis provides insights into the mechanisms 
underlying the development of pediatric leukemia and suggests new avenues for the 
development of innovative therapies. 
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Background 

Introduction to the Battlefield: The Hematopoietic System 

Mature blood cells 
Blood has aroused people's curiosity for thousands of years. In ancient cultures, 
mystical and divine properties were attributed to blood. The oldest known medical 
texts from Egypt, dating back more than 3,000 years, emphasize the fundamental 
importance of blood for health and disease. Over time, our perception of blood 
evolved from a mystical bodily fluid to a complex system composed of different 
types of cells. An important milestone in this change was the invention of the 
compound microscope in the 17th century, which allowed for a more detailed study 
of the cellular components of blood. The 20th century saw significant advances in 
laboratory techniques such as cell culture, transplantation, and flow cytometry. 
These innovations enabled comprehensive studies of the properties and functions of 
blood cells and led to a better understanding of blood and its diseases [1]. 

Hematopoietic (blood) cells play a critical role in maintaining overall health by 
carrying out a number of specialized and essential processes in the circulatory and 
immune systems. These cells can be broadly divided into three types: red blood cells 
(erythrocytes), platelets, and white blood cells (WBCs). Erythrocytes, which make up 
the majority of blood cells, are responsible for transporting oxygen and carbon dioxide 
throughout the body with their hemoglobin content. Platelets are critical for blood 
clotting and hemostasis, activating the coagulation cascade at the site of injury. WBCs 
are a diverse group of cells that play an important role in the immune system. They 
can be divided into two categories based on their lineage of development: myeloid 
and lymphoid cells. Myeloid cells include granulocytes (neutrophils, eosinophils, and 
basophils), monocytes, and dendritic cells. Lymphoid cells, on the other hand, include 
B and T lymphocytes, natural killer (NK) cells, and a subset of dendritic cells [2]. 
WBCs can also be divided into innate and adaptive immune cells, depending on their 
function. Myeloid and NK cells make up the innate immunity, which is the first line 
of defense that provides a rapid, nonspecific response to a variety of pathogens. These 
cells use mechanisms such as phagocytosis, inflammation, antigen presentation, and 
cytotoxicity to elicit an immune response and attract other immune cells to the site of 
infection. In contrast, B and T cells are usually involved in adaptive immunity, 
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utilizing their memory function to mount a specific and tailored response to a 
particular pathogen upon re-exposure. B lymphocytes produce antibodies that 
recognize and bind to specific pathogenic antigens, also known as humoral immunity, 
whereas T lymphocytes can differentiate into effector cells that kill infected cells or 
secrete cytokines to activate other immune cells [3]. Of note, there are certain subsets 
of B and T cells with innate-like characteristics, such as B1 and marginal zone B cells, 

-resident and have self-reactive 
and regulatory functions, and they are typically generated during the fetal and neonatal 
stages [4–6].  

As our understanding of the scientific basis of blood and its functions has deepened, 
we have come to appreciate the true and complex wonder of this system. Today, 
blood continues to play a critical role in modern medicine, from life-saving blood 
transfusions to cutting-edge research into hematologic diseases. In this chapter, I 
discuss the process of blood cell formation and how it is regulated.   

Hematopoiesis 
The hematopoietic system is one of the most regenerative systems in the body. 
Throughout life, more than two million hematopoietic cells are produced every 
second. This number can increase dramatically during stress (infections, 
inflammation, and bleeding) and then return to baseline levels after recovery. This 
extremely plastic and intricate process of blood cell formation, known as 
hematopoiesis, is governed by a complex network of cell-intrinsic and -extrinsic 
regulators that work together to maintain a balance between proliferation, 
differentiation, and survival. Dysregulation of this process can lead to various non-
malignant disorders, such as anemia and hemophilia, or malignant diseases, such as 
leukemia. Understanding the underlying mechanisms of hematopoiesis is critical for 
developing new therapies to treat these disorders [7]. 

Hematopoietic stem cells 
Bone marrow (BM) is the main site of hematopoiesis in adults. Despite the 
heterogeneous cellular composition of hematopoietic cells, and their various 
lifespans that range from hours to years [8,9], almost all blood cells are derived from 
a unique cell type called the hematopoietic stem cell (HSC). 

Stem cells are remarkable cells that have two special properties: They can self-
renew and thereby produce more stem cells, and they can differentiate into more 
specialized cell types with different functions. Embryonic stem cells are pluripotent, 
which means they can generate any type of cell in the body, while adult or tissue-
specific stem cells are multipotent, which means they can give rise to all cells related 
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to the tissue from which they originate. HSCs were the first tissue specific stem cells 
to be functionally identified and prospectively isolated [10]. 

Early experiments successfully demonstrated that BM transplantation could rescue 
lethally irradiated mice and restore hematopoiesis, suggesting the existence of 
HSCs. However, the first functional tests suggesting the presence of HSCs were 
performed by Till and McCulloch [11]. In their experiments, they demonstrated that 
a subset of BM cells could form macroscopic colonies in the spleens of lethally 
irradiated recipient mice 10 days after transplantation. These colonies, termed 
colony-forming units in the spleen (CFU-S), were composed of different 
hematopoietic lineages, and their numbers correlated directly with the number of 
cells initially transplanted. Exposure of donor BM cells to a dose of irradiation 
introduced random chromosomal aberrations, which allowed Till and McCulloch to 
confirm the clonal origin of most of these CFU-S [12]. Further transplantation of 
these colonies into secondary irradiated recipients revealed a capacity for self-
regeneration [13]. While it was initially believed that CFU-S were derived from 
HSCs, the limited self-renewal capacity of these cells and the lack of evidence for 
long-term reconstitution potential later suggested that CFU-S were mostly derived 
from progenitor cells. Several studies subsequently employed retroviral integration 
methods and succeeded in demonstrating the existence of rare hematopoietic cells 
with a multilineage reconstitution potential that was sustained over a long period (> 
16 weeks) [14,15]. Altogether, these pioneering experiments provided functional 
evidence of the ability of HSCs to regenerate the hematopoietic system with their 
unique properties of self-renewal and multilineage differentiation, the key defining 
features of stem cells, and thus laid the foundation for HSC biology and stem cell 
research. 

Identification and isolation of HSCs 
With a functional proof of HSCs activity, next steps were aimed at identifying and 
isolating them. This is critical for a better understanding of HSCs biology and 
sometimes an advantage in bone marrow transplantation, an essential treatment for 
several hematological malignancies. Advances in fluorescence-activated cell 
sorting (FACS) and the development of monoclonal antibodies have greatly 
facilitated HSC isolation. Several cell surface markers have been identified to 
distinguish HSCs from more mature progenitor cells. However, to date, no single 
HSC-specific marker has been identified, and a combination of markers is always 
required to isolate HSCs. Murine HSCs lack expression of  mature lineage markers 
(Lin) but express stem cell antigen-1 (Sca1) and the tyrosine kinase receptor c-kit, 
collectively known as LSK [16,17]. The LSK compartment encompasses all 
functional HSC activities but remains highly impure with a majority of committed 
progenitor cells. For further refinement, the LSK markers are combined with the 
signaling lymphocytic activation molecule markers (SLAM) CD150 and CD48, and 
sometimes CD34 and Flt3 are also used. HSCs express CD150 but lack expression 
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of the rest of these markers [18–20]. Further research has revealed that the 
combination of the LSK SLAM markers with the endothelial protein C receptor 
(EPCR) allows for the isolation of HSCs with a purity suggested to exceed 60% 
[21–23]. Continuous efforts are aimed at finding more HSC-specific cell surface 
markers, with the aim of further refining the HSC population and gaining a deeper 
understanding of their biology. Different combinations of these surface markers also 
allow for the identification and isolation of various downstream hematopoietic 
progenitor subsets. 

A hierarchical system 
The classical view of hematopoiesis suggests a highly organized hierarchical 
structure with HSCs at the apex (Figure 1). To meet the continuous demand for 
mature blood cells, HSCs generate highly proliferative progenitor cells that become 
increasingly specialized upon differentiation and ultimately replenish all 
hematopoietic lineages [24]. In this way, HSCs can largely maintain quiescence 
while their downstream progeny handles immediate cellular demands [25]. 
Quiescent HSCs can maintain their self-renewal capacity for extended periods by 
avoiding replication-induced mutations and exhaustion. Nevertheless, the 
contribution of HSCs to hematopoiesis is seen over time in all hematopoietic 
lineages, except for some long-lived early-life derived hematopoietic subsets, such 

differentiation of HSCs into mature cells is a distinct stepwise process tightly 
regulated by a complex network of transcription and epigenetic regulators. 
Transcription factors bind DNA through specific DNA-binding domains and 
mediate transcription activation or repression through recruitment of coactivators or 
repressors. This process is regulated by several chromatin remodelers and histone 
modifiers, including methyl- and acetyltransferases.  

Studies have proposed that HSCs can maintain a balance between self-renewal and 
differentiation through symmetric and asymmetric divisions. Symmetric division 
assumes that HSCs divide into two HSCs or two differentiated daughter cells, 
whereas the asymmetric division proposes that each cell division gives rise to one 
HSC and one daughter cell [26]. Regardless of the model, the daughter cells are 
multipotent progenitors (MPPs) that lack self-renewal but a retain multilineage 
differentiation capacity [20,27]. In the most common view, a bifurcation occurs 
downstream of MPPs, separating the megakaryocytic-erythroid (MegE) lineage 
from the lymphomyeloid lineage. Pre-MegE precursors continue to differentiate and 
eventually generate platelets and erythrocytes, while the bipotent granulocyte-
monocyte-lymphoid progenitor (GMLP) can differentiate into some myeloid and 
lymphoid cell types. Further refinement of GMLPs based on Flt3 expression allows 
for distinction between the myeloid-biased MPP3 and the lymphoid-biased MPP4. 
MPP3 differentiate into pre-granulocyte/monocyte progenitors (pGM) and finally 
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generate granulocytes and monocytes, while MPP4 differentiate into common 
lymphoid progenitors (CLP) to generate B, T, and NK cells [28,27]. 

Later studies have challenged the classical model of stepwise differentiation by 
demonstrating that HSCs can commit directly to the megakaryocytic lineage 
without passing through intermediate stages [29]. These findings suggest perhaps 
that HSCs are more heterogeneous than previously thought by implying that lineage 
priming may occur at the HSC level. The pathway of differentiation thereafter is not 
entirely discrete, and the roadmap of lineage specification is constantly updated, 
leading to overlapping nomenclatures for nearly similar populations [30]. This new 
perspective proposes that hematopoietic stem and progenitor cells (HSPCs) exist in 
a continuum of low primed undifferentiated (CLOUD) state in which the discrete 
differentiation steps of the classical model become less distinct [31,32].

Figure 1. The hematopoietic hierarchy. 
MkP: megakaryocyte progenitor, CFU-E: colony forming unit-erythroid, GMP: granulocyte-monocytes 
progenitors.
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Lineage priming and commitment 
HSPCs are constantly confronted with various fate decisions, and their 
differentiation trajectories are largely determined by a complex interplay of 
transcriptional regulators. This process is finely tuned, and the extent to which 
certain regulators are expressed can have radical consequences. For example, the 
balance between self-renewal and differentiation of HSCs is determined by the 
expression level of MYC. HSCs with low MYC levels tend to self-renew, whereas 
high expression of MYC promotes differentiation [33]. This fine balance of 
regulation is observed at nearly every step of fate commitment, with synergistic and 
antagonistic interplay between different transcriptional regulators. For instance, 
PU.1 (SPI1) and GATA1 have been suggested to be expressed in HSPCs at low 
levels. In one model, increased expression of GATA1 represses PU.1 and directs 
cells toward the MegE lineage, where they either upregulate KLF1 and commit to 
the erythroid lineage, or express FLI1 and commit to the megakaryocytic lineage 
[34,35]. In contrast, upregulation of PU.1 suppresses GATA1 and guides the cells 
towards the lymphomyeloid lineage [34]. However, later studies have found that 
discrepancies between mRNA and protein levels of PU.1 and GATA1, 
demonstrating that PU.1 and GATA1 proteins are not co-expressed in HSPCs. This 
refutes the notion that a switch between PU.1 and GATA1 initiates HSPC lineage 
decisions, and rather suggests that expression of these factors only reinforces 
lineage commitment once made [36]. Further elevation of PU.1 expression levels in 
GMLPs drives myeloid commitment by increasing CEBPA and GFI1 expression 
that promote neutrophils production, or EGR expression that promotes macrophages 
generation [37–39]. On the other hand, low levels of PU.1 drive cells towards 
lymphopoiesis, where they further express NOTCH, GATA3, and TCF7 and 
commit to the T-cell lineage, or IKZF1 (IKAROS), BCL11A, E2A (TCF3), 
FOXO1, EBF1, and PAX5 and generate B-cells [37,40]. 

B cell differentiation 
B cell development is a complex process that takes place in multiple organs and 
involves sequential steps of assembly, expression, and signaling of the B cell antigen 
receptor (BCR) (Figure 2). This receptor is composed of immunoglobin heavy (IgH) 
and light (IgL) chains. The IgH is encoded by variable (V), diversity (D), and joining 
(J) gene segments, while the IgL is only encoded by V and J segments. 

The process of B lymphopoiesis starts in the BM, where the expression of the 
transcription factors E2A, EBF1, and PAX5 triggers commitment of CLPs to the B-
cell lineage (pre-pro B cell stage) [41]. At this stage, the recombination activating 
gene (RAG) enzymes are activated, which recognize the recombination signal 
sequences (RSS) in the D and J segments of IgH and introduce random double-
stranded breaks [42]. To mediate ligation and increase the diversity of the BCR, the 
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terminal deoxynucleotidyl transferase (TdT) adds random nucleotides to the DJ 
junction. RAG and TdT enzymes proceed to cut and recombine the V segment to
create a V-DJ-rearranged IgH, marking the pro-B stage [43]. Subsequently, the 
rearranged heavy chain is paired with a surrogate light chain (SLC), which leads to 
the formation of a pre-BCR complex and a transition to the large pre-B cell stage. 
During this stage, a check is conducted to ensure the productive assembly of the 
pre-BCR. Signaling from the pre-BCR downregulates RAG and TdT enzymes and 
triggers proliferation. After expansion, pre-B cells transition to the non-cycling 
small pre-B stage, and RAG and TdT become reactivated. This finally leads to 
rearrangements of the VJ segments of the light chain and the formation of the BCR 
[44]. Once this is achieved, the cells enter the immature B stage, marked by the 
expression of IgM, and a second BCR check is performed for self-reactivity [44]. 
Alternative splicing of the immunoglobulin heavy chain subsequently leads to the 
generation of IgD+ IgM+ transitional/mature B cells, which exit the bone marrow 
and migrate to the spleen for further maturation into follicular or marginal zone B 
cells. These cells can further differentiate into memory B cells and antibodies-
secreting cells/plasma cells upon activation.

Figure 2. Stages of B cell development in the BM.

En Garde: Ontogeny of Hematopoiesis
Prenatal hematopoiesis is a complex multistep process that remains largely elusive. 
The fast pace of development, the multiple locations in which hematopoiesis occurs, 
and the ethical concerns all impose challenges to study this process in humans. Mice
have contributed to a better understanding of these early stages of hematopoiesis, as 
we share major commonalities but with a more prolonged timescale [45].

Early hematopoiesis involves three consecutive waves that differ in time and 
location (Figure 3). The first wave, also known as the primitive wave, occurs in the 
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yolk sac (YS) on embryonic day 7.5 (E7.5) of the mouse embryo. In this wave, the 
blood islands in the YS emerge from hemangioblasts and generate large nucleated 
erythrocytes and megakaryocytes, which support the rapidly developing embryo by 
carrying oxygen and maintaining vasculature [46,47]. Some macrophages are 
proposed to arise at this stage and colonize some organs such as the brain microglia 
[48]. The second wave of hematopoiesis, referred to as the transient-definitive wave, 
starts in the YS on E8.5. In this wave, erythromyeloid progenitors (EMPs) arise 
from a distinct hemogenic endothelium that cannot generate HSCs. EMPs migrate 
to the fetal liver (FL) on E9.5 and maintain fetal erythropoiesis [49]. Concomitantly, 
some lymphomyeloid progenitors (LMPs) also arise in the YS then migrate to FL 
to support myelo- and lymphopoiesis prior to HSCs generation [50].  

The HSC-independent progenitors of the first and second waves of hematopoiesis 
are lineage-restricted and transient. However, they generate long-lasting tissue-

cells, and B1a cells [5,51,4]. Nevertheless, lineage tracing and transplantation 
studies have shown that the capacity of generation of these innate-like immune cells 
is not restricted to LMPs, as FL HSCs are also capable of generating some of these 
cells [52,53].  

The emergence of HSCs marks the initiation of the third and definitive wave of 
hematopoiesis. On E10.5, the hemogenic endothelium in the aorta–gonad–
mesonephros (AGM) region undergoes an endothelial to hematopoietic transition 
(EHT) where the first HSCs bud off. EHT is dependent on Runx1 and Gata2 
expression, while the downregulation of Notch1 and Sox17 is important at the later 
stages for fate determination [45]. Inflammatory signals produced by primitive 
macrophages are also essential for HSC-budding [54,55]. At this stage, additional 
sites have been shown to harbor HSCs, including the placenta and embryonic head 
[56–59]. Subsequently, HSCs migrate and colonize the FL on E11.5 then undergo a 
massive expansion from E12 to E16 in preparation to taking over hematopoiesis 
[60,61]. During and after this stage, hematopoietic cells colonize the spleen, thymus, 
and BM, and by late gestation, HSCs migrate to their final residence in the BM. 
Over the first 3 – 4 weeks after birth, HSCs gradually lose their fetal characteristics 
until they become indistinct from their adult counterparts [64,65]. 
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Figure 3. Ontogeny of the hematopoietic system (from Soares-da-Silva et al. [60]). 

Differences between fetal and adult HSCs 

Cell cycle and metabolic activity 
As mentioned previously, adult HSCs maintain their steady-state quiescence by 
delegating the ongoing hematopoietic needs to their downstream progenitors [66]. 
This low cycling status of BM HSCs likely protects them from exhaustion, DNA 
damage, and acquisition of mutations that would otherwise be subsequently passed 
on to the whole hematopoietic system [67]. In stark contrast, FL HSCs expand ~100-
1000 fold only within around 5 embryonic days [61]. Similarly, FL HSCs have 
higher protein synthesis rates than adult HSCs [68,61]. Nevertheless, the adult 
HSPCs proteome is more complex than the fetal one [69]. To meet these high 
metabolic demands, FL HSCs rely on oxidative phosphorylation (OxPhos) for 
energy generation [70]. This pathway is actively suppressed in adult HSCs to 
minimize generation of reactive oxygen species (ROS), which can subsequently 
lead to differentiation and exhaustion [71].  

For adult HSCs, high proliferation, protein synthesis, and OxPhos rates lead to 
compromised activity and loss of fitness [67]. Nevertheless, FL HSCs outperform 
adult HSCs in transplantation assays [64,72]. How FL HSCs cope with these high 
levels of cellular and metabolic activity remains elusive. It has been proposed that 
DNA repair mechanisms are more active in FL HSCs, which might be a protective 
mechanism against these high-stress levels [70]. Maternal and fetal bile acids have 
been also suggested to reduce endoplasmic reticulum stress by inhibiting protein 
aggregation [68]. Nevertheless, our knowledge regarding these protection 
mechanisms is far from complete. 
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Differentiation potential and lineage biases 
Ontogeny plays a significant role in shaping hematopoietic development. Although 
fetal and adult HSCs are capable of sustaining multilineage hematopoiesis 
throughout life, their differentiation potentials, lineage biases, and degrees of 
commitment differ. Generation of the fetal-specific lymph
cells is restricted to fetal HSCs and ceases shortly after birth [52,53]. Fetal HSCs 
also have a higher capacity to generate MegE and erythroid progenitors, while adult 
HSCs display a granulocytic bias [73]. These differences also manifest in 

- -globin 
shortly after birth [74]. 

Moreover, fetal HSPCs seem to be less primed and more malleable in their output. 
Recent studies have reported that the emergence of megakaryocyte-primed HSCs 
coincides with the fetal-to-adult transition [75]. Furthermore, unlike adult CLPs, 
fetal CLPs possess both lymphoid and myeloid lineage differentiation potential [76]. 
Even the more committed B-cell progenitors of the fetus might have a capacity to 
generate myeloid cells, particularly macrophages, and can sometimes express 
multiple myeloid-associated genes [77–79]. This behavior is uncommon in adult 
progenitors, reflecting different genetic and epigenetic regulations. 

Developmental regulators of hematopoiesis 
Hematopoiesis is governed by distinct sets of intrinsic and extrinsic regulators that 
establish the unique features of each developmental stage. The transition of HSCs 
from a fetal-to-adult state enforces an adult cell identity marked by increased 
quiescence, restriction in output, upregulation of immune-associated genes, and 
metabolic rewiring [61]. In this section, some of the distinct regulators during these 
developmental stages are discussed.  

Intrinsic regulators 

LIN28B 
LIN28 is an evolutionary conserved RNA binding protein with critical roles during 
development. There are two mammalian homologs of this protein, LIN28A, and 
LIN28B, each containing two unique RNA-
and a CCHC zinc finger domain [80]. LIN28 post-transcriptionally regulates genes 
through indirect and direct mechanisms. The canonical indirect mechanism is 
dependent on the suppression of let-7 micro-RNAs (miR).  LIN28 binds primary 
and precursor let-7 miR, thereby disrupting their maturation process [81]. This 
results in the de-repression of let-7 mRNA targets, which include Lin28, Hmga2, 
Arid3a, Igf2bp1-3, Cyclin A2, Myc, and Cbx2, as well as several tumor 
suppressors and DNA repair proteins, such as  
[82–84]. Thus, the expression patterns of LIN28B and let-7 are inversely correlated, with 
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LIN28B being predominantly expressed during ontogeny, and its downregulation 
after birth is coupled with an increase in let-7 expression. During early embryonic 
development, LIN28B is expressed in all cell types, but it becomes mostly restricted 
to stem and progenitor cells after E9.5 [85]. The subsequent downregulation of 
LIN28B around 3-4 weeks postnatally is accompanied by an increase in let-7 levels, 
marking the transition from the fetal to the adult stage of hematopoiesis [86].  

Apart from the indirect let-7-dependent mechanism, LIN28B is also able to directly 
bind specific mRNA targets, forming ribonucleoprotein (RNP) complexes. Most of 
LIN28B bound mRNAs encode for RNA-binding proteins, ribosomal proteins, and 
translation-associated factors. LIN28B RNP complexes can then alter the translation 
and stability of the bound mRNA targets [87–90]. There are several proposed 
mechanisms through which LIN28B might enhance the translation of its binding 
partners, including recruitment of polysomes and RNA helicase A, or translocation 
to processing bodies [90,89]. In addition, the let-7 target IGF2BP3 contributes to 
the stabilization of LIN28B-bound targets [91]. However, while enhancing 
translation seems to be the predominant outcome of LIN28 RNP complexes, other 
studies have reported translational repression of some of LIN28B interactomes 
[88,92,93]. 

LIN28B is a critical regulator of fetal hematopoiesis. Several fetal-associated 
genetic and epigenetic regulators are downstream targets of LIN28B, including 
Arid3a, Hmga2, and Igf2bps [94–97]. While each of these targets has a prominent 
role in fetal hematopoiesis, none by itself can recapitulate the pleiotropic 
phenotypes of LIN28B. However, enforced expression of LIN28B in adult HSCs is 
sufficient to reinstate fetal programs, including increased proliferation, erythroid-

cells [73,86,93,98]. In contrast, enforced expression of let-7 in fetal cells confers an 
adult phenotype [94]. 

Given the prominent role of LIN28B in embryogenesis, it is reasonable to 
hypothesize that it may be involved in the development of cancer. However, the low 
incidence of infant tumors, which represents ~0.05% of all malignancies [99], 
suggests otherwise. Nevertheless, the situation is not so simple, and it might be 
context dependent. Paper I discusses the role of LIN28B in the context of leukemia. 

SOX17 
SOX17 is another important regulator of fetal and neonatal HSCs. The levels of this 
transcription factor peak during fetal (after FL colonization) and neonatal stages 
then gradually drop ~4 weeks after birth [64]. SOX17 is critical for EHT and HSC 
emergence [45]. Knockout of Sox17 in fetal and neonatal mice leads to 
hematopoietic failure, while its depletion in young adult mice has no impact on 
hematopoiesis [100]. 
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RUNX1 
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid 
leukemia 1 protein (AML1), is a member of the core-binding factor (CBF) family 
and a critical transcription regulator of hematopoiesis. RUNX1 is ubiquitously 
expressed in all hematopoietic cells apart from erythrocytes [101]. It is part of a 
family of three genes (RUNX1-3), which share the highly conserved DNA-binding 
Runt homology domain. In mammals, RUNX1 can be transcribed from distal P1 or 
proximal P2 promoters, generating RUNX1c and b isoforms, respectively, and both 
isoforms share nearly identical structures. There is also a shorter dominant negative 
isoform, known as RUNX1a. The different biological functions of these isoforms 
remain unclear, but studies have suggested that RUNX1b might be the dominant 
form until E10.5, while RUNX1c predominates from FL colonization and onwards 
[102]. 

RUNX1 is indispensable for fetal development, as its expression is critical for EHT 
and HSCs budding. However, it becomes less important after FL colonization 
[103,104]. This was evident as Runx1 knockout in mice led to embryonic lethality 
at E12.5 due to anemia and hematopoietic failure [105]. However, these phenotypes 
were not recapitulated upon Runx1 deletion in vav-expressing hematopoietic cells, 
i.e after the emergence of HSCs [106]. Similarly, Runx1 loss is tolerated in adults 
more than during early ontogeny. Conditional deletion of Runx1 in adult mice 
results in milder phenotypes, including expansion of HSPCs, reduction of long-term 
reconstitution activity of HSCs ~3 folds, and defects in lymphoid and 
megakaryocyte differentiation [107–109]. The compromised reconstitution activity 
has been attributed to HSC exhaustion [110]. Runx1 haploinsufficiency does not 
lead to embryonic lethality but is accompanied by ~50% reduction in HSC numbers. 
Intriguingly, these HSCs generated a higher reconstitution output compared to wild 
type (WT) HSCs but with lower T cells and platelets [111]. RUNX1 translocations 
and mutations are frequently found in hematological malignancies and are discussed 
in the next chapter and Paper II. 

ETV6 
ETV6, also known as TEL, is another transcription factor with ubiquitous 
expression and critical regulatory roles in hematopoiesis. It is crucial for embryonic 
development, and its homozygous deletion usually leads to lethality at E10.5 
because of failed YS angiogenesis [112]. Although ETV6 is not required for EHT, 
embryos that might survive past this stage die from impaired hematopoiesis by 
E18.5 [113]. As for adults, Etv6 deletion results in a wipeout of HSCs, without 
affecting downstream progenitors [113]. While the mechanisms behind these 
phenotypes remain unknown, one plausible suggestion is that ETV6 provides HSCs 
with pro-survival signals. Notably, heterozygous deletion of Etv6 does not affect 
embryogenesis or produce any obvious hematopoietic phenotypes [112,114]. 
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Similar to RUNX1, translocations and mutations involving ETV6 are very common 
events in leukemia and are discussed in the next chapter. 

MLL1 
The MLL1 (Mixed-Lineage Leukemia) gene, also known as Lysine-specific 
MethylTransferase 2A (KMT2A), is a member of the MLL/SET (Su(var), Ezh2, 
Trithorax) family of methyltransferases, located on chromosome 11q23. This family 
consists of six histone 3 on lysine 4 (H3K4) methyltransferases and are divided into 
three pairs according to their sequence conservation: MLL1/MLL2, MLL3/MLL4, 
and SETd1A/SETd1B [115]. MLL1 is involved in several chromosomal 
translocations that lead to aggressive leukemia in pediatrics and adults, and its 
different domains, interactions, and roles in leukemogenesis are discussed in detail 
in the next chapter. In normal hematopoiesis, MLL1 is ubiquitously expressed in 
HSPCs and has critical roles during the fetal and adult stages. Homozygous 
germline deletion of Mll1 in mice leads to embryonic lethality from E10.5 to E16.5 
mainly due to hematopoietic failure and other developmental defects [116–118]. 
Although Homeobox (Hox) genes are expressed before E9, Mll1 is needed after this 
stage to maintain their expression. Mll1 null embryos have lower numbers of FL 
HSPCs with reduced differentiation output mainly due to low Hox expression 
[117,119]. However, as opposed to the deleterious phenotypes of Mll1 germline 
deletions, Vav-Cre Mll1-/- has no impact on fetal hematopoiesis. Instead, mice die 
~3 weeks postnatally from BM failure [118,120]. Notably, FL HSPCs from the Vav-
Cre Mll1-/- mice are outcompeted by WT cells in competitive transplantation assays 
[118,120]. The differences in the fetal phenotypes between germline and Vav-Cre 
Mll deletions might indicate that Mll1 expression in non-hematopoietic cells might 
provide some support to FL HSCPs. As for adult hematopoiesis, conditional 
deletion of Mll1 in adult mice results in fatal BM failure within three weeks  [121]. 
Intriguingly, while mice with CD19-Cre mediated deletion of Mll1 display no 
aberrant phenotypes, Rag1-Cre Mll1-/- mice exhibit pronounced reduction in B cells 
around 2 – 3 weeks after birth. This is attributed to a block in the pro-B to pre-B 
transition because of attenuated RAS/MAPK signaling, which reduces survival 
downstream of the pre-BCR [122]. Collectively, while MLL1 plays a crucial role in 
fetal hematopoiesis, it is deemed indispensable for adult hematopoiesis. 

MYB 
MYB (c-MYB) is a key regulator of normal hematopoiesis and is largely implicated 
in several cancers. MYB expression is dispensable for primitive hematopoiesis but 
critical for the definitive wave, as its knockout leads to severe anemia and 
embryonic lethality at E15.5 [123,124]. However, its heterozygous deletion is well-
tolerated and does not lead to obvious hematopoietic phenotypes. There is an inverse 
correlation between MYB and fetal hemoglobin levels. Enforced expression of MYB 
inhibits -globin, while its knockdown increases the levels of this fetal hemoglobin 
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form. MYB is also a critical regulator of both myelopoiesis and lymphopoiesis, and 
its knockdown disrupts differentiation [123,124]. 

Structurally, c-MYB has three functional domains: a DNA-binding domain, a 
transactivation domain (TAD), and a negative regulatory domain (NRD). These 
domains interact with several coactivators, such as Menin and CBP/p300, or 
corepressors, such as MYB binding protein 1a (MYBBP1A), which subsequently 
alter MYB-transcription activity. MYB target genes are known to regulate 
proliferation, differentiation, and apoptosis. However, while its role in leukemia is 
well-established, the mechanisms by which MYB mediate leukemogenesis are not 
fully understood [123,124]. 

Adult-specific regulators 
Several transcription regulators are predominantly expressed in adult HSCs and 
mediate the transition from fetal to adult hematopoiesis in an opposing manner to 
LIN28B and SOX17. For instance, CEBPA expression levels are low in 
fetal/neonatal HSCs but increase ~4 weeks after birth [125]. CEBPA mediates the 
transition of HSCs from a proliferative fetal to a quiescent adult state by inhibiting 
Myc expression. Deletion of Cebpa in mice has no impact on fetal/neonatal HSCs 
but increases the proliferation of adult HSCs, re-activating certain fetal-specific 
programs [125]. Similarly, GFI-1 expression is critical for adult HSCs function but 
dispensable for fetal hematopoiesis. Gfi-1 knockout mice show no signs of 
hematopoietic aberrancies until reaching adulthood, where Gfi-1-/- HSCs become 
functionally compromised and outcompeted [126,127]. Other important adult HSC 
regulators that are inessential for FL HSCs include EGR1, ASH1L, and the 
polycomb family members BMI1 and EED [128–130]. Recently it has been 
suggested that the transition from fetal to adult state is not abrupt, but rather a 
gradual uncoordinated process that begins at a late gestational stage and is triggered 
by a spike in type I interferon (IFN) expression  [65].  

Extrinsic regulators 

Niche and cytokines 
The niche is the specific microenvironment where HSCs reside and are regulated. 
Several cell types have been identified in the BM niche, including endothelial, 
mesenchymal stromal cells, osteoblasts, adipocytes, and sympathetic nerves 
[20,131]. These cells secrete a variety of cytokines, such as thrombopoietin (TPO), 
Angiopoietin-1, and stem cell factor (SCF), which bind to their respective receptors 
Mpl, Tie2, and cKit on HSCs and regulate quiescence and survival [132–134]. 
However, the exact location of HSCs in the BM remains unclear. There are two 
distinct proposed locations: the endosteal niche and the perivascular niche. More 
recent studies have found that HSCs are predominantly located close to the 
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endothelial and Nestin+ perivascular cells [131,135]. Nevertheless, ongoing 
research aims to ascertain the precise location and composition of these BM niches. 

On the other hand, the primary site of fetal hematopoiesis is the liver, which contains 
multiple cell types, including desmin+ stellate cells, DLK1+ hepatocyte progenitors, 
and Nestin+NG2+ pericytes of portal vessels [136,137]. These cells support HSC 
proliferation and maturation by secreting many cytokines and growth factors. 
Although earlier studies have suggested that FL HSCs are less reliant on certain 
cytokines such as SCF, Angiopoietins, and TPO [132–134], more recent research 
indicates that deletion of SCF completely depletes FL HSCs [138]. Finally, and as 
previously mentioned, the FL niche is unique in its ability to produce bile acids that 
support the high protein synthesis rates of FL HSCs by alleviating endoplasmic 
reticulum stress [68]. 

Inflammation 
Inflammatory signals play critical roles in hematopoiesis at all developmental 
stages. Their roles start in the sterile prenatal environment where signaling 
downstream of the cytokines tumor necrosi -
as well as Toll-like receptor 4 (TLR4) mediate HSCs emergence [54,139]. This 
wave of proinflammatory signals is mostly produced by primitive YS macrophages. 
A second germ-free wave of IFN-I is produced by the skin during late gestation and 
initiates the transition from fetal to adult hematopoiesis, leading to HSPCs 
expansion and gradual upregulation of major histocompatibility complex I (MHC-
I) expression [65,69]. 

Later in life, exposure to pathogens induces inflammation and activates 
hematopoiesis. Pattern recognition receptors, such as TLRs, are expressed on 
immune cells and can bind pathogenic products, including lipopolysaccharides and 
viral dsRNA or its synthetic analogue polyinosinic:polycytidylic acid (poly I:C). 
This triggers the production of IFN and other inflammatory cytokines, which 
promote HSCs proliferation and elicit emergency megakaryopoiesis [140–142]. 
TLR activation also induces other immune responses, including increased 
expression of co-stimulatory molecules on antigen-presenting cells, and 
upregulation of MHC molecules. Intriguingly, HSCs express several TLRs, which 
enable them to directly bind pathogens. HSCs also express several cytokine 
receptors, including IFN- -R1, and TNF-R2 [143]. In addition, recent 
studies have demonstrated that HSCs retain an epigenetic memory of previous 
infections, which increases responsiveness to secondary exposure [144]. More 
recently, HSCs have been found to express MHC-II and can present exogenous 
antigens, thereby activating CD4 T-cell mediated immune response, which triggers 
HSCs differentiation [145,146].  

While acute inflammation allows HSCs to return rapidly to quiescence thereafter, 
chronic inflammation exhausts HSCs and impairs their functional activity 



32 

[141,147]. Inflammation is also implicated in leukemia development. Childhood 
infections are suggested to induce an acute and dysregulated inflammatory response 
that triggers leukemic transformation (discussed in the next chapter). Aging also 
confers a state of mild chronic inflammation, referred to as inflammaging, which is 
associated with myeloid skewing, increased DNA damage, mutations, clonal 
hematopoiesis, and a higher risk of developing hematological malignancies [147].  

Taken together, inflammation is continuously shaping and regulating normal and 
stress hematopoiesis. Depending on its intensity, duration, and stage of 
development, it can cause significant hematopoietic perturbations and potentially 
lead to leukemic transformation under certain circumstances.  

The Duel: Pediatric Leukemia 

Acute leukemia: an overview 
Leukemia is a group of blood cancers characterized by the overproduction of 
immature and dysfunctional hematopoietic cells, hence its name that means white 
blood in Greek. These abnormal cells, also referred to as blasts, crowd out normal 
blood cells, leading to a range of severe complications, including anemia, infections, 
and bleeding. In 2020, the World Health Organization (WHO) reported nearly half 
a million new cases of leukemia worldwide, with over 300,000 associated fatalities 
[148]. Although leukemia is relatively uncommon in adults, it is the most common 
form of cancer in children, accounting for approximately 30% of pediatric cancer 
cases. The worldwide incidence of pediatric leukemia has risen by 15% from the 
1980s to 2010, and it continues to rise for unknown reasons [149]. 

Leukemia is classified based on the speed of its progression into two types: acute 
leukemia (AL) and chronic leukemia. AL develops quickly and requires immediate 
treatment, while chronic leukemia develops more slowly and may not cause 
symptoms for years. Each of these subtypes is further divided according to the 
affected hematopoietic lineage, resulting in four main subtypes: acute lymphoblastic 
leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia 
(CLL), and chronic myeloid leukemia (CML). CLL and CML are very rare in 
children, with their incidence increasing with age, particularly in elderly. Similarly, 
AML is more common in older patients but can occur in children as well. In contrast, 
ALL accounts for ~80% of all pediatric leukemia cases, with a lower incidence in 
adults [150]. 

The exact cause of leukemia is unknown, but various environmental and genetic 
factors are thought to increase the disease risk. For instance, exposure to high levels 
of radiation, chemicals, infections, and smoking, are among the factors that might 
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increase the likelihood of developing leukemia [151]. The risk increases 
dramatically with congenital syndromes such as Down syndrome and Fanconi 
anemia [152,153]. Additionally, several germline genetic mutations raise the 
susceptibility to the disease [154]. However, these risk factors account for only a 
fraction of leukemia cases, as most patients develop leukemia without any 
identifiable risk factors. 

Several factors govern disease outcome, including age, leukemia subtype, and the 
associated mutations. For instance, although the 5-year overall survival (OS) rate of 
childhood ALL is ~90%, this falls to 25% in adults [155]. Similarly, pediatric AML 
has a 5-year OS of ~75%, which decreases to ~60% in adults < 60 years then plunges 
to ~25% in patients >60 years [156]. Despite these overall differences, each 
leukemia subtype is heterogenous, and certain genetic and cytogenetic factors 
confer poor disease prognosis, regardless of the patient’s age.  

Treatment strategies for AML and ALL overlap to some extent in the induction and 
consolidation phases. The induction phase involves high-dose chemotherapy to 
induce disease remission. In AML, this phase typically involves cytarabine and 
anthracycline [157]. While for ALL, an intensified multidrug therapy is 
administered, which usually contains glucocorticoids, such as prednisolone or 
dexamethasone, and a mix of cytotoxic drugs that involve vincristine and 
anthracycline or PEG-asparaginase [155]. Consolidation therapy aims to wipe out 
any remaining cancer cells to maintain remission and prevent disease relapse. In 
AML and adult ALL, particularly those with adverse prognoses, this phase involves 
high dose of cytarabine followed by allogeneic hematopoietic cell transplantation. 
However, for childhood ALL, transplantation is less required and is replaced by 
high doses of multiagent combination treatment that also involve steroids with 
cytarabine and methotrexate (reinduction therapy). Central nervous system (CNS) 
prophylaxis therapy is also needed in ALL, which involves 8-16 intrathecal 
treatments, dependent on the presence or absence of leukemic blasts in the 
cerebrospinal fluid at diagnosis [158]. Nowadays, additional targeted therapies are 
added to the treatment protocols, according to the cytogenetics of the disease, such 
as FLT3 and other tyrosine kinase inhibitors, or the anti-CD33 monoclonal antibody 
Gemtuzumab for AML ([159]. More recently, CAR-T cell therapy has been 
introduced as a treatment for ALL [160]. Despite the continuous improvement in 
survival rates, the current treatments associate with acute and long-term toxicities 
that impair quality of life and cause early mortality [161,162]. In addition, complete 
eradication of leukemic cells is not always achieved, and relapse rates are >50% in 
AML and adult ALL, and ~20% in childhood ALL [163–165]. Relapse is believed 
to be driven by a particular subset of cells that are resistant to chemotherapy and can 
regenerate the disease, referred to as leukemia stem cells (LSCs). Thus, 
understanding the cellular and molecular makeup of the disease, particularly LSCs, 
is critical to improving the current therapeutic strategies, allowing for better 
targeting approaches. 
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The cellular makeup of AL
As previously mentioned, AL is a very heterogeneous disease. Intertumoral 
variation between patients and intratumoral variation at the cellular and (sub)clonal 
level within the same patient are the main features of AL. This behavior is explained 
by the stem cell and clonal evolution models, which suggest that AL is triggered by 
the acquisition of genetic alterations in a single immature HSPC, the so-called cell 
of origin [166,167]. This cell is then unable to respond to normal differentiation 
stimuli, but because of its high self-renewal potential, it can proliferate and generate 
leukemia-initiating cells (LICs) or pre-LSCs. LICs are defined by their functional 
ability to initiate and maintain leukemia after transplantation in mice  [168,169]. In 
the most common view, disease progression thereafter is a consequence of 
additional molecular changes leading to the emergence of fully transformed LSCs, 
which subsequently differentiate into leukemic blast cells. The more aggressive 
subclones outcompete the rest of the clones as well as normal hematopoiesis and 
eventually overpopulate the whole hematopoietic system. Thus, like normal 
hematopoiesis, leukemic cells are hierarchically organized, with LICs/LSCs 
residing at the apex of the hierarchy and capable of disease regeneration (Figure 4) 
A subset of these cells is believed to be rare and quiescent, and thus is not targeted 
by chemotherapy and is responsible for relapse [170]. Identifying these cells and 
understanding their underlying biology is crucial for the development of effective 
targeted therapies for complete eradication of the disease.

Figure 4. Composition and progression of acute leukemia.

Pediatric and adult leukemia: how do they differ?
Pediatric leukemia is the most common malignancy in children and is a leading 
cause of childhood mortality. Despite extensive research, the etiology of the disease 
remains elusive. Accumulating evidence over the past decades supports a prenatal 
origin for childhood malignancies [171]. However, although the incidence of 
neonatal and infant leukemias dramatically differ, both remain rare events, as 
leukemia peaks after the first two years of life [172,173]. Differences between 
pediatric and adult leukemias regarding their cellular, molecular, and prognostic 
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features suggest that they are two distinct disease entities. These differences are 
discussed in the following sections. 

ALL 
ALL is a complex disease with many subtypes that can be broadly classified into B-
cell ALL (B-ALL) and T-cell ALL (T-ALL), which are further subdivided based on 
genetic alterations. B-ALL is by far the predominant form in children, accounting 
for ~85% of pediatric ALL, and is the subtype discussed here. Approximately 60% 
of ALL cases occur in patients younger than 20, with a peak of diagnosis around 2 
– 5 years that abruptly declines afterwards [174]. Over the past five decades, the 
field of pediatric ALL has witnessed remarkable progress, transforming the disease 
from fatal to highly treatable. However, the same level of success has not been 
achieved in the treatment of adult ALL. This can be attributed to differences in 
effectiveness and tolerance to treatments as well as variations in genetic 
mutations/cytogenetics between pediatric and adult ALL [155]. For instance, the 
dose-intensified multiagent combination treatment of pediatric ALL is not very well 
tolerated in adult ALL, particularly in elderly patients, and leads to a significant 
increase in treatment toxicities and a drop in OS. In addition, adult ALL is associated 
with more high-risk cytogenetics, such as BCR-ABL1 (Philadelphia (Ph) 
translocation) which constitutes 40 - 50% of ALL cases in patients over 55 years 
but only 3% in children [155]. Nevertheless, despite the progress in pediatric ALL 
research, it remains one of the leading causes of death in children and young adults. 

Genetic alterations in B-ALL 
B-ALL is characterized by an early disruption of B-cell differentiation, followed by 
excessive proliferation of B-cell progenitors (pro/pre-B cells). The disease 
manifests when these cells fill up the BM and infiltrate secondary lymphoid organs, 
reaching in many instances the CNS. B-ALL is a multistep disease initiated by 
various genetic and epigenetic alterations in critical hematopoietic regulators, and 
the biology of the disease differs with age. The most common initiating events 
involve aneuploidy and chromosomal translocations, but cooperating mutations are 
usually needed for disease progression. Although karyotyping and fluorescence in 
situ hybridization (FISH) have been widely employed to detect genetic 
abnormalities in B-ALL, recent advances in genome analysis have yielded a more 
comprehensive understanding of the disease. This has allowed for further 
stratification of B-ALL subtypes, enabling more accurate risk assessment and 
better-suited treatment protocols (Table 1). 

First event  
Several aneuploidy subtypes are associated with B-ALL. High hyperdiploidy is a 
genetic abnormality characterized by a gain of at least 5 extra chromosomes. It is 
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present in ~25% of pediatric and only 7% of adult B-ALL patients, and generally 
has a favorable prognosis [175,176]. In contrast, hypodiploidy, which involves the 
deletion of two or more chromosomes, is very rare in children but accounts for ~10% 
of adult B-ALL. The low hypodiploidy subtype (32-39 chromosomes) is particularly 
prevalent and has a very poor prognosis [155]. Intrachromosomal amplification of 
chromosome 21 (iAMP21) is another high-risk aberration characterized by multiple 
copies of the RUNX1 gene on a structurally abnormal chromosome 21. It accounts 
for ~2% of pediatric and ~11% of adult B-ALL cases [175,176].  Trisomy 21, or 
Down syndrome, increases the risk of pediatric B-ALL ~10-12 folds, with a 
diagnosis peak around the age of 10 [153]. 

Regarding translocations, chromosomal rearrangements involving MLL1 (MLL-r) 
are the most common cause of leukemia in infants, accounting for up to 80% of B-
ALL (and ~50% of AML, discussed later). The most common MLL fusion partners 
of infant B-ALL are AF4 (AFF1), which accounts for ~50% of the cases, followed 
by ENL (MLLT1), and AF9 (MLLT3) [177]. The incidence of MLL-r decreases in 
older children and young adults but rises again with age to constitute >10% of adult 
B-ALL cases. Regardless of age, MLL-r often have a very dismal prognosis. 

After the age of two, the incidence of ALL starts to peak with the increased 
prevalence of ETV6-RUNX1 (E/R)-associated B-ALL, which constitutes ~30% of 
childhood but <1% of adult cases (discussed in detail later). E2A-PBX1 on the other 
hand occurs in 5% of children and adults B-ALL and has a favorable prognosis, 
unlike the rare E2A-HLF fusion gene (~1%), which has a poor prognosis [155]. 

As mentioned before, patients with BCR-ABL1 are mostly adults and used to have 
a very poor prognosis. Currently, while still unfavorable, tyrosine kinase inhibitors 
have significantly improved the disease outcome [155]. 

Aside from these well-established molecular subtypes of B-ALL, genomic analysis 
within the last few years identified new subtypes, including DUX4, MEF2D, and 
ZNF384 rearrangements [155,178]. In addition, there are also the E/R-like and Ph-
like subtypes, which express similar molecular signatures and immunophenotypes 
to E/R and Ph-positive subtypes but lack the expression of E/R or BCR-ABL1 
fusion genes, respectively [155,176,178]. Combined, these new subtypes represent 
>30% of B-ALL cases in children and adults that were previously unknown (Table 
1). There is also a rare subset of pediatric B-ALL with inherited genetic mutations 
in critical regulators such as ETV6, PAX5, and TP53 [179]. 

Secondary mutations 
Most of the previously mentioned first-hit mutations confer a pre-leukemic state, 
and the acquisition of secondary mutations is usually needed for leukemic 
transformation. Generally, the mutational burden in pediatric malignancies is lower 
than in adults, and B-ALL is no exception [180]. However, some subtypes are 
associated with more secondary mutations than others. For instance, MLL-r have a 
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very low average of additional events (~1.3 mutations) [181], while E/R and BCR-
ABL1 have an average of 6 – 8 aberrations per case [182]. The relatively high 
mutational rate results in subclonal variation, which is commonly seen in B-ALL 
and governs disease progression and relapse. 

Secondary mutations affecting genes that regulate B-cell development, including 
PAX5, EBF1, and IKZF1, are recurrent events found in almost two-thirds of B-ALL 
cases [182]. These mutations are typically loss-of-function or dominant-negative 
mutations that arrest B-cell differentiation. Certain mutations can significantly 
impact risk stratification and treatment protocols. For instance, IKZF1 mutations 
usually predict a poor disease outcome, while PAX5 mutations are less detrimental 
[183]. Other common mutations in B-ALL affect cell cycle regulators (CDKN2A), 
tumor suppressors (TP53), RAS signaling (NRAS and KRAS), protein kinases (FLT3 
and JAK), and ETV6 deletions [173]. 

In addition, certain mutations are more common in specific B-ALL subtypes. For 
instance, mutations in kinase-activators, such as ABL1, JAK, EPOR, and Flt3 are 
very common in Ph-like B-ALL, while RAS-activating mutations are the most 
common in MLL-r [155]. 

Table 1. Prevalence and prognosis of B-ALL subtypes. 
Adapted from [175,176] 

ALL subtype Children Adults Prognosis Frequent mutations 

Hyperdiploidy 25% 7% Good RAS pathway, PAX5 

Hypodiploidy (low) Rare ~10% Poor TP53, IKZF2/3 

iAMP21 2% 11% Poor  

E/R 25 – 30% 1% Good ETV6, PAX5 

MLL-r ~80% (infants) 10% Poor RAS (subclonal) 

BCR-ABL1 3% 40 - 50% Poor IKZF1, CDKN2A/B 

Ph-like 15 - 20% 30 – 40% Poor Several kinases, 
IKZF1, CDKN2A/B 

E/R-like ~5% Rare Intermediate ETV6, IKZF1 

E2A-PBX1 ~5% ~5% Good  

E2A-HLF 1% 1% Poor PAX5, RAS, E2A 
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E/R 
The t(12;21)(p13;q22) translocation results in a fusion between the transcription 
factors ETV6 and RUNX1. E/R is almost restricted to children and young adults 
and is the most prevalent chromosomal translocation in this category of patients 
[155]. The fusion gene is restricted to the precursor B-ALL subtypes, marked by 
CD19 and CD10 expression, RAG and TdT activity, and clonal rearrangement of 
IgH. Despite the precursor B-cell phenotype, E/R B-ALL often co-express several 
myeloid markers [184,185]. 

Patients with E/R have a favorable prognosis and current treatment protocols 
achieve 5-year OS rates > 90%. However, relapse occurs in >20% of the patients 
and it can be remarkably delayed (10 – 20 years) compared to other leukemia 
subtypes [186–188]. While the high incidence of E/R relapse might suggest a re-
evaluation of the disease prognosis, E/R-relapsed patients respond well to therapy 
and have a significantly better prognosis than E/R-negative patients [188,189]. 

Detection of E/R translocations in neonatal blood spots (Guthrie cards) has 
confirmed its prenatal origin. It has been suggested that at least 1% of all neonates 
have cells with the E/R translocation, and with more sensitive detection methods, 
this frequency increased to 5% [190,191]. Additionally, the detection of identical 
E/R breakpoints in monozygotic twins, and in some instances common IgH 
rearrangements, provided further support to the in-utero origin of the disease 
[192,193].  

Despite continuous efforts, the cell of origin in which E/R arises remains unknown. 
However, accumulating evidence suggests that it is an immature stem/progenitor 
cell before the pro-B cell stage. Retrospective analysis of neonatal blood spots from 
leukemia patients revealed that E/R-expressing clones can covertly persist in the 
BM for 15 years [194,195]. In addition, the expression of some myeloid markers in 
half of E/R B-ALL cases suggests a multilineage potential of the LIC [196,185]. 
Studies have shown that a subset of candidate stem cells with pro-B cell properties, 
characterized by the expression of CD34+CD38-/lowCD19+, were able to propagate 
E/R leukemia in immunocompromised mice [194,197]. However, this population 
was later found not to exist in all patients [198]. In further support of this notion, 
genetically engineered E/R mouse models with restricted expression to committed 
B-cell progenitors failed to generate any hematological phenotype, suggesting that 
the premalignant clone arises in HSPCs [199,200]. Another study that used a human 
pluripotent stem cell system to model embryonic B-cell lymphopoiesis has 
suggested an IL7R+ HSPC as a candidate cell of origin for E/R leukemia. However, 
the leukemogenic potential of these cells has not been verified [79]. Several animal-
model-based studies have also reported expansions in the HSPC compartment in 
response to E/R expression [201–203]. However, further research is still needed to 
unequivocally identify the potential cell that can initiate the disease. 
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E/R by itself is insufficient for B-ALL development and secondary mutations are 
required for disease progression. This is supported by the low rate of concordant 
leukemia in monozygotic twins (5%), and the long and variable latency between the 
first event and diagnosis, which can last over a decade [204,205]. Fortunately, only 
a small proportion of the translocation carriers (0.2-1%) develop the necessary 
secondary mutations for leukemic transformation [206]. 

Patients with E/R B-ALL have an average of 3.5 secondary mutations per case 
[207]. Mutations are usually sub-clonal, rendering some clones more aggressive 
than others [208]. Deletions of the non-rearranged ETV6 allele are recurrent events 
in ~70% of the patients [209]. ETV6 acts as a tumor suppressor through 
dimerization and inhibition of E/R targets; therefore, its deletion contributes to E/R 
leukemogenesis [207,210,211]. Other common secondary events include gaining 
extra copies of RUNX1 (~23%), and der(21)t(12;21), a biallelic rearrangement with 
a gain of an extra RUNX1 copy [212]. Deletions of regulators of B-cell development, 
such as PAX5, EBF1, and E2A, and the cell cycle inhibitors CDKN2A/B are also 
among the most recurrent secondary events in E/R [209]. 

ETV6 and RUNX1 fusion on a structural level 
ETV6 consists of a pointed N-terminal (PNT) domain, a central regulatory domain 
(repression domain), and a highly conserved ETS DNA binding domain at its C-
terminal (Figure 5) [112]. Due to the C-terminal autoinhibitory activity, ETV6 
forms oligomers with itself or other ETS transcription factors through the PNT 
domain, which is a critical step for DNA binding activity. ETV6 is a dominant 
transcription repressor, and it employs several co-repressors to mediate its activity, 
including SIN3A, NCOR, and histone deacetylases (HDACs) [112]. 

RUNX1 has an N-terminal region that can mediate transcriptional activation, 
followed by a DNA-binding Runt homology domain [213]. Other functional 
domains in the RUNX1 protein include a TAD that interacts with co-activators p300 
and CREBBP, an inhibitory domain, and a VWRPY motif in the C-terminal region 
that mediates transcription repression by binding the co-repressor TLE1 (Figure 5). 
To exert its roles, RUNX1 heterodimerizes with CBF-
This enhances RUNX1 DNA-binding activity, allowing for the activation or 
repression of its target genes [214]. 
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Figure 5. Schematic depiction of the structure of ETV6, RUNX1, and the fusion gene E/R.

As shown in Figure 5, the t(12;21) translocation fuses most of the RUNX1 gene, 
encompassing exons 1 and 2, with the first five exons of ETV6 [215]. The 
translocation typically results in the loss of the ETS domain of ETV6. Thus, the 
DNA-binding activity of the resulting E/R fusion protein is mainly mediated by the 
DNA-binding domain of RUNX1. Nonetheless, the retained PNT and inhibitory 
domains of ETV6 keep recruiting the co-repressors SIN3A, NCOR, and HDAC, 
leading to transcriptional repression of RUNX1 target genes [216,217]. 
Furthermore, the PNT domain enables dimerization of E/R and ETV6, which 
disrupts ETV6 activity [218]. Indeed, there is an inverse correlation between E/R 
expression levels and the transcription repression activity of ETV6, highlighting the 
importance of ETV6 targets in propagating ALL [218]. ETV6 has been shown to 
repress the expression of several genes implicated in the survival and proliferation 
of leukemia cell lines, such as SPHK1, PTGER4, and CLIC5 [176].

Molecular implications of E/R fusion 
The mechanisms whereby E/R initiates B-ALL remain elusive. However, studies on 
ETV6 and RUNX1 dysregulation shed some light on the implications of the E/R 
fusion gene. As discussed earlier, both ETV6 and RUNX1 are critical regulators of 
hematopoiesis, and their deletions lead to significant hematopoietic perturbations. 
Thus, it is not surprising to find these genes mutated in several hematological 
malignancies or fused with different binding partners.

Most RUNX1 mutations are located in the Runt domain and affect its DNA-binding 
ability. In addition, RUNX1 is frequently involved in chromosomal translocations, 
with > 50 binding partners identified. In these events, one of RUNX1 alleles is 
usually disrupted [219]. The most common translocations that involve RUNX1 
include E/R, RUNX1-ETO, RUNX1-MECOM, and RUNX1-CBFA2T3. Except for 
E/R, all these translocations are associated with AML. Notably, a unique feature of 
E/R is that it retains the C-terminal and Runt domains of RUNX1, unlike the other 
translocations.
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RUNX1 mutations usually result in impaired differentiation and increased 
proliferation of HSPCs [219]. While this increases the propensity to leukemia, 
RUNX1 mutations/translocations are usually heterozygous and complete deletion is 
very uncommon [220]. In addition, recent studies have suggested the importance of 
the non-rearranged RUNX1 for optimal leukemia growth, and knockdown of this 
gene or its partner CBF- [221,222]. The 
criticality of the non-rearranged RUNX1 extends to MLL-r leukemias, where 
RUNX1 expression has been shown to promote the survival of leukemic cells 
[223,224].  

On the other hand, loss of function mutations or hemizygous deletions in ETV6 
increases genetic susceptibility to both ALL and AML [225]. Similar to RUNX1, 
there are more than 30 chromosomal rearrangements involving ETV6 [112]. ETV6 
rearrangements can drive transformation through multiple mechanisms, such as 
dysregulation of transcription, activation of kinase activity when fused to protein 
kinases, and disruption of the expression and function of the non-rearranged ETV6 
gene [226].  

Apart from the regulatory roles of ETV6 and RUNX1, several molecular pathways 
are directly dysregulated by the E/R fusion gene. For instance, a recent study has 
shown that E/R can directly bind and increase RAG1 expression [227]. Previous 
studies have endorsed the role of RAG1 in inducing secondary mutations and 
promoting transformation [228,229]. This suggests that E/R might be implicated in 
both leukemia initiation and progression [227]. In addition, E/R can also activate 
STAT3, which has been shown to positively regulate early B-cell progenitors, and 
induce MYC activity [230,231]. E/R also binds EPOR and increases its expression, 
which enhances survival through activation of the JAK/STAT5 and 
PI3K/AKT/mTOR downstream pathways [232]. PI3K/AKT/mTOR as well is 
directly activated by E/R, since knock down of E/R in REH cell (a human cell line 
of E/R B-ALL) has been reported to abrogate PI3K/AKT/mTOR activity and reduce 
proliferation and survival [233].  

In addition, E/R transactivates MDM2, which is the predominant negative regulator 
of p53 [234]. Suppression of p53 activity is a key step in E/R leukemogenesis, and 
inhibition of MDM2/p53 interaction leads to cell-cycle arrest and apoptosis [234]. 
Furthermore, upregulation of RNA binding protein IGF2BP1 is frequently 
associated with E/R B-ALL and proposed as a diagnostic biomarker for this specific 
subtype of ALL [235,236]. IGF2BP1 is suggested to mediate leukemogenesis partly 
by binding and stabilizing E/R and STAT3 mRNA levels [237].  

The discrepancies between the high incidence rate of the first hit and the lower rates 
of disease development confirm that the acquisition of secondary mutations is the 
rate-limiting step in E/R leukemogenesis. However, what triggers this step remains 
unknown. E/R pre-leukemic cells have been suggested to have elevated ROS levels, 
which can induce genome instability and lead to mutations [238]. As mentioned 
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previously, RAG activity is proposed as a main mechanism by which secondary 
mutations are acquired, and exposure to infections is suggested to trigger its activity 
[239,240]. In addition, E/R reduces the sensitivity to TGF- -mediated inhibition of 
proliferation, which suggests that the pre-leukemic clones might gain a competitive 
advantage during pathogenic infections. This highlights the role of infection in the 
process of transformation from covert to overt leukemia. 

Infection hypothesis 
The concept that infections could be a causative factor in childhood ALL has been 
around for almost a century. Childhood ALL are suggested to arise as a result of an 
abnormal immune response to infections. This hypothesis provides the most 
plausible explanation for the patterns of childhood ALL. Evidence from 
epidemiological and modeling studies has yielded two models that explain the link 
between infections and childhood ALL: the population mixing hypothesis by 
Kinlen, and the delayed infection hypothesis by Greaves [240,241]. 

Kinlen’s hypothesis arose from the observation of a temporary surge in childhood 
leukemia cases following mass migration events in rural areas. The introduction of 
new low-antigenic pathogens to non-immune populations was postulated as the 
underlying cause [241].  

Greaves’ hypothesis proposes that common infections might have opposing effects, 
depending on the time of exposure. Early exposure to common antigens can have a 
prophylactic effect against ALL, as it shapes the microbiome, builds immune 
tolerance, and has long-term impacts on immune function [242,243]. Infants who 
lack this experience may develop a dysregulated immune response upon 
encountering common infections later in life, which can be a trigger for 
transformation. This hypothesis is supported by studies that have found a lower 
incidence rate of ALL in children who attended nursery during their first year [244]. 
Additionally, it may also explain the increasing rates of childhood leukemia in 
modern societies, which could be attributed to increased hygiene levels [240]. 

Although the two hypotheses may appear distinct, they both propose that leukemia 
arises from an aberrant immune response triggered by infections in an inexperienced 
immune system (Figure 6). However, the mechanisms behind this remain largely 
unknown, and further research in this area could lead to the development of 
preventive therapies. 
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Figure 6. Overview of the potential role of infection in E/R leukemogenesis.

Relapse
Genomic studies have demonstrated a significant clonal diversity during the initial 
diagnosis of E/R B-ALL, suggesting complex and branched trajectories of clonal 
evolution that govern disease development and relapse. E/R relapses are 
characterized by their late onset, as most cases occur three years after diagnosis but
can occasionally exceed 10 years [187–189]. The simplest pattern of relapse is when 
the initial dominant clone re-emerges after treatment. In such cases, IgH 
rearrangements of the dominant clone are expected to be the same at diagnosis and 
relapse [245,246]. However, variations in IgH rearrangements are sometimes found
in relapse clones, which indicates that they might be derived from a lingering pre-
leukemic ancestral clone [247–249]. Relapse can also be derived from minor clones 
that preexisted at the time of diagnosis, which is a commonly observed event in E/R 
B-ALL [250–252]. These minor clones might possess some mutations that confer 
poor response or resistance to treatment. Additional mutations can also emerge later 
on and accelerate disease progression; hence, the higher mutational burden in 
relapse cases [180]. The most common events found in relapse involve loss of 
function mutations/deletions in NR3C1/2, which encode for glucocorticoid 
receptors, CREBBP, a histone acetyltransferase, CDKN2A/B, regulators of the cell 
cycle, and IKZF1 [207,209]. Understanding how relapse happens and the involved 
molecular pathways can be critical for the development of targeted therapy 
approaches. 
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AML 
AML is a highly aggressive malignant disease characterized by uncontrolled 
proliferation of immature myeloid precursor cells. It is the most common AL form 
in adults, accounting for ~80% of the cases, and its incidence particularly increases 
above 60 [253]. AML also comprises ~20% of pediatric leukemias, with high 
incidence during infancy and adolescence [254]. However, there are significant 
distinctions between pediatric and adult AML that they can be almost considered 
two separate diseases. Nevertheless, AML generally has a relatively poor prognosis 
in comparison to other leukemia subtypes, accounting for ~60% of all leukemic 
deaths [255]. The 5-year OS rates of AML in children and adults are between 60 – 
70% and 25 – 30%, respectively [255,256].  

Classification of AML 
AML is a very heterogeneous disease that can be broadly categorized based on 
disease etiology into de-novo, therapy-related, and secondary AML, the latter of 
which evolves from prior myelodysplastic syndrome (MDS) or myeloproliferative 
neoplasms (MPN). However, AML classification can also be based on morphology, 
immunophenotype, and genetic features. The historical French American British 
(FAB) system was developed in the 1970s and classified AML into 6 categories 
based on morphology (M1 – M6). Later, when immunophenotyping was 
incorporated, two more subtypes were added (M0 – M7). However, with the 
advancement of genomic analysis techniques, the WHO system was introduced, 
which incorporates recurrent genetic and cytogenetic abnormalities for a more 
accurate classification. The latest update to the WHO AML classification, the 5th 
edition, was released in 2022 and is summarized in Table 2 [257].  

Unlike the 2016 edition, the latest edition recognizes nucleophosmin (NPM1) and 
monoallelic CEBPA mutations as AML-defining subtypes. However, the group for 
RUNX1 mutations has been removed as they overlap with molecular features that 
define other AML subtypes.[257]. The previous classification systems used a blast 
count threshold of 20-30% for AML diagnosis in most cases. However, the 2022 
update lowers the threshold to 10%, as the detection of specific genetic or 
cytogenetic abnormalities is now considered sufficient for the diagnosis of de novo 
AML. Exceptions to this rule include CEBPA mutations and the ‘’AML with 
myelodysplasia-related changes’’ category, which includes SRSF2, SF3B1, U2AF1, 
ZRSR2, ASXL1, EZH2, BCOR, STAG2 mutations and other unbalanced 
translocations. In these cases, a blast count >20% is required to exclude MDS and 
MPN. This same cut-off also applies to BCR-ABL1 for excluding CML [257]. It is 
worth noting that NPM1 mutations were previously associated with clonal 
hematopoiesis and MDS, but due to their rapid progression to AML, they are now 
categorized as AML-defining genetic mutations. These updates allow for a more 
accurate diagnosis and classification of AML. 



45 

Table 2. WHO 2022 classification of AML subtypes and the associated prognosis [257–259]. 
AML classification Prognosis 
AML with defining genetic abnormalities:  
PML-RARA (promyelocytic) Favorable 
RUNX1-RUNX1T1  Favorable 
CBFB-MYH11 Favorable 
KMT2A-r Adverse 
DEK-NUP214  Adverse 
RBM15-MRTFA (megakaryoblasic) Intermediate 
BCR-ABL1  Adverse 
MECOM-r Adverse 
NUP98-r Adverse 
NPM1 mutations Favorable 
CEBPA mutation Favorable 
AML with myelodysplasia-related Adverse 
AML with other defined genetic alterations Adverse 
AML defined by differentiation  
AML post cytotoxic therapy 
e.g AML with TP53 mutations or MLL-r 

Adverse 

Role of genetic abnormalities in AML pathogenesis 
Knudson’s two-hit hypothesis has significantly contributed to our understanding of 
leukemia pathogenesis. AML develops in immature cells through the sequential 
acquisition of mutations. These mutations were initially classified into two classes, 
with at least one mutation from each class required for AML development. Class I 
mutations provide a proliferative advantage to the cells, while class II mutations 
impede cell differentiation and enhance self-renewal [260]. However, this 
classification was incomplete, and subsequent studies identified additional 
mutations that did not fit into either class. Advances in genomic profiling techniques 
have revealed that AML is a complex disease, with numerous mutations 
contributing to clonal and subclonal variations. The prevalence of these mutations 
can change with disease progression, further highlighting the complexity of AML 
[261]. This heterogeneity builds up the architectural mosaic of AML. 

AML typically has a lower mutational burden compared to other adult cancers, with 
an average of 13 mutations per patient [262]. However, this varies between AML 
subtypes, with some initiating events requiring more accompanying mutations than 
others. Moreover, advanced age, prior exposure to cytotoxic therapy, and 
underlying MDS or MPN, all increase the average number of mutations. Recurrent 
mutations in AML can be classified into nine categories based on their biological 
function. Activating mutations in signaling pathway components, such as FLT3, 
RAS, KIT, CBL, NF1, and PTPN11. Mutations in myeloid transcription factors such 
as CEBPA, RUNX1, and PU.1. Mutations in DNA methyltransferases (DNMT3A), 
demethylase genes (TET2, WT1, IDH1, and IDH2), NPM1, spliceosome-complex 
genes, cohesin-complex genes, and tumor suppressor genes such as TP53. Finally, 
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transcription-factor fusions such as PML-RARA, RUNX1:RUNX1T1, 
CBFB:MYH11, and RBM15-MRTFA [262].  

Certain mutations exhibit patterns of cooccurrence or mutual exclusivity. For 
instance, NPM1 mutation frequently cooccurs with FLT3, DNMT3A, TET2, and 
IDH1/2 mutations [262,263]. In contrast, most chromosomal translocations are 
mutually exclusive of NPM1 and DNMT3A mutations [262,263]. Strong 
associations between certain mutations and age further add to the complexity of the 
disease. 

Genetic abnormalities in pediatric and adult AML 
There are several fundamental differences between pediatric and adult AML 
regarding disease etiology and genetic landscape. While de novo cases account for 
over 95% of pediatric AML, a large proportion of adult AML cases arise from an 
underlying MDS/MPN (approximately 20%) [258]. Moreover, aging-related 
phenotypes, including myeloid-lineage bias, functional decline in HSCs, clonal 
hematopoiesis, and genome instability are all predisposing factors exclusive to adult 
AML. These differences are further highlighted by the contrasting genetic 
landscapes of pediatric and adult AML, with the former having an average of around 
5 somatic mutations per sample, while the latter has approximately 13 mutations per 
sample (Figure 7) [264,265]. Despite the low mutational burden in pediatric AML, 
cytogenetic abnormalities are frequently found in ~80% of these patients, compared 
to < 50% in adult AML. While FLT3 mutations are the most commonly occurring 
mutations across all age groups, other genetic aberrations exhibit age-related 
distribution [265,266]. For instance, mutations in the RAS pathway, KIT, and WT1 
mutations are commonly found in pediatrics. In contrast, DNMT3A, TET2, and TP53 
mutations are almost exclusive to adults, and together with NPM1 and IDH 
mutations, they constitute the majority of events in adult AML. As for fusion genes, 
PML-RARA, RUNX1:RUNX1T1, CBFB:MYH11, and MLL-r are found in ~50% 
of pediatric but only ~25% of adult AML cases. Most of these translocations, except 
for MLL-r, are associated with a favorable prognosis, which could partly explain 
the higher OS rates observed in childhood leukemia [258,267]. Taken together, this 
suggests that the pathogenesis of AML in pediatric patients differs significantly 
from that in adults. 
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Figure 7. Frequency and distribution of genetic alterations in AML across ages (from Mercher and 
Schwaller, 2019 [266]). 
 

MLL translocations 
As mentioned previously, translocations involving MLL1 generate one of the most 
aggressive forms of AML, ALL, or mixed lineage leukemia. The incidence rate of 
MLL-r differs between pediatrics and adults, and variations exist even within each 
age group. For instance, MLL-r account for ~50% of AML and ~80% of ALL 
infants, but their incidence drops in older children to 15% of AML and <5% of ALL 
cases [268,269]. As for adults, MLL-r constitute 10% of all leukemia cases, and a 
large fraction of those are therapy-related leukemias, which have been attributed to 
exposure to topoisomerase II inhibitors [269]. Regardless of the patient's age, the 
presence of MLL-r usually confers an adverse prognosis and is associated with a 
higher risk of resistance to treatment and relapse. 

In infants, MLL-r typically arise during fetal development and have been detected 
in neonatal blood spots of leukemia patients [270,271]. The prenatal origin of MLL-
r is further supported by studies on monozygotic twins, which have found identical 
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MLL fusion breakpoints and a high rate of concordant leukemia, approaching 100% 
[271,272]. 

Despite the prenatal origin of MLL-r, the incidence of congenital/neonatal leukemia 
is very low, accounting for less than 1% of all pediatric leukemia cases [172,273]. 
MLL-r leukemias usually develop postnatally and are presented with very few 
cooperating mutations, if any. An average of 1 – 2 mutations per case has been 
reported, which are often subclonal and lost in relapse [265,181,274]. Together, this 
suggests that the fusion gene by itself can be sufficient for disease development. The 
most recurrent mutations in MLL-r involve KRAS, NRAS, PTPN11, BRAF, and 
FLT3 [181,265,274]. Understanding the structure and interactome of MLL1 can 
provide valuable insights into the molecular mechanisms underlying the aggressive 
nature of MLL-r leukemia. 

Structure and interactions of MLL1 
MLL1 encodes for a nuclear protein with multiple functional domains that interact 
with a diverse range of proteins and molecules to regulate gene expression (Figure 
8). The N-terminal region contains DNA-binding AT hooks, sub-nuclear 
localization domains (SNL1 and 2), and repression domains (RD). This region also 
contains a DNA methyltransferase homology domain (CxxC), which binds non-
methylated CpG-rich DNA regions. Adjacently, there are four plant homeodomain 
fingers (PHD), with embedded bromodomain (BD). PHDs bind H3K4me3 regions 
and recruit proteins to regulate the expression of MLL1. The C-terminal region 
encompasses a TAD and the highly conserved SET domain, which mediates mono-
, di- or tri-methylation of H3K4 [115,275]. 

Proteolytic cleavage of MLL1 by Taspase 1 generates two fragments: MLL1C, 
which comprises the TAD and SET domains, and MLL1N, which has all the 
remaining domains [275]. Each of these fragments has specific functions, and 
together they form a complex with several other proteins to regulate chromatin 
accessibility and gene expression. The N-terminal fragment interacts with Menin, 
which further facilitates binding to the lens epithelium-derived growth factor 
(LEDGF). The formation of this ternary complex is critical for the activation of 
downstream target genes, such as HOX and MEIS1, which mediate the functions of 
both WT and rearranged MLL1 [276–278]. On the other hand, the H3K4 
methyltransferase activity of MLL1 is mediated by the C-terminal SET domain 
through interaction with RBBP5, ASH2L, WDR5, and DPY30, known as the 
WRAD complex [115,279]. It has been shown that homozygous deletion of SET 
has no impact on normal hematopoiesis or leukemogenesis, suggesting that the 
methyltransferase activity of MLL1 is dispensable. In contrast, the recruitment of 
the histone acetyltransferases MOF by the MLL complex has been found to be 
critical for the expression of MLL1 target genes [280]. 
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Figure 8. Structure and interactions of MLL1 (top) and MLL-r (bottom).

MLL fusion partners
MLL translocations result from monoallelic double-stranded breaks at exons 8-13 
of MLL1 followed by fusion with one of over 80 partner genes [275]. The necessity 
of the WT MLL1 allele in leukemogenesis has been debated, with studies reporting 
conflicting results [281–284]. The MLL1-rearranged allele lacks the PHD fingers 
domain and the entire MLLC region (Figure 8). By itself, the truncated MLL1 gene 
is devoid of any transformative ability, highlighting the functional importance of 
the fusion partner [285]. Among the multiple identified fusion partners, there are 5 
that constitute ~80% of the MLL-r cases, which are AF4 (36%), AF9 (19%), ENL
(13%), AF10 (8%), ELL (4%) [268]. Certain fusion partners seem to impact the 
leukemia subtype and have apparent age-related distribution. For instance, MLL-
AF4 is mostly associated with ALL, while MLL-ELL is predominantly found in 
AML, but both are found in all age groups. In contrast, MLL-AF9, MLL-ENL, and 
MLL-AF10 are found in both AML and ALL, but with distinct age association
patterns. In infants, MLL-AF9 and MLL-AF10 are commonly linked to both AML 
and ALL, while MLL-ENL is predominantly found in ALL. However, in older
children and adults, MLL-ENL can generate both AML and ALL, whereas MLL-
AF9 and MLL-AF10 are more frequently associated with AML [268]. While the 
identity of the fusion partner can influence leukemia subtype, age-related 
differences in the microenvironment can also play a role in conferring lineage bias 
[286]. For instance, a fetal microenvironment may be more permissive to ALL, 
whereas an adult microenvironment may be more conducive to AML [286]. 
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Furthermore, there are indications that certain fusion partners may influence the 
outcome of the disease, like MLL-AF9 which has a better prognosis in pediatric 
AML compared to other MLL-r [287]. While most of these fusion partners are 
transcription elongation factors, it is not completely clear how their distinct 
regulome might differentially contribute to leukemogenesis. 

Molecular Mechanisms of MLL-r  
Despite the large variety of MLL fusion partners, MLL-r leukemias share a distinct 
transcription signature, suggesting a functional overlap between MLL fusion 
partners [288–290]. Indeed, most of these fusion genes belong to the super 
elongation complex (SEC), which includes AF4, AF9, ENL, ELL, and positive 
transcription elongation factor b (P-TEFb) [291]. When MLL fuses with any of 
these partners, it recruits SEC and enables efficient transcription of MLL-r target 
genes (Figure 8) [292]. This process is mediated by the interaction between SEC 
and the H3K79 methyltransferase DOT1L, which is crucial for the expression of 
MLL-r targets [293,294]. Increased levels of H3K79 methylation on the promoters 
of Hoxa9 and Meis1 provide evidence for this [295,296]. DOT1L activity 
compensates the loss of H3K4 methyltransferase activity of the SET domain after 
translocation, and its inhibition impairs MLL-r leukemogenesis [275,296]. 

The N-terminal region of MLL remains crucial for the fusion gene activity, and is 
regulating HOX and MEIS1 expression through recruitment of Menin [297]. 
HOXA9/MEIS1 subsequently activate their downstream target c-MYB, which is 
essential for MLL-r driven AML [298–300]. Targeting these indispensable 
components of the MLL-r machinery has been the aim of several lines of research, 
which allowed for the development of several drugs, including DOT1L and Menin 
inhibitors that are currently undergoing clinical trials.   
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Aims of the thesis 

The overall goal of this thesis work was to understand the cellular and molecular 
mechanisms governing acute leukemia in children. While most of the genetic events 
that elicit childhood leukemia are often acquired in utero, congenital leukemia is 
very rare, and transformation usually occurs postnatally. This begs several 
questions: Are there fetal-restricted tumor suppressor pathways that protect 
neonates from leukemic transformation? What triggers transformation postnatally? 
Why do many children never develop leukemia despite the existence of a prenatal 
pre-leukemic clone?  

We approached these matters using transgenic mice that model MLL-r and E/R, two 
of the most common fusions in pediatric leukemia, with the following specific aims 
in mind: 

 

1) To investigate the influence of fetal hematopoietic programs, regulated by 
the fetal master regulator LIN28B, on the development of MLL-r AML 
(Paper I). 

 

2) To identify and characterize the most recurrent mutation that drives MLL-r 
AML progression (Paper III). 

 

3) To characterize HSCs activity both in steady state and in E/R-driven pre-
leukemia (Paper II and IV). 
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Summary of included papers 

Paper I 
At a genetic level, human AML is a highly heterogeneous disease and this 
heterogeneity influences disease severity and preferred treatment. In both children 
and adults, balanced translocations that involve the MLL1/KMT2A gene (MLL-
rearrangements; MLL-r) generate some of the most aggressive forms of AML. The 
very low mutational burden in pediatric patients suggests that MLL-r might be 
sufficient to drive transformation, without the need for additional secondary events, 
challenging Knudsen’s classical two-hit theory on tumor formation. However, 
although pediatric MLL-r arise in utero, congenital/neonatal leukemia is very rare, 
with transformation typically occurring postnatally. These patterns of pediatric 
leukemogenesis allude to a fetal-specific tumor suppressor activity that declines 
after birth. 

The expression of LIN28B, a master regulator of fetal hematopoiesis, is largely 
restricted to the prenatal stages of development, with an abrupt drop in expression 
a few weeks after birth. While a few studies have previously attempted to address 
the link between LIN28B and leukemia, there have been conflicting views 
emerging, with LIN28B being described both as an oncogene that gets upregulated 
in AML and as a tumor suppressor that restricts transformation. In light of this 
discrepancy, we interrogated cohorts of pediatric and adult AML patients and found 
that the vast majority of the samples lack the expression of LIN28B. 

Since AML patients are admitted to the clinic at advanced stages of the disease, it 
becomes difficult, if at all possible, to study AML initiation and early stages of 
disease development in humans, including the stages at which LIN28B and MLL-r 
cooccur in LICs. Therefore, we here used highly defined transgenic models to 
explore the influence of LIN28B on MLL-ENL (ME) leukemogenesis.  

Our results revealed that LIN28B interferes with AML initiation, evident by the 
complete abrogation of the disease in ~60% of the mice. Furthermore, when 
combined with activating RAS mutations, which generate very aggressive AML, 
LIN28B interfered with AML progression.  

Transcriptional profiling revealed that LIN28B expression associates with 
significant downregulation of MLL-r and LSC signatures and upregulation of fetal 
lymphoid differentiation and apoptosis signatures. More importantly, we observed 
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depletion of c-MYB target genes. c-MYB activity is critical for MLL-r 
leukemogenesis, and its transient or partial suppression completely impedes AML. 
Therefore, we sought to identify how LIN28B might be interfering with c-MYB 
activity.  

LIN28B exerts its effects through two primary mechanisms: 1) inhibition of let-7 
microRNA biogenesis, which in turn results in upregulation of let-7 targets; and 2) 
direct binding to specific mRNA targets, thereby altering their translation. 
Disruption of let-7 activity in ME LICs had no impact on AML progression, which 
indicated that the tumor suppressor activities of LIN28B are largely driven by its 
direct binding activity. Thus, to identify the mRNA targets bound by LIN28B, we 
performed individual-nucleotide resolution UV cross-linking and 
immunoprecipitation followed by sequencing (iCLIP-seq). We screened the RNA 
binding partners of LIN28B for potential MYB regulators and identified 
MYBBP1A. The interaction between LIN28B and MYBBP1A mRNA results in a 
remarkable increase in MYBBP1A protein levels. 

MYBBP1A has been previously described as a tumor suppressor in several non-
hematopoietic malignancies. It exerts its function through binding c-MYB and 
inhibiting its targets. Loss of MYBBP1A has been reported to increase MYB 
activity and induce a metabolic shift toward oxidative phosphorylation; both of 
which have also been proposed to be critical for LIC maintenance. Indeed, enforced 
expression of MYBBP1A captured to some extent the tumor suppressor activity of 
LIN28B, and its knockout restrained it. 

Combined, this work describes a novel fetal-associated tumor suppressor axis 
involving LIN28B  MYBBP1A –| MYB that restricts MLL-r AML and perhaps 
also other tumors with a MYB involvement. The developmentally restricted 
expression of LIN28B provides a natural protection against MYB-dependent 
tumors, while its abrupt decline a few weeks after birth presents an opportunity for 
leukemogenesis. This uncovers a molecular layer of protection against 
leukemogenesis and adds significant new functional and molecular insights into the 
roles of LIN28B during development, which can be exploited further for therapeutic 
benefits against AML of all ages. 

Paper II 
E/R is the most common chromosomal translocation in pediatric cancer and is 
exclusively associated with B-ALL. Although the fusion gene arises in utero and 
can be detected in about ~5% of all newborns, only a few individuals acquire the 
additional mutations/events necessary for transformation. The time between the 
initial and secondary events can span over a decade. However, in the absence of 
secondary mutations during childhood, the pre-leukemic clones become extinct, 
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which is evident by the sharp decline in the incidence of E/R B-ALL in young adults. 
Despite the generally favorable prognosis of E/R B-ALL, relapse rates are relatively 
high. Many aspects of the disease, such as the cell of origin, the mechanisms 
underlying the persistence of pre-leukemic clones in patients for years, and the 
triggers for transformation, remain largely elusive. By understanding these cellular 
and molecular mechanisms, new targeted or even prophylactic therapies can be 
developed. 

Studying early events of E/R-driven leukemogenesis in children is very challenging, 
and such events cannot be deduced from established tumors at diagnosis. Here, we 
generated a mouse model (iE/R) that can reversibly induce physiologically relevant 
expression levels of E/R in primary cells. We also confirmed that E/R expression 
can significantly accelerate B-ALL development when combined with Pax5+/- and 
Ebf1+/-, which are among the most common mutations in E/R B-ALL.  

With the model at hand, we directed our work towards understanding E/R-driven 
pre-leukemia. Induction of iE/R, which simulates the first event in E/R 
leukemogenesis, resulted in a marked expansion of candidate HSCs and early block 
in B lymphopoiesis. Previous studies have suggested that HSCs expand in response 
to E/R expression [201,203], and results from human-based models have provided 
some support to this notion [197,79]. However, the permanent expression of E/R 
oncogene in all these models confounds experimental work aimed at defining HSC 
function. This is because 1) the fusion gene might impose changes in the unique 
properties of HSC, such as multilineage differentiation, which is a hallmark for 
appropriate HSC identification. 2) Fusion genes such as E/R might induce an 
aberrant cellular phenotype that could make cells phenotypically resemble HSCs. 
With the benefits offered by our model, which permits switching off E/R expression, 
we were able to confirm that candidate HSCs expanding in response to E/R possess 
serially transplantable long-term multilineage reconstitution potential.  

Additional evidence supporting the role of HSCs in E/R leukemogenesis was 
obtained from BM transplantation experiments. In these experiments, E/R 
expression impaired overall hematopoietic reconstitution, particularly affecting 
lymphopoiesis. However, E/R-expressing HSCs were able to persist in the BM for 
extended periods with retained multilineage reconstitution potential. These cells 
were then outcompeted by WT cells in competitive transplantation assays. These 
findings suggest that HSCs may represent the cell of origin for E/R-driven leukemia 
and demonstrate that E/R clones are poorly competitive. 

Consistent with the disease patterns, E/R fetal cells appeared to possess a higher 
competitive advantage than their adult counterparts. Transcription profiling of 
HSPCs revealed that E/R expression suppressed RUNX1 and MYC targets, but 
induced several inflammatory pathways, including interferon-gamma and alpha 
responses, TNF-alpha, JAK/STAT, and MHC-I antigen presentation-associated 
pathways. More importantly, E/R fetal HSPCs possessed much higher expression 
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and activity of the immune modulators PD-L1 (CD274) and CD200r, which might 
explain the persistence of E/R prenatal clones that are otherwise poorly competitive.   

In light of these findings and the proposed connection between infections and E/R 
transformation, we finally tested whether E/R pre-leukemic cells might have an 
advantage in a context of viral mimicry. Indeed, E/R fetal and adult cells exhibited 
drastically different responses to poly I:C. Unlike adults, E/R fetal HSPCs were 
significantly more competitive and able to generate large numbers of corrupted B-
cell progenitors. Taken together, apart from suggesting immune modulation and 
checkpoint inhibitors as potential treatments for E/R leukemia, our results begin to 
explain the tight link between ontogeny and E/R leukemia. 

Paper III 
AML arises from a serial acquisition of primary (epi)genetic changes in an immature 
blood cell. The primary lesion endows the target HSPC with the capacity to initiate 
leukemia (LIC). Transformation thereafter occurs following the acquisition of 
additional/secondary mutations, which leads to tumor growth in a highly 
deregulated and aggressive manner.  The identity and actions of the secondary 
mutations can thereby shed light on the pathogenesis of AML and provide molecular 
candidates for therapeutic targeting. However, AML is a highly heterogeneous 
disease with distinct genetic lesions influencing disease subtype, severity, and 
preferred treatment. Balanced chromosomal translocations involving MLL-r 
generate one of the most aggressive AMLs. Previous studies have shown that MLL-
r are usually accompanied by very few secondary mutations, particularly in younger 
patients, and these mutations are mostly subclonal. Established AML samples 
provide little information on the early stages of disease development and the 
stepwise process of transformation. Thus, to approach this, we used a defined 
murine transgenic model, in which MLL-ENL can be induced as the primary genetic 
lesion, and we aimed to identify the secondary events that underly AML 
progression.  

First, we established the relevance of our model regarding AML disease patterns 
and clonality, mimicking human AML progression. Next, we performed exome 
sequencing to retrospectively identify candidate secondary driver events upon 
transformation. While recurrent secondary driver events were rare, a notable 
exception was a codon-changing mutation (Arg295Cys) in the ERM protein Moesin 
(MSN) that occurred in ~65% of the samples. Further experimental validation 
confirmed that the R295C mutant MSN can dramatically accelerate MLL-r AML 
progression, and its downregulation abrogates the disease. 

MSN is known to regulate cell polarity, adhesion, and migration. While not 
previously reported in human AML, MSN mutations and/or expression 
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dysregulation have been found in several cancer contexts, including anaplastic 
large-cell lymphoma, melanoma, and breast cancer, and its loss of function mutation 
has been linked to an X-immunodeficiency syndrome. However, our structural 
modelling and biochemical validation results indicate that the R295C mutation is 
rather a gain of function mutation.  

MSN contains a FERM domain that has three subdomains, F1 – F3, which form a 
cloverleaf conformation through interaction between F1 and the R295 residue in F3. 
This protein conformation is critical for homodimerization and inactivation of MSN 
[301]. Our results confirmed that the R295C mutation disrupts this, increasing the 
monomer form of MSN. Surveying human cancer samples in the TCGA, we 
observed two other R295 MSN variants: S295 and H295, both of which accelerated 
AML in our MLL-ENL mice. Intriguingly, we observed a direct correlation between 
the positive charge on the substituted residues and the pathogenicity of the disease.  

Mass spectroscopy revealed only minor differences between the protein interactome 
of WT and mutant MSN. However, we found that mutant MSN converges on 
enhanced MAPK/ERK signaling, which is frequently hyperactivated in MLL-r 
AML.  

Overall, this study offers valuable insights into the molecular mechanisms 
underlying MLL-r AML, emphasizing the significant role that MSN dysregulation 
plays in driving AML development and progression.  

Paper IV 
HSCs are characterized by their unique ability to establish hematopoiesis through 
their high self-renewal and multilineage differentiation capacities. Transplantation 
experiments are the gold-standard assay for assessing the functionality of HSCs and 
have contributed significantly to our understanding of HSC biology. However, these 
experiments are highly non-physiological, forcing HSCs to proliferate and restore 
the whole hematopoietic system in a lethally irradiated microenvironment. Thus, 
there is a need to approach the behavior of HSCs under homeostatic conditions.  

Advancements in sequencing techniques and mouse models have enabled the 
identification of HSC-specific markers that allowed for evaluation of HSCs activity 
in native settings. Lineage tracing studies have yielded conflicting views on the 
contribution of HSCs to adult steady-state hematopoiesis. Several studies have 
suggested that unperturbed hematopoiesis is largely driven by progenitor cells rather 
than HSCs [302,303], while others have supported the view that HSCs have 
contribute to adult hematopoiesis [304]. 

To address these uncertainties, we employed an HSC-specific lineage tracing 
approach, using the previously generated Fgd5 reporter mice (Fgd5-CreERT2 
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ZsGreen) [305]. First, we confirmed that Fgd5 expression is restricted to HSCs on 
the single-cell transcriptomic level. Next, we crossed the Fgd5-CreERT2 mice with 
TomatoLSL reporter mice to generate the Fgd5-CreERT2TomatoLSL strain, which 
allowed us to label-trace HSCs progeny. BM analysis 48h after Tamoxifen injection 
confirmed the restricted expression of TomatoLSL to HSCs.  

With a validated model in hand, we set out to assess the contribution of HSCs to 
native hematopoiesis. For this, we induced the mice with Tamoxifen food for 16 
weeks to ensure complete labelling of HSCs, followed by an extensive chase period 
(up to 41 weeks). Our results revealed that HSCs robustly contributed to all 
hematopoietic lineages but with distinct kinetics. For instance, platelets were the 
fastest to be generated from HSCs, followed by granulocytes and erythrocytes. 
However, lymphoid subsets took longer to acquire the label, with T cells being the 
slowest. These kinetics remained the same when 5 doses of Tamoxifen were 
administered instead of Tamoxifen food. However, label progression and robustness 
were lower when only 1 injection was administered.  

As for progenitors, MPPs showed the fastest kinetics, reaching equilibrium to HSCs 
label only after 4 weeks. The MPP2 compartment was next, which reached 
equilibrium to HSCs label after ~32 weeks. Further characterization of MPP2 
revealed that they were biased towards the MegE lineage. Similarly, and in line with 
the labelling trends in peripheral blood, MkPs showed equivalent labels after 32 
weeks, followed by other myeloerythroid progenitors. In contrast, MPP3/4 acquired 
the label with much slower kinetics.  

We also analyzed label progression in tissue-resident immune subsets, including 
Langerhans cells, microglia, and B1a cells, and found no contribution from adult 
HSCs to these cells. This supports their fetal origin and ability to self-maintain. 

Finally, we investigated the contribution of HSCs to hematopoiesis in aged mice. 
This revealed a striking reduction in label progression from HSCs to MPPs and 
subsequently mature cells, providing further confirmation of the age-related decline 
in HSC function. 

Taken together, this study provides further evidence of the continuous contribution 
of HSCs to steady-state hematopoiesis. 
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General discussion and future 
perspectives 

The fetal period is a remarkable stage of extensive proliferation and growth, 
orchestrated by intricate gene regulatory networks. When reactivated later in life, 
most of these networks often exhibit oncogenic activity. Yet, the incidence of cancer 
during the congenital and neonatal stages is very low compared to all other life 
stages. What further adds to this paradox is that many childhood cancers arise in 
utero but only develop at a later stage postnatally. This raises the possibility that 
there may be a previously unexplored side to some of these developmentally 
restricted regulators capable of restricting cancer growth. 

In Paper I, we identified a prenatal tumor suppressor axis driven by the master 
regulator of fetal hematopoiesis, LIN28B, which serves as a barrier against AML 
development. The ectopic expression of LIN28B in MLL-r mouse model 
dramatically impeded AML development and progression even in the presence of 
powerful cooperating mutations in RAS or MSN (Paper III). Further investigation 
revealed that MYBBP1A, a tumor suppressor associated with fetal hematopoiesis 
and a known c-MYB suppressor, is a key driver of LIN28B's tumor suppressor 
actions. 

Previous studies have proposed a dramatically opposing role for LIN28B, 
suggesting it as a downstream oncogenic target of MLL-r that becomes reactivated 
in AML [306–308]. However, we interrogated ~1700 pediatric and adult AML 
patients and found almost no expression of LIN28B. In the few cases where LIN28B 
was expressed (12 patients, ~0.7%), its levels were very low. Several other studies 
have corroborated our findings, albeit with little mechanistic explanations 
[265,309,310]. While we have shown that the tumor suppressor effects of LIN28B 
are largely let-7 independent, there is a plethora of mRNA targets bound by LIN28B 
that might be synergistically cooperating with MYBBP1A to abrogate AML, and 
future research will likely reveal more about this. 

We believe that we have only scratched the surface of this tumor suppressor axis, 
and there is certainly more to it than we have explored. For instance, besides the 
role of MYBBP1A in suppressing c-MYB activity, low expression levels of this 
tumor suppressor protein have been shown to increase ROS levels, which can 
further contribute to leukemogenesis. Other studies have shown that MYBBP1A 
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can directly activate TP53 and regulate cell cycle progression and DNA repair [311]. 
However, most of these studies have been conducted in a non-hematological 
context, and further research is needed to identify the roles of this multifunctional 
protein in normal and malignant hematopoiesis. 

Blood and solid tumors have distinct cellular architecture, vasculature, and oxygen 
levels, which can largely alter their metabolic programs and response to therapies. 
For instance, although its role was also debated at first, the hypoxia inducible factor 
(HIF) is known to act as a tumor suppressor in AML but promotes tumor growth in 
neuroblastoma [312–314]. Similarly, LIN28B, which we propose as a tumor 
suppressor in AML, has been linked to poor outcomes in neuroblastoma [315]. This 
suggests that the activity of LIN28B is most likely context dependent. 

The role of LIN28B in ALL is an intriguing line of research that has yet to be fully 
explored. Fetal and adult hematopoiesis significantly differ in terms of lineage 
biases and differentiation capacities. Our findings in Paper IV confirm that adult 
HSCs continuously and robustly contribute to all adult hematopoietic lineages in 
steady state, yet they are incapable of generating fetal-derived immune cells. The 
ability of LIN28B to instate fetal hematopoiesis in adult HSCs, including the 
generation of early-life -established [86,94]. Furthermore, 
studies have suggested that myeloid and MegE arise following the Lin28b/let-7 
developmental switch [73,75]. Thus, while we can only speculate here, one 
hypothesis might be that LIN28B could contribute to pediatric ALL development 
by conferring a bias towards fetal lymphopoiesis. Previous studies have attempted 
to assess the impact of LIN28B on lineage distribution and activities of multipotent 
progenitors. These studies reported a slight skewing towards the lymphoid lineages, 
with the most significant observation being re-acquisition of the capacity to generate 
these developmentally restricted immune cells [86,98]. Other studies have shown 
that the differences in lymphoid/myeloid biases between fetal/neonatal and adult 
cells are rather cell-extrinsic, governed by the developmental stage of the 
hematopoietic niche [286]. [286]. Thus, the hypothesis that LIN28B might increase 
susceptibility to ALL development by conferring a lymphoid bias is rather unlikely. 

The second hypothesis suggests that LIN28B expression might interfere with ALL 
by a similar or different mechanism from the one described in Paper I. We lean more 
towards this hypothesis for several reasons. First, we have not observed significant 
expression of LIN28B in pediatric ALL patients (TARGET cohort). In fact, 
although infrequent, there were 15 patients with deletions in LIN28B compared to 
only one with an activating mutation. Second, MYB activity seems to be also 
important for ALL maintenance [316–318], which might suggest that MYBBP1A 
could potentially interfere with ALL development as well. Third, the previously 
discussed patterns of development of pediatric leukemia, with a prenatal initiation 
and postnatal transformation, would not align with an oncogenic role of LIN2B. 
Nevertheless, these are all speculations and future investigation is needed. 
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The progression patterns of childhood ALL cannot be solely attributed to a prenatal 
tumor suppressor preventing disease progression. This is because the most frequent 
initiating events in childhood ALL are weak oncogenes that need secondary 
mutations for transformation, and this process might take years. For instance, 
despite the well-established prenatal origin of E/R, leukemia peaks after 2 – 5 years, 
with many instances in older children and teenagers. However, the frequency of E/R 
ALL sharply declines in adults.  

In Paper II, we generated a novel mouse model to investigate how E/R pre-
malignant cells can persist in the BM for extended periods before transformation, 
and why E/R ALL is very rare in adults. Our findings suggest that E/R 
leukemogenesis originates from HSCs, as we were able to demonstrate their ability 
to expand significantly in response to E/R and persist in the BM for an extended 
period. However, we think that these phenotypes are largely influenced by the 
developmental stage of HSCs. This is because despite E/R generally impairing 
HSCs capacity to compete and generate B cells, these phenotypes were milder in 
fetal compared to adult cells. These findings are in line with the previously reported 
low frequencies of E/R clones in neonates (~ 10-4) and the even lower frequencies 
in adults (10-5 to 10-6) [190,191,319]. Thus, our results endorse the notion that E/R 
pre-leukemic clones become outcompeted upon reaching adulthood in the absence 
of secondary events, explaining the scarcity of E/R ALL cases in adults. 

While there is substantial epidemiological evidence supporting Greaves' delayed 
infection hypothesis, only a few studies have experimentally validated it. One study 
exposed Pax5 haploinsufficient mice to common pathogens, resulting in B-ALL 
development in ~20% of the mice with a latency of 6-16 months [320]. Another 
study used a mouse model in which E/R expression was driven by the Sca1 
promoter, restricting E/R expression to HSPCs while B-cell progenitors lacked any 
expression. When these mice were exposed to infections one month after birth, a 
few instances of B-ALL (~10%) were observed, but with a latency exceeding 20 
months [321]. Although a dysregulated immune response has been suggested as the 
trigger for E/R transformation, the exact mechanisms behind this remain unclear 
[240]. 

In our study, we examined the effects of a viral-infection mimicry on E/R pre-
leukemia (Paper II). Our results showed that fetal HSPCs responded differently to 
poly I:C stimulation compared to adult HSPCs, exhibiting a greater ability to 
compete and generate early B-cell progenitors that could potentially undergo 
transformation. Whether these responses could be even more pronounced in the 
setting of an actual viral infection remains to be explored. Additionally, our findings 
revealed that E/R expression in fetal HSPCs led to a more significant upregulation 
of MHC-I and immune checkpoint-related pathways compared to adult HSPCs. 

Taken together, these observations highlight the critical role of ontogeny in 
determining the susceptibility of pre-malignant cells to malignant transformation 
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and underscore the potential for immune evasion by pre-malignant cells. This 
evasion may enable pre-malignant cells to persist and gain a competitive advantage 
over normal HSPCs during infection. Although our findings are consistent with 
recent sequencing studies on E/R B-ALL patients [206,322,323], further research is 
required to validate the potential of immune modulatory drugs and checkpoint 
inhibitors as promising therapies for these patients. 
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Popular scientific summary 

The blood system is one of the most regenerative systems in our body. Throughout 
life, more than two million blood cells are being produced every second. Blood cells 
can be divided into three main types: red blood cells, white blood cells, and platelets. 
Each of these types is critical for our survival. Red blood cells carry oxygen to all 
our body cells, white blood cells establish the immune system that fights infections, 
and platelets are for blood clotting and wound healing. All these blood cells are 
generated by a unique and rare type of cell called blood stem cells. In Paper IV, we 
used a mouse model in which we can specifically mark blood stem cells and 
thereafter track the cells they generate. This allowed us to study the behavior of 
blood stem cells and the rate at which they generate each blood cell type. Our results 
show that while the rates differ depending on the identity of the types of cells 
produced, most blood cell types are continuously generated from blood stem cells. 

The process of blood cell production from stem cells is very complex and tightly 
controlled. Errors in these processes might result in benign or malignant diseases. 
Leukemia is a the most common blood cancer, characterized by abnormal and 
uncontrolled expansion of dysfunctional blood cells that crowd out normal cells, 
leading to a variety of clinical symptoms. It is the most prevalent cancer in children. 
It is believed that most childhood leukemias originate in the womb due to a genetic 
error/mutation. Some of these mutations, like MLL fusions, are very aggressive and 
are expected to generate leukemia very quickly. Despite this, the incidence of 
leukemia during the prenatal and neonatal stages is very low (~1% of all childhood 
leukemia cases), and leukemia usually develops at a later stage after birth. Thus, we 
hypothesized there might be a protein that acts as a tumor suppressor during these 
early stages of life, hindering leukemia development.  

LIN28B is a master regulator of fetal blood cell formation. Its expression peaks 
during the prenatal period and declines abruptly after birth. In paper I, we used a 
mouse model that always generates leukemia, and we tested the impact of LIN28B 
expression on leukemia development. Indeed, LIN28B abrogated leukemia in more 
than half of the mice, and the disease took a long time to occur in the rest. Moreover, 
when we introduced additional mutations, like MSN, that generate more aggressive 
disease, we found that LIN28B was still able to interfere with leukemia 
development. Further analysis revealed that LIN28B impedes critical programs for 
leukemia development, and these actions are mainly driven by another tumor 
suppressor protein called MYBBP1A. Thus, our study proposes that the expression 
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of the tumor suppressor LIN28B before birth hinders leukemia initiation, and when 
it gets inhibited after birth, the protection wanes off, with an opportunity for 
leukemia development. This suggests potential new therapies for leukemia of all 
ages. 

In contrast to MLL fusions leukemia, ETV6-RUNX1 (E/R) leukemia is a less 
aggressive but more prevalent type of leukemia in older children. The first mutation 
also happens in the womb, but more mutations are always needed for the 
development of E/R leukemia. The time difference between the first and second 
mutations might span over 15 years. However, the incidence of E/R leukemia 
sharply declines in adults. How these pre-malignant cells can persist in the body for 
all this time without being recognized and wiped out by the immune system, and 
why its incidence declines in adults, are still unanswered questions. To answer some 
of these questions, we modelled E/R in mice and found that these pre-malignant 
expand and persist in the bone marrow by activating certain pathways to evade the 
immune cells. We also found that exposure to infection triggers the expansion and 
growth of these pre-leukemic cells that are derived from fetal but not adult origin. 
This might explain the disease patterns and suggest potential immune modulatory 
treatments for targeting the disease before its development. 
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Populärvetenskaplig sammanfattning 

Blod är ett av de mest regenerativa systemen i vår kropp. Under hela livet 
produceras mer än två miljoner blodkroppar varje sekund. Blodkroppar kan delas in 
i tre huvudtyper: röda blodkroppar, vita blodkroppar och blodplättar. Var och en av 
dessa typer är avgörande för vår överlevnad. Röda blodkroppar transporterar syre 
till alla våra kroppsceller, vita blodkroppar utgör immunförsvaret som bekämpar 
infektioner och blodplättar är till för koagulering och sårläkning. Alla dessa 
blodkroppar genereras av en unik och sällsynt typ av celler som kallas 
blodstamceller. I Artikel IV använde vi en mus-modell där vi kan markera 
blodstamceller och följa alla celler som de genererar. Detta gjorde det möjligt för 
oss att studera beteendet hos blodstamceller och hur snabbt de genererar varje 
blodcellstyp. Våra resultat bekräftar att även om hastigheten kan skilja sig, 
genereras de flesta blodcellstyper kontinuerligt från blodstamceller. 

Processen för produktion av blodceller från stamceller är mycket komplex och 
noggrant kontrollerad. Om det går fel där kan det leda till sjukdomar, som kan vara 
godartade eller elakartade. Leukemi är den vanligaste blodcancern. Den 
kännetecknas av onormal och okontrollerad expansion av felfungerande 
blodkroppar som tränger ut normala celler, vilket leder till en mängd olika kliniska 
symtom. Det är den vanligaste cancersjukdomen hos barn. Man tror att de flesta 
barnleukemier har sitt ursprung i livmodern och sker på grund av ett genetiskt fel 
eller en mutation. Vissa av dessa mutationer, exempelvis MLL-fusioner, är mycket 
aggressiva och förväntas generera leukemi mycket snabbt. Trots detta är 
förekomsten av leukemi under det prenatala och neonatala stadiet mycket låg (~1% 
av alla barnleukemifall), och leukemi utvecklas vanligtvis i ett senare skede efter 
födseln. Därför antog vi att det kan finnas ett protein som fungerar som en tumör-
hämmare under dessa tidiga skeden av livet, vilket hindrar utvecklingen av leukemi. 

LIN28B är en av spindlarna i nätet som reglerar fostrets blodcellsbildning. Den 
uttrycks mest under prenatalperioden och avtar abrupt efter födseln. I artikel I 
använde vi en mus-modell som alltid genererar leukemi, och vi testade effekten av 
LIN28B-uttryck på leukemiutveckling. Faktum är att LIN28B upphävde leukemi 
hos mer än hälften av mössen, och det tog lång tid för sjukdomen att uppstå i resten. 
Dessutom, när vi introducerade ytterligare mutationer, som MSN (vilket genererar 
mer aggressiv sjukdom), fann vi att LIN28B fortfarande kunde störa utvecklingen 
av leukemi. Ytterligare analys avslöjade att LIN28B hindrar kritiska program för 
leukemiutveckling, och dessa åtgärder drivs huvudsakligen av ett annat tumör-
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hämmande protein som kallas MYBBP1A. Således visar vår studie på att uttrycket 
av tumör-hämmarande LIN28B före födseln hindrar leukemiinitiering, och när det 
hämmas efter födseln avtar skyddet och det resulterar i en möjlighet för leukemi att 
utvecklas. Detta ger upphov till potentiella nya terapier för leukemi i alla åldrar. 

I motsats till MLL-fusionsleukemi är ETV6-RUNX1 (E/R)-leukemi en mindre 
aggressiv men mer utbredd typ av leukemi hos äldre barn. Den första mutationen 
sker också i livmodern, men fler mutationer behövs för att utveckla E/R-leukemi. 
Tidsskillnaden mellan den första och andra mutationen kan sträcka sig över 15 år. 
Förekomsten av E/R-leukemi minskar dock kraftigt hos vuxna. Hur dessa pre-
maligna celler kan finnas kvar i kroppen under hela denna tid utan att kännas igen 
och utplånas av immunsystemet, och varför dess förekomst minskar hos vuxna, är 
fortfarande obesvarade frågor. För att svara på några av dessa frågor modellerade vi 
E/R i möss och fann att dessa pre-maligna expanderar och kvarstår i benmärgen 
genom att aktivera vissa vägar för att undvika immuncellerna. Vi fann också att 
exponering för infektion utlöser expansion och tillväxt av dessa pre-leukemiska 
celler som härrör från foster (till skillnad från vuxet ursprung). Detta kan förklara 
sjukdomsmönstren och inspirera potentiella immunmodulerande behandlingar för 
att rikta in sig på sjukdomen innan den utvecklas på riktigt. 
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