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Abstract

The number of degrees of freedom is a crucial parameter in many electro-
magnetic problems. In for example modern communication systems spatial
diversity is often employed through multiple beams to enhance capacity and
reliability. However, while the degrees of freedom can be computed, their con-
nection to physical quantities is not as easily understood. To address this is-
sue, this paper proposes a scattering-based formulation of characteristic mode
analysis that can estimate the degrees of freedom of arbitrarily-shaped objects.
The relation between the number of dominant characteristic modes and phys-
ical characteristics differs for electrically large and small objects. Specifically,
for large objects, it is linked to the average shadow area, while for small ob-
jects, it is linked to their average polarizability through the forward scattering
sum rule. Therefore, the average shadow area and polarizability are funda-
mental parameters that provide insight into the number of degrees of freedom
for any object. These basic parameters also provide straightforward estimates
of the minimum size of a device region required to support a desired number
of electromagnetic degrees of freedom across a given spectral response.

1 Introduction
Electromagnetic degrees of freedom (DoF) are fundamental in the design and opti-
mization of antennas, wireless communication systems, and electromagnetic scatter-
ing problems [2, 8, 9, 10, 22, 23, 28, 29, 31]. The number of DoF (NDoF) determines
the degree of adjustability available to achieve a desired level of performance. For
example, in antenna design, a larger NDoF allows for greater control over the radi-
ation pattern and maximum directivity [23]. Similarly, in wireless communication
systems, the NDoF is linked to the number of available channels or spatial dimen-
sions that can be employed to transmit signals (multiplexing), resulting in higher
data rates, and improved reliability in technologies such as multiple-input multiple-
output (MIMO) systems [28, 33] and intelligent surfaces [32]. In the context of
electromagnetic scattering, the NDoF is associated with the control of scattering
and radar cross-sections [2]. Overall, NDoF is a crucial parameter that plays a
fundamental role in a range of electromagnetic applications.

In electromagnetic systems, the NDoF typically increases with the electrical size
of the object under consideration. For instance, smaller antennas tend to have fewer
DoF and lower directivity, whereas larger antenna arrays can have many DoF and
consequently much higher directivity [23]. Classical estimates of the NDoF rely on
canonical geometries and modal expansions, such as spherical wave expansions and
propagating modes in waveguides [2, 28, 29], which are briefly revisited in this pa-
per. To complement these estimates, modal expansion and numerical evaluations
based on eigenvalue and singular-value decompositions are used [8, 31]. In other
non-canonical systems, such as antenna structures, characteristic mode (CM) anal-
ysis is employed to identify resonant modes, which, along with their orthogonal
radiation patterns, provide valuable insights into available NDoF for multiple-input
and multiple-output (MIMO) antenna systems [3, 5, 26].
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In this paper, a combination of scattering theory and characteristic mode analy-
sis is proposed as a means of estimating the NDoF of arbitrarily shaped objects. The
NDoF is determined from the number of significant CMs, i.e., modes with charac-
teristic values |λn| ≤ 1 [5]. The scattering-based formulation of CM analysis [16] is
used to determine the DoF of arbitrarily-shaped objects. Combining CM expansion
with the extinction paradox (shadow scattering) [30] demonstrates that the average
shadow area provides an estimate of the number of significant characteristic modes
for electrically large objects. This leads to a simple estimate of the NDoF general-
izing classical estimates [2, 8, 23, 28, 29, 31] based on spherical wave expansions,
waveguide theory, and numerical techniques to a simple closed-form expression for
arbitrarily shaped regions. For smaller electrical sizes, the NDoF available, over
a bandwidth, is linked to the average polarizability of the structure through the
forward scattering sum rule [12, 36, 37].

The average shadow area and average polarizability are fundamental parameters
for analyzing the DoF and provide insight into the NDoF for arbitrarily shaped
objects. Additionally, they offer straightforward estimates of the minimum size of
a device region required to support a desired NDoF over a given spectral response.
This paper explores the use of these parameters and demonstrates how they can
be employed. We begin with a general overview of DoF and canonical systems in
Sec. 2, followed by an introduction of CM analysis into DoF in Sec. 3. In Sec. 4 the
modal significance is connected to the scattering cross-section. The average shadow
area is then utilized in Sec. 5 to estimate the number of dominant CM. For smaller,
and bandwidth-restricted devices, the average polarizability is employed in Sec. 6 to
achieve similar result. Finally, in Sec. 7 we offer insights into how this can be used
to estimate the minimum required size for a specific NDoF. The paper is concluded
in Sec. 8.

2 Degrees of freedom
The continuous nature of space and time requires an infinite number of modes to
expand a field or equivalently a continuous set of points to sample a field. Although
there is an infinite number of modes, it is often sufficient to consider a finite number
of them for a required accuracy. These finite number of modes represent the DoF
and the NDoF quantifies how many independent parameters that in practice are
needed to represent a field for a given application. The NDoF for signals is often
determined from the dominant term of the time-bandwidth product [10, Chap. 1].
DoF has e.g., been used to analyze imaging [7, 31], communication [18, 28, 32, 33],
and antenna systems [6, 23]. For time-harmonic cases, the NDoF can be obtained
from analytic mode expansions of canonical objects [23] or numerically using singular
value decomposition [31].

DoFs for the interaction between a time-harmonic electromagnetic field at a
wavenumber k and an object, are classically analyzed using mode expansions for
canonical geometries [2, 23, 28, 29, 31] and more recently radiation modes [8] for
arbitrary shapes. Waveguide modes, see Box 1, have a distinct characterization of
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Box 1. Degrees of freedom and waveguide modes
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The rectangular waveguide, characterized by its side lengths ℓx and ℓy possesses
finite number of propagating modes [34]
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k2ℓ2x
+
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π
2

k2ℓ2y
≤ 1, (B.1)

with non-negative integers m and n. The inequality presented in (B.1) de-
scribes a quarter ellipse whose area approximately is the number of propagating
modes. Waveguide modes are divided into transverse electric (TE), with indices
max{m,n} ≥ 1, and transverse magnetic (TM), with min{m,n} ≥ 1, both of which
are described by (B.1). The total number of modes for the waveguide is approxi-
mated by two (TE and TM) times the area of the quarter ellipse

NA ≈ 2
π

4

k2ℓxℓy
π2

=
k2A

2π
for kmin{ℓx, ℓy} ≫ 1, (B.2)

where A = ℓxℓy is the physical cross-section area of the waveguide.

propagating and evanescent modes, with the propagating modes contributing to the
DoF. For radiating systems enclosed by a sphere, there is no similar characterization,
and we have to use a threshold level to define propagating modes and the DoF, see
Box. 2.

Both these analytically solvable cases have approximately NA ≈ k2A/(2π) de-
grees of freedom for a surface area A in the electrically large limit. Does this hold for
other shapes? Could the area of an object somehow be used to estimate its NDoF?
A direct complication is to define the area for general shapes. While it is easy to
synthesize objects with a large surface area by e.g., folding the structure, this is
unlikely to increase the NDoF. Using the area of the convex hull is more stable, but
faces problems for disjoint objects.

With this idea as a starting point, we use CM to investigate the NDoF of objects.
For electrically large structures we show that there is an area-related quantity of
interest that is fundamentally linked to the NDoF, the average shadow area. The
average shadow area is a fathomable quantity providing insights into electrically
larger objects. However, there is merit in observing smaller objects for which this
estimate does not accurately estimate the NDoF. There is another quantity, the
average polarizability, which can describe electrically smaller objects’ NDoF and
even resonant behaviors through bandwidth limitations and the forward scattering
sum rule.
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Box 2. Degrees of freedom and spherical modes
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Consider a sphere of radius a. A classical approach to estimate the DoF for radiating
systems (antennas) is to expand the propagating field in spherical waves [25, 39],
such as the dipoles and quadrupole radiation patterns illustrated in the middle of
the top of the box. There is an infinite number of spherical waves and no distinct
cut-off as with a rectangular waveguide in Box 1, but contributions from waves with
degree L > ka diminishes rapidly [19], as e.g., illustrated by the miss-match between
spherical waves and free-space waves in the top right of the Box. This suggests a
cutoff L ≈ ka and a total number of NA ≈ 2L(L+2) dominant modes giving NA ≤ 6
for ka ≪ 1 and

NA ≈ 2L2 ≈ 2(ka)2 =
k2A

2π
for ka ≫ 1, (B.3)

where A = 4πa2 is the surface area of the sphere. Although, this simple estimate
is often preferable, improved estimates are valuable in e.g., near-field measurements
and computational techniques [38].

3 DoF and Characteristic modes
Describing the NDoF for general systems is not a trivial task. For canonical

systems such as the waveguide, Box 1, or the sphere, Box 2, a connection between
propagation modes and physical parameters are not too complicated. A general
antenna system does not fall directly into any of these categories, yet similar physical
insight can be obtained. To begin describing any object and attempts to formulate
a radiation basis we turn to the popular tool in antenna and scattering theory,
characteristic mode analysis, see Box 3. This technique is partly motivated by
extending good properties from Mie theory for spherical geometries to arbitrary
shapes. Characteristic values λn = 0 indicate resonant modes and the distance to
resonance is typically quantified by the modal significance

|tn| =
1√

1 + λ2
n

, (3.1)

where 0 ≤ |tn| ≤ 1 and |tn| = 1 for resonant modes. The number of CMs is infinite,
but the impact of high-order modes having low modal significance decreases rapidly,
similar to the spherical waves in Box 2. This is e.g., seen in the classical summation
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Box 3. Characteristic modes

Characteristic mode (CM) analysis is a popular tool for antenna analysis [3, 5]. CM
is often based on method-of-moments (MoM) matrices as proposed by Harrington
and Mautz [20] and defined as an eigenvalue decomposition of the MoM matrix,
Z = R+ jX, according to [20]

XIn = λnRIn ⇔ ZIn = (1 + jλn)RIn. (B.4)

Scattering-based formulations of CM were originally proposed by Garbacz [11] and
are based on an eigenvalue decomposition of a scattering operator, e.g., spherical-
wave scattering with the transition matrix T [16] or plane-wave scattering with a
scattering dyadic S [4, 25] and integral operator S̃

S̃F n =
−jk

4π

∫

4π
S(r̂, r̂′) · F n(r̂

′) dΩ′ = tnF n(r̂), (B.5)

where the eigenvalue tn is related to λn through tn = −1/(1 + jλn). The modal
far-fields F n(r̂) are orthogonal 1

4π

∫
4π F

∗
m ·F n dΩ = δmn. Modes with characteristic

values λn = 0 or equivalently tn = −1 are resonant and modal significance |tn| =
1/

√
1 + λ2

n is used to quantify the potential impact of a mode [3].

formula based on the characteristic currents In in (B.4) for a current I induced by
an excitation V [20]

I =
∑

n

ITnV

1 + jλn

In, (3.2)

which can be interpreted as a low-pass structure in |λn| with cutoff |λn| = 1. CMs
with small |λn| can often be tuned to resonance and modes with

|λn| ≤ 1 ⇐⇒ |tn|2 ≥ 1/2, (3.3)

are termed significant modes [5]. In this paper, we determine the NDoF for electri-
cally large lossless objects from the number of significant characteristic modes (3.3).

The number of significant characteristic modes for the PEC objects in Fig. 1 is
depicted by solid curves in Fig. 2 for electrical sizes ka ∈ [1, 20], where a is the radius
of the smallest circumscribing sphere. We observe that the number of significant
modes oscillates around the (dashed) lines with slope (ka)2, i.e., as the electrical size
squared similar to the often used number of relevant spherical modes N ≈ 2(ka)2

for ka ≫ 1, see Box 2. These dashed lines depend solely on the geometrical shape
which is presented in detail in Sec. 5. The curves differ for smaller sizes where the
number of CMs depends on resonances as discussed in Sec. 6.

4 Scattering cross-section and modal significance
Similar to the CMs, the scattering of electromagnetic waves is a an inherent prop-

erty of how a specific object interacts and can be utilized to estimate the number
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Figure 1: Investigated PEC objects: sphere (blue), open cylinder, no top or bottom
surface, with equal height and diameter (red), open cylinder with height two times
the diameter (green), planar rectangle with side lengths ℓ and 2ℓ (orange), and split
ring resonator (SRR) of width ℓ/5 and with side lengths ℓ and 2ℓ (purple). All
dimensions are normalized to the radius a of the smallest circumscribing sphere, as
indicated by the dashed circle around the rectangle.
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Figure 2: Number of significant characteristic modes (|λn| ≤ 1) for the five PEC
objects (solid lines) in Fig. 1 compared with estimates from (5.2) (dashed lines).
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Box 4. Scattering cross section

Ei F (r̂)

The scattering cross section σs is defined as the scattered power normalized with
the incident power density according to

σs(k̂, ê) =
1

|E0|2
∫

4π
|F (r̂)|2 dΩr̂ (B.6)

for an incident plane wave Ei(r) = E0e
−jkk̂·r in the direction k̂ with polarization

ê = E0/|E0| and where F (r̂) denotes the scattered far field.

of significant modes. The scattering formulation of CM relates a total modal signif-
icance to the scattering cross-section, see Box 4. The modal significance squared,
|tn|2, is proportional to the scattered power [16] and is related to the scattering cross-
section’s σs, average over illumination directions and polarizations through [25]

⟨σs⟩ =
1

8π2

∫

4π

∫

2π

σs(k̂, ê) dΩê dΩk̂ =
2π

k2

∑

n

|tn|2, (4.1)

where k̂ and ê denote the direction and polarization of the incident wave, see Box. 4.
The sum of squared modal significance is identified with the Frobenius norm of the
transition matrix, T, or scattering dyadic operator, S̃,

∑

n

|tn|2 = ∥T∥2F = ∥S̃∥2F. (4.2)

The identity, (4.1), shows that prior knowledge of the average scattering cross-section
determines an upper bound on the number of resonant (|tn| = 1), or significant
(|tn|2 ≥ 1/2) characteristic modes. The identity (4.1) can also be interpreted from
forward scattering and the optical theorem by identifying the scattering and extinc-
tion cross section for lossless objects [25].

Shadow scattering [30] (or extinction paradox), see Box 5, for a lossless object
demonstrates that the scattering cross-section σs of an object approaches twice the
shadow cross-sectional area As(k̂), i.e.,

σs(k̂, ê) ≈ 2As(k̂) as ka → ∞. (4.3)

Averaging over all directions k̂ and polarizations ê relates the average scattering
cross-section and total modal significance with the average shadow area

⟨σs⟩ ≈ 2⟨As⟩ =
1

4π

∫

4π

2As(k̂) dΩk̂ ≈ 2π

k2

∑

n

|tn|2. (4.4)

This relates a geometrical property, interpreted as the average shadow area ⟨As⟩ of
the obstacle, to the electromagnetic response, the sum of modal significances. For a
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Box 5. Average shadow area

As(x̂)As(ŷ)

As(−ẑ)

As(x̂)As(ŷ)

As(−ẑ)

Shadow areas As(k̂) for a non-convex object (left) and a convex object (right) illumi-
nated for the perpendicular directions x̂, ŷ, ẑ. The average shadow area is computed
by considering all incident illumination directions,

⟨As⟩ =
1

4π

∫

4π
As(k̂) dΩk̂. (B.7)

It simplifies for convex objects with the surface area A as shown by A. Cauchy, see
e.g., [40], to

⟨As⟩ =
1

4π

∫

4π

∫

Ω

|k̂ · n̂|
2

dS dΩk̂ =
1

4

∫

Ω
dS=

A

4
, (B.8)

where Ω denotes the surface region of the object and n̂ is the outward unit normal.
Similarly, the average shadow area for planar objects (e.g., a PEC surface in the
xy-plane) is ⟨As⟩ = A/2, which is consistent with (B.8) if the area of the two sides
is considered. The average shadow area for a convex object is also bounded by the
maximal geometrical cross-sectional area

1

2
max
k̂

As(k̂) ≤ ⟨As⟩ ≤ max
k̂

As(k̂), (B.9)

with equality to the left and right for planar and spherical objects, respectively.

convex object this average shadow area is related to the surface area A in a straight-
forward fashion, see Box 5. Average shadow areas for the convex and non-convex
objects in Fig. 1 are presented in Tab. 1.

Shadow scattering provides accurate estimates (4.4) of the scattering cross-
section for electrically large objects, but the estimate breaks down for smaller ob-
jects, calling for other approximations. Here, we use that scattering of electrically
small objects is described by Rayleigh (dipole) scattering, see Box 6, with scattering
cross-section

⟨σs⟩ =
2π

k2

∑

n

|tn|2 ≈
k4⟨γ2⟩
6π

, (4.5)

where ⟨γ2⟩ = ⟨γ2
e +γ2

m⟩ = 1
3
Tr{γ2

e +γ2
m} denotes the average squared polarizability

dyadic, see Tab. 1. Intersection of the low-(4.5) and high-frequency (4.4) limits
⟨σs⟩ = 2⟨As⟩ propose a unification by scaling the average scattering cross-section



9

⟨As⟩/a2 3.14 2.27 1.56 0.80 0.40
⟨γ⟩/a3 6.28 4.06 2.71 1.35 1.55√
⟨γ2⟩/a3 14.0 7.37 4.98 2.25 2.14
kaa 0.88 1.12 1.23 1.56 1.35

Table 1: Average shadow area ⟨As⟩, polarizability ⟨γ⟩, squared polarizability ⟨γ2⟩,
and cut-off radius kaa for the PEC objects in Fig. 1. All parameters are normalized
by the radius, a, of the smallest circumscribing sphere.
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10−1

100

101

dipole

〈σs〉 ≈
k4

6π
〈γ2〉

shadow
〈σs〉 ≈ 〈As〉/2sum rule

2

π

∫ ∞

0

〈σs〉
k2

dk = 〈γ〉

k/ka

〈σ
s
〉/
(2
〈A

s
〉)

=
2
∑
|t n
|2 /
N

A

Sphere
Cyl o:1
Cyl o:2
Rec 2× 1
SRR 2× 1

Figure 3: Average scattering cross sections ⟨σs⟩ for the objects in Fig. 1 normal-
ized by two times the average shadow area ⟨As⟩ and function of the normalized
wavenumber k/ka.

with the double average shadow area and the wavenumber according to

ka =
4

√
12π⟨As⟩
⟨γ2⟩ . (4.6)

This scaling transforms the Rayleigh limit (4.5) to a straight line (in a log-log
diagram) with slope k4 crossing the point (1, 1), see Fig. 3 and unifies the average
scattering cross section to approximate an ideal high-pass filter

⟨σs,i⟩ = min{(k/ka)4, 1} (4.7)

with cutoff ka. The different objects in Fig. 3 have average scattering cross-sections
⟨σs⟩ close to the straight-line approximation with the largest deviations around k ≈
ka as mostly apparent for the SRR.

The normalization k/ka reduces to approximately ka for many objects, see
Tab. 1, but can differ greatly for other objects such as two separated spheres.
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Box 6. Rayleigh (dipole) scattering

+q

d
−q

p

Rayleigh scattering is the dominant scattering contribution for objects much smaller
than the wavelength and e.g., explaining the color of the sky [1, 21]. The scattered
field by an electrically small object can be described as radiation from electric and
magnetic dipoles. Polarizability dyadics γe and γm are defined by dipole scattering
with electric p and magnetic m dipole moments [1, 21, 24],

p = ε0γe ·Ei and m = γm ·H i. (B.10)

The electric polarizability dyadic, γe, is de-
termined from the first moment of the in-
duced charge density on the object when
placed in a constant electrostatic field [15,
24]. A charge distribution on a rectangular
PEC plate is depicted to the right, where
the typical accumulation of charges on edges
and corners are seen [17]. Magnetic polar-
izability dyadic, γm, is associated with loop
currents and is typically negative definite on
PEC structures. They have the dimension
of volume (m3), but are not easily related to the physical volume, as illustrated by
the PEC plate having zero volume and non-zero polarizability.

For a dielectric high contrast sphere with radius a, we have γ = 4πa3 giving
k/ka = 4

√
4/3ka ≈ 1.07ka and a PEC sphere has k/ka = 4

√
3/4ka ≈ 0.93ka. Note

that the discussed scaling is valid for lossless objects and that losses modify the
low-frequency expansion [24].

5 Number of dominant CM and shadow scattering
Combining the average scattering cross section (4.1) with shadow scattering (4.4)
shows that the total modal significance is proportional to the average shadow area

∑

n

|tn|2 =
k2

2π
⟨σs⟩ ≈

k2

π
⟨As⟩, (5.1)

for electrically large obstacles ka ≫ 1. The relation (5.1) directly produces an upper
limit on the number of resonance modes |tn| = 1 but in general, not all modes are
resonant, and it is more relevant to estimate the number of approximately resonance
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Figure 4: Eigenvalue amplitudes |tn|2 for ka ∈ [15, ..., 20] indicated by increasing
line widths. The horizontal axis is a scaled mode index n/NA for n = 1, 2, . . . , NA.

modes, here defined as significant modes (3.3), i.e., |tn|2 ≥ 1/2 or equivalently
|λn| ≤ 1, giving the bound

N ⪅ NA =
2k2⟨As⟩
π

convex
object
=

k2A

2π
, (5.2)

for k ≫ ka. This bound is identical to the classical DoF estimate for waveguide
modes in Box 1 and spherical waves in Box 2 for convex objects.

Limit (5.2) is unrealistic as it assumes that all N modes have |λn| = 1, when
in reality the eigenvalues are distributed in [−∞,∞]. Distributions of modal sig-
nificances for the five considered obstacles are depicted in Fig. 4 for electrical sizes
ka ∈ [15, ..., 20], with squared modal significance |tn|2 as the vertical axis and nor-
malized mode index n/NA as the horizontal axis. This normalization together with
the total modal significance (5.1) leads to the interpretation that the area under a
curve is approximately 1/2, as confirmed by inspection of the curves. The curves
also indicate an approximate mirror symmetry around the point (1/2, 1/2). This
symmetry is verified for a sphere with ka = 1000 and rectangle and SRR with
ka = 100 in Fig. 5, where the dashed curves are mirror symmetrized curves but the
(non-convex) open cylinders show that the curves are generally non-symmetric.

The intersection of the curves at (1/2, 1/2) approximates the number of signifi-
cant characteristic modes (|λn| ≤ 1) to

N ≈ NA

2
=

k2⟨As⟩
π

. (5.3)

This estimate is illustrated for the objects in Fig. 1 by the dashed lines in Fig. 2
and Fig. 6. In Fig. 6, we observe that the curves oscillate around an approximately
constant value. The relatively large oscillations for the sphere are linked to the
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Figure 5: Eigenvalue amplitudes |tn|2 for electrically large cylinders, rectangle, SRR
with ka = 100 and a sphere with ka = 1000 together with (dashed) symmetrized
curves.

sphere symmetries, which effectively cancels the directional and polarization aver-
aging in (4.1).

The sphere’s surface area of 4πa2 gives ⟨As⟩ = πa2 and N ≈ k2a2 which cor-
responds to the marker at 1/2 in Fig. 6. This means that on average, half of the
modes from the classical spherical wave estimate 2(ka)2 in (B.3) are close to reso-
nance. The other objects have smaller shadow areas and hence a lower number of
significant modes. For example, the planar rectangle has surface area 2ℓ2 = 8a2/5
and average shadow area ⟨As⟩ = 4a2/5 giving a marker at 2/(5π) ≈ 0.13, see Tab. 1.
We observe that this is a very good estimate of the number of modes over the con-
sidered electrical sizes and objects, see Fig. 2. The average shadow area can hence
be used to estimate the required size of an object for a desired NDoF.

6 Resonances and bandwidth restrictions
Shadow scattering estimate for the number of significant CMs (5.3) is accurate

for k ≫ ka but do not provide any information for electrically smaller objects.
Scattering in this electrically small range is better described by a set of resonances
with |tn| = 1. These resonances depend on the detailed structure of the object
and are determined by solving the scattering problem numerically or analytically.
Naturally, the number of resonant modes also requires a full wave solution of the
scattering problem. Rayleigh scattering (4.5) show that the total modal significance

∥T∥2F =
∑

n

|tn|2 ≈
k6⟨γ2⟩
12π2

, (6.1)

vanishes rapidly as the electrical size decreases ka → 0, and hence that there are no
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Box 7. Forward scattering sum rule

The forward scattering sum rule is an identity connecting all spectrum interaction
between an object and a plane wave with the static interaction [12, 35]. The sum
rule is e.g., used to determine physical limitations in scattering and antenna the-
ory [14, 37]. After averaging over directions and polarizations and assuming lossless
obstacles, the sum rule reduces to

2

π

∫ ∞

0

⟨σs(k)⟩
k2

dk = ⟨γe + γm⟩ = ⟨γ⟩, (B.11)

where γe and γm denote the static polarizability dyadics, see Box 6.

resonant modes for sufficiently small sizes. However, it is possible to synthesize ob-
jects with arbitrary low resonance frequencies. The bandwidths of these resonances
are in general very narrow. Instead of estimating the number of resonant modes at
a given frequency, we estimate the number of possible resonant modes over a band-
width. These estimates are based on the forward scattering sum rule, see Box 7,
here expressed in the total modal significance

2

π

∫ ∞

0

⟨σs(k)⟩
k2

dk = 4
∑

n

∫ ∞

0

|tn(k)|2
k4

dk = ⟨γ⟩, (6.2)

which relates the all spectrum modal significance with the average electric γe and
magnetic γm polarizability dyadics ⟨γe + γm⟩ = ⟨γ⟩. This implies that the total
modal significance weighted with k4 and integrated over all wavenumbers k is pro-
portional to the trace of the static polarizability of the obstacle. This k4 weight is
identical to the case with realized gain [13, 36], where a resonance model is used to
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Figure 7: Illustration of the 5G spectrum with characteristic function χ5G in fre-
quency (left) and wavelength (right).

produce fundamental antenna limits and estimates of the bandwidth [13] and UWB
onset frequency [36]. The sum rule is most interesting for electrically small objects
due to the k4 weight, where it shows that the average polarizability is fundamentally
linked to the total modal significance over a bandwidth.

The sum rule identity (6.2) sets an upper bound on the total modal significance
over all spectrum for a given polarizability and a lower bound on the polarizability
for a desired spectral response. Consider a case with a desired number of resonant
modes over a bandwidth. This requires a total modal significance greater than this
number of resonant modes over the bandwidth. Introduce a desired spectral response
χ(k) for which it is prescribed to have a total modal significance above χ(k), i.e.,

∑

n

|tn(k)|2 ≥ χ(k) for all k. (6.3)

The common simple case with a bandwidth interval [k1, k2] having N resonant modes
is given by the spectral response,

χ[k1,k2](k) =

{
N k1 ≤ k ≤ k2

0 otherwise.
(6.4)

The desired spectral response is application specific and include more complex cases
such as the 5G spectrum depicted in Fig. 7 with N resonant modes over the entire
spectrum modeled by

χ5G(k) =

{
N k ∈ 5G spectrum
0 otherwise.

(6.5)

A lower bound on the average polarizability, ⟨γ⟩lb, is obtained by evaluating the
sum rule (6.2) with the desired spectral response

⟨γ⟩lb = 4

∫ ∞

0

χ(k)

k4
dk. (6.6)

This is a fundamental limit on the polarizability ⟨γ⟩ ≥ ⟨γ⟩lb of an object to have a
total modal significance (6.3).



15

Evaluating the sum rule for the constant spectral response over a finite bandwidth
interval k ∈ [k1, k2] in (6.4)

⟨γ⟩lb = 4

∫ k2

k1

N

k4
dk =

4N

3

(
1

k3
1

− 1

k3
2

)
. (6.7)

For narrow bandwidths, it is practical to simplify the expression with the fractional
bandwidth

B =
k2 − k1

k0
, (6.8)

around the center wavenumber k0 = (k1 + k2)/2 transforming (6.7) to

⟨γ⟩lb ≥ 4BN

k3
0

or N ≤ k3
0⟨γ⟩lb
4B

. (6.9)

This shows that temporal diversity in the bandwidth B and spatial diversity in the
number of modes N have similar effects on the polarizability of the object. For
larger bandwidths, the general case (6.7) show that the contribution from the upper
frequency reduces as 1−k3

1/k
3
2 producing a difference of 8% for k2 = 2k1 compared to

an UWB case (6.10) with the onset wavenumber k1 and upper wavenumber k2 = ∞.
This UWB case [36] simplifies to

⟨γ⟩lb = 4

∫ ∞

k1

N

k4
dk =

4N

3k3
1

or N ≤ 3k3
1⟨γ⟩lb
4

. (6.10)

Consider as an example the 5G spectrum with a single mode N = 1 which by
evaluating the sum rule (6.6) gives

4

∫ ∞

0

χ5G

k4
dk = ⟨γ⟩lb ≈ 456 cm3, (6.11)

implying that it is necessary to have an object with at least an average polarizability
⟨γ⟩ ≥ 456 cm3 to be able to support the entire 5G spectrum. Instead using the UWB
onset wavenumber corresponding to the lowest 5G frequency f1 ≈ 0.62GHz gives
4/(3k3

1) ≈ 618 cm3. This relatively small difference between considering the 5G
spectrum and a UWB onset frequency emphasizes that the physical restrictions are
dominated by the relatively small absolute bandwidth associated with the lowest
frequencies. This is also better seen by plotting the 5G spectrum in wavelengths, as
shown to the right in Fig. 7.

The total modal significance for an SRR is depicted in Fig. 8. A resonance
around ka ≈ 0.7 (or f ≈ 0.7GHz for 2ℓ ≈ 8.5 cm) has ∥T∥ ≈ 1 which is consistent
with a dominant single (N = 1) dipole resonance. The low-frequency response
approximates the Rayleigh limit (4.5) below the resonance, and the high-frequency
response is close to the average shadow area (5.1) as indicated by the dashed lines.
Sum rule bounds for UWB (6.10) and fractional bandwidth (6.9) have the same
slope as the Rayleigh limit but include the potential for local resonances with a
given bandwidth.
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The sum rule (6.2) for the SRR in Fig. 8 is more interesting for a circumscribing
geometry such as a planar rectangle with width ℓ and length 2ℓ. Using that the
polarizability ⟨γ⟩ is limited by the high-contrast polarizability for any circumscribing
structure [14], we can use the high-contrast polarizability of the rectangle

⟨γ∞⟩rec ≈ 1.64a3 ≥ ⟨γ⟩SRR ≈ 1.55a3, (6.12)

as a limit for the polarizability of all substructures fitting within the rectangular
region. The closeness between the polarizabilities for the SRR to the rectangle can
be understood by the interpretation of polarizability as the ability of the structure to
separate charge, see Box 6, together with charge concentration at the edges implies
that removing the inner part of the rectangle has a minor effect on the polarizability.

Fig. 9 compares the total modal significance for three PEC structures fitting
within a rectangular shape. The SRR and meander line are dominated by single
dipole resonances with ∥T∥2F ≈ 1 around ka ≈ 0.7 and ka ≈ 0.6, respectively. The
capacitively-loaded crossed dipole structure has a two modes resonance around ka ≈
1.1 with ∥T∥2F ≈ 2. The low- and high-frequency responses for the circumscribing
rectangle are indicated by the dashed lines. Here, it is seen that the high-frequency
responses are below the dashed line due to their smaller areas. Similarly, the low-
frequency responses are below the dashed curve due to the monotonicity of ⟨γ2⟩.

The physical limits for UWB onset frequency and fractional bandwidths B ∈
{0.1, 0.01} are determined from the high-contrast polarizability of the circumscribing
rectangle (6.12). They are hence valid for every PEC structure fitting within the
rectangle. This observation is valid for all shapes, making it interesting to investigate
high-contrast polarizability for other shapes.
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7 Minimum size for NDoF
The presented analysis demonstrates that the average shadow area ⟨As⟩ and high
contrast polarizability ⟨γ∞⟩ are fundamental parameters to understanding the DoF
of arbitrarily shaped objects. Dependence on these parameters for different ge-
ometries is hence vital for the estimation of the available NDoF. Fig. 10 depicts
normalized parameter values ⟨As⟩/(πa2) and ⟨γ∞⟩/(4πa3) for spheroidal, cylinder,
ellipse, and rectangular shapes of varying aspect ratios ℓ1/ℓ2. The normalization
corresponds to values for a spherical region and produces results bounded by unity.
This dominance by the circumscribing sphere can be interpreted as monotonicity
of the parameters in the region, i.e., removing region (material) reduces parameter
values. For example, a square can be constructed from a circular disc by removing
parts close to the edges implying lower parameter values for the square than for the
disc.

Average polarizability and shadow area decrease rapidly in the limit ℓ1/ℓ2 →
0, i.e., it is difficult to have high NDoF for needle-shaped objects. Ellipses and
rectangles are planar objects and have symmetric parameter values around ℓ1 = ℓ2.
The average high contrast polarizability of a circular disc is ⟨γ∞⟩ = 32a3/9 and
shadow area ⟨As⟩ = πa2/2 as observed for the ellipse with ℓ1 = ℓ2 and spheroid
and cylinder in the limit ℓ1/ℓ2 → ∞. These results highlight the relatively large
difference between needle shapes (ℓ1/ℓ2 → 0) and planar (disc) surfaces (ℓ1/ℓ2 → ∞)
and the relatively small difference between discs and sphere. Here, it is important to
realize that the analysis for shadow area assumes that the dimension of the object
is resolved and hence not of 1D-wire type.

The minimal electrical size for a desired NDoF is estimated from parameters us-
ing (5.3) and e.g., (6.10). For example, a larger antenna array may request N = 50
significant CM at 5GHz and using N ≈ 4π⟨As⟩/λ2 with λ ≈ 6 cm gives ⟨As⟩ ≥
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143 cm2, an idea of the physical size of the object through the shadow area. Consid-
ering aspect ratio ℓ1 = ℓ2, we observe that for cylinders ⟨As⟩ ≈ 0.75πa2 ⇒ a ≥ 7.8 cm
and for squares a ≥ 12 cm. Similarly, we might consider smaller bandwidth-limited
(constrained) devices. Using (6.10) an UWB system operating above 5GHz with
N = 3 resonant modes has ⟨γ∞⟩ ≥ 3.5 cm3 and hence a ≥ 0.8 cm for the cylinder
and a ≥ 1.2 cm for the square.

These basic parameters provide insight into the potential DoF of an object and
complement numerical investigations.

8 Conclusion
In this paper, we have investigated the estimation of degrees of freedom and to
this end derived analytic estimates for the number of dominant characteristic modes
for arbitrarily shaped objects. It is shown that the NDoF defined in this way is
linked, through the average scattering cross-section, to the average shadow area of
the object in the electrically large limit and the polarizability in the electrically small
regime. This NDoF is determined for a given object and provides typical average
values in contrast to the approach in [8, 9] which is based on a bound on all objects
within a region. It is always possible to locally modify the geometry to construct
resonances at a specific frequency which locally adds DoF at this frequency. Through
the forward scattering sum rule we showed how these bandwidth constraints impact
the NDoF.

A priori estimates of the NDoF based on the shadow area and polarizability,
as presented in this paper, have merit in understanding design spaces and object
capability. Moreover, knowledge of the NDoF is useful in computations such as
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iterative solvers which can terminate after the sought-for DoFs are found [27].
In this work, we considered objects of non-zero geometrical area, and on the topic

of large wire-based arrays with no area, one could consider the solid array aperture
as the design region. In this paper we connect, for electrically large structures, the
shadow area to scattering and NDoF. Large shadow area relates to large interaction
and these array configurations used for maximal gain purposes [23] could be esti-
mated from the maximal shadow area rather than the average. The results in this
paper reinterprets the estimate in [23] to that all NDoF are used for a disc but only
half if compared with the circumscribing sphere as the disc have half shadow area
compared to the sphere, see Box 5.
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