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Magyar összefoglaló

Az emberiség mai hozzáállása a természettudományhoz egy pár alapfelfogáson épül. Első
sorban, azt a jelenséget tartjuk valósnak, ami a természetben megfigyelhető (mert ha a fáról
úgy esik le az alma, hogy azt senki sem hallotta, akkor valójában adotte ki hangot?). Má
sodszor, ha a valóságban megfigyeltek papíron leírhatóak és egy elméletbe foglalhatóak,
és leginkább akkor, ha jósló képessége van ennek az elméletnek, akkor célba értünk a
kutatott kérdéssel kapcsolatban. Így egyértelművé válik, hogy az egyik alapvető kihívás
a mai tudományban, hogy minél pontosabban tudjuk megfigyelni a természetet; minél pon
tosabb elméleteket fejlesszünk ki és ezeket minél pontosabban tudjuk használni a természet
megismerésére. Pontosság.

A természettudományon belül a fizika az élettelen természetet leíró nyelvezetünk. Minden
élő szervezet és anyag legkisebb egysége a sejt. Viszont a sejtet képező ennél még kisebb
alaprészecskék már — a mai tudomány szerint — élettelen alapegységek, így a fizika, és ezen
belül a részecskefizika, alaptörvényeire hallgatnak. Az emberiség mai napig legsikeresebb
elmélete az alaprészecskék leírására, a Standard Modell, amely összefoglalja az eddigi ismert
és valamilyen formában megfigyelt összes részecskét és a köztük fennálló kölcsönhatásokat.

A Standard Modellből kiinduló számítások sokrétegű nehézséggel járnak. Ezért a pontos
leírása és a számítógép segítségével kiszámolt eredményei egy egész külön ágat alkotnak
a részecskefizika világán belül, a precíziós (pontos) fenomenológiát. A jelen doktori dol
gozat, a Standard Modell pontosításához valamint a részecskefizikán belüli kísérletekhez
való összehasonlításának lehetőségéhez járul hozzá.

A bevezetőt egy jogos kérdéssel zárom. Miért érdekli az emberiséget ez a sok alaptudomány?
Kinek vagy minek teszünk az ezzel való foglalkozással jót és a társadalmat hogyan mozdítjuk
előre? A válasz egy egyszerű szóban rejlik: felelősség. Hiszen a világot alkotó csodák véget
nem érve kerülnek elénk felderítésre. Ezek közül pedig a legnagyobb csoda az, hogy Isten
minket annyi képességgel és érdeklődéssel ajándékozott meg, hogy ezt mind felderíthessük.

Éljünk ezzel az ajándékkal.

viii



Populärvetenskaplig sammanfattning på svenska

Vad är det som hindrar oss att falla rakt igenom stolen när vi sätter oss? Och varför kan
vi hålla en temugg i handen utan att krama sönder den? Svar på dessa och liknande frågor
får vi genom att undersöka de allra minsta beståndsdelarna i materian som bildar världen.
Varför hålls planeter kvar i sina omloppsbanor och varför blir stjärnor till? Det är frågor
som rör de allra största objekten i vår värld. Oavsett om det handlar om mycket stora eller
mycket små längdskalor, är människan nyfiken på varför.

Nyfikenhet har alltid drivit människan mot att upptäcka nya fenomen. Men vad menas
egentligen med nya fenomen? Det måste vara nytt i jämförelse med något annat. Vi kan
knappast påstå att vi upptäcker något nytt när man uppfinner hjulet igen, men på sin tid
var det sannerligen en genomträngande upptäckt. För att verkligen kunna säkerställa att det
som har upptäckts är nytt, måste vi lika noggrant veta vad vi redan vet och vad vi förväntar
oss av omvärlden utifrån den befintliga kunskapen. I många fall kan detta vara en mindre
självklar uppgift än vad det låter som.

Fysik är i synnerhet alltid driven åt att förstå hur materia växelverkar. Låter vi temuggen stå
på bordet utan någon yttre inverkan kommer den att stå kvar en väldigt lång tid, och ingen
intressant fysik verkar hända med den. Men efter många tusen år börjar den sönderfalla:
detta fenomen kan på den “rätta” längdskalan — på partiklarnas nivå — beskrivas av hur
de allra minsta beståndsdelarna av temuggen växelverkar med varandra och omgivningen.
Oavsett längdskala, berör fysik alltid materians samspel och dess konsekvenser och det är
denna dynamik vi vill komma åt i forskning.

Med denna inledning kan vi sammanfatta ämnet i denna avhandling och förstå dess vikt
inom partikelfysik. Den nuvarande teorin i partikelfysik, som har utvecklats gradvis under
1900talet, kallas standardmodellen och den har kunnat beskriva fenomen som upptäcks vid
energirika partikelkollisioner med häpnadsväckande bra precision. Men ändå misslyckas
standardmodellen att ge svar på många frågor (som existensen av mörk materia) och dessa
kräver nya modeller och nya sätt att tänka på. I denna avhandling undersöker vi den befint
liga kunskapen om partiklarnas dynamik med hög precision baserad på standardmodellen.
Detta utförs för olika händelser av partikelkollisioner som sker vid LHC (Large Hadron
Collider) som är dagens främsta experiment för partikelfysik. Avhandlingens forskning bi
drar således till att bättre kunna förstå och utnyttja data som samlas vid partikelexperiment,
med förhoppning om att upptäcka fenomen som sträcker sig utöver standardmodellen och
med det kunna beskriva obesvarade fenomen i vår natur.
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Introduction

“Tonight I can go to sleep with the thought: the Himalayas became one dust grain taller today.”

— translation from Reményik Sándor

This doctoral thesis focuses on the study of fundamental, indivisible pointlike particles and
the particles with (very small) spatial extension formed by them. In this field of science, the
interactions of these particles are investigated at both low and high energies compared to
the particle rest masses. High energy collisions of particles are investigated at large particle
physics facilities, out of which the largest today is CERN, which hosts the Large Hadron
Collider (LHC), colliding protons (pp collisions) and heavy nuclei. This thesis and the four
papers included in it are concerned with pp collisions, with a focus on a few processes and
measurements related to these: the DrellYan process, the production of a top quark pair,
and multijet processes.

The aim of this introductory chapter is to provide sufficient background information for
understanding the papers included in the thesis. For those who are interested in a shorter,
less formal, but complete introduction, Section 1 is dedicated to precisely this purpose. A
more formal development of the introduction is presented in the following sections:

• Section 2 covers some essentials of theoretical particle physics and concepts within
particle physics phenomenology.

• Section 3 discusses Monte Carlo computerbased simulations of particle interactions
and related topics.

• Section 4 provides a slightly more experimentallyoriented background, with a focus
on the LHC program and presents the processes investigated in the papers.

These sections can be read in any order, as they provide complementary information. Fi
nally, the introduction is concluded with some final words and outlook in Section 5, before
making a transition to the papers of the thesis by presenting a summary of them and my
contributions to each in Section 6.

1



1 Basic scientific introduction

“Nature is an infinite sphere of which the center is everywhere and the circumference nowhere.”

— Blaise Pascal

The aim of particle physics is to study the interactions of fundamental particles. It is im
portant to note that these particles are not like everyday particles with finite size; in fact,
we do not know if they have any spatial extension at all. What is meant by particles in
this setting are those fundamental entities which emerge at the smallest scales and are not
further composed of even smaller entities. And how do we detect and realize these fun
damental particles? To understand this, we draw a parallel between classical physics and
particle physics.

In the world around us, the motion of an object with massm having a forceF(t) exerted on
it can be predicted by Newton’s law F(t) = m a(t) thereby obtaining a (timedependent)
acceleration a(t). The particle’s motion is then entirely determined (with some suitable
initial conditions), allowing us to calculate its velocity v(t) =

∫
a(t)dt and its position

s(t) =
∫
v(t)dt at any time t. This, so far, is all described with classical Newtonian phys

ics. In particle physics, the goal is analogous: we want to understand how particles are
affected by external forces. For instance, in electromagnetism, electrically charged objects
exert forces on other charged objects. In other words, matter interacts through the elec
tromagnetic force field. Similarly, at the particle level, we investigate how fundamental
particles affect each other through various force fields.

In the everyday world, we can perform a wide variety of experiments on objects, such as
dropping an apple from a height to probe the gravitational field, or giving it a push, or
even cutting it into pieces. In particle physics, however, there are limitations to the types
of experiments we can conduct. The reason for this is that we do not operate on the length
scales of these particles. We can reach their level in research only by means of particle
colliders, which are quite limited in their setup. Particle colliders accelerate particles to
extremely high speeds to achieve high energies. This way we can probe the fundamental
particles, and not only those which naturally occur in our world, but also the rare ones.
This restricts us to two main types of experiments: examining how two (or more) particles
interact in a collision or how a single particle decays. In the former case, either fixed
target experiments are used, in which one particle is at rest during the collision, or collider
experiments, in which both are in motion. In both cases, the objective remains to calculate
the probability that an interaction of some certain type takes place in the collision.

In classical Newtonian mechanics, it is well determined how an apple will move once it is
given a push in some direction. Particles are, on the other hand, described by quantum
mechanics, where the path taken by the object cannot be determined perfectly in advance
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with 100% certainty even with perfect knowledge of the object and the initial conditions.
Instead, it is only possible to compute the probability that the object will move in various
paths from one (welldefined) point to the other (welldefined) point. The final probab
ility of the particle to reach the second point is obtained by summing and averaging over
all possible paths between the initial and final points. For this reason, the calculations
in quantum mechanics often become more complex and timeconsuming than those in
Newtonian mechanics, even though the concepts of force and resulting motion remain the
same.

This finally leads us to the concept of cross sections in particle physics. The cross section
for an interaction is the probability of some set of particles to produce some other (or the
same) set of particles under specific conditions, such as energy of the collision, particle
types, and temperature. The cross section is generally denoted with σ({i} → {f}), where
{i} is the initial set of particles and {f} is the final set of particles. To be able to calculate
this probability, we need to know the forces acting between the particles: in analogy to
Newton’s law, we need to know F(t). However, determining which forces are included
is not trivial, as various models include different types of fundamental forces. One such
model, the Standard Model, includes three types of forces: the weak interaction, the strong
interaction and the electromagnetic interaction. It omits the description of gravity, a very
basic force in our everyday world — this is in fact one of the (many) limitations of this
model. But despite its flaws, this model has reached a remarkable agreement with obser
vations at particle collisions. Consequently, it serves as a baseline for experiments, while
active research seeks models describing and including further phenomena, such as gravity.

With this general introduction, we can now describe the fundamental particles and interac
tions that are contained in the Standard Model. The electromagnetic force affects charged
leptons, quarks and two charged weak bosons; the weak interaction affects charged leptons
and neutral leptons (neutrinos) and quarks and three weak bosons (two charged and one
neutral); and finally the strong interaction affects quarks and gluons. These particles are
divided into matter particles and force carrier particles: matter particles are the leptons
and quarks (collectively known as fermions), while the force carriers (collectively known
as bosons) are the three weak bosons, the photon and the gluon. The photon, a neutral
and massless particle, interacts only with charged fermions in this model, while the gluon
interacts also with other gluons. The leptons and quarks are grouped in three sets, or gen
erations, with increasing mass scales. Each particle also has a corresponding antiparticle
(which might be itself ) that has the same mass and other internal properties, but oppos
ite charges. Antiparticles for quarks and neutrinos are denoted with a bar (for example b
represents a bottom antiquark and ντ an antitauneutrino), while the antiparticles for
the leptons and the charged bosons are denoted with the opposite charge sign (e+ for the
electron antiparticle, the positron). In addition to these particles, there is another one,
the Higgs boson, that interacts with all particles which have mass (or more precisely, the
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particles which interact with the Higgs boson acquire mass). The Higgs boson also plays
a role in reducing the three forces mentioned above (the strong, weak and electromagnetic
forces) to effectively only two: the quantum chromodynamic (QCD) interaction (describ
ing the strong interaction) and the electroweak (EW) interaction. The particles and the
three basic interactions in the Standard Model are depicted in Figure 1.
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Figure 1: Schematic content of the Standard Model: the particles in boxes are fermions,
while those in circular shapes are bosons, the force carriers. The red indicates
the weak interaction, the yellow indicates the electromagnetic interaction and
finally the purple indicates the strong interaction. The Higgs boson interacts
with the underlined particles. The dashed lines separate the fermions into the
three generations.

Only three of the mentioned particles occur naturally: the electron (orbiting the atomic
nuclei), and the up and down quarks (forming the protons and neutrons in the atomic
nuclei). All other particles can be created only for short times at high energy colliders. The
spatial size of the fundamental particles is portrayed in Figure 2, comparing the sizes of the
building blocks of a plant in our everyday world. The size of the other fundamental particles
are comparable to the size of the up and down quarks (valence quarks) in the proton, less
than 10−18 m.

The mathematical language for the description of the interactions is quantum field theory.
Within this framework, the forces in the Standard Model are represented in a function
called the Lagrangian L. This function includes terms that describe interaction points
between particles. The strengths of these interactions are parametrized by socalled coup
ling constants. With the Lagrangian as the foundation, Richard Feynman developed a
convenient tool in 1948 for the evaluation of cross sections, based on a set of rules. These
are known as Feynman rules, and they structure the computation of cross sections in a neat
fashion, although they can produce tedious and cumbersome expressions to evaluate. The
Feynman rules are based on perturbation theory, which is, in principle, a simple tool that
utilizes the Taylor expansion of functions. Specifically, given some function f(ϵ, x) which
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Figure 2: The size of the valence quarks in a series of magnifications starting from a plant
(of order 1 m) in our everyday world.

is dependent on x and some small parameter ϵ, we Taylor expand the function,

f(x, ϵ) ≈ f(x, ϵ = 0)︸ ︷︷ ︸
LO

+ ϵ
df
dϵ

∣∣∣∣
ϵ=0︸ ︷︷ ︸

NLO

+
1

2
ϵ2

d2f
dϵ2

∣∣∣∣
ϵ=0︸ ︷︷ ︸

NNLO

+O(ϵ3). (1)

When this is applied to the Lagrangian L of the Standard Model, the small expansion para
meters are the coupling constants: αs (for the strong interaction) andα (for the electroweak
interaction), which are indeed small, αs ≈ 0.1 andα ≈ 0.01. With this expansion at hand,
we can keep only the first few terms in the expansion, as the impact of higher order terms
become negligible. By truncating at higher and higher orders in α and αs one increases the
precision of the cross section computation. From this arises (as the equation indicates) the
terminology of leading order (LO) which is the lowest (nonvanishing) order in the coup
lings, the nexttoleading order (NLO), and so on (NNLO, N3LO,…). When performing
a Taylor expansion in both of the couplings simultaneously, the expansion above is slightly
more involved,

f(x, αs, α) ≈ αc1
s α

c2

f(x, αs = 0, α = 0)︸ ︷︷ ︸
LO

+αs
df
dαs

∣∣∣∣
αs=0,α=0︸ ︷︷ ︸

NLO QCD

+α
df
dα

∣∣∣∣
αs=0,α=0︸ ︷︷ ︸

NLO EW

+O(αsα)

 ,

(2)
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where the leadingorder term is the first nonvanishing term in the expansion, and any
potential common factor of αc1

s α
c2 of the couplings is factorized. This introduces the

important term of NLO electroweak (NLO EW) corrections, which is the primary focus
in three papers of this thesis. Higher order terms can have pure QCD origin, pure EW
origin, or be mixed terms.

Feynman envisioned all these contributions in the expansion, term by term, as diagrams.
In Feynman diagrams, incoming particles appear on one side, and outgoing on the other.
Particles are depicted as lines, and are connected in all possible ways following the Feynman
rules (originating from the Lagrangian L). These rules assign mathematical expressions to
the lines and vertices, allowing the calculation of the values of the diagrams. We exemplify
this by drawing the leadingorder diagram for the e+e− → uu process,

e
−

e
+

u

u

γ

which is indeed the only possible diagram we can draw at leading order, based on the
Feynman rules for this process within the Standard Model. According to these rules, each
vertex with one photon and two charged particles translates into a factor of i

√
Q4παγµ,

where Q is the fractional charge of the particle compared to the charge of the charged
leptons (e) and γµ is a set of constantvalued matrices. An internal line appearing inside
the diagram is called a propagator. For the photon propagator in the above diagram, we
assign the factor −i

E2+iϵ
, whereE is the energy of the photon and ϵ a small number (which is

set to zero after all computations are finished, but is needed for proper bookkeeping of the
calculations). Considering that the u quark has electric charge 2

3e, the diagram evaluates
to

e
−

e
+

u

u

γ

∼ i
√
4παγµ

−i
E2 + iϵ

i
2

3

√
4παγµ. (3)

The diagrams enter the cross section as the square of the sum of all possible diagrams. As
such, this diagram squared contributes at order O(α2), to the leadingorder term of the
Taylor expansion of this process.

To put this background into context, the processes that are targeted in the papers of the
thesis are now introduced. The first process is the neutralcurrent DrellYan process, where
two protons collide to produce two charged light leptons (e+e− or µ+µ−) in the final state.
This process has been crucial for the identification of the fundamental particle content of
the proton and the verification of the strong interaction. The cross section, or specifically its
dependence on the directions in which the outgoing charged leptons leave the interaction
point, is parametrized by a set of decay coefficients, calculated with perturbation theory and
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measurable as observables at particle detectors. Paper I in this thesis presents the NLO EW
corrections to these coefficients, which is an important contribution to the understanding
of the Standard Model precision predictions for this important process at the LHC.

A closely related process is the chargedcurrent DrellYan process, where one charged lepton
and the corresponding neutrino is created in the collision (e± (−)

ν e or µ± (−)

ν µ). Again,
a set of decay coefficients parametrizes the cross section. This process is challenging to
measure because the neutrino, which only interacts through the weak interaction, escapes
all detectors. Consequently, the precision predictions for the decay coefficients have been
previously missing, and for this reason, in paper IV we present NNLO QCD and NLO
EW corrections to these observables for the first time, in hope of experiments achieving
highprecision measurements of them in the near future.

The third process of interest to this thesis is the production of a tt pair, in which the heavy
top quark (the heaviest particle in the Standard Model) and its antiparticle are produced.
Of special interest related to this process is how the spin (an internal property of each
particle) is correlated between the two produced quarks and the particles which they decay
into. Paper II investigates the NLO EW corrections to the spin correlations and related
observables for this process with leptonic decays of the top quarks.

Finally, paper III targets a rather different type of process at the LHC: multijet events.
These are abundant processes that appear in almost all process investigations at the LHC
and are essentially a QCD background to the interesting signals which are being extracted
from data. The strong interaction is in some aspect mathematically the most complicated
interaction to compute. Therefore, when a large number of strongly interacting final state
particles are present, performing computations at high precision becomes very challenging.
In paper III we propose a new approach to the computation of these processes, laying the
theoretical foundation for the implementation of a new, improved computational toolkit.

This concludes the basic scientific introduction with which the main essence of the papers
in this thesis can be understood. A short summary of the publications and my contributions
to them are presented in Section 6. The remaining of this introductory chapter presents
the background in more detail.
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2 Introducing particle physics phenomenology

“Nothing in life is to be feared; it is only to be understood.”
— Marie Curie

The physics of fundamental particles is described within the framework of quantum field
theory, which is the combination of special relativity, field theory and quantum mechanics.
In this theory, particles are described as excitations of fields. Various models exist, describ
ing different interactions between these fields, but the one model which has been very
successful in precisely describing phenomena in nature is the Standard Model, which is the
focus of this thesis. In order to introduce and properly appreciate the Standard Model, in
this section first some important ingredients in quantum field theory are presented. Then,
the gauge group symmetries and the symmetry group for the Standard Model are intro
duced. Following this, the concept of cross sections in particle physics is discussed, before
returning to some technicalities of quantum field theory. With these general aspects intro
duced, the free parameters of the Standard Model, the parton distribution functions and
their evolution and finally, the colour expansion of matrixelements are discussed.

2.1 The successful Standard Model

First, some basic concepts of quantum field theory are described. A complete introduction
to special relativity, group theory, quantum mechanics and field theory is out of scope for
this thesis. Throughout the thesis, natural units are used, which is customary in this area
of physics, in which c (speed of light in vacuum) and ℏ (Planck’s constant) are set to 1. In
these units, mass and momentum are of the same dimension as energy (expressed in particle
physics most often in units of electronvolts, eV) and time and distance of the dimension
of inverse energy.

Quantum field theory

In relativistic field theory, the dynamical degrees of freedom are fields Ψi(x) which are
functions of the position x and time t, combined in spacetime points x = (t,x). The
dynamics of systems within quantum field theory is described by minimizing the action
(here presented in a fourdimensional spacetime)

S =

∫
d4x L (Ψi(x), ∂µΨi(x), . . .) (4)

with the Lagrangian density L describing the dependence on the fields Ψi(x) and on their
(partial) derivatives ∂µΨi(x) (and possibly on higher order derivatives). Minimizing this
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scalar action results in equations of motion, which determine the classical dynamics of the
fields. If the fields are quantized, we speak of a quantum field theory. What constrains the
dynamics in a quantum field theory is thus fully encoded in the Lagrangian, which indeed
is the central ingredient in any theoretical computation. In particle physics, particles are
described via excitations of particle fields, meaning that each particle type is described by a
quantum field reflecting the properties of the particle. These properties of the particles and
fields are given by the symmetries which the system and the Lagrangian obey. Different
symmetries lead to different conserved quantities and different charges, through Noether’s
theorem.

One of the symmetries of the Standard Model is the Poincaré symmetry, which is the group
describing the symmetries of systems obeying special relativity. This group consists of three
boosts (in spacetime), three rotations, and four spatial plus temporal translations. The
fields on which the Lagrangian depends transform under this group in a way that leaves
the total contribution invariant. This defines scalars, which are invariant under Poincaré
transformations; and spinors and vector fields, fields which transform in a welldefined way
under this group.

The spin S of each field is defined by its transformation under the Poincaré group. The scalar
fields have zero spin; fermions (spinor fields) have halfinteger spin, and bosons (vector
fields) have integer spin (also scalar fields are bosons but with integer spin zero). Particles de
scribed by the Standard Model are spin12 (|S|=1

2 ), spin0 (|S|=0) or spin1 (|S|=1) particles.
The quantummechanical projection of the spin vector on the third component defines the
spin state (polarization) and can take the values

Sz ∈ {−|S|,−|S|+ 1, . . . , |S| − 1, |S|}.

The projection of the spin state along p, the direction of motion, defines the particle’s
helicity, given by the helicity operator

h =
S · p
|p|

, (5)

which for spinor fields either gives a positive helicity or negative helicity. This operator has
a welldefined eigenvalue for massless particles; however, for massive particles, this quantity
becomes Lorentzframedependent. Instead, one defines chirality, which is the transform
ation property of the particle under the Poincaré group. For spinors, the left and right
handed parts are obtained with the chirality projection operators PL, PR, defined by their
action on the spinor fields ψ(x) as

ψL(x) = PLψ(x) and ψR(x) = PRψ(x), (6)

with projection properties for the operators,

P 2
R/L = PR/L, PL/RPR/L = 0, PR + PL = 1. (7)
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Hence, the spinor field ψ(x) describing a spin12 fermion is a fourcomponent object (ex
pressed as Dirac spinors), with two components, the lefthanded (ψL(x)) and righthanded
(ψR(x)) chiral parts. For massless particles, the definitions of chirality and helicity are equi
valent.

Beside the Poincaré transformation, another important set of group transformations is the
Lie group SU(n), called the special unitary group. This is the group of n × n matrices
U which are unitary, U−1 = U †, and have determinant det(U) = 1. The unitary group
U(n) defines the same group but without the constraint of a unit determinant. Groups
with n > 1 are nonabelian groups, meaning that two group elements do not commute,
U1U2 ̸= U2U1. Group transformations are understood as the action of the elements on a
set of objects.

One can linearize Lie groups with the exponential map

exp(A) =

∞∑
n=0

An

n!
(8)

such that the elements of the Lie group U ∈ SU(n) are written as

U = exp(iciYi) (9)

with real constants ci and n2 − 1 traceless generators Yi, which must be hermitian by
construction. The space spanned by ciYi is the Lie algebra of the group and the generators
satisfy the commutation relation

[Y a, Y b] = isabcY c, (10)

with the structure constants sabc forming a totally antisymmetric tensor specific to the
group. While abelian theories have sabc = 0, nonabelian theories have in general non
vanishing structure constants.

Related to group transformations are representations. Representations are vector spaces
which transform under the elements of the Lie group, and which remain closed under the
transformation. Linear representations are those where the elements in the group g can be
mapped to a matrixM(g) and the set of objects they act on are columnvectors. Two main
types of linear representations of U(n) and SU(n) are considered in this work: the fun
damental and the adjoint representation. In the fundamental representation, the mapped
matrices are the group elements themselves, M(g) = g. In the adjoint representation, the
columnvectors which the map M(g) acts on is the Lie algebra ciYi itself.

After this small detour through group theory, we return now to Lagrangians and field the
ory. The free field Lagrangian for a complex scalar field ϕ(x) with mass m is given by

L = ∂µϕ
∗(x)∂µϕ(x)−m2ϕ∗(x)ϕ(x), (11)
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the first term being the kinetic term, and the second being the mass term. When the field
is real, both terms acquire a factor 1

2 to account for symmetry. The free field Lagrangian
for a spinor field of mass m is generally given by

L = ψ(x)(iγµ∂µ −m)ψ(x) (12)

where ψ(x) = ψ†(x)γ0, where γ0 is one of the gamma matrices γµ. With the projection
relations, one obtains that the spinor mass term can be written as

mψψ = mψLψR +mψRψL. (13)

Both of the Lagrangians above are invariant under a global U(1) transformation of the
fields,

Ψ(x) → UΨ(x) = eiqΨ(x) , U ∈ U(1) (14)

with the (spacetimeindependent) real parameter q. By demanding a local U(1) invariance
of the Lagrangian (upgrading q → q(x)), the kinetic term breaks its invariance under this
symmetry, while the mass term remains invariant. This issue is resolved by introducing a
connection field Aµ and a covariant derivativeDµ defined by the replacement of the usual
partial derivative

∂µ → Dµ = ∂µ − igAµ, (15)

introducing a coupling strength g, and with a welldetermined transformation of the con
nection field,

Aµ → Aµ +
1

g
∂µq(x), (16)

leading to local gaugeinvariant free field Lagrangians for scalars and spinors. The com
mutator of the covariant derivative is defined by introducing a field strength tensor Fµν for
each connection field in the derivative,

[Dµ, Dν ] = igFµν . (17)

The covariant derivative introduces a coupling with size g between the field Ψ and the
connection field through the kinetic term. As we will see, connection fields are the boson
fields which are the mediators of the interactions within the Standard Model.

Introducing the Standard Model

The Standard Model includes three fundamental interactions: the strong interaction, which
is responsible for keeping protons and neutrons in bound states in the nuclei; the weak
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interaction, which is the mediating force for nuclear decays; and the electromagnetic in
teraction, which is the wellknown relativistic combination of the electric and magnetic
interactions.

The Standard Model incorporates two types of particles: fermions and bosons. The fer
mions, which are spin12 particles, are also called matter particles, as they obey the Pauli
exclusion principle, in which fermions cannot be packed infinitely close. These particles
come in two groups: the leptons and the quarks. The leptons are those fermions that do
not interact via the strong interaction, and the quarks are those that do. Each of the matter
particles have a corresponding antiparticle, which form antimatter in the universe. The
second type of particles in the Standard Model are the bosons: these are the mediators of the
interactions, although some of these interact themselves through those same interactions.
The interactions are described by gauge groups, and the gauge bosons are the connection
fields which are needed for local gauge invariance.

The local gauge symmetry group of the Standard Model consists of three unitary groups,

SU(3)C × SU(2)L × U(1)Y (18)

with the colour gauge group SU(3)C describing the strong interaction, formulated within
the framework of quantum chromodyanmics (QCD); the weak isospin group SU(2)L and
the weak hypercharge U(1)Y gauge group together combine into the electroweak (EW)
force, the unification of the weak and the electromagnetic interaction.

The SU(3) and SU(2) are nonabelian symmetry groups. The nonabelian nature of gauge
groups yield slightly different transformations of fields than the one presented for U(1)
transformations. The general gauge transformation is

Ψ(x) → eiq
a(x)taΨ(x), (19)

where the ta span the Lie algebra group. For the SU(3)C gauge group, the Lie algebra is

[T a, T b] = ifabcT c, (20)

where the T a are proportional to the GellMann matrices λa, and the fabc are the anti
symmetric structure constants. For the SU(2)L gauge group, the Lie algebra is

[τa, τ b] = iϵabcτ c, (21)

with the τa generators being proportional to the Pauli matrices σi, and ϵabc is the Levi
Civita tensor. Although there are multiple bases for the group structure description, there
are some constants which often appear in computations and which are basisindependent.
These are, for a general SU(n) gauge group with the n2 − 1 fundamental generators Y i
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and structure constants sabc, defined as

n2−1∑
a=1

(Y aY a)ij = δijCF , CF =
n2 − 1

2n
,

n∑
i,j=1

Y a
ijY

b
ji = δabTF , TF =

1

2
,

n2−1∑
a,b=1

sabcsabd = δcdCA, CA = n,

(22)

where the summation sign is shown explicitly to indicate the number of terms in the sums.
Here,CA andCF are called the quadratic Casimirs for the fundamental and adjoint repres
entations respectively, and TF is the index of a representation (in this case the fundamental
representation). For the Standard Model colour gauge group with n = 3, we haveCF = 4

3
and CA = 3.

A summary of the ingredients (some of which will be introduced later in the section) in the
Standard Model Lagrangian is presented in Table 1. In the table, the important gauge coup
lings are introduced: g1 for the strong interaction, g2 for the weak isospin group and g3 for
the hypercharge group. The matter particles in the Standard Model are grouped into three
generations with a mass hierarchy. Within each generation, the fermions are structured
according to their transformation properties with respect to the three gauge groups. The
weak SU(2)L gauge group acts only on lefthanded particles, meaning that this symmetry
is maximally parityviolating. Hence, within each generation, the fermions are classified
into five groups: two doublets Qu, Le (one quark and one lepton doublet including the
lefthanded eigenstates) and three righthanded singlets eR, uR, dR (one lepton singlet and
two quark singlets), transforming under the weak isospin group according to

Qu → UQu, Le → ULe,

eR → eR, uR → uR, dR → dR,
(23)

with U ∈ SU(2)L and the subscripts L,R denote the left and rightchirality eigenstates.
The doublets contain the lefthanded states,

Qu =

(
uL
dL

)
, Le =

(
νL
e−L

)
, (24)

where the upper element has weak isospin charge I3 of +1 and the lower element has
weak isospin charge −1. The charges under the electromagnetic interaction, Q, are also
different within the doublets: all +1 isospin quarks carry a charge of 2

3e, all the −1 isospin
quarks carry a charge of −1

3e, while the charged leptons carry the elementary charge −e
and the neutrinos are neutral. The antiparticles have opposite charges regarding all the
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Table 1: The Standard Model Lagrangian in the symmetric basis divided into separate con
tributions. The gauge boson fields in the covariant derivative act on those matter
fields which are not singlets under the corresponding gauge group.

Fermion kinetic ψfγ
µDµψf , f ∈ F

Covariant derivative Dµ = ∂µ − ig1
λa

2 G
a
µ − ig2

σi

2 W
i
µ − ig3

Y
2Bµ

SU(3)C kinetic −1
2Tr[GµνG

µν ]

SU(2)L × U(1)Y
kinetic

−1
2Tr[WµνW

µν ]− 1
4BµνB

µν

Higgs sector 1
2Dµϕ

†Dµϕ− µ2ϕ†ϕ+ λ
4 (ϕ

†ϕ)2

Fermions F [Le, eR, Qu, uR, dR] (first generation)

[Lµ, µR, Qc, cR, sR] (second generation)

[Lτ , τR, Qt, tR, bR] (third generation)

Yukawa couplings geLeϕeR + guQuϕcuR + gdQuϕdR

gµLµϕµR + gcQcϕccR + gsQcϕsR

gτLτϕτR + gtQtϕctR + gbQtϕbR

interactions. All matter particles and their masses are listed in Table 2. We note that of all
the particles present in the Standard Model (including the massive bosons), the top quark
is the heaviest with a mass of ∼ 173 GeV.

The Lagrangian presented up to now is the classical version of the Standard Model, with a
gauge freedom in the symmetries. As a quantum field theory, the gauge has to be fixed and
the fields get quantized. This gauge choice introduces further fields, called FaddeevPopov
ghosts [1]. For the current introduction, the classical Lagrangian is adequate.
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Table 2: List of massive particles in the Standard Model and their absolute and relative
masses compared to the electron mass. *The values reported for the quarks are
estimates from the (MS) scheme at renormalization scale µ = 2 GeV for the light
quarks (u, d, s) and the running value for the b, c quarks, and direct measurement
of top quark mass. Values taken from the 2020 PDG report [2].

Lepton masses

Electron e 0.510 MeV 1×me

Muon µ 106 MeV 210×me

Tauon τ 1.78 GeV 3 490×me

Quark masses∗

Up u 2.16 MeV 4×me

Down d 4.67 MeV 9×me

Strange s 93 MeV 180×me

Charm c 1.27 GeV 2 490×me

Bottom b 4.18 GeV 8 200×me

Top t 172.76 GeV 339 000×me

Gauge boson masses

W boson W± 80.38 GeV 158 000×me

Zboson Z 91.19 GeV 179 000×me

Higgs boson H 125.1 GeV 245 000×me

The QCD sector

The colour gauge group SU(3)C gives rise to 8 (= 32 − 1) gluon fields Ga
µ, a = 1, . . . , 8,

which we combine into a single gluon fieldGµ = Ga
µ
Ta

2 . The related field strength tensor
is

Gµν =
(
∂νG

a
µ − ∂µG

a
ν + g1f

abcGb
µG

c
ν

)
T a, (25)

see Table 1. Similarly to how the lefthanded fields are combined into doublets under the
weak isospin gauge group, quarks are placed in triplets (in the fundamental representa
tion) under the colour gauge group. The three charges are named red, blue and green.
The colour gauge group is discussed in more detail when introducing colour expansions in
Subsection 2.6.
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The electroweak sector

The local gauge symmetry group for the Standard Model undergoes spontaneous symmetry
breaking (SSB), in which the electroweak sector of the gauge group is broken as

SU(3)C × SU(2)L × U(1)Y
SSB−−→ SU(3)C × U(1)QED (26)

resulting in the strong interaction and the electromagnetic interaction, described by quantum
electrodynamics (QED), and the weak vector bosons acquiring mass terms in the Lag
rangian.

A general mass term for spinor fields, mψRψL, is not invariant under the weak isospin
group, as the left and righthanded fields transform differently under the SU(2)L gauge
group. Thus, spinor mass terms can not be present in the Lagrangian before symmetry
breaking. In a minimal extension of the unbroken Standard Model, the BroutEnglert
Higgs mechanism is introduced, in which a SU(2)L doublet complex scalar field ϕ(x) is
added to the theory, with a kinetic term and a cubic and quartic selfinteraction terms (see
Table 1). The field acquires a vacuum expectation value, breaking its symmetry to a specific
value of

ϕ0 =

(
0
v√
2

)
(27)

which introduces the radial excitation around this minimum as the Higgs field H defined
for the second component of the ϕ(x) field, 1√

2
(v +H(x)). This Higgs field is a physical

scalar field which has been observed and verified.

The spinor fields are coupled to the scalar doublet field through Yukawa couplings before
symmetry breaking, through terms on the form

ge

(
LeϕeR + ϕ†eRLe

)
(28)

which gives rise to the mass of the electron, and similar terms for all the other massive
fermions (for which a righthanded chiral piece exists), see Table 1. These Yukawa terms
are invariant under the local gauge symmetry groups. After symmetry breaking, when the
scalar doublet field obtains a vacuum expectation value, these terms result in mass terms.

To the weak isospin group SU(2)L connect three (= 22−1) gauge bosons: W i
µ, i = 1, 2, 3

with the combined field Wµ = W i
µ
σi
2 (σi being the Pauli matrices). The related field

strength tensor is

Wµν =
(
∂νW

i
µ − ∂µW

i
ν + g2ϵ

ijkW j
µW

k
ν

)
σi. (29)
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For the weak hypercharge group U(1)Y the gauge boson Bµ is the mediator. The related
field strength tensor for this abelian group takes the simple form of

Bµν = ∂νBµ − ∂µBν . (30)

Thus, we have four vector gauge bosons plus the scalar Higgs boson in the electroweak
sector and two gauge couplings, g2 and g3, see Table 1. These four vector gauge bosons are
all massless in the unbroken Standard Model Lagrangian. Experiments in the past century
have, however, shown clear evidence for massive gauge vector bosons. Bosons acquire mass
also in the BroutEnglertHiggs mechanism, through the kinetic term for the scalar doublet
field Dµϕ

†Dµϕ where the covariant derivative Dµ by local gauge symmetry contains the
weak boson connection fields.

This set of vector gauge bosons are not in the physical basis. In the electroweak mixing ma
chinery in the GlashowWeinbergSalam theory, two weak isospin gauge bosons combine
to two massive charged W±bosons,

W± =
1√
2
(W 1 ± iW 2), (31)

such that their interaction with the fermions arising from the kinetic term of the fermi
ons with the connection fields entering the covariant derivative (here writing out the first
generation quarks) is written as a charged current

uLγ
µW+

µ dL + dLγ
µW−

µ uL. (32)

and correspondingly for the lepton field and for the second and third generation fermions.
The third weak boson mixes with the boson from the hypercharge group to form two neutral
bosons, the Zboson and the photon Aµ, through the planar rotation(

Aµ

Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Bµ

W 3
µ

)
(33)

where the weak mixing angle θw is a simple relation between the two gauge couplings,

sin θw =
g2√
g22 + g23

(34)

and thus is no new parameter of the Standard Model, but simply a combination of two of
the free parameters. The relation can, however, be used to replace the free parameters in
favour of the weak mixing angle.

After the electroweak mixing, the Zboson couples to the leptons and fermions through
the couplings

e

sin θw cos θw
(If3 −Qf sin2 θw) (35)
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where If3 is the weak isospin charge and Qf is the electric charge for each fermion flavour
f . It is convenient to introduce a lefthanded and righthanded coupling for each fermion
as

gfL = If3 −Qf sin2 θw and gfR = −Qf sin2 θw (36)

and further to combine these into a vector and axialvector coupling

cfV = gfL + gfR = If3 − 2Qf sin2 θw and cfA = gfL − gfR = If3 . (37)

In terms of these couplings, we can write the fermion interaction terms with theZboson in
the Standard Model Lagrangian as

− i
g

2 cos θw
ψfγ

µ(cfV − cfAγ5)ψfZµ. (38)

With the spontaneous symmetry breaking, the coupling of the weak bosons to the scalar
doublet field reduces to(

1

2
g2v

)2

︸ ︷︷ ︸
m2

W

W+
µ W

µ− +
1

2

(
1

2
v
√
g22 + g23

)2

︸ ︷︷ ︸
m2

Z

ZµZ
µ, (39)

acquiring masses for the vector bosons which are related, using Eq. (34), at leading order
by

mW = mZ cos θw. (40)

The quark interaction with the weak current has an additional ingredient: the quark mass
eigenstates mix to form the weak eigenstates which are those describing the interaction with
the weak currents. This mixing is described by the CabibboKobayashiMaskawa (CKM)
mixing matrix. The quark interaction with the charged current is modified according to

(
uL cL tL

)
γµ

dLsL
bL

W+
µ →

(
u′L c′L t′L

)
γµV

d′Ls′L
b′L

W+
µ (41)

where on the left the quark fields are in the weak eigenstate and on the right in the mass
eigenstate (primed). The mixing matrix V is a unitary matrix with entries describing the
strength of the flavour changes in the charged weak interaction,Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 (42)

which is measured to be roughly the identity matrix, with some small offdiagonal entries
(more significant entries in the mixing between generations 1 and 2).

18



Discrete symmetries and hadrons

Besides the continuous symmetries introduced so far, there are also some discrete symmet
ries: charge conjugation (C transformation) is the interchange of particle and correspond
ing antiparticle Ψ → Ψ∗; parity transformation (P transformation) is the inversion of
the space coordinates x → −x; time reversal (T transformation) is the inversion of the
time coordinate t → −t. Combinations of these are the CP transformation and CPT
transformation. The electroweak sector in the Standard Model is parityviolating, but it
satisfies CP invariance. There are, however, regions in the Standard Model that indicate a
slight tension with CP invariance. The combined CPT invariance is believed to hold for
the Standard Model.

The particles introduced here are fundamental particles, which are pointlike objects. How
ever, not all of these pointlike objects can be directly observed at particle detectors. Due
to the scale dependence of the strong coupling constant, the light quarks are always bound
into hadrons. A bound state of three quarks (three different colour charges) is a colourless
baryon (a fermion) and a bound states of two quarks (of charge and anticharge) is a col
ourless meson (a boson). Out of the colour sector, it is only these colourless bound states
which are detectable at facilities. There is a very large plethora of bound states which are
created at particle accelerators, however, only a handful are stable enough to be detected
directly. The remaining fundamental particles can in theory be detected, however, among
these in practice only the electron, the muon and the photon can be directly detected,
which is discussed more in Section 4.

2.2 Cross sections and matrixelements

As a quantized theory, particle collisions are described by asymptotic states, between some
incoming state and some outgoing state and some transition probability between these two.
The amplitude from some state |i⟩ to some final state |f⟩ is given by the expectation value

⟨f |T |i⟩ = (2π)4δ4(Pi − Pf ) ⟨f |M|i⟩ (43)

where Pi denotes the total incoming fourmomentum and Pf is the total outgoing four
momentum, the deltafunction imposing momentum conservation. The matrixelement
⟨f |M|i⟩ is typically abbreviated as M, and is the main target for the computation of
transition probabilities. The measured quantity at particle colliders for a certain process to
occur is the cross section. This quantity for a 2 → n process of fundamental particles (with
massless final states) is given by

dσ̂ =
1

2s
dΦn(2π)

4δ4

(
n+2∑
i=1

pi

)
|M(pi)|2 (44)
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where s is the flux of the incoming particles. The dΦn factor is the differential phase space,
which in the manifestly Lorentzinvariant form is given by

dΦn =
n∏

i=1

d3pi
(2π)32Ei

. (45)

One is often interested in considering differential cross sections in some observable O,
which, by introducing the completeness relation, is generally written as

dσ̂
dO

=
1

2s
dΦn(2π)

4δ4

(
n+2∑
i=1

pi

)
|M(pi)|2δ(O −O(Φ)). (46)

The cross section introduced is valid for partons, the fundamental particles in the Standard
Model. At hadron colliders, however, the colliding objects are hadrons h. In many of
the hadron collisions, only soft interactions (low energy transfer) takes place. In some
collisions, however, a large momentum transfer takes place, which is called a hard scattering.
The cross section for such hard scatterings can be factorized,

σ(h1h2 → n) =
∑
a,b

∫ 1

0
dxadxbfh1

a (xa, µF )f
h2
b (xb, µF )dσ̂(ab→n), (47)

where the fhi
a are parton distribution functions (PDFs), which are the longitudinally fac

torized probability of finding a parton a inside hadron hi and are discussed in more detail
in Subsection 2.5. The cross section σ̂ is the cross section for the hard part of the inter
action, sometimes also called partonic cross section, and is the main focus of most of the
work in the thesis.

To compute the partonic cross section σ̂ in the region where the coupling constants of the
theory are small, perturbation theory can be used. Within perturbation theory, Feynman
rules, as presented in Section 1, are introduced to simplify the calculation. For this ma
chinery to be consistent, the region of small couplings is needed, as this framework builds
on a perturbative expansion of the interactions, assigning diagrams with larger number of
interacting points (vertices) a smaller weight, thus making the infinite perturbation series
convergent. More details on the computation of the partonic cross section are discussed in
Section 3.

The unit of cross section is that of [length]2, in other words, the dimension of area (hence
the name). Instead of the conventional SI units of m2, particle physics has adopted the unit
of barn (b), which corresponds to 1 b = 10−28m2. Typical processes at particle colliders
range over a very large span of cross sections, but the widely used prefixes are those of nb
(10−9 b), pb (10−12 b), and sometimes fb (10−15 b).
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2.3 Renormalization, regularization and resonances

In this section, a very brief introduction to some of the technical aspects of quantum field
theory is given, to a level which is adequate for understanding the remaining introduction
and the papers.

Renormalization

Renormalization is the topic of redefining fields, couplings and masses in quantum field
theory in order to avoid divergences arising from selfinteractions. In other words, it is
the tool to circumvent divergences by defining physical parameters which do not coincide
exactly with their counterparts predicted in the model, but rather as measured quantities.
There are two main approaches in viewing renormalization. One is Wilson’s approach,
where degrees of freedom are integrated out, leading to the CallanSymanzik renormaliz
ation group equations. The other approach is renormalized perturbation theory, which is
the one most commonly used in automated computational tools.

The tool of Feynman diagrams in perturbation theory for computing cross sections and
other quantities has a mathematical issue appearing in it: loop integrals, which when in
tegrated over all possible momenta of the internal loop lines yield infinite quantities in the
ultraviolet (UV) region (at high energies)¹. This arises already at one loop level, as we can
see from the example of an electron (or any other charged particle) emitting and absorbing
a virtual photon,

(48)

which in the end results in an infinite shift to the bare electron mass. The issue of diver
gences, however, is not an artifact of perturbation theory, but is omnipresent in quantum
field theory. Loop divergences is simply the way they present themselves when perturba
tion theory is used for computations. As such, even when an allorder computation can be
done, renormalization must take place. Loop diagrams can in addition also include infrared
(IR) divergences in the regions when the loop momenta are soft. This aspect is discussed
more in other parts of the thesis.

UV divergences appear at all places (when loops are involved) where perturbation theory
is applied in calculations. The method of renormalization is the way of dealing with this
mathematical problem by “hiding” the infinities in the parameters of the theory in a way
that they depend on some unphysical scale value. The way free parameters are defined to
include the infinities can, however, vary, and hence many different renormalization schemes
have developed.

¹Highenergy physics is equivalent to shortdistance physics.
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In the renormalized perturbation theory approach, one defines counterterms at each order
in the expansion which cancel the divergences and are included in the perturbative calcu
lations like the other Feynman diagrams. The unphysical scale at which the matching of
the divergence cancellation occurs is the renormalization scale µR. The final physical result
must be independent of this unphysical scale choice. This constraint leads to the renormal
ization group equation, which governs the scale dependence of the parameters. Following
this procedure, the renormalization performed for the coupling constants gi, i = 1, 2, 3 in
the Standard Model lead to scaledependent couplings, obtained by solving the renormal
ization group equations

µR
d

dµR
gi(µR; g

0
i ) = β(gi), gi(µ

0
R, g

0
i ) = g0i , (49)

where β(gi) is a function of the coupling constant defined recursively through this renor
malization group equation and hence obtained orderbyorder in perturbation theory, and
g0i is the bare coupling. In general, the βfunction can be expanded in the coupling as

β(gi) = gi
∑
i=0

bi

( gi
4π

)2i+2
. (50)

The initial condition is a definition of the renormalized coupling at some scale µ0R. It is
straightforward to solve this equation for a βfunction of the form β(gi) = Ag3i , A > 0,
which is the case for the electroweak coupling constant, resulting in

gi(µR, g
0
i ) =

g0i

1−Ag0i log
(
µR

µ0
R

) , (51)

resulting in a coupling which increases with increasing energy. If the βfunction instead is
negative on the form β(gi) = −Ag3i , the resulting running of the coupling

gi(µR, g
0
i ) =

g0i

1 +Ag0i log
(
µR

µ0
R

) (52)

decreases with increasing energy. This is a feature for any unitary gauge group SU(n) with
n > 2, so also for the strong coupling constant. This is the reason for the asymptotic
freedom of quarks, and indirectly of the confinement of quarks in bound states of hadrons.
The scale at which perturbation theory breaks down because of the strong running coupling
is the ΛQCD scale, with a rough value of ∼ 1 GeV.

By an expansion in the small g0i limit, we find that the expansion contains terms of the
form

gi(µR, g
0
i ) ∼ (g0i )

k+1

(
A log

(
µR
µ0R

))k

. (53)
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Thus, given a small coupling constant at the renormalization scale µR, the perturbative
series for the running coupling may be invalidated if the typical momentum µ0R of the
system obeys µR

µ0
R

≪ 1 or µR

µ0
R

≫ 1. Thus, in order for the perturbative expansion in
the coupling constants to be welldefined and converge, it is of importance to pick the
renormalization scale µR at a value of typical order of the hard scattering scale. For this
reason, often a dynamical scale is chosen, which evaluates the couplings on an eventby
event basis.

The couplings are often expressed in terms of αi =
g2i
4π , in which case the βfunction is

obtained by the simple variable change β(αi) =
gi
2πβ(gi) and similarly the running of the

couplings is expressed as αi(µR) instead. This convention is convenient when the matrix
element is squared to give the contribution to the cross section.

Resonances

The lifetime τ of a particle is characterized by its inverse decay width τ ∼ 1/Γ. The decay
width is the transition probability for a 1 → n decay, corresponding to a cross section for a
2 → n process. If a particle is stable, then the decay width → 0, while an unstable particle
has a finite decay width and is then called a resonance. In other words, an unstable particle
is one which does not appear as an asymptotic state of the incoming or outgoing state in a
process but appears in an intermediate state of the interaction.

To understand resonances more, we investigate the physical propagator of a scalar particle
with mass m0. For this, we define the oneparticleirreducible (1PI) graphs which is the
sum of all possible allorder corrections to an external leg, that is, the diagrams which keep
together no matter which internal line is cut. Then, the physical propagator can be written
as a sum of any number of insertions of these 1PI contributions,

= + + + . . .

with the 1PI correction denoted by gray blobs and denoted by −iΣ(s), dependent on the
invariant mass s of the propagator. This sum is a geometric series, which can be computed
directly as

1

s−m2
0

∑
n=1

(
−iΣ(s) i

s−m2
0

)n

=
1

s−m2
0 +Σ(s)

. (54)

If the propagator can decay into particles (conserving energy and momentum), then it
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contributes² to the total cross section as

σ ∼ 1

(s−m2)2 +m2Γ2
, (55)

which is the (relativistic) BreitWigner shape of a resonance. From here we see that the
width Γ also controls the width of the Gaussian distribution for resonances, hence the
name. In the limit Γ/m → 0, which is called the narrowwidth approximation (NWA),
this Gaussian distribution tends towards

1

(s−m2)2 +m2Γ2
→ π

mΓ
δ(s−m2) (56)

which sets the momentum of the resonance to be onshell in the final phasespace integral.
This often leads to large simplifications in the calculations dealing with resonant particles.
The error of this approximation at the total cross section level is ∼ Γ/m, however, for
differential observables this is less obviously evaluated. The difference from the narrow
width treatment and the full treatment is often called offshell effects.

Regularization

To handle the arising divergences in loop diagrams, both in the UV and IR regions, and
to correctly follow through the cancellation, a proper bookkeeping, regularization, of the
divergent terms must be done. The most commonly used regularization is dimensional
regularization³, in which the dimension of the loop integrals is taken to be d = 4 − ϵ
allowing ϵ to be an infinitesimal regulator of the UV divergences, or similarly d = 4 + ϵ
for IR divergences.

As an example for this, we consider the mass correction to the electron by computing the
1PI corrections at oneloop in d = 4− ϵ dimensions. The mass shift is given by the shift in
the propagator denominator on the form of Eq. (54), which ultimately results in computing
the oneloop correction to the selfenergy in Eq. (48). The loop integral is evaluated using
master integral formulas and dimensional regularization to

δm ∼ Σelectron
oneloop ∼ Γ(2− d/2)

∫ 1

0
dx

(4− 2x− ϵ(1− x))

((1− x)2m2 + xµ2)2−d/2
(57)

with a final result

∼ 2

ϵ
− γE + log 4π (58)

²Owing to the cutting rules which allow to relate loop amplitudes to open diagrams by cutting the propag
ator lines.

³Other regularization schemes are mass regularization, in which the massless gluon or photon are given a
small mass which regulates the divergence; or applying momentumcutoffs which are less favored because they
break gauge invariance.
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where γE is the EulerMascheroni constant⁴. In the minimal subtraction scheme (MS),
the expansion of a loop diagram is in terms of the ϵ regulator only, which in this oneloop
case is precisely Eq. (58). One can also include the constants which always accompany this
regulator by the redefinition

2

ϵ
→
(
2

ϵ
− γE + log 4π

)
, (59)

in the modified minimal subtraction scheme (MS), making the cancellation of infinities
simpler to handle. Although the final result is not dependent on which scheme is used, one
must be careful to define it for crossvalidations and consistent computations.

2.4 Parameters of the Standard Model

Without considering righthanded neutrinos, there are 18 free parameters in the Standard
Model, which are summarized in Table 3.

Table 3: The natural way of presenting the 18 free parameters of the Standard Model. Red
marks the electroweak parameters (discussed in the text).

Charged lepton masses me, mµ, mτ

Quark masses mu, md, ms, mc, mb, mt

CKM mixing angles θ12, θ13, θ23

CKM CP violating phase δCKM

SU(3)C gauge coupling g1

SU(2)L gauge coupling g2

U(1)Y gauge coupling g3

Higgs mass mH

Vacuum expectation value v

In the colour gauge sector of the Standard Model there is firstly the strong gauge coupling
g1, which by convention is often expressed as αs =

g21
4π . Secondly, there are the four angles

(three mixing angles and one CP violating phase) appearing in the CKM matrix in the
quark mixing sector describing flavourchanging currents. These play a crucial role in new
physics searches as they probe the CP violating parts of the Standard Model.

⁴The approximate value for this constant is γE ≈ 0.5772.
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The lepton and quark masses appear as simple (fermion) mass terms after the symmetry
breaking of the Yukawa couplings. In the symmetry breaking, the Higgs boson acquires a
mass, which is another parameter of the theory, expressed in terms of the coupling µ in the
Higgs sector Lagrangian.

We now turn to the red terms in Table 3. These three parameters constitute the electroweak
sector . All the other parameters are most often used without much modification. However,
the electroweak sector is a very precise area in the Standard Model, and hence there have
developed alternative ways of expressing these parameters, which better suit the available
measurements.

One of these alternative parameters is the weak mixing angle θw of the gauge boson fields
of the U(1)Y and the SU(2)L groups, see Eq. (33). Secondly, in the physical fields of the
gauge bosons, the photon field Aµ interacts with the charged quarks and fermions. The
coupling with the charged fermions is by convention picked to be the elementary charge
e, which is expressed in terms of the underlying gauge couplings as

e =
g2g3√
g22 + g23

(60)

and often α = e2

4π is used instead. Another wellmeasured observable in particle physics
is the fourfermion coupling constant, the Fermi constant Gµ appearing in the effective
fourpoint interaction of fermions in the vertex

∼ −Gµ√
2

(
ψ(x)γµψ(x)

) (
ψ(x)γµψ(x)

)
, (61)

originally introduced to explain the βdecay in which the proton, neutron, electron and
electron neutrino are the four interacting fermions. As such, the Fermi constant is very well
measured through the measurement of the muon lifetime, and hence is often picked as the
input parameter in the electroweak sector. These precision parameters relate, at leading
order, to the natural parameters of the Standard Model as

cos θw =
mW

mZ
, Gµ =

√
2
g23

8m2
W

. (62)

Combining the relations, we can express the relation between the Fermi constant and the
electroweak coupling as

α = Gµ

√
2m2

W

π

(
1−

m2
W

m2
Z

)
. (63)
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The set of electroweak parameters {mW ,mZ , α,Gµ} can always be reduced to a set of
three independent ones. Thus, if this set is chosen consistently, the final result remains
gauge invariant. Three main input schemes are defined,

α(0) scheme {α(0),mW ,mZ}
α(mZ) scheme {α(mZ),mW ,mZ}
Gµ scheme {Gµ,mW ,mZ}

where the essential difference between the three schemes is which of the α orGµ are chosen
as input, and/or at which renormalization point α is defined. The values of the electroweak
coupling constant α in the α(0) scheme is the finestructure constant α(0) ≈ 1/137; in
the α(m2

Z) scheme, the value is (taking the running of the coupling into account to the
Zboson pole mass) α(m2

Z) ≈ 1/129; finally in the Gµ scheme, the resulting coupling is
αGµ ≈ 1/132 [3]. The relative sizes range from 2.3% to 5.8%. Thus, considering only
the input value choice for the coupling results in quite significant differences. The optimal
choice for the input scheme is processspecific and care must be taken to not introduce
large logarithms when treating a hard scattering at a much larger scale than the coupling
is defined. It is important to choose one of the input scheme for the electroweak coupling
α for each gaugeinvariant part of the computation, otherwise inconsistent results can be
obtained. When considering external photons, the choice of the α(0) scheme must be
made, however, this introduces dependence on the nonperturbative quark masses in the
coupling. One approach is to combine the input schemes in a nongaugeviolating way [4].

A commonly used quantity for the precision relation between the parameters is the ρ
parameter [5], which is defined as

ρ =
m2

W

m2
Z cos2 θw

. (64)

At tree level, this parameter is simply ρ = 1 (as can be easily seen from the relation
in Eq. (62)). Including higher order electroweak corrections to the parameters, the ρ
parameter is shifted by

ρ =
1

1−∆ρ
(65)

with the corrections embedded in ∆ρ and computed perturbatively. We can explore the
role of the ρparameter in the input schemes by relating (at nexttoleading order) the three
input schemes for the electroweak coupling

α(m2
Z) = α(0) + α(m2

Z)∆α(m
2
Z),

αGµ = α(0) + α(0)∆r,
(66)
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where ∆α(m2
Z) is the relative shift due to the running of the coupling from the limit

Q2 = 0 to the electroweak scale, including the light fermions, and ∆r is the electroweak
correction to the vector boson mass correlation. The oneloop correction ∆ρ contains the
dependence on the top quark mass mt. These corrections are related by

∆r = ∆α(m2
Z)−∆ρ

cos2 θw

sin2 θw
+ small finite part, (67)

which makes the two corrections essentially the same regarding the running corrections
∆α(m2

Z). What differs is that the weak couplings obtain a correction via the weak mixing
angle sin2 θw → sin2 θw + ∆ρ cos2 θw for every weak SU(2)L vertex. Putting all this
together into the physically relevant weak coupling αGµ/ sin

2 θw, one obtains that upon
applying both of the corrections to the sin2 θw and to the α, the ∆ρ correction drops out,
leaving only the ∆α(m2

Z) correction
αGµ

sin2 θw
→

αGµ

(sin2 θw +∆ρ cos2 θw)
(
1−∆α(m2

Z)−∆ρ cos2 θw
sin2 θw

)
→

αGµ

sin2 θw(1−∆α(m2
Z))

(68)

where the second line holds up to nexttoleading order.

Currently, theory predicts the ρparameter at fourloop level. The main uncertainty en
tering the theoretical calculations is in the renormalization scale. The customary approach
is to pick the µR = mt and by applying the usual 7 or 9point variation assess the scale
dependence. However, both of these are chosen arbitrarily and thus introduces a strong
renormalization scale and scheme dependence in the evaluation of both the ρparameter
and its errors [6].

An alternative way of treating the weak mixing angle is through the effective leptonic coup
ling [7]. In this approach, one absorbs the electroweak radiative corrections into a flavour
dependent factor κf which alters the weak mixing angle into an effective one by

sin2 θfeff = κf sin
2 θw (69)

and has been measured by experiments (CMS [8], ATLAS [9]). When using the effective
weak mixing angle as independent input parameter, extra care must be taken to recover
gauge cancellation, as choosing all of the weak boson masses and the weak mixing angle as
independent causes inconsistent results.

When intermediate unstable particles enter the calculation, methods have to be applied
in order not to violate the gauge symmetry. One such approach is the complex mass
scheme [10], which assigns an imaginary part to the mass of the unstable particle

µ2 = m2 − iΓm (70)
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with the decay width Γ and physical massm. This choice is done such that the propagator
denominator is changed to

p2 −m2 → p2 −m2 + iΓm

which indeed recovers the finitewidth resonance structure for the heavy particles. As a
consequence, derived parameters, such asα or the Fermi constantGµ obtain nonvanishing
complex phases. If the coupling α obtains a complex phase, the IR cancellation is intricate,
as the location of the poles in the complex plane makes the cancellation not exact. One
way of remedying this is to render α real. This can be done in several ways, for example by
assigning its real value α → Re[α] or by using an absolute value α → |α|. An alternative
approach is to use the relation between the four electroweak parameters in Eq. (70) to
assign all complex phases of the electroweak parameters in a complexvalued Fermi constant
Gµ → Gµe

iθ with θ being the phase resulting from the complex masses of the W  and
Zbosons. This scheme is the complexGµ scheme (Gµ), which is equivalent to the Gµ

scheme in the input parameters, but the input value of Gµ is used for the magnitude only,
while the phase is determined by the widths of the unstable particles.

At very high energy collisions, the masses of the light leptons and quarks are negligible. In
automated calculations, a model with massless leptons and nq massless quarks is adopted.
The role of the bquark, however, is intricate, as it is the only quark with a mass ΛQCD <
mb ≪ {mZ ,mW }. If the b quark is considered massive and is not included in the PDF
evolution, we speak of a 4 flavourscheme (nq = 4), and if also the bquark is set massless
below the scale mb, we have a 5flavour scheme (nq = 5). In bquark productions, large
logarithms appear as log s

m2
b
∼ 1, and hence need careful resummation. Defining the b

quark as massless, this problem is alleviated, moving the problem of resummation of the
bquark into the PDF evolution.

2.5 Soft emissions, parton evolution and infrared safety

Measuring and detecting particles with very low energy or two particles produced collinear
to each other, is physically not possible. This is also reminiscent in the theoretical descrip
tion of emissions. To see this precisely, we examine a final state quark splitting q → qg,
treating all particles massless,

k + k
′

k

k
′

.

Soft and collinear divergences (which are IR divergences) arise for the internal quark propag
ator

1

(k + k′)2
=

1

2E1E2(1− cos θ)
(71)
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as E1,2 → 0 (soft divergence) and cos θ → 1 (collinear divergence) respectively, where θ
is the angle between the two emerging quark and gluon and E1,2 is the energy of the two
outgoing particles. If one instead treats the quark propagator as massive, the extra −m2

in the denominator of the propagator regulates the collinear divergence, leaving only a soft
divergence.

To see how such a soft emission affects the cross section, we consider the emission of a
soft gluon with energy E from a quarkantiquark pair, that is connected to some generic
process, denoted with a blob,

.

Considering the emission from both of the fermion legs, in the soft/collinear limit, this
part of the total cross section factorizes as

σ ∼ |M|2qqgdΦ3 → 2CF
αs

π

dE
E

dθ
θ

dϕ
2π

|M|2qqdΦ2 (72)

where the dΦ2,3 are the 2 and 3particle phase spaces respectively (with and without the
emitted gluon) and CF is the group theoretical constant introduced in Eq. (22). The
soft and collinear divergences appear as double logarithmic divergences after integration
in phase space. According to a theorem by Kinoshita, Lee and Nauenberg (KLN the
orem) [11, 12], these soft and collinear divergences in the final state emissions cancel the
divergences appearing in the virtual contributions (to be discussed later in Subsection 3.4)
when all contributions are included orderbyorder. The cancellation between the real and
virtual contributions is only guaranteed for infraredsafe observables. By infrared safety,
one means an observable which is not dependent on the physics which occurs at short dis
tances. At the level of diagrams, an observable O is said to be infrared safe if the splitting
of a particle with momentum pi to two particles pi = p1i + p2i does not alter the value of
the observable,

O
(
p1, . . . , p

1
i , p

2
i , . . . , pn

)
= O (p1, . . . , pi, . . . , pn) (73)

for when at least one of p1,2i is soft or if they are collinear to each other.

Infrared safety is an important property for observables when comparing experiments to
theory, and especially, fixedorder predictions (discussed more in Section 3). Infrared safety
implies that whatever is measured at the detectors can be directly translated to the high
energy (short distance) physics. Examples of infrared safe observables are inclusive cross
sections or event shape observables such as thrust⁵. A way of testing infrared safety in

⁵Thrust is defined as T = maxv

∑
i |pi·vi|∑
i |pi|

with the sum over all outgoing particles and v is picked to define
the largest possible T . It is a measure of how pointlike or spherical an event shape is.
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numerical calculations of distributions is by examining whether phasespace points which
are divergent but their sum is finite always are placed in the same bins in histograms. If this
is not the case, it is clear that some bins diverge as the number of phasespace point increases
without any IR cancellation occurring binbybin. If an observable is not infraredsafe, it
may still be computed, but must be computed within the factorization approach (Eq. (47).),
including correctly the parton evolution and PDFs.

As already introduced, the PDFs are probability functions for extracting a parton within
a composite particle with certain kinematic properties. Specifically, the probability of a
parton a interacting inside proton p with longitudinal momentum fraction in the interval
[x, x + dx] having transverse momentum less than Q is given by fpa (x,Q)dx. The scale
dependence onQ encodes that the probability distribution is dependent on the length scale
at which we probe the proton. This dependence is mild, and obtains nonzero contributions
from higherorder corrections. The longitudinal momentum fraction x is given by x =
Q2

2P ·q , with P being the incoming hadron momentum, and q the transfer momentum. The
PDFs are measured quantities, however, are not measured at each energy scale, but are
instead evolved from a measured scaleQ2

0 to the required scale needed for the computation
of the hadronic cross section. The evolution of PDFs (the variation with the energy scale
Q) can, on the other hand, be computed within perturbation theory. Including only the
QCD splittings, this evolution is given by the DokshitzerGribovLipatovAltarelliParisi
(DGLAP) equations [13–15] at first order in the strong coupling by

dfi(x, µ2F )
d logµ2F

=
αs

π

∑
j

Pij(z)⊗ fi(x, µ
2
F ) (74)

where the sum over j is over all partons inside the proton, and Pij(z) define the splitting
functions i → j, including all colour and kinematic factors of the splitting, with lon
gitudinal momentum fraction z. The usual definition for the convolution of functions is
used,

(f ⊗ g)(x) =

∫ 1

0
dydzδ(x− yz)f(y)g(z). (75)

The factorization scale µF is introduced instead of the energy scale Q. This scale separates
the PDF scale from the hard scattering scale and is another (besides the renormalization
scale µR) a freely chosen parameter which often is picked as µF = µR.

PDFs satisfy momentum sum rules, which incorporate that summing the momenta of all
parton species must yield the full momentum of the composite particle,∑

i

∫
dxfi(x,Q)x = 1, (76)
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and various valence quark content sum rules, which for the proton (with a uud valence
quark content) are∫

dx(fu(x)− fu(x)) = 2,

∫
dx(fd(x)− fd(x)) = 1. (77)

Based on such relations, and on measurements of quark PDFs in the proton, a rough 50%
of parton content is found missing, which is subscribed as the gluon contribution in the
proton. Although this gluon content is dependent on both the scale Q and the fraction
x, gluoninduced processes are highly dominating at LHC. When electroweak corrections
are considered, also the photon content in the proton must be included, which in general
is a small contribution, but it may open up new partonic channels which result in sizeable
electroweak corrections.

Finally, a direct computation for the factorization at work is presented. Consider an in
coming quark which enters the hard scattering (with cross section σ0). This process at
order αs has a realemission contributions (emitting a soft or collinear gluon) and a virtual
contribution,

R :
σ0

p zp

(1− z)p

, V :
σ0

pp

When performing the calculations for these two contributions, one finds the cross sections
are separately

σ̂R = σ0(zp)
αsCF

π

dz
1− z

dk2T
k2T

, (78)

σ̂V = −σ0(p)
αsCF

π

dz
1− z

dk2T
k2T

, (79)

where p is the momentum of the quark, and zp is the momentum fraction carried by the
quark after the splitting, and kT is the transverse momentum of the quark after splitting.
The total cross section is the sum of the two contributions,

σ̂ =
CFαs

π

∫
dz

dk2T
k2T

1

1− z
(σ0(zp)− σ0(p)) (80)

from which it becomes clear that for the z → 1 limit, the soft parts of the real and virtual
corrections cancel, while the collinear divergence in k2T → 0 remains. The remedy is to
include the lowenergy, nonperturbative region for kT < µF in the PDFs, introducing a
lowenergy cutoff in the integral,

σ =
CFαs

π

∑
i

∫ Q2

µ2
F

dxdz
dk2T
k2T

1

1− z
(σ0(zxp)− σ0(xp)) fi(x, µ

2
F ) (81)
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which indeed removes the collinear divergence. Note that now the incoming quark carries
the fraction x of the incoming proton momentum p. Physically, we have removed our lack
of knowledge on the nonperturbative physics below the cutoff µF to be included in the
PDFs which are fitted to data.

2.6 The colour expansion in the largeNC limit

As already introduced, the strong interaction sector of the Standard Model is described by
the SU(3)C gauge group. This gauge group involves heavy computations due to the rich
group structure. Hence, when a large number of strongly interacting particles is included
in a process, the computation becomes significantly slower due to the colour gauge group
handling alone. In paper III, we suggest an improvement to this calculation of the colour
gauge group by using the largeNC limit in the colour expansion of matrixelements. Here,
some introduction is given to these concepts as well as some complementary information
to paper III.

The largeNC expansion

Although there is clear evidence for three colour charges (NC = 3) in the Standard Model, it
turns out that treating the number of colours as infinite,NC → ∞, leads to simplifications
in the calculations and reliable results. To see whether this limit can recover the features of
QCD, the βfunction (at oneloop) of QCD is examined,

β(αs) = b0
α2

s
4π
, b0 = −11

3
NC +

2

3
NF < 0, (82)

with NF active flavours. This leads to the firstorder solution of the strong coupling,

αs(Q) =
αs(µ

2)

1− b0
αs(µ2)
4π logQ2

µ2

. (83)

Keeping a fixed value for g1√
NC

(recall g1 =
√
4παs) while taking the NC → ∞ limit

(meaning that the gauge coupling g1 → 0), recovers the same asymptotic behaviour for
the strong interaction.

Next, we investigate how this limit simplifies computations. The SU(NC) gauge group has
the representation

NC ⊗NC = (N2
C − 1)⊕ 1. (84)

The gauge bosons, in the adjoint representation (N2
C −1) carry a colour index denoted by

a = 1, 2, . . . , N2
C − 1 (which are the 8 physical gluons already introduced). The quarks,
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transforming under the fundamental representation, carry an index i = 1, 2, . . . , NC and
the antiquarks carry an index j = 1, 2, . . . , NC (no distinction is made between the nota
tion for the quark and antiquark index). With this notation, the fundamental generators
(T a)ji carry one adjoint index, one fundamental index and one antifundamental index,
corresponding to the colour factor of the particle indices in a quarkgluon vertex,

i

j

a ∼ (T a)ji . (85)

In the colourflow representation, the gluon field can be viewed as a twoindex field rather
than one with an adjoint index. This means that the gluon propagator, proportional to δab
in the adjoint representation, becomes

δi1j2δ
i2
j1
− 1

NC
δi1j1δ

i2
j2
. (86)

This decomposition introduces new Feynman rules for the gluon propagator, in the so
called the doubleline notation,

→ i1

j1

j2

i2
− 1

NC

i1

j1

j2

i2
. (87)

This identity is called the Fierz identity and is a decomposition of the SU(NC) boson into
a U(NC) boson and a (subtracted) U(1) part. This implies that the gluon field with an
adjoint index is now written in terms of a field with two fundamental indices

Ga
µ → Gj

µ,i = Ga
µ(T

a)ji , (88)

with the traceless constraint of Gi
µ,i = 0. Using the basis for the GellMann matrices this

field can be written explicitly asG
3
µ + 1√

3
G8

µ G1
µ − iG2

µ G4
µ − iG5

µ

G1
µ + iG2

µ −G3
µ + 1√

3
G8

µ G6
µ − iG7

µ

G4
µ + iG5

µ G6
µ + iG7

µ − 2√
3
G8

µ

 . (89)

The U(1) gauge boson, however, does not couple to the SU(NC) part of the bosons, as
these constitute an orthogonal decomposition of the gluon representation. As such, in all
gluon amplitudes, only the U(NC) contributions need to be considered, while if fermions
are present, then both of the contributions of the gluon must be considered. The U(1) part
is accompanied with a factor of 1

NC
, meaning that in the largeNC limit these vertices are

suppressed.
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The colour expansion

The matrixelement of a generic process can be colour decomposed, meaning that the col
our factors are stripped off the diagrams. The square of the matrixelement then is the
interference of two such decompositions, schematically of the form

|M|2 = gx1
∑
σk,σl

C(σk, σl)A(σk, pi, λi)A∗(σl, pi, λi) (90)

where the C(σk, σl) matrix is called the colour matrix and contains the colour factors for
the colour expansion. The momenta of the external particles are pi and their helicities are
λi. The rows and columns of the colour matrix are labeled with σk, σl, which are some
permutations of the QCD particles in the process. The order of the strong coupling gx1
depends on the type of particles included in the amplitude. The A are the gaugeinvariant
dual amplitudes, or colourordered amplitudes. These objects are dependent solely on the
kinematics and helicity (and the permutation of the particles). The exact content of the
colour matrix depends on the type of process and the representation chosen. A summation
over the colour indices is always understood at the level of the squared matrixelement.

To be specific, an allgluon matrixelement with n external gluons, is decomposed as

M = gn−2
1

∑
σ∈Sn−1

Tr[T aσ(1) . . . T aσ(n−1)T an ]A(σ(1), . . . , σ(n− 1), n) (91)

where Sn−1 is the permutation group of n − 1 elements. The (n − 1)! dual amplitudes
are not all independent, but are related by

A(1, 2, . . . , n− 1, n) =A(n, 1, 2, . . . , n− 1),

A(1, 2, . . . , n− 1, n) =(−1)nA(n, n− 1, . . . , 2, 1),

A(1, 2, 3, . . . , n) +A(2, 1, 3, . . . , n) +A(2, 3, 1, . . . , n)

+ . . .+A(2, 3, . . . , 1, n− 1, n) +A(2, 3, . . . , 1, n) = 0,

(92)

which describe invariance under cyclic permutation, the reflection property, and the dual
Ward identity relation (the insertion of a gluon index in all possible positions sums to zero).

In the colourflow representation of an ngluon process, the same set of dual amplitudes is
used, but the colour factors are simpler. The allgluon amplitude in this basis is written as

M = gn−2
1

∑
σ∈Sn−1

δinjσ(1)
δ
iσ(1)

jσ(2)
. . . δ

iσ(n−1)

jn
A(σ(1), . . . , σ(n− 1), n). (93)

In this basis, the elements in the colour matrix are products of Kronecker deltas, which are
computed to monomials in NC with the basic index contraction

δi1j2(δ
i1
j2
)† = δi1j2(δ

j2
i1
) = δi1i1 = NC. (94)
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In other words, the colourflow representation utilizes the decomposition of the adjoint
index according to the doubleline notation to a fundamental and antifundamental index
as in Eq. (87). In this notation, the colour factors of the Feynman diagrams in this basis
are intuitively read off from the diagram,

1 5

432

→

j1

i1 j5

j4
j3

j2

i5

i4

i3i2

∼ δi1j2δ
i2
j3
δi3j4δ

i4
j5
δi5j1 , (95)

and the case with quark lines are similarly constructed (but each quark line carrying one
colour index only).

The set of relations in Eq. (92) can be used to eliminate redundant dual amplitudes. It has
been shown [16] that the number of independent dual amplitudes for allgluon processes is
(n−2)!. Using this minimal set of dual amplitudes, one can decompose the matrixelement
in the adjoint representation

M = gn−2
1

∑
σ∈Sn−2

(F aσ(2) . . . F aσ(n−1))a1anA(1, σ(2), . . . , σ(n− 1), n). (96)

When squaring this matrixelement, the colour factors contract to combine into the colour
matrix

C(σk, σl) = Tr[F aσk(2) . . . F aσk(n−1)F bσl(2) . . . F bσl(n−1) ] (97)

with the adjoint matrices (F a)bc = −ifabc.

The colour matrixelements are polynomials (in the adjoint and fundamental representa
tions) and monomials (in the colourflow representation) in NC. As such, the entries are
of the form

Nx
C + aNx−1

C + bNx−2
C +O(Nx−3

C ), (98)

where the first nonvanishing term is called leadingcolour (LC), the next term is nextto
leading colour (NLC), and so on. For amplitudes with no or distinctflavoured quark lines,

this colour expansion is actually in terms of
(

1
NC

)2
, yielding an error of

(
1
NC

)4
≈ 1% at

a NLC truncation.

The computationally costly part of the calculation for large number of strongly interacting
particles is the large number of colourordered amplitudes that need to be evaluated in
the sum over the permutations of the particles. The LC terms in the colour matrix are
those with a squared dual amplitude (σk = σl). Hence, in theory, all dual amplitudes
must still be computed, even with a sparse colour matrix. In practice, one can utilize
the symmetry of final state particles, which is suggested in paper III. This allows to not

36



Table 4: For the colour matrix in the fundamental representation, the number of non
zero elements in one row (middle column) and total number of rows (middle
column parenthesis) and number of dual amplitudes (right column) that need
to be computed when a NLC truncation and final state symmetry is utilized for
allgluon processes with n gluons.

allgluon
n Nonzero elements #JAMPS

4 6 (6) 6
5 11 (24) 24
6 24 (120) 70
7 50 (720) 180
8 95 (5040) 413
9 166 (40320) 856

10 271 (362880) 1629
11 419 (3628800) 2890
12 620 (39916800) 4840
13 885 (479001600) 7728
14 1226 (6227020800) 11856

Table 5: For the colour matrix in the fundamental representation, the number of non
zero elements in one row (middle column) and total number of rows (middle
column parenthesis) and number of dual amplitudes (right column) that need to
be computed when a NLC truncation and final state symmetry is utilized for one
quark line amplitudes with n gluons, for a qq initial state (left table), qg initial
state (middle table) and gg initial state (right table).

qq → ngluon
n Nonzero elements #JAMPS

2 6 (6) 3
3 11 (24) 5
4 24 (120) 11
5 50 (720) 25
6 95 (5040) 52

qg → q + (n− 1)gluon
n Nonzero elements #JAMPS

2 6 (6) 2
3 11 (24) 6
4 24 (120) 22
5 50 (720) 68
6 95 (5040) 180

gg → qq + (n− 2)gluon
n Nonzero elements #JAMPS

2 6 (6) 2
3 11 (24) 6
4 24 (120) 24
5 50 (720) 116
6 95 (5040) 444

only reduce some terms in the columns of the colour matrix, but also reduce the number
of rows needed in the computation. This implies also that the number of needed dual
amplitudes can be reduced, even at LC. The total number of colourordered amplitudes
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(called JAMPS to follow notation from MadGraph5_aMC@NLO) that need to be computed
for allgluon amplitudes is given in Table 4. For the allgluon case, the choice of the rows
to keep is redundant. However, for processes with quarks involved, a choice is to be made
which rows are to be kept for evaluation, and different choices lead to different efficiencies
in the number of dual amplitudes that must be computed. The number of needed dual
amplitudes with one quark line and n gluons is presented in Table 5. As can be seen from
the tables, evidently, the number of dual amplitudes needed for computation is the least
when all gluons are in the final state (leftmost table), as then most final state symmetry
can be utilized for the reduction of the number of dual amplitudes.

The aim of paper III is to investigate the colour matrix at NLC accuracy, by finding the
rules on how to obtain the locations of the NLC elements in the colour matrix. When
the locations are obtained, the sparseness of the matrix is evaluated and compared in the
fundamental, colourflow and adjoint representations.

All the above is valid for treelevel colour decompositions. A similar procedure can in
principal be done involving loops, at a higher perturbative order. In that case, the loop
diagrams interferes with the Born ones, and this results in general in a nonsquare col
our matrix, because the loop amplitudes have a different number of dual amplitudes in
the colour expansion. The complication of an analytical evaluation of the location of the
leadingNC terms in the colour matrix is minor, but needs careful analysis.
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3 Monte Carlo collider physics

“If you cannot be a star in the sky  be a lantern in the house.”

— Hungarian proverb

Even with the greatly simplifying tool of Feynman diagrams, calculating cross sections at
high precision is a tedious and numerically challenging problem. With an increasing com
puting power, the past decades have employed many physicists with developing computa
tional tools for the simulation of particle interactions. In this section, first an overview of
the Monte Carlo integration technique is given. Then, the structure of higher order per
turbation calculations is presented. Finally, event generators are discussed, with a special
emphasis on the matrixelement generator MadGraph5_aMC@NLO, which is the main tool
for the computations performed in the papers of this thesis.

3.1 Monte Carlo integration

In the quantum field theoretical formulation of particle physics, the differential cross sec
tion of a process is given by the integration over the allowed finalstate phase space, as
presented in Eq. (44). The integrated cross section,

σ =

∫
dσ ∼

∫
|M|2

n∏
i=1

d3pi
2Ei(2π)3

(99)

is a (3n−4)dimensional integral in phase space⁶. The limits of integration depend on the
particle kinematics, however, with variable substitution, it can in general be recast into an
integral over a unit hypercube in 3n− 4 dimensions, ]0, 1[3n−4.

To solve the above integral analytically becomes impossible for other than LO and low
multiplicity processes, as the matrixelement can be a complicated function of the phase
space variables. Therefore, numerical methods must be employed to compute the integral.
Most numerical integration techniques based on quadrature methods have a dimension
dependent error and hence become less efficient when n becomes sizable. The Monte Carlo
integration technique, however, is a statistical integration method, that is based on the law
of large numbers in probability theory,∫ 1

0
f(x)dx = lim

N→∞

1

N

N∑
i=1

f(xi), xi ∈]0, 1[, (100)

⁶Plus 2 dimensions for the integration over the longitudinal momentum fraction xi variable for the two
partons in the factorized cross section for hadron collisions.
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with the points xi distributed flat in the interval. The integration region of an arbitrary
integral can always be rescaled to match this unit interval by variable substitution. The full
integral approximation is

∫ 1

0
f(x)dx = lim

N→∞

 1

N

N∑
i=1

f(xi)±
√

1

N

√√√√ N∑
i=1

|f(xi)|2 −

(
N∑
i=1

f(xi)

)2
 (101)

meaning that the decrease of the error of this approximation scales as 1√
N

and is independ
ent of the dimension of the integration. Therefore, this technique becomes very useful for
highdimensional integration and is thus the tool used for the computation of cross sections
and for simulation of particle collisions on the computer.

Monte Carlo integration can be made more efficient by various improvements. One of the
major methods is importance sampling, where the sampled points xi are not uniformly
distributed in the interval as in the conventional Monte Carlo method, but are sampled
according to a known overestimate distribution. This essentially leads to a smaller variance,
given in the square root expression in Eq. (101). Adaptive integration is another method
for the improvement of the Monte Carlo method. The main idea here is dividing up the
integration interval into grids from which the points are sampled, in a way that each grid
contributes roughly similarly to the integral. This means that where the integrand is large
or varies rapidly, a denser grid is set up. This method is often combined with importance
sampling and the two are, for instance, implemented in the FORTRANbased programs
of VEGAS [17] and MINT [18] which are frequently used as the internal integrators in event
generators.

Yet another greatly simplifying modification is multichannel integration. Within this
method, the integral is divided into regions in a way that each region includes one (or few)
peaked regions of the integrand function. When applied in particle physics, the integral of
the square of the matrixelement is rewritten,∫ ∑

i |Mi|2∑
j |Mj |2︸ ︷︷ ︸
=1

|M|2 =
n∑
i

∫
|Mi|2

|M|2∑
j |Mj |2︸ ︷︷ ︸
≈1

(102)

where the integral is divided into a sum of the i = 1, 2, . . . , n channels, each with its
own integral to solve. The division is based either on single diagrams or groups of dia
grams with similar peak structure. The approximation that the full squared matrixelement
is roughly the sum of the square of the diagrams (neglecting the interference effects) al
lows to probe each channel by its own pole structure for each (group of ) diagram con
tribution |Mi|2, effectively decoupling the peaks into separate integrals. This method is
the singlediagramenhanced multichannel integration which is utilized in, for instance,
MadGraph5_aMC@NLO.
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3.2 Perturbative fixedorder expansion

In the highenergy regions, the matrixelement is computed as a sum of Feynman diagrams
which contribute at a certain order in perturbation theory. When the terms included in the
matrixelement are of a strict perturbative order, we speak of fixedorder expansion. The
NLO contributions to the matrixelement have two origins at diagramlevel: real correc
tions, in which an extra particle is emitted, and virtual corrections, in which a virtual extra
particle is exchanged in a loop. As an example, we take the process qq → qq and write
some of the Feynman diagrams contributing to the matrixelement at order O(g41),

M = ++ + + + ... (103)

︸ ︷︷ ︸
Born ∼g21

︸ ︷︷ ︸
real ∼g31

︸ ︷︷ ︸
virtual ∼g41

with the order of the strong coupling constant g1 explicitly denoted for each diagram.
When considering the squared matrixelement, M∗M, there are squared diagrams and
interference terms between the diagrams of various orders in g1. The LO contribution for
this process is of order α2

s (from squaring the Born diagrams) and the NLO contribution is
of order α3

s . Combining the possible diagrams and g1 coupling orders from Eq. (103), the
possible contributions to the α3

s ∼ g61 terms is obtained from two types of interferences:

real × real :

and

Born × virtual :

(104)

Before investigating the fixedorder expansion in more detail, we first make a note that
the notion of the perturbative orders for fixedorder expansion can be ambiguous. For
example, the transverse momentum of the tt system in the process pp → tt at order α2

s
vanishes. At order α3

s it obtains nonzero values, when an additional particle acts as a recoil
to the tt system. Thus, at LO, the transverse momentum of the tt pair, pT (tt), vanishes
and one may therefore define the LO for this specific observable to be of order α3

s . Other
observables for the process, such as the invariant mass of the tt system, or the transverse
momentum of the t and t separately, are LO observables at α2

s .
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Figure 3: Expansion in mixed QCD and EW couplings at leading order (first row, boxes)
and NLO (second row, blobs). In parentheses are noted the exponents (n,m)
for each order αn

s α
m.

Now we consider both of the coupling constants which are present for the Standard Model:
the strong coupling αs and the electroweak coupling α. One possible way [19] of defining
a fixedorder perturbative expansion of a general observable O in the two couplings is

O(αs, α) = αc1
s α

c2

∞∑
q=0

ρ0+q∑
k=0

αρ0+q−k
s αkOc1+ρ0+q−k,c2+k (105)

where ρ0, c1, c2 are processspecific parameters. The leadingorder contribution is defined
as the q = 0 terms:

OLO =αc1+ρ0
s αc2Oc1+ρ0,c2︸ ︷︷ ︸

LO1

+αc1+ρ0−1
s αc2+1Oc1+ρ0−1,c2+1︸ ︷︷ ︸

LO2

+ . . .+ αc1
s α

c2+ρ0Oc1,c2+ρ0︸ ︷︷ ︸
LOρ0−1

.
(106)

Given the size of the couplings, α2
s ≈ α, and αs ≪ 1, α ≪ 1, this perturbative series is

convergent (the cases with large logarithms are discussed later in this section), hence, the
leadingorder terms satisfy

ΣLO1 ≫ ΣLO2 ≫ . . .≫ ΣLOρ0−1 , (107)

which defines a leading LO term (LO1) and further subleading LO terms (LO2, LO3, …).
Often, by LO is meant the first term only in this series, sometimes also referred to as LO
QCD.

Similarly, the NLO contributions are the q = 1 terms;

ONLO =αc1+ρ0+1
s αc2Oc1+ρ0+1,c2︸ ︷︷ ︸

NLO1

+αc1+ρ0
s αc2+1Oc1+ρ0,c2+1︸ ︷︷ ︸

NLO2

+ . . .+ αc1
s α

c2+ρ0+1Oc1,c2+ρ0+1︸ ︷︷ ︸
NLOρ0

(108)
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with the same convergent behavior

ΣNLO1 ≫ ΣNLO2 ≫ . . .≫ ΣNLOρ0
. (109)

Higher order corrections are obtained similarly, NNLO (q = 2), N3LO (q = 3) and so
on. An alternative notation is to denote each order of contribution αn

s α
m with (n,m)

such that their sum n + m = A for LO, n + m = A + 1 for NLO, and so on. The
upper and lower limits of n,m and A are processspecific. The tower of contributions can
be portrayed for the LO and NLO terms as in Figure 3. Here, the QCD (red) and EW
(blue) arrows indicate if the corresponding NLO correction is obtained as QCD correction
or EW correction to a LO term. Some NLO blobs can therefore be reached both as a
QCD correction to a LO term or an EW correction of the LO term of one order higher.
CompleteNLO corrections are those in which all NLO terms are included and summed.

The hierarchical structure of the fixedorder perturbation expansion can be spoiled. As an
example, we consider photon radiation from a charged particle. When including all initial
and final state soft radiation, the leadingorder differential cross section dσ0 is corrected by
an exponential Sudakov form factor,

dσ = dσ0 × e
−α

π
log

(
Q2

m2

)
log

(
Q2

E2

)
. (110)

This Sudakov form factor describes the probability of not emitting a photon of energy
E. Indeed, when E → 0, this probability goes to 0, that is, it is impossible to not emit
arbitrarily soft photons. Expanding the form factor yields a perturbative expansion where
the coupling constant is accompanied by double logarithms at each order on the form(

α log

(
Q2

m2

)
log

(
Q2

E2

))n

. (111)

Here, the scale Q is the scale of interaction, m is the mass of the particle emitting the soft
photons. Hence, the expansion in the coupling is wellbehaved provided the logarithms
are small. In the regions where the logarithms are large, the expansion is spoiled and one
cannot assume a hierarchy between the perturbative fixedorder expansion terms. In these
cases, a resummation in the logarithms must be performed at each perturbative order: this
is remedied with analytical resummation or with parton showers.

Another case when the hierarchies between the orders might be altered is when a higher
order correction opens up channels of initial state which are not included in the leading
order set of channels. Such is the case in the NLO QCD corrections to ttW production
when the qg channel opens up at NLO QCD, compared to the only initial state qq at
LO [20]. This can lead to artificially large NLO corrections. Similarly, when NLO EW are
considered, photoninitiated channels, although suppressed with powers of α, might yield
artificially large electroweak corrections.
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The combination of NLO QCD and EW corrections on top of the Born prediction are
defined in two ways. To demonstrate this, we consider a case with a single LO term and
one NLO QCD and one NLO EW term (one square and two blobs according to Figure 3).
Given the relative NLO QCD and NLO EW corrections, δQCD and δEW respectively, an
observable at these perturbative orders is

ONLO QCD = OLO

(
1 + δQCD

)
,

ONLO EW = OLO (1 + δEW) ,
(112)

and the commonly used Kfactors are

KNLO QCD =
ONLO QCD

OLO
= 1 + δQCD,

KNLO EW =
ONLO EW

OLO
= 1 + δEW.

(113)

The complete NLO for this example is defined either in the additive approach, in which
we speak of NLO QCD+EW,

ONLO QCD+EW = OLO

(
1 + δQCD + δEW

)
(114)

or in the multiplicative approach, in which we speak instead of NLO QCD × EW,

ONLO QCD×EW = OQCD (1 + δEW)

= OLO

(
1 + δQCD

)
(1 + δEW) .

(115)

Although the perturbative expansion is valid in both cases, the final results for the observ
able may differ. In addition, one may evaluate the difference between the two approaches,
OLOδQCDδEW to evaluate the size of further corrections at the given order. Specifically,
the multiplicative approach includes an approximation to the higher order EW corrections,
while this is omitted in the additive approach. This makes the multiplicative approach less
sensitive to the scale variation. This feature is nicely portrayed in tt production in Ref. [21].
The additive approach may, however, be preferred when the orders need to be sorted and
kept track of.

When considering observables which are expressed as ratios of other observables, the situ
ation becomes more subtle. This is the case in paper II and paper IV, where spin correlation
coefficients and angular coefficients are considered, respectively, where the considered ob
servables are of the general form

R =
N

D
, (116)
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where the numerator N and denominator D is expanded at NLO in α and αs separately,
but no mixed terms of αsα are included,

N = N0 + αN3︸ ︷︷ ︸
=N2

+αsN1, (117)

D = D0 + αD3︸ ︷︷ ︸
=D2

+αsD1. (118)

The unexpanded approach for the perturbative expansion of the ratio is to compute the
numerator and denominator separately at this order and take the quotient. The expanded
approach, on the other hand, is to first expand the ratio in the αs coupling,

R =
N1

D1
+ αs

N2D1 −N1D2

D2
2

, (119)

and secondly to expand N2, D2 in the α coupling, leading to

R =
N0

D0
+ α

N3D1 −N1D3

D2
3

+ αs
N2D1 −N1D2

D2
2

+ αsα
N2D3 −N3D2

D2
2

, (120)

where the term marked with red is formally of the mixedcoupling order, which is tech
nically excluded from the computation. Hence, this term should be omitted, otherwise
misleading results might be obtained. A similar situation⁷ arises in paper II where compete
NLO corrections are considered, and paper IV where NNLO QCD corrections are com
bined with NLO EW corrections.

3.3 More on NLO EW corrections

When considering electroweak corrections, one must be careful about treating the emitted
soft or collinear photon correctly. In the real radiation diagrams, photons can be emitted
collinear to a charged fermion line. As such, demanding a fixed number of photons in
the final state is not infrared safe. This introduces the concept of dressing leptons, also
called photon recombination. Dressed leptons (and quarks) are those final state fermions
which have been recombined with any photon that satisfies an angular separation of R
in the (η, ϕ)plane (the definition of the angular separation is given in Section 4). After
recombination, the photon momentum is added to the dressed fermion momentum and is
removed as a final state particle. This should be done whenever NLO EW corrections are
considered.

Electroweak corrections at NLO are typically of the size O(α) ∼ 1%. However, they can
have larger effects in some cases. Firstly, this can be due to opening up of photoninduced

⁷In paper I, only the additive and unexpanded approach is used for the coefficients for the combination of
NLO QCD and NLO EW corrections.
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channels, as discussed earlier. Secondly, the bremsstrahlung contributions of photons can
make a significant impact. This is the emission of final state photons, and hence is also
called the photon final state radiation. The third main contribution to larger NLO EW
corrections is from the emission of massive gauge bosons, which is different from the case
when emitting massless photons. These bosons have a finite mass and hence are detectable
objects. As such, their real radiation is treated as a physically distinguishable process and
the cancellation between the real and virtual correction does not take place, in a physically
meaningful way. Another way of viewing this noncancellation is through the weak charges.
In an interaction initiated by a strongly charged particle, the colour charge is summed over.
However, the weak charges of the initial particles are not summed and averaged, as we
consider a quark of a specific flavour, which is only one of the entries in the weak doublets.
This breaking of the weak gauge group symmetry in the initial state leads to that these
corrections between the real and virtual corrections in the weak sector are not canceled. The
result of the weak boson corrections are the virtual contributions, and these are evaluated
to enhancements on the form −α logk s

mV
and are relevant when s≫ m2

V , with the hard
scattering scale s and the weak boson massmV (eithermW ormZ ) and k = 1, . . . , 2n. If
these corrections are large, resummation must be made in order to achieve precise results.
For NLO EW (n = 1) involving oneloop corrections, there are two main contributions:
the double logarithms (k = 2), known as leading (EW) Sudakov logarithms and the single
logarithms (k = 1), known as the subleading ones [22].

The doublelogarithmic Sudakov enhancement and singlelogarithmic Sudakov enhance
ment for the NLO EW oneloop corrections of the forms

α

4π
log2

(
s

m2
V

)
and

α

4π
log

(
s

m2
V

)
(121)

reach up to ∼ 8% and ∼ 1%, respectively, for the LHC with s = (13 TeV)2. For pro
posed future facilities at higher energies, such as the Future Circular Collider (FCC) with a
proposed center of mass energy of 100 TeV, these corrections can be even more dominant.

The double (and single) logarithmic Sudakov enhancements originate from the Feynman
diagrams and logarithms of the form

log2
rij
m2

V

(122)

with the invariants rij formed between the external particle momenta pi, pj [23, 24]. The
region where the NLO EW corrections can be approximated by the simple Sudakov en
hancements is in the region where all invariants rij = (pi + pj)

2 are large compared to
the weak scale, rij ≫ m2

W/Z . In other regions, this Sudakov approximation to the NLO
EW corrections breaks down. Therefore, in resonance diagrams where the internal boson
is onshell, the oneloop Sudakov approximation to the NLO EW corrections is a priori
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not valid. One possible remedy is to use reweighting of events to obtain the Sudakov ap
proximations before the decay of the onshell resonance takes place.

3.4 Event generators

The way to compute and simulate full hadronic collisions in which a hard scattering takes
place, is through a chain of events, spanning over a large energy scale, each stage in need
of separate modeling or calculation, as portrayed for a hadronhadron collision in Figure 4.
The red arch in the figure denotes the hard scattering part, which occurs at the highest en
ergy transfer between partons and results in a final state with some relatively low number of
partons. This is the partonic interaction and can most often be computed with perturbation
theory. The final partonic state is then dressed with soft and collinear emissions, and in this
way propagated down from the hard scale to some hadronization scale, represented by the
green arch in the figure. At this scale, the coloured partons are combined into colourless
bound states of hadrons, marked with green blobs. Unstable hadrons are further decayed
to stable hadrons (dark green blobs). It is this final state of sprays of stable hadrons which
are detected in a detector at a hadron collider. For the simulation of this entire chain of
processes, multipurpose event generators have been developed. These are often interfaced
to other programs, which have a more specific focus on one aspect of the collision. This is
the case with matrixelement generators, which often have high precision computation of
the hard scattering implemented, and are interfaced to the parton shower and hadroniza
tion modeling of the multipurpose event generators. The three largest multipurpose event
generators today are PYTHIA8 [25], HERWIG7 [26] and SHERPA [27]. Predictions obtained
with these tools are often also passed through a detector simulation, that produces results
which finally can be compared to experimental data.

Figure 4: Schematic figure of a scattering event portraying the hard scattering (red arch),
the soft emissions (up to light green arch), the hadronization into unstable had
rons (light green blobs) and finally the decay to stable hadrons (dark green blobs).
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Scale uncertainties

Within the factorization approach for hadron collisions, the factorization scale µF enters
the computation. When higher than LO is considered in the hard scattering computation,
also the renormalization scale µR enters the calculation. Although these scales are un
physical, the accuracy of the calculations relies partly on what values are chosen for them.
Generally, one needs to pick values which are on the order of the hard process: large ranges
of scales in a process leads to large logarithms and illbehaved convergent series in the re
gion where perturbation theory is applied. The effect of the scale choice is conventionally
evaluated by a 7 or 9point variation of the scales by varying the central value for both the
renormalization and factorization scales by factors in the range of {1

2 , 1, 2} and performing
an envelope over these values. The scale uncertainties, when correctly computed, indicates
the size of the missing higher order effects.

PDF sets and uncertainties

Presently, the most widely used distributor of PDF sets is the LHAPDF [28] library. In
this library, almost all PDF data are collected from different collaborations, providing an
interface between PDF data and event generators. The PDF sets consist of a (x,Q) grid,
and interpolation schemes allow for a continuous usage in event generators. PDF sets are
computed by fits to data of a parametrized model with a set of parameters, and this fit of the
parameters is performed differently for the different PDF groups, but all are based on some
χ2fit. Some collaborations, such as the NNPDF collaboration [29], utilizes a neural network
fitting of data to the DGLAP evolution equations. Together with the central values, modern
PDF sets are presented with a set of uncertainties on the fitted parameters, which can be
used directly in the evaluation of the PDF uncertainty dependence of the computations.
These uncertainties are often the largest source of error in theoretical predictions.

In recent years, the photon PDF in the proton has received much attention. One of the
collaborators focusing on the photon content is LUXqed [30], using points from electron
positron scattering to obtain the structure functions for the photon content. The LUXqed
also defines a formalism to obtain the photon contribution, and is used by other collabora
tions, such as the NNPDF collaboration, to obtain PDF sets with a more reliable and correct
photon content, implemented in, for example, the NNPDF3.1-luxQED set [31].

Introducing MadGraph5_aMC@NLO

The matrixelement generator MadGraph5_aMC@NLO [32] is a fully automated program
that computes hard scattering processes with NLO QCD and NLO EW precision. The
NLO QCD precise results can be interfaced to parton showers, through the MC@NLO
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matching prescription. As such, the program can either do event generation (with parton
shower matching) or a fixedorder computation, in which only the hard scattering par
tonic process is computed. The rough outline of an event file generation is described in
the flow chart in Figure 5. As the first step, the user defines the model to use for the pro
cess, and defines the process to generate. The physics model input is produced with the
FeynRules interface [33], a Wolfram Mathematica script which generates the Feynman
rules from the given Lagrangian. The translated Feynman rules are contained in a UFO
(Universal FeynRules Output) file [34], containing the generated parameters, vertices and
propagators. Given this input, the information is passed on to ALOHA (Automatic Libraries
of Helicity Amplitudes) [35], that generates libraries of calls to helicity amplitudes based on
the set of Feynman rules, according to the HELAS library subroutines [36]. This provides the
user a standalone process directory. With a numerical integration tool (currently MINT),
phasespace points are sampled and the integral for the cross section is computed. The
phasespace points are either passed through an onthefly analysis (for fixedorder gener
ation) or, when the MC@NLO matching is used, summarized and stored in an LHE file.
LHE files is a standardized way [37] of passing information from the partonlevel process
to the parton shower and hadronization tools, based on established LHA (Les Houches
Accords) agreements [38].

FeynRules

UFO ALOHA

MadGraph5 Diagrams

numerical integration tool

LHE file+ }
Figure 5: Flow chart of event generation, collected in an LHE file, in

MadGraph5_aMC@NLO.

The phasespace events which are generated in this way are weighted, meaning that they
have different weights. This, however, does not resemble real particle collisions, in which
each event has the same weight, but occurs with different probability. To produce more
realistic events, unweighting is applied, in which each event is given the same weight, while
at the same time altering the number of events in each kinematic region, in order to main
tain the same distributions. To be specific, given a set of N weighted events with weights
{wi} summing to the total cross section

σ =
N∑
i=1

wi, (123)
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the events can be unweighted if there exists an upper boundwmax such that one can rewrite

σ = wmax

N∑
i=1

wi

wmax
, (124)

where each event i is accepted with probability wi
wmax

< 1 and then assigned the same weight
wmax. This method can be applied when the integrand is positive and bounded. Thus, this
is not the case when NLO corrections are considered at fixedorder computations, where the
matrixelement diverges in certain phasespace regions. However, when the NLO accurate
predictions are matched to parton showers, this divergence is lifted and the unweighting
procedure can be performed.

Further tools, such as the FKSsubtraction within MadFKS [39] for dealing with the diver
gent parts of the real and virtual corrections at NLO; the loop calculator MadLoop5 [40],
together with CutTools [41] and other integral reduction methods [42–46], which calcu
late the loop contributions in dimensional regularization scheme for the virtual contribu
tions, are utilized for a complete handling of fully automated NLO computations inside
MadGraph5_aMC@NLO.

Dealing with the KLN theorem numerically at NLO

The IR divergences in the virtual and real diagrams in final state radiation cancel according
to the KLN theorem, while a remainder finite part contributes to the total cross section.
Treating this cancellation numerically can, however, be challenging. There is two main
types of methods for implementing these IR cancellations: phasespace slicing methods
and subtraction methods. The FKSsubtraction scheme introduced by FrixioneKunszt
Signer [47], which is the scheme implemented in MadGraph5_aMC@NLO, is here briefly
described.

A 2 → n process is considered with massless final state particles. The (partonic) cross
section at NLO is obtained from contributions from the Born, virtual and real emissions,

σ̂NLO =

∫
n

dσ̂B +

∫
n

dσ̂V +

∫
n+1

dσ̂R (125)

where the number of final state particles in the integral is depicted: n for the Born and
virtual contributions and n+ 1 for the real emission contribution.

If the Born matrixelement is denoted with Mtree
n and similarly Mtree

n+1 denotes the tree
level matrixelement from the real emission 2 → n + 1 diagrams, and Mloop

n the loop
level matrixelement with an nbody final state, then the various contributions to the cross

50



section are expressed as

dσ̂B ∼
∑

colour,spin

|Mtree
n |2dΦn,

dσ̂R ∼
∑

colour,spin

|Mtree
n+1|2dΦn+1,

dσ̂V ∼
∑

colour,spin

2Re
[
Mloop

n

(
Mtree

n

)∗] dΦn,

(126)

where the proportionality factors omitted are the flux factors and the averaged colour factors
for the incoming particles.

The three cases in which soft and collinear singularity occurs is when one of the massless
final state particles is soft (its energy E → 0), or when one of them goes collinear with the
initial partons (angle θ → 0 between the two parton directions) or when two final state
partons go collinear. In order to account for these divergence cancellations in the virtual
and real emissions, a counterterm function (subtraction function) S is introduced in the
integrals,

σ̂NLO =

∫
dΦn

(
σ̂B + σ̂V +

∫
dΦ1S

)
+

∫
dΦn+1(σ̂

R − S), (127)

such that it incorporates the singular parts of the real emission and thus renders the integrals
separately finite. This subtraction is introduced in a way that each of the soft and collinear
singularities are isolated into separate regions, simplifying their structured computations.

In this way, two type of events are generated: those with nbody kinematics, including
the Born, virtual and counterterm contributions (denoted as S events), and events with
n + 1body kinematics, which include the real emission and the counterterms (denoted
as H events). For fixedorder computations, these are grouped into eventgroups in the
output LHE files. These events are correlated and their weights partially cancel, therefore,
the weights and errors should be combined accordingly when evaluating the error of the
Monte Carlo calculation.

Matching matrixelement calculations with parton showers

The nonabelian nature of QCD leads to colour confinement at short distances, mean
ing that the strongly interacting objects are detected only as colourless bound states. But
at short distances, perturbation theory for the description of QCD breaks down. Hence,
different mathematical tools are to be used at high and low energies for the modeling of
particle interactions. In the varying of energy scales, coloured objects emit collinear and
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soft gluons and quarks. This process is typically simulated and computed through par
ton shower algorithms. These algorithms are Monte Carlobased generators, which gen
erate soft and collinear emissions of the final partonic state. These events are generated as
Markovchains, using the veto algorithm to include an ordering in energy. This way, the
partonic final states are evolved from a hard scattering down to a low energy scale, where
the parton shower is cut off and the final states are passed to hadronization models, that
combine the particles into colourless hadrons.

The first, hardest emission of a parton shower to a partonic event may, however, recover
the contribution of a real emission correction, already taken into account in a realemission
NLO diagram. This is exemplified in a hardscattering real emission correction to quark
antiquark pair production, qq → qqg, and the first soft emission in the shower algorithm
(marked in blue) to the treelevel qq → qq process,

qq → qq qq → qq + 1 PS emission

which can be the same contribution for certain kinematic setups. In order to reduce this
doublecounting of contributions, a matching method must be employed. The two main
matching prescriptions are the MC@NLO method [48] and the POWHEG method [49].
The former is an additive matching prescription, while the latter is a multiplicative match
ing. The current version of MadGraph5_aMC@NLO has automated matching of NLO QCD
hard matrixelements to the parton shower based on the MC@NLO framework. However,
the NLO EW corrections are available currently only for fixedorder event generation.

Decaying resonances with MadSpin

Unstable particles which are created in the partonic process can be decayed within the
multipurpose event generator before the parton shower algorithm is applied. However,
in most cases this approach for the decay does not consider spin correlations between the
decay products. Within MadGraph5_aMC@NLO, the spin correlations can be included with
the MadSpin module [50]. Although it has some limitation, it is an efficient approach to
obtain spincorrelated decayed events which can be passed onto parton showers.

The method in MadSpin relies on the decay chain model. This is the twostep production
of decayed events, by first producing a set of production events with final state unstable
particles, and secondly by producing decay events for each of the unstable particles which
are then attached to the production events [51]. The procedure in more detail is as follows:
MadGraph5_aMC@NLO generates a set of production events in an LHE file, following the
steps described above, with the final state resonance particles. Decays in the resonance
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particles’ rest frames are then generated at LO precision in a set of unweighted events.
Each production event with kinematics Φprod is tested to a decay event with kinematics
Φdec. This differential cross section is bounded from above

dσ
dΦproddΦdec

< Bmax (128)

for some value Bmax. A proposed full event is generated by boosting the final state mo
menta to match the production kinematics to form the full kinematics Φfull. An accept
orreject method is applied by picking a random number r ∈ [0, 1] and accepting the full
kinematics Φfull only if

dσ
dΦfull

> rWmax (129)

and otherwise proceeding to the next decay event until a decay event is accepted for each
production event. To obtain this upper weight boundWmax, a set ofN production events
are probed at the beginning of the computation, with a set of n decay events each. For
each, a maximum value wi is obtained, and these are combined and averaged to obtain the
upper bound weight,

Wmax = ⟨wi⟩+ ξ std(wi) (130)

with some parameter ξ. The three free parameters ξ,N, n have been tested to various
processes, presented in Ref. [50] to optimize the calculation for a general process.

For the evaluation of the differential cross section dσ
dΦfull

, treelevel diagrams are used for the
given phasespace point Φfull. As such, events with Borntype kinematics (both Bornlevel
and virtual events) obtain only leadingorder correction to the spin correlation, while real
emission events obtain treelevel nexttoleading corrections. In other words, MadSpin
approximates virtual spincorrelation effects with treelevel ones.

For making an estimation of finite width effects, MadSpin internally does a smearing pro
cedure which captures the BreitWigner shape of the resonant particle around the mass
peak. The way this is done is by picking a virtual invariant mass for the resonance ran
domly around the BreitWigner peak, then reshuffling the momenta for the undecayed
event, before attaching the unweighted decay event. This method captures a part of the
offshell effects.

Reweighting in event generation

Generatorlevel events (those passed a parton shower algorithm and stored in an LHE file)
are passed through detector simulations at a very high computational and memory cost.
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{ei}

{wi}

{w′
i}

|M|2
|M′|2

∼ |M|2

∼ |M′|2

Figure 6: Schematic overview of the combined reweighting and unweighting procedures
applied on partonlevel events by a multiplication of the ratio of the matrix
elements squared.

Altering any parameter in the theory or model at generator level would in principle need a
new passing of all generatorlevel events through the detector simulation. This tedious and
computationcostly method can be avoided by the method of reweighting.

In leadingorder reweighting [52], given a set of events with weights {wi}, produced with
the matrixelement M, the same set of events (kinematics) can be multiplied with the ratio

|M′|2

|M|2
(131)

to obtain events with weights corresponding to a new physical scenario, in which the
matrixelement M′ governs the physics instead. This simple method can be used because
at leading order, the weights are given by

wi = B
(
eBi
)
Φ
(
eBi
)
, B

(
eBi
)
= f1

(
x, µ2F

)
f2
(
x, µ2F

)
|MB|2, (132)

omitting flux factors, and if the new scenario has the same kinematical setup, all factors
cancel in the ratio between the weights except the matrixelements. As such, if the model
requires a change of αs → α′

s, α → α′, µR/F → µR′/F ′ , fi → (fi)
′, this simple factor

in Eq. (132) is not enough for a resampling of events. But if the new model consists of
for example different mass parameters or other input parameters appearing in the matrix
element only, the parton distributions and flux factors cancel and the reweighting is a simple
factor of the matrixelements (squared), evaluated at the phasespace point of each event.

Reweighting can be combined with unweighting of events. The weighted events {ei} can
be unweighted, using the procedure described in Eq. (134). The total cross section for the
old events, with unweighted weights {wi}, changes in a new physics as

σ =

N∑
i=1

wi → σ′ =

N∑
i=1

w′
i, (133)
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with a new set of unweighted events {w′
i}. These new events can be obtained directly in the

procedure of unweighting the old events with the multiplication of the ratio of the weights,

σ′ = wmax

N∑
i=1

|M′|2

|M|2
wi

wmax
. (134)

This combination of reweighting and unweighting is depicted in Figure 6, where the re
weight route is marked with red arrows.

At NLO, the procedure is less straightforward, as one obtains events of type 2 → n to which
both virtual and Bornlevel kinematics contribute, and also 2 → n+1 real emission events.
As given in Eq. (125), there are various pieces in the NLO calculation which contribute to
the integration and a careful reweighting must be done for the different type of events.

Reweighting in decay chains

Reweighting is applied in the decay chain model, developed for partonshowered events [51],
for generating spin correlated events from a set of decay events with no spin correlation.
This makes the calculation much more efficient and in many cases a very good approx
imation. In the NWA, there is a compact form in which one can relate the weight of a
production event to the fully decayed event. This is exemplified with top quark pair pro
duction and decay into a 6body final state. The full matrixelement of this process at
leadingorder is written

Mfull ∼
1

p2t −m2
t + imtΓt

1

p2
t
−m2

t + imtΓt
MprodMdec, (135)

with the two top/antitop propagators, and the matrixelements containing the production
part, Mprod, and decay part, Mdec. The propagators in the squared matrixelement for
the top and antitop quark are replaced in the NWA by

1

(p2t −m2
t )

2 + (mtΓt)2
1

(p2
t
−m2

t )
2 + (mtΓt)2

→(
π

mtΓt

)2

δ(p2t −m2
t )δ(p

2
t −m2

t ).

(136)

The squared, colour and spinsummed, matrixelement is expressed in this limit as

∑
colour,spin

|M|2 =
(

π

mtΓt

)2∑
ss′

M†
sρss′Ms′δ(p

2
t −m2

t )δ(p
2
t −m2

t ), (137)
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where the sum over the top quark and antitop quarks spins s and s′ respectively, has been
explicitly written out, and the spindensity operator ρ incorporates the spin states. The
density operator can be diagonalized with a unitary matrix U

ρ = U †ρDU, (138)

and the sum over the spins can be rewritten as∑
ss′

M†
sρss′Ms′ →

∑
ss′

(UMs)
†ρDss′(UMs′). (139)

As a positivedefinite matrix, the density operator has an upper limit on its diagonal ele
ments, and hence ∑

ss′

(UMs)
†ρDss′(UMs′) ≤ max

s
ρDss. (140)

This leads to that the fullydecayed event is bounded from above

dσ
dΩ6(+1)

≤ Bmax
dσ

dΩ2(+1)
(141)

with a constant Bmax which depends on the kinematic structure of the matrixelements,
but calculable at any perturbative order. In parenthesis are denoted the real emission phase
spaces, with one extra particle in the phase space. In practice, this upper bound can be
obtained from a sample of production and decay events by sampling a set and retrieving
the maximum value by a process described in Subsection 3.4.

Following this upperboundedness of the fully decayed events, we use this reweighting
method in paper II for a fixedorder event generation with the phasespace points gathered
in eventgroups, performed at NLO QCD+EW precision, in order to pass weighted
events obtained with electroweak corrections to a generation of spincorrelated decayed
events.
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4 Phenomenology at the Large Hadron Collider

“Where in the Schrödinger equation do you put the joy of being alive?”

— translation from Wigner Jenő

The leading particle accelerator in highenergy research today is the Large Hadron Collider
(LHC), which is an underground circular collider located at the CERN science facility
outside of Geneva. Its data taking at a center of mass energy of 14 TeV, which was planned
to start in 2008, was postponed due to an unforeseen technical problem. This lead to a later
start in 2010 and with a reduced total energy of 7 TeV. The plethora of highenergy processes
and final states which has been observed at the LHC is enormous. High performance
and precision tracking and calorimetric techniques allow for accurate determination and
reconstruction of final state particles, their kinematics and tracks.

In this section, after some general introduction to the LHC and its detectors, the processes
investigated in the papers of this thesis are presented. Firstly, the very important and well
established DrellYan production, the topic of paper I and paper IV, is described. Secondly,
a more recently detected process, the top quark pair production is considered, as the main
focus of paper II is examining the spin correlation coefficients related to the top quark
pair production. Finally, an introduction is given to jets and multijet events, which is the
prominent background at the LHC and is the main target of the tools that paper III lays
the foundation for.

4.1 The Large Hadron Collider and its detectors

The LHC, located underground on the border between Switzerland and France, is a circular
collider of hadrons. The primary collision type is that of colliding proton bunches, although
also heavy ions (lead nuclei) have been collided in pPb and PbPb collisions.

The four main experiments at LHC are ATLAS, CMS, ALICE and LHCb. The former
two are generalpurpose detectors, while the ALICE experiment is specialized in heavy
ion collisions and LHCb is a dedicated experiment for bottom quark physics. During data
taking, these experiments record the number of signalsN of some type. From this number,
the cross section for that given type is deduced through the relation

dN
dt

= σ × L, L =

∫
L dt =

N

σ
, (142)

where L denotes the luminosity (measured in b−1s−1) and L is the integrated luminosity,
which is a specific value for a certain machine, like the center of mass energy it operates

57



at. When experiments search for some specific signal, the methodology in general is to
compute

σ =
Nsignal −Nbackground

ϵL
, (143)

whereNsignal is the obtained count for the signal,Nbackground is any underlying Standard
Model process which is not the signal one is looking for but with the same signature (this
is called background), and ϵ is a selection efficiency of the given signal, obtained from
calibration.

The particles which are present in theoretical simulations are often not the objects that
can be detected at experiments. The detectable objects are called particlelevel objects and
are those which have a lifetime of over 0.3×10−10 s. In addition, they have to be within
the kinematic ranges which the detector covers (this can be different for the different ex
periments). The first type of particlelevel objects are photons and electrons. These are
detected in the electromagnetic calorimeter, which measures the (electromagnetic) inter
action of these particles with the matter in the detector. As a registered electron may have
emitted photons which alters its kinematics, we typically refer to such leptons as dressed
leptons. Muons, on the other hand, are not detected in this area as, due to their much
heavier mass, they pass through the electromagnetic calorimeters with very little energy
lost to the surrounding. Instead, they are detected at designated muon detectors, which are
located in the outmost layer of the detectors. Therefore, we speak of muons as bare leptons,
as the radiated photons are typically not altering the detected 4momentum of the muon.
The tau is a particle with a very short lifetime and hence is not directly detectable at the
detectors. However, in more recent analyses, it has been reconstructed and identified in
data.

The other set of objects which can be directly detected at the LHC experiments are the had
ronic jets. Strongly interacting particles radiate other strongly interacting particles in the
soft and collinear limit with diverging probability, as described in Section 2. These emitted
partons are converted at the hadronization scale into hadrons, which are further decayed
into stable hadrons. The emerging collimated sprays of hadrons thus are not individually
detectable, but are measured as energy deposits in the hadronic calorimeter and are detec
ted as jets. The field of jet substructure works with identifying the underlying structure of
these jets, such that more refined internal information of the particles can be extracted.

The kinematics of the detected particles or objects can be reconstructed using trackers. The
common variables for reporting the kinematics are in terms of the rapidity,

y =
1

2
log
E + pz
E − pz

(144)
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Figure 7: Figure with a summary of the most common Standard Model processes and their
cross sections, measured at ATLAS. Figure is reproduced from ATLAS data re
pository https://atlaspo.cern.ch/public/summary_plots/.

and the related pseudorapidity,

η = −log
(
tan

θ

2

)
(145)

where E is the energy of the particle, pz is the component of the momentum along the
beam axis (zaxis) and θ is the angle of the momentum with the beam axis. The difference in
rapidity (or pseudorapidity) ∆y (∆η) constitutes a Lorentzinvariant quantity along the
beam axis. With these definitions, one constructs the angular separation in the (η, ϕ)plane
as

∆R =
√
(∆η)2 + (∆ϕ)2, (146)

where∆ϕ is the azimuthal angular distance between two objects. The reason for this way of
defining the angular separation rather than in direct space is the unmeasured longitudinal
momentum fraction that is carried by the fundamental partons inside the colliding had
ron. Other commonly used observables are the transverse momentum pT =

√
p2x + p2y,

invariant mass p2 = E2 − |p|2 or the angular separation cos θ between two momenta.

59

https://atlaspo.cern.ch/public/summary_plots/


Detectors measure objects in a limited phase space. This region is called the fiducial phase
space, and varies between the different processes and experiments. On the theory side, vari
ous cuts can be imposed and in that way predictions can be made in the fiducial phase space
to better match the experimental measurements. Experimental analyses do an unfolding
to the inclusive phase space, by doing comparisons of the theory predictions (with detector
simulations) between the fiducial and inclusive phase space and in that way extrapolate the
measurements in the fiducial phase space to an inclusive one.

A summary of the most common processes and their cross sections, measured at the ATLAS
detector, is presented in Figure 7. The four processes which have been addressed in the
papers of the thesis are indicated in the table with red boxes. These processes are now
introduced and discussed.

4.2 A key process at the LHC: DrellYan production

The production of a lepton pair at hadron colliders has been topic of interest for many years,
with a first detection of both the weak bosons, the Zboson and the W boson, in 1983 at
SPS at CERN [53, 54]. The process is generally termed DrellYan production, and comes
either in a neutralcurrent setup (with a charged lepton pair in the final state), correspond
ing to a neutral Zboson or photon production and later decay; and as a chargedcurrent
(with a charged lepton and its corresponding neutrino in the final state), with the produc
tion and subsequent decay of a charged W boson, see Figure 8 for a schematic diagram.
At leading order, this production comes solely from a quark and an antiquark initiated
partonic process. However, when higher order corrections are considered or the produc
tion with an associated extra emission at leadingorder is considered, also gluoninitiated
processes contribute. First a general introduction to both types of the DrellYan processes
is given and then a more detailed discussion of each of them follow. As such, when lepton
pair is mentioned, it can either be a pair of charged leptons, or one charged lepton and its
corresponding neutrino, depending on the context.

l1

l2

Figure 8: Schematic diagram of the DrellYan process. For the neutralcurrent setup, the
outgoing particle pair is (l1, l2) ∈ {(e−, e+), (µ−, µ+), (τ−, τ+)}; while for
the chargedcurrent case, the pair is a charged lepton and its corresponding anti
neutrino, (l1, l2) ∈ {(e−, νe), (µ−, νµ), (τ−, ντ )} or with the opposite sign.
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The process of interest for this thesis is the DrellYan production at finite weak boson trans
verse momentum. This corresponds to the process

p+ p→ l1 + l2 +X (147)

where X is some recoil against the lepton pair, yielding a nonzero value for the produced
weak boson transverse momentum. The total cross section (and a generic IRsafe observ
able) for this process is expanded in the strong and electroweak couplings as

σLO(αs, α) = αsα
2σ1,2︸ ︷︷ ︸

LO1

+α3σ0,3︸ ︷︷ ︸
LO2

,

σNLO(αs, α) = α2
s α

2σ2,2︸ ︷︷ ︸
NLO1

+αsα
3σ1,3︸ ︷︷ ︸

NLO2

+α4σ0,4︸ ︷︷ ︸
NLO3

.
(148)

In paper I, the LO1 term alone is referred to as LO. The NLO QCD correction is the
LO1+NLO1 terms, while the NLO EW correction include also the subleading LO term,
LO1+LO2+NLO2.

Specially interesting to investigate related to this process is the angular distribution of the
final state leptons, as this probes the spin structure and the coupling structure between the
weak boson and the leptons in the Standard Model. For the measurement of the lepton
distribution, the CollinsSoper frame is used. Th CollinsSoper frame is often preferred in
analyses for both experiments and theory predictions of the process [55]. This frame is a
rest frame of the weak boson, in which the axes are defined in the following way. In the
hadron plane formed by the two incoming hadron momenta P1, P2, the unit vector x̂ is
defined to be the bisector of the two momenta and ẑ is an external bisector, in a way that
the positive ẑ direction is in the positive direction of the (negatively) charged lepton in the
laboratory frame, and the positive x̂ is in the opposite direction to the sum of the incoming
hadron momenta. The system is completed to a Cartesian coordinate system with the unit
vector ŷ normal to the hadron plane, see Figure 9.

z
^

x^
y^

P1 P2hadron 

Figure 9: The hadron plane with the two incoming hadron momenta in the rest frame of
the weak boson.
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With a pointlike interaction, the lepton plane and quark plane bisect the hadron plane in
the zaxis,

z
^

hadron 

quark

lepton

with the azimuthal angles Φ1 and Φ, respectively. In the quark and lepton planes lie the
quark momentum and the (negatively) charged lepton momentum, respectively. The polar
angles θ1 and θ are defined in the CollinsSoper frame, see Figure 10 for the definition of
the angles. The angle θ0 between the quark momentum (with unit vector p̂q) and lepton
momentum (with unit vector p̂l) in this frame is defined through

p̂l · p̂q = cos θ0. (149)

z
^

x^

y^
θ

θ1

pl

qp

z
^

Φ

Φ1

Figure 10: Azimuthal (left) and polar (right) angles of the (negatively) charged lepton and
the quark.

To arrive at the definition of the decay coefficients of the DrellYan process, a more intuitive
path is taken, which is valid for the neutralcurrent case. For this process, the differential
cross section is expanded in terms of the angle θ0 between the quark and lepton momenta,

dσ
dΩ

=

(
dσ
dΩ

)unpol. (
1 + a cos θ0 + cos2 θ0

)
(150)

with the unpolarized normalizing cross section factorized [55]. The origin of this expres
sion is a summation of the various helicity configurations of the spin12 quark and anti
quark pair into a vector boson: this simple argument yields the usual 1 + cos2 θ0 depend
ence. The additional term proportional to the forwardbackward asymmetry arises from
the parityviolating coupling to the Zboson. The angular distribution is azimuthally sym
metric around the quark and antiquark axis. To relate this expansion to the measurable
angles Φ and θ, we make use of the relation

cos θ0 = cos θ cos θ1 + sin θ sin θ1 cos(Φ− Φ1) (151)
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to rewrite the differential cross section in Eq. (150) in terms of (θ,Φ)

dσ
dΩ

∼
(
(1 + cos2 θ) + sin2 θ1︸ ︷︷ ︸

A0

1

2
(1− 3 cos2 θ) +

(
1

2
sin 2θ1 cosΦ1

)
︸ ︷︷ ︸

A1

sin 2θ cosΦ

+ sin2 θ1 cos 2Φ1︸ ︷︷ ︸
A2

1

2
sin2 θ cos 2Φ + a sin θ1 cosΦ1︸ ︷︷ ︸

A3

sin θ cosΦ + a cos θ1︸ ︷︷ ︸
A4

cos θ

+
1

2
sin2 θ1 sin 2Φ1︸ ︷︷ ︸

A5

sin2 θ sin 2Φ +
1

2
sin 2θ1 sinΦ1︸ ︷︷ ︸

A6

sin 2θ sinΦ

+ a sin θ1 sinΦ1︸ ︷︷ ︸
A7

sin θ sinΦ

)
,

(152)

where the functions A0, . . . , A7 are scalar functions of the weak boson kinematics: the
rapidity yV , the transverse momentum pT,V and the invariant massmll of the lepton pair,
and are called angular coefficients (or decay coefficients). The coefficients are defined such
that the remaining angular dependence in (θ,Φ) appear in the differential cross section as
real spherical harmonics of degree up to l = 2 defined as

Y l
m(θ,Φ) =


(−1)m

√
2(2l + 1) (l+m)!

(l−m)!P
l
|m|(cos θ) sin(|m|Φ) m < 0,

√
2l + 1P l

m(cos θ) m = 0,

(−1)m
√

2(2l + 1) (l−m)!
(l+m)!P

l
m(cos θ) cos(mΦ) m > 0,

(153)

with the associated Legendre polynomials P l
m(θ,Φ). In this definition, the spherical har

monics are orthogonal with the relation∫
Y l
m(θ,Φ)Y l′

m′(θ,Φ)dΩ = 4π δmm′δll′ , (154)

with which the coefficients A0, . . . , A7 can be projected out,

A0 = 4− 10⟨cos2 θ⟩, A1 = 5⟨sin 2θ cosΦ⟩,
A2 = 10⟨sin2 θ cos 2Φ⟩, A3 = 4⟨sin θ cosΦ⟩,
A4 = 4⟨cos θ⟩, A5 = 5⟨sin2 θ cos 2Φ⟩,
A6 = 5⟨sin 2θ sinΦ⟩, A7 = 4⟨sin θ sinΦ⟩.

(155)

The angled brackets indicate a weighted average of the function, normalized to the total
cross section.

For the chargedcurrent process, the same decomposition into scalar decay coefficients is
made. However, the interpretation from the basic cross section in Eq. (150) is not valid, as
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there is no term proportional to the parameter for the parityodd coupling a. But, when a
precise expansion of the cross section in terms of the hadronic and leptonic current is made,
the final result with the same set of coefficients (but with different values) is obtained.

The decomposition in Eq. (152) is based on that the weak bosons decay in a 1 → 2 body
process. Thus, when electroweak corrections are considered, this assumption is broken, as
one may have 1 → 3 decays into a lepton pair and an additional photon (which is not
present when only NLO QCD corrections are considered), or the decay parts may have
virtual electroweak boson corrections. This mismatch is termed electroweak nonclosure
effect and is discussed in more detail in the appendix of paper IV.

The neutralcurrent process: producing and decaying a Zboson

Within the Standard Model, this process at leadingorder is the annihilation of a quark
antiquark pair into a virtual photon or a Zboson, which promptly decays to a charged
lepton pair, with the final leptons being either an electron pair or a muon pair, both of
which can be very well measured⁸. This process yields an insight into the hadron PDF and
is in fact one of the key processes, along with deep inelastic scattering, for determining
PDFs at the LHC, as well as further parameters such as the boson masses and widths. It
is also one of the most abundant processes at the LHC (inclusive cross section of roughly
103 pb as can be seen from Figure 7) with a clear signature of two charged leptons.

The process can be investigated in various invariant mass mll ranges of the lepton pair:
this invariant mass window sets a limit on which of the mediating bosons dominate the
interaction. To investigate the Zboson kinematics, it is customary to pick the invariant
mass window

mll ∈ [80, 100] GeV (156)

as is done by analysis performed by ATLAS [56] and CMS [57], and is done in paper I.
This (or any finite) lower cut on the lepton pair invariant mass is needed also in order to
avoid a divergence in the Born diagram with the photon propagator: with mll → 0, the
propagator goes onshell and these diagrams cause the cross section to diverge.

As is discussed in paper I and paper IV, an additional transverse momentum cut is needed
on the charged leptons when NLO electroweak corrections are considered. The divergence
in the example Feynman diagram shown in paper I which appears when both the gluon
and the lepton go collinear to the incoming partons simultaneously, would be canceled for

⁸Experimentally, the decay into a tau pair is difficult to measure and hence most often omitted in the
analyses.

64



example by a doubleloop diagram such as

q

l
−

q

l
−

Z/γ (157)

which enters at twoloop level for the mixed corrections, and hence is not included in the
computation. One way of avoiding the problem, as is done in paper I, is to use a single
lepton transverse momentum cut. However, the phase space considered in that case is
limited and an extrapolation is needed.

In recent years, special attention has been given to two of the angular coefficients presented
in Eq. (152) for the neutralcurrent DrellYan process,

A0 = sin2 θ1 and A2 = sin2 θ1 cos 2Φ1 (158)

which for Φ1 = 0 or θ1 = 0 are equal, A0 −A2 = 0. This relation is known as the Lam
Tung relation [58, 59]. The case when the quark is collinear to the hadron, that is, without
any initial state radiation or transverse momentum of the incoming parton, the case θ1 = 0
holds. Thus, the LamTung relation is a measure of the parton transverse momentum, or
similarly, sensitive to higherorder QCD corrections. From the factor cos 2Φ1, it is clear
that A0 −A2 ≥ 0 in general.

The first measurements on the angular coefficients were performed with pion beams at
NA10 (CERN) [60] and E165 (Fermilab) [61] experiments. Both of these experiments
measured a higher violation of the LamTung relation than is predicted by the Standard
Model, up to the accuracy which was available at the time. More recent measurements have
been performed at

√
s = 1.96 TeV CDF collaboration (Tevatron) [62] in pp collisions;

at the CMS detector for LHC collisions, at
√
8 TeV [57], measured differentially up to

pT,Z = 300 GeV in Zboson transverse momentum; and at ATLAS [56], all showing a
clear violation of the LamTung relation. In Figure 11, the measured violation of the Lam
Tung relation measured by the ATLAS detector is shown. For larger pT,Z values, ATLAS
data shows high discrepancy from the theory prediction at NNLO QCD (at zeropT of the
weak boson: hence, this corresponds to a NLO QCD for the angular coefficients).

There are some featuring properties of the angular coefficients which will now be discussed.
Firstly, for the case when the quark is collinear to the hadron, θ1 = 0, only the A4 coef
ficient remains nonzero, as θ0 becomes θ in Eq. (150), which is indeed a property verified
by experimental measurements.
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Figure 11: Differential distribution in pT,Z of the LamTung relation A0 − A2 from AT
LAS measurement and theory prediction at NNLO QCD, figure taken from
Ref. [56].
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Figure 12: The angular coefficients A0 (left), A1 (middle) and A2 (right) at LO with the
ρparameter at treelevel (dashed) and including the topinduced oneloop cor
rections (solid).

Secondly, the decay coefficients transform differently under parity. By redefining the angles
θ,Φ to be those of the positively charged lepton instead,

Φ → Φ+ π, θ → π − θ, (159)

one can see from Eq. (155) that the coefficients A3, A4, A7 are odd under parity, while the
other coefficients are even. The parityodd coefficients are sensitive to the Zboson coup
ling to leptons and the weak mixing angle (we see this also in their dependence on the
coefficient a). In paper I this effect is mitigated by introducing higher order corrections to
the weak mixing angle (in terms of the ρparameter). To complement the Figures I.2I.4 of
paper I, the LO distributions with and without the oneloop ρparameter is presented in
Figure 12 (A0, A1, A2) and Figure 13 (A3 and A4), in the same kinematic range and with
the same calculation setup as the results presented in the paper. As can be seen in these
figures, the parityeven coefficients remain unaffected by an inclusion of the topinduced
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Figure 13: The angular coefficients A3 (left) and A4 (right) at LO with the ρparameter at
treelevel (dashed) and including the topinduced oneloop corrections (solid).

oneloop correction to the ρparameter, while the parityodd coefficientsA3 andA4 show a
significant dependence on the exact value on this electroweak parameter. The same feature
is also present when including NLO QCD corrections.

The next point to mention is the dependence on Φ1: only the last three angular coeffi
cients A5, A6, A7 are odd under Φ1 → −Φ1. There is, however, no prediction within the
Standard Model which demands the quark and hadron planes to be oriented in a preferred
azimuthal direction. Hence, it is expected that these coefficients, at least at LO, cancel for
sufficiently large statistics. This phenomena is again observed at both CMS and ATLAS:
all three coefficients are measured to be very small, see Figure 14 for the measurements by
ATLAS.

Figure 14: Differential distribution in pT,Z of the three vanishing coefficients A5 (left)
A6 (middle) and A7 (right) from ATLAS measurements, figures taken from
Ref. [56].

Having introduced the coefficients and the LamTung relation, we summarize the perturb
ative accuracy for each of these in Table 6, highlighting that observables may be of different
fixedorder accuracy, depending on their intrinsic nature. In the following and in the pa
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pers, however, the notation for LO, NLO (and similarly NNLO) is the one presented in
Eq. (148) which is valid at the total cross section level.

Table 6: The perturbative orders for the coefficients and the LamTung relation at various
orders of the coupling constants.

O(α2) O(αsα
2) O(α2

s α
2)

A0, A1, A2, A3  LO NLO

A4 LO NLO NNLO

A5, A6, A7   LO

A0 −A2   LO

This concludes the introduction to the study of the angular coefficients of the neutral
current DrellYan process for finitepT production. In paper I the fixedorder NLO EW
corrections to the angular coefficients is presented. This complements the existing NNLO
QCD corrections to these decay coefficients [63].

The chargedcurrent process: the W boson and its mass

The production of a lepton pair with one charged lepton and one neutrino (measured as
missing momentum in the detector) is the chargedcurrent DrellYan process, related to the
neutral one by a simple switch from theZboson as mediating particle to aW boson, with
a charge corresponding to the charge of the outgoing charged lepton. As can be seen from
Figure 7, this process is roughly an order of magnitude more abundant than the neutral
current process, owing to the nature of the internal couplings and the lower mass of the
W boson.

Despite its abundance, a precise measurement of this process has been less successful than
the neutralcurrent counterpart, due to the difficulty in measuring precisely the missing
momentum of the neutrino. However, it is a key process in determining the mass of the
W boson, one of the free parameters of the Standard Model. The relation which connects
the electroweak parameters to the W boson mass at leading order is

m2
W

(
1−

m2
W

m2
Z

)
=

πα√
2Gµ

. (160)

When radiative corrections are considered, the right hand side of this relation is multiplied
with (1 + ∆r), where ∆r contains higher order effects to the muon decay.
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Figure 15: The table presenting the uncertainties entering theW boson mass measurements
by ATLAS, taken from Ref. [64], with added red box markers for the largest
source of uncertainty (PDF) and the error entering from the angular coefficients
modeling.

The W boson mass has been directly measured at the LHC by ATLAS [64] with data
collected from the 7 TeV run, and LHCb [65] from data collected from the 13 TeV run.
The obtained results are in agreement with the Standard Model. A recent measurement
was published by the CDF II collaboration at Tevatron [66], presenting a 7σdiscrepancy
from the previously made measurements of the mass. In general, pp collisions introduce
larger uncertainties for the measurement of the chargedcurrent DrellYan process than
the corresponding pp collisions, such as those at Tevatron. The main reason for this is
that the W+ (W−) process is dominantly produced by the ud (du) partonic interaction,
which consists of purely valence quarks at a pp collider, but involves sea quarks at the
LHC. Another source of uncertainty at the LHC are the heavyflavourinitiated partonic
processes (25% of all the processes), which are less dominant for the Zboson process and
the corresponding process at the Tevatron. These heavier quarks are modeled in PDFs
with lower precision than the lighter u and d quarks. This introduces a large source of
uncertainty for the precise measurement of the mW parameter at the LHC [64].

In measuring mW from the 7 TeV data by ATLAS, the strategy adopted in Ref. [64, 67]
is a template fit to the charged lepton transverse momentum and the transverse mass of
the lepton pair distributions: plT ,mT . Distributions are fit to theory predictions and a
minimal χ2fit is performed for obtaining a best value for the mW parameter. The mass
is extracted from production of bothW+ andW− and from both the electron and muon
channels. The results in the analysis shows a slightly larger error in theW+ samples entering
through the PDF uncertainty. After the leading PDF uncertainties, the next source of un
certainties in the template fits are the angular coefficients, which parametrize the outgoing
lepton angular distribution. The table from Ref. [64] is reproduced in Figure 15, indicating
the largest source of uncertainty (PDF) and the theoretical uncertainties entering via the
angular coefficients.
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Figure 16: Rapidity dependence of the coefficient A1 as a function of the W boson trans
verse momentum. The results are shown for three rapidity bins of theW boson:
|y| ≤ 0.5 (left), 0.5 < |y| ≤ 1.5 (middle), and |y| > 1.5 (right).

The angular coefficients for the chargedcurrent DrellYan process, however, cannot be
measured directly due to the missing momentum. The procedure adopted in Ref. [64] is
to make an unfolding from the NLO QCD predictions for the Zboson (for which the
coefficients are very well measured) and the corresponding W boson predictions for the
coefficients. In this procedure, the assumption that the errors are similar for the two pro
cesses is made. This assumption, however, must be carefully investigated by considering
higher order terms which are not present in the unfolding procedure, which would be those
of NNLO QCD and NLO EW. Including these higher orders reduces significantly the as
sumptions included in the unfolding procedure between the Z and theW boson samples
for the indirect measurement of the decay coefficients. This is the main motivation for
the work in paper IV, in which we present combined NNLO QCD and NLO EW cor
rections to these angular coefficients. One issue with the fixedorder predictions at high
precision is that they are not accessible in the lowpT ranges of the weak boson due to large
Sudakov factors of the form log

(
mW
pT,W

)
, making the reasonable region accessible only for

pT,W > 30 GeV. The main region of interest for the template fits for the mass extraction
is precisely this lowpT range, where also the bulk of the reconstructed events lie.

Alternative direct measurements have been performed for these decay coefficients by the
CDF collaboration [68]. To measure the azimuthal distribution directly, theW boson mass
is used here to constrain the kinematics and in that way extract the missing momentum. As
this allows for a direct measurement of the coefficients, it is clear that such a measurement
cannot be utilized also for the extraction of the W boson mass.

In paper IV, the angular coefficients are presented differentially in the weak boson trans
verse momentum and rapidity, at a combined accuracy of NNLO QCD and NLO EW.
As complement to the figures in the paper, in Figures 1618 are shown the rapidity depend

70



0.4

0.6

0.8

1.0
Ab

so
lu

te
 v

al
ue

 d
ist

rib
ut

io
n

NNLO + NLO EW (def)

0.1

0.0

0.1

0.2

d
/d

NL
O

1

LO NLO NLO + NLO EW NNLO

100 200 300 400 500 600 700 800
pT (W ) [GeV]

0.15

0.10

0.05

0.00

0.05

d
/d

NN
LO

+
NL

OE
W

1

NNLO + NLO EW (def) NNLO + NLO EW (exp)

Coefficient A2 for W  (|yW | 0.5)

0.4

0.6

0.8

1.0

Ab
so

lu
te

 v
al

ue
 d

ist
rib

ut
io

n

NNLO + NLO EW (def)

0.1

0.0

0.1

0.2

d
/d

NL
O

1

LO NLO NLO + NLO EW NNLO

100 200 300 400 500 600 700 800
pT (W ) [GeV]

0.10

0.05

0.00

0.05

d
/d

NN
LO

+
NL

OE
W

1

NNLO + NLO EW (def) NNLO + NLO EW (exp)

Coefficient A2 for W  (0.5 < |yW | 1.5)

0.4

0.6

0.8

1.0

Ab
so

lu
te

 v
al

ue
 d

ist
rib

ut
io

n

NNLO + NLO EW (def)

0.1

0.0

0.1

0.2

0.3

d
/d

NL
O

1

LO NLO NLO + NLO EW NNLO

100 200 300 400 500 600 700 800
pT (W ) [GeV]

0.05

0.00

0.05

0.10

d
/d

NN
LO

+
NL

OE
W

1

NNLO + NLO EW (def) NNLO + NLO EW (exp)

Coefficient A2 for W  (|yW | > 1.5)

Figure 17: Rapidity dependence of the coefficient A2 as a function of the W boson trans
verse momentum. The results are shown for three rapidity bins of theW boson:
|y| ≤ 0.5 (left), 0.5 < |y| ≤ 1.5 (middle), and |y| > 1.5 (right).
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Figure 18: Rapidity dependence of the coefficient A3 as a function of the W boson trans
verse momentum. The results are shown for three rapidity bins of theW boson:
|y| ≤ 0.5 (left), 0.5 < |y| ≤ 1.5 (middle), and |y| > 1.5 (right).

encies of the omitted coefficients (A1, A2, A3 respectively) from paper IV. The detailed
description of the figure setups is given in paper IV.

The single neutrino produced in this process escapes the detectors, but is reconstructable
to a large degree in the transverse plane. The total momentum in the transverse plane
approximates to zero, which neglects the transverse momentum of the incoming partons, a
valid approximation in the high energy limits. The longitudinal momentum sum, however,
is not measured, since the partons carry a fraction of the longitudinal momentum, which is
undetermined from experiments. Hence, in the transverse plane only, the missing neutrino
momentum can be reconstructed, by summing all the other detected final state particles
(in theory only those emerging from the hard scattering). The neutrino reconstruction,
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however, becomes more complicated when multiple neutrinos are in the final state, which
is the case for a dileptonic decay of a top quark pair production. This is the next process
we will present.

4.3 The most abundant heavy process: topquark pair production

As the heaviest particle in the Standard Model, and with a fairly recent discovery (1995),
the top quark entails many interesting investigations related to it. The pair production of
top quarks, as can be seen in Figure 7, is the process with highest total crosssection after
the DrellYan process at the LHC, as measured by ATLAS.

The Feynman diagrams at leadingorder contributing to the pair production are the quark
antiquark annihilation, and the s and tchannel gluon fusions,

where the red fermion lines indicate onshell top quark lines. At the LHC, the dominant
production channel at LO is the gg fusion, while at pp colliders, such as the Tevatron,
the dominant is the quarkantiquark pair annihilation. There are, however, also photon
induced channels if one considers also the electroweak couplings at leadingorder, the γγ
induced and the gγ induced processes,

(161)

where again the red lines indicate top quarks.

This pair production process allows to investigate spin correlation effects between the final
state particles. The reason is that the decay width of the top quark can be computed to be
Γt ∼ m3

t , which implies that the top quark has a very large decay width and short lifetime.
Therefore, it decays before hadronization and hence there have not been any bound top
quark states observed. For this reason, in pair production, the spin correlation information
is passed on to the decay products, as the time for decorrelation (∼ 10−21 s) is longer than
the lifetime of the quark (∼ 10−23 s).
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The LO and NLO expansion of this process in the αs and α couplings is

σLO(αs, α) = α2
s σ2,0︸ ︷︷ ︸
LO1

+αsασ1,1︸ ︷︷ ︸
LO2

+α2σ0,2︸ ︷︷ ︸
LO3

,

σNLO(αs, α) = α3
s σ3,0︸ ︷︷ ︸

NLO1

+α2
s ασ2,1︸ ︷︷ ︸
NLO2

+αsα
2σ1,2︸ ︷︷ ︸

NLO3

+α3σ0,3︸ ︷︷ ︸
NLO4

.
(162)

Table 7: List of partonic subprocesses contributing to LO terms for tt production.

Partonic subprocess Contributes to order

gg → tt LO1

gγ → tt LO2

γγ → tt LO3

qq → tt LO1+LO2+LO3

In paper II, the leading LO contribution LO1 is referred to as LO. The completeLO refers
to full LO expansion, LO1+LO2+LO3. The NLO QCD refers to LO1+NLO1 and finally
the completeNLO refers to fullLO plus NLO1+NLO2+NLO3+NLO4 and finally NLO
EW refers to LO1+NLO2. The various production channels which contribute to the LO
terms is listed in Table 7. The qqinitiated process is the only process to include interference
of mixed orders at leading order. In a 4flavour scheme (massive bquark), this interference
is

q

q q

q

∼ ∼ Tr[T a] = 0 (163)

between an schannel gluon diagram and an schannel photon diagram. Drawing the
colourflow lines of the interference diagram (middle diagram) and using the tracelessness
of the fundamental generators, this interference contribution vanishes.

Including bottom quarks in the proton PDFs in a 5flavour scheme, however, the interfer
ence between a tchannel diagram and schannel diagram,

b

b
b

b

∼ ∼ Tr[T aT a] = (N2
C − 1) (164)
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contributes to the LO2 term with a nonvanishing colour factor. We can repeat this for
the NLO terms and the real emission processes which appear then in Table 8. One can
similarly investigate which interferences vanish due to the colour structure in this case:
most interferences have nonvanishing contributions.

Table 8: List of partonic subprocesses contributing to NLO terms for tt production.

Partonic subprocess Contributes to order

gg → ttg NLO1

gg → ttγ NLO2

gγ → ttg NLO2

gγ → ttγ NLO3

γγ → ttg NLO3

γγ → ttγ NLO4

qq → ttg NLO1+NLO2+NLO3

gq → ttq NLO1+NLO2+NLO3

qq → ttγ NLO2+NLO3+NLO4

γq → ttq NLO2+NLO3+NLO4

The total cross section for the process with the setup used in paper II, at the various per
turbative orders is presented in Table 9. The orders in the table are not the orders which
are examined in paper II, where we sum all NLO corrections to form a single complete
NLO correction. We see in the table that the EW effects are very small for the total cross
section. Summing all the corrections besides the NLO1, one finds that the EW effects are
∼ 0.5 %. The reason for this small correction is the cancellation between the relatively
large one percent NLO2 correction (the leading NLO EW correction) and the sublead
ing LO and subleading NLO contributions. Hence, in our completeNLO calculations in
paper II, where we include the top decays, a similar cancellation can be occurring at the
integrated quantities (definitely) and differential distributions (possibly). Besides the total
cross section, of interest to the work of this thesis are the spin correlation coefficients and
the asymmetries. Both of these are introduced in turn, starting with a brief summary of
the spindensity formalism.
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Table 9: Total cross section of pp → tt (without decay) at various orders and the ratio to
the LO1 value.

order LO1 LO2 LO3 NLO1 NLO2 NLO3 NLO4

value [pb] 582.1(5) 2.316(8) 2.115(2) 211.0(2) 7.226(2) 3.577(1) 0.0163(6)

ratio to LO1 1 +0.397 % +0.363 % +36.3 % 1.24 % +0.614 % +0.003 %

Spindensity formalism

The spindensity formalism [69,70] relies on the density operator expression for observables
in quantum mechanics. For this we introduce the density matrices for the outgoing tt final
state to be ρt(kt, st)ρt(kt, st), with momentum k and spin s for each of the quark and
antiquark. The matrixelement for the production of this final state is then

|M|2 ∼ Tr[ρt(kt, st)ρt(kt, st)R], (165)

where R is the spindensity matrix including the spin structure of the top quark and anti
quark. It can be expanded in the directproduct spinspace of the tt pair,

R = A (1⊗ 1) +B+
i (1⊗ σi) +B−

j (σj ⊗ 1) + Cij (σi ⊗ σj) , (166)

where the i, j specify the three directions of the spin projection in some coordinate system.
The σi are the usual Pauli spin matrices in a Cartesian system (x, y, z). The coordinate
system used in paper II is a Cartesian coordinate in the rest frame of the topquarkpair,
with axes (k̂, n̂, r̂): the exact definition is given in the paper.

The spin correlation coefficients of interest are the 6 B±
i coefficients and the 9 Cij coeffi

cients. These are obtained by an expansion into the lepton angles θi± with the three axes
i = k, n, r for the l+ and l− respectively. As such, the B±

i coefficients correspond to
an asymmetry in the cos θi± distributions, and the Cij coefficients to asymmetries in the
cos θi± cos θj± distributions and the coefficients are computed as weighted averages of these
trigonometric functions, normalized to the total cross section.

Top charge asymmetry

In pair production at hadron colliders, the top quark and top antiquark have been ob
served to have preferred directions along the beam axis. This phenomena also arises in
other type of processes, with different final states, and is termed asymmetry. At the Tevat
ron (pp collisions) where the dominant production channel is the qq initial state, Standard
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Model predicts an asymmetric distribution of the top and antitop along the beam axis:
this is called the forwardbackward asymmetry. The interest for examining the top quark
forwardbackward asymmetry arose when a ∼ 2σ discrepancy between theory⁹ and ex
periment had been measured at both of the Tevatron experiments, D0 and CDF. This
stimulated interest and the process was investigated in more detail also at LHC. At a pp
collider such as the LHC, the LO prediction is a symmetric production of the top and
antitop pair at leading order: this is due to the dominant gg initiated process and at LO
there is no additional symmetrybreaking diagram. Thus, one speaks rather of charge asym
metry (or centralperipheral asymmetry) at LHC, which slightly deviates from zero due to
higherorder contributions. The forwardbackward asymmetry and the charge asymmetry
is defined by

Att
C =

σ(∆y > 0)− σ(∆y < 0)

σ(∆y > 0) + σ(∆y < 0)
, (167)

with the ∆y defined as the distance in rapidityspace between the top quark and the top
antiquark.

Including decays

A single top quark decays to Wb (branching ratio ∼ 100%), where the produced W 
boson further decays either to a quark pair or to a lepton pair. The total branching ratio
in different decay channels of the top quark pair is summarized in Table 10, where lepton
universality (including decays to e, µ, τ ) has been assumed in the branching ratio values.

Table 10: A summary of decay channels and branching ratios (BR) for a top quark pair [2].

Final state BR

allhadronic qq′q′′q′′′bb 45.7 %

semileptonic lνlqq
′bb 43.8 %

dilepton lνll
′νl′bb 10.5%

The total cross section when including top quark decays to a specific final state is expected
to decrease with the corresponding branching ratio. As the branching ratio of the top quark
to the electron (or muon) channel is ∼ 11%, the combined reduction of cross section for
the dilepton channel for top quark pair production is ∼ 1.2%. The total cross section
predictions for the dilepton channel are summarized in Table 11 at each fixed order up to
NLO as given in Eq. (162), in the same setup as used in paper II.
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Table 11: Total cross section of pp → tt → e+veµ
−vµbb in the NWA at various orders

included in the production.

order LO1 completeLO NLO QCD completeNLO

σ [pb] 6.859(2) 6.909(2) 9.340(3) 9.349(3)

ratio to LO1  +0.7 % +36.2 % +36.3 %
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Figure 19: Examples of doubleresonant diagrams (left), singleresonant diagrams (middle)
and nonresonant diagrams (right). The red lines indicate onshell top quark
fermion lines.

The dilepton final state pp→ tt→ e+veµ
−vµbb has contributions from doubleresonant

diagrams, singleresonant diagrams and nonresonant diagrams, of which examples are
given in Figure 19. In the NWA, the top quarks are assumed to be onshell in the pro
duction, and hence only the doubleresonant diagrams contribute. In this approximation,
the total cross section is schematically decomposed into

σtot = σtt × Γt × Γt, (168)

with the decays of the top and antitop respectively denoted with Γt/t and the production
cross section of the onshell top quark pair denoted by σtt. The program MadSpin com
putes the production part with all real emission diagrams and loop diagrams included. The
decay part is generated based on LO matrixelements, without real emissions. Similarly,
loop corrections which connect the production and decay part are not included in the decay
chain model. Examples of diagrams which are included (left) and which are not included
(right) in the computations of paper II, are shown in Figure 20.

The program MadSpin is currently unable to separate the spin correlations into each of the
separate NLO and LO terms. To portray this, we consider the example of the qg → qtt
channel, for which one of the interferences is shown in Figure 21, with the indicated QCD
and QED couplings at the matrixelement level. The interference is of order α2

s α. In

⁹The current best theory prediction for the asymmetry is NNLO QCD accurate [71].
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Figure 20: Examples of loop diagrams (upper) in the NLO EW corrections which enter
only in the production part (left) and which enter as interference between the
production and decay part (right). Example of real emission diagrams (lower)
which are explicitly included in the computation (left) with the emission from
the production part and example of real emission from the decay part (right)
not included in the computation.

QCD =3 
QED = 0

QCD =1 
QED = 2

Figure 21: An example of an interference for gq → qtt at O(α2
s α) depicting the QCD

(blue) and QED (red) couplings.

the current version of MadSpin, however, the QCD and QED couplings are specified on
matrixelement level, and hence a generation¹⁰

pp > t t~ QCD=2 QED=1 [QCD QED]

does not run. The reason for this is that neither of these diagrams can be generated with the
syntax within MadSpin and an increase in the generation syntax QCD=2 or QED=1 would
yield a correct generation of these interferences, but would include also higher orders in
the spin correlations.

¹⁰The syntax for the order specification was changed during the writing of this thesis: here the syntax which
was used in the version and branch used for the calculations in paper II is presented.
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We present some distributions for the top quarks which were performed in the analysis
of paper II but are not included in the paper. In Figure 22 the top quark transverse mo
mentum and rapidity and the invariant mass of the top quark pair at LO, NLO QCD and
completeNLO are presented. This can be compared to the results presented in Ref. [21],
where the transverse momentum distribution is presented contributionbycontribution in
the NLO corrections. Although a straightforward comparison is not feasible due to the
different binning and calculation setup, we can see that our results reflect these distributions
qualitatively. Further, we note that the completeNLO corrections are negligible through
out most of the region, with a couple of percent effect. In the tails of the distributions,
the statistics is indeed low, but from the smoothness of the Kfactors, we note that the
electroweak corrections can be deduced to be quite small in also these regions.
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Figure 22: Top quark distributions in the pp → tt process, the transverse momentum of
the top quark (left), the invariant mass of the top pair (middle) and the top
rapidity (right).

As presented in paper II, the completeNLO corrections to the B spin correlation coeffi
cients are sizeable and with these corrections the coefficients become nonzero, in compar
ison to the values obtained with NLO QCD when the coefficients vanish. To investigate
this, one can examine the shape of the corresponding differential distributions at complete
NLO precision. This is shown in Figure 23 (for the B+ coefficients in the three different
axes directions k̂, n̂, r̂) and in Figure 24 (similarly for the B− coefficients). As can be seen
from the figures, the shape of the coefficients are not altered by a significant amount by
the completeNLO corrections. Only in B±

r can one observe some effect which creates a
slight asymmetry in the distribution. The remaining C coefficients do not obtain any non
negligible contribution from the completeNLO corrections: hence, these distributions are
not presented here, and the corresponding coefficients are presented in paper II.

This concludes the introduction to the top quark pair production which is needed for an
understanding of the results of completeNLO corrections to the spin correlation coeffi
cients and asymmetries presented in paper II.

79



0.48

0.52

0.98

1

1.02 NLOQCD/LOQCD, scale unc.

0.98

1

1.02

−1 −0.5 0 0.5 1

NLOQCD+EW/NLOQCD, scale unc.

(1
/σ

)d
σ
/d

co
s
θk +

pp→ tt̄ s = 13 TeV

LOQCD

NLOQCD

NLOQCD+EW

0.48

0.52

0.98

1

1.02

cos θk+

0.98

1

1.02

−1 −0.5 0 0.5 1

0.48

0.52

0.98

1

1.02 NLOQCD/LOQCD, scale unc.

0.98

1

1.02

−1 −0.5 0 0.5 1

NLOQCD+EW/NLOQCD, scale unc.

(1
/σ

)d
σ
/d

co
s
θn +

pp→ tt̄ s = 13 TeV

LOQCD

NLOQCD

NLOQCD+EW

0.48

0.52

0.98

1

1.02

cos θn+

0.98

1

1.02

−1 −0.5 0 0.5 1

0.48

0.52

0.98

1

1.02 NLOQCD/LOQCD, scale unc.

0.98

1

1.02

−1 −0.5 0 0.5 1

NLOQCD+EW/NLOQCD, scale unc.

(1
/σ

)d
σ
/d

co
s
θr +

pp→ tt̄ s = 13 TeV

LOQCD

NLOQCD

NLOQCD+EW

0.48

0.52

0.98

1

1.02

cos θr+

0.98

1

1.02

−1 −0.5 0 0.5 1

Figure 23: Angular distributions corresponding to B+ coefficients along the three axes k̂
(left), n̂ (middle) and r̂ (right).
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Figure 24: Angular distributions corresponding to B− coefficients along the three axes k̂
(left), n̂ (middle) and r̂ (right).

4.4 What washes over the detectors: multijet processes

Due to the enhanced emission rates for soft and collinear particles, the partonic process at a
hadron collider is dressed withO(100) final state partons when evolving to the lower scales.
Most of these particles, however, have very low transverse momenta, low invariant masses
and small angular separation from other observable objects. A jet clustering algorithm
is typically used to obtain jets of collimated particles, rather than individual very soft or
collinear particles, in order to obtain IRsafe results. The jet clustering algorithms must
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be infraredsafe in order for obtaining reasonable predictions. Two main types of such
clustering algorithms exist today: the cone algorithms and the kT algorithm family.

The cone algorithms constitute the simplest clustering of the detected hadronic signals. In
the clustering, a main particle is picked, and all surrounding particles within a radius of
Rcone in the (η, ϕ)plane are clustered, adding the 4momentum accordingly. The basic
formulation of this algorithm, however, suffers from IR unsafety. Improvements can be
made in order to remedy this, but often results in that the intuitive picture for the algorithm
is lost.

The kT family utilizes an iterative procedure, in which each pair of particles (i, j) in the
sample is considered in turn and the following quantities are computed:

db,i = p2nT,i (169)

di,j =
Rij

R0
min

(
(pT,i)

2n, (pT,j)
2n
)
, (170)

where the distance Ri,j is computed according to Eq. (146) in the (η, ϕ)plane, and n,R0

are parameters. The smallest computed distance measure is picked, and the two particles are
clustered either with each other (if di,j is the smallest measure) or with the beam (if db,i is
the smallest measure). Three main algorithms are included in this family: the kT algorithm,
for which n = 1 and thus constitutes a clustering based on the transverse momentum. The
CambridgeAachen algorithm uses n = 0, so it is a clustering based only on the radial
separation. Finally, the most commonly used algorithm today is the antikT algorithm,
which uses n = −1 as parameter.

With a welldefined object of jets, experiments can measure processes with many jets in
the final state, within some fiducial cuts of the detectors and demanding certain minimum
transverse momenta for the jets. The inclusive jet production, as can be seen from Figure 7,
is the process that is most abundant at the LHC. By demanding wellseparated and hard
jets however, the cross section decreases for increasing number of final jets.

Multijet events are the most dominating backgrounds in many rare process or new physics
searches. Due to the large phase space and the large colour space that is spanned by multi
jet events, precise theoretical computations are very limited for a large number of external
particles. The current status is computing up to 10 jets at LO [72]. However, the method
with which these are computed is a Monte Carlo sampling in the colour space, introducing
very large pointbypoint fluctuations when doing the phasespace integration. Computa
tions treating the colour algebra in an exact manner can handle roughly up to 6 final state
QCD particles. Experiments, hon the other hand, are able to measure up to 89 final state
jets [73]. So the gap between precise theory possibilities for precise predictions and the
experimental measurements of multijet final states is as of today a challenging issue, but
one which must be overcome for efficiently accounting for Standard Model background.
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A solution to this problem, presented in paper III, is to perform an exact colour summation
of the matrixelement, based on the colour expansion in powers of 1

NC
. The simplification

suggested is to truncate the colour sum at NLC accuracy. The results shown in paper III
indicate that this indeed results in a colour matrix with much fewer terms than a full colour
summation, reducing a factorial square growth of the colour sum to a polynomial growth.
The paper presents the rules on how to obtain exactly the locations of the NLC terms in
the colour matrix, allowing for determination of the colour sum of NLC precision prior
to computing all the colour factors. The theory foundation in the paper opens up the
possibility for an NLCprecise matrixelement generator, that can handle up to 89 final
state QCD partons.
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5 Outlook

“The past is not yours, only its trailing shadow. The future is not yours, only its beam which
falls before you. The hour is yours. Only the hour in which you live. Do not hurry out of it.”

— translation from Gárdonyi Géza

After its unexpected postponed start of the LHC, the data collected in a lower energy range
than first intended, has lead to a large Standard Model community development and a
precision frontier which has expanded largely in the past O(10) years. The work in this
thesis is a contribution to this effort of pushing the precision frontier for some of the im
portant processes at the LHC, with a main focus on the hard scattering with NLO EW
corrections, their combination with NNLO QCD predictions and the colour expansion of
matrixelements. The ultimate goal of this joint precision effort is to have a handle on the
Standard Model background from the theory side at the finest possible level. Only then
can, if any, the discrepancy with very small effect be extracted from data and any potential
new physics hiding in the shadows of uncertainty bands be detected.

The future of particle physics and of precision phenomenology as it is performed today
has perhaps a natural upper limit. Although the technical aspect is also an evolving field
of research, the need for computational power for higher order computations within per
turbation theory tends towards being overwhelming. At some undetermined point in the
future, particle physics will face the need to develop a new approach beyond perturbation
theory at high energies, and, perhaps, even beyond quantum field theory. However, until
we reach that upper limit, a multitude of development is still in place within our current
framework.

An equally important complement to the theory developments on the phenomenology
horizon is the upgrade of experimental techniques: precision in theory has no significance
if it is not matched by precision in experiment. For precision in data taking, precise detector
equipment is needed, and a sufficient amount of statistics. The latter aspect is hopefully
to be improved by the highluminosity era of LHC, with a luminosity 10 times larger than
the current LHC setup, with a planned operational start in 2029.

This friendly trigger of precise data taking and predictions between the experimental and
theory community is what drives particle physics forward. It is thus needless to say that the
field of phenomenology, the language of the dialogues between these two aspects of particle
physics, is unavoidable and crucial for any future development. Encouraging fruitful col
laborations across these two fields, exchanging knowledge and creating an open atmosphere
is vital for this field of research. Only together can we walk the bridge of phenomenology
towards the unknown lands of particles.
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6 Overview of publications

“When someone speaks, others may misunderstand. But one still has to speak.
For there might be something of value in what others do not misunderstand.”

— translation from Teller Ede

In the field of theoretical particle physics, all authors are listed alphabetically, rather than
in order of the level of contribution. Below follows a short description of each of the pub
lications included in this thesis and my contribution to each one.

Paper I

Electroweak corrections to the angular coefficients in finitepT Zboson production and
dilepton decay

Rikkert Frederix, Timea Vitos
Eur. Phys. J. C 80, 939 (2020)
eprint: arXiv:2007.08867 [hep-ph]

In this paper we examine the electroweak corrections to the angular coefficients parametriz
ing the dilepton channel of the neutralcurrent DrellYan process at pp colliders at center
of mass energy of 8 TeV, for a nonzero vector boson pT . When NLO EW corrections
are considered, the expansion of the differential cross section in the eight coefficients is a
priori not valid, however, in this paper we examine to which extent the same expansion
that holds at NLO QCD also holds for NLO EW corrections. A more careful examina
tion of the input electroweak parameters is needed, as the two parityodd coefficients, A3

and A4, show strong dependence on the electroweak mixing angle θw. This is remedied
by including higher order effects in the ρparameter for the LO and NLO QCD for a fair
comparison with the NLO EW corrections. In addition to the coefficients, we examine the
LamTung relation and the electroweak impacts on it.

The idea formulation to this paper was by Rikkert. I performed, with detailed supervision,
all calculations presented in the paper. The major part of writing the paper, apart from a
large fraction of the results, was done by myself with completion by and discussion with
Rikkert.
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Paper II

Probing the spin correlations of tt production at NLO QCD+EW

Rikkert Frederix, Ioannis Tsinikos, Timea Vitos
Eur. Phys. J. C 81, 817 (2021)
eprint: arXiv:2105.11478 [hep-ph]

In this work we investigate the spin correlations in top quark pair production and decay
into the dilepton channel. The spin correlation coefficients as they are defined in the spin
density formalism, have been computed at NNLO QCD and with NLO weak corrections
previously in the literature. In this work, we investigate the completeNLO corrections
to the production part of this process, including photoninduced partonic channels. In
this way, full electroweak effects to all terms at NLO are included at production level,
within the narrowwidth approximation, producing a topquark pair onshell, and then
decaying them, including treelevel spin correlation effects, within the decay chain model
implemented in MadSpin. Alongside with the spin correlation coefficients, we investigate
the completeNLO effects on various leptonic distributions and asymmetries.

My main contribution to this project was the investigation of the reweighting of events at
NLO in fixedorder phasespace point generation in MadSpin. I also performed all the
calculations for the observables and distributions, based on a close discussion with Ioannis.
I contributed to writing a large part of the introductory sections and to the editing of the
paper together with Ioannis.

Paper III

The colour matrix at nexttoleadingcolour accuracy for treelevel multiparton processes

Rikkert Frederix, Timea Vitos
J. High Energ. Phys. 2021, 157 (2021)
eprint: arXiv:2109.10377 [hep-ph]

Highmultiplicity QCD processes, which is a dominant background at hadron collision
facilities such as the LHC, have long presented numerical challenges for their computation.
The main reason for the complexity of these processes is due to the large number of terms
in the colour expansion which need to be summed, and evaluated for each phasespace
point. In this paper, we investigate the possibility to reduce the factorial complexity of
the computations by truncating the colour matrix at nexttoleading colour in the large
NC limit. We do an analysis of the number of nonzero elements at this accuracy in the
fundamental and the colourflow basis and compare these, where possible, to the adjoint
basis. The perturbative precision for the investigations is leading order. This study is done
for partonic processes, with up to two quark lines. We utilize the phasespace symmetry
for identical final state particles to further reduce the number of dual amplitudes that are
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needed for the computation of cross sections.

My contribution to this project was to derive all proofs of the rules for obtaining the NLC
terms in the colour matrix and to perform all numerical calculations which are presented
in the paper, with frequent discussions with Rikkert. I wrote the first draft of the paper,
which was later revised to a great extent by Rikkert.

Paper IV

Angular coefficients in W+j production at the LHC with high precision

Mathieu Pellen, Rene Poncelet, Andrei Popescu, Timea Vitos
Eur. Phys. J. C 82, 693 (2022)
eprint: arXiv:2204.12394 [hep-ph]

This paper is a natural continuation of paper I: while the latter focuses on completing a
stateoftheart highprecision calculation of the angular coefficients for the neutralcurrent
DrellYan process, the present paper presents likewise the NLO electroweak corrections
to the chargedcurrent DrellYan process, in addition to the NNLO QCD predictions
at fixed order, combined in various ways. The results are presented differentially in the
W boson transverse momentum (starting from 30 GeV) and rapidity. These predictions
constitute the main theoretical basis for performing a direct measurement of these angu
lar coefficients at the LHC in the near future. In addition, the results serve to reduce the
theoretical uncertainty entering through these coefficients of the measurement of the W 
boson mass at the LHC.

The main idea formulation for this project; the NLO EW corrections computation; com
parison and combination with the NNLO QCD corrections and crosscheck of all results
and figures in the paper, were my main contributions to this work. The crosscheck and
combination of the results was done in close collaboration with Andrei. I also took part in
contributing to the writing of the introductory parts of the paper and revising it.
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