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Popular Science

When I turned 12, my godfather got me as a present my first mobile phone,
a cool Sony Ericsson K300. Back then, mobile phones were already more
than a portable version of an ordinary telephone, my K300 could be used
for taking photos, sending SMSs, and even downloading fancy polytones; why
would anyone need more than that? However, 6 years later—I was a bit late
among my friends—came my first smartphone, an average Samsung Galaxy
Y. Data subscriptions were a bit expensive then, but even without it I could
connect my smartphone to free WiFi networks to watch videos, listen to music,
and send “WhatsApps”.

Nowadays, a majority of the people in the World own a smartphone which
can stream high-quality video (and audio), perform live video-calls, or even
run elaborate online games. Plus, we have access to all these features almost
anywhere and anytime by just paying a relatively cheap mobile broadband
subscription fee. Sustaining this increasing traffic demand while reducing costs
to keep affordable subscription prices is already a challenging task by itself,
which largely justifies the current research efforts in wireless communications.
However, we can already read tweets about novel applications including virtual
and extended reality for “the metaverse”, autonomous mobility (a.k.a., self-
driving vehicles), smart homes/cities, and many unimaginable ones may soon
emerge—at least I couldn’t imagine we would reach this point when I was play-
ing around with my K300. These novel applications will certainly contribute
to the traffic burden on mobile broadband networks, but they may even create
further requirements for these networks in terms of peak data-rates, delays,
reliability, energy efficiency, etc.

The main focus of this thesis is to study technologies intended to support the
increasing demand in data-rates. However, there is typically a close connection
between data-rate, reliability, and energy efficiency, so we could measure our
contributions within an intersection of these metrics. During the last decade,
an important trend emerged with the aim of increasing the data-rates that
can be supported by mobile broadband networks: increasing the number of
antennas at the base stations. You might have heard of “Massive MIMO”
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for 5G, which considers base stations with hundreds of antennas, but we are
currently witnessing even more massive proposals as large intelligent surfaces
(LISs), which consider whole walls having thousands of antennas. The main
idea is that, by increasing the number of antennas, we can be more precise in
distinguishing users in the space. This means that we can serve several users
with the resources typically required for only one of them simply by having
them at slightly different positions—within the order of centimeters apart or
even less if we have enough antennas.

Although increasing the number of antennas at the base stations—and even
its physical size—has clear advantages, it comes at a cost. For example, in order
to distinguish users in space, base stations with many antennas may need to
effectively treat the signals received at each of their antennas. Typically, this
means that they need to transmit all these signals to one computer that tries
to analyze them and extract the information from the users. This corresponds
to what we call a centralized architecture. However, in base stations with a
huge number antennas, the amount of signals that have to be sent to this
computer would also become huge, so, to be able to send them to a computer,
we may need links carrying enormous amounts of data. This becomes even
more challenging if the antennas are distributed throughout large areas, since
these signals would then have to travel greater distances. A large part of this
thesis deals with how to perform transformations on these signals so that the
data rates required to send them to a computer are effectively reduced, leading
to what we call decentralized architectures. On the other hand, we also present
some results on the limitations of decentralized architectures, as well as on
how to exploit systems with different levels of decentralization that have no
performance loss as compared to centralized systems.

Another technology that is trending these days in the research community
to support the increasing demand for high data-rates is the use of surfaces
that are reflecting the waves in a controlled manner. These surfaces usually
have a large number of reconfigurable elements, each of which can interact with
the incoming waves so that they can redirect the reflected waves towards the
desired directions, e.g., towards the WiFi router. A small part of this thesis
presents some ideas on how to use these surfaces, or variations of them, to
create favorable channels between users and base stations so that it becomes
easier to serve several users with the same resources.

To sum up, we can say that this thesis is about base stations with many
antennas, and reconfigurable surfaces of various kinds. Although the scope
seems quite broad, the results presented lie mainly in the intersection between
signal processing and information theory.



Abstract

After the commercial emergence of 5G, the research community is already
putting its focus on proposing innovative solutions to enable the upcoming
6G. One important lesson put forth by 5G research was that scaling up the
conventional multiple-input-multiple-output (MIMO) technology by increasing
the number of antennas could be extremely beneficial for effectively multiplex-
ing data streams in the spatial domain. This idea was embodied in massive
MIMO, which constitutes one of the major technical advancements included
in 5G. Consequently, 6G research efforts have been largely directed towards
studying ways to further scale up wireless systems, as can be seen in some
of the proposed 6G enabling technologies like large intelligent surface (LIS),
cell-free massive MIMO, or even reconfigurable intelligent surface (RIS). This
thesis studies the possibilities offered by some of these technologies, as well as
the trade-offs that may naturally arise when scaling up such wireless systems.

An important part of this thesis deals with decentralized solutions for base
station (BS) technologies including a large number of antennas. Already in
the initial massive MIMO prototypes, the increased number of BS antennas
led to scalability issues due to the high interconnection bandwidths required to
send the received signals—as well as the channel state information (CSI)—to
a central processing unit (CPU) in charge of the data processing. These issues
can only be exacerbated if we consider novel system proposals like LIS, where
the number of BS antennas may be increased by an order of magnitude with
respect to massive MIMO, or cell-free massive MIMO, where the BS antennas
may be located far from each other. We provide a number of decentralized
schemes to process the received data while restricting the information that has
to be shared with a CPU. We also provide a framework to study architectures
with an arbitrary level of decentralization, showing that there exists a direct
trade-off between the interconnection bandwidth to a CPU and the complexity
of the decentralized processing required for fixed user rates.

Another part of this thesis studies RIS-based solutions to enhance the mul-
tiplexing performance of wireless communication systems. RIS constitutes one
of the most attractive 6G enabling technologies since it provides a cost- and
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energy-efficient solution to improve the wireless propagation links by generating
favorable reflections. We extend the concept of RIS by considering reconfig-
urable surfaces (RSs) with different processing capabilities, and we show how
these surfaces may be employed for achieving perfect spatial multiplexing at re-
duced processing complexity in general multi-antenna communication settings.
We also show that these surfaces can exploit the available degrees of freedom—
e.g., due to excess of BS antennas—to embed their own data into the enhanced
channel.



Preface

This doctoral thesis summarizes the most relevant research contributions from
my PhD studies at the department of Electrical and Information Technology
(EIT), Lund University, Sweden. However, the journey that brought me here
has been much longer than the roughly four and a half years that took me
to complete this work. I would say it may have started when my best friend
convinced me to join with him a bachelor’s degree in telecommunication engi-
neering. At the time, I only knew that I wanted to pursue a technical career—
potentially in engineering—but I didn’t have a clear direction until my friend’s
suggestion. Unfortunately, we only studied together during the first year of
the bachelor’s, but in the meantime, I realized that this choice seemed to align
perfectly well with my preferences and skills.

It was three years into my university education when I managed to put
my foot into research by becoming a research intern at the microwave and
radar group (GMR-UPM), where I participated in some projects including
implementation and evaluation of communication systems making use of multi-
antenna technology. I still didn’t have any desire to pursue a PhD until I crossed
paths with Fredrik Rusek. I guess it was the “learning experience” part that
caught my attention, or the desire to get to “a higher level of understanding”—
which suddenly became one of my major goals. I soon realized, again, that
following this path may be one of the most rewarding experiences I could go
through. I’m still amazed how far such random choices can take you...

The current thesis is comprised of Part I and Part II. Part I contains an
overview of the research field in which I have been working during my PhD, in-
cluding some useful preliminary knowledge and a brief contextualization of my
contributions in this field. Part II is composed of eight papers that constitute
my contribution to the research field. The included papers are listed next:

Paper I J. Vidal Alegŕıa, J. Rodŕıguez Sánchez, F. Rusek, L. Liu and O.
Edfors “Decentralized Equalizer Construction for Large Intelligent
Surfaces,” in Proc. 2019 IEEE 90th Vehicular Technology Conference
(VTC-Fall), Honolulu, HI, USA, 2019, pp. 1-6.

Personal contributions: This paper was based upon previous work
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of the other authors, which gave the baseline and motivation for it.
The framework was discussed among the authors. I came up with the
novel decentralized algorithms presented in this work, and performed
the analysis and simulations. I also took the lead role in writing the
paper except for the Introdution section.

Paper II J. Vidal Alegŕıa, F. Rusek and O. Edfors, “Trade-offs in Decentral-
ized Multi-Antenna Architectures: The WAX Decomposition,” in
IEEE Transactions on Signal Processing, vol. 69, pp.36277-3641,
2021.

Personal contributions: The framework was initially proposed by
the second author and discussed among the authors. I performed
the theoretical analysis with help from the second author, who con-
tributed to the proof of Theorem 1 and provided the validity condi-
tions for the combining modules. I also did the simulation work and
I took the lead role in writing the paper.

Paper III J. Vidal Alegŕıa, J. Huang and F. Rusek, “Cell-Free Massive MIMO:
Exploiting The WAX Decomposition,” in Proc. 2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICAS-
SP), Singapore, Singapore, 2022, pp. 5393-5397.

Personal contributions: I proposed framework of the paper upon
discussion with the other authors. I performed the whole theoretical
and numerical analysis. I also took the lead role in writing the paper.

Paper IV J. Vidal Alegŕıa, F. Rusek and A. Lozano “Impact of Quantization
in Decentralized Processing for Large Multi-Antenna Architectures,”
in Proc. 2022 56th Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, USA, 2022, pp. 1351-1356.

Personal contributions: I proposed the framework of the paper,
and discussed it with the other authors. I performed the theoretical
analysis with advice from the other authors, where the third author
proposed the use of the Bussgang decomposition and suggested some
relevant bibliography. I also did the simulation work and I took the
lead role in writing the paper.

Paper V J. Vidal Alegŕıa and F. Rusek “Channel Orthogonalization with Re-
configurable Surfaces,” in Proc. 2022 IEEE Globecom Workshops
(GC-Wkshps), Rio de Janeiro, Brazil, 2022, pp. 37-42.

Personal contributions: I came up with the idea of using reflec-
tive surfaces with extended capabilities to perfectly orthogonalize the
propagation channel. I also came up with the proposed channel es-
timation methods. I performed the theoretical analysis with advice
from the second author, who provided relevant bibliography regard-
ing the use of optimization tools in the unitary matrix space. I also
did the simulation work and I took the lead role in writing the paper.

Paper VI J. Vidal Alegŕıa and F. Rusek, “Trade-offs in Decentralized Multi-
Antenna Architectures: Sparse Combining Modules for WAX De-
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composition,” submitted to IEEE Transactions on Signal Processing
(second review in process).

Personal contributions: The paper was a continuation of previ-
ous work which was discussed among the authors. I proposed the
general algorithm and the decentralized scheme, while the combin-
ing modules were a result of discussions and contributions from both
authors. I performed the theoretical analysis, proving the validity of
the proposed structures. I also did the numerical analysis and I took
the lead role in writing the paper.

Paper VII J. Vidal Alegŕıa, Joao Vieira and F. Rusek “Increased Multiplexing
Gain with Reconfigurable Surfaces: Simultaneous Channel Orthogo-
nalization and Information Embedding,” submitted to GLOBECOM
2023.

Personal contributions: I proposed the framework and discussed
it with the rest of the authors. I performed the theoretical analysis
with advice from the last author, who suggested relevant bibliogra-
phy regarding the derivation of the PDFs. I also did the numerical
analysis and I took the lead role in writing the paper.

During my PhD, I have also contributed to a number of papers that are not
included in this thesis:

• R. Blázquez-Garćıa et al., ”Smart Relay Architecture for Over-the-Horizon
High Quality Communications With Unmanned Aerial Vehicles,” in IEEE Ac-
cess, vol. 7, pp. 76317-76327, 2019.

• J. R. Sánchez, J. Vidal Alegŕıa and F. Rusek, ”Decentralized Massive MIMO
Systems: Is There Anything to be Discussed?,” in Proc. 2019 IEEE Int. Sym-
posium on Information Theory (ISIT), Paris, France, 2019, pp. 787-791.

• J. Vidal Alegŕıa and F. Rusek, ”Cramér-Rao Lower Bounds for Positioning with
Large Intelligent Surfaces using Quantized Amplitude and Phase,” in Proc.
2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 2019, pp. 10-14.

• J. Vidal Alegŕıa and F. Rusek, “Achievable Rate with Correlated Hardware Im-
pairments in Large Intelligent Surfaces,” in Proc. 2019 IEEE 8th Int. Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
Le Gosier, Guadeloupe, 2019, pp. 559-563.

• J. Vidal Alegŕıa, F. Rusek, J. R. Sánchez and O. Edfors, ”Trade-Offs in Quasi-
Decentralized Massive MIMO,” in Proc. 2020 IEEE Int. Conference on Com-
munications Workshops (ICC-Wkshps), Dublin, Ireland, 2020, pp. 1-6.

• J. Vidal Alegŕıa, F. Rusek, J. R. Sánchez and O. Edfors, ”Modular Binary
Tree Architecture for Distributed Large Intelligent Surface,” in Proc. 2021
IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, ON, Canada, 2021, pp. 4565-4569.

• J. Vidal Alegŕıa and F. Rusek, ”Enabling Decentralized Computation of the
WAX Decomposition,” in Proc. IEEE Int. Conference on Communications
(ICC), Seoul, Republic of Korea, 2022, pp. 1-6.
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A Murillo, por los viajes en metro llenos de historias random. A Fer, el referente
durante la carrera, por aguantar sin reproche mis incesables interrogatorios. A
los “Q de Quantum B de Blunder”, por los mejores momentos en la ETSIT. A
los compis del GMR, en especial a Mateo, por marcar mis primeros pasos en
el mundo de la investigación. A Diego Scots, por mantenerme conectado a lo
que realmente importa, y por ser como un hermano mayor.

A los Vidalines, por seguir estando siempre tan cerca, os quiero un huevo—
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Notation

The mathematical notation which will be employed throughout the rest of this
thesis is as follows:

• Lowercase, bold lowercase and bold uppercase letters stand for scalars,
column vectors, and matrices, respectively.

• The operations (·)T, (·)∗ and (·)H denote transpose, conjugate, and con-
jugate transpose, respectively.

• The operator vec(·) transforms a matrix into a vector by concatenating
its columns.

• E{·} denotes the expectation operator.

• Ii corresponds to the identity matrix of size i, 1i×j denotes the i× j all-
ones matrix, and 0i×j denotes the i× j all-zeros matrix. In cases where
the dimensions can be obtained by the context, the sub-indices may be
omitted.

• ℜ{·} and ℑ{·} denote real and imaginary part, respectively.

• The symbol ȷ denotes the imaginary unit, ȷ =
√
−1.

• The operation diag(·) applied to a set of scalars/blocks outputs a matrix
with said scalars/blocks along the main diagonal.

• [A]i:j,ℓ:k denotes a matrix formed by rows i to j and columns ℓ to k of some
matrix A. Absence of one such index indicates that the included rows
start/end corresponds to the first/last row/column of A, respectively
(i.e., as in Python notation).
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4 Constructing Valid Ã Matrices . . . . . . . . . . . . . . . . . . 192
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4.2 Constructing Ã from Predesigned B̃ . . . . . . . . . . . 193
4.3 General Construction of Valid Ã . . . . . . . . . . . . . 197
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Overview of Research Field





Chapter 1

Introduction

The idea of exploiting the spatial domain to increase the throughput of wireless
digital communication links was originally proposed in the 1990s [1], [2]. At
that time, cellular systems had access to advanced techniques for multiplexing
users in the frequency domain and in the time domain—namely FDMA and
TDMA, respectively [3]—so an interesting challenge was to find a new dimen-
sion that would allow using the same time-frequency resource for simultaneous
streams of symbols. CDMA offered a way to multiplex users in the code do-
main, which even made it to the 3G standard due to its suitable characteristics
for the cellular propagation environment. However, in order to multiplex users
in the code domain, CDMA required to spread the spectrum of the signals to be
transmitted, thus sacrificing spectral efficiency per user and leading to the same
capacity bounds as those for FDMA or TDMA [4]. Instead, MIMO—combined
with a suitable FDMA technique such as OFDMA—allowed to exploit the
degrees of freedom available in the spatial domain to transmit simultaneous
streams of data in the same time-frequency resource. This posed an important
advancement towards extending the throughput of wireless links, which was
already exploited in 4G, as well as in several WiFi standards.

This chapter intends to give a high-level introduction to the research area
where the thesis stands. The aim is to describe the main technologies being
considered in this work, and to provide a brief summary of the state-of-the-art.
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1.1 From MIMO to Massive MIMO

Let us think of a wireless communications scenario where a Tx is sending
information to an Rx through a wireless link. The idea behind MIMO is to
equip both the Tx and the Rx with a number of antennas greater than 1. This
way, if the antenna spacing is large enough and/or there is a sufficiently rich
multipath environment, the information sent by the Tx may leave at different
AoD and arrive at the Rx antennas from different AoA—possibly statistically
independent too. As a result, MIMO offers a number of advantages which can
be divided into three categories: array gain, diversity gain, and multiplexing
gain [5], [6]. These three categories may be briefly explained as follows:

• Array gain, also denoted beamforming gain, corresponds to the SNR gain
that results from exploiting the increased directivity of arrays with more
than one antenna, which translates into a logarithmic gain in capacity.

• Diversity gain corresponds to the exponential decrease in the BER asso-
ciated to transmitting the same data over statistically independent paths.

• Multiplexing gain corresponds to the linear capacity gain associated to
the simultaneous transmission of several streams of data through different
spatial modes.

In this thesis we are mostly interested in the capacity metric since we believe it
is a more fundamental metric of digital communication performance than BER,
which can be made arbitrarily small by means of channel coding when working
within the capacity boundary [7]. Thus, we mostly disregard the diversity gain,
and we put special emphasis on the multiplexing gain, which we consider the
major advancement of MIMO due to its unprecedented capacity improvement
[8].

Initial results on MIMO largely focused on the communication between
a single multi-antenna Tx and a single multi-antenna Rx [2], also known as
point-to-point MIMO [5]. Thus, the Tx would send an arbitrary combination
of symbols through each antenna, and the Rx would combine as desired the
symbols received at its antennas. However, in mobile broadband communica-
tion scenarios, it becomes especially interesting to consider the bidirectional
communication between a BS and a set of UEs. These UEs are, in general, not
supposed to collaborate with each other to perform joint transmission or de-
coding. Thus, another fashion of MIMO gained popularity, namely MU-MIMO
[1], [9], [10]. In the DL, referred to as MIMO-BC [5], [10], MU-MIMO typically
considers a multi-antenna BS transmitting precoded symbols to a set of single-
or multi-antenna UEs. As for the UL, referred to as MIMO-MAC [5]—also
known as SDMA [1]—all the UEs transmit their symbols simultaneously, and
the multi-antenna BS is the one in charge of performing equalization to remove
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interference and extract the information sent by each UE. The comparison
between point-to-point MIMO and MU-MIMO is illustrated in Fig. 1.1. The
system models considered in all the papers included in this thesis fall within
the broad framework of MU-MIMO.

...

Tx/Rx ...

Rx/Tx ...

Tx/Rx

Rx/Tx

Rx/Tx

...

Figure 1.1: Point-to-point MIMO (left) v.s. MU-MIMO (right).

In the 2010s, motivated by the seminal paper [11], a new trend in mobile
broadband communication systems emerged: increasing drastically the number
of antennas at the BS. In [11], it is shown that, as the number of BS antennas
grows large in a MU-MIMO scenario, noise and fading vanish due to averaging
effects, whereas pilot contamination is the only factor limiting capacity. These
results led to the development of massive MIMO, which corresponds to a special
case of MU-MIMO where the number of BS antennas is considerably larger
than the number of UEs it intends to serve simultaneously—initial research on
MU-MIMO considered it enough to have a number of BS antennas on the order
of the number of UEs being served. Massive MIMO allows for unprecedented
spatial resolution so that a large number of UEs can be spatially-multiplexed at
reduced cost [12]–[14]. More specifically, the excess in BS antennas offers extra
degrees of freedom which can compensate for the negative effects caused by
e.g., unfavorable propagation, hardware impairments from cheap components,
inaccurate CSI estimation, simple linear precoding/equalization, etc. Hence,
massive MIMO offers a scalable solution for implementing BSs achieving high
spectral efficiency.

1.2 Beyond Massive MIMO

With commercial deployments already in place, and after becoming one of the
core technologies in 5G [15], it feels natural to say that massive MIMO has
reached maturity. Thus, the research community is already pushing towards
more disruptive solutions—many of them based upon massive MIMO—with
the aim of facilitating the emergence of 6G. We will now present a number of
these solutions which have been directly or indirectly studied within this thesis.
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1.2.1 Large Intelligent Surfaces

A natural evolution of massive MIMO is to keep increasing the number anten-
nas at the BS so that more UEs can be effectively multiplexed in space. In the
framework of massive MIMO, a typical consideration is to have UEs in the so
called far-field, which means that the size of the BS antenna array is relatively
small as compared to the distance towards the UEs. Furthermore, in massive
MIMO scenarios, it is typically assumed that there exists rich multipath prop-
agation, which favors spatial multiplexing when operating in the far-field, and
the presence of strong LoS paths is often disregarded. However, if we keep
adding antennas, the size of the BS will also increase, which should then be
taken into consideration, and the probability of having strong LoS propagation
increases—at least within a subset of the BS antennas. These effects are even
more noticeable if we go to higher frequency bands, such as the mmWave or
THz bands, due to the drop in transmission ranges, as well as the reduced
reflectivity at these bands [16]–[18].

LIS is the most clear evolution of massive MIMO since it mitigates—and
even takes advantage of—the previous issues by considering the use of BSs
whose antennas are densely deployed throughout large surfaces. This technol-
ogy was initially proposed in [19], which demonstrates the potential (sum-rate)
capacity gains that can be achieved when using large surfaces of electromagnet-
ically active material in a pure LoS scenario. Simultaneous to [19], [20] shows
that LIS has also great potential in the task of UE positioning, which we do not
address in this thesis. [19] uses a continuous model of LIS where any point of a
continuous surface can transmit and receive as desired. However, since there is
no evidence that this kind of technology can be implemented in the near future,
we see this model as a purely theoretical concept useful for understanding the
limits of LIS. Instead, we believe that a real LIS will likely be implemented
using dense antenna arrays deployed throughout a large surface, leading to the
sampled version of LIS. In fact, [19] shows that, if sampling is dense enough,
the continuous and sampled versions of LIS are essentially equivalent due to
the spatially-bandlimited nature of the resulting channels. This equivalence has
been further strengthened in [21], which shows that even in the NLoS scenario
the propagating electromagnetics waves are also spatially-bandlimited. On the
other hand, practical implementations of LIS also consider dividing these sur-
faces into panels (or LIS units) with a lower number of antennas, such that
some of these panels can be turned-off to save energy when they have no users
nearby [22]–[24].

The terminology in the research community is a bit inconsistent, and some-
times the term LIS is used for referring to surfaces used for reflecting signals
instead of for directly transmitting or receiving them—e.g., [25]–[27]. On the
other hand, some literature has also referred to LIS with the term holographic
MIMO—e.g., [21], [28], [29]. However, the term holographic MIMO typically
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excludes the sampled versions of LIS, which can also be identified with the term
XL-MIMO [30]. In this work we use the term LIS for those surfaces (sampled
or not) that can be directly used as BSs.

1.2.2 Cell-free Massive MIMO

Another interesting evolution of massive MIMO is embodied in cell-free massive
MIMO. As initially proposed in [31], cell-free massive MIMO eliminates the
need of cells by distributing a large number of coherently coordinated APs
throughout large geographical areas. These APs can be seen as distributed BS
antennas which coherently serve a large number of UEs within a single time-
frequency resource. The main benefit with respect to massive MIMO is that, by
not having the BS antennas co-located, the channels between different antennas
and UEs have less dependency on each other, leading to improved diversity and
multiplexing gains even in the absence of rich multipath propagation.

There is a number of technologies falling within the same umbrella as cell-
free massive MIMO. These include coordinated multi-point [32], distributed
MIMO [33], network MIMO [34], etc. In [29], the authors employ the term
ELAA to refer to this broad umbrella. However, in this thesis we may loosely
employ the term cell-free massive MIMO to refer to any of the technologies
falling within this framework, as long as the total number of APs is large with
respect to the number of UEs.

1.2.3 Reconfigurable Intelligent Surfaces

RIS [35]–[37] is a novel technology with potential to play a big role in the
upcoming 6G systems [38], [39]. An RIS consists of a large number of reconfig-
urable elements deployed throughout a surface. These reconfigurable elements
interact with the incoming waves in a controlled manner such that the waves
arriving at the whole RIS from a given direction can be reflected towards some
beneficial direction, e.g., towards the BS or the UEs. This technology is funda-
mentally different from massive MIMO in the sense that it cannot be used as a
BS technology for serving UEs by itself. Instead, RIS can be used as a support
for improving the channel conditions in a communication link between a BS and
one or more UEs. However, RIS can also be employed as an energy-efficient
transmitter by embedding information in the reflected waves [37], [40], [41].
The main benefit of RIS is that, since it can be constructed through passive
metasurfaces, it offers a reduced-cost, low-power, and thus scalable solution to
improve the comunication links.

As previously discussed, initial work on RIS also referred to these surfaces
with the term LIS—e.g., [25], [27], [38]—which we reserve for surfaces that can
be directly used as BSs. Other terms in the literature for these types of sur-
faces include IRS [39], passive holographic surfaces [42], (software-controlled)
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metasurfaces [43], etc. Furthermore, there is still open discussion on how these
surfaces should be implemented and what their capabilities should be—e.g.,
if they should include amplification or not [44]. In this thesis, we employ the
broad term RS to refer to any surface used for reflecting waves in a controlled
manner, while RIS is used to refer to RSs whose elements are essentially passive
and can thus be modeled as phase-shifts.

1.3 Goals and Motivation

The motivation for this thesis can be divided into two categories: (i) the need
for decentralized architectures, (ii) the multiplexing capabilities of RS. These
two categories give rise to two of the forthcoming chapters, which describe the
contributions of this thesis within these two areas. We will next summarize the
motivation of this thesis within each of the two mentioned categories.

1.3.1 The Need for Decentralized Processing

Increasing the number of antennas at the BSs has shown to be beneficial due to
the improved spatial multiplexing performance even with subotimal hardware
and software, as explained when we introduced the concept of massive MIMO.
However, practical implementations of massive MIMO still face one major chal-
lenge, namely that the interconnection bandwidth and complexity required to
process the information coming from so many antennas at one point become ex-
cessively large since it scales with the number of BS antennas. Initial prototypes
of massive MIMO, such as [45], [46], already noticed these issues, which were
tackled by pragmatic solutions sacrificing performance. On the other hand,
these issues can become especially concerning in future technologies as LIS or
cell-free massive MIMO where, not only the number of antennas is huge—in
LIS it can even be orders of magnitude greater than massive MIMO—but the
distance between antennas can also be considerably large. Thus, to be able
to exploit the full benefits of these technologies, we may need to depart from
the classical centralized architectures, where a CPU is in charge of gathering
and processing the information received from all antennas. Instead, we can
think of decentralized architectures where part of the processing is performed
locally at the antennas/panels/APs (or nearby), so that the amount of infor-
mation that has to reach the CPU—as well as the corresponding processing
complexity—can get considerably reduced.

Before the beginning of this PhD, some early work on decentralized ar-
chitectures was already available [47]–[49] in the context of massive MIMO.
Moreover, throughout the course of this PhD, decentralized architectures and
algorithms have further gained popularity within the broad research area of
large multi-antenna systems, as seen from [50]–[57]. One of the goals of this
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thesis is to contribute to the development of this field by proposing decen-
tralized solutions especially tailored for technologies beyond massive MIMO,
e.g., making use of the structure of LIS panels for reducing the large delays
associated to decentralized solutions like [49], [54].

Decentralized solutions as [49], [50], [53], [54] have been successful at reduc-
ing the interconnection bandwidth to a CPU, as well as the required processing
complexity at said CPU. The result is that the information that has to reach
and be processed at a CPU can be made to scale with the number of UEs
instead of with the number of BSs antennas. However, in order to achieve
these reductions, the complexity of the decentralized processing applied in the
antennas/panels has to scale with the number of UEs, which in some cases may
also be excessive. For example, cell-free massive MIMO APs and LIS panels
should be desirably cost- and energy efficient to favor scalability, so the pro-
cessing capabilities at these systems may be limited. Thus, an important goal
of this thesis is to study the interplay between the decentralized processing
complexity and the level of decentralization, which has not been considered in
previous literature.

1.3.2 The Multiplexing Capabilities of RS

Throughout the course of this PhD, RIS has gained popularity and massive
amount of research has studied the benefits of using this technology for im-
proving wireless links between a BS and one or more UEs [35], [37], [58]–[60].
Most of the available work on RIS focuses on the exploitation of its impressive
beamforming gains, which can be made to scale with the square of the number
of RIS elements in general far-field scenarios [37], [59]. However, as pointed out
in [61], the available beamforming gains in realistic RIS scenarios are limited
by the law of conservation of energy. Moreover, as happens in conventional
MIMO, beamforming gains only translate to logaritmic capacity gains. Thus,
we believe that the potential of RS technology largely lies in the possibility to
improve the multiplexing capabilities of current multi-antenna systems. Only
limited work has been done in this regard, e.g., indirectly improving multi-
plexing gain by improving user rates through time consuming alternating op-
timization schemes [60], [62], or directly improving multiplexing gain through
channel rank improvement as in [63] for a specific single UE scenario. One goal
of this thesis is to explore RS technologies with the aim of achieving improved
spatial multiplexing in general MU-MIMO scenarios. Furthermore, to be able
to exploit the benefits of RIS, the available literature typically relies on full-CSI
knowledge, while this task is extremely challenging in the context of RIS [42],
[61]. A minor part of this thesis will address the problem of channel estimation
for RS.
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1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides some prelim-
inary knowledge and assumptions that may be helpful for understanding the
results presented in this thesis. Chapter 3 and 4 present an overview of the
two main research topics that are studied in this thesis, together with a brief
description of our main contributions in these areas. Chapter 5 concludes Part
I of the thesis by summarizing the main findings, and by proposing interesting
directions for extending this work. Part II of thesis includes a reformatted
version of the publications listed in the Preface.



Chapter 2

Useful Knowledge and
Considerations

During my PhD studies I have been teaching assistant for the courses “Multiple
Antenna Systems” and “Digital Communications, Advanced Course”. Teach-
ing these courses—which I also took myself before starting my PhD studies—
helped me acquire deep understanding of the digital communication techniques
and related problems, especially in the context of multi-antenna communica-
tions, which turned out to be very useful in the development of this thesis. I
also acquired useful knowledge by taking specialized courses in e.g., probability
theory, matrix theory, information theory, etc, as well as by discussing with my
supervisor—every time I went to Fredrik’s office I came out smarter. In this
chapter we summarize some important results in these fields, which may serve
as a basic knowledge base for understanding the main findings of this thesis.

2.1 General considerations

The work presented in this thesis considers generic mobile broadband commu-
nication scenarios within the broad framework of MU-MIMO. However, most
of the included results deal with the challenges and opportunities arising in sys-
tems with a large number of BS antennas—i.e., massive MIMO and beyond.
Motivated by the available massive MIMO literature [64], [65], the operation
of the systems envisioned in this thesis is characterized by

(i) TDD operation: The UL and DL transmissions are done over different
time slots, but within the same frequency slots.

(ii) Channel reciprocity: The UL-DL CSI is reciprocal, or, at least, the DL
can be obtained from the UL channel through calibration—e.g., [66].

11
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(iii) CSI aquisition through UL pilots: The UEs send orthogonal pilots to the
BS, which then performs CSI estimation based on these pilots—note that
assumption (ii) is hereby required.

(iv) Perfect-CSI estimates: In this thesis, the CSI estimates are typically as-
sumed to be error-free to simplify the analysis.

(v) Block-fading: The channel remains constant throughout a number of sym-
bol transmissions—i.e., the channel coherence time is greater that the
symbol rate.

(vi) Non-interfering narrowband symbols: The underlying modulation allows
to consider orthogonal narrowband symbols with no ISI—e.g., OFDM
with large enough cyclic-prefix.

(vii) Fully-digital linear equalization and precoding: In the UL the BS spatially
filters the symbols sent by the UE through digital linear equalization based
on the UL CSI. In the DL the BS sends linearly (and digitally) precoded
symbols based on the reciprocal channel from the UL CSI.

(viii) Single-antenna UEs: The UEs are assumed to have a single antenna so
that they can receive at maximum one spatial stream.

Most of these assumptions are a result of the common functioning of MU-MIMO
systems [5], [6]. On the other hand, the extension of this work to multi-antenna
UEs is generally trivial—e.g., the UE antennas can be used for improved ar-
ray gain without remarkable effect on the results in this work, or several UE
antennas could be identified with several single-antenna UEs for considering
transmission of several spatial streams to a single UE. Most of the results pre-
sented are also applicable to the imperfect CSI scenario, as discussed in part of
this work. Finally, as pointed out in [12], linear equalization achieves close to
optimal performance when the number of BS antennas is considerably larger
than the number of UEs it serves at a given time-frequency resource.

The reader may also notice a general preference for the consideration of UL
scenarios, i.e., where the UEs are transmitting simultaneously to the BS. This
choice is mainly due to authors’ taste, while the extension to DL scenarios is
typically straightforward under some considerations—e.g., channel reciprocity
and per-line (per-UE) capacity—as discussed in part of the presented work.

2.2 The MU-MIMO framework

As previously mentioned, the results presented in this thesis are based on gener-
alizations of the MU-MIMO framework. Thus, we will now present a theoretical
description of this framework, as well as some important results that may be
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useful for understanding the rest of the thesis. Much of what is presented next
can be found in common MIMO text books—e.g., [5], [6]—while we merely
make a selection of the explanations that are important for understanding this
thesis. Thus, some results may be presented without citation to avoid excessive
repetition, in which cases the reader can refer to [5], [6] for further clarification.

In the UL, let us assume that K UEs are simultaneously transmitting to a
BS with M antennas, where M ≥ K. Due to the general consideration (vi),
we can focus on a single narrowband subcarrier and time-slot since, in case we
have an OFDM-like modulation with more subcarriers, these can be processed
independently. The received narrowband symbol associated to one subcarrier
can then be described in complex baseband by

y = Hs+ n, (2.1)

where H is the M × K channel matrix, s is a K × 1 vector containing the
complex baseband symbols transmitted by the UEs, and n is an M × 1 vector
modelling the noise at the receiver. The standard receiver noise model assumes
n to be IID ZMCSCG, i.e., n ∼ CN (0, N0IM ), where N0 corresponds to the
noise variance—which is further related to the underlying power spectral den-
sity. Note that equation (2.1) describes the received signal per channel use, so
for each time slot and each frequency subcarrier we have an equation like (2.1).
The scenario under consideration is illustrated in Fig. 2.1. In the DL a simi-
lar equation as (2.1) arises, where only the dimensions have to be adapted—H
would be substituted by its transpose HT in case of perfect channel reciprocity.

...

yM

y1

BS

UE 1

UE K

...

s1

sK

h11

Figure 2.1: The UL MU-MIMO framework.
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2.2.1 Capacity

Given a transmitted random vector s, and a received random vector y, the
capacity is defined as [7]

C = max
p(s)

I(y; s), (2.2)

where p(s) is the PDF of s, and I(y; s) corresponds to the mutual information
between y and s given by

I(y; s) = h(y)− h(y|s), (2.3)

where h(·) is the (differential)1 entropy operator, which corresponds to a mea-
sure of the uncertainty of a random variable [7]. In his celebrated paper [67],
Shannon proved that C, as defined in (2.2), gives the limit on the amount
of information embedded in s that can be decoded from y with arbitrarily
small error when considering an asymptotically large number of channel uses.
On the other hand, for an arbitrary p(s), I(y; s), as defined in (2.3), gives
the achievable information rate for that input distribution—i.e., the amount
of information from the random variable s that can be obtained from y with
arbitrarily small error when considering an asymptotically large number of re-
alizations of s.

If we now consider the MIMO input-output relation defined in (2.1)—where
we assume perfect knowledge of the current channel realization H—we can
obtain the channel capacity by the famous log-det formula [68]

CMIMO = max
Rss

log det

(
IM +

1

N0
HRssH

H

)
, (2.4)

which is given by substituting the optimal input distribution s ∼ CN (0,Rss)
in (2.2). Rss is then optimized by combining diagonalization of H with the
water-filling method [68]. However, in UL MU-MIMO we usually have the
restriction that the UEs are not able to cooperate, so Rss is restricted to be
diagonal, where its diagonal elements correspond to the power transmitted by
each UE. Assuming further that all UEs transmit with full (equal) power—
which is the best thing to do if the UEs have no knowledge about the channel
to other UEs—the UL MU-MIMO capacity results in

CUL = log det

(
IM +

Es

N0
HHH

)
, (2.5)

which is achieved for s ∼ CN (0, EsIK), with Es corresponding to the power

1The initial results from Shannon [67] considered random variables of discrete nature,
giving rise to the concept of entropy. Differential entropy corresponds to generalization of
said concept for continuous random variables.
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transmitted by every UE. Note that, in real systems, embedding information
in s is typically done by using predefined symbol constellations s ∈ SK ,2 with
S having finite cardinality—e.g., MQ-QAM with |S| = MQ. In these cases,
s would be modeled as a discrete random variable, thus incurring some loss
with respect to (2.5). However, the capacity expression (2.5) will be extremely
useful for evaluating the performance of the methods proposed in this thesis
since it defines the limits of the information rates that can be transmitted in
the UL MU-MIMO framework considered.

Another information theory concept which will be useful as a performance
metric in this thesis is the achievable rate for a mismatched receiver. The idea
is that, in some real scenarios, the received signal may not be perfectly modeled
by a simple input-output relation as (2.1). For example, the received vector y
may have a complicated non-linear relation with the transmitted vector s due
to, e.g., quantization distortion, amplifier non-linearities, etc. In these cases,
the receiver may assume a model for the input-output relation which does not
correspond to its true distribution—i.e., it may assume that the conditional
PDF of y given s corresponds to q(y|s) instead of the true p(y|s). In this
case, we have an expression that, not only lower bounds the capacity for the
true p(y|s), but also the achievable rate for a decoder considering q(y|s) as
decoding rule instead of the true p(y|s) [69], [70]. This expression is given by
[71]

ILB ≜ −Ey log(q(y)) + Ey,s log(q(y|s)), (2.6)

where the expectation operators consider the true distributions of s and y, and
where q(y) is given by

q(y) =

∫
q(y|s)p(s)ds. (2.7)

2.2.2 Maximum-Likelihood Decoding

The optimal way to extract the transmitted vector s from a noisy observa-
tion y is to apply the so called ML decoder—assuming no channel coding or
prior information on the transmitted data.3 This decoder corresponds to the
decoding rule

ŝML = arg max
s∈SK

p(y|s).4 (2.8)

Considering the UL MU-MIMO scenario with perfect knowledge of H, the
relation described in (2.1) leads to

ŝML = arg min
s∈SK

∥y −Hs∥2. (2.9)

2For notation simplicity, we assume UEs using identical constellations.
3In order to achieve capacity (2.2), ML decoding should be jointly performed over an

asymptotically large set of symbol transmissions.
4In case of a mismatched decoding rule q(y|s), we would substitute it for p(y|s).
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If we restrict ourselves to finite constellations for the transmitted symbols—i.e.,
|S| = MQ for finite MQ—solving (2.9) would essentially require an exhaustive
search over (MQ)

K possible transmitted symbol vectors, where in each evalua-
tion the required computations scale with the number of BS antennas M . This
becomes extremely restrictive if we want to spatially-multiplex several UEs
with high data-rates by using a BS with a large number of antennas. Thus,
more efficient schemes should be explored to deal with these complexity issues,
as we discuss next. One common sub-optimal approach is to generate a contin-
uous estimate ŝ of s, and then perform individual detection upon each entry
of the estimated ŝ, which leads to an exponential reduction—from (MQ)

K to
KMQ, or even better if further assumptions are taken. We will next look at
some methods for obtaining such estimates, as well as for reducing the amount
of computations.

2.2.3 Linear Equalization

In the ULMU-MIMO framework, linear equalization generates a post-processed
vector which corresponds to a linear combination of the received vector. Con-
sidering (2.1), the post-processed vector resulting from an arbitrary linear
equalization process can be expressed as

z = Fy, (2.10)

where F is the T ×M matrix associated to the linear equalizer. Assuming F is
already defined—which is usually the most tricky part of the process—this type
of processing is relatively simple since it corresponds to a matrix multiplication,
which can be implemented by a fixed number of multiplications and additions
determined by the size of the vectors.5

We differentiate two main reasons for employing linear equalization in UL
MU-MIMO:

1. To directly generate an estimate of the aggregate vector transmitted by
the UEs—e.g., a ZF estimate.6 This can also be used in the DL, where
F would correspond instead to the linear precoder matrix applied at the
BS, which may require further normalization.

2. To merely reduce the dimension of the received data—hence simplifying
upcoming detection—e.g., by generating sufficient statistics with lower
dimensions than the original received vector.

5For received vectors of large dimension—e.g., in massive MIMO and beyond—the com-
plexity of linear equalization will grow linearly with the size of the matrices being multiplied.

6Considering discrete constellations, symbol estimation does not preclude a detection step
where the estimated symbols are matched to symbols from the constellation.
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For the cases where the linear equalizer is used to generate an estimate of the
transmitted vector we have the extra restriction T = K, so that the dimensions
allow to have the estimate ŝ = z. Otherwise, we can consider the general
restriction T < M so as to achieve at least some dimension reduction. If symbol
detection is performed upon the full post-processed vector z from (2.10), and
assuming full-rank F , the capacity in (2.5) degenerates to

CUL,eq = log det

(
IM +

Es

N0
(FFH)−1FHHHFH

)
. (2.11)

However, when linear equalization is used for symbol estimation—given by
ŝ = z—each entry of z is often treated independently thereafter for simplifying
subsequent detection, leading to some loss in capacity per line7—in DL this
restriction is enforced by assuming non-cooperating UEs.

In this thesis, we have a special interest in linear equalizers F such that
(2.11) leads to same capacity value as (2.5), which correspond to what we call
information-lossless linear transformations. In other words, an information-
lossless linear transformation is a linear equalizer that gives a post-processed
vector constituting a sufficient statistic for s [7]. Such transformations would
thus achieve the capacity value from (2.5) when ML decoding is jointly applied
to its outputs throughout an asymptotically large number of symbol transmis-
sions with optimum input distribution. Any information-lossless linear trans-
formation can be expressed as

F =
[
F̃ L F̃R

]
UH, (2.12)

where U corresponds to the left unitary matrix from the SVD of H, F̃ L is
a T × K full-rank matrix, and F̃R is an unrestricted T × (M − K) matrix.
The reason is that the signal space of s in y is contained within the first K
left singular vectors of H—i.e., associated to (potentially-) non-zero singular
values.

Next, we present the most common linear equalizers for MU-MIMO, which
are also information-lossless linear transformations, but whose main practicality
lies in using them as direct estimators for the transmitted symbol vector s.

Maximum Ratio Combining/Matched Filter

MRC, also called (spatially-) MF since it is the spatial equivalent of the common
MF [72], is given by

FMF = HH. (2.13)

7For per-line detection upon symbol estimates ŝ = z, the capacity of the ith UE is given
by the common log(1 + SINRi), with the post-processed SINR from the ith entry of z.
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Considering symbol estimation, this linear equalization gives a post-processed
vector z with maximum output SNR per line—i.e., per entry of z. However,
the entries of z—identified with symbol estimates by ŝ = z if we ignore entry
scaling—may have interference from other UEs. Thus, this linear equalization
is useful for symbol estimation mainly when H and N0 lead to a noise-limited
scenario—i.e., in low SNR and/or highly orthogonal channels.

Zero-Forzing

ZF estimation is typically performed by selecting the equalizer

F ZF = (HHH)−1HH, (2.14)

which corresponds to the left pseudo-inverse of H with minimum power.8 Fur-
thermore, (2.14) can also be identified with the LS estimator, which gives the
estimate ŝ = z minimizing the norm ∥y − Hŝ∥—note that s is here uncon-
strained, unlike in the ML-decoding approach from (2.9). The resulting esti-
mate achieves perfect inter-UE interference at all its lines. However, it does
so by enhancing noise—i.e., leading to lower post-processed SNR per line than
MF—and by generating (potentially) correlated noise entries for different UEs.
Thus, ZF estimation is suitable for settings which are interference-limited—i.e.,
high-SNR regime and/or highly non-orthogonal channels.

Minimum Mean Square Error

The MSE, given by E{∥s − ŝ∥2}, corresponds to the most standard way to
measure estimation error—-since ancient Greece. Thus, MMSE estimation is
usually considered the optimum estimation method since it leads to the smallest
MSE possible. In general settings, the MMSE estimator may result in a non-
linear transformation—if it can even be found in closed-form. However, for the
linear model described by (2.1), and assuming Gaussian input distribution, the
MMSE estimator is also linear—thus coinciding with the LMMSE estimator—
and can be obtained by selecting the equalizer as

FMMSE =

(
HHH +

N0

Es
IK

)−1

HH. (2.15)

From the previous expression, we can note that the MMSE equalizer approx-
imates the ZF equalizer in the high-SNR regime (Es ≫ N0), and the MF in
the low-SNR regime (Es ≪ N0). The MMSE estimator is optimum for symbol
estimation, since it achieves the best trade-off between interference and noise

8Other pseudo-inverses than (2.14) may be considered for interference cancellation, but
they lose practicality due to greater noise enhancement.
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cancellation—i.e., optimum post-processed SINR per line. However, we may
still have some loss with respect to (2.5) when performing individual symbol de-
tection upon the estimated symbols at each UE, since, in general settings, there
would still be leftover interference and/or noise correlation between estimated
symbols for different UEs.

2.2.4 Channel Models

Channel modelling in MU-MIMO systems is a research field by itself. One
reason is that accurate (statistical/deterministic) description of MU-MIMO
channels largely depends on the operating frequencies, the geographical area,
the number of BS antennas, etc. In this thesis we do not enter the discussion
on how to model the propagation channel, but we employ some simple channel
models which allow us to evaluate the performance of our results—as well
as their restrictions. Note that what we denote as channel in the context of
MU-MIMO directly corresponds to the channel matrix H, as given in (2.1).
Next, we present the channel models which are considered in this thesis.

IID Rayleigh Fading Channel

The IID Rayleigh fading channel corresponds to a channel model assuming H
to have IID random entries with standard ZMCSCG distribution. Thus, we
can write

vec(H) ∼ CN (0MK×1, IMK). (2.16)

Note that the term Rayleigh fading comes from the fact that the amplitude of
the entries of H have Rayleigh distribution—the square root of the sum of two
squared Gaussian random variables gives a Rayleigh random variable.

The IID Rayleigh fading channel model characterizes the small scale fading
for NLoS propagation in the presence of isotropic scattering, i.e., where the AoA
of the signals reaching the receiving antenna array can be assumed to be uni-
formly distributed over [0, 2π). This type of propagation may arise in scenarios
where there is a large number of multipath reflections coming from random
directions [73]. We should point out that the IID condition for the different
channel coefficients is only accurate if we consider isotropic 3D propagation
with receivers consisting of a ULA of antennas with λ/2 spacing; otherwise,
the structure of the antenna array would naturally lead to spatial correlation
[28], [73], [74]. Nevertheless, the IID Rayleigh fading model is widely used in
the analysis of general massive MIMO systems and beyond due to its analytical
tractability, which can still lead to insightful results [64].
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Randomly chosen channel

The previously described IID Rayleigh fading model has been the main chan-
nel model used for generating simulation results throughout this thesis due to
its simplicity and practicality. However, most of the analytical results from
the thesis have a much looser requirement on the properties of the underly-
ing channel. We thus feel the need to present a considerably broader family
of statistical channel models (or random matrix distributions) where the IID
Rayleigh fading channel is included, and which captures the main restrictions
that are assumed on the channel models for our main analytical results to apply.

We employ the term randomly chosen matrix to refer to any random matrix
realization whose elements are drawn from arbitrary continuous distributions,
but such that any submatrix of it is full-rank with probability 1—i.e., the set of
randomly chosen matrices having some rank-deficient submatrix is of measure
0. A randomly chosen channel is then obtained from any channel model where
the channel matrixH corresponds to a randomly chosen matrix. This definition
may seem a bit arbitrary, but many of the broadly employed statistical channel
models give rise to randomly chosen channels, since they inherently fulfill these
restrictions. The IID Rayleigh fading model may be the most obvious one, but
if we consider a general correlated Rayleigh fading model, where we have

vec(H) ∼ CN (0MK×1,R), (2.17)

for some MK ×MK correlation matrix R, we also get a randomly chosen as
long as R is full-rank. The same is true for a Rician channel model whenever
there is non-zero random fading component with full-rank correlation.

Cell-Free Massive MIMO Channel

An interesting scenario where considering a randomly chosen channel may not
be accurate enough is in cell-free massive MIMO. The reason is that, in general
cell-free massive MIMO scenarios, the BS station antennas may be distributed
through a number of APs that may be geographically far from each other.
Hence, there may be UEs that are only visible to some of the APs, which
would lead to having some submatrices of H being zero. To be able to capture
such scenarios we define a more general channel model which we hereby denote
the cell-free massive MIMO channel. Assuming a total number of P APs, this
model corresponds to having H defined as follows

H =


b11H11 b12H12 · · · b1CH1C

b21H21 b22H22 · · · b2CH1C

...
...

. . .
...

bP1HP1 bP2HP2 · · · bPCHPC

 , (2.18)
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where C = 2P − 1, bj = (b1jb2j · · · bPj)2 corresponds to the binary expansion
of j—i.e., each bj is fixed since it can be obtained from P and j—and Hij

are randomly chosen channels of dimension Ni × Kj . Note that Ni would
correspond to the number of antennas at the ith AP, and Kj would correspond
to the number of UEs which are simultaneously visible to the APs indexed by
the non-zero elements of bj . We believe that this channel model is the most
general representation of a channel which has an arbitrary set of UEs hidden to
an arbitrary set of APs, since the fixed binary expansions allow us to consider
all possible combinations of hidden/visible UEs. To get a feeling of what this
channel would look like in some specific setting, we show an example where
(2.18) is particularized to the case where there are only 2 APs, which would
lead to the channel matrix

H =

(
H11 0N1×K2

H13

0N2×K1 H22 H23

)
, (2.19)

where H11 is the channel from AP 1 to the K1 UEs hidden from AP 2, H22 is
the channel from AP 2 to the K2 UEs hidden from AP 1, while H13 and H23

are the channels from AP 1 and AP 2, respectively, to the K3 UEs which are
seen by both APs.

Orthogonal Channel

The most desirable channel for multiplexing UEs in the spatial domain is the
so-called orthogonal channel. In this thesis, we define the orthogonal channel
by

H =
√
βŨ (2.20)

where Ũ is an M × K matrix such that Ũ
H
Ũ = IK—recall the assumption

M ≥ K which is hereby considered. This means that we can write without loss
of generality

Ũ = U

[
IK

0(M−K)×K

]
, (2.21)

where U ∈ U(M)—i.e., it is an M × M unitary matrix. Note that a ran-
dom orthogonal channel formed by a unitary matrix U uniformly distributed
in U(M) also constitutes a randomly chosen channel. Furthermore, the IID
Rayleigh channel from (2.16)—i.e., with normalized entries having unit-power
on average—approximates an orthogonal channel as the number of antennas at
the base station grow large, i.e., M → ∞. This is often referred to as the chan-
nel hardening effect, which constitutes one of the main advantages of massive
MIMO systems [75].

Having an orthogonal channel like (2.20) is incredibly advantageous, since
it leads to maximum multiplexing gain at low complexity. It is enough to con-
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sider the previously mentioned MF equalizer to achieve optimum processing—
in fact, any of the common linear equalizers described before lead to the same
processing matrix up to scaling. The reason is that these channels allow for per-
fect interference cancellation while simultaneously maximizing post-processed
SNR—i.e., leading also to optimum SINR per line. Furthermore, performing
per-line ML-detection upon the MF estimates—given by ŝ = z with (2.13)—
still allows for maximum UL capacity (2.5). This is because unitary matrices
induce no correlation on the noise, so all the entries of z are perfectly indepen-
dent from each other. On top of that, the general expression for the MIMO
capacity (2.4) is also achievable in this case since all the singular values of
the channel are equal, so there is no gain from using water-filling at the UEs,
which are further served at equal rates. However, a more general description of
the orthogonal channel could be considered by multiplying an arbitrary diago-
nal matrix from the right—e.g., accounting for different fading factors at each
UE—leading to (potentially) non-zero capacity gain from water-filling.



Chapter 3

Decentralized
Multi-Antenna
Architectures

When I landed at EIT, Jesús and Fredrik were working together in decentral-
ized solutions for massive MIMO systems. Jesús had derived some interesting
results and I got immersed in the discussions that led to a conference publi-
cation which I had the pleasure to present at ISIT’19, opening my eyes to the
academic research community. Jesús had also been working earlier in decen-
tralized solutions for interference cancellation in massive MIMO systems based
on Daisy-chain architectures, and we started looking at how we could extend
these ideas to architectures based on LIS—which was my initial research topic.
After long discussions and a bunch of simulation work, I was lucky to develop
some algorithms making use of the structure of LIS panels to achieve reasonable
performance improvements, leading to the first conference publication included
in this thesis. After this first publication, I started working in more fundamen-
tal LIS problems, and I managed to drop some more conference publications
which are not included in the thesis.

I was presenting again the ideas from the first paper in a small conference
in Lund when, from the back of the room, Fredrik overheard a conversation
between two guys from Ericsson that were doubtful about the difficulty to
perform such processing in real systems. Of course, this was just enough for
Fredrik to take it personal, so the next day he was waiting in his office with
some ideas on finding a fundamental trade-off between complexity and level
of decentralization in multi-antenna architectures. This problem turned out
to be quite challenging—as well as motivating—so it kept us busy for a long
time with countless discussions, MATLAB scripts, and sheets full of failed at-

23
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tempts to solve the problem. We ended up with the definition of the WAX
decomposition—named after the letters we were using for the three matrices
it consists of—which allowed us to get some interesting results and opened a
whole research quest for us. The work on the WAX decomposition, and the
decentralized trade-offs associated, constitutes the main contribution of this
thesis, which comprises the two journal publications, as well one conference
publication that I worked on during my short virtual internship at Huawei.
In this line of work, also lies one more included conference publication that
was a result of my research visit to Barcelona with Angel Lozano. I had the
opportunity to present the WAX decomposition results there and one of An-
gel’s students questioned that an information-losless dimension reduction—as
that given by WAX—may not reduce the interconnection bandwidth for given
information-loss if quantization is considered. I followed Fredrik’s example and
I took it personal.

3.1 From Centralized to Decentralized

From now on, let us focus, without much loss of generality, on the ULMU-MIMO
scenario described in the previous chapter, where K UEs are simultaneously
communicating with an M -antenna BS. In order to go from the electromag-
netic signals received at the antennas to the received symbol vector y from
(2.1)—assuming synchronization is established—there is a number of initial
steps that should be taken:

1) First, we should use RF circuitry to amplify, filter, and down-convert the
signals to low frequencies.

2) Then, we can use ADCs to be able to transform the signals to bits so they
can be digitally processed—e.g., by a computer.

3) Finally, we can demodulate the narrowband subcarrier of interest from each
antenna to obtain y. In OFDM-like modulations this involves applying a
DFT to the received digital signals to isolate the narrowband subcarriers.

These steps are typically integrated in specific modules which may also pos-
sess further processing capabilities—including CSI estimation capabilities. In
systems with a small number of antennas, it may be enough to have a single
module implementing all these computations, as well as the detection and de-
coding. This module could then be identified with the CPU (or central node)
of the common centralized approach. However, systems with a large number
of antennas potentially require several of these modules—which may be imple-
mented through SDRs—since each of them may have physical restrictions on
the number of antennas it can accommodate. For example, in initial massive
MIMO prototypes like [45], one SDR is employed for each group of 4 antennas
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out of 64, while in [46] one SDR is employed for every pair of antennas out of
100. In this context, the centralized approach would consist of transmitting all
the data from the SDRs—including the estimated CSI—to a powerful-enough
CPU, which would then have full freedom to jointly process the received com-
plex baseband vector y for each narrowband subcarrier using the channel es-
timates. However, as already noticed in [45] and [46], the amount of data
that would have to be transmitted to the CPU in this approach scales with
the number of antennas, so it would require impractically large interconnec-
tion bandwidths. This led the authors in [45] and [46] to consider some initial
pragmatic decentralized approaches, i.e., by applying simple preprocessing of
the data at the SDRs to reduce the amount of data that had to be transmitted
to the CPU at the cost of some performance loss.

3.1.1 Centralized Multi-Antenna Architecture

Following our previous exposition, a centralized multi-antenna architecture can
then be defined as a multi-antenna architecture where the full complex base-
band symbols y from (2.1), as well as the estimates of H, are accumulated
at a CPU in charge of performing equalization, detection, decoding, etc.1 An
equivalent complex baseband description of a centralized architecture is then
illustrated in Fig. 3.1, where the respective SDRs (or equivalent modules) can
be located close to the antennas or close to the CPU, indifferently.

CPU ...M

inputs

outputs

y2

y1

yM

1 × 1

Figure 3.1: Centralized multi-antenna architecture.

1For the DL, a centralized architecture would only select at a CPU the precoded symbols
to be transmitted from its antennas, since detection would be performed by the UEs.
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3.1.2 Decentralized Multi-Antenna Architectures

As opposed to the centralized case, the definition of a decentralized multi-
antenna architecture can lead to some discussion. Some decentralized ap-
proaches may consider data detection capabilities at the decentralized modules—
e.g., [50], [56], [76]—while for others it may be enough to perform linear estima-
tion of the symbols—e.g., [49], [54]—or even just some dimension reduction—
e.g., [51]. In any case, as we argue in [53], the data arriving at a BS from
a set of UEs has to end up eventually in a central node so that it can travel
further through the core network—e.g., to some server, to the other party of
a video-call, etc. This means that we can always assume that a CPU will be
present in the process, which would likely have enough capabilities for per-
forming symbol detection, channel decoding, etc. In this thesis, we thus limit
the decentralized processing capabilities to linear equalization schemes, which
could potentially be implemented using cost-efficient SDRs (or equivalent de-
centralized modules) and where complexity is essentially given by the number
of multiplications that have to be performed. The level of decentralization is
then measured in terms of the interconnection bandwidth—i.e., the amount
of information that is being shared—between the decentralized nodes and the
CPU for effectively decoding the data from the UEs. We can now give a broad
definition of a decentralized multi-antenna architecture as a multi-antenna ar-
chitecture where the interconnection bandwidth to a CPU is effectively reduced
in comparison to a centralized architecture by performing data preprocessing at
some decentralized modules close to the antennas—e.g., SDRs. On the other
hand, a fully-decentralized multi-antenna architecture would correspond to a
decentralized multi-antenna architecture where the interconnection bandwidth
to a CPU only scales with the number K of UEs being served—and not with
the number M of BS antennas—as we discuss in [53].

In Fig. 3.2 we illustrate an equivalent complex baseband description of a
fully-decentralized architectures which falls within our definition, and which
will be further considered in upcoming sections since it generalizes a large part
of the fully-decentralized approaches being considered. In this architecture,
each decentralized module m multiplies its input complex baseband entry, ym
from (2.1), by K × 1 vectors wm. The outputs are then combined through a
big sum module—which could potentially be implemented in a sequential way,
or through alternative decentralized approaches—and the output sum is then
sent to the CPU for subsequent detection, decoding, etc. The post-processed
vector arriving the CPU can then be described as in (2.10)—since it results also
in a linear equalization process—but where the equalizer F is now a K × M
matrix given by

F FD =
[
w1 · · · wm

]
. (3.1)

We can note that, if we group the antennas such that each decentralized module
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is associated to an arbitrary number N of antennas, we would be able to achieve
the same equalization without loss, where the vector multiplication in each
module would be changed for a multiplication by a K ×N matrix.

Let H = [h1 · · · hM ]T. If we select wm = h∗
m—i.e., the conjugate trans-

pose of the mth row of channel matrix H—this architecture achieves perfect
MF equalization F FD = HH, which corresponds to the approach followed in
the initial massive MIMO prototypes from [45], [46] to deal with the problem
of high interconnection bandwidth. The main advantage of these approaches
is that the information that has to be transmitted to the CPU now scales with
the number of users K instead of with the number of BS antennas M , thus
leading to practical interconnection bandwidths even in large multi-antenna
systems like massive MIMO and beyond technologies. However, in interference
limited scenarios the performance may be severely restricted since MF equalizer
does not have good interference cancellation properties for general channels, as
discussed in the previous chapter.
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Figure 3.2: Fully-decentralized multi-antenna architecture.

In principle, an architecture like the one from Fig. 3.2 can implement any
of the linear equalizers presented in the previous chapter—note that a matrix
multiplication is just a sum of vector multiplications. However, for implement-
ing some of the studied equalizers the full channel matrix has to be known at all
the decentralized modules. An important restriction of decentralized architec-
tures is that the channel estimation is performed in the decentralized modules,
so each decentralized module would only have access to the channel vector (or
matrix) between the UEs and the antenna (or antennas) associated to it. In the
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architecture from Fig. 3.2, we can thus assume that only hm is known at decen-
tralized module m, so perfect MF equalizer is straightforward—as seen from
our previous description. However, in order to apply other linear equalizers, we
should study decentralized schemes that allow to have, at each decentralized
module, some knowledge of the channel and/or the processing applied at other
decentralized modules. We thus define the term decentralized scheme as an
information sharing strategy between the decentralized modules—and possibly
with the CPU—in a decentralized architecture to be able to implement certain
equalization processes. Note that decentralized schemes are mainly employed
during the training phase to find the decentralized processing to be applied.
Furthermore, a decentralized scheme may be associated to an architecture—or
rather a topology, as in [77]—showing how the decentralized modules are con-
nected to share data, but we will restrict the term decentralized architecture
for describing the equivalent architecture employed during the data phase, as in
Fig. 3.2. Part of this thesis defines decentralized schemes for achieving specific
equalization processes, some of these schemes will be discussed next.

3.2 Fully-Decentralized Interference Cancella-
tion Schemes

Let us consider the fully-decentralized architecture from Fig. 3.2. Since in this
architecture each decentralized module has only access to the channel estimates
associated to its antenna—i.e., module m only knows the estimate of the mth
row of H, hT

m—applying any equalization other than MF requires a suitable
decentralized scheme to convey the relevant information to the decentralized
modules. In particular, in systems whose performance is limited by the inter-
ference between UEs—e.g., where H is far from being orthogonal—we would
like to find decentralized schemes to achieve a processing matrix which is close
to a ZF equalizer.

We will now take a look at how we can quantify the interference cancellation
properties—inspired by the ZF solution—when using the fully-decentralized
architecture, which will be useful for defining suitable decentralized schemes.
The ZF equalizer achieves perfect interference cancellation by performing a left
pseudo-inverse of the channel matrix, i.e., leading to an equivalent channel

F ZFH = IK . (3.2)

Given the equivalent processing matrix F FD from (3.1), in order to have good
interference cancellation properties it would thus be desirable to construct F FD
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such that it is close to a left pseudo-inverse of H.2 One straightforward way
to measure how close is F FD to a left pseudo-inverse of H is given by

IUE = ∥F FDH − IK∥2F

=

∥∥∥∥∥
M∑

m=1

wmhT
m − IK

∥∥∥∥∥
2

F

,
(3.3)

which for F FD = F ZF would give 0. In fact, assuming the diagonal elements
of the product F FDH are normalized to 1, IUE is directly related to the power
of the interference between different UEs when applying F FD. The nice thing
about (3.3) is that it provides a simple objective function that can be mini-
mized in different ways to achieve good interference cancellation under different
settings, as we will see next.

3.2.1 Sequential Decentralized Schemes Based on Daisy
Chain

In [49], [54] decentralized schemes based on the Daisy chain topology are pro-
posed to achieve interference cancellation in a fully-decentralized architecture
like the one from Fig. 3.2. The idea is to iteratively minimize the expression for
IUE—given in (3.3)—so that the resulting equivalent equalizer F FD has good
interference-cancellation properties. In Fig. 3.3 we can see a schematic of a
Daisy chain topology, where the discontinuous line between decentralized mod-
ules 1 and M is because this connection may be included or not—as discussed
in [54].

Dec. 

module 1

Dec. 

module 2

Dec. 

module M
...

Figure 3.3: Schematic of Daisy chain topology.

The Daisy chain topology allows for the implementation of coordinate de-
scent minimization of IUE from (3.3). In the initial round, decentralized module

2To be strictly general, achieving perfect interference cancellation would only require
that the equivalent channel is a diagonal matrix. However, we focus on the pseudo-inverse
formulation for simplicity and tractability.
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m would compute its filter wm by solving the minimization problem

argmin
wm

∥∥∥Sm +wmhT
m − IK

∥∥∥2
F

s.t. ∥wm∥2 = µ,

(3.4)

where Sm corresponds to a K×K matrix which should be shared from decen-
tralized module m− 1 in the previous step, and which is given by

Sm =

m−1∑
i=1

wih
T
i , (3.5)

i.e., it contains the contribution of the previous m − 1 decentralized modules
to the equivalent channel. Note that the power constraint ∥wm∥2 = µ comes
from assuming that all decentralized modules apply equal amplification, but it
could potentially be disregarded—especially considering the UL scenario. After
finding wm from (3.4), which has closed form solution

wm = µ
(IK − Sm)h∗

m

∥(IK − Sm)h∗
m∥

, (3.6)

decentralized module m can then compute Sm+1 = Sm + wmhT
m and send

it to the next decentralized module so that it can similarly compute its own
decentralized filter wm+1. Note that, in the first decentralized module, we
would have S1 = 0 as starting assumption. After going through the whole
chain once, and if the connection between the last and the first decentralized
modules is in place, we could have another round of the process to further
improve the interference cancellation performance. In this case, each panel
would directly have access to the whole expression (3.3)—although it can only
optimize its own decentralized filter—so it would use Sm =

∑
i ̸=m wih

T—i.e.,
by subtracting its previous contribution to the accumulated sum received from
the preceding decentralized module.

One of the main drawbacks of the decentralized schemes based on Daisy
chain is that, since each decentralized module has to perform some operations
and send information to the following decentralized module, the accumulated
delay required to go through the whole process scales with the number of
decentralized modules, and thus with the number of antennasM . This becomes
an issue in massive MIMO systems, and even more in LIS, since these systems
consider BSs with a huge number of antennas, so the associated delays to
implement such decentralized schemes would make them impractical.
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3.2.2 Parallel Decentralized Schemes

Instead of considering sequential solutions, as in the Daisy chain schemes from
[49], [54], we could potentially get rid of the scaling of the delay with the num-
ber of antennas by considering schemes where all decentralized modules are
simultaneously trying to compute their equalizer by minimizing some metric
similar to IUE. As in the sequential case, in parallel schemes, the decentral-
ized modules would also compute their equalizer iteratively and—after each
iteration—share some information related to the resulting equalization, as well
as to the local CSI. However, parallel schemes allow for more freedom in the
way information in being shared, since there is no need to connect one mod-
ule after another. Thus, we could consider decentralized schemes making use
of information sharing topologies like the one described by Fig. 3.4, which
includes two-way connections between decentralized modules as opposed to
Fig. 3.3. Furthermore, we could even make use of the antenna arrangement
to make the information sharing faster, while favoring integration in 2D pan-
els of antennas—e.g., LIS panels. For example, Fig. 3.5 (left) shows such a 2D
topology, where each decentralized module can be described by Fig. 3.5 (right).

Dec. 

module 1

Dec. 

module 2

Dec. 

module M
...

Figure 3.4: 1D topology for parallel decentralized schemes.

In Paper I, we will propose decentralized schemes employing the topologies
from Fig. 3.4 and Fig. 3.5 for achieving improved interference cancellation with
reduced delays by extending the concepts described before for Daisy chain
topologies from [49], [54]. The idea is that the information being shared should
also scale with the number of UEs instead of with the number of BS antennas—
i.e., we still allow sharing K ×K matrices.

3.2.3 Alternative Schemes with CPU processing

Another straightforward way to use the fully-decentralized architecture from
Fig. 3.2 to perform interference cancellation would be to consider decentralized
schemes where the decentralized modules may send some channel information
to the CPU, as discussed in [53]. In fact, by simply sharing with the CPU the
Gramian of the channel—i.e., HHH—which still scales with the number of UEs
since it is a K ×K matrix, the CPU can perform perfect ZF equalization, and
even MMSE equalization. In this case, the decentralized modules would only



32 Overview of Research Field

Dec. 

module

...

...

...

…

…

…

…

...

Dec. 

module

Dec. 

module

...

...

...

…

…

…

…

...

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module

Dec. 

module
Dec. 

module

Dec. 

module

Dec. 

module

Figure 3.5: 2D topology (left), and schematic of a decentralized module (right) for
parallel decentralized schemes. Notation will be further explained in Paper I.

have to apply the equivalent MF by simply selecting wm = h∗
m, as previously

discussed. The CPU would then use the shared Gramian to perform ZF—i.e.,
by inverting it and applying it to the MF-equalized vector—or MMSE—i.e.,
by summing it to an identity scaled by the inverse SNR3 before inverting, and
applying the result to the MF-equalized vector.

One goal of the thesis is to extend these types of decentralized schemes to
architectures with arbitrary level of decentralization. This will be addressed
to a certain extent in Papers II, III and VI. Next, we will present a formal
description for architectures with arbitrary level of decentralization.

3.3 Architectures with Arbitrary Level of De-
centralization

If we consider our previous definition of fully-decentralized multi-antenna archi-
tectures—i.e., where the interconnection bandwidth scales with K—we can
define the level of decentralization as the scaling of the interconnection band-
windth of a decentralized multi-antenna architecture. This scaling would then
be between K—as in the fully-decentralized architectures—and M—as in the
centralized architectures.4 If we look at the fully-decentralized architecture
from Fig. 3.2—where the equivalent equalization is given by the K × M ma-
trix F FD from (3.1)—we could straightforwardly increase the scaling of the

3The CPU should have an estimate of the SNR, which is a common assumption.
4In principle, we could also consider decentralized architectures where the scaling of the

interconnection bandwidth goes below K, but these require to sacrifice performance since
the end data from K UEs that has to be received at the BS obviously scales with K.
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data sent to the CPU by increasing the size of the wm vectors to an arbi-
trary T . However, by doing that, we are also increasing the complexity of the
processing—i.e., the number of multiplications—that have to be applied at the
decentralized modules, so we see no benefit whatsoever in doing that.

An important motivation for considering architectures with arbitrary level
of decentralization is to simplify the processing that has to be applied at the
decentralized modules. In the fully-decentralized architecture from Fig. 3.2,
we can note that, throughout every UL reception, each decentralized module
has to be able to apply K multiplications—i.e., to multiply by the wm vector.
Although the number of UEs may be considerably smaller than the number
of BS antennas, the decentralized modules may also have much more limited
processing capabilities than the main CPU, since they should be implemented
close to the antennas in a cost-efficient, and possibly space-constrained man-
ner. For example, these modules may be designed such that the number of
multiplications that the hardware can handle may not exceed some threshold,
while the number of UEs in the network can be flexible, so there may be sit-
uations where the number of UEs exceeds said threshold. Thus, let us define
the decentralized processing complexity as the scaling of the operations that a
decentralized module has to apply. This scaling would then be between K—as
in fully-decentralized architectures like the one from Fig. 3.2—and 0—as in
common centralized architectures.

Taking into account our previous definitions, we can now extend the fully-
decentralized architecture from Fig. 3.2 to consider an arbitrary level of de-
centralization for some fixed decentralized processing complexity. This can be
done by selecting an arbitrary number of CPU inputs T , while fixing the num-
ber of multiplications per decentralized module to some number L. Fig. 3.6
describes a generalized multi-antenna architecture during an UL data transmis-
sion which fulfills the previous considerations. This architecture corresponds
to a generalization of the fully-decentralized architecture from Fig. 3.2 where
the wm vectors are now resized to L—corresponding to the multiplications
per antenna—and the sum module is now substituted by a combining module
which generates T outputs—corresponding to the number of CPU inputs. The
combining module is now described through a matrix AH instead of a big sum
module since the dimensions have to be adapted, but the idea is to have these
modules constructed through smaller sum modules that can be implemented
by simple hardware and remain fixed once such systems are deployed. More-
over, the CPU can apply further processing to readapt the dimensions so that
common symbol estimation procedures may be applied. We can thus model
the CPU processing (or part of it) as a multiplication by a K × T matrix
XH which adapts the dimensions to the number of UE streams. The resulting
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post-processed vector can then be described by the K × 1 vector

z = XHAHWHy, 5 (3.7)

where WH is a ML×M block diagonal matrix

WH = diag
(
w1, · · · ,wM

)
. (3.8)

Note that if we solely consider the decentralized processing being applied, we
would have a T × 1 post-processed-vector

zD = FADy, (3.9)

with FAD = AHWH. However, including the CPU processing will help giving
a better understanding of the possibilities of such framework. In fact, in the
fully-decentralized approach from [53]—described in Section 3.2.3—a similar
consideration is made since the decentralized processing there is restricted to
MF, and the CPU uses the shared Gramian to be able to apply ZF or MMSE.
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Figure 3.6: Architecture with arbitrary level of decentralization.

If we assume some desirable structure for A such that the output of ev-
ery group of L adjacent antennas are directly summed, we can consider an
alternative description of multi-antenna architectures with arbitrary level of

5The usage of conjugate transpose matrices is mainly for presentation purposes since this
will lead to a more neat description of the WAX decomposition, which will be later presented.
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decentralization in which each decentralized module is performing decentral-
ized processing upon a group of L antennas. The L×1 wm vectors would then
turn into L × L matrices, which still allows to achieve the same processing as
before, but without increasing the dimension of the data sent to the remaining
combining module. This consideration has been used in much of the included
work related to muti-antenna architectures with arbitrary level of decentral-
ization since, apart from gaining some practicality, it leads to better analytical
tractability. Nevertheless, this consideration does not affect the validity of the
results, which can still be trivially adapted to the description from Fig. 3.6, as
further discussed in Paper II.

3.3.1 Trade-off Between Level of Decentralization and De-
centralized Processing Complexity

Let us consider the general architecture from Fig. 3.6. In this general frame-
work, we can find a combination of parameters L, T , and A that allows
representing the centralized architecture from Fig. 3.1, as well as the fully-
decentralized architecture from Fig. 3.2. For the centralized case, this is achieved
by selecting L = 0,6 T = M , and A = IM , while for the fully-decentralized
case we would select L = K, T = K, and A = [IK · · · IK ]T. If we ignore
the complexity of the combining module, which may be implemented by fixed
hardware, we can identify a trade-off between these two architectures in terms
of level of decentralization and decentralized processing complexity which is
depicted in Fig. 3.7.

An important observation is that, although implementing specific equalizers
may require non-trivial approaches, the fully-decentralized architecture from
Fig. 3.6 trivially allows the application of information lossless linear transfor-
mations to the received vector y. The most obvious example is when we simply
selectwm = h∗

m, leading to the MF equalizer, which corresponds to an informa-
tion lossless linear transformation since it only removes dimensions in the noise
space. Thus, assuming optimal decoding at the CPU, the fully-decentralized
architecture would be able to achieve the same user rates as the centralized
architecture. This suggests the existence of a fundamental information-lossless
trade-off between level of decentralization and decentralized processing com-
plexity. A major goal of this thesis is to fully characterize said trade-off—i.e., to
find the region from Fig. 3.7 where information-lossless linear transformations
are available using a framework like that of Fig. 3.6. We will also study how
to achieve practical exploitation of said trade-off—e.g., by proposing decentral-

6Considering the framework from Fig. 3.6, choosing L = 0 would paradoxically lead to
0 inputs to the combining module. It would thus be more accurate to represent this case
by considering L = 1 and wm = 1. However, we prefer to link L with the number of
multiplications—i.e., regarding this as a special case—since even one multiplication, when
properly exploited, may lead to a reduction in the required inputs to CPU.
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Figure 3.7: Trade-off between fully-decentralized and centralized architectures.

ized schemes, designing practical combining modules, or considering specific
channel models.

3.3.2 The WAX Decomposition

From our previous discussion, we can note that one of the simplest way to
achieve an information-lossless linear transformation in the fully-decentralized
architecture from Fig. 3.2 is to perform decentralized MF, since we can select
wm = h∗

m without the need to share any information between the different
decentralized modules. Thus, a straightforward way to study the information-
lossless trade-off in architectures with arbitrary level of decentralization based
on Fig. 3.6, would be to characterize the conditions under which such architec-
tures can achieve perfect MF equalization. The ability to perform MF equaliza-
tion turns out to be also a necessary condition for achieving information-lossless
linear transformations, as we discuss in Paper II. Considering the equivalent
processing from (3.7), performing MF equalization in such a framework trans-
lates to finding W and X such that

H = WAX, (3.10)

where W should have the block diagonal structure from (3.8). The expression
from (3.10) is what we define as the WAX decomposition of H. The main
peculiarities of such a decomposition are the block-diagonal structure of W ,
and the fact that A is a fixed matrix—i.e., a suitable WAX decomposition
should involve an A matrix that allows decomposing all (or at least most)
possible H matrices.

The WAX decomposition gives the requirement that a multi-antenna ar-
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chitecture with arbitrary level of decentralization—based on Fig. 3.6—has to
fulfill in order to be able to apply information-lossless processing. Note that,
even disregarding the application of XH at the CPU, if we can perform WAX
decomposition of H (3.10), the decentralized processing applied before arriv-
ing the CPU—i.e., FAD = AHWH as in (3.9)—would also correspond to an
information-lossless linear transformation due to the data-processing inequality
[7]. Characterizing the conditions of existence of the WAX decomposition for
all (or most) possible channel matrices H would then be equivalent to char-
acterizing the information-lossless trade-off in Fig. 3.7. We will see that the
channel model employed, as well as the design of A, can have an important im-
pact on this trade-off. Furthermore, sinceA should be associated to a hardware
combining module—i.e., similar to the sum module from Fig. 3.2—we should
consider the use of A matrices comprised of sparse structures with 1s and 0s
so that they have straightforward implementation using simple sum modules.
These and other considerations will be thoroughly studied in Papers II, IV,
VI.

3.4 Quantization Effects in Decentralized Pro-
cessing

In the previous sections of this chapter we have been measuring the intercon-
nection bandwidth to a CPU using the dimension of the vectors that are being
transmitted between different nodes. However, in real systems the complex
baseband vectors are actually stored and transmitted using bits since, as we
discussed earlier, in order to get the received vector y from the electromagnetic
signals received at the BS antennas one of the steps is to use an ADC to trans-
form the analog signals into bits. These bits can then be digitally processed,
sent, and stored. In principle, if the number of output bits from each ADC—
given by the quantization bits—is large enough, we would be able to represent
the complex baseband numbers with very small error. However, another way
to reduce the volume of information that has to be sent to a CPU, is to re-
duce the amount of quantization bits so that each complex baseband number
requires less bandwidth to be transmitted. Of course, having less quantization
bits translates to having a less accurate description of these complex baseband
numbers, so the resulting transmission rates from the UEs to the BS may have
to be reduced to compensate for the quantization error.

Following our previous discourse we may naturally ask ourselves, is it bet-
ter to reduce quantization bits or to perform information-lossless dimension
reductions? To the best of our knowledge, the available literature has not been
able to clearly address such question, so Paper IV includes some initial work
in this direction. Specifically, we study transmission rates in simplified model
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where quantization is considered for reducing the bits that have to be trans-
mitted to a CPU after an information-lossless dimension reduction, as depicted
in Fig. 3.8.

F ...

...

CPU

Inf.-lossless 
dim. reduction

Figure 3.8: Quantization in centralized architecture (left) v.s. quantization after
dimension reduction (right).

3.5 Thesis Contributions

The contributions of this thesis in the topics described throughout this chapter
are summarized next.

3.5.1 Paper I

In this paper, we define parallel decentralized schemes for achieving interfer-
ence cancellation using a fully-decentralized architecture as the one described
by Fig. 3.2. We consider the topologies from Figs. 3.4 and 3.5, which allow us to
take into account the physical structure of LIS panels. For each of the consid-
ered topologies, we propose algorithms which achieve good interference cancel-
lation performance while incurring lower delay than the Daisy chain approaches
from [49], [54]. These algorithms employ novel message passing schemes for ef-
fectively sharing the necessary information between the decentralized modules
without increasing the interconnection bandwidths as compared to the Daisy
chain approaches.

3.5.2 Paper II

This paper presents the first results on architectures with arbitrary level of
decentralization. A general framework like the one from Fig. 3.6 is studied,
leading to the definition of the WAX decomposition, which delimits the equal-
ization that can be applied in such framework. We show how to perform
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the WAX decomposition, and find the conditions to be able to perform such
decomposition to any randomly chosen channel H using a randomly chosen
(although still fixed) matrix A as combining module. This leads to the charac-
terization of the information-lossless trade-off between level of decentralization
and decentralized processing complexity for randomly chosen A. The paper
also includes some validity conditions on the combining module A, as well as
simulations showing that this module can be potentially implemented using
sparse structures of 1s and 0s.

3.5.3 Paper III

This paper continues the work on architectures with arbitrary level of decen-
tralization by considering a cell-free massive MIMO scenario where the channel
matrix cannot be modeled as a randomly chosen matrix. The general frame-
work from Fig. 3.6 is readapted to consider physically distant APs with an
arbitrary number of antennas, leading to cell-free massive MIMO channels like
(2.18). The conclusion is that having zero blocks at the channel matrix can
have a negative impact on the achievable information-lossless trade-off between
level of decentralization and decentralized processing complexity.

3.5.4 Paper IV

This paper studies the trade-off between achievable user rate and interconnec-
tion bandwidth to a CPU when quantization is considered. We employ the
framework from Fig. 3.8 and characterize the achievable user rates for fixed
quantization bits when applying different information-lossless dimension re-
ductions. The conclusion is that, even in the presence of coarse quantization,
information-lossless transformations can effectively reduce the interconnection
bandwidth to a CPU for given user rates. However, there seems to be a slight
performance loss when using specific dimension reductions under coarse quan-
tization, which should be further characterized.

3.5.5 Paper VI

This paper extends the work on architectures with arbitrary level of decentral-
ization by putting the focus on the design of practical combining modules. We
present a number of constructions for A consisting of sparse structures of 1s
and 0s, and prove their validity for WAX decomposition. Some of these struc-
tures have marginal loss in the information-lossless trade-off from Paper II,
which we also prove to be fundamental since no A can perform beyond it. Fur-
thermore, we present decentralized schemes making use of the structure of A
to obtain the processing matrix W to be applied at the decentralized modules
for information-lossless processing.





Chapter 4

Reconfigurable Surfaces

I didn’t start my work on RS until the last year of my PhD. I was presenting
some WAX results at ICC’22, when I listened to a talk from Merouane Debbah
where he commented on the open problem of orthogonalizing the channel with
RIS. Given the matrix theory skills I acquired during my work on WAX, I
felt pretty confident I could get some interesting solutions for this problem,
so I became obsessed with it and started writing some initial attempts in my
tablet during the conference coffee breaks. I was also attending ICASSP’22
immediately afterwards, where I got some ideas from Robert W. Heath on
information theoretical formulations for RIS frameworks. So when I got back
home, I had two interesting lines of work which ended up in the two included
conference publications on RS.

4.1 Reconfigurable Surfaces for Adjusting the
MU-MIMMO Channel

RSs comprise a family of technologies that allow for adjustment of the propaga-
tion environment by offering a tunable reflection. They are thus complementary
to the communication link between two ends and their main goal is to improve
the properties of the resulting link. In this thesis we focus on the utilization of
RS as a complementary technology for the UL MU-MIMO framework presented
in Chapter 2. In this context, we can still assume the input-output relation
defined by (1), which considers a single narrowband subcarrier. The main ef-
fect of including an RS is then manifested in the resulting channel matrix H,
which can now be described by

H = H0 +H1ΘH2, (4.1)

41
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where, assuming the RS has a total of N reconfigurable elements, we have that:

• H0 is the M × K direct channel matrix between the UEs and the BS
antennas.

• H1 is the M × N channel matrix between the RS elements and the BS
antennas.

• H2 is the N ×K channel matrix between the UEs and the RS elements.

• Θ is the N×N reflection matrix associated to the controllable interaction
of the RS elements with the incoming waves.

Fig. 4.1 illustrates the scenario under consideration. The main challenge in
this framework is to find useful ways to exploit the controllability of the channel
when using the RS. This translates into finding the RS configuration such that
the resulting reflection matrix Θ leads to a channel matrix H attaining gains
in some metric—e.g., received power, sum rate, energy efficiency.
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…
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⋱
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Figure 4.1: UL MU-MIMO scenario employing a square
√
N ×

√
N RS.

The way in which the RS is implemented has major impact on the restric-
tions for the reflection matrix Θ that should be considered. One of the key
requirements for RS is to offer a cost- and energy-efficient solution. Thus, a
compromise should be found between the capabilities of these surfaces, and
their energy consumption together with their implementation costs. The main
RS technology that has been considered in the literature is RIS, which cor-
responds to an RS whose elements have only phase-shifting capabilities and
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which have no interaction with one another. This leads to the common RIS
model for the reflection matrix given by

ΘRIS = diag
(
exp(ȷθ1), . . . , exp(ȷθN )

)
, (4.2)

where θn ∈ [0, 2π) corresponds to the phase-shift applied at the nth RIS ele-
ment. This simple model is considered in many of the results presented in the
following section for demonstrating the potential of RIS technology.

A Note on Practical Implementations

Although in the general RIS model, the phase shifts that can be applied have
no restrictions whatsoever, in real systems, the RIS elements would be con-
trolled through digital signals. Thus, the resolution of the DACs will limit
the set of phase-shifts that can be applied in practice. Furthermore, the lower
the resolution of these DACs the lower their cost and energy consumption,
so initial RIS prototypes typically employ low resolution DACs, meaning that
each θn may only be selected from a small finite set of phase-shift values. For
example, in [78], the authors implement a RIS with 1 bit configuration—i.e.,
each reflecting element can only select 2 phase-shift values—while in [79] they
use 2 bit configuration—i.e., each reflecting element can select among 4 phase-
shift values. However, for a large number N of RIS elements this may still
allow a huge number of possible reflection matrices—e.g., 2N with N = 1100
in [78], or 4N with N = 256 in [79]. Thus, a great part of the benefits from
RIS technology may still be exploited through these practical implementations,
while the cost and energy-consumption may be kept low. For example, [78] can
achieve beamforming gains of 27 dB with an impressively low power consump-
tion of 1 W, while [79] achieves 21.7 dB gain with a considerably higher power
consumption of 153 W.

Another thing to keep in mind is that, since practical implementations rely
on devices like varactor diodes—which offer capacitance configurability—the
reflection coefficients may also have spurious amplitude variability. Further-
more, these technologies typically have wide-band operation—i.e., with further
spurious frequency variability—so a single-subcarrier analysis for these systems
may not be fully accurate. For example, considering frequency selective chan-
nels, optimal configuration of the RIS at one frequency sub-band may lead to
far-from-optimal performance at other sub-bands. Nevertheless, RS technology
is still in an initial research stage, and we believe that a thorough analysis of the
implementation trade-offs for these surfaces should still be addressed. Thus, we
will focus our analysis in simplified narowband models like the one described
in Fig. 4.1, and where a RIS reflection matrix may be described through (4.2).
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4.2 Reconfigurable Intelligent Surface

The recent years have seen a colossal increase in the number of research pub-
lications dealing with RIS technology. This trend is still ongoing, with most
conferences in the field of communications reserving even special tracks for this
technology. Thus, it becomes especially challenging to summarize these results
in a thesis section, which is getting outdated during the time it is being written.
In this section, we will try to summarize a small part of the RIS results from
literature which may be helpful for understanding the motivation of some of
the research contributions included in this thesis.

4.2.1 Power Scaling Laws

One of the most clear advantages of RIS is that it allows concentrating the re-
flected power towards the desired directions. For example, in the ULMU-MIMO
scenario, a RIS could be used to reflect the power of one UE towards the BS.
This translates into a beamforming gain that allows for an increase in the re-
ceived power (and the SNR) at the BS—or rather a reduction in the power
which is lost in other directions.

In order to analyze the achievable beamforming gains when using RIS, let
us focus on a SISO scenario where we have a single UE transmitting to a single-
antenna BS—i.e., we can take the UL MU-MIMO scenario with M = 1, K = 1.
We further assume that the direct channel is non-existent—e.g., it is blocked
by an obstacle, leading to h0 = 0. We can then express the received baseband
narrowband signal as

y = hT
1 ΘRISh2s+ n

=

N∑
n=1

h1nh2n exp(ȷθn)s+ n,
(4.3)

where h1 = [h11 · · · h1N ]T h2 = [h21 · · · h2N ]T are the RIS-BS and UE-
RIS channel vectors, respectively, s is the symbol transmitted by the UE with
E{|s|2} = Es, and n ∼ CN (0, N0) is AWGN. If we want to maximize the
received power, and thus the SNR,1 we should select the RIS phase-shift val-
ues such that the sum in (4.3) generates a constructive interference—i.e., all
the elements are summed in-phase leading to a coherent combination. Since
h1n and h2n may be arbitrary scalar complex numbers, we may express their
product as

h1nh2n = |h1n||h2n| exp(ȷϕn), (4.4)

1Note that, since the RIS is assumed to have no active amplification, the noise that may
be originated at the RIS would arrive at the BS with negligible power.
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where ϕn would correspond to the sum of the phases of h1n and h2n. Assuming
that the RIS has access to the phase values ϕn of the cascaded channel, con-
structive interference can then be generated by selecting θn = φ − ϕn, where
φ would be the output phase. Let us disregard, without loss of generality, the
output phase by assuming φ = 0. The resulting received SNR is then given by

ρ =
(
∑N

n=1 |h1n||h2n|)2Es

N0
. (4.5)

From (4.5), we can identify the beamforming gain achieved by the RIS with

the term (
∑N

n=1 |h1n||h2n|)2. This term corresponds to the square of a sum of
N positive contributions—associated to the |h1n||h2n| product terms—which,
assuming these contributions are approximately independent of N , leads to the
famous N2 power scaling achieved with RIS. This scaling can be easily derived
in closed form if we consider simple statistical models for the channel—e.g., IID
Rayleigh fading as in [37]—and even if we consider LoS channels in the far-
field—as shown by [59]. However, as we increase the size of the RIS, the product
terms |h1n||h2n| will eventually decrease since either the far-field assumption,
and/or the isotropic scattering assumption, would start to lose validity.2 This
can be easily understood by the law of conservation of energy, since the N2

power scaling in principle allows the power to go to infinity, but in reality we
cannot receive more power than what was transmitted. For example, if we
would cover all the walls, ceiling, and floor of a room with RIS elements spaced
according to Nyquist sampling theory for electromagnetic fields—which leads
to λ/2 spacing, as suggested by [19] for the LoS scenario, or [21] for the rich
scattering scenario—we would be able to focus all the power transmitted from
a UE to the 3D point where the BS antenna lies—i.e., reaching the limit of
these beamforming gains. Thus, in this hypothetical scenario, adding more
RIS elements would not increase the received power any further. A thorough
analysis of these scaling laws in LoS scenarios can be found in [59], which offers
a practical comparison between different methods to achieve these beamforming
gains.

4.2.2 Improved Multiplexing Performance

As we have mentioned earlier, beamforming gains can only achieve a logarith-
mic increase in capacity, since they only give a polynomial SNR increase. On
the other hand, MU-MIMO has already been successful at exploiting the spa-
tial dimensions to multiplex UEs under rich multipath propagation, leading
to linear gains in capacity associated to the multiplexing gain. However, in

2We may further note that the terms |h1n||h2n| are subject to a squared path-loss, which,
in general, leads to an overall path-loss much greater than having a single path with the same
total length.
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MU-MIMO scenarios with scarce multipath propagation—which may become
more common as we go towards higher frequency bands [16]–[18]—the number
of spatial modes may be insufficient for multiplexing UEs located close to each
other [80]—i.e., the channel matrix H may be rank deficient. These issues
become even more concerning in point-to-point MIMO scenarios, where the Tx
and Rx antennas are usually co-located. In these cases, RIS may be a helpful
tool, since it may offer some controllable multipath components which could
allow for an increase in the number of spatial modes of the resulting H.

Although a major part of the research on RIS focuses on exploiting its
beamforming gains, we can also find in the literature a reasonable number of
papers focusing on the use of RIS for improved multiplexing performance. For
example, in [63] a RIS-based solution is proposed to turn a far-field LoS single-
user MIMO channel—i.e., where the channel matrix is of rank 1—into a MIMO
channel with two effective spatial modes—i.e., where the channel matrix is of
rank 2 with a reasonable condition number. In this line of work, we can also
find papers like [81] or [82], which also consider far-field LoS MIMO scenarios,
but with the presence of several RISs whose configuration is optimized accord-
ing to some rate-maximization problem which leads to increased multiplexing
performance. Some important weaknesses of these methods are that they are
hugely dependent on the considered scenario—e.g., pure LoS, fixed positions
of RIS, Tx, and Rx—and that they rely on full-CSI knowledge—i.e., including
the channels to and from the RIS elements—which is still a major challenge in
RIS scenarios [37].

As a general comment, if we optimize the RIS configuration according to
some capacity based metric—e.g., user sum-rate—the solution may attain a
desirable compromise between beamforming and multiplexing performance, so
works like [60], [62] may also lead to multiplexing improvements if they were
applied over ill-conditioned channels at high-SNR regimes. However, much
of these results also face the weaknesses of impractical CSI knowledge and
scenario-specific assumptions.

4.2.3 RIS as Passive Transmitter

Apart from considering RIS as a passive reflector to improve the propagation
channel between a Tx and an Rx, we can also consider the use of RIS as a
cost- and energy-efficient passive transmitter. The idea is that incoming waves
can be modulated through the controllable reflection at the RIS, which may
embed its own data in the reflected waves. This corresponds to a fundamentally
different use case than what was considered in the previous sections, since now



Contents 47

the RIS would act as a pseudo-BS technology.3 Furthermore, such use case
for RIS can be included within the general topic of symbiotic radio [83], which
considers the use of general backscatter devices—such as RIS—to passively
modulate information on the scattered waves.

There is a fair amount of publications dealing with how to configure RIS to
embed information into the reflected waves. In [84], index modulation is defined
as a method to embed information into both unmodulated and modulated car-
rier signals reflected at the RIS. We can also find practical implementations of
RIS modulation such as [85], which employs a 256-element RIS—implemented
through varactor diodes connected to DACs—to perform 8-PSK modulation
on a pure RF tone transmitted towards the RIS. The survey from [37] includes
further examples of these techniques.

There is also a substantial amount of work dealing with how to simultane-
ously employ RIS for improving the propagation channel between a Tx and an
Rx, while embedding its own information. For example, [86] presents a solu-
tion for configuring RIS to achieve beamforming gains in a communication link
between a multi-antenna BS and a UE, while sending information from the RIS
to the BS by turning on/off some of its reconfigurable elements—which can be
done by, e.g., pointing their reflection away from the BS. However, turning off
elements would correspond to lowering the number of RIS elements, thus such
solution may incur a residual loss in beamforming performance. In [87], the
authors study bounds on the capacity when employing RIS for simultaneous
beamforming and information transmission. In this case, the RIS information
is embedded by selecting from a predefined constellation of reflection matrices
which should be optimized for beamforming performance. We can also find a
number of papers dealing with similar problems—e.g., [88]–[90]—for a survey
on these solutions the reader may refer to [91]. Many of these solutions still
face important challenges since they are generally tailored to single-UE scenar-
ios, the RIS-information embedding usually comes at the cost of beamforming
performance, and they usually rely on impractical CSI knowledge. Part of the
scope of this thesis is to study RS solutions for simultaneously embedding in-
formation while improving the multiplexing performance in general MU-MIMO
frameworks, which, to the best of our knowledge, has not yet been considered
in the available literature.

3The reader may argue that such use case of RIS could be included within our definition
of LIS since it would be employed as a BS. However, this application of RIS would still
require of external wave generators, while we envision LIS as a self-contained BS technology.
An RIS together with a wave generator could however be seen as an implementation of LIS.
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4.3 Channel Orthogonalization with RS

As we already discussed in Chapter 2, orthogonal channels are extremely de-
sirable channels in MU-MIMO frameworks since they allow for perfect multi-
plexing of UEs at reduced complexity. Thus, we believe that the problem of
employing RS technology for orthogonalizing MU-MIMO channels is of funda-
mental importance. If we restrict ourselves to the RIS model from (4.2) we can
immediately note that achieving a perfectly orthogonal channel—as described
by (2.20)—seems out of reach, except in very specific scenarios—e.g., under cer-
tain favorable combinations of H0, H1 and H2, or in asymptotic regimes with
certain statistical channel models. However, we can formulate optimization
problems to find the RIS configuration maximizing some metric for orthogo-
nality. For example, we could use the condition number κ(·) of the resulting
channel matrix as a metric for orthogonality, which corresponds to the ratio
between its maximum and minimum singular values κ(·) = σmax(·)/σmin(·)—
i.e., κ(·) ≥ 1 with equality only for orthogonal matrices as the one from (2.20).
We would then have to solve

min
θ1,...,θN

κ(H0 +H1ΘRISH2). (4.6)

Finding a closed-form solution for such problem seems highly non-trivial, so
numerical optimization tools may be required. Moreover, performing a maxi-
mization like (4.6) may lead to impractical solutions—e.g., where the resulting
SNR is extremely low—so it may further be necessary to include extra con-
straints to achieve practical solutions. On the other hand, as in many of the
RIS optimization problems from the literature, we may require full knowledge
of all the involved channels, which is an extremely impractical constraint [37].

Given the limited potential of the common RIS framework for achieving
perfectly orthogonal channels, we will also consider extended RS models for
this task. Specifically, we will consider an extended RS technology which can
perform controlled amplitude-shifting apart from the pure phase-shifting. We
will employ the term ARIS for such technology, whose reflection matrix can be
modeled as

ΘARIS = diag (α1, . . . , αN ) , αi ∈ C ∀i. (4.7)

The reader may argue that considering such an RS system would require to add
amplification to a RIS, which has already been proposed in the literature—e.g.,
[92], [93]. However, we will consider power restrictions so that amplification is
not strictly required, since this would lead to the appearance of extra correlated
noise from the amplified reflection.

We will also consider another extended RS technology which may include
interaction between different reconfigurable elements. We will use the term
FRIS for such RS, whose reflection matrix may now be arbitrarily selected,
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leading to
ΘFRIS ∈ CN×N . (4.8)

Again, we will consider specific power restrictions on the FRIS reflection ma-
trices such that amplification is not strictly needed.

An important reason for considering these two extended RS technologies—
and not only one of them—is to take some initial steps towards a characteriza-
tion of the trade-offs between RS capabilities and, e.g., performance, efficiency,
required size, etc. However, the reader may also take our results as upper lim-
its for the potential of RIS-aided systems. In this thesis, we will not have a
deep discussion about the implementation issues of these RS technologies. In
principle, ARIS could be implemented through adjustable impedance networks
in a similar fashion as RIS, since these networks also have a predictable effect
on the amplitude, which may be exploited. The main issue would then be the
wideband reconfigurability of such systems, which may lead to a loss in chan-
nel orthogonality when considering subcarriers that are beyond the coherence
banbdwidth from the subcarrier at which the ARIS was configured. Thus, for
perfect exploitation of its benefits, we may require to perform per-subcarrier (or
at least per-coherence-band) processing, which means that fully-digital archi-
tectures may be of interest, thus increasing cost and energy consumption—note
that this problem also arises in the common RIS framework assuming (4.2).
As of FRIS, we can also think of analog combiners using vector modulators
as in [94], but we would face a similar problem when per-subcarrier (or per-
coherence-band) processing is required. Instead, fully-digital implementations
may be considered by, e.g., identifying FRIS with inactive APs having a low-
power operation mode. These are just preliminary ideas, but our main focus
will be on showing the possibilities of such models, which, as we will see, al-
low for perfect channel orthogonalization while relying on reasonably-efficient
channel estimation methods.

4.4 Thesis Contributions

4.4.1 Paper V

In this paper, we study the use of RS technology to perform channel orthogo-
nalization in MU-MIMO, thus taking an important step in characterizing the
multiplexing performance of such surfaces. We introduce the concepts of ARIS
and FRIS and derive the configuration that should be applied at these RSs for
achieving perfectly orthogonal channels. We also present pragmatic methods
for channel estimation that enable effective application of this configuration to
ARIS and FRIS. Furthermore, we characterize the minimum power that these
surfaces should apply for achieving channel orthogonalization. The results show
that, in most practical scenarios, these surfaces can potentially achieve channel
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orthogonalization without the need of amplification, thus offering an energy-
efficient solution to effectively improve multiplexing performance in general
MU-MIMO scenarios.

4.4.2 Paper VII

This paper builds upon the results from Paper V by considering ARIS and
FRIS for orthogonalizing MU-MIMO channels. However, in this work we in-
clude the extra consideration that the RS can embed its own information in the
orthogonal channels that are generated. We characterize the achievable bounds
of such a communication framework, and study the high-SNR regime to obtain
the resulting multiplexing performance. The results show that, by including
this simultaneous RS-BS communication link, we can potentially exploit with-
out extra resources the remaining spatial degrees of freedom associated to the
excess of BS antennas (with respect to UEs) in general MU-MIMO frameworks.



Chapter 5

Conclusions and Future
Work

5.1 Conclusions

In this thesis, we have studied the trade-offs and opportunities that arise when
scaling up multi-antenna systems. The main conclusions of this thesis can be
summarized as follows:

• We have presented novel algorithms for decentralized processing exploit-
ing the structure of LIS panels.

• We have defined a fundamental trade-off between the level of decentral-
ization of a system and the complexity of the decentralized processing in
large multi-antenna systems.

• We have defined and studied a matrix decomposition which is especially
useful in the analysis of multi-antenna systems with an arbitrary level of
decentralization.

• We have generalized the previously mentioned trade-off for practical sce-
narios, e.g., considering cell-free massive MIMO scenarios, or considering
the restriction of having practical combining modules.

• We have showed that, even when considering coarse quantization, reduc-
ing the dimension of the vectors to be transmitted to a CPU translates to
a reduction of the data that has to be sent to said CPU without sacrificing
data rates.

51
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• We have presented two novel proposals for RS technologies, and proved
that these can achieve perfectly orthogonal propagation channels for ef-
fective multiplexing of UEs in the spatial domain without the need of
amplification.

• We have presented practical channel estimation for the defined RS tech-
nologies so that the BS can arbitrarily select the desired propagation
channel and configure the RS accordingly.

• We have showed how the proposed RS technologies can be used to ex-
ploit additional multiplexing gains, as compared to common large multi-
antenna systems, by embedding their own information in the adjusted
propagation channel.

Altogether, the findings of this thesis show that, if hardware development
goes along, we may be able to implement a BS with an arbitrary level of
decentralization such that the decentralized processing may be applied through
reduced interaction with a CPU. Moreover, with the help of RS technology,
this BS may effectively multiplex a set of UEs through an orthogonal channel—
i.e., leading to fair UE rate allocation at reduced complexity—and the RS may
further communicate with the BS without the need of extra resources.

5.2 Future Work

The results presented in this thesis have opened a number research directions
where we can still find a large number of interesting problems and unanswered
questions. We may classify the main research directions associated to this the-
sis into: WAX decomposition results and applications, decentralized schemes,
quantization effects in decentralized processing, RS technology—as well as com-
binations of the previous. We will next present a list with some ideas that may
be considered for extending our work in these directions.

• An extension of Paper III may be considered by studying the degra-
dation of the WAX decomposition trade-off arising from general rank
deficiencies in the channel matrix, instead of just blocks of zeros.

• The WAX decomposition trade-offs have been studied independently in
the cases of sparse combining module and sparse channel matrix. A char-
acterization of the WAX decomposition trade-offs where sparse combining
modules are simultaneously considered with sparse channel matrices still
remains an open question.

• A complete characterization of the information-loss in the regime where
the WAX decomposition trade-off is not fulfilled also constitutes another
interesting research problem.



Contents 53

• The current results on architectures with arbitrary level of decentraliza-
tion only include decentralized schemes for computing the decentralized
filters achieving information-lossless processing. However, it may be in-
teresting to explore specific interference cancellation schemes in the WAX
decomposition framework, e.g., by defining what processing should be fur-
ther applied at the CPU and how to achieve such processing with reduced
interconnection bandwidth.

• It may also be interesting to extend the results from Paper I to other
topologies. For example, if we assume we have distributed APs instead
of antennas in a LIS panel, it may be interesting to consider hexagonal
arrangements.

• The work on quantization effects in decentralized processing from Paper
IV considers a naive model for information-lossless transformations that
lead to closed-form analitical results. We may extend this model by
considering an extra unitary transformation on the uncorrelated post-
processed vector, which may be optimized for maximum achievable rates
using similar tools as those employed in Paper V.

• We may also extend the work on quantization effects in decentralized
processing by combining it with the WAX decomposition results to char-
acterize the trade-off between level of decentralization and decentralized
processing complexity when quantization comes into play.

• Regarding our work on RS, future work may aim at providing implemen-
tation proposals for ARIS and FRIS. This may also include extending
our results to characterize the losses in realistic scenarios—e.g., in the
presence of hardware impairments or imperfect CSI.

• It may also be interesting to try to make a proper characterization of the
trade-off between RS capabilities/overall performance and energy con-
sumption/implementation cost.

• Another interesting direction would be to combine the work on RS with
the work on WAX decomposition. For example, having an orthogonal
channel may simplify the computation of the processing performed at
the decentralized modules, or at the CPU.

• In Paper VII we perform an information-theoretic characterization of
the achievable rates when the studied RS technologies are also embedding
information on the channel. However, it may be interesting to study
specific transmission schemes in this framework that can potentially be
implemented in real systems.
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Decentralized Equalizer Construction

for Large Intelligent Surfaces

In this paper we present fully decentralized methods for calculating

an approximate ZF equalizer in a LIS. A LIS is intended for wireless

communication and facilitates unprecedented MU-MIMO performance,

far superior to that of Massive MIMO. Antenna modules in the grid

connect to their neighbors to exchange messages of information needed

for interference cancellation in a fully-decentralized fashion, making the

system scalable. By a careful design of how the messages are routed, we

show that the proposed method is able to cancel inter-user interference

sufficiently well without any centralized coordination, opening the door

for the realization of this type of structures.
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1 Introduction

We envision a future where man-made surfaces are electromagnetically active
enabling wireless communication, wireless charging and remote sensing [1]–[4].
These surfaces will be part of our daily lives, interacting with humans and
making Internet of Things a reality by allowing the simultaneous connection of
an unprecedented number of devices [5].

The concept of LIS has emerged recently as a natural evolution of Massive
MIMO [6], where the BS consists of an inmense continuous radiating surface,
instead of the discrete antenna array concept which has been dominant in
MIMO communication since its conception.

As with antenna arrays, it is expected that each part of the surface is able
to receive and transmit electromagnetic waves with a certain control, so the
radiation can be focused tightly in 3D space with ultra-high resolution, opening
a new world of possibilities for power-efficient communication, sensing, and
positioning.

Even though LIS research is gaining momentum, it is believed that a con-
tinuous intelligent radiating surface is a theoretical model far from being imple-
mented in the near future due to limitations of current technology. In reality,
this would be implemented through a huge number of radiating elements, or
antennas, distributed throughout a large surface. Nevertheless, as pointed out
in [1], there is no practical difference between a continuous LIS and a grid of
antennas, or discrete LIS, as the surface area grows, and provided that the
antenna spacing is sufficiently dense.

Assuming that such large number of antennas are connected to a CPU, the
equalizer formulation gets unhandleable due to the large computational and
inter-connection requirements. To make this problem tractable, the surface is
split into LIS-units, where each contains a lower, but still significant, number of
antennas. We assume that any surface can be implemented by the connection of
such units, making the system fully scalable. The optimal number of antennas
in a LIS-unit depends on the number of users to be served, but this is outside
the scope of this paper. We focus our research on one M-antenna LIS-unit
serving K users.

Even though we simplify the original problem into a tractable one, each
of these LIS-units may contain a very high number of antennas, which still
presents multiple challenges from the control and inter-connection points of
view. It is not only a challenge to connect all antennas to a CPU but also the
high amount of data which is required to be collected by this node for baseband
processing. At this point, there is a need for fully-decentralized architectures
and algorithms which allow for high performance communications with low, or
zero, central control.

One approach to alleviate this bottleneck is to obtain CSI locally and apply
a MF at each antenna, which fits directly into the decentralized architecture
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vision because exchange of CSI is not needed. However, one main application of
these structures is spatial multiplexing of a high number of active users by using
the same frequency-time resources (MU-MIMO), so some degree of interference-
cancellation capabilities is a desirable requirement of any proposed method in
order to exploit the promising capacity of the LIS concept. Unfortunately,
MF does not always fulfill this requirement, thus, we look for decentralized
approximate ZF schemes.

Initial work in this direction can be found in [7], followed by [8]–[10], among
others. There are recent activities in this area in [11], [12], where antennas are
connected by direct links forming a daisy chain. It has been shown that such
a structure is able to achieve approximate ZF performance under IID chan-
nel conditions (i.e., zero mean circularly symmetric complex gaussian channel
matrix entries) and perfect CSI with very low inter-connection requirements
and fully decentralized detection/precoding processing. This approach, which
is perfectly valid for Massive MIMO arrays, may not be enough for LIS-units,
where the number of antennas can be several orders of magnitude more, with
a subsequent increment in the processing latency. Reduction of such latency is
one of the scopes of this research.

We propose two topologies, a 1D topology and a 2D topology, for imple-
menting decentralized schemes suitable for a discrete LIS considering a fully-
decentralized architecture. The main goal of this paper is to propose methods to
construct an approximate-ZF equalizer for these topologies by message-passing
between adjacent antenna nodes.

The outline of this paper is as follows. A system model is presented in
Section 2. In Section 3 the 1D case is first introduced, where all antennas
are connected forming a bidirectional chain as a baseline for our study, to then
extend to the 2D case where simultaneous connection in vertical and horizontal
directions are allowed. Results are presented in Section 4 and our conclusions
are summarized in Section 5.

2 System Model

We consider the transmission from K single antenna users to a discrete LIS
containing M antennas. The M × 1 received vector at the LIS is

y = Hx+ n, (1)

where x is the K × 1 user data vector, H = [h1 h2 . . . hM ]
T

is the M × K
channel matrix, and n is the noise vector with sample variance N0. We assume
perfect CSI knowledge at the receiver.
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2.1 Linear Processing and Zero-Forcing

We limit our study to linear equalization so that the estimated user data vector
is computed as

x̂ = Wy, (2)

where W = [w1 w2 . . . wM ] is a K × M matrix. If we focus on cancelling
interference, which is close to optimum for large M , favorable propagation, and
high SNR, W has to be chosen so that the equivalent channel is

WH = D, (3)

where D is a diagonal matrix. A typical approach is to take D as the K ×K
identity matrix IK , achieved by choosing W to be the ZF equalization matrix

W ZF = (HHH)−1HH. (4)

However, the straightforward implementation of (4) essentially implies know-
ing the complete channel matrix at one node, which is not convenient for a LIS
since it may extend over a huge area, and the interconnection bandwidth re-
quired for the transmission of the CSI would be extremely high due to the
immense amount of antennas. Instead, it would be desirable to consider decen-
tralized approaches in which the antennas of the LIS communicate with each
other and independently compute their associated entries of the matrix W ,
which should be then combined by having a large sum module inputting the
contributions from all antennas. In this paper we research how to establish an
approximation of the matrix W ZF in a decentralized way.

2.2 Fully-Decentralized Processing

Since we want to establish a decentralized approach to find an approximate
W ZF for a LIS system, we consider the use of iterative algorithms as in [12].
We assume that each antenna is associated to a baseband processing unit that
can perform simple matrix calculations. The antennas of the LIS work inde-
pendently and in parallel, but they are connected to each other so that they
share some limited amount of information. We consider two possible topologies
for the interconnection between antennas.

1D Topology

In this case, all antennas are connected along a line. Therefore, each of the
antennas of the LIS has a direct connection with two of its neighbors (except
the first and last antennas, which only have one neighbor).
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2D Topology

In this case, all antennas are connected in a grid which is related to their
physical location in the LIS. Thus, each of the antennas has a direct connection
with their four nearest neighbors, associated to the vertical and horizontal axes
(except the ones in the sides and in the corners of the LIS, which are connected
to two and three neighbors, respectively).

In Fig. 1 we provide an illustration of the layout of the two proposed
topologies. Note that the 1D topology can be seen as a 2D topology in which
some connections are removed. The 1D topology could be suitable for long
linear arrays or for 2D arrays where one of the dimensions is much longer than
the other one.

...

…

…

…

…

...

...

...

...

…

…

…

…

...

Figure 1: 1D (left) and 2D (right) topologies

3 Algorithms for Decentralized Interference Can-
cellation

Considering that all antennas of the LIS are identical, and that they work
independently and in parallel, we can determine the operation of the LIS by
focusing on one of its antennas. Fig. 2 shows a simplified schematic of a single
LIS antenna. The antennas in the 1D topology, or the ones located at sides or
corners, can discard the corresponding connections.

Figure 2: LIS antenna schematic.
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Antenna m is in charge of computing its equalization vector wm, corre-
sponding to column m of W . Let us define a discrete time variable associated
to the iteration number n = 0, 1, 2, . . . , Nit. In every iteration, antenna m
computes a new version of wm, wm[n], using its channel vector hm, and the
inputs arriving at the current iteration Z in,ℓ[n], ℓ = 1, . . . , L, where L is the
number of inputs/outputs for antenna m (in the 1D and 2D topologies it is in
general 2 and 4, respectively). Also, the outputs Zout,ℓ[n] are generated, which
are sent to the neighbouring antennas so that they can use them as inputs in
the next iteration. To fully define the operations, we must specify the precise
generation of wm and Zout,ℓ, and we do this next.

We would like to minimize the interference between users so, if we define
the sum of the contributions from the other antennas to the equivalent channel
at iteration n as

Sm[n] =
∑
i̸=m

wi[n]h
T
i , (5)

we can define an optimization problem as in [12]:

minimize
wm[n+1]

∥∥∥IK − Sm[n]−wm[n+ 1]hT
m

∥∥∥
subject to ∥wm[n+ 1]∥ = µ,

(6)

where IK is the desired equivalent channel without interference. The operator
∥ . ∥ denotes Frobenius norm. This problem is solved in closed form by

wopt
m [n+ 1] = µ

(IK − Sm[n])h∗
m

∥(IK − Sm[n])h∗
m∥

. (7)

Note that in this paper the optimization problem (6) is tackled using parallel
iterative computations of the equalization vectors at the different antennas
instead of using a sequential daisy chain structure as in [12].

From this point on, we assume that (7) is used for computing wm[n + 1]
in every iteration unless otherwise specified. However, with the limitations of
the earlier defined topologies, it is not possible to obtain the whole sum Sm

at antenna m. The main reason is that new equalization vectors are being
calculated at every antenna of the LIS in each iteration, and these contribu-
tions reach antenna m with a delay associated to the number of steps from
the antennas where they originated. Therefore, we approximate Sm in every
iteration by an incomplete sum including only terms that were at hand during
the current iteration and with the delays associated to them. We have the
expression

Ŝm[n] =
∑

i ̸=m, di,m≤n

wi[n− di,m]hT
i , (8)
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where di,m is the delay, in iterations, between antenna i and m. As we can see,
in every iteration new terms are added to the sum corresponding to the anten-
nas that were unreachable in the previous iteration. However, wi associated
to these terms is outdated by the delay that they needed to reach the current
antenna (recall that, in every iteration, a new wi is computed at every antenna
of the LIS). It might be the case that the LIS is so huge that the antennas
cannot reach each other in a reasonable number of iterations. Nevertheless, as
we converge to a stable solution, the changes in the vectors wi get smaller over
the iterations. In practice, it is reasonable to believe that it suffices to consider
wihi of a number of antennas which are not too far from the current antenna
for the optimization process to stabilize. This is so since antennas far apart
may be subject to different large scale channel statistics, so they have limited
influence on each other’s equalization construction.

Note that in (8), we have not yet addressed the messages Z in,ℓ and Zout,ℓ;

we merely worked with an auxiliary variable Ŝm[n]. Thus, we need to elabo-
rate on the type of messages Z in,ℓ and Zout,ℓ that would allow us to obtain

Ŝm[n] in all the antennas. In general, we would like to have a message sharing
scheme which allows us to get as close as possible to Sm[n] (i.e., minimize di,m,
maximizing the number of reachable antennas) so that we obtain a result as
close to optimum as possible.

3.1 1D Algorithm

We define the messages, Z in,ℓ and Zout,ℓ, to be K ×K matrices with an accu-

mulated sum of the terms wih
T
i that antenna m has been able to reach. We

can define at antenna m

Ŝm[n] =

L∑
ℓ=1

Z in,ℓ[n]. (9)

At iteration 0, the input messages at a given antenna, m, would be initialized
to 0, i.e.,

Z in,ℓ[0] = 0. (10)

Therefore, the output messages at antenna m after calculating the first equal-
ization vector, which correspond to the input messages for other antennas in
iteration 1, would be

Zout,ℓ[1] = wm[1]hT
m. (11)

If we consider the 1D topology, each antenna would have two inputs and
two outputs (except for the first and last ones). In order to get an expression
of the form (8), where we can see that each node is not considering its own
contribution or repeated contributions of any other node, we cannot send the
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messages freely to all the nodes. We need a way to avoid a contribution from
being sent back to the node where it originated, or a contribution reaching a
certain node more than once. This can be done by restricting the direction of a
message when it leaves a node so that it always travels towards the end nodes.
Therefore, if we are at antenna m at iteration n, and we have an input from
the left, Z in,1, and another from the right, Z in,2, then we should output to the
left the input that we got from the right, and to the right the input that we
got from the left after adding our current contribution, wm[n]hT

m, i.e.,

Zout,1[n+ 1] = Z in,2[n] +wm[n+ 1]hT
m

Zout,2[n+ 1] = Z in,1[n] +wm[n+ 1]hT
m.

(12)

It should be noticed, that Z in,1 and Z in,2 are summed inside antenna m, as
suggested in (9), to obtain an approximation of (5) which allows us to obtain
wm[n] through (7).

With this method, the expression (9), which is now of the form (8), for
1 ≤ n ≤ Nit becomes

Ŝm[n]=
∑

|m−i|≤n
i ̸=m

wi [n− |m− i|]hT
i , (13)

where we can see that after every iteration, two terms associated to new pre-
viously unreached antennas are added to the sum (and the terms already con-
sidered are updated one iteration). This means that the number of reachable
antennas from antenna m scales as O(n).

Algorithm 1 provides a complete algorithmic description of how each an-
tenna would compute its equalization vector at a given iteration considering
our message sharing scheme. This algorithm needs to be run simultaneously
for every antenna in the LIS, and repeated a number of iterations, Nit, for the
equalization vectors to cancel the interference reasonably well.

Algorithm 1 Calculation of the equalization vector at antenna m of a LIS at
a given iteration using 1D topology.

Require: Z in,1, Z in,2, hm

Ensure: Zout,1, Zout,2, wm

1: Ŝm = Z in,1 +Z in,2

2: wm =
µ(IK−Ŝm)hT

m

∥(IK−Ŝm)hT
m∥

3: Zout,1 = Z in,2 +wmh∗
m

4: Zout,2 = Z in,1 +wmh∗
m
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3.2 2D Algorithm

Now we need to adapt the previous algorithm to make it suitable for the 2D
topology. We expect to reduce the stabilization time, in terms of number
of iterations, since the number of connections is greater in this case, so the
information travels faster across the LIS. The 2D topology is more interesting
in a LIS scenario because it takes advantage of the physical structure of a LIS.

For ease of representation, we define M = MxMy, so that the LIS can be
seen as an Mx×My array where Mx and My represent the number of antennas
in the horizontal and vertical axes, respectively. Thus, we re-define notation
for the equalization vectors and the channel vectors as wmx,my and hmx,my ,
respectively, with 1 ≤ mx ≤ Mx and 1 ≤ my ≤ My.

We assume that the messages are initialized as in the 1D topology, thus, (9),
(10), and (11) still apply. The simplest way to proceed would be to apply the 1D
algorithm in the horizontal and vertical directions at the same time, i.e., to send
the Z in,ℓ matrices arriving at the current LIS antenna from each of the inputs
to the opposite output after adding the contribution of the current antenna
in such a way that information moving in horizontal direction do not flow
to vertical direction and vice versa. However, this implies that each antenna
would only receive information from the antennas situated in its horizontal and
vertical axis.

In view of the above-mentioned discussion, we slightly manipulate the algo-
rithm. The two requirements we seek to fulfill are that the number of reachable
antennas after n iterations should scale as O(n2), and the sum of all incoming
messages (9) should be of the form (8) at antenna (mx,my). This translates

to the contributions, wi,j [n]h
T
i,j , flowing from each antenna to the rest of the

antennas, but using these contributions once, and only once, at other antennas.
Algorithm 2 provides an algorithmic description of the proposed approach. As
in the 1D topology, this algorithm applies to a single antenna, and thus it
is performed simultaneously at every antenna of the LIS, and repeated Nit

iterations.
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Algorithm 2 Calculation of the equalization vector at antenna (mx,my) of a
LIS at a given iteration using 2D topology.

Require: Z in,1, Z in,2, Z in,3, Z in,4, hmx,my

Ensure: Zout,1, Zout,2, Zout,3, Zout,4, wmx,my

1: Ŝmx,my = Z in,1 +Z in,2 +Z in,3 +Z in,4

2: wmx,my =
µ(IK−Ŝmx,my )h

∗
mx,my∥∥∥(IK−Ŝmx,my )h
∗
mx,my

∥∥∥
3: Zout,1 = Z in,2 +Z in,3 +Z in,4 +wmx,my

hT
mx,my

4: Zout,2 = Z in,4 +wmx,my
hT
mx,my

5: Zout,3 = Z in,1 +Z in,2 +Z in,4 +wmx,my
hT
mx,my

6: Zout,4 = Z in,2 +wmx,myh
T
mx,my

It can be verified that our algorithm meets both of the previously mentioned
requirements. We explain this with an example illustrating how the wi,jh

T
i,j

terms are shared among the antennas of the LIS when applying the algorithm.
If we consider a 5×5 LIS, during iteration n, w3,3[n]h

T
3,3 is generated at antenna

(3, 3). Then this contribution is spread across the LIS until it is completely
forgotten as described in Fig. 3. The green nodes are the antennas that have
used the contribution in the current iteration and send it to the red nodes. Note
that, even though the contribution w3,3h

T
3,3 is summed to other contributions

from other antennas on the way, the algorithm assures that it can be treated
independently and be seen as one single message.

Considering this message sharing scheme for 1 ≤ n ≤ Nit, the expression
(8) becomes

Ŝmx,my
[n]=

∑
|mx−i|+|my−j|≤n
(i,j)̸=(mx,my)

wi,j [n−(|mx−i|+|my−j|)]hT
i,j . (14)

In this case, after every iteration a total of 4n terms associated to previously
unreached antennas are added to the sum, which means that the number of
reached antennas scales as O(n2).

3.3 2D Algorithm Improvement

From performance tests of the previous 2D algorithm, in terms of interference
cancellation, one can see that the results are not as good as desired. This might
be due to the simultaneous recomputing of wm in all the antennas of the LIS
which makes the delay of the new terms added to Ŝm[n] a bottleneck. So, after
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T

(a) Iteration n (b) Iteration n+ 1

(c) Iteration n+ 2 (d) Iteration n+ 3

(e) Iteration n+ 4 (f) Iteration n+ 5

Figure 3: Example of the transmission of w3,3[n]h
T
3,3 from node (3, 3) to the rest of

a 5× 5 LIS. Note that the term w3,3[n]h
T
3,3 is transmitted in the messages Zin,ℓ and

Zout,ℓ.
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some testing, we developed a new algorithm based on the previous one which
takes into account the previously computed wm when computing the new ones.
This way, the changes in wm from iteration to iteration are smoothened and
the delays in Ŝm[n] are less critical.

The new algorithm is exactly the same as the original 2D algorithm except
for the way in which wm is calculated in every iteration. In this case, we
compute the equalization vector wmx,my [n+ 1] as

wmx,my
[n+ 1]=µ

wopt
mx,my

[n+1]+
∑n

k=n+1−Navg
wmx,my

[k]∥∥∥wopt
mx,my[n+1]+

∑n
k=n+1−Navg

wmx,my
[k]
∥∥∥ , (15)

where wopt
mx,my

[n + 1] is computed by (7). This can be seen as an average

over the current wopt
mx,my

and the Navg previously computed wmx,my
. Note

that in (15) Navg previous versions of wmx,my
are required. These are initially

computed through (7) during the first Navg iterations, and in the successive
iterations (15) is used.

The value of Navg is related to the oldest version of wmx,my
that is consid-

ered. In (14), we can approximate the number of wi,jh
T
i,j terms associated to

reachable antennas at iteration n by n2. This means that, assuming a square

LIS, in iteration
⌈√

M
⌉
all the antennas have been reached, so the maximum

delay between antennas is approximately

max
i,j

(di,j) ≈
⌈√

M
⌉
. (16)

With this in mind, we can choose Navg to be precisely
⌈√

M
⌉
so that, for

n > Navg, the contribution arriving from antenna (mx,my) to the antenna
with the highest delay to (mx,my), will still be sufficiently well related to the
actual wmx,my

computed in (mx,my) through (15) (the changes in wmx,my

between iterations become smaller).

4 Numerical Results

In this section we present simulation results of the different algorithms defined
for decentralized interference cancellation. We compare our algorithms with an
implementation of the daisy chain proposed in [12], which consists of computing
the equalization vectors sequentially at each antenna through (7), where in this
case

Ŝm =

m−1∑
i=1

wih
T
i . (17)
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Note that the iteration count in this case corresponds to the antenna number.
In order to be able to consider a number of iterations greater than M , we
extend the chain by feeding the result from the last antenna back to the first
one. Fig. 4 shows an illustration of this topology.

…

Iteration 1 Iteration 2 Iteration 3 Iteration M

Figure 4: Topology of a daisy chain with feedback loop. The boxes correspond to
antennas.

Since we are only interested in the interference level, and the stabilization
speed, we will plot the results in terms of SIR vs. number of iterations. The
SIR is directly calculated from the resulting equivalent channel (3), where W
corresponds to the resulting equalization matrix after applying the algorithms.

As discussed in [12], the value of µ in (7) has a strong effect on the stability of
the results. In our simulations, we use µ =

√
K/M , which is the value proposed

in [12], except in the original 2D algorithm, where we use µ = 0.85
√
K/M to

obtain a stable solution. Lower values of µ work reasonably well, although the
SIR results can stabilize at lower levels.

Fig. 5 and 6 show the results of the algorithms presented in this paper
for an 8 × 8 and a 12 × 12 LIS serving 8 users. The results are averaged over
1000 realizations of an IID channel. In the different channel realizations the
SIR levels may vary, but the shape of the curves is approximately maintained.
The figures show SIR value at iteration number n, with 1 ≤ n ≤ Nit, and
Nit = 2M . To have a fair comparison, the performance of the daisy chain is
measured at an integer number of iterations of loop, Nfb; however, the total
number of iterations required to obtain the reported SIR level is NfbM .

As can be seen from Fig. 5 and 6, the algorithms proposed always surpass
the performance of a single daisy chain realization even before n reaches M .
However, the original 2D algorithm saturates before reaching the performance
of 2 daisy chain realizations. Both 2D algorithms have a steeper increase of the
SIR during the first iterations than the 1D algorithm due to the O(n2) spread
of the information. The improved 2D algorithm obtains a better performance
than the original one as iterations grow, but as the number antennas grows,
this algorithm ends up saturating at a lower SIR than the 1D algorithm.

5 Conclusions

In this paper, we have presented three algorithms for estimating an equalization
matrix which reduces inter-user interference in a LIS in a decentralized way.
We have defined two topologies, the 1D topology and the 2D topology. The
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Figure 5: SIR vs. number of iterations, averaged over 1000 IID channel realizations,
using the different algorithms for a 8× 8 LIS serving 8 users.
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Figure 6: SIR vs. number of iterations, averaged over 1000 IID channel realizations,
using the different algorithms for a 12× 12 LIS serving 8 users.

2D algorithms have a faster SIR increase during early iterations than the 1D
algorithm. However, in later iterations, they tend to saturate at a lower SIR.
The improved 2D algorithm reduces this effect.
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[11] J. Rodŕıguez Sánchez, F. Rusek, O. Edfors, M. Sarajlić, and L. Liu,
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Trade-offs in Decentralized

Multi-Antenna Architectures: The

WAX Decomposition

Current research on multi-antenna architectures is trending towards

increasing the amount of antennas in the BS so as to increase the spectral

efficiency. As a result, the interconnection bandwidth and computational

complexity required to process the data using centralized architectures

is becoming prohibitively high. Decentralized architectures can reduce

these requirements by pre-processing the data before it arrives at a CPU.

However, performing decentralized processing introduces also cost in com-

plexity/interconnection bandwidth at the antenna end which is in general

being ignored. This paper aims at studying the interplay between level

of decentralization and the associated complexity/interconnection band-

width requirement at the antenna end. To do so, we propose a general

framework for centralized/decentralized architectures that can explore

said interplay by adjusting some system parameters, namely the num-

ber of connections to the CPU (level of decentralization), and the num-

ber of multiplications/outputs per antenna (complexity/interconnection

bandwidth). We define a novel matrix decomposition, the WAX decom-

position, that allows information-lossless processing within our proposed

framework, and we use it to obtain the operational limits of the inter-

play under study. We also look into some of the limitations of the WAX

decomposition.
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1 Introduction

Multi-antenna architectures have been widely employed since they were first
introduced in the 1990s and they still remain a popular research topic. The
main reason is the enormous improvements in data rate and reliability coming
from exploiting space-division multiplexing and diversity. Current research and
development on multi-antenna architectures is trending towards scaling up the
number of antennas so as to increase the spatial resolution, thus increasing the
spectral efficiency by serving several users in the same time-frequency resource.
Furthermore, the exploitation of millimeter-wave spectrum in modern commu-
nications [1] also justifies the increase in the number of antennas. The reason
is that the huge path-loss associated to these frequencies when the electrical
size of the antennas is kept constant needs to be overcome by focusing the
transmitted energy more effectively [2]. Massive MIMO [3], [4] and LIS [5] are
some examples of the trend towards increasing the number of antennas, where
massive MIMO considers BSs with hundreds of antennas while LIS extends this
concept even further by considering whole walls of electromagnetically active
material.

Massive MIMO is already a reality and several prototypes have been devel-
oped and tested, such as [6]–[8]. In the prototypes presented in [6], [8], the use
of centralized processing leads to huge data-rates between the antennas and
the CPU, which limits the scalability of the system as the number of antennas
grows. This fact is also noticed in [7], which sacrifices performance by relying
on simple decentralized beam-forming to favor scalability. The scalability issue
is likely to be exacerbated if we consider LIS, where we can think of practical
deployments consisting of walls equipped with an even larger number of anten-
nas than massive MIMO (the continuous surfaces are approximately equivalent
to the discrete surfaces when the sampling is dense enough, as observed in [5],
[9]). Other technologies that are gaining popularity and are likely to face scala-
bility issues include cell-free massive MIMO [10]–[12], or IRS [12]–[14]. We will
base our study in a general multi-antenna architecture so that it can be easily
extended to more specific applications, such as the ones previously mentioned.

There is a current trend towards more decentralized architectures [15]–[23]
so as to reduce the information transmitted to the CPU. The idea is to carry out
pre-processing of the data at the antenna end (or close to it), so that the CPU
does not need to have access to all the information required to decode raw data.
Available literature on decentralized massive MIMO proposes a wide range of
solutions from fully-decentralized architectures [15], [19]–[21], where CSI does
not have to be available at the CPU, to partially decentralized architectures,
where some of the processing tasks are distributed, but either full [16], [23] or
partial CSI [18] is available at the CPU.

In this paper we do not address the problem of decentralized CSI estimation;
we assume that perfect CSI is available at the CPU. We rely on the fact that
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CSI estimation does not limit the overall level of decentralization within our
framework since it needs to be carried out only once per coherence block.
Thus, CSI estimation takes a minor fraction of the coherence time, and the
estimated CSI can be then used for the data phase throughout the rest of the
coherence block without affecting the level of decentralization. However, the
problem of estimating and sharing CSI in an efficient and scalable way within
our framework remains as future work.

In [18] it is argued that an architecture is decentralized enough if it does
not need extra hardware apart from the minimum required during the payload
data phase. It also states that the volume of data transferred during the data
phase has to be independent of the number of antennas at the base station.
However, as happens in [18]–[21], in order to reduce this volume of data (related
to the number of connections to the CPU) and make it independent of the
number of antennas, each antenna has to provide a number of outputs that
scales with the number of users. Note that in a centralized architecture we
would have only one output per antenna corresponding to one input to the
CPU per antenna. We notice the existence of an interesting trade-off between
the number of connections to the CPU and the number of outputs from each
antenna.

The main goal of this paper is to study the interplay between level of decen-
tralization and the corresponding increase in decentralized processing complex-
ity for multi-antenna architectures. We measure the level of decentralization
as the number of connections to a CPU required during the data phase, and we
measure the decentralized processing complexity as the number of multiplica-
tions/outputs per antenna (or antenna panel)1 required to achieve a given level
of decentralization. So as to study this trade-off, we present a general frame-
work for a multi-antenna architecture which allows us to change the level of
decentralization and complexity by adjusting some system parameters. In this
framework, the antennas are grouped into panels of a given number of antennas
(this number can be 1 as in [24]). Distributed processing is applied by applying
a linear transformation to the inputs of each antenna panel, which generates a
given number of outputs (complexity). The outputs are then combined using a
combining module that is connected to the CPU using a fixed number of CPU
inputs (level of decentralization).

To the best of our knowledge, the presented trade-off has not been explored
in the available literature and the results we present are completely new. In [17]
trade-offs between different decentralized architectures, algorithms, and data
precision levels are studied. However, these trade-offs are mainly systematic
while we are interested in fundamental trade-offs where information rates are
maintained with respect to typical centralized systems. Thus, our framework
focuses on complex baseband processing, and we assume that the detection is

1Antenna panel refers to a group of co-located antennas.
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always performed in a CPU.
This paper extends the work presented in [24]. The list of contributions are

summarized next:

• We present a novel general framework for multi-antenna systems that
allows us to consider different levels of decentralization and complexity
by adjusting the system parameters. This general framework accounts
for typical centralized architectures, decentralized architectures such as
the one presented in [18], and hybrid architectures in between those two.
In [24], a similar framework to the one studied in this paper is considered.
However, the architecture presented in the current work is more general
since it adds the possibility of arranging the antennas into panels.

• We define the WAX decomposition, a novel matrix decomposition that
allows us to define and exploit the trade-offs within our general framework
while achieving information-lossless processing. In [24] the WAX decom-
position is already introduced, but in the current work we adapt it to use
it in a more general framework. Furthermore, we present novel results on
the validity and application of said decomposition, e.g., Theorem 2.

• We present the trade-off in terms of number of multiplications/outputs
per antenna panel and number of connections to the CPU for achieving
information-lossless processing within our general framework. This trade-
off is first studied in [24], but considering only the less general version of
the current framework.

• We study through simulations the cost of obtaining simple combining
modules that accept WAX decomposition within our general framework.

• We study complexity limitations for the combining modules within our
general framework that accept WAX decomposition.

• We study the information-loss associated to operating within our frame-
work when WAX decomposition is not available.

• We present a simple non-optimal solution for determining the distributed
processing to be applied whenever WAX decomposition is not available.
A deeper research on more effective solutions remains as future work.

The rest of the paper is organized as follows. Section 2 presents the general
framework under study, as well as the system model and problem formula-
tion. In Section 3 we present the WAX decomposition, which allows the ap-
plication of information-lossless processing within our general framework. In
Section 4 we study the problem of defining a simple, but valid, combining net-
work for our general framework. Section 5 presents some discussion on the
resulting trade-offs, and some examples of the usage of WAX decomposition.



92 PAPER II

Section 6 explores broadly the case where WAX decomposition is not avail-
able and other information-lossy processing has to be applied to maximize the
data-rates within our framework. We conclude the paper in Section 7 with a
summary of the contributions and future work.

Notation: In this paper, lowercase, bold lowercase and bold uppercase let-
ters stand for scalars, column vectors and matrices, respectively. When us-
ing the mutual information operator, I(.; .), bold uppercase in the sub-scripts
refers to random vectors instead of their realizations. The operations (·)T , (·)∗
and (·)H denote transpose, conjugate, and conjugate transpose, respectively.
The operation diag(·) outputs a block diagonal matrix with the input matri-
ces/vectors as the diagonal blocks. The operator vec(·) transforms a matrix
into a vector by concatenating its columns. Ii corresponds to the identity ma-
trix of size i, 1i×j denotes the i× j all-ones matrix, and 0i×j denotes the i× j
all-zeros matrix. In this paper, a randomly chosen matrix corresponds to a
realization of a random matrix whose elements are driven from a continuous
probability distribution function.

2 System Model

Let us consider K single-antenna users transmitting to an M -antenna BS
through a narrow-band channel. The M × 1 received complex vector, y, can
be expressed as

y = Hs+ n, (1)

where H is the channel matrix of dimension M × K, s is the K × 1 vector
of symbols transmitted by the users, and n is a zero-mean complex white
Gaussian noise vector with sample variance N0. The M antennas are divided
into panels of N antennas; M/N = P is thus restricted to integer values. Each
panel, p ∈ {1, . . . , P}, multiplies the received vector, yp = [y(p−1)N+1 . . . ypN ],

by an L × N matrix, WH
p . The aggregated outputs are combined through

a fixed T × LP matrix, AH . The resulting vector is forwarded to a CPU,
which can apply further processing. For our analysis, we will assume that the
CPU can multiply the incoming matrix by a K × T matrix XH to be able to
express the equivalent matrix in the form of already known linear equalizers.
However, our main interest is to maximize the information rate at which the
users transmit to the CPU, so the last step is not required for the analysis since
it will not increase this information rate (recall the data-processing inequality
[25]). Also, we define the previous matrices using conjugate transpose so as to
ease upcoming notation. Fig. 1 shows a block diagram of the general framework
under study.
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Figure 1: General framework considered in this paper.

The post-processed vector can be expressed as

z = XHAHWHy, (2)

where W is an M × LP block diagonal matrix of the form

W = diag (W 1,W 2, . . . ,W P ) . (3)

We assume that the matrices W p, and X can be tuned for every channel
realization, while the matrix A is fixed. We can interpret A as the matrix
associated to a hardware combining network that can be predesigned, but it
cannot be changed once deployed. Table 1 shows a classification of the different
system parameters considered within our framework.

For tractability we assume that the channel matrix, H, is perfectly available
at the BS. Thus, we can obtain W p, and X as a function of said matrix.
However, the consequences of having an error in the estimation of H due to
imperfect CSI would not be enhanced by the framework under study. In fact,
the information-loss associated to having imperfect CSI within our framework
would not differ from the case of having imperfect CSI in a typical centralized
architecture. The reason is that we could still apply an approximation of the
spatially-MF within our framework using the imperfectly estimated channel
matrix, as we will be able to understand from the upcoming analysis.

For a fixedA, we are interested in maximizing the information rate at which
the users can transmit, i.e., we would like to solve the maximization problem

maximize
X,{W p}P

p=1

IZ,S(z; s). (4)

More specifically, we will explore the cases where the maximization results in
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Table 1: System parameters

Given parameters Trade-off parameters
M , K L, T , N , P

Tunable parameters Parameters fixed by design
W , X A

IZ,S(z, s) = IY ,S(y, s). From the data-processing inequality [25] we have

IZ,S(z; s) ≤ IY ,S(A
HWHy; s)

≤ IY ,S(y; s).
(5)

This means that the application of XH at the CPU cannot possibly increase
the information rate and, as we mentioned before, it is just a manipulation to
adapt the dimensions. Furthermore, assuming s ∼ CN (0K×1, PsIK) so that
the mutual information is maximized (and thus coincides with the capacity),
we have [26]

IY ,S(y; s) = log det

(
IM +

Ps

N0
HHH

)
. (6)

Therefore, we can state that, if we are able to achieve

IZ,S(z; s) = IY ,S(y; s), (7)

the information rate is maximized and the equivalent processing is information-
lossless.

One of the main scopes of this paper is to study the conditions, in terms of
constraints on the system parameters, for our framework to be able to perform
information-lossless processing. The following lemma will be helpful.

Lemma 1 Considering the presented framework, the equality

IZ,S(z; s) = log det

(
IM +

Ps

N0
HHH

)
, (8)

is fulfilled if and only if we can find a W and X such that

WAX = H. (9)

Proof Let R(y) be any linear sufficient statistic for s of dimension K (which
means that it is information-lossless [25]). Then, there exists a full-rank K×K

matrix X̃ such that
R(y) = X̃HHy. (10)
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Therefore, we have that XHAHWHy is a sufficient statistic if and only if

XHAHWHy = X̃HHy, (11)

which leads to

X̃
−1

XHAHWH = HH , (12)

but since X̃
−1

can be absorbed by X, we have

XHAHWH = HH , (13)

which proves the lemma by taking the conjugate transpose. □
Lemma 1 gives an important result to understand when the maximization

in (4) achieves information-lossless processing. This lemma will be the basis
in Section 3 for solving the maximization problem (4) whenever information-
lossless processing is available within our framework. Note that (13) would
correspond to applying MF within our framework, which is well known to be an
information-lossless transformation if optimum processing is applied thereafter.

2.1 Notes on the Downlink Scenario

Throughout this paper we focus on the uplink scenario for improved clarity.
However, this work can straightforwardly be extended to a downlink scenario.
We next provide a few details.

Let us assume channel reciprocity, which eases notation and remarks the
equivalence with the uplink scenario.2 This means that, given the uplink equa-
tion (1), the corresponding downlink equation for the vector received by the
users is as follows

yd = HTzd + nd, (14)

where yd is now a K×1 vector with entries associated to the complex baseband
signal seen by each user, zd is the M ×1 precoded vector sent by the antennas,
and nd is the corresponding noise vector. We assume that the same framework
as in Fig. 1 applies for the downlink, but changing the arrows from left to
right. This implies that the linear operators (including the combining module)
are assumed to be able to use inputs as outputs, and vice versa. The precoded
vector would then be defined as

zd = W ∗A∗X∗sd, (15)

where sd is now a K × 1 vector with complex entries associated to the signals
intended for each user. In this case, Lemma 1 does not apply unless we assume

2In case of non-reciprocity, the presented framework would still be valid as long as the
base station has access to the downlink channel matrix.
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that the users can collaborate with each other. However, we can achieve lossless
precoding with respect to standard centralized linear precoding schemes, since
we can still apply typical precoding schemes within our framework such as
MF, ZF or MMSE. Furthermore, with the assumption of channel reciprocity
in place, the W matrices could be kept fixed from the uplink processing (A
is still fixed by design) and X can be adapted to apply the desired precoding
scheme. In the case of non-reciprocity of the channel, both X and W have
to be recomputed for applying the desired precoding based on the downlink
channel.

2.2 Previously Studied Architectures within our Frame-
work

There are several multi-antenna architectures that could be represented within
our framework, which further motivates our study. In this case, what we mean
with ”represent an architecture within our framework” is that there is a com-
bination of design variables within our framework that gives the same process-
ing. The most obvious architecture that fulfills this is a typical centralized
M -antenna architecture, e.g., centralized massive MIMO systems. In this case
all the antennas are directly connected to a CPU, which corresponds to having
one antenna per panel, and all antennas connected directly to the CPU, i.e.,
N = 1, L = 1, W p = 1 (scalar), T = M , A = IM . This architecture is depicted
in Fig. 2 (left).

Another architecture that can be represented within our framework is the
decentralized massive MIMO architecture from [18]. In this case, there is also
one antenna per panel, but antenna m multiplies its input by the K × 1 local
channel vector, hm, and the result is summed over all the antennas so that
the size of the vector transmitted to the CPU coincides with the number of
users, K. Thus, this architecture can be represented within our framework by
setting N = 1, L = K, W p = hp (vector), T = K, A = [IK IK . . . IK ]

T
, which

corresponds to MF if no X is applied at the CPU. This architecture is depicted
in Fig. 2 (right). In [18] it is claimed that, for a system to be decentralized, the
volume of data transmitted to the CPU during the data phase should not scale
withM . However, the proposed solution reduces this scaling toK by increasing
the number of multiplications/outputs per antenna to K, which increases the
decentralized processing complexity. Our framework allows us to freely adjust
these parameters.

Comparing the two architectures from Fig. 2, where in both cases information-
lossless processing can be applied, we immediately identify a trade-off between
the number of connections to the CPU and the number of outputs per antenna
panel as depicted in Fig. 3 (left). Note that, in this case, we have a single
antenna per panel, i.e., N = 1. In our framework, these two quantities, which
are traded-off against each other, correspond to T and L, respectively. We can
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Figure 2: Architecture of centralized massive MIMO (left), and decentralized mas-
sive MIMO from [18] (right).

also see the trade-off in terms of multiplications per antenna as in Fig. 3 (right),
which can lead to a fairer comparison if we consider panels with more than 1
antenna. The main reason is that, for N > 1, the number of outputs can be
maintained [27], but the complexity still increases due to a higher number of
multiplications.

If we look into other decentralized architectures, such as the ones presented
in [17], [19]–[21], [27], we can also represent them within our framework and
identify the trade-off between inputs to the CPU and multiplications/outputs
per panel (in these cases the trade-off may not lead to information-lossless
processing). For example, the architectures from [19]–[21] would all lead to
the decentralized point in the plots from Fig. 3 since they all apply K × 1
filters in each antenna during the data phase and generate K outputs per
panel during the data phase (N = 1 in these architectures). The same is true
in [27] if we consider outputs per panel, although if we look at multiplications
per panel we should scale the number of outputs by the number of antennas per
panel, N > 1. Note that, even though [27] presents two different architectures
with different level of decentralization, within our framework they lead to the
same value of the trade-off; the only difference is that in the fully-decentralized
architecture X would not be applied. In [17], however, we would not be able
to represent the fully-decentralized architecture within our framework since
detection is performed before reaching the CPU, while our framework only
considers complex baseband processing.
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Figure 3: Number of inputs to the CPU (related to T ) v.s. number of outputs
(left)/number of multiplications (right) per antenna (related to L) for the architec-
tures depicted in Fig. 2. Available literature does not address the behavior in between
1 and K outputs per antenna.

3 WAX Decomposition

Given an arbitrary M×K matrix, H, and a fixed LP ×T matrix, A, we define
the WAX decomposition of H, whenever it exists, as

H = WAX. (16)

This decomposition relates directly to Lemma 1, i.e., W has the structure de-
fined in (3) and X is a T×K matrix. Furthermore, the existence of this matrix
decomposition for any channel realization would assure that our framework can
apply information-lossless processing.

The next lemma will allow us to restrict our study to the case where N = L
since this case can span a major part of the general problem through some
manipulation.

Lemma 2 Assume M/L and L/N are integer valued. Consider some fixed

T ×K matrix X, an M ×K matrix H, an M × T matrix Ã, and an LP × T
matrix A = TL,NÃ, with

TL,N = IM
L
⊗
(
1 L

N ×1 ⊗ IL

)
. (17)

Then, the statement
∃W : H = WAX, (18)
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where W is defined as in (3), is true if and only if

∃W̃ : H = W̃ ÃX, (19)

where W̃ = diag(W̃ 1, . . . , W̃M/L), and W̃ p are L × L matrices ∀p, i.e., W̃
has the same structure as (3) for N = L.

Proof The right implication can be immediately seen by choosing W̃ =
WTL,N and noticing that this matrix already has the required structure.

For the left implication it is enough to check that, for any W̃ , there exists

some W that fulfills WTL,N = W̃ , both W and W̃ with their corresponding
structure. In this case, there is no linear transformation that gets W from

W̃ , but we can construct it as follows. Let us take Ŵ = W̃TL,M , with
TL,M = [IL, . . . , IL]

T . We can then select the diagonal blocks of W to be

W p = [ŵT
(p−1)N+1, . . . , ŵ

T
(p−1)N ]T , where ŵm, m = {1, . . . ,M}, are the rows

of Ŵ . Thus, there is a one-to-one mapping between all possible W̃ and W

that fulfills WTL,N = W̃ . □
Lemma 2 also implies that, whenever the assumptions apply, the trade-off

between the number of outputs per panel and the number of inputs to the CPU
required (L and T , respectively) does not depend on the number of antennas
per panel (N). However, the number of multiplications per panel would scale
with N . An important constraint of Lemma 2 is that we need to have L ≥ N ,
which can be easily checked to be a requirement for having information-lossless
processing within our framework unless L = K (leading to the trivial solution
of setting W p as the local MFs).

The rest of this paper assumes N = L, unless otherwise stated, due to the
intrinsic generality of this case. This means that W in (16) is a square M ×M
block diagonal matrix given by (3), with P = M/L, and containing square
L×L blocks. The physical implication of this restriction is that all the panels
in Fig. 1 have the same number of antennas and outputs. However, as seen in
the proof of Lemma 2, we can construct almost any other case from the square
case by applying some transformations, with the only limitation that M/L and
L/N must evaluate to integer values, as well as that A must be constructed
using a specific structure. For simplicity, we will use the same notation as in
the general case (16), but considering the new restriction on the dimensions.

3.1 Solving WAX

Let us assume for now that there exists the WAX decomposition of H, we later
investigate when this is the case. We provide next a step-by-step solution for
practical computation of (16), i.e., for obtaining the matrices W and X in (16)
based on the current channel realization, H, and the fixed combining network,
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A. This step-by-step solution will also be useful to set the ground for our main
result on the applicability of WAX decomposition.

Let us express H = [HT
1 HT

2 . . .HT
P ]

T and A = [AT
1 AT

2 . . .AT
P ]

T , where
Hp and Ap ∀p ∈ {1, . . . , P} are L × K and L × T blocks, respectively. The
following lemma will be useful.

Lemma 3 For all matrices H satisfying rank(Hn) = L there exists a block
diagonal matrix W and a matrix X such that WAX = H if and only if there
exists a block diagonal invertible matrix Ŵ with the same form as W that
fulfills AX − ŴH = 0M×K .

Proof Assume existence of a block diagonal matrix W and a matrix X such
that WAX = H. This is equivalent to

W pApX = Hp, 1 ≤ p ≤ P.

Since, by assumption, rank(Hp) = L, it follows that rank(W p) = L ∀p,
making the matrix W invertible.

The reverse statement is trivial; if an invertible Ŵ exists, then we can set

W = Ŵ
−1

. □
For a randomly chosen H, the condition rank(Hp) = L holds with proba-

bility 1. We can then compute the WAX decomposition by invoking Lemma 3,
which yields the linear system

AX −W−1H = 0M×K . (20)

Using the vectorization operator we get an equivalent linear system of equations

Bu = 0MK×1, (21)

where u corresponds to the (TK +ML)× 1 vector of unknowns,

u =


vec(X)
vec(W 1)

...
vec(W P )

 , (22)

and B is an MK×(TK+ML) block matrix of the form B = [B1 B2] resulting
from the vectorization operation, with

B1 = IK ⊗A, B2 = −(HT ⊗ IM )P. (23)

P is an M2×ML block matrix composed of identity matrices, IL, separated by
rows of zeros so as to disregard the zeros in vec(W ). The solution to (21) can
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be found by setting u to be any vector in the null-space of B, which will always
be non-zero if condition (24) is met (as will be seen shortly). Then, we can
obtain the corresponding W−1 and X from u through inverse vectorization,
and we should check that the resulting W−1 is full rank so that we can obtain
W by taking the matrix inverse. Thus, the complexity of performing the
WAX decomposition using the provided method is equivalent to that of finding
the null-space of an MK × (TK + ML) matrix, and inverting P matrices of
dimension L× L.

We have now set the ground for presenting our main result on the applica-
bility of WAX decomposition, which is established in the following theorem.

Theorem 1 Assuming N = L, which implies that P = M/L must evaluate to
an integer value, fulfilling the inequality

T > max

(
M

K − L

K
,K − 1

)
(24)

assures that, given a fixed randomly chosen A ∈ CM×T , a randomly chosen
H ∈ CM×K will admit a decomposition of the form (16) with probability 1.

Proof See Appendix A. □
An immediate result of Theorem 1 is that, since we are only interested in

having L ≤ K due to its practical implications (otherwise there is no dimen-
sionality reduction compared to local MF from Fig. 2 right side), then we have
T ≥ L since T ≥ K. The case where Theorem 1 is not fulfilled is considered in
Section 6.

For a randomly chosen A, W−1 is full rank with probability 1, but note
that some specific A matrices may lead to rank deficient W−1 even if (24)
is met. That is, for a poorly chosen matrix A, the WAX decomposition of a
matrix H cannot be performed. In what follows next we study conditions on
A in order for the WAX decomposition to be feasible.

3.2 Studying Validity of Matrix A

While Theorem 1 states that any randomly chosen A works for WAX decom-
position, we are, from a practical perspective, interested in A matrices having
simple forms (providing low computational complexity); for example, sparse
matrices with elements in the set {0, 1}. This would significantly simplify the
combining network. However, for such a matrix, Theorem 1 no longer applies.
Therefore, it is of importance to investigate the exceptions to Theorem 1.3

3Note that, in the general case where N ̸= L, selecting A as in Lemma 2 maintains the
overall sparsity properties of Ã since the transformation TL,N just replicates the matrix Ã
in different positions, filling the rest with 0s.
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Definition 1 We consider A to be valid for WAX decomposition (16) if the set
of matrices H that does not admit such a decomposition has measure 0. This
is equivalent as saying that the probability of a randomly chosen H admitting
WAX decomposition for a valid A is 1.

The following theorem will be useful to check if an A matrix is valid or not.

Theorem 2 Consider a fixed M × T matrix A, where T fulfills (24), and a
randomly chosen H ∈ CM×K , such that B = [B1 B2] from (23) is full-rank.
If the specific H admits WAX decomposition ( (16) with N = L) for the given
A, then A will be valid for WAX decomposition with probability 1, i.e., any
other randomly chosen H will admit WAX decomposition for the same A with
probability 1.

Proof The proof is a side-result from the proof of Theorem 1 in Appendix

A. We just have to notice that the determinant of W̃ p still fulfills (37) if A is

fixed, so it is enough if we can find an H that gives det(W̃ p) ̸= 0 so that the
determinant is 0 only for a countable set of H matrices. □

The main contribution of Theorem 2 is that we can know if an A matrix
is valid or not simply by trying to perform WAX decomposition of a single
randomly chosen H using that A. Theorem 2 will be widely used for our
simulation results since it is our main result on the validity of A. An essen-
tially equivalent statement to that of Theorem 2 is to say that, for a given
matrix A, WAX decomposition of a randomly chosen matrix H is possible
with probability either 1 or 0.

The following lemma states a necessary condition for A to be valid.

Lemma 4 Let Â be an FL × T submatrix of A formed by selecting F out of
the P blocks of size L× T that conform A, {A1, . . . ,AP }. If A is valid, then

rank(Â) ≥ min(FL,K). (25)

Proof Let Ĥ be an FL × K submatrix of H formed by the F respective

L × K blocks of H, and Ŵ an FL × FL block diagonal matrix with the F
respective L × L blocks from W as diagonal elements. If A is valid we can

obtain Ŵ and X such that Ŵ ÂX = Ĥ holds for any Ĥ except those in a

set of measure 0. For a randomly chosen H, rank(Ĥ) = min(FL,K) with
probability 1. Since

rank(Ŵ ÂX) ≤ min
(
rank(Ŵ ), rank(Â), rank(X)

)
,

condition (25) must be fulfilled. □
A further necessary condition for A to be valid is given in Lemma 5.



Contents 103

Lemma 5 Let A0 be a submatrix of A formed by selecting R rows from A,
where all rows are in different blocks Ap. If A is valid, then

rank(A0) > R
K − L

K

Proof See Appendix B. □
We point out that, since A is an M × T matrix, rank(A0) cannot exceed

T . However, with T > M(K − L)/K, it is guaranteed that RK−L
K < T .

An immediate consequence of Lemma 5 is that a block Ap cannot be re-
peated arbitrarily often in A. In addition, any block Ap must have rank L
(see Lemma 4). Repeating the block Ap r times in A, and selecting A0 as the
same row within each of these r blocks yields,

1 > r
K − L

K
,

which implies r < K
K−L . Whenever L ≤ K/2, r = 1 so that each block Ap can

only occur once in A.
Appendix C includes another, less intuitive, necessary condition for A to

be valid. Despite extensive efforts, we have not been able to establish sufficient
conditions for having a valid A. The provided necessary conditions might not
be helpful in generating valid A matrices, but they constitute initial progress
on the matter. Thus, the problem of establishing sufficient conditions for valid
A matrices remains open.

4 Finding Sparse A Matrices

Let us keep restricting ourselves to the case where N = L due to the generality
of this case. Recall, however, that the transformation (17), which allows consid-
ering other N values, maintains the overall sparsity properties of A (although
the percentage of 1s can decrease since 0s are being padded). As we have men-
tioned previously, from an implementation point of view, it is desirable to have
A as a sparse matrix of 1s and 0s with as few 1s as possible. The main reason
is the direct relation between the number of 1s in A and the number of sum
operations required to implement such a combining matrix. Recall that we can
view A as the matrix associated to a predesigned hardware combining module,
which could be intuitively implemented through a network of sum modules.

In the previous section, we provided some necessary conditions on matrix A
for the WAX decomposition to be applicable. However, after extensive research
on the matter, we have not been able to find sufficient conditions for having a
valid A. This motivates the need of simulation results to further understand
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the limits on the sparsity of A. Nevertheless, we will support these simulations
with a simple theoretical bound that allows us to gain better understanding of
how sparse A may be.

From Lemma 4, we can say that each L × T block Ap p ∈ {1, . . . , P}, has
to be of rank L. If we put it together with Lemma 5 we can say that a valid
A has a maximum of

rmax =

⌈
K

K − L
− 1

⌉
(26)

equal Ap blocks. Therefore, if we aim at A matrices of 1s and 0s with the
minimum number of 1s, we can lower bound the number of 1s through the
following lemma.

Lemma 6 Given a valid A ∈ {1, 0}M×T , the number of 1s in A, which inci-
dentally coincides with its squared Frobenius norm, can be lower bounded by

∥A∥2F ≥
Q−1∑
k=1

rmax(k −Q)

(
T

k

)
+QM, (27)

where Q is obtained by

Q = argmin
q

q∑
k=1

rmax

(
T

k

)
≥ M. (28)

Proof Let us impose the restriction that every row in A can be repeated a
maximum of rmax times, as suggested by Lemma 5, where the restriction of
selecting the rows from different blocks can be relaxed since we are interested
in a lower bound. Each row of A must have at least a 1 at some location,
otherwise, considering L ≤ T , a row of only 0s would result in an Ap block
with rank lower than L (contradicting Lemma 4). Therefore, we can bound the
number of 1s in A by considering all possible combinations of rows having a
single 1, each of which could be repeated a maximum of rmax times. Then, we
can do the same for rows having 2 1s, and go on until we have enough rows to
fill the M rows of A. Straightforward combinatorics result in the statements
in the lemma. □

Even though the lower bound presented in Lemma 6 might look a bit hard
to compute at first sight, for reasonable values of the design variables (M ≤
3rmaxT ), it is enough to consider only rows with up to two 1s to have enough
rows for filling A, i.e., Q ≤ 2.

Figs. 4 and 5 show the minimum percentage of 1s required to have a valid
A through numerical optimization, as well as the theoretical lower bound from
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Lemma 6, with respect to 100/Topt. The optimum T , Topt, is computed as

Topt = max

(⌊
M

K − L

K
+ 1

⌋
,K

)
, (29)

which corresponds to the minimum integer T that fulfills Theorem 1. The
reason for having 100/Topt is that it corresponds to a trivial lower bound in
the percentage of 1s, i.e., if we have a single 1 per row. We can see that the
relation between the minimum percentage of 1s and 100/Topt is close to linear.
In Fig. 4, K is fixed and L is changed, while in Fig. 5 it is the other way
around. Although our initial intention was not to provide a tight bound to the
numerical simulation, we can note that the obtained percentage of 1s for valid
A matrices is in general close to the lower bound computed given by Lemma 6
(within ±3% error in the plots).

The algorithm for computing the minimum percentage of 1s consists of
selecting A by adding 1s at random positions, with some constraints related to
Lemma 4, until a valid A has been found. Then, we reduce through exhaustive
search the number of 1s in A as much as possible while maintaining its validity.
The validity of A is evaluated by considering Theorem 2.

Table 2 shows the minimum number of 1s for having a valid A considering
different values of K and L (recall L ≤ K for information-lossless processing).
The same algorithm as for Figs. 4 and 5 is employed, and T is also selected
to be Topt from (29). We can see that, even though from Figs. 4 and 5 the
percentage of 1s increases with L and decreases with K, for the total number
of 1s it is the other way around, i.e., it increases with K and decreases with L.
This is because the size of A increases at a higher rate when T is increased.
However, if we implementA using sum modules with only two inputs, we would
need to subtract T to the number of 1s in A, since a single 1 in a column of
A would not require any sum module. Table 3 shows the minimum number
of 2-input sum modules required to have a valid A, i.e., the values of this
table correspond to the values of Table 2 subtracting the respective T value to
each entry. As we can see, the number of sum modules required does not vary
considerably with K and L, and it remains in the order of M .

Fig. 6 shows the percentage of valid A matrices for different percentage of
1s, where the 1s are placed at random positions with the only restriction that
they have at least a 1 per row and per column. The algorithm employed con-
sists of generating a big number of random A matrices with the corresponding
percentage of 1s (while fulfilling a simple restriction related to Lemma 4 with
F = 1), and checking what percentage of them are valid (Theorem 2 comes
in handy here too). The different curves correspond to the same parameter
combinations as Fig. 5, where we can find the minimum percentage of 1s that
apply to the different values of K. As we can see, finding an A attaining a
percentage of 1s slightly higher than the optimum one (+10%) is not that dif-



106 PAPER II

L/K 1 2 3 4 5 6 7

1 60 89 98 102 104 105 108
2 - 60 78 89 94 98 102
3 - - 60 72 80 89 91
4 - - - 60 68 78 84
5 - - - - 60 65 72
6 - - - - - 60 66

Table 2: Minimum number of 1s required to have a valid A for M = 60, T = Topt

L/K 1 2 3 4 5 6 7

1 59 58 57 56 55 54 56
2 - 58 57 58 57 57 59
3 - - 57 56 55 58 56
4 - - - 56 55 57 58
5 - - - - 55 54 54
6 - - - - - 54 57

Table 3: Minimum number of 2-input sum modules required to implement a valid
A for M = 60, T = Topt
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Figure 4: Minimum percentage of 1s required for a validA ∈ {0, 1}M×T with respect
to 100/Topt for M = 60, K = 7, L = {2, 3, 4, 5, 6} (N = L).

ficult since we can just put 1s at random positions and, with high probability
(around 80% in the case of K = 4), this A will be valid.

5 Discussion and Examples

As mentioned previously, one of the goals of this paper is to find the trade-off
between the different system parameters required for the equivalent processing
to be information-lossless. An interesting case is when N = 1, since it relates
directly to the trade-off between the centralized and decentralized architectures
shown in Fig. 2. Assuming that our framework is equipped with a valid matrix
A, the trade-off between L and T comes directly from condition (24). We can
select T as Topt from (29), as can be seen in Fig. 7.

It is interesting to observe that we reach a reduction compared with the cen-
tralized architecture also for L = 1. To elaborate a bit further, we observe that
with L = 1, the number of CPU inputs becomes T = Tmax ≜

⌊
M − M

K + 1
⌋
.

This reduction comes about since we have allowed the antennas to perform
multiplications, which leads to a reduction in the number of CPU inputs from
M to, at most, Tmax. The centralized architecture, illustrated in the left part
of Fig. 2, has the same number of outputs per antenna, namely 1, but does not
perform any multiplications. Therefore, the CPU must operate with T = M . If
we let Lmult denote the number of multiplications per antenna, the centralized
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Figure 5: Minimum percentage of 1s required for a validA ∈ {0, 1}M×T with respect
to 100/Topt for M = 24, K = {6, 5, 4}, L = 3 (N = L).

architecture corresponds to Lmult = 0, and we can select T as

T =

{
M Lmult = 0

max
(⌊
M K−Lmult

K + 1
⌋
,K
)

Lmult > 0.

This is conceptually illustrated in the right part of Fig. 7.
We conclude this section with a few examples.

Example 1 Assume a design with a CPU limited to T ≤ 50 inputs, and
antenna panels with L = 2 outputs. We now consider how many antennas and
users (M and K, respectively) can be handled by the system. From (24), we
have 50 > M K−2

K implying that

50
K

K − 2
> M.

To maximize the left hand side, excluding the special case K = L = 2 (which
allows for an unlimited number of antennas), we set K = 3 and obtain M < 150
so that we can at most use 149 antennas. Differently put, if we choose to equip
the base station with 149 antennas, we can at most serve K = 3 users. With
150+ antennas, only 2 users can be served. Setting K = 4, yields that at most
99 antennas can be used.

We next provide two numerical examples of the WAX decomposition. The
first one is meant to illustrate that it is indeed possible to obtain valid sparse
matrices A comprising only elements in the set {0, 1}.
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Figure 6: Percentage of valid A ∈ {0, 1}M×T with 1s at random positions with
respect to the percentage of 1s for M = 24, L = 3 (N=L).

Example 2 Let M = 100, N = 4, P = 25, K = 10, and L = 4. From
Theorem 1, we have that T > 100 × 0.6 = 60, so we take T = 61. It can be
numerically verified that the matrix

A =


I61

I39

I22

I17

I5

I5

I5

I2 I2 02×1

 (30)

is valid. We designed this A by aiming at a minimum number of non-zero
elements, while satisfying both Lemma 4 and Lemma 5. It can be verified that
A has 158 ones and 5942 zeros. Thus, merely 2.6% of A is non-zero.

Our next example is providing the reader with a graphical illustration of
the WAX decomposition.

Example 3 Let M = 8, N = 2, P = 4, K = 5, and L = 2. Thus, T > 4.8,
so we select T = 5. In this case, the number of variables and the number of
equations associated to the linear system (20) is TK +ML = 41 and MK =
40, respectively; thus, we have precisely one more variable than equations. A
particular example of the WAX decomposition for the given parameters is shown
in (31). The strength of the WAX decomposition is that, for any H, except for
those in a set of measure 0, the matrix A can be kept as it is while only W
and X need to change.
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(left)/number of multiplications (right) per antenna (related to L).

6 Information-Loss without WAX Decomposi-
tion

Throughout the previous sections of the paper we have focused on performing
information-lossless processing within our framework, i.e., we have focused on
the cases where the maximization (4) leads to IZ,S(z; s) = IY ,S(y; s). We have
defined the WAX decomposition, which allows performing information-lossless
processing within our framework. Theorem 1 sets the main constraints on
the system dimensions for WAX decomposition, and equivalently information-
lossless processing, to be possible within our framework. However, it is of great
interest to know the information-loss produced when WAX decomposition is
not possible, i.e., we would like to solve (4) when Theorem 1 is not satisfied.

Solving (4) is a research challenge in itself which might lead to future work



1 −1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 2 −1 0 0
0 0 0 0 0 0 2 −1
0 0 0 0 0 0 2 2


︸ ︷︷ ︸

W



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 1
0 1 0 1 1
0 0 1 1 1


︸ ︷︷ ︸

A


−2 −1 −1 2 2
1 −2 −1 1 2
1 −1 −2 −1 −2
0 2 0 −1 0
0 −1 2 1 −2


︸ ︷︷ ︸

X

=



−3 1 0 1 0
−2 −4 −3 5 6
1 1 −2 −2 −2
0 −2 0 1 0
−2 −2 5 4 −4
2 −2 3 0 −4
1 −2 2 3 4
4 −2 2 0 −8


︸ ︷︷ ︸

H

(31)
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on the topic. In this section we will present initial ideas, as well as numerical
results using standard optimization methods, to get an overall understanding of
the information-losses that are induced when having lower T than the minimum
required from Theorem 1. We will again focus on the general case whereN = L,
and we will only consider randomly chosen A and H matrices.

6.1 Approximate MF

A simple first approach, intuitively related to how we compute WAX decom-
position, is to work on the minimization problem

minimize
X,{Ŵ p}P

p=1

∥AX − ŴH∥2F,

s.t. rank(Ŵ p) = L, ∀p
∥X∥+ ∥Ŵ ∥ = c,

(32)

where Ŵ has the same structure as (3) for N = L and P = M/L, and the ac-

tual matrix W to be used in our framework would be obtained as W = Ŵ
−1

.
The last constraint in (32) ensures a non-zero solution, where the scalar c can
be any non-zero real value.4 The minimization (32) leads to the WAX de-
composition when Theorem 1 applies. This means that we could solve both
problems using the same approach, and thus, without altering the overall com-
plexity. In case (24) is fulfilled, (32) would give 0, and the solution would also
solve the maximization (4), which is not true in general.

Solving (32) can be seen as applying approximate MF within our framework.
This minimization can be found in closed-form when L ≤ min(T,K) as we will
now prove. Let us rewrite the norm as

∥AX − ŴH∥2F =

P∑
p=1

∥ApX − Ŵ pHp∥2F. (33)

Assuming the optimum X has been fixed, we would have Ŵ p = ApXH†
p (H†

p

being the right pseudo-inverse of Hp), which is of rank min(T,K,L) when A
and H are randomly chosen. We can restrict ourselves to L ≤ min(T,K) due
to its previously mentioned practical interest. In this case, (32) is solved by
considering the equivalent linear system from (21)

∥AX − ŴH∥2F = uHBHBu. (34)

4Note that, when applying W = Ŵ
−1

, the multiplication associated to (2) will cancel

out any common scaling of Ŵ and X.
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The vector u corresponds to the entries of matricesX and Ŵ , so the constraint
on the norms of Ŵ and X corresponds to an arbitrary norm constraint on u.
With this in mind, the solution to the minimization problem is obtained by
setting u to be the eigenvector associated to the lowest eigenvalue of BHB. If
the conditions for WAX were fulfilled, the lowest eigenvalue of BHB would be
0, which would lead to the information-lossless solution.

6.2 Antenna Selection

Another practical approach that would give a lower bound to the maximum
IZ,S(z, s) from (4) is to consider antenna selection so as to reduce M until
Theorem 1 is satisfied. Note that this approach is valid only when T ≥ K,
which was not the case with the previous approach. Furthermore, for N > 1,
the antenna selection would correspond to panel selection since we need an
integer number of panels, which means we can only reduce N antennas at a
time.

How to optimally make the panel selection is also a research problem in
itself, but we limit our results to simple selection where the panels having the
highest local channel matrix norms are the ones being used.

6.3 Numerical Results

Definition 2 Let us define the relative rate for our framework as

EA,H

(
IZ,S(z, s)

IY ,S(y, s)

)
, (35)

where A and H are standard IID Gaussian random matrices.

Figs. 8 and 9 show the average relative rates, which have been optimized
using norm minimization (32) and panel selection. We have also included as a
comparison the average relative rate obtained by standard brute force numer-
ical optimization using the result from (32) as starting point. This numerical
optimization can give us a hint of what average relative rates could be achieved
if more clever optimization approaches were considered. In the plots, we have
considered the range of L and T values not accepting a WAX decomposition
according to Theorem 1. Fig. 8 shows that when we reduce T below Topt the
performance gets slowly degraded, so the system would still be able to work at
acceptable rates even if we cannot perform WAX decomposition. In the case
of Fig. 9, reducing L below Lopt,

5 attains a steeper loss, but the degradation
is still reasonable. We can also see that the norm minimization associated to
(32) presents a considerable loss with respect to the numerical optimization,

5Lopt can be obtained from Theorem 1 as a converse of Topt.
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but it can still serve as a simple auxiliary method that allows our framework
to keep serving users under conditions where WAX is not possible, e.g., if the
number of users increase. In fact, (32) corresponds to the WAX decomposition
when the parameters allow it, so that no further processing would be needed
in such a system.

Panel selection, can perform better than the norm minimization in some
cases, but the limitation of having to disregard full panels makes it perform
slightly worse for most values of T in Fig. 8. Furthermore, this method is
slightly less versatile than norm minimization since it is not available for all
possible values of T , as can be seen in Fig. 8. However, we can note that T < K
intuitively translates into having to discard the data from certain users, which
could potentially be considered in more complex antenna selection schemes.
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Figure 8: Average relative rate (in percentage), IZ,S(z, s)/IY ,S(y, z), with A and
H having IID Gaussian entries, for M = 24, K = 5, L = 3, Topt = 10.

7 Conclusions

We have introduced a general framework that allows the exploitation of the
trade-off between complexity (number of multiplications/outputs per panel)
and level of decentralization (connections to CPU) in multi-antenna architec-
tures. We have presented the WAX decomposition, a matrix decomposition
that achieves information-lossless processing within our framework under some
restrictions. Said restrictions also describe the trade-off between number of
multiplications/outputs per panel and number of connections to the CPU if we
consider only information-lossless processing. Furthermore, we have studied the
problem of finding simple combining networks (A matrices) that admit WAX
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Figure 9: Average relative rate (in percentage), IZ,S(z, s)/IY ,S(y, z), with A and
H having IID Gaussian entries, for M = 24, K = 5, T = 5, Lopt = 4.

decomposition within our framework. Finally, we have broadly studied the
information-loss produced when the system parameters lead to non-availability
of the WAX decomposition.

Future work could include a deeper study on the cases where WAX decom-
position is not available and information-lossy processing has to be applied.
This same line would include the design of efficient algorithms and analytical
solutions to optimize the achievable information rates. Furthermore, finding
sufficient conditions for the combining network (i.e., A) to be valid for WAX
decomposition still remains unresolved. Other lines of work could include nar-
rowing the study to some of the exceptions that we have not covered such as
when the parameters are not divisible, etc.

Appendix A: Proof of Theorem 1

We first make the observation that the rank of A cannot be lower than the
rank of H. The rank of a randomly chosen A is min(M,T ) with probability 1.
Assuming that M ≥ K, this implies T ≥ K, expressed as T > max(·,K − 1)
in the statement.

We next provide a lemma that will be useful.

Lemma 7 Let W and Ŵ be two matrices of the same form as W in (3)
with N = L (i.e., they are block diagonal matrices where the blocks are L × L

matrices). If AX = ŴH is solvable such that det(Ŵ p) > 0, 1 ≤ p ≤ P , then
WAX = H is solvable.
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Proof SupposeAX = Ŵ
H
H is solvable such that det(Ŵ p) > 0, 1 ≤ p ≤ P .

This implies that Ŵ
−1

exists. Thus,

Ŵ
−1

AX = H.

The lemma follows by observing that Ŵ
−1

is of the same form as W , so we

can take W = Ŵ
−1

. □
Let us now study AX = ŴH. Said matrix equation specifies MT linear

equations in TK+ML variables, and hence, it is solvable if T > M(K−L)/K,
as can be seen from the vectorized version in (21). It remains to show that for

randomly chosen A and H, the solution satisfies det(Ŵ p) > 0, 1 ≤ p ≤ P .
Let us define V as the set of admissible solutions, i.e.,

V = {A,H | ∃Ŵ ,X : AX = ŴH,

det(Ŵ p) ̸= 0, ∀p, det(BBH) ̸= 0},
(36)

where B = [B1B2] is again the matrix associated to the equivalent linear
system (21), which is given by (23). Assuming that B is full-rank, the solution

to AX = ŴH depends on F = TK +ML−MK free variables, here denoted
by {zf}. The solution {Ŵ }i,j is a linear combination of the free variables {zf}
where the weights depend on A and H, i.e.,

{Ŵ p}i,j =
F∑

f=1

cp,i,j,f (A,H)zf .

Note that the number of free variables, F , can be increased if B is not full-
rank (leading to a different polynomial expression), that is why we are only
interested in the solutions giving a full-rank B, i.e., det(BBH) ̸= 0. Thus, the
following lemma will come in handy.

Lemma 8 Given randomly chosen matrices H and A, the matrix B = [B1B2]
(B1 and B2 are defined as in (23)) fulfills det(BBH) ̸= 0 with probability 1.

Proof We can define the determinant det(BBH) as a polynomial expression
of the form

det(BBH) =
∑
g

bg(A,H)
∏

i,j,l,k

{H}hi,j,g

i,j {A}al,k,g

l,k .

This polynomial expression will evaluate to 0 only for a countable set (which
thus attains probability 0) of A and H matrices if we can find at least an A
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and an H such that det(BBH) ̸= 0. One example of this is when A is chosen
randomly and we have {H}i,j = {A}i,j , i ∈ {1, . . .M}, j ∈ {1, . . . ,K}. □

A similar reasoning to the one used in the proof of Lemma 8 can be applied
to show that for randomly chosen A and H we have Ŵ ̸= 0 with probability
1. The determinant det(Ŵ p) can be written as a polynomial combination of

the previous {Ŵ p}i,j . Thus we can express it as

det(Ŵ p) =

G∑
g=1

c̃g(A,H)

F∏
f=1

z
qg,f
f , (37)

for some G, with
∑F

f=1 qg,f = P, ∀g. Thus, the only possibility for having

det(Ŵ p) = 0 is if the coefficients are zero, i.e., c̃g(A,H) = 0, 1 ≤ g ≤ G.
However, the coefficients c̃g(A,H) are rational expressions of the entries in A
and H. This means that, in order to have c̃g(A,H) = 0, a polynomial multi-
variate expression of the entries in A and H must be 0. Again, this can only
happen at most in a countable set of A and H as long as we find an A and
an H such that det(Ŵ p), ∀p, while still assuring that B is full-rank so that F
remains fixed. The same example as in the proof of Lemma 8, i.e., randomly
chosen A and {H}i,j = {A}i,j , i ∈ {1, . . .M}, j ∈ {1, . . . ,K}, gives the trivial
solution Ŵ = IM , and thus fulfills both conditions. Therefore, we have proved
that a randomly chosen A and H will be in the set V with probability 1.

Appendix B: Proof of Lemma 5

From the structure of B1 in (23), we observe that a particular row of A appears
exactly in K rows of B. Let us denote B0 as the submatrix of B formed by
all rows in B where the rows of A0 appear. Clearly, to satisfy (21), we must
in particular satisfy B0u = 0RK×1. Now, B0 reads

B0 =
[
IK ⊗A0 Ĥ0

]
,

where Ĥ0 is formed from H as follows: Let ι(r) denote the block Hι(r) where

the rth row in A0 is taken from. Let H0 =
[
HT

ι(1) Hι(2)T . . . HT
ι(R)

]T
, and

let II(ℓ) be an R×L matrix with a single entry equal to 1 at row ℓ and column
(ι(ℓ) mod L) + 1, and all other equal to 0. Then,

Ĥ0 =
[
0D0

HH
ι(1)⊗II(1) 0D1

HH
ι(2)⊗II(2)

. . . 0DR−1
HH

ι(R)⊗II(R) 0DR

]
(38)
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where we have used the shorthand notation

Dk = RK × (ι(k + 1)− ι(k))L2,

ι(0) ≜ 1, ι(R+ 1) ≜ M/L.

To study the null space of B0 we may just as well study the null space of
(IK ⊗QH

0 )B0, where Q0R0 = A0 is the QR decomposition of A0. We have,

(IK ⊗QH
0 )B0 =

[
IK ⊗R0 (IK ⊗QH

0 )Ĥ0

]
. (39)

Let κ = rank(A0). The matrix IK ⊗R0 consequently has K(R − κ) all-zero
rows.

If we extract said all-zero rows, we obtain,

[
0K(R−κ)×TK P (IK ⊗QH

0 )Ĥ0

]
vec(X)
vec(W 1)

...
vec(W P )

=0K(R−κ)×1

where P is a K(R− κ)×KR matrix that extracts the rows where IK ⊗R0 is
all-zero. This implies that we can discard X so that we equivalently obtain

P (IK ⊗QH
0 )Ĥ0

vec(W 1)
...

vec(W P )

 = 0K(R−κ)×1. (40)

We next note that, due to the many all-zero columns in Ĥ0 (represented
by the terms 0Dk

in (38)), not all the W p matrices matter. In fact, it can be
straightforwardly verified that (40) is equivalent to

P (IK ⊗QH
0 )H̄0

wι(1)

...
wι(R)

 = 0K(R−κ)×ML, (41)

where wm is the 1 × L vector formed from extracting the entries at the mth
row of W that are allowed to take non-zero values, and

H̄0 =
[
HH

ι(1)⊗I(1) HH
ι(2)⊗I(2) . . . HH

ι(R)⊗I(R)
]
, (42)

where I(ℓ) is the non-zero column of II(ℓ).
For randomly chosen H, the matrix P (IK ⊗ QH

0 )H̄0 is full rank with
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probability 1. Therefore, (42) only has a non-trivial solution whenever the
number of unknowns is larger than the number of equations, i.e., whenever,
RL > K(R− κ). Consequently,

κ > R
K − L

K
.

Appendix C: Necessary condition for A

As per previous results, a matrix H can, with probability 1, be decomposed as
H = WAX if and only if there exists a full rank matrix Ŵ such that AX =
ŴH. We are now interested in establishing necessary conditions for the matrix
A so that this is possible. Let AS denote a submatrix of A comprising an
arbitrary selection of rows inA with rank (AS) = r. An immediate consequence

is that rank (ASX) ≤ r. Assuming that H = WAX holds, rank
(
Ŵ SH

)
=

rank (ASX), where Ŵ S is a submatrix of Ŵ comprising rows corresponding to

those in AS . On the other hand, if no Ŵ S exists such that rank
(
Ŵ SH

)
≤ r,

we can infer that A does not allow for a WAX decomposition, i.e., there are no
matrices W and X such that H = WAX. Therefore, a necessary condition
on A for the existence of a WAX decomposition is

rank (AS) ≥ min
ŴS∈W

rank
(
Ŵ SH

)
, ∀S, (43)

where we will define the set W after having introduced further notation. The
matrix A contains M rows, and since L divides M , A contains P = M/L
blocks of L rows. Let the 1 × P vector a denote the number of rows in AS
taken from the pth block in A, and let AS,p and Ŵ S,p be the ap × T and

ap ×M submatrices of AS and Ŵ S , respectively, formed from these ap rows.
With that, W is the set containing all block-diagonal matrices where the pth
block is of dimensions ap ×K and has rank ap (the latter is needed to ensure

that the overall matrix Ŵ is invertible).
We are now ready to study (43). Suppose that the minimum of (43) is r.

Since Ŵ SH has dimensions (
∑

p ap) × K this implies that the null-space of

Ŵ SH has dimension K − r. Thus, if rank
(
Ŵ SH

)
= r, there must exist a

K × (K − r) matrix N such that Ŵ SHN = 0. Recalling that Ŵ S is block-
diagonal with each block being of dimension ap × L and having rank ap, it
follows that

rank (HpN) ≤ L− ap (44)

where Hp is of dimension L×K and H = [HH
1 · · · HH

P ]
H. Thus, if we want
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to solve the minimization in (43), we have the equivalent problem of finding
the maximum possible number of columns in the matrix N so that it is full
rank and rank (HpN) ≤ L− ap, p = 1 . . . P .

We next define the rank-profile of a matrix N as a matrix J whose (b, p)th
element is given by

Jb,p = rank (HpN1:b)− rank (HpN1:b−1),

and where N1:b denotes columns 1, 2, . . . , b of N . We remark that Jb,p ∈
{0, 1}, and that J depends on H, although our notation does not indicate
this dependency. In the following lemma, we characterize the admissible rank-
profiles.

Lemma 9 There exists a full rank matrix N containing B columns such that
rank (HpN) ≤ L− ap if and only if the rank-profile matrix J satisfies

K−Ld<L(ā) +

b−1∑
b′=1

P∑
p=1

Jb′,p +

P∑
p=1

Jb,p

(
L−

b−1∑
b′=1

Jb′,p

)
≥ b,

1 ≤ b ≤ B,

B∑
b=1

Jb,p ≤ āp, 1 ≤ p ≤ P,

where d<L(·) denotes the number of elements of its argument that are less than
L, and āp = L− ap.

Proof We first note that if ap = 0 for any p, then the condition in (44) is
trivially satisfied for any N so we can without loss of generality assume that
ap > 0, ∀p. From the definition of Jb,p if follows that rank (HpN) =

∑B
b=1 Jb,p;

thus, the second set of conditions in the lemma is trivial.
Consider now a specific value b. If Jb,p = 0, it follows that column b of N ,

nb is restricted to

nb ∈ Ib,p = N (Hp) ∪ span
(
H+

p HpN1:b−1

)
,

while Jb,p = 1 does not restrict nb so that nb ∈ Ib,p = CK . By inspection, it
can be seen that the dimensionality of Ib,p can be written as

dim(Ib,p) = K(1− Jb,p) + Jb,p

(
K − L+

b−1∑
b′=1

Jb,p

)
.
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Altogether, we have that

nb ∈
P⋂

p=1

Ib,p.

The dimensionality of the intersection satisfies

dim

(
P⋂

p=1

Ib,p

)
=

P∑
p=1

dim(Ib,p)− (P − 1)K.

This dimensionality must be at least b, since there are already b − 1 vectors
in N1:b−1 in the same space, and the rank of N1:b must be full for all b. By
manipulation, the statement of the lemma can be obtained. □

Altogether, a necessary condition onA is that the rank of any submatrixAS
satisfies rank (AS) ≥ K − BS , where BS is the largest integer B that satisfies
the conditions specified in Lemma 9; note that the vector a in the conditions
depends on S. It can be seen from Lemma 9 that finding the largest integer B
that satisfies the conditions is a non-linear (quadratic) integer problem and we
have not been able to solve it in closed form.
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Cell-free Massive MIMO: Exploiting

the WAX decomposition

Cell-free massive MIMO consists of a large set of distributed APs serv-

ing a number of users. The APs can be far from each other, and they can

also have a big number of antennas. Thus, decentralized architectures

have to be considered so as to reduce the interconnection bandwidth to a

CPU and make the system scalable. On the other hand, the APs in a het-

erogeneous network might have limited processing capabilities and fully-

decentralized processing may not be available. In a recent paper, a trade-

off between level of decentralization and decentralized processing complex-

ity has been identified. Furthermore, a novel matrix decomposition—the

WAX decomposition—which, if applicable to the channel matrix, allows

for exploitation of said trade-off without loss of information. The results

on WAX decomposition are only available for random channel matrices

without specific structures, while in a cell-free massive MIMO scenario the

channel can have sparse structures. In this work, we study the applicabil-

ity of WAX decomposition to cell-free massive MIMO with its implications

to the above-mentioned trade-off.
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1 Introduction

Cell-free massive MIMO [1]–[4] is currently gaining importance as an alternative
to cell-based massive MIMO systems. The idea is to have a large number of
distributed APs which jointly serve a number of user equipments (UEs) within
the same time-frequency resource. This idea directly relates to the concept of
distributed LIS, where the APs would correspond to LIS panels [5]–[7].

Cell-free massive MIMO scenarios depend on a great number of distributed
APs. Thus, the availability of decentralized processing capabilities at the APs
is crucial to reduce the interconnection bandwidth between the APs and a CPU.
There is extensive research on decentralized approaches for large multi-antenna
systems [6], [8]–[12]. In these approaches, part of the processing is performed at
the antenna-end (or panel-end), so that a CPU does not need to gather all the
channel information and perform all the processing tasks. However, in future
heterogeneous networks, the processing capabilities of the cell-free APs might
be limited due to the use of cheap equipment easily deployable and scalable.

In [13] an information-lossless trade-off between level of decentralization
(inputs to a CPU) and decentralized processing capabilities (multiplications per
antenna) is identified, together with a framework that allows the exploitation
of said trade-off. [13] also introduces the WAX decomposition, which is a
novel matrix decomposition that, if applicable to the channel matrix, allows
for information-lossless processing within the framework studied. However,
the conditions for the applicability of WAX decomposition, which define the
previously mentioned trade-off, are only given for a randomly chosen channel
matrix with probability 1, leaving some gaps in the case of channel matrices
with some specific structure.

The current work aims at closing some gaps from [13] by considering the
application of WAX decomposition to cell-free massive MIMO channels, where
the sparsity of the channel can be problematic. We have adapted the frame-
work from [13] to a cell-free massive MIMO scenario, which consists of a set
of APs with an arbitrary number of antennas serving several users. Our find-
ings show that the sparsity of the cell-free massive MIMO channel can degrade
the trade-off presented in [13] under some parameter configurations, but WAX
decomposition can still offer a viable solution for applying information-lossless
processing in a cell-free massive MIMO scenario with limited processing capa-
bilities at the APs.

The rest of the paper is organized as follows. The system model is presented
in Section 2 together with some background on the previous results on WAX
decomposition. Section 3 presents new results on the applicability of WAX
decomposition for cell-free massive MIMO scenarios. In Section 4, numerical
results are given showing the implications of the new results on the WAX
decomposition trade-off in cell-free massive MIMO. Section 5 concludes the
paper with some final remarks.
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Notation: In this paper, lowercase, bold lowercase and bold uppercase let-
ters stand for scalars, column vectors and matrices, respectively. When using
the mutual information operator, I(.; .), bold uppercase in the sub-scripts refers
to random vectors instead of their realizations. The operations (·)T, (·)∗ and
(·)H denote transpose, conjugate, and conjugate transpose, respectively. The
operation diag(·) outputs a block diagonal matrix with the input matrices as
the diagonal blocks. The operation ∥ · ∥1 denotes L1-norm. 0i×j denotes the
i × j all-zeros matrix. In this paper, a randomly chosen matrix corresponds
to a realization of a random matrix whose elements are independently drawn
from a continuous probability distribution function.

2 System Model

Let us consider the uplink of a cell-free network of P APs serving K single-
antenna users. Each AP is equipped with N antennas, such that the total
number of antennas is M = PN . The aggregated M × 1 received complex
vector, y, can be expressed as

y = Hs+ n, (1)

where H is an M × K channel matrix, s is the K × 1 vector of symbols
transmitted by the users, and n is a zero-mean complex white Gaussian noise
vector with sample variance N0.

In cell-free massive MIMO scenarios the APs can be physically situated
far from each other. Therefore, each AP might only see a small subset of the
users, while each user can still be seen by several APs. The implication of such
a scenario is thus that the matrix H would become a sparse matrix having 0s
at the positions associated to hidden users. Furthermore, in a rich scattering
environment the entries associated to non-hidden users can be assumed to be
IID complex Gaussian (Rayleigh fading).

Let us consider the framework presented in Fig. 1 so that each AP only needs
to apply L×L filters to each of the NL groups of L antennas, i.e., AP i applies
WH

ij to the jth L-group. Note that NL = N/L should evaluate to an integer.
We can thus identify L as the number of multiplications per antenna, which
corresponds to the trade-off parameter associated to decentralized processing
capabilities. The outputs from the APs are then combined through a T ×M
fixed combining module, AH , which reduces the dimensions of the data to T .
The resulting T entries would be the inputs to the CPU, which corresponds to
the trade-off parameter associated to level of decentralization. An equivalent
framework would be to consider that each antenna in an AP multiplies its
received signals by L numbers and the corresponding sums would be applied in
the combining module; however, this framework would scale by L the number
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of outputs per AP.
z = XHAHWHy, (2)

where W is an M ×M block diagonal matrix of the form

W = diag (W 11, . . . ,W 1NL
,W 21, . . . ,W PNL

) . (3)

The matrices W and X can be recalculated for every channel realization, while
the matrix A remains unchanged once the system is deployed (think of it as a
fixed hardware combining module). The framework under study is represented
in Fig. 1.

inputs

CPU
X  

H A

Combining 

module

H

(T x M)

...
...

yM-N+1
WM-N

M-N+L

H

(L x L)
y

AP P

...

L

...

y
M-L+1

WM

M

H

(L x L)
yL

...

y1

W11
yL

H

(L x L)

AP 1

...

...

y
N-L+1

W1N

N

H

(L x L)
y

L

(      )

T

outputs
N

...

multiplications/antenna
L

...

WP1

H

(L x L)

WPN

H

(L x L)

L

Figure 1: Framework used in this paper during the data phase.

The framework under study allows for the exploitation of the trade-off be-
tween the number of multiplications per antenna, associated to L, and the
number of inputs to the CPU, associated to T . Said trade-off, which can be
seen as a trade-off between decentralized processing complexity and level of
decentralization, was identified in [13], which considers an equivalent version
of the framework under study.

We constrain the information rate at which the users can transmit to the BS,
i.e., IZ,S(z, s), or, correspondingly

6, IY ,S(A
HWHy, s) to be lossless. Thus,

IY ,S(A
HWHy, s) = IY ,S(y, s).

6Note that X cannot possibly increase the maximum information rate at which the users
can transmit (recall data-processing inequality [14]).
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2.1 Background

As we mentioned earlier, the architecture considered in this paper is based on
the framework presented in [13], where important results are shown that will be
the required for our analysis. From [13, Lemma 1], the framework under study
can achieve information lossless processing if and only if we can decompose the
channel matrix H into the so called WAX decomposition

H = WAX, (4)

where W , A and X correspond to the matrices from (2), i.e., A is fixed by
design while W and X can be tuned to H. Note that selecting W and X
in (2) such that (4) is fulfilled leads to information-lossless processing within
our framework. The main result of the applicability of WAX decomposition is
given in [13, Theorem 1], which states that, for a randomly chosen A ∈ CM×T ,
a randomly chosen H ∈ CM×K admits WAX decomposition with probability
1 if

T > max

(
M

K − L

K
,K − 1

)
. (5)

3 WAX Decomposition for Sparse Channels

Much of the WAX theory, including methods for practical computation of the
constituent matrices W and X, is underpinned by [13, Lemma 3]. However,
for sparse channels, an important assumption of [13, Lemma 3] is not fulfilled.
Let H = [HT

11 HT
12 . . . HT

PNL
]T, where we used notation from (3), and Hpn

is an L×K submatrix of H. For [13, Lemma 3] to hold it should be assumed
that rank(Hpn) = L, ∀p, n. However, in the current scenario, it could very well
happen that a certain panel sees far less UEs than L, so rank(Hpn) = L cannot
be guaranteed. Wherefore, [13, Lemma 3] needs to be generalized, which we
do next.

Lemma 10 ([13, Lemma 3] for sparse channels) For all matrices H sat-
isfying rank(Hpn) = min(kpn, L), where kpn can be seen as the number of non-
zero columns in Hpn, there exists a block diagonal matrix W and a matrix X
such that WAX = H, if and only if, there exists a block diagonal invertible
matrix Ŵ with the same form as W such that AX − ŴH = 0M×K .

Proof The if part is trivial. If an invertible matrix Ŵ exists, then we can set

W = Ŵ
−1

. To prove the only if part, assume that WAX = H. Specifically,

W pnApnX = Hpn, ∀p, n.
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Let us now focus on indices p, n where rank(Hpn) = kpn < L, as rank L blocks
are treated in [13, Lemma 3]. Let Xpn be the columns of X corresponding
to the kpn nonzero columns of Hpn. Then, ApnXpn is an L × kpn matrix
whose rank must be kpn. Moreover, rank(W pn) ≥ kpn. Being a full rank
matrix, the left nullspace of ApnXpn has dimensionality of precisely L − kpn,
i.e., there exists a full rank (L−kpn)×L matrix Npn such that NpnApnXpn =

0(L−kpn)×kpn
. DecomposeW pn asW pn = W̃ pn+ZpnNpn, where W̃ pnNpn =

0L×kpn
and Zpn is L× (L− kpn). We have,

W pnApnX = (W̃ pn +ZpnNpn)ApnX

= W̃ pnApnX

= Hpn.

Therefore, it follows that rank(W̃ pn) = kpn, butW pn is constructed from W̃ pn

by adding a rank L − kpn matrix that is orthogonal to W̃ pn, which directly
implies that there exists a full rank solution W pn whenever a solution exists.
Specifically, this implies that there exists a full rankW that solvesWAX = H
whenever a solution exists. But this implies that we can set Ŵ = W−1, which
concludes the proof. □

3.1 2 APs Scenario

In order to get an understanding of how to deal with WAX decomposition in the
case of sparse channel matrices, let us first take a look at a simplified scenario
where there are only 2 APs. Assume that K1 users are only seen by AP 1, K2

users are only seen by AP 2s, and K3 users are seen by both APs. Without
any loss of generality, we can express the channel matrix for this scenario as

H =

(
H11 0N×K2 H13

0N×K1
H22 H23

)
, (6)

where H13 and H23 correspond to the N × K3 channel matrices from the
shared users to AP 1 and AP 2, respectively, while H11 and H22 correspond
to the N ×K1 and N ×K2 channel matrices from the non-shared users to AP
1 and AP 2, respectively. Note that any permutation of the columns of H
only corresponds to a re-indexing of the user IDs7. Incidentally, the structure
of H corresponds to the structure of the matrices being decomposed in the
WAX modules from the binary tree architecture presented in [7], which only
considered (4) as a first limit to the dimension reduction. Thus, the results we

7Such a permutation can be applied by multiplying H from the right with an invertible
matrix, which, in fact, could be absorbed by X in its WAX decomposition
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obtain in this subsection have direct implications in the dimension reduction
that can be achieved by such architecture.

Let us express the WAX decomposition (4) of (6) as

H =

(
W 1 0N×N

0N×N W 2

)(
A1

A2

)(
X1 X2 X3

)
, (7)

where W 1 and W 2 are the two N ×N blocks of W , which are also formed by
L×L diagonal blocks, A1 and A2 are the two N ×T row blocks of A, and X1,
X2, and X3 are the T × K1, T × K2, and K3 column blocks of X. Assume
that the non-zero blocks of H are randomly chosen matrices (e.g., IID complex
Gaussian), and so is the A matrix from the WAX decomposition.

From Lemma 10 we assure that the existence of solution to WAX = H is
equivalent to the existence of solution to AX = W−1H with full-rank W−1.
Let us thus focus on the equivalent problem

AX = W−1H, (8)

for full-rank W−1. If (5) is fulfilled, (8) will have a non-zero solution for X
and W−1, but it remains to assure full-rank W−1. Considering the structure
of H, we can translate (7) into the following set of equations

A1X1 = W−1
1 H11, (9a)

A1X2 = 0N×K2
, (9b)

A1X3 = W−1
1 H13, (9c)

A2X1 = 0N×K1 , (9d)

A2X2 = W−1
2 H22, (9e)

A2X3 = W−1
2 H23, (9f)

where W−1
1 and W−1

2 are now restricted to be full-rank matrices. In order for
(9b) and (9d) to hold X1 and X2 must be in the null-space of A2 and A1,
respectively. Since A is randomly chosen, A1 and A2 will be full rank with
probability 1. We thus have

X1 = N2X̃1, N2 = N{A2}, (10a)

X2 = N1X̃2, N1 = N{A1}, (10b)

where N1 and N2 are the T × (T −N) matrices conforming the null-spaces of
A1 and A2, respectively. We can now rewrite the set of equations (9) as

A1N2X̃1 = W−1
1 H11, (11a)
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A1X3 = W−1
1 H13, (11b)

A2N1X̃2 = W−1
2 H22. (11c)

A2X3 = W−1
2 H23, (11d)

Let us rewrite (11a) and (11c) as

Ã1X̃1 = W−1
1 H11, (12a)

Ã2X̃2 = W−1
2 H22, (12b)

where Ã1 and Ã2 can be seen as two N × (T − N)-sized randomly chosen
matrices, since they are computed as a product of a randomly chosen matrix
with the null-space of another randomly chosen matrix. Equations (12a) and
(12b) can be transformed into linear equations by vectorizing. Thus, in order
have non-zero solution the following conditions should be fulfilled

(T −N) > max

(
N

K1 − L

K1
,K1 − 1

)
, (13a)

(T −N) > max

(
N

K2 − L

K2
,K2 − 1

)
. (13b)

Furthermore, the set of W−1
1 and W−1

2 matrices solving (12a) and (12b) will
be full-rank except for a subset of measure 0.8On the other hand, if (5) is
fulfilled, (11b) and (11d) will have at least one solution randomly situated in
the continuous set of W−1

1 and W−1
2 that solve (12a) and (12b).8 Therefore,

a matrix H selected as in (6) admits WAX decomposition with probability 1
for randomly chosen A if and only if the conditions (5), (13a), and (13b) are
jointly fulfilled.

3.2 Extension to Any Number of APs

Let us consider now the general case with P APs. The channel matrix for this
scenario can be now expressed as

H =


b11H11 b12H12 · · · b1CH1C

b21H21 b22H22 · · · b2CH1C

...
...

. . .
...

bP1HP1 bP2HP2 · · · bPCHPC

 , (14)

8For further understanding see [13, Proof of Theorem 1]
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where C = 2P − 1, bj = (b1jb2j · · · bPj)2 is the binary expansion of j,
and Hij are randomly chosen matrices (e.g., IID complex Gaussian entries) of
dimensions N ×Kj .

9 It can thus be noted that selecting H as (14) allows us
to consider any possible channel matrix within the presented cell-free scenario
(P = 2 leads to (6)).

Proposition 1 A matrix H selected as (14) admits WAX decomposition with
probability 1 for randomly chosen A if and only if the set of conditions

T − (P − ∥bj∥1)N > max

(
∥bj∥1N

Kj − L

Kj
,Kj − 1

)
, ∀j, (15)

together with (5) are jointly fulfilled.

Proof The proof follows from direct extension of the arguments used in the
2 APs scenario. We should note that the jth column block of H has ∥bj∥1
randomly chosen blocks of size N ×Kj, and P − ∥bj∥1 blocks with 0N×Kj

. □

The previous proposition states the conditions of existence of WAX decom-
position for cell-free massive MIMO channels within the considered framework.
This poses an important advancement in the definition and exploitation of the
trade-off between processing complexity at the APs and level of decentraliza-
tion of the system.

4 Numerical Results

We next present some results on the impact of cell-free massive MIMO sparse
channels on the WAX decomposition trade-off. We define

TWAX = max

(⌊
M

K − L

K
+ 1

⌋
,K

)
,

which corresponds to the minimum T that can be used to fulfill (5), i.e., the
trade-off for non-sparse channels.

Fig. 2 shows how T is degraded with respect to TWAX in the 2 APs case as
we increase K1 = K2, i.e. the number users seen by only one of the APs. From
Fig. 2 (left) we can see that increasing L, N and K at the same rate degrades
the trade-off by shifting the curves towards the left (faster sensitivity to unseen
users), but it seems to converge. Fig. 2 (right) indicates that decreasing the
total number of users K also degrades the trade-off by shifting the curves
to the left, decreasing the antennas per panel N degrades the trade-off only
by increasing the slope, while increasing the multiplications per antenna L
degrades trade-off by both shifting to the left and increasing the slope.

9Note that the Kj values are also allowed to be 0.
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Figure 2: APs scenario with K2 = K1. Plot of T/TWAX with respect to K/K1.

In Fig. 3 we can see how the sparsity degrades the trade-off in a more general
scenario. For the simulation we have drawn the number of panels seen by each
user, n, from a discrete distribution with pn = a/nq, where a is a constant
for normalization purposes, and the n APs are randomly selected with equal
probabilities (i.e., select uniformly bj such that ∥bj∥ = n). Thus, variable q
can be related to the sparsity level since a bigger value of it means that each
user will see less panels with more probability. From the plot, we can also see
that increasing the total number of users K decreases the impact of sparsity on
the trade-off. Increasing the number of panels further, degrades the trade-off
since it increases the inherent sparsity. We should note that having q = 0 still
incurs a degradation of the trade-off since in this case a row of H would have
any number of zero blocks (between 1 and P ) with equal probability, i.e., q = 0
is not equivalent to having no sparsity.

5 Conclusions

We have extended the application of the WAX decomposition to a cell-free
massive MIMO scenario with sparse channel matrix. We have found a new set of
conditions that limit the information-lossless trade-off between multiplications
per antenna and number of input to a CPU in the case of channel sparsity.
Our numerical results confirm that the trade-off presented in [13] is degraded
as the sparsity of the channel increases.
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Figure 3: Average T/TWAX with respect to sparsity factor q. L = 2 and N = 16.
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Impact of Quantization in Decentralized

Processing for Large Multi-Antenna

Architectures

The demand for an increased number of antennas at base stations is

driving research on decentralized processing schemes aimed at reducing

the information volume that has to be transferred to, and processed at,

a CPU. Some of these schemes can reduce the dimensions of the data

while achieving information-lossless processing with respect to centralized

architectures. However, little is known about the impact of quantization

in these decentralized schemes. Moreover, it is unclear if an information-

lossless reduction of dimensions directly corresponds to a reduction in the

bit-rate that has to be transmitted to the CPU after quantization. This

paper studies how quantization affects the performance of decentralized

processing. Bit rates after quantization of a received vector (in a cen-

tralized scheme) are contrasted with bit rates after quantization of post-

processed vectors using various information-lossless dimension reductions

that can potentially be applied in decentralized schemes.
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1 Introduction

An important benefit of decentralized processing in large multi-antenna archi-
tectures is to reduce the amount of information transferred to a CPU. In [1], a
generalized architecture is proposed that enables a trade-off between the com-
plexity of information-lossless10 decentralized processing, measured in number
of multiplications per antenna, and the level of decentralization, measured in
number of connections to a CPU. Other decentralized processing schemes, such
as those in [2] or [3], [4], consider decentralized application of MRC or approx-
imate ZF, where the amount of data that has to be transferred to the CPU
scales with the number of users and not the number of antennas at the BS.

The results in [1]–[4] assume infinite precision for every signal vector from
the antennas to the CPU. In emerging scenarios of interest, however, it is
desirable to consider low-resolution quantizers to reduce cost and energy con-
sumption [5]. If we consider coarse quantization, while still seeking information-
lossless processing, it is not clear whether a reduction in the connections to a
CPU directly translates to a lower information transfer to said CPU. If we
want to transmit the same bit rate from a set of users through a lower number
of inputs to a CPU than a centralized architecture, do we need to compensate
by increasing the quantization precision? Then, is there a benefit in reducing
the inputs to a CPU? These questions motivate the present work.

The effect of quantization on the information transfer to a CPU in decen-
tralized processing schemes is examined. Fig. 1 shows a rough comparison
between centralized and decentralized architectures. The upper part of Fig. 1
has already been studied and its information-lossless trade-off between com-
plexity of decentralized processing and inputs to CPU has been characterized
[1]. However, it is unclear if this trade-off is upheld once quantization comes
into play. In [6] a distributed Karhunen-Loève solution is presented that falls
within the information-lossy regime of the top-right corner of Fig. 1 and also
touches the bottom-right corner. However, the framework considered in [6]
does not fall within the scope of this paper since it only considers lossy di-
mensionality reductions of Gaussian random vectors. Other works such as [7]
or [8] study similar problems that could fall in the information-lossy regime
of the top-right corner of Fig. 1; however, quantization is ignored in these
works. Hence, a proper characterization of the dimensionality reductions with
quantization (bottom-right corner of Fig. 1) remains largely unexplored.

Notation: Lowercase, bold lowercase and bold uppercase letters stand for
scalars, column vectors and matrices, respectively. The operations (·)T, (·)∗ and
(·)H denote transpose, conjugate, and conjugate transpose, respectively. I(·; ·)
and E{·} denote mutual information and expectation, respectively. Given two

10By information-lossless processing we mean that the mutual information between the
processed signal and the transmitted signal is equal to that between the received signal and
the transmitted signal, i.e., we can achieve the same user rates as in centralized processing.
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Figure 1: Centralized and decentralized architectures, with or without quantization
losses.

random vectors x and y, Rxy = E
{
xyH

}
is the correlation matrix between

them. PX(·) corresponds to PMF of a discrete random variable X, and pY (·)
corresponds to PDF of a continuous random variable Y . ℜ{·} and ℑ{·} denote
real and imaginary part, respectively. The operation diag(·) when applied to
a matrix gives the same matrix with zeros in the off-diagonal elements; when
applied to a set of scalars/blocks, it outputs a matrix with said scalars/blocks
along the main diagonal. Q(.) corresponds to the Q-function. The notation
[A]i:j,ℓ:k denotes a matrix formed by rows i to j and columns ℓ to k of A (ab-
sence of one such index indicates that the included rows start/end corresponds
to the first/last row/column of A, respectively).

2 System Model

Assume K users transmitting to a BS with M receive antennas, M > K. The
complex baseband received vector for one narrowband subcarrier is given by

y = Hx+ n, (1)

where x is the K × 1 vector of transmitted symbols, H is the M ×K channel
matrix, perfectly known by the receiver, and n ∼ NC(0M×1, N0IM ) is the noise
vector. The capacity-achieving signal distribution is x ∼ NC(0K×1, EsIK) [9].
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We consider information-lossless dimension reductions such as the ones pre-
sented in [1], [2], [10], which can be applied in a decentralized fashion before
forwarding the data to a CPU. Thus, we have the T × 1 post-processed vector

z = Fy, (2)

where F is a T×M information-lossless processing transformation with T < M .
Thus, conditioned on H and F , z ∼ NC(0M×1,Rzz) with

Rzz = EsFHHHFH +N0FFH. (3)

Since we restrict F to be information-lossless, z must contain the same infor-
mation about x as y, i.e., I(z;x) = I(y;x). An especially interesting structure
for F is given by

F = ΛF [U ]H:,1:T (4)

where ΛF is an arbitrary T ×T diagonal matrix and U is the M×M matrix of
left singular vectors of H. Such F corresponds to a Karhunen-Loève transform
of z, i.e., it leads to uncorrelated (and thus independent given their jointly
Gaussian distribution) entries of z. For such F ,

Rzz = EsΛ
2
F [ΛH ]1:T,1:T +N0Λ

2
F , (5)

where ΛH is a diagonal matrix with the ordered eigenvalues of HHH, so the
last M −K eigenvalues are zero. With (4), vector quantization can be disre-
garded in favor of scalar quantization, since the entries of z are independent.
Furthermore, selecting

ΛF =
√
β
(
Es[ΛH ]1:T,1:T +N0IT

)−1/2
(6)

leads to Rzz = βIT , i.e., the entries of z are not only independent, but also
identically distributed (IID). Then, there is no loss in having the same quanti-
zation process for each entry of z.

These structures for F entail a certain loss of generality; however, we are
most interested in understanding the relation between the dimension of the
post-processed data and the corresponding bit rate to a CPU for a given user. In
this regard, these structures fundamentally capture the essence of the problem
since they correspond to information-lossless transformations where the output
dimensions can be arbitrarily selected by setting T between M and K.

3 Quantization

As a first step towards understanding the effect of quantization in decentral-
ized processing schemes, we consider that F can be implemented with full
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precision and in a decentralized fashion. Quantization is then applied to the
post-processed vector, giving

zQ = Qb (z) , (7)

where Qb(·) represents a b-bit scalar quantization, with independent equal
quantization parameters for the in-phase and quadrature components at each
entry of z. We can thus write

zQt = Qb

(
ℜ{zt}

)
+ ȷQb

(
ℑ{zt}

)
, (8)

where zQt is the tth entry of zQ, for t = 1, . . . , T . The system model is depicted
in Fig. 2 (right).
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Figure 2: Quantization for centralized architecture (left) v.s. quantization after
dimension reduction (right).

For the quantization process, we define the set of thresholds

T = {τ1, τ2, . . . , τ2b+1}, (9)

with τ1 = −∞ and τ2b+1 = ∞, and the set of labels

L = {λ1, λ2, . . . , λ2b}. (10)

Then, if
ℜ{zt} ∈ (τk, τk+1] and ℑ{zt} ∈ (τℓ, τℓ+1] (11)

the tth entry of the quantized vector equals

zQt = λk + ȷλℓ. (12)

The sets of thresholds and labels, T and L, are computed using the Lloyd-
Max algorithm [11], [12]. The obtained optimum thresholds and labels, which
minimize the mean-square error, approximately fulfill the conditions [12, Eqs.
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5 and 6]

τi =
λi + λi−1

2
, i = 2, . . . , 2b (13a)

λj =

∫ τj+1

τj
z pZ(z)dz∫ τj+1

τj
pZ(z)dz

, (13b)

where pZ(·) is the PDF of the variable being quantized. Condition (13b) corre-
sponds to selecting each label as the conditional mean of the quantized variable
given the interval it belongs to. Considering equal quantization for the in-phase
and quadrature components of each entry of z, we need to define pZ(·) such
that it reflects all the involved distributions. However, ℜ{zt} and ℑ{zt} are
IID, so we only need to consider the distribution of either of them for each
entry zt. We have ℜ{zt},ℑ{zt} ∼ N (0, σ2

zt/2), where σ2
zt is the variance of zt,

given by the tth diagonal entry of Rzz in (3). A meaningful distribution pZ(z)
equally reflecting all entries of z is

pZ(z) =
1

T

T∑
t=1

exp
(
−z2/σ2

zt

)√
πσ2

zt

, (14)

which corresponds to a Gaussian mixture of the entries of z. With (4) and
(6), pZ(·) returns a pure Gaussian distribution that perfectly represents the
in-phase and quadrature components of every entry of z. Note that, if quanti-
zation parameters are not adapted to the channel realization, pZ(·) should also
account for the random nature of H (which may affect σ2

zt). Assuming that
the quantization function can be tuned in every coherence interval, and that
H is available to the quantization process, we can obtain the optimum labels
from (13b) using (14), namely

λi =

∑T
t=1 σzt

(
exp(−τ2i /σ

2
zt)− exp(−τ2i+1/σ

2
zt)
)

2
√
π
∑T

t=1

(
Q(

√
2τi/σzt)−Q(

√
2τi+1/σzt)

) . (15)

The Max-Lloyd algorithm is then applied by iterating the two conditions in
(13) until convergence.

As a benchmark, we consider the centralized case where the received vector
y is directly quantized and sent to the CPU as described in Fig. 2 (left). In
this case,

yQ = Qb(y), (16)

where the quantization process is equivalent to the one defined for z. In fact,
we can think of this case as being the same as earlier for T = M and F =
IM . Furthermore, we will assume that square transformations F , i.e., which
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maintain the dimensions, still fall withing the centralized case.
We are interested in determining I(zQ;x) and I(yQ;x) and comparing

them under different quantization precisions. The goal is to understand if an
information-lossless reduction of dimensions also translates to a reduction in
the information transfer to a CPU while I(zQ;x) ≈ I(yQ;x). We would also
like to understand, for different values of T (inputs to the CPU), the relation
between the user rate I(zQ;x) and the rate that needs to be transmitted to
the CPU given by

RCPU = 2bT. (17)

4 Bussgang Decomposition

Applying the Bussgang decomposition [13]

zQ = Bz + η, (18)

where η is a random vector with unknown distribution uncorrelated with y
(and with x and n), and with covariance

Rηη = RzQzQ
−RzQzR

−1
zzRzzQ

(19)

while B, known as the Bussgang gain matrix, corresponds to the LMMSE
estimator of zQ from z,

B = RzQzR
−1
zz . (20)

Since we have entry-wise quantization, the Bussgang gain matrix can be ex-
pressed as [13]

B = diag(d1, d2, . . . , dT ) (21)

with dt = E{zQtz
∗
t }/E{|zt|2}. From the derivations in [14],

dt =

2b∑
i=1

λi√
πσ2

zt

(
exp

(
− τ2i
σ2
zt

)
− exp

(
−
τ2i+1

σ2
zt

))
, (22)

where σ2
zt = E{|zt|2} is the tth diagonal entry of Rzz. Note that RzQz can

be then obtained from (20). Thus, to have a full statistical characterization of
(18) up to second-order moments (the distribution of η is unknown) it remains
to characterize RzQzQ

in (19), as well as the bias

E{η} = E{zQ} − E{z} (23a)

= E{zQ}. (23b)
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Said bias is given by

E{zQt} = E
{
Qb

(
ℜ{zt}

)
+ ȷQb

(
ℑ{zt}

)}
(24a)

= (1 + ȷ)E
{
Qb

(
ℜ{zt}

)}
(24b)

= (1 + ȷ)

∫ ∞

−∞

Qb(z)√
πσ2

zt

exp

(
− z2

σ2
zt

)
(24c)

= (1 + ȷ)

2b∑
i=1

λi

(
Q

(√
2τi
σzt

)
−Q

(√
2τi+1

σzt

))
, (24d)

where we have considered that the real and imaginary parts of zt are CPU
Gaussian conditioned on the channel realization. However, the Max-Lloyd
quantization will approximately lead to (13), which, due to the symmetry of
the resulting thresholds, together with the symmetry of the distribution of z
around 0, gives

E{zQ} ≈ 0. (25)

Thus, unbiased quantization can be assumed, which greatly simplifies the no-
tation.11

4.1 Characterization of RzQzQ

The diagonal entries of RzQzQ
can be characterized as

[RzQzQ
]t,t = E{|zQt|2} − |E{zQt}|2 (26)

where

E{|zQt|2} = E
{
Qb (ℜ{zt})2 +Qb (ℑ{zt})2

}
(27a)

= 2E
{
Qb (ℜ{zt})2

}
(27b)

= 2

∫ ∞

−∞

Qb(z)
2√

πσ2
zt

exp

(
− z2

σ2
zt

)
dz (27c)

= 2

2b∑
i=1

λ2
i

(
Q

(√
2τi
σzt

)
−Q

(√
2τi+1

σzt

))
. (27d)

The off-diagonal entries of RzQzQ
lead to integrals that cannot be expressed

by means of Q-functions. However, in [15] it can be seen that the correlation
of the quantization distortion, i.e., the off diagonal entries of Rηη, is negligible

11For other quantization approaches, unbiased quantization can also be assumed since the
bias is fully characterized from (24) and it can thus be removed after reconstruction.
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for ADC resolutions over 6 bits. Moreover, the number of users considered
in [15] for the previous statement is only K = 2, while the correlation of the
quantization distortion at ADC resolutions below 6 bits also decreases with the
number of users. Thus, we can approximate Rηη as a diagonal matrix, with
the consideration that this approximation is more accurate as the number of
users and quantization bits increase. With said approximation,

Rηη ≈ diag
(
RzQzQ

)
− diag

(
RzQzR

−1
zzRzzQ

)
. (28)

On the other hand, if Rzz is considered to be diagonal, which is the case
when F is given by (4), the non-diagonal entries of RzQzQ

are zero since

E{z∗
QtzQℓ} = 2E

{
Qb

(
ℜ{zt}

)
Qb

(
ℜ{zl}

)}
(29a)

= 2

∫ ∞

−∞

∫ ∞

−∞

Qb(z1)Qb(z2)√
π2σ2

ztσ
2
zl

· exp
(
− z21
σ2
zt

− z22
σ2
zl

)
dz1dz2

(29b)

= E{zQt}∗E{zQℓ} ≈ 0, (29c)

where, again, the real and imaginary parts of zt ∀t have been taken to be IID
Gaussian. Thus, given (4),

Rηη = RzQzQ
−RzQzR

−1
zzRzzQ

= diag
(
RzQzQ

)
− diag

(
RzQzR

−1
zzRzzQ

)
,

(30)

where we have also considered that RzQz (and hence RzzQ) is also diagonal
whenever Rzz is diagonal, since it can be obtained from (20) as a product
of diagonal matrices. Therefore, whenever F fulfills (4), we have a perfect
characterization of (18) up to second moments.

5 Achievable Rates

5.1 Gaussian Lower Bound

Given the condition E{xηH} = 0, assured by the Bussgang decomposition,
we can lower-bound I(zQ;x) by replacing η in (18) by a Gaussian-distributed
vector with equal covariance and independent of x [16]. This gives

z̃Q = Bz + η̃, (31)



Contents 151

where η̃ ∼ NC(0T×1,Rηη) with Rηη approximated by (28). Then, (31) can
be rewritten as an equivalent Gaussian MIMO channel

z̃Q = H̃x+ ñ, (32)

where the equivalent channel is

H̃ = BFH, (33)

and ñ ∼ NC(0T×1,Rññ) with covariance

Rññ = N0BFFHBH +Rηη. (34)

For the channel in (32), the mutual information is

I(z̃Q;x) = log det
(
IT + EsR

−1
ññH̃H̃

H
)
, (35)

which in fact coincides with the capacity for MIMO channel having correlated
noise and equal power allocation among users [17]. Note that I(zQ;x) ≥
I(z̃Q;x), so (35) will also be achievable in the considered framework.

5.2 Mismatched Receiver

The approximation taken in (19) assumes Rηη to be diagonal, while in our
framework this can only be assured whenever F is selected as (4). This may
give, in some cases, rates that are not necessarily achievable. To evaluate
the validity of the approximation we will compare the previous rates with the
achievable rates obtained when operating under a mismatched receiver which
assumes Rηη to be diagonal.

The achievable rate Iq(zQ,x) of a receiver operating under a mismatched
decoding rule, i.e., assuming an input-output relation q(zQ|x) instead of the
real conditional probability mass function PzQ|x(zQ|x), is lower bounded by
[18]

Iq(zQ,x) ≤ ILB,q

≜ −EzQ
{log q(zQ)}+ EzQ,x{log q(zQ|x)},

(36)

where the expectation is over the true distribution of zQ (and x), and we have

q(zQ) =

∫ ∞

−∞
pX(x)q(zQ|x)dx. (37)

Note that ILB,q is itself a lower bound for I(zQ;x), since operating under a
mismatched receiver can only reduce the information rate.
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Let us have

q(zQ|x) =
exp
(
−(zQ −BFx)HR−1

ññ(zQ −BFx)
)

πT det(Rññ)
, (38)

where Rññ is given in (34) with Rηη approximated by (28). The function
q(zQ|x) corresponds to a valid PDF describing (31), which is mismatched with
respect to the true PMF PZQ|X(zQ|x) describing (18). We then have

q(zQ) =
exp
(
−zH

QR
−1
z̃Qz̃Q

zQ

)
πT det(Rz̃Qz̃Q

)
. (39)

The achievable bound ILB,q can then be computed from (36) through Monte-
Carlo simulations. This is not as efficient as computing the rates from (35),
but it will be useful for assessing the approximation error of considering (19).

6 Numerical Results

Fig. 3 shows the achievable rates using the Gaussian lower bound (35) for
different values of T when F is given by (4) with (6). The rates have been
averaged over 103 realizations of an CPU Rayleigh fading channel. In this case
the quantization process is optimum in terms of MSE since all entries of z
are CPU. In Fig. 3 (left) we can see that the achievable rates with respect
to the number of quantization bits are almost independent of T , so that we
can potentially achieve a perfect dimension reduction which does not sacrifice
performance. This way, the rates that need to be transmitted to the CPU
can be linearly related to T , as can be seen in Fig. 3 (right). However, this is
trivially understood by the fact that selecting F as (4) with (6) leads to the
last K − T components of z consist of pure noise. Future works may consider
including an extra unitary matrix multiplying from the left in F in order to
spread more wisely the signal power throughout the components of z.

In Fig. 4 achievable rates for different strategies of constructing F are
shown. When F is not given by (4) with (6), the Gaussian lower bound (35)
requires the approximation (28). In order to assess the approximation error we
have also included the mismatched receiver achievable rates when the decoder
assumes (38), or equivalently (28), as true. This leads to the achievable lower
bound (36) which has been evaluated through Monte-Carlo simulations, using
104 realizations of zQ (and x). Again, we have averaged all rates over 103 CPU
Rayleigh fading channel realizations. From Fig. 4 (left), we can see that when
F is given by (4) with (6), which is only included at T = M/2 since for any
other T ≥ K it will be equal (as previously discussed), the mismatched receiver
bound coincides with the Gaussian bound. However, any other selection of F
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Figure 3: Achievable sum rates versus quantization bits (left) and CPU rate (right)
for M = 32 antennas, K = 8 users, Es = 1, N0 = 1.

shows a mismatch between the two rates, in which case we should trust the
curve for the mismatched receiver (dashed) since it will always give a true lower
bound without approximation error. We can see that choosing F as the MRC
or ZF equalization matrices leads to a worse performance than choosing (4)
and (6). On the other hand, any selection of the dimension reduction matrix
F seems to have a loss with respect to the centralized case without dimension
reduction (i.e., F = IM ). Anyhow, dimension reduction still allows for a de-
crease in the CPU rate with respect to the centralized case for given achievable
rate, as seen in Fig. 4 (right).
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Figure 4: Achievable sum rates versus quantization bits (left) and CPU rate (right)
for M = 12 antennas, K = 4 users, Es = 1, N0 = 1. Dashed lines denote mismatched
achievable rates from (36), while solid lines denote Gaussian achievable rates from
(35) using the approximation (28).



154 PAPER IV

7 Conclusion

We have characterized the achievable rates for quantized post-processed vec-
tors obtained from information-lossless dimension reductions of the received
vectors. The focus of this work is to consider dimension reductions that can be
applied through decentralized schemes. Our results suggest that decentralized
dimension reduction allows for a reduction in the rates that have to be trans-
mitted to a CPU for a given user rate. However, the selection of said dimension
reduction clearly affects the resulting user rates, which may incur in a minor
loss with respect centralized schemes where the received vectors are directly
quantized. Future work may explore how to define decentralized dimension
reductions for improved performance after quantization.
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[10] J. Vidal Alegŕıa, F. Rusek, J. Rodŕıguez Sánchez, and O. Edfors, “Mod-
ular binary tree architecture for distributed large intelligent surface,”
in ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021, pp. 4565–4569.

[11] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[12] J. Max, “Quantizing for minimum distortion,” IRE Transactions on In-
formation Theory, vol. 6, no. 1, pp. 7–12, 1960.

[13] O. T. Demir and E. Bjornson, “The Bussgang decomposition of nonlinear
systems: Basic theory and MIMO extensions [lecture notes],” IEEE Signal
Processing Magazine, vol. 38, no. 1, pp. 131–136, 2021.

[14] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer,
“Throughput analysis of massive MIMO uplink with low-resolution ADCs,”
IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 4038–
4051, 2017.

[15] E. Björnson, L. Sanguinetti, and J. Hoydis, “Hardware distortion corre-
lation has negligible impact on UL massive MIMO spectral efficiency,”
IEEE Transactions on Communications, vol. 67, no. 2, pp. 1085–1098,
2019.

[16] B. Hassibi and B. Hochwald, “How much training is needed in multiple-
antenna wireless links?” IEEE Transactions on Information Theory, vol. 49,
no. 4, pp. 951–963, 2003.

[17] L. Schumacher, K. Pedersen, and P. Mogensen, “From antenna spacings
to theoretical capacities - guidelines for simulating MIMO systems,” in
The 13th IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, vol. 2, 2002, 587–592 vol.2.



156 PAPER IV

[18] D. Arnold, H.-A. Loeliger, P. Vontobel, A. Kavcic, andW. Zeng, “Simulation-
based computation of information rates for channels with memory,” IEEE
Transactions on Information Theory, vol. 52, no. 8, pp. 3498–3508, 2006.

[19] A. Mezghani and J. Nossek, “Capacity lower bound of MIMO channels
with output quantization and correlated noise,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), 2012.







Channel Orthogonalization with

Reconfigurable Surfaces

Orthogonal MU-MIMO channels allow for optimum performance with

simplified precoding/equalization, and they achieve maximum multiplex-

ing gain which is shared fairly among users. RIS constitutes a promising

cost-efficient solution to improve the wireless channel, since they consist

of passive reflecting elements able to adjust the phases of the incoming

waves. However, it is still widely unclear how these surfaces can improve

spatial-multiplexing. In fact, the common RIS model cannot achieve per-

fect orthogonalization of MU-MIMO channels with a reasonable number of

elements. Furthermore, efficient channel estimation algorithms for RIS,

which are key for taking advantage of its benefits, are still a matter of

research. We study two types of RSs, namely ARIS and FRIS, with ex-

tended capabilities over RIS. We show how these RSs allow for perfect

channel orthogonalization, and, by minimizing the applied power, we show

that they can potentially be implemented without the need of amplifica-

tion. We also present an efficient channel estimation method for each of

them that allows the BS to select the desired propagation channel.

©2022 IEEE. Reprinted, with permission, from

J. Vidal Alegŕıa, F. Rusek,
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1 Introduction

MU-MIMO [1], has become a standard solution for BS implementation in 5G
networks. After the first commercial deployments of Massive MIMO [2], [3],
its large scale counterpart, MU-MIMO is now a mature technology that al-
lows multiplexing UEs in the spatial domain. However, the ability to exploit
multiplexing gains with MU-MIMO depends on the conditions of the wireless
propagation channels.

RIS has emerged as a promising enabling technology towards future gener-
ation networks [3]–[5]. Also known as IRS, this technology works as a passive
reflector which can adjust the propagation environment in a power and cost-
efficient manner. The reflected waves at the RIS can be redirected to create
constructive interference and increase the received signal, leading to impressive
gains in energy efficiency [6], [7].

Previous work has also considered RIS for improving spatial multiplexing
in MIMO settings. For example, [8] uses RIS for improving the rank of a
single-user MIMO channel. RIS has also been considered for maximizing the
user rates in different settings [9], [10]. However, most of the previous results
rely on the availability of channel state information at the BS, while channel
estimation in RIS scenarios becomes extremely challenging [5] due to its limited
capabilities and large number of elements.

In this work, we study two alternatives to RIS, namely ARIS and FRIS,
for orthogonalizing MU-MIMO channels. To the best of our knowledge, the
available research has not considered the fundamental problem of using RSs for
obtaining orthogonal MIMO channels, while this is of essential interest since
it leads to full-multiplexing gain with fair user sharing (same channel power
per UE) [11]. Furthermore, for these channels, optimal processing at the base
station is achieved by simple MRT/MRC. We present a channel estimation
method for each RS that allows the BS to select its own channel by computing
and sending the RS configuration with a reduced number of pilots. We also
show that these RSs can be realized without the need for amplification by
minimizing the required power.

The rest of the paper is organized as follows. Section 2 describes the system
model, and defines the different RSs capabilities. Section 3 describes how to
achieve perfectly orthogonal channels with RSs. In Section 4, we present the
channel estimation processes for configuring the RSs. Section 5 the power
minimization setting. Section 6 gives numerical results. The paper is concluded
in Section 7.
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2 System Model

Let us consider an uplink MU-MIMO scenario whereK UEs are transmitting to
an M -antenna BS, with M > K, through a narrow-band channel with the aid
of an N -element RS. The M × 1 received complex vector, y, can be expressed
as

y = Hs+ n, (1)

where H is the M × K channel matrix, s is the K × 1 vector of symbols
transmitted by the UEs, with E(|sk|2) = Es ∀k, and n ∼ CN (0M×1, N0IM ) is
the noise vector. Considering that there exists a direct channel, as well as a
reflected channel through the RS, we can express the channel matrix as

H = H0 +H1ΘH2, (2)

where H0 corresponds to the M ×K direct channel between the BS and the
UEs, H1 and H2 correspond to the M ×N channel between the BS and the
RS and the N ×K channel between the RS and the UEs, respectively, and Θ
is the reflection matrix applied at the RS.

In the literature, it is common to restrict the RS to have phase shifting
capabilities. This corresponds to the widely known concept of RIS where

ΘRIS = diag (exp(jθ1), . . . , exp(jθN )) . (3)

In this paper, however, we propose two RS technologies where said restriction
is relaxed, and we compare them in the task of orthogonalizing the channel
matrix.

Let us consider an RS, here referred to as ARIS, whose elements can also
adjust amplitude. The corresponding reflection matrix is then defined by

ΘARIS = diag (α1, . . . , αN ) , αi ∈ C ∀i. (4)

Note that the restriction of having each αi of amplitude 1 is here relaxed.
The idea of adding amplification to a RIS has already been considered in the
literature, and some of the hardware implications to realize these systems are
given in [12], [13]. However, one of our goals is to restrict the power of these
surfaces so that they can still be implemented without the need for active
amplification.

We also consider an RS, here referred to as FRIS, whose reflection matrix
is a complete matrix. Thus, we have

ΘFRIS ∈ CN×N . (5)

In this work, we will not elaborate on the challenges of realizing such a RS.
However, we can think of architectures based on vector modulators such that
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the matrix multiplication can be performed by an analog combiner as in [14],
although, if future technology allows it, fully-digital implementations would be
desirable so that processing is done per sub-carrier.

3 Channel Orthogonalization

The main goal of employing RSs is to adjust the propagation channel to make it
more beneficial in some metric, e.g., array gain, channel capacity, multiplexing
gain, etc. Within the considered framework, orthogonal channels12 are channels
whose columns are constructed from unitary matrices, i.e., H =

√
βŨ , where

Ũ = U

[
IK

0(M−K)×K

]
, (6)

and U ∈ U(M) (M×M unitary). Note the slight abuse of notation so that
√
β

corresponds to the singular values of the orthogonal channel. We then have

HHH = βIK . (7)

Since the early research on MIMO systems, orthogonal channels were found
to be desirable for several reasons [11]:

• Full multiplexing gain is available since all eigenvalues of the channel
matrix are non-zero.

• Waterfilling algorithms are not required for maximizing capacity since all
eigenvalues of the channel are equal.

• In the case of MU-MIMO, the users are served fairly since the different
spatial streams have equal power.

• Simple linear equalization or precoding, namely MRC or MRT, achieves
optimum performance, since it can exploit the orthogonal paths of the
channel without the need for UE cooperation in MU-MIMO.

We next show how to construct Θ, for the case of ARIS and FRIS, so that
the resulting channel (2) is orthogonal.

3.1 ARIS

We are interested in finding α1, . . . , αN such that

H0 +H1ΘARISH2 =
√

βŨ , (8)

12A more accurate term would be unitary channels due to the complex nature of the
channel matrix.
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Let us define

H1 =
[
h11, . . . ,h1N

]
, H2 =

[
h21, . . . ,h2N

]T
,

where h1i corresponds to column i of H1 and hT
2i corresponds to row i of H2.

We can then rewrite (8) as

N∑
i=1

αih1ih
T
2i =

√
βŨ −H0. (9)

By noting that (9) is a linear equation in the vector α =
[
α1, . . . , αN

]T
, we

can use the vectorization operation to reach

H12α = vec
(√

βŨ −H0

)
, (10)

whereH12 =
[
vec(h11h

T
21) . . . vec(h1NhT

2N )
]
, which corresponds to anMK×

N matrix. Assuming H12 is full-rank, (10) leads to an orthogonalization re-
quirement for ARIS, namely N ≥ MK. We would then solve (10) by

α = H†
12vec

(√
βŨ −H0

)
, (11)

where H†
12 is the right pseudo-inverse13 of H12. Note that for obtaining α

we have not used the fact that the desired channel should be orthogonal. In
fact, we could generate any channel matrix if we substitute

√
βŨ in (11) by

the desired channel.

3.2 FRIS

We are interested in finding a full-matrix ΘFRIS such that

H0 +H1ΘFRISH2 =
√
βŨ . (12)

Assuming H1 and H2 are full-rank, we can select the reflection matrix as
ΘFRIS = H†

1BH†
2, where H†

1 is the right pseudo-inverse of H1, H
†
2 is the

left pseudo-inverse of H2, and B is an M × K matrix to be selected. This
removes, with minimum power, the effect of H1 and H2 on the overall channel,
and gives the orthogonalization requirement for FRIS N ≥ min(M,K), which,

13Note that, although we can generate different right pseudo-inverses by adding ma-

trices in the null-space of H12, the common expression for right pseudo-inverse H†
12 =

HH
12(H12HH

12)
−1 minimizes the norm of α for the given Ũ and β, which is most desirable

in this work.
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given M > K, leads to N ≥ M . We then get

ΘFRIS = H†
1

(√
βŨ −H0

)
H†

2. (13)

As happened with ARIS, we can also generate a non-orthogonal channel matrix
by substituting

√
βŨ in (13) with any other channel matrix.

3.3 RIS Baseline

Achieving perfect channel orthogonalization is generally not possible if we con-
sider the widely studied RIS model (3). In case there existed a solution, it
would come from finding a vector α in (11) such that |αn|2 = 1 ∀n. Obtaining

said solution would correspond to finding a combination of Ũ (from a subspace
of the unitary matrices), β, and a vector in the null-space of H12 leading to a
solution of (10) with |αn|2 = 1 ∀n. This problem seems analytically intractable,
so we can only restrict ourselves to approximate solutions by numerical opti-
mization. Since our goal is channel orthogonalization, we can find approximate
solutions by numerical minimization of

min
θ1,...,θN

κ(H0 +H1ΘRISH2), (14)

where κ(·) is the condition number of a matrix, given by the division between
its maximum and minimum singular value, i.e., κ(·) = σmax(·)/σmin(·). Note
that κ(·) ≥ 1, with equality only for orthogonal matrices. Thus, by minimizing
it we would achieve a channel as close as possible to orthogonal, which will be
used as a baseline approach.

4 Channel Estimation and RS Configuration

In this section, we propose two techniques (one for ARIS and one for FRIS)
for estimating the channel and RS configuration at the BS. The idea is that,
since it is desirable for RSs to have limited energy consumption[15], [16], and
thus limited computation capabilities, we propose to leave most of the task
of channel estimation and RS weight computation to the BS. For the sake
of simplicity, we assume that each channel estimation step works perfectly.
Proposing more specific channel estimation methods and characterizing the
estimation errors is left as future work.

4.1 ARIS Configuration

We start by proposing a method to configure the ARIS and obtain the desired
channel. The main goal is to estimate the necessary channel information at the
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BS to be able to compute α given by (11). Since the channel matrix can be

arbitrarily chosen by selecting
√
βŨ in (11) (recall it needs not be orthogonal),

we can assume that it is the BS itself that selects the desired channel so that it
does not need to further estimate it. The following steps describe the method
for finding the ARIS configuration at the BS:

Estimation of H0

First, the ARIS fixes α = 0N×1, and the UEs send K orthogonal pilots. The
received symbols over K slots would be then given by the M ×K matrix

Y 1 = H0P +N1, (15)

where P is the previously known pilot matrix, which can be fixed to, e.g.,
P = IK , and N1 is the noise matrix with IID entries nij ∼ CN (0, N0). From
(15) we can directly estimate H0 using state-of-the art channel estimation
methods.

Estimation of H12

Since the effect of H1 and H2 for the selection of α only comes through H12,
it is enough to estimate said matrix, whose columns are given by

[H12]:,n = vec(h1nh
T
2n). (16)

Let us assume that the ARIS is configured such that for a given n we have
αn = 1 and αi = 0 for i ̸= n. Transmitting K orthogonal pilots from the UEs
would then lead to

Y 2n = H0P + h1nh
T
2nP +N2n, (17)

where P and N2n are defined as before. Assuming we already know H0 from
the previous step, we can cancel it at the BS, leading to

Ỹ 2n = h1nh
T
2nP + Ñ2n, (18)

where Ñ2n would include the estimation error from the previous step, which
could lead to correlated entries. From (18) we can estimate h1nh

T
2n using

state-of-the-art estimation methods, which, after vectorizing, would give the
estimate of the nth column of H12 given in (16). If we iteratively perform this
estimation step for n = 1, . . . , N , i.e., setting to 1 each element of the ARIS at
a time, the BS would construct a full estimate of H12.
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Computation and forwarding of α

Once the BS has estimated H0 and H12 it can select its desired channel, which
in our case corresponds to

√
βŨ , and compute α using (11). The BS should

then forward α to the ARIS so that it can be configured to create the desired
channel, which is already known at the BS.

The proposed method allows to configure the ARIS to generate any channel
matrix by using a total of (N + 1)K pilot slots. This corresponds to a notable
decrease with respect to estimating H0, H1, and H2 independently, which
would at least requireMK+N(M+K) slots, or even more for practical methods
such as in [17] for RIS. Moreover, since the BS selects its desired channel, it can
directly use it for equalization/precoding purposes. Also, form the restriction
of the channels to be orthogonal, optimum equalization/precoding would be
achieved through simple MRC/MRT, i.e., multiplying the conjugate transpose
of the channel matrix at the BS.

4.2 FRIS Configuration

If we inspect (13), we note that we need an estimate of both H1 and H2 to be
able to compute the corresponding FRIS configuration, so an efficient method
such as the the one for ARIS may not be available. Let us thus consider that the
FRIS can transmit pilots through each of its elements. Although this might
not be desirable in practice, the concept of FRIS is not yet well-established
in contemporary literature, so we use this assumption as a first step towards
defining the operation of such RSs. Coming up with more elaborate methods
to avoid the requirement of sending pilots from the FRIS will be considered
in future work. The following steps describe the proposed method for FRIS
configuration:

Estimation of H0

In the initial step the FRIS would fix ΘARIS = 0N×N , and the UEs would
send pilots to perform the channel estimation of H0 as in the ARIS case.

Estimation of H1

In the case of FRIS we need to have an estimate ofH1 andH2 to compute their
pseudo-inverses in (13). With the assumption that the FRIS has the ability to
send pilots through each of its elements, the FRIS would send N orthogonal
pilots leading to the received matrix at the BS

Y 2 = H1P FRIS +N2, (19)
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where P FRIS is the N ×N known pilot matrix, which can be set to IN . From
(19), the BS can estimate H1 using state-of-the-art estimation methods.

Estimation of H2

Let the FRIS fix alternatively each group of M elements to 1, i.e., at instant n
we select

ΘFRIS = diag(
[
01×(n−1)M 11×M 01×(N−nM)

]
), (20)

and we send K orthogonal pilots from the UEs. The BS would then receive

Y 3n = H0P +H1,sq(n)H2,sq(n)P +N3, (21)

where H1,sq(n) is the M ×M matrix formed by the columns (n− 1)M + 1 to
nM of H1, H2,sq(n) is the M ×K matrix formed by rows (n−1)M +1 to nM
of H2, and N3 and P are the noise and pilot matrix, respectively. Assuming
H1,sq(n) is full-rank ∀n, we can get an estimate of H2,sq(n) applying state-of-
the-art estimation methods to

Ỹ 3n = Ĥ
−1

1,sq(n)(H1,sq(n)H2,sq(n)P +N3), (22)

where Ĥ1,sq(n) is the estimate of H1,sq(n) from the previous stage. In the
last instant, given by n = ⌈N/M⌉ , nM might exceed N , so everything should
be cropped to N in (22), and we would change the inverse for the left pseudo-

inverse of the cropped Ĥ1. Note that the assumption of having H1,sq(n) of
rank M ∀n is a bit more restrictive than the requirement of solvability of (12),
where only the whole matrix H1 should be rank M . However, in case some
H1,sq(n) are ill-conditioned, which can be known at the BS from the estimate of
H1, we could think of alternative solutions, e.g., selecting groups of M linearly
independent rows. In the worst case, we could also fix a smaller number of
1s in the FRIS and use the pseudo-inverse instead of inverse of the resulting
cropped H1, but this would require larger number of pilot slots.

Computation and forwarding of ΘFRIS

As a final step, the BS would select the desired channel (
√
βŨ) and compute

the FRIS configuration, ΘFRIS, using (13) with the estimates of H0, H1, and
H2. The BS would then forward ΘFRIS to the FRIS, which would then apply
it.

The proposed method allows the BS to configure the FRIS for induc-
ing some desired channel, in this case orthogonal, by employing a total of
(1 + ⌈N/M⌉)K +N pilots, where N of them would correspond to pilots sent
from the FRIS. For a moderate number of users, this leads to a notable decrease
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with respect to the ARIS method, which requires (N + 1)K pilots. Further-
more, we should note that the required N for FRIS can also be remarkably
smaller than for ARIS. A summary of the orthogonalization conditions for
each RS can be found in Table 1.

5 RS Power Constraints

In this section we study the problem of reducing the power requirements for
the RS configurations achieving channel orthogonality. As shown in Table 1,
we define the power of the different RS settings as the squared Frobenius norm
of the reflection matrix Θ, which corresponds to the sum power throughout its
entries. Let us then assume that each RS can operate without amplification as
long as the average power per RS element is no greater than 1 (RIS achieves
this with equality), which translates to ∥Θ∥2fro ≤ N . Note that, ideally, each
RS element should have power no greater than 1, which will be considered in
the extended version of the paper.

Another factor to consider is the power of the resulting orthogonal sub-
channels of H =

√
βŨ . Said power, given by β (orthogonal channels have all

eigenvalues equal), would be linearly related to the post-processed SNR per
UE (after MRC/MRT), η = βEs/N0, where we have assumed that the RS does
not introduce extra noise.14 Recall that, from the orthogonality of the channel,
there is no interference between UEs and all UEs have the same post-processed
SNR. Thus, for a limited RS power, we would ideally like to have a large β so
as to increase the capacity per UE .

5.1 ARIS

The ARIS sum power required for having H =
√
βŨ is given by (see Table 1)

PA(β, Ũ) = βg1(Ũ)− 2
√
βf1(Ũ) + c1, (23)

where f1(Ũ) = Re
{
vec(Ũ)HG−1

12 vec(H0)
}
, g1(Ũ) = vec(Ũ)HG−1

12 vec(Ũ),

and c1 = vec(H0)
HG−1

12 vec(H0), with G12 = H12HH
12. Equation (23) comes

from substituting (11) in the ARIS power expression from Table 1 and oper-
ating. Let us first focus on obtaining the minimum ARIS power for achieving
an orthogonal channel. We can immediately note that the existence of the
direct channel H0 is responsible for requiring a minimum power to be able to
orthogonalize the channel with ARIS. In the absence of H0 (c1 = f1(Ũ) = 0),

PA(β, Ũ) can be made arbitrarily small by lowering β, i.e., sacrificing SNR;

14RSs with amplification might suffer from noise enhancement similar to that of zero-forzing
(ZF) equalizers. A thorough characterization of it may be considered in future work.
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therefore, channel orthogonalization would be achievable without the need for
amplification. Let us then assume H0 is present. Note that the BS has freedom
in selecting Ũ and β. We can then obtain the minimum power required for
orthogonalization with ARIS by solving

PA,min = min
β,Ũ

PA(β, Ũ)

s.t. Ũ
H
Ũ = IK .

(24)

Differentiating PA(β, Ũ) over β and equalling to 0 gives us the minimum β

βo1 =

(
f1(Ũ)

g1(Ũ)

)2

. (25)

We can then substitute βo1 in (23) to get PA(βo1, Ũ), which can then be min-
imized using gradient descent within the unitary space. In order to improve
accuracy of the optimization, we consider optimization over the geodesics of the
unitary space as proposed in [18]. Thus, we need to obtain the Euclidean gra-

dient by differentiating PA(β∗, Ũ) over U∗ (recall (6)), and use it for algorithm
in [18, Table II], which includes Armijo line-search for better convergence. We
get

∂PA(βo1, Ũ)

∂Ũ
∗ =

b

g21(Ũ)
vec−1

(
− f2

1 (Ũ)G−1
12 vec(Ũ)

+f1(Ũ)g1(Ũ)G−1
12 vec(H0)

)
,

(26)

where b = 1 − 2sign
(
f1(Ũ)

)
. Note that, for differentiating over U∗ instead

of Ũ
∗
, we would just complete (26) with zeros, since the corresponding extra

columns of U have no bearing on PA(βo1, Ũ). Once we have obtained PA,min,
any other ARIS sum power above it can be achieved from (23) by solving a
second order equation over

√
β. Note that for every different β there may be a

new optimal Ũ , i.e., different from the one solving (24), which minimizes the
resulting power. Alternatives of (24) will be studied in the extended version.

5.2 FRIS

The FRIS sum power giving H =
√
βŨ corresponds to

PF =βg2(Ũ)− 2
√
βf2(Ũ) + c2, (27)
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ARIS FRIS RIS

Minimum N for orthogonalization MK min(M,K) -

Number of pilots (N + 1)K
(
1 +

⌈
N
M

⌉)
K +N > MK +N(M +K) [17]

RS sum power ∥ΘARIS∥2fro = αHα ∥ΘFRIS∥2fro = tr(ΘH
FRISΘFRIS) ∥ΘRIS∥2fro = N

Table 1: Orthogonalization conditions for different RSs.

where we defined f2(Ũ)=Re
{
tr(G−1

2 Ũ
H
G−1

1 H0)
}
, g2(Ũ)=tr(G−1

2 Ũ
H
G−1

1 Ũ),

c2 = tr(G−1
2 HH

0 G
−1
1 H0), with G1 = H1H

H
1 and G2 = HH

2 H2. We can use
the same reasoning as in the case for ARIS throughout the different steps. Let
us thus focus on solving

PF,min = min
β,Ũ

PF(β, Ũ)

s.t. Ũ
H
Ũ = IK .

(28)

Proceeding as in the previous case we can get

βo2 =

(
f2(Ũ)

g2(Ũ)

)2

, (29)

which leads to the euclidean gradient to be used for minimizing over Ũ using
[18, Table II],

∂PF(βo1, Ũ)

∂Ũ
∗ =

b

g22(Ũ)

(
− f2

2 (Ũ)G−1
1 Ũ

H
G−1

2

+g2(Ũ)f2(Ũ)G−1
1 H0G

−1
2

)
,

(30)

where b = 1− 2sign
(
f2(Ũ)

)
.

6 Numerical Results

For the numerical results, we have tried to solve the optimization problems
defined in (24) and (28). Finding closed form results for said problems is in

general intractable due the constraint in Ũ , which should live in a subspace
of the unitary matrices. However, good local solutions can be found by using
gradient descent along the geodesics, as proposed in [18]. We cannot assure
that the obtained results reach absolute minima, but, since our main goal is
to check if the proposed RS technologies can be realized without amplification,
local minima may be enough for our purpose. We have thus implemented [18,
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Table II] with the Euclidean gradients defined in (26) and (30) to find the
minimum power required for perfect channel orthongonalization using ARIS
and FRIS, respectively.

In Fig. 1 we can see the minimum average RS power per element, PRS,avg =
P{A,F},min/N , and the resulting channel gain per UE, equal to β for all UEs
from the orthogonal restriction, with respect to the normalized power of the
direct channel, E0. Since we are most interested in the power relation between
the direct and reflected channels, we have used normalized IID Rayleigh fading
channels with ∥H0∥2Fro = E0MK, ∥H1∥2Fro = MN , ∥H2∥2Fro = NK. Other
channel models will be considered in future work, but we may note from the
analytical results that ill-conditioned channels are most harmful in the RS-
reflected paths. Fig. 1 (left) shows that in most practical scenarios (direct
links with power below 100 times the reflected one), the minimum average
power for channel orthogonalization, with both ARIS and FRIS, can be smaller
than that of RIS, so these surfaces could potentially be implemented without
amplification. The resulting channel gains for these minimized powers have
analogous linear relation with E0, still impressive since they even outperform
RIS, which has been numerically optimized for channel orthogonalization using
(14).15 However, the results for RIS may be far from optimum due to the
difficulty of such task, and the analytical intractability. Finding more suitable
optimization formulations for channel orthogonalization with RIS should be
further studied. A important thing to note is that the channel gains in Fig. 1 are
achieved with RS power dependent on E0, and generally below that of RIS. If
we increase the respective gains until all RS powers are equal to that of RIS, the
resulting channel gains, which are plotted in Fig. 2, are even more impressive,
especially for FRIS, which can get 10 times better channel gains than ARIS
with a lower number of elements. In fact, there is room for improvement by
further optimization of Ũ , as previously discussed.

7 Conclusions

We have presented the concepts of FRIS and ARIS, two alternative RS tech-
nologies with relaxed restrictions over RIS. We have obtained analytical results
for FRIS and ARIS configurations that achieve perfect channel orthogonaliza-
tion. We proposed a channel estimation method for each RS technology at
the BS, which selects the desired channel and forwards the corresponding RS
configuration. We have also showed that these RS can perform channel orthog-
onalization without the need of amplification by minimizing over the unitary
space. The achieved channel gains, which are fairly distributed among users

15For the RIS, since perfect orthogonality may not be reachable, we plotted the average
channel gain and minimum channel gain per UE.
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Figure 1: Minimum average RS power per element (left) and resulting minimum
channel gain per UE with respect to normalized gain of the direct channel.
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Figure 2: Channel gain per UE for unit average RS power per element with respect
to normalized gain of the direct channel.
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from the orthogonalization, remark the benefits of adding more processing ca-
pabilities at the RSs.

References

[1] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Transactions on Information Theory, vol. 52, no. 11, pp. 5045–5060, 2006.

[2] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Transactions on Wireless Communica-
tions, vol. 9, no. 11, pp. 3590–3600, 2010.

[3] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta,
“Massive MIMO is a reality—what is next?: Five promising research di-
rections for antenna arrays,” Digital Signal Processing, vol. 94, pp. 3–20,
2019, Special Issue on Source Localization in Massive MIMO.

[4] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.

[5] C. Huang, S. Hu, G. C. Alexandropoulos, et al., “Holographic MIMO
surfaces for 6G wireless networks: Opportunities, challenges, and trends,”
IEEE Wireless Communications, vol. 27, no. 5, pp. 118–125, 2020.

[6] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Transactions
on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, 2019.

[7] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen,
“Reconfigurable intelligent surfaces for energy efficiency in wireless com-
munication,” IEEE Transactions on Wireless Communications, vol. 18,
no. 8, pp. 4157–4170, 2019.

[8] O. Ozdogan, E. Björnson, and E. G. Larsson, “Using intelligent reflecting
surfaces for rank improvement in MIMO communications,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 9160–9164.

[9] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate
maximization for reconfigurable intelligent surface aided wireless net-
works,” IEEE Transactions on Wireless Communications, vol. 19, no. 5,
pp. 3064–3076, 2020.

[10] Y. Zhang, C. Zhong, Z. Zhang, and W. Lu, “Sum rate optimization for
two way communications with intelligent reflecting surface,” IEEE Com-
munications Letters, vol. 24, no. 5, pp. 1090–1094, 2020.



Contents 175

[11] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications, 1st. USA: Cambridge University Press, 2008.

[12] R. A. Tasci, F. Kilinc, E. Basar, and G. C. Alexandropoulos, “A new RIS
architecture with a single power amplifier: Energy efficiency and error
performance analysis,” IEEE Access, vol. 10, pp. 44 804–44 815, 2022.

[13] R. Long, Y.-C. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable
intelligent surface-aided wireless communications,” IEEE Transactions
on Wireless Communications, vol. 20, no. 8, pp. 4962–4975, 2021.

[14] T. Zirtiloglu, N. Shlezinger, Y. C. Eldar, and R. Tugce Yazicigil, “Power-
efficient hybrid MIMO receiver with task-specific beamforming using low-
resolution ADCs,” in ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 5338–
5342.

[15] M. Di Renzo, K. Ntontin, J. Song, et al., “Reconfigurable intelligent sur-
faces vs. relaying: Differences, similarities, and performance comparison,”
IEEE Open Journal of the Communications Society, vol. 1, pp. 798–807,
2020.

[16] Y. Liu, X. Liu, X. Mu, et al., “Reconfigurable intelligent surfaces: Prin-
ciples and opportunities,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 3, pp. 1546–1577, 2021.

[17] M. Joham, H. Gao, and W. Utschick, “Estimation of channels in systems
with intelligent reflecting surfaces,” in ICASSP 2022 - 2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
2022, pp. 5368–5372.

[18] T. E. Abrudan, J. Eriksson, and V. Koivunen, “Steepest descent algo-
rithms for optimization under unitary matrix constraint,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 3, pp. 1134–1147, 2008.









Trade-offs in Decentralized

Multi-Antenna Architectures: Sparse

Combining Modules for WAX

Decomposition

With the increase in the number of antennas at BS, centralized multi-

antenna architectures have encountered scalability problems from exces-

sive interconnection bandwidth to the CPU, as well as increased pro-

cessing complexity. Thus, research efforts have been directed towards

finding decentralized receiver architectures where a part of the process-

ing is performed at the antenna end (or close to it). A recent paper put

forth an information-lossless trade-off between level of decentralization

(inputs to CPU) and decentralized processing complexity (multiplications

per antenna). This trade-off was obtained by studying a newly defined

matrix decomposition–the WAX decomposition–which is directly related

to the information-lossless processing that should to be applied in a gen-

eral framework to exploit the trade-off. The general framework consists

of three stages: a set of decentralized filters, a linear combining module,

and a processing matrix applied at the CPU; these three stages are linear

transformations which can be identified with the three constituent matri-

ces of the WAX decomposition. The previous work was unable to provide

explicit constructions for linear combining modules which are valid for

WAX decomposition, while it remarked the importance of these modules

being sparse with 1s and 0s so they could be efficiently implemented using

hardware accelerators. In this work we present a number of constructions,

as well as possible variations of them, for effectively defining linear com-

bining modules which can be used in the WAX decomposition. Further-

more, we show how these structures facilitate decentralized calculation of

the WAX decomposition for applying information-lossless processing in

architectures with an arbitrary level of decentralization.

J. Vidal Alegŕıa, F. Rusek,

“Trade-offs in Decentralized Multi-Antenna Architectures: Sparse Combining Mod-

ules for WAX Decomposition,”
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1 Introduction

Multi-antenna architectures constitute a mature technology which keeps devel-
oping to improve wireless communication links. Their main benefits include
increased data rates and reliability due to the exploitation of space-division
multiplexing and diversity. Current research on multi-antenna architectures
is trending towards scaling up the number of antennas in order to further in-
crease spectral efficiency and spatial resolution. This trend can be seen, e.g.,
in massive MIMO [1], [2] and LIS [3], where massive MIMO considers BSs with
hundreds of antennas, while LIS goes beyond by considering whole walls of
electromagnetically active material.

Several prototypes of massive MIMO have been developed and tested [4]–[6].
In the prototypes from [4], [6], centralized processing results in scalability issues
due to the increased data-rates between the antennas and the CPU, which scales
with the number of antennas. These issues become even more concerning in
LIS, where practical deployments are expected to include a number of antennas
at least an order of magnitude greater than massive MIMO [7].16 Cell-free
massive MIMO[9]–[12] is also likely to suffer from scalability issues due to the
large number of access points (APs) distributed throughout large geographical
areas. Our system model will consider a general multi-antenna architecture
which can be generalized to more specific applications, e.g., the ones previously
mentioned.

Decentralized pre-processing of the received signals at the antenna end (or
nearby) allows to reduce the dimension of the data that needs to be transmit-
ted to a CPU[13]–[15]. In the recent years, there has been a trend towards
considering more decentralized architectures [13]–[23] in order to cope with
scalability issues arising in large-scale multi-antenna architectures. The litera-
ture on decentralized massive MIMO includes a number of solutions, ranging
from fully-decentralized architectures [16], [19]–[21], where CSI does not have
to be available at the CPU, to partially decentralized architectures, where some
of the processing tasks are distributed, but neither full [17], [23], nor partial
CSI [13] is available at the CPU. We can also find decentralized solutions tai-
lored for other large-scale multi-antenna systems such as for cell-free massive
MIMO [10], [24], or for extra-large scale MIMO (XL-MIMO) [23], [25], which
can be seen as a system with a number of antennas in the regime of massive
MIMO where the antenna array is deployed throughout a large surface such
that spatial non-stationarities appear [26].

In [27], an information-lossless trade-off between the number of connections
to a CPU and number of multiplications per antenna is presented.17 To this

16Discrete surfaces approximate continuous ones when sampling is dense enough [3], [8].
17Information-lossless here means that the mutual information between the post-processed

and the user data is equal to the mutual information between the received data and the user
data.
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end, a general framework is considered which can accommodate classical cen-
tralized processing architectures, decentralized architectures such as [13], as
well as a wide range of intermediate architectures. Unlike [18], where a system-
level trade-off between different decentralized architectures, algorithms, and
data precision is studied, [27] gives a fundamental trade-off between level of de-
centralization and decentralized processing complexity. The information-lossy
regime of said trade-off is considered in [7], [14], while we restrict our work to
the information-lossless regime. Hence, the results from [14], [16]–[23], [25] lie
essentially outside the scope of our work since they rely on the usage of lin-
ear equalizers which incur information-losses before symbol detection, and/or
they focus on the symbol detection problem, which we disregard in this work.
Furthermore, most of these works focus on the implementation of solutions as
decentralized as possible, while our aim is to understand the trade-offs aris-
ing when we can have different levels of decentralization. Thus, we consider
the general framework from [27], which corresponds to a generic architecture
useful in the analysis of the information-lossless regime of decentralized linear
equalization. Note that BER is not a suitable metric for judging the results
presented in this work,18 while channel capacity is perfectly achievable under
this framework.

The WAX decomposition, as originally introduced in [27], is a matrix de-
composition which has direct correspondence with the information-lossless lin-
ear processing to be applied in an architecture with an arbitrary level of de-
centralization. It thus allows to characterize the information-lossless trade-off
between level of decentralization and decentralized processing complexity. The
idea is to decompose the channel matrix into the product of a (block-diagonal)
decentralized processing matrix W , a linear combining module A, and a CPU
processing matrix X. In [27, Theorem 1], the requirements for the existence
of the WAX decomposition are only proved for randomly chosen channel ma-
trices and using fixed randomly chosen combining modules A (for definition
of ”randomly chosen” see Notation). In [12], the applicability of the WAX
decomposition is generalized to sparse channel matrices, showing that channel
sparsity can degrade the trade-off given in [27]. On the other hand, [27] remarks
the importance of employing a simple sparse combining matrix A with 1s and
0s, so that it could be efficiently implemented through hardware modules, i.e.,
generalizing the trivial combining modules from purely decentralized architec-
tures (e.g., the sum module from [13]) or common centralized architectures
(i.e., an identity module). However, [27] only presents necessary conditions for
an A to be valid for WAX decomposition.

The current paper is a continuation of the work presented in [27], and it
further extends the results from [30]. Thus, our aim is to fill some of the gaps

18BER can be made arbitrarily small when operating at rates below capacity [28] with
marginal loss when considering practical channel coding methods, e.g., LDPC [29].
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from [27] by presenting a set of constructions for A which consist of sparse
structures of 1s and 0s,19 and which can be proved valid for WAX decom-
position under different parameter settings. The proven existence of these
constructions strengthens the practicality of the WAX decomposition for the
exploitation of the trade-off between level of decentralization and decentralized
processing complexity from [27]. Furthermore, we exploit the structure of said
A matrices to define a decentralized scheme for computing the information-
lossless decentralized filters without the need of aggregating the full CSI at any
single point. We also extend [27, Theorem 1] by proving the converse (only if)
statement for arbitrary combining modules, thus showing that the information-
lossless trade-off studied [27] is of fundamental nature and it is not possible to
operate without loss beyond it. The list of contributions are summarized next:

• We prove that there exists no combining module, A, attaining a less-
restrictive information-lossless trade-off than the one obtained in [27,
Theorem 1], which was only proved for randomly chosen A.

• We present an equivalent formulation of the WAX decomposition which
describes the information-lossless regime without the need of taking into
account any processing at the CPU. This was already included in [30].

• We present 3 sparse structures for A and prove their validity for WAX
decomposition. Only one of these structures was included in [30]. The
new structures allow for more freedom in the exploitation without loss of
the achievable trade-off, which corresponds to a novel generalization of
the trade-off from [27] with marginal loss.

• We present two transformations for A that maintain its validity. One of
them was included in [30].

• We present a general algorithm to construct a matrixA that allows for the
exploitation of the achievable trade-off for any set of system parameters.
Unfortunately, we were unable to formally prove the validity of the A
matrices constructed using said algorithm.

• We present a decentralized scheme for computing the information-lossless
decentralized filters which generalizes the one included in [30] to the new
A structures presented in this work.

The rest of the paper is organized as follows. Section 2 presents the system
model and discusses the relevant background from [27]. Section 3 presents the
main theoretical results, including the converse of [27, Theorem 1], and the
equivalent formulation of the WAX decomposition. In Section 4, we discuss
different ways of constructing a valid combining matrix A. Section 5 describes

19This condition is slightly relaxed in degenerate cases as will be discussed.
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the decentralized scheme for computing the decentralized filters considering
the valid A structures. In Section 5, we present some examples as well as a
discussion of the previous results. Finally, Section 7 concludes the paper.

Notation: In this paper, lowercase, bold lowercase and bold uppercase let-
ters stand for scalars, column vectors and matrices, respectively. When using
the mutual information operator, I(·; ·), bold uppercase sub-scripts refer to
random vectors instead of their realizations. The operations (·)T, (·)∗ and (·)H
denote transpose, conjugate, and conjugate transpose, respectively. The oper-
ation (·)† denotes Moore-Penrose inverse. The operation diag(·, . . . , ·) outputs
a block diagonal matrix with the input matrices as the diagonal blocks. A⊗B
denotes the Kronecker product between matrices A and B. Ii corresponds to
the identity matrix of size i, 1i×j denotes the i × j all-ones matrix, and 0i×j

denotes the i× j all-zeros matrix (absence of one such index indicates that the
matrix is square). The notation [A]i:j,ℓ:k denotes a matrix formed by rows i
to j and columns ℓ to k of A (as in Python vector notation, absence of one
or more indexes indicates that start/end of the included rows or columns cor-
responds to the first/last row or column of A, respectively). In this paper, a
randomly chosen matrix corresponds to a realization of a random matrix where
any submatrix of it is full-rank with probability 1, e.g., a realization of an IID
Gaussian matrix.

2 System Model

Let us consider K single-antenna users transmitting to an M -antenna BS, with
M > K, through a narrow-band channel. TheM×1 received complex baseband
vector can be expressed as

y = Hs+ n, (1)

where H is the M × K channel matrix, s is the K × 1 vector of symbols
transmitted by the users, and n is a zero-mean complex white Gaussian noise
vector with sample variance N0. The M antennas are divided into MP groups
(or panels) with L antennas (M/L evaluates to an integer). Thus, we can
express the channel matrix asH = [HT

1 HT
2 . . .HT

MP
]T whereHm corresponds

to the L×K local channel matrix seen by panel p, for p ∈ {1, . . . ,MP}. Each
panel multiplies the received vector by an L×L matrix, WH

m m ∈ {1, . . . ,MP},
thus generating L outputs,20 L ≤ K. The aggregated outputs are combined
through a fixed T ×M matrix, AH, T ≤ M . We can view AH as a hardware
combining module which can be predesigned, but is fixed once deployed. The
resulting vector is forwarded to a CPU, which can apply further processing.

20From [27], the restriction of having the same number of antennas and outputs in each
panel can be relaxed through an equivalent transformation without constraining the validity
of our analysis.
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In order be able to relate the resulting linear processing to common strategies,
e.g., MRC, ZF, MMSE, etc, we assume that the processing at the CPU can be
given by a matrix multiplication with a K × T matrix XH (see [27] for further
details). The post-processed vector is then given by

z = XHAHWHy, (2)

where W is an M ×M block diagonal matrix of the form

W = diag (W 1,W 2, . . . ,WMP) . (3)

The matrices W and X can be recalculated for every channel realization, while
the matrix A remains unchanged once the system is deployed (we can think
of it as a fixed hardware combining module). The framework under study
is represented in Fig. 1. Note that, during the whole uplink transmission,
information is only flowing from the antennas towards the CPU, unlike message
passing approaches like [22], [23], [25]. This means that there is no extra
delay with respect to common centralized architectures, apart from the delay
associated to the computation of the decentralized filters which is only done
once per coherence interval.
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Figure 1: Framework considered in this paper during an uplink transmission.

The main challenge of the current framework is to maximize the information
rate at which the users can transmit to the BS, i.e., IZ,S(z; s), or, correspond-

ingly,21 IY ,S(A
HWHy; s). In this paper we will aim at applying information

lossless processing, where IY ,S(A
HWHy; s) = IY ,S(y; s). Note that the ap-

21Note that X cannot possibly increase the maximum information rate at which the users
can transmit (recall data-processing inequality [28]). The main purpose of it is to be able to
consider specific linear receiver schemes, e.g., ZF, MF, etc.
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plication of X is not strictly necessary since it cannot possibly increase the
information rate.

The framework under study allows for an information-lossless trade-off be-
tween the number of multiplications per antenna, L, and the number of inputs
to the CPU, T . Said trade-off was identified in [27], where initial results are
presented. In the present work we aim at presenting new results that allow for
practical exploitation of the trade-off.

Having the number of antennas per panel equal to the multiplications per
antenna, both given by L in this work, might seem like unnecessarily restrictive.
In [27], the number of antennas per panel considered was an arbitrary number
N , leading to Wm matrices of size N × L. However, the most important
results in said paper consider the case N = L due to its intrinsic generality in
the information-lossless scenario. Note that, in order to achieve information-
lossless processing, we require N ≤ L, while if N divides L, [27, Lemma 2]
shows that there is a direct mapping to the case where N = L. Furthermore,
from a practical perspective, minimum interconnection bandwidth (i.e., outputs
per panel) in the information-lossless case is achieved for N = L. Considering
all the above, we find it reasonable to focus on the case where the number of
antennas per panel coincides with the number of outputs per panel as in the
presented framework. However, it would be straightforward to consider panels
formed by several of these groups of L antennas as in [12].

The framework discussed so far shows how the system operates during the
data phase, where the users are transmitting data within one coherence block,
so the corresponding W and X matrices have already been calculated for the
current channel realization H. In this work we also focus on what is being done
during the training phase. Specifically, we want to find decentralized schemes
to compute the information-lossless decentralized filters to be applied.22 Since
the application of X at the CPU cannot possibly increase mutual information
(as previously discussed), we restrict our problem to proposing a decentralized
scheme that allows us to compute the equalizer that each panel has to apply,
i.e., Wm ∀m, such that the overall processing is information-lossless. In this
way, the data arriving at the CPU will contain the same amount of information
from the users as in the centralized case. As we will see, the structure ofA plays
a big role in how the decentralized computation of W can be performed. Thus,
we will explore how certain structures forA allow the definition of decentralized
schemes for obtaining Wm at each panel.

22By decentralized here we mean that each panel has access to its local channel, Hm and
it can share some reduced data with a number of other panels to find the processing to be
applied.
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2.1 Background

As we mentioned earlier, the system model considered in this work was already
studied in [27], where we can find important results which will be required for
our analysis. From [27, Lemma 1], the framework under study can achieve
information lossless processing if and only if we can decompose the channel
matrix H into the so called WAX decomposition

H = WAX, (4)

where W , A and X correspond to the matrices from (2), i.e., A is fixed
by design while W and X can be tuned to H. Note that, according to
[27, Lemma 1], selecting W and X in (2) such that (4) is fulfilled leads to
information-lossless processing within our framework. The main result of the
applicability of WAX decomposition is given in [27, Theorem 1], which states
that, for a fixed randomly chosen A ∈ CM×T , a randomly chosen H ∈ CM×K

admits WAX decomposition with probability 1 if

T > max

(
M

K − L

K
,K − 1

)
. (5)

An alternative formulation of (5), can be given by considering the restriction
on the other trade-off parameter, L. This results in

L > K
M − T

M
, (6)

where we restrict ourselves to the regime T ≥ K where there exists an
information-lossless trade-off between T and L (for T < K there would be
information-loss no matter the value of L). Defining TP = T/L we have

L > K
MP − TP

MP
, (7)

which is more significant for the current work as we will see.
In this paper, however, we will explore specific structures forAmatrices and

prove their validity for WAX decomposition. We consider the same definition
as in [27, Definition 1] for the validity of A, i.e., a randomly chosen H admits
WAX decomposition with probability 1 for a valid A. Note that [27] only
provides necessary conditions for valid A matrices which are not randomly
chosen, as well as a method to test if a specific A matrix is valid for some fixed
dimensions (not generalizable). It is one of our desires to find structures for
A that allow for a trade-off between L and T as close as possible to (7) (for
T ≥ K).
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3 New Results on the WAX Decomposition

3.1 The Necessary Information-Lossless Trade-off

In[27, Theorem 1], the condition (5) for the existence of WAX decomposition
was only proved for a randomly chosen A. However, it is unclear if there exist
any other selection of A that may attain a better trade-off than the one defined
in (5). The following theorem shows that (5) is not only a sufficient condition
for the existence of the WAX decomposition, but also a necessary condition.

Theorem 3 Let A be an arbitrary M × T , and H be an M × K randomly
chosen matrix. The WAX decomposition of H, given by (5), can only exists if
(5) is satisfied. Furthermore, A should be of rank T to be able to attain (5).

Proof See Appendix A. □

Theorem 3 states that the fundamental trade-off between the number of mul-
tiplications per antenna (L), and the number of inputs to the CPU (T ), is
ultimately governed by (5) (or its alternative formulations). For the rest of the
paper we assume M ≥ T ≥ K, which is the regime where the information-
lossless trade-off between L and T applies.

3.2 The Equivalent Formulation of the WAX Decompo-
sition

Let us divide A into two blocks

A =

[
AT

AB

]
, (8)

where AT is a T × T matrix corresponding to the top part of A, and AB is
the (M − T ) × T matrix corresponding to the bottom part of A. We next
provide a theorem corresponding to an equivalent formulation of the WAX
decomposition.

Theorem 4 Assume that TP = T/L evaluates to an integer value, and that
AT is full-rank. Then, the WAX decomposition of some M × K matrix H,
given by (4), exists if and only if we can find a full-rank W (corresponding to
(3)) such that

BTW−1H = 0(M−T )×K , (9)

where the matrix B is defined as

B =
[
ABA

−1
T −IM−T

]T
.
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Proof Let us assume W in (4) to be full-rank; correspondingly, Wm are also
full-rank ∀m. Note that, considering [27, Lemma 3], the WAX decomposition
of a randomly chosen H exists if and only if then there exists a full-rank W
that achieves said decomposition. From (4) we can get

X = A−1
T diag (W 1,W 2, . . . ,W TP)

−1


H1

H2

...
HTP

 , (10)

where AT is full-rank by assumption. On the other hand, selecting X as in
(10) implies that, in order to fulfill (4), we only need to fulfill

WABX =


HTP+1

HTP+2

...
HMP

 . (11)

If we substitute (10) in (11) and do some simple matrix manipulations we get
(9). □

We should note that the assumptions taken in Theorem 4 are not as restric-
tive as they seem. In fact, they are fairly reasonable within our framework:

• If L is small with respect to T , restricting TP = T/L to integers will only
have a minor effect on the achievable optimum trade-off between T and
L from (5). For arbitrary T this restriction can translate to an increase
of T − L⌊T/L⌋ < L CPU inputs. Furthermore, in the optimum trade-off
regime we have 0 ≤ L ≤ K and K ≤ T ≤ M , so L is small with respect
to T throughout much of the trade-off, specially as M grows large.

• Having full-rank AT can be relaxed by re-indexing the diagonal blocks of
W , i.e., only a submatrix formed by TP out of the MP horizontal blocks
of dimensions L×T in A should be full-rank. Moreover, from Theorem 1,
A should be of rank T to attain (5), so a T × T submatrix of it should
be full-rank.

Therefore, we will keep these assumptions throughout the rest of the paper.
The importance of Theorem 4 resides in the fact that it provides an alter-

native formulation of the WAX decomposition without any need to consider
X. Since the WAX decomposition allows for information-lossless processing
within the framework under study (see [27]), the new formulation, given in
(9), will also assure information-lossless processing. Thus, we can see (9) as
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the restriction on the Wm matrices ∀m in order to achieve information-lossless
processing until the CPU is reached (under the assumptions of Theorem 4).

Another important implication of Theorem 4 is that we can construct a
valid A matrix by selecting ABA

−1
T such that there exists a W that satisfies

(11) for any randomly chosen H (except those in a zero-probability set). We
can thus note that we have full freedom in selecting AT (as long as it is full-
rank) since this matrix can be compensated through a full-rank transformation
on AB.

Throughout the rest of the paper, we will focus on the study of A matrices
formed as

A = Ã⊗ IL, (12)

where Ã is now an MP × TP matrix. Even though it may seem like an un-
necessary restriction, (12) is in fact a desirable construction for a number of
reasons:

• Any A matrix resulting from (12) will be inherently sparse since it would
have a minimum of (M −MP)T zeros out of its MT elements.

• The combining module resulting from (12) has a simple hardware imple-
mentation since it only requires to scale and phase-shift the aggregated
output of each panel before combining it with other panels. In fact, our
goal is to eliminate the scaling and phase-shifting so that only sum mod-
ules are required.

• The equivalent formulation of the WAX decomposition (9) can simplify
greatly through (12), as will be apparent in Corollary 1. Hence, it will
lead to increased mathematical tractability, allowing to prove the validity
of some interesting A structures.

The main concern that can raise from fixing (12) is that we may sacrifice
achievability of the optimum trade-off (7), which is defined for randomly chosen
A. However, if we are able to reach a bound arbitrarily close to (7) we could
conclude that there is no loss associated to (12).

Given (12), it becomes natural to extend the definition from [27, Defini-

tion 1] and talk about valid Ã matrices for WAX decomposition. Considering
(8), we can now write

AT = ÃT ⊗ IL,

AB = ÃB ⊗ IL,
(13)

where ÃT and ÃB are matrices of dimensions TP × TP and (MP − TP) × TP,
respectively. In order to simplify upcoming notation, let us define

Φ = MP − TP. (14)
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The next corollary comes as a direct consequence of Theorem 4 whenever we
have (12).

Corollary 1 Assume that A is of the form (12), and that ÃT is full rank. If
we define the matrix

B̃ =
[
ÃBÃ

−1

T −IMP−TP

]T
, (15)

the WAX decomposition of some M ×K matrix H, given by (4), exists if and
only if we can find full-rank Wm matrices such that

[
W−1

1 W−1
2 . . . W−1

MP

]


b̃
T

1 ⊗H1

b̃
T

2 ⊗H2

...

b̃
T

MP
⊗HMP

= 0L×KΦ, (16)

where b̃
T

m, for m = 1, . . . ,MP, correspond to the rows of B̃. A more compact
notation for (16) is achieved by considering the face-splitting product, (·) • (·),
which corresponds to a special case of the Khatri-Rao product dividing the left
matrix into its rows, i.e.,[

W−1
1 W−1

2 . . . W−1
MP

] (
B̃ •H

)
= 0L×KΦ. (17)

Proof Let us take Theorem 4 and substitute (13) in (9). Simple matrix ma-
nipulation leads to (16). □

Corollary 1 provides a new formulation of the WAX decomposition, now
taking into account (12). The main benefit of this new formulation is that
the diagonal blocks of W−1 come in the form of a block row matrix instead
of a block diagonal matrix, which will simplify the tasks of proving valid Ã
structures. As happened for A, we can note that the validity of Ã for WAX

decomposition depends only on B̃, i.e., the product ÃBÃ
−1

T will determine the

validity of Ã. Our next goal is to come up with clever ways of constructing the

product ÃBÃ
−1

T which can lead to valid Ã.
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4 Constructing Valid Ã Matrices

4.1 Transforming Ã while Maintaining Validity

Taking into account the results from the previous section, we will start by
stating some transformations on Ã that maintain its validity for WAX decom-
position. These may be useful for proving the validity of specific constructions
for Ã, or for generating new Ã structures from those that can be proved valid.

Proposition 2 Assume a valid Ã for WAX decomposition. If we construct

Ã
′
= ÃΘ, where Θ can be any TP × TP full-rank matrix, Ã

′
is also valid for

WAX decomposition.

Proof Considering (15) we have that

B̃
′
=
[
Ã

′
BÃ

′
T
−1 −IΦ

]T
=
[
ÃBΘΘ−1Ã

−1

T −IMP−TP

]T
,

= B̃.

From Corollary 1 the validity of Ã
′
is only determined by B̃

′
, which leads to

Proposition 2. □

The previous proposition can be also trivially extended to A if we disregard
the restriction (12). This proposition also remarks that the selection of ÃT does

not affect the validity of Ã as long as it is full-rank, since it can be compensated
by selecting Θ.

Proposition 3 Assume Ã is valid for WAX decomposition. If we construct

Ã
′
= PÃ, where P can be any MP ×MP permutation matrix, Ã

′
is also valid

for WAX decomposition.

Proof It is enough to notice that applying a permutation matrix on Ã only
corresponds to a re-indexing of the Wm matrices in (3), which does not affect
the solvability of (4). □

The previous propositions focused on applying transformations on Ã that
maintain its validity for WAX decomposition. However, as we will see, one way
to explore valid Ã matrices is to explore B̃ matrices of the form (15) that allow

us to solve (17). Thus, let us define valid B̃ for WAX decomposition as such
matrices allowing for a solution to (16), i.e., leading to a valid A through (13)
and (15).
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4.2 Constructing Ã from Predesigned B̃

In Section 3 we noted that properties of B̃, given by (15), determine the validity

of a matrix Ã. We can thus construct an Ã by first specifying a valid B̃ and
then extracting an underlying Ã. More specifically, we should only define the

product ÃBÃ
−1

T giving a valid B̃, and then we can extract a valid Ã from the

possible ÃB and ÃT.

If we consider the Φ × TP upper part of B̃, given by (ÃBÃ
−1

T )T, we can
note that we have no loss of generality if we set

ÃT = ITP , (18)

since we can still generate any possible B̃ of the form (15) by choosing ÃB.
23 Any other full-rank ÃT can be selected by considering the transformation
in Proposition 2, although said transformation would also change ÃB. On the
other hand, the physical implication of having (18) is also practically desirable,

since this would result in an Ã with minimum number of 1s in its first TP rows,
i.e., it corresponds to the sparsest possible ÃT. The reason is that such ÃT

leads, through (12), to an A matrix with a single 1 per row in its first T rows,
thus attaining the lower bound from [27, Lemma 6], which corresponds to a
lower bound on the number of 1s per row of A for it to be valid. Therefore, in
what follows, we consider Ã matrices such that (18) is fulfilled. We remark that

such selection does not impact the validity of Ã since if we can find a valid Ã

with a different ÃT, we can always find a valid Ã
′
with Ã

′
T = ITP

by invoking

Proposition 2 with Θ = Ã
−1

T . Thus, (18) should not be seen as a restriction,

but a beneficial selection of ÃT achieving maximum sparsity without loss.
The following proposition presents a structure for A, taking into account

the previous assumptions, which is proved to be valid for WAX decomposition.

Proposition 4 Assume that A is given by (12), with ÃT = ITP , and ÃB

constructed as

ÃB =

1Φ×1 0Φ×J IΦ · · · IΦ︸ ︷︷ ︸
Q1=

⌊
TP−1

Φ

⌋
 , (19)

where J = TP − 1−Q1Φ, and where

Q1 =

⌊
TP − 1

Φ

⌋
. (20)

23Note that with (18), ÃB would directly correspond the top TP rows of B̃, which are the
only ones that can be changed for Corollary 1 to apply.
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A randomly chosen matrix H admits WAX decomposition with probability 1
for the given A if

L ≥ K

1 +Q1
, (21)

Furthermore, W 1 (defined in (3)) can be fixed to an arbitrary L× L full-rank
matrix without affecting the solvability of the WAX decomposition.

Proof Selecting ÃT = ITP
and ÃB as in (19) leads to

B̃ =

[
1Φ×1 0Φ×J IΦ · · · IΦ︸ ︷︷ ︸

Q1

−IΦ
]T

.

From Corollary 1, we can solve the equivalent formulation of the WAX decom-
position, given in (16), with the restriction of having full-rank Wm ∀m. If we
invoke (16), we get the set of equations

W−1
1 H1 =

Q1+1∑
q=0

W−1
J+r+qΦHJ+r+qΦ, r = 1, . . . ,Φ. (22)

Note that we have ignored the negative sign associated to the last identity block
in B̃ since this can be absorbed without loss of generality by the corresponding
Hm blocks. Let us consider W 1 to be fixed to an arbitrary L × L full-rank
matrix (e.g., W 1 = IL), since this is the only Wm shared in all the Φ equations
from (22). Note that the selection of W 1, as long as it is full-rank, does not
affect the solvability of (22) because this matrix can be absorbed by H1 (or
by the rest of the Wm matrices) without changing its nature. Then, through
trivial linear algebra arguments, namely counting equations and variables in the
resulting linear system, and assuming randomly chosen H (i.e., Hm are also
randomly chosen ∀m and their sum will reduce rank with probability 0), we can
independently solve each of the Φ equations whenever (21) is fulfilled. □

The trade-off between TP and L given by (21) can be linked to the optimum
trade-off for randomly chosen A, given in (7), by assuming that Φ = MP − TP

divides TP − 1. In this case we would have,

L ≥ K
(MP − TP)

MP − 1
, (23)

which for MP ≫ 1 corresponds approximately to the same bound as in (7) (for
small MP, the gap can be linked to the loss of degrees of freedom when fixing
W−1

1 ). We can thus conclude that there is essentially no loss in restricting
(12). Note that, unlike (23), the optimum trade-off (7) cannot be achieved
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with equality, which further promotes the equivalence between (7) and (23).
Furthermore, due to the integer nature of the variables under consideration, in
most cases, both trade-offs would give the same effective parameter restrictions.
Let us thus refer to (23) as the achievable trade-off. The achievable trade-off
results from fixing one of the diagonal blocks of W to identity, as in the proof
of Proposition 4.

The main restriction of the construction for A considered in Proposition 4
is that the only meaningful points of the achievable trade-off (21) are those
where Φ divides TP − 1, since except for those points, there would be an in-
crease in the number of inputs to the CPU, given by T = LTP, without a
corresponding decrease in the multiplications per antenna, given by L. This
restriction becomes specially concerning when we have TP < MP/2+1, since in
this regime Proposition 4 cannot exploit any trade-off between T (or TP) and
L. Thus, the following proposition considers a novel structure for A that allows
for exploitation of the trade-off between T and L in the regime TP < MP/2+1.

Proposition 5 Let A be given by (12), with ÃT = ITP
, and ÃB constructed

as

ÃB =


α11(TP−1)×1 ITP−1

...
...

αQ2−11(TP−1)×1 ITP−1

αQ2
1Π×1 [ITP−1]1:Π,:

 , (24)

where Π = Φ− (Q2− 1)(TP− 1), i.e., the last column block is cropped to fit the
dimensions, and where

Q2 =

⌈
Φ

TP − 1

⌉
. (25)

Furthermore, αi ∈ C\{0} can be arbitrarily selected as long as

αi = αj ⇐⇒ i = j, ∀i, j ∈ {1, . . . , Q2}.

A randomly chosen matrix H admits WAX decomposition with probability 1
for the given A if

L ≥ K

1 + 1
Q2

. (26)

Moreover, W 1 (defined in (3)) can be fixed to an arbitrary L × L full-rank
matrix without affecting the solvability of the WAX decomposition.

Proof See Appendix B □

If we assume values of MP and TP such that (25) gives an integer without the
need of the ceiling operator, the trade-off in (26) leads again to (23). However,
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with the A structure given in Proposition 5 we can now select parameters that
allow to exploit the trade-off in the regime TP < MP/2 + 1. The following
proposition presents a structure for A which can be seen as combination of the
structures from Propositions 4 and 5, and which allows more freedom in the
exploitation of the achievable trade-off in the regime TP ≥ MP/2 + 1.

Proposition 6 Let A be given by (12), with ÃT = ITP
, and ÃB constructed

as

ÃB =

[
1Φ×1 [1Q2×1 ⊗ IJ ]1:Φ,: IΦ · · · IΦ︸ ︷︷ ︸

Q1

]
, (27)

where Q1 ≥ 1 and J are defined in Proposition 4, while Q2 is now given by

Q2 =

⌈
Φ

J

⌉
. (28)

A randomly chosen matrix H admits WAX decomposition with probability 1
for the given A if

L ≥ K

1 +Q1 +
1
Q2

. (29)

Moreover, W 1 (defined in (3)) can be fixed to an arbitrary L × L full-rank
matrix without affecting the solvability of the WAX decomposition.

Proof See Appendix C □

Note that for Q1 = 0, the previous structure degenerates to the case from
Proposition 5, where some elements from the first column of ÃB should be
changed to fulfill the additional αi requirements. Furthermore, for J = 0 (i.e.,
Φ divides TP − 1) the previous structure leads directly to the one presented in
Proposition 4.

As happened in the previous cases, we can still reach the achievable trade-off
(23) whenever we have parameters such that Q2 in (28) evaluates to an integer
value without the need of the ceiling operator. However, we can also reach it
if we have parameters such that Q1 evaluates to an integer value without the
floor operation, since this would lead to J = 0 and Q2 would tend to infinity,
so we could remove it altogether. Thus, the structure from Proposition 6
has a looser requirement so as to reach the achievable trade-off in the regime
TP ≥ MP/2+1 as compared to structure from Proposition 4, where Q1 had to
evaluate to an integer value without the floor operation. Thus, the A structure
defined in Proposition 6 allows for a broader selection of parameters leading to
the achievable trade-off (23), hence increasing the freedom in the exploitation
of said trade-off.
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Algorithm 3 Generalized ÃB for WAX decomposition.

Require: MP, TP

Ensure: ÃB

Initialize:[
ÃB

]
1,:

=
[
α1, . . . , αΦ

]T
Rrow=TP−1, Rcol=Φ, i = 0, irow = 1, icol = 2

while Rcol > 0 and Rrow > 0 do

i = i+ 1

if Rcol > Rrow then

Qi = ⌊Rcol/Rrow⌋
[ÃB]irow:(irow+QiRrow),icol:(icol+QiRrow)=11×Qi

⊗ IRrow

Rcol = Rcol −Qi ·Rrow

icol = icol +Qi ·Rrow

else

Qi = ⌊Rrow/Rcol⌋
[ÃB]irow:(irow+QiRcol),icol:(icol+QiRcol)=1Qi×1 ⊗ IRcol

Rrow = Rrow −Qi ·Rcol

irow = irow +Qi ·Rcol

end if

end while

4.3 General Construction of Valid Ã

A natural generalization of the structure given in Proposition 6, which already
corresponds to a generalization of the structures from Propositions 4 and 5,
consists of filling the dimensions of ÃB with full identity matrices, alternating
horizontal and vertical allocation until all dimensions are exhausted. This
method is presented in Algorithm 3, where the first column of ÃB is given by
αi so that it can accommodate degenerated cases as the one in Proposition 5.
The following conjecture aims at generalizing the validity of the structures
defined by Algorithm 3.
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Conjecture 1 Let A be given by (12), with ÃT = ITP
, and ÃB constructed

through Algorithm 3. A randomly chosen matrix H admits WAX decomposition
with probability 1 for the given A if

L ≥ K

1 +Qtot
, (30)

where, given Qi for i = 1, . . . , NQ, which are defined in Algorithm 3, and NQ,
corresponding to the iteration i where dimensions are exhausted, we have

Qtot = Q1 +
1

Q2 +
1

...+ 1
QNQ

. (31)

Furthermore, in the regime TP < MP/2 + 1, the first column of ÃB, given by
[α1, . . . , αΦ]

T, should fulfill the same restrictions as in Proposition 5.

Idea for Proof We first note that NQ is determined by TP and MP (as more
thoroughly discussed later), with the restriction NQ ∈ {1, . . . ,min(TP − 1,Φ)}.
Then, for every value of NQ an equation similar to (47) can be obtained, which
should be proved solvable. However, after extensive work on the matter, a
formal proof for general NQ has not been found. We have only been able to
test this formula through thorough simulations without encountering a single
exception to it. One simulation procedure we employed to check the conjecture
was to randomly define a large number of combinations of K, MP, and TP,
and for each of these combinations construct an A matrix through Algorithm 3
(together with (12) and (18)) using different values for L. Then, considering
[27, Theorem 2], we tried to perform WAX decomposition of a randomly chosen
H (e.g., an IID Gaussian matrix realization), which would either be possible
(i.e., A is valid) or not (i.e., A may not be valid). The simulation results led
to valid A matrices if and only if Conjecture 1 was satisfied. □

Figure 2 illustrates with an example how Algorithm 3 is used to define the
TP − 1 last columns of ÃB. We can immediately notice that its iterations
are equivalent to the steps of the Euclidean algorithm for finding the GCD
between TP − 1 and Φ = MP −TP. In fact, we can see that Qtot, given in (31),
corresponds to a continued fraction expansion [31] of (TP − 1)/Φ. Hence, the
value for NQ, from Conjecture 1, is equal to the number of steps to calculate
GCD(TP − 1,Φ). Furthermore, since TP and MP are restricted to integers,
(TP−1)/Φ corresponds to a rational number, so its continued fraction expansion
will always be finite [31]. Thus, we can substitute Qtot in (30) by (TP − 1)/Φ,
which gives directly the achievable bound (23). On the other hand, the number
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of 1s in the last TP − 1 columns of ÃB, which gives its sparsity, corresponds to∥∥∥∥[ÃB

]
:,2:TP

∥∥∥∥2
F

= Φ−GCD(TP − 1,Φ).

Figure 2: Example of how Algorithm 3 constructs the last TP − 1 columns of ÃB

for MP = 12 and TP = 9.
The reader may also note here the direct relation between Conjecture 1

and Propositions 4-6. When NQ = 1, i.e., Φ divides TP − 1, Conjecture 1
directly corresponds to Proposition 4 (for this case we can choose αi = 1).
Furthermore, when NQ = 2, i.e., J = TP − 1 − Q1Φ divides Φ, Conjecture 1
leads to either Proposition 5 (in the TP < MP/2+1 regime) or Proposition 6 (in
the TP ≥ MP/2 + 1 regime, where we can choose αi = 1, ∀i). Thus, although
we lack a formal proof for Conjecture 1, we may use Algorithm 3 as a general
strategy for constructing Ã since it merges the previous results whenever they
attain the achievable trade-off (23).

Another thing to remark is that, for centralized architectures, where we can
identify TP = MP, our structures degenerate to the trivial Ã = IMP

, i.e., the
combining module can be disregarded altogether. Moreover, for information-
lossless fully-decentralized architectures (e.g., local-MF as in [13]), where we
can identify TP = 1 (for this case we have L = K), our structures degenerate

to Ã = 1MP×1 (taking the case αi = 1), i.e., the combining module would cor-
respond to a sum module that combines all the outputs from the decentralized
filters. This remarks the relevance of the presented work as a generalization
of architectures with an arbitrary level of decentralization, since it allows for a
wide range of architectures from centralized to fully-decentralized, and where
both extremes can be considered within the same framework.

5 Decentralized Computation of W

The structures for A presented in the previous section are not only interesting
for their sparsity and validity for WAX decomposition, but we can also use them
to create decentralized schemes for computing W . As previously discussed,
decentralized here means that each panel would find the Wm to be applied,
i.e., leading to information-lossless processing, by exchanging reduced data with
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the rest of the panels so that the full channel matrixH needs not be collected at
any single point. Using the equivalent formulation of the WAX decomposition
(9), or (16) with (12), we can find Wm matrices achieving information-lossless
processing without having to compute X.

The A structures from Propositions 4, 5, and 6, allow the use of a tree-
based scheme, such as the one illustrated in Fig. 3 where we have conveniently
re-indexed the Wm and Hm matrices to make them general for all three cases.
Specifically, we identify now W 0 with the original W 1 from (3), which is the
Wm that can be arbitrarily selected in Propositions 4-6. The tree scheme
consists of a reference panel, which is connected through a one-way link to N1

processing panels, i.e., having a LPU, each of which communicates with a set of
N2 passive panels. For simplicity, the reference panel makes use of the available
freedom provided by Propositions 4-6 by fixing W 0 = IL. This way, W 0 has
no effect, so the reference panel only needs to share its L × K local channel
matrix H0 with the N1 processing panels.24 Each group of N2 passive panels
would share their local channels to their corresponding processing panel, which
would then use them to compute all the Wm matrices that have to be applied
in its group (including itself). Lastly, the processing panels would send each
Wm to the corresponding passive panels in their group so that they can apply
them.

In order to understand why theA structures from Propositions 4-6 can make
use of the decentralized scheme from Fig. 3, we will refer to the proofs of said
propositions. For Proposition 4, we can see that the equivalent formulation of
the WAX decomposition can be solved by solving a set of independent equations
of the form (22), where the LHS, which is the only part shared in all equations,
is associated to the reference panel (W 1, here re-indexed to W 0, which is later
fixed in the proof), and the RHS can be associated to a group of panels of
which one would be the processing panel and the rest the passive panels. Each
processing panel would only need the Hm matrices of the rest of the panels in
the group, as well as the one from the reference panel, to be able to solve its
equation, corresponding to one out of the Φ independent equations from (22).
For Proposition 5, the reference panel determines the LHS of (38). On the
other hand, (38) can be divided into a set of independent equations of the form

(39), only sharing H0 (or H̃0 in the proof), and each of which can be solved
at one processing panel by accumulating the involved Hm matrices. The same
is true for Proposition 6 where instead of (39) we would have (47) solved at
each processing panel.

Table 1 gives the resulting parameters N1 and N2 of the decentralized
scheme in Fig.3 for the different structures from Propositions 4-6. Said pa-

24W 0 can also be fixed to any other full-rank matrix. In that case, either all processing
panels have previous knowledge of W 0 for their computations, or the reference panel should
share the L × K matrix resulting from the multiplication W−1

0 H0 instead of H0 directly.
Hence, any selection other than W 0 = IL leads to higher computation complexity.
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Figure 3: Architecture for decentralized computation of the Wm matrices for the
Ã given in Propositions 4-6. Blue arrows indicate sharing of local CSI, and red arrows
indicate sharing of decentralized filters after computation.

A structure N1 N2

Proposition 4 Φ Q1

Proposition 5 TP − 1 Q2 (from (25))

Proposition 6 J Q2 (from (28))

Table 1: Decentralized scheme parameters.

rameters are related to the number of independent equations and the number
of involved passive panels in each equation, respectively, as explained before.
In the case of Propositions 5 and 6, we are assuming that Q2 evaluates to
an integer without the need of the ceiling operator; otherwise, the last group
of panels would have a number of passive panels smaller than N2 due to the
cropping of the corresponding equation. Note that, in all cases, several inde-
pendent equations can be solved at a single processing panel by gathering the
corresponding Hm matrices at said panel. Thus, the values of N1 from Table 1
could be trivially reduced by a corresponding increase in N2.

To conclude this section, we have shown that, not only can we define archi-
tectures with an arbitrary level of decentralization in the data phase (i.e., by
employing the framework from Fig. 1), but, during the training phase, and if A
is suitably selected, these architectures can be used for computing in a decen-
tralized manner the decentralized processing to be applied (i.e., by considering
schemes like the one in Fig. 3).
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6 Numerical Results and Examples

In Section 4, we presented some constructions for A that were proved to
be valid for WAX decomposition. The current section aims at providing some
discussion, as well as useful examples, to further understand the differences of
said constructions, and the circumstances under which they reach the achiev-
able trade-off (23).

In Section 4, we discussed the requirements for Propositions 4-6 to achieve
(23), namely that either Q1 or Q2 should evaluate to an integer without re-
quiring the floor/ceiling operator, respectively. Instead of obtaining Q1 or Q2

from TP and MP, we can also take them as arbitrary integers, and substitute
the resulting K/L in (21), (26), and (29) (after restricting the inequality for
the case of equality) to get the ratios K/L that achieve (23) for the structures
in Propositions 4, 5, and 6, respectively. The reason is that we can always
find a combination of integers MP and TP leading to the corresponding Q1 or
Q2 without the need of the respective floor/ceiling operators. An alternative
interpretation of the presented structures is that they are directly defined by
a (truncated) continued fraction expansion of the ratio K/L, corresponding
to (31). The structure from Algorithm 3 considers the full continued frac-
tion expansion of K/L, the structure from Proposition 4 is given by a fraction
expansion of K/L truncated to a single term (Q1), and the structure from
Proposition 6 (which degenerates to the one from Proposition 5 for Q1 = 0)
is given by a fraction expansion of K/L truncated to two terms (Q1 and Q2).
Fig. 4 shows the possible K/L ratios achieving (23) for the A structures from
Propositions 4-6. Proposition 5 is the only one having values in the inter-
val (1, 2), associated to the regime TP < MP/2 + 1, as previously mentioned.
However, the structure from Proposition 6 would also reach the points from
Proposition 5 by selecting the first column of ÃB as in (24) with αi ̸= αj for
i ̸= j. Note that, for Proposition 6, the values in the interval [2,3] can be
shifted to any other interval [i,i+1] with i ≥ 2 (which corresponds to increasing
Q1). Any other value for K/L can be obtained by using Algorithm 3, since
any positive rational number can be decomposed into a continued fraction of
the form (31) [31], while K/L − 1 is inherently restricted to positive rational
numbers since K and L are restricted to integers, and we have L ≤ K.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Proposition 3

Proposition 4

Proposition 5

Figure 4: Values of K/L achieving (23) in the interval [1, 3] with the A structures
from the different propositions.
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As previously discussed, the results presented in this paper lead to condi-
tions that exhibit direct connection to the ratio K/L. However, the main value
of the original condition (5), as presented in [27], and which has now been
shown to be fundamental due to Theorem 3, is to give a trade-off between L,
the number of multiplications per antenna, and T , the required connections to
a CPU. It is thus of special interest to outline the explicit relation between T
and L in the conditions obtained in this work: (21), (26) and (29), as well as
(23), which ultimately governs all the previous conditions (apart from being
attained by the structure from Conjecture 1). On the other hand, the achiev-
able trade-off from (23) can be straightforwardly translated into a condition
between L and T (instead of TP) if we multiply both the numerator and de-
nominator of the RHS by L. However, there may be points of this trade-off
not attainable by the proposed structures, as we will illustrate next.

In Fig. 5 we compare the trade-off between T and L considering the dif-
ferent strategies for constructing A. The dashed blue line corresponds to the
trade-off defined in (5), which is proved to be attained by randomly chosen A
[27, Theorem 1], while Theorem 3 shows that it is also the optimum trade-off.
The red line corresponds to the achievable trade-off (23), which can be attained
by all the structures presented in this work under favorable parameter combi-
nations. We can see that there is a minor gap between the achievable trade-off
and the optimum one, which is mainly noticeable as L grows. This gap can
be explained by the exhaustion of degrees of freedom when fixing one L × L
matrix, which clearly grows with L. The rest of the points correspond to the
achievable points that can be exploited in practice through the proposed struc-
tures. We have used [27, Theorem 2], i.e., by performing WAX decomposition
of a randomly chosen H, to check that the proposed A structures are valid
at these points, thus confirming the theoretical claims from Propositions 4-6,
as well as Conjecture 1. The purple triangles correspond to the achievable
points with randomly chosen A after considering the integer restriction of the
variables T , L, and MP. Hence, these points correspond to the fundamental
limits of multi-antenna architectures with an arbitrary level of decentralization,
while the main motivation of the current work is to get as close as possible to
these points with structured sparse constructions for A. The red circles cor-
respond to the A structures defined through Proposition 4, which was already
included in the conference version [30]. The remaining points are novel con-
tributions achieved by Propositions 5 and 6, as well as by Conjecture 1. As
we can see, the achievable points when constructing A as in Conjecture 1 have
minor gap (if any) with respect to the achievable trade-off due to the integer
nature of TP from the limitation TP = T/L. As for the other constructions,
we see that the achievable points for the constructions from Propositions 5
and 6 get fairly close to the points achieved by Conjecture 1, while the main
difference is that they exploit different regimes of the trade-off. We again note
that the achievable points from Proposition 4 only allowed for reductions in
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the regime TP ≥ MP/2 + 1, which justifies the poor performance in the right
part of the plots. These results remark the importance of the novel structures
presented in this work for better exploitation of the trade-off between level of
decentralization and decentralized complexity.
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Figure 5: Comparison of fundamental trade-off (5) with achievable trade-off (23)
and achievable points with the presented structures. We assume M = 120, K = 9
(left) and K = 15 (right).

The following example illustrates the differences between the presented
strategies for constructing A. By focusing on the regime TP ≥ MP/2 + 1, we
intentionally skip Proposition 5 due to its correspondence with Proposition 6
for Q1 = 0.

Example 4 Let TP = 6, MP = 9, and K = 40. We then have Φ = 3.
Let A1, A2, and A3, be A matrices constructed using Propositions 4, 6, and
Algorithm 3, respectively. Such matrices are found in (33), where every pair of
IL matrices in each row block of A can be seen as a sum module which combines
the outputs from the two respective panels.25 Note that the structure from
Proposition 5 does not apply here since we are not in the regime TP < MP/2+1.
Using Propositions 4, 6, and Conjecture 1, we can find the possible values for
L to be

L1 ≥ 20, L2 ≥ 16, L3 ≥ 15,

respectively. On the other hand, (23) leads to the restriction L ≥ 15. Thus, in
this case Algorithm 3 gives the only structure reaching the achievable trade-off.
However, the structure from Proposition 6 gets considerably closer to it than
the one from Proposition 4.

We next show a practical example of how to use the theory developed in this
work for designing a BS with constrained decentralized processing complexity.

25We have horizontally flipped [ÃB]:,2:TP
from Algorithm 3, which is possible considering

Propositions 2 and 3, to remark its similarity with the other constructions.
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Example 5 Let us have a massive MIMO BS with M = 64 antennas serving
K = 10 users. If we choose an arbitrary number of multiplications per antenna
L, we would like to see which methods can be used for constructing a combining
module A, and what would be their resulting minimum number of inputs to the
CPU. Recall that L should be an integer dividing M to be able to group the
antennas into MP = M/L panels. The number of inputs to the CPU is given
by T = TPL, where we can find the minimum achievable integer TP from (23)
by

TP,min =

⌈
MP − M − L

K

⌉
, (32)

which, using Conjecture 1, will always be possible by constructing A through
Algorithm 3.

• Let us have L = 2, which gives MP = 32 and the achievable trade-off
TP ≥ 25.8 leading to TP,min = 26. If we choose to construct A through
Proposition 4, we start by using TP = TP,min to get Φ = 6 from (14).
This gives Q1 = 4 by (20), which leads to the restriction L ≥ 2. So we
get the desired L without the need to increase TP. If we use Proposition 6
this restriction transforms to L ≥ 1.94. Thus, for this case, due to the
integer restrictions, there is no difference in terms of inputs to the CPU of
defining A from Propositions 4, 6, or Algorithm 3, since all give T = 52.
We would recommend Proposition 4 for its simplicity and greater sparsity.

• Let us have L = 4, which gives MP = 16 leading to TP,min = 10. If we
want to construct A through Proposition 4, we proceed as before using first
TP = TP,min to get Q1 = 1, which leads to L ≥ 5. In this case the desired
L is not possible, so we increase TP = TP,min + 1 = 25, and calculate
again Q1 = 2, which leads to L ≥ 3.33. This means that in order to use
A from Proposition 4 we need T = 100 inputs to the CPU. Instead, if we
try to construct A from Proposition 6, we start again with TP = TP,min,
leading to Q1 = 2 and Q2 = 2. This gives the restriction L ≥ 4, which is
already fulfilled by the desired one. Thus, using Proposition 6 to define A
would require T = 96 inputs to the CPU, i.e., there is no loss with respect
to the achievable gain, which can also be reached by defining A through
Algorithm 3.

7 Conclusions

We have continued with the work on WAX decomposition by filling some gaps
from [27]. We have proved that the trade-off given in [27] is fundamental in
the sense that no decentralized system falling withing our general framework
can perform beyond it. We have defined an equivalent formulation of the WAX
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decomposition without the need of considering the CPU processing matrix X.
We have used said equivalent formulation to prove some properties that allow
to transform the combining matrix A while maintaining its validity. We have
also proved the validity of 3 structures forA which lead to an achievable version
of the trade-off in [27] under different system parameter settings. An ad hoc
method for constructing A such that the achievable trade-off is reached for any
system parameter setting is also presented. We have defined a decentralized
scheme for obtaining the information-lossless decentralized filters Wm to be
applied at different panels without the need to aggregate their CSIs.

Future work can include jointly considering the sparse combining modulesA
in scenarios where the channel matrix H is also sparse or has rank-deficiencies.
More clever decentralized schemes, e.g., those which could be also employed
with A matrices constructed through the general ad hoc method from Algo-
rithm 3, could also be explored. It would also be desirable to come up with a
formal proof for the validity of the A matrices constructed through the ad hoc
method.

Appendix A: Proof of Theorem 1

The necessary condition T ≥ K, in (5) stated as T > (K − 1) due to the
integer nature of T , comes trivially by the fact that rank(WAX) ≤ T and
rank(H) = K with probability 1 for randomly chosen H. Let us thus assume
T ≥ K. If we invoke [27, Lemma 3], we can conclude that a randomly chosen
H admits WAX decomposition if and only if we can find full-rank W solving
the linear system

AX = W−1H.

AT


AB


A1 =



IL 0 0 0 0 0
0 IL 0 0 0 0
0 0 IL 0 0 0
0 0 0 IL 0 0
0 0 0 0 IL 0
0 0 0 0 0 IL
IL 0 0 IL 0 0
IL 0 0 0 IL 0
IL 0 0 0 0 IL


, A2 =



IL 0 0 0 0 0
0 IL 0 0 0 0
0 0 IL 0 0 0
0 0 0 IL 0 0
0 0 0 0 IL 0
0 0 0 0 0 IL
IL IL 0 IL 0 0
IL 0 IL 0 IL 0
IL IL 0 0 0 IL


, A3 =



IL 0 0 0 0 0
0 IL 0 0 0 0
0 0 IL 0 0 0
0 0 0 IL 0 0
0 0 0 0 IL 0
0 0 0 0 0 IL
IL IL 0 IL 0 0
IL 0 IL 0 IL 0
IL IL IL 0 0 IL


(33)
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The previous expression can be vectorized as in [27] giving

[
IK ⊗A − (HT ⊗ IM )̃IW

]
vec(X)
vec(W 1)

...
vec(WMP)

 = 0MK×1, (34)

where ĨW corresponds to an M2 ×ML matrix having IL blocks separated by
blocks of zeros so as to disregard the zeros in vec(W ). The rank of the block
IK ⊗A, which multiplies vec(X), is given by

rank(IK ⊗A) = KRA,

where RA = rank(A). If vec(X) is in the null-space of IK ⊗A, then the vector

[vec(W 1)
T , . . . , vec(WMP

)T ]T should be in the null-space of −(HT ⊗ IM )̃IW
(full-rank with probability 1), leading to a more restrictive condition than (5),
K < L. Thus, we can remove the subspace of vec(X) that falls in the null-space
of IK ⊗A, which means that can rewrite (34) as

[
C − (HT ⊗ IM )̃IW

]
x̃

vec(W 1)
...

vec(WMP
)

 = 0MK×1, (35)

where C is now an MK × KRA. Since H is a randomly chosen matrix,
the block −(HT ⊗ IM )̃IW adds full-rank to C with probability 1. Hence, the

MK×(KRA+ML) matrix
[
C − (HT ⊗ IM )̃IW

]
is full-rank with probability

1, which means that it has non-empty null-space only if

MK < KRA +ML. (36)

After simple manipulation of (36), and noting that RA ≤ T , where equality
corresponds to A having rank T, we reach the necessary condition (5) .
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Appendix B: Proof of Proposition 5

Selecting ÃT = ITP
and ÃB as in (24) leads to

B̃ =


α11(TP−1)×1 ITP−1

...
...

αQ2−11(TP−1)×1 ITP−1

αQ2
1Π×1 [ITP−1]1:Π,:

−IΦ


T

. (37)

If we use Corollary 1, we can substitute B̃ in the equivalent formulation of the
WAX decomposition, given in (17). We then fix W−1

1 to some arbitrary full-
rank matrix, for simplicity let us have W−1

1 = IL (any other full rank-matrix
can be absorbed by H1 or by the remaining Wm’s), so (17) gives

−
[
α1 · · · αQ2

]
⊗H1 =

[
W−1

2 · · · W−1
MP

]
×

[ITP−1 · · · [ITP−1]1:Π,:

−IΦ

]
•

 H2

...
HMP


.

(38)

We can notice that the face-splitting product (.) • (.) only substitutes in the
left matrix each 1 at row m by Hm. Furthermore, (38) corresponds to a series
of TP − 1 independent equations of the form[

α1 · · · αQ2

]
⊗ Ĥ0 =

[
Ŵ

−1

1 · · · Ŵ
−1

Q2+1

]

×



Ĥ1 Ĥ1 · · · Ĥ1

Ĥ2 0L×K · · · 0L×K

0L×K Ĥ3
. . .

...
...

. . .
. . . 0L×K

0L×K · · · 0L×K ĤQ2+1


,

(39)

where Ĥi corresponds to a re-indexing of the respective Hm, including a pos-

sible change of sign (Ĥ0 = −H1 is the only matrix shared in all equations),
so we can think of them as L × K blocks from a randomly chosen matrix.
Note that we may also require the ability to solve a sub-problem of (39) with 1
less column block, i.e., substituting Q2 by Q2 − 1. This is due to the possibly
cropped block in (24) or (38), [ITP−1]1:Π,:, which would lead to (TP − 1 − Π)
equations having Q2 − 1 instead of Q2 column blocks in (39). However, this
sub-problem is less restrictive than (24), as we will see.

Let us multiply from the right both sides of (39) by the full rank matrix
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diag(V̂ 1, . . . , V̂ 1), where V̂ 1 is theK×K right unitary matrix from the singular

value decomposition of Ĥ1. If we further use the fact that any full-rank block

diagonal matrix being multiplied between the Ŵ
−1

m ’s and Ĥm’s block matrices
in the RHS of (39), as well as any full-rank L×Lmatrix that multiplies from the

left both sides of (39), can be absorbed by the corresponding Ŵ
−1

m matrices,
we reach

([α1 · · · αQ2
]⊗ [IL H̃0]) =

[
W̃

−1

1 · · · W̃
−1

Q2+1

]

×



[IL 0L×(K−L)] [IL 0L×(K−L)] · · · [IL 0L×(K−L)]

[IL H̃2] 0L×K · · · 0L×K

0L×K [IL H̃3]
. . .

...
...

. . .
. . . 0L×K

0L×K · · · 0L×K [IL H̃Q2+1]

,
(40)

where H̃i, i ∈ {0, 2, . . . , (Q2+1)}, are now L×(K−L) blocks from a randomly
chosen matrices.26 Equation (40) corresponds to the system of equations{

W̃
−1

1 + W̃
−1

i+1 = αiIL

W̃
−1

i+1H̃i+1 = αiH̃0

, i = 1, . . . , Q2. (41)

We can now isolate W̃
−1

i+1 = αiIL − W̃
−1

1 from the first line of (41), and then

substitute it in the second line to reach αiH̃i+1 − W̃
−1

1 H̃i+1 = αiH̃0. After
reordering terms and merging the inequalities for i = 1, . . . , Q2, into matrix
notation, we can write

W̃
−1

1 H̃ =
[
α1(H̃2 − H̃0) · · · αQ2

(H̃Q2+1 − H̃0)
]
, (42)

where H̃ =
[
H̃2 · · · H̃Q2+1

]
gives an L × Q2(K − L) randomly chosen

matrix, which is thus full-rank with probability 1. The block matrix on the RHS
of (42) is also a randomly chosen matrix, and thus full-rank with probability 1,
as long as αi ̸= 0 ∀i. We now note that (42) corresponds to a linear equation
solvable for L ≥ Q2(K − L), which directly gives us the condition (26).

It remains to prove that we have a full-rank solution for each W̃
−1

i (then

each corresponding W−1
m would also be full-rank). Solving for W̃

−1

1 in (41)

26Note that the multiplication by a common unitary matrix from the right to generate

each H̃i can be seen as a common rotation to their original random unitary matrices, thus
it does not affect the randomly chosen property
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gives the set of solutions

W̃
−1

1 =
[
α1(H̃2 − H̃0) · · ·αQ2

(H̃Q2+1 − H̃0)
]
H̃

†
+NH̃, (43)

where NH̃ can be selected to be any L× L matrix in the left null-space of H̃.
Thus, rank(NH̃) ≤ L−Q2(K − L), and NH̃ would vanish in case of equality

in (26) (H̃ square). We can now note that the first term in the sum from the
RHS of (43) has rank Q2(K−L) with probability 1. The reason is that it is the
multiplication of an L×Q2(K−L) matrix with a Q2(K−L)×L matrix, so its

rank cannot be above Q2(K−L), while, if we multiply H̃ from the right, which
cannot increase the rank, we get an L × Q2(K − L) randomly chosen matrix
(full-rank with probability 1). On the other hand, NH̃ adds its rank to the
other term of the sum, since they are in perpendicular spaces (left null-space
and row-space are perpendicular). Therefore, by selecting any NH̃ spanning

the whole null-space of H̃, i.e., having rank L−Q2(K −L), we get a full-rank

W̃
−1

1 .

We now show that full-rank solutions for W̃
−1

i , i > 1, are also available as

long as αi ̸= αj for i ̸= i. Substituting W̃
−1

1 from (42) in the first equation of

(41) gives a solution for each W̃
−1

i of the form

W̃
−1

i =αiIL −NH̃

−
[
α1(H̃2 − H̃0) · · · αQ2(H̃Q2+1 − H̃0)

]
H̃

†
.

(44)

Let us define α̃j = αj − αi. We then have

W̃
−1

i =αi

(
IL − H̃H̃

†)
−NH̃

−
[
α̃1H̃2 · · · α̃Q2

H̃Q2+1

]
H̃

†

+
[
α1H̃0 · · · αQ2

H̃0

]
H̃

†
.

(45)

However, it can be checked that

H̃H̃
†
= Udiag

(
IQ2(K−L),0L−Q2(K−L)

)
UH,

where U corresponds to the left unitary matrix from the singular value decom-
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position of H̃. Thus, we get

W̃
−1

i = αiUdiag
(
0Q2(K−L), IL−Q2(K−L)

)
UH −NH̃

−
[
α̃1H̃2 · · · α̃Q2

H̃Q2+1

]
H̃

†

+
[
α1H̃0 · · · αQ2

H̃0

]
H̃

†
.

(46)

We then note that the first two matrices on the RHS of (46) are both in the

null-space of H̃, and, since we have freedom in selecting NH̃ as long as it spans
the whole null-space, we can choose it so that the rank from the first matrix
is not reduced after subtracting. Therefore, the first two matrices will always
add rank L−Q2(K −L) to the last two, which lay in the row-space of H̃. On

the other hand, after multiplying H̃ to the last two matrices in the RHS of
(46) we get one matrix of rank Nα̃(K − L), with Nα̃ the number of non-zero
α̃j , and one matrix of rank (K −L). Note that Nα̃ ≤ (Q2 − 1) since α̃i = 0 by
definition. The sum of the latter two matrices would then be[

α1H̃0−α̃1H̃2 · · · αiH̃0 · · · αQ2H̃0−α̃Q2H̃Q2+1

]
.

The rank is then27 (Nα̃ + 1)(K − L) so, in order to have (46) full-rank, we
need Nα̃ = Q2 − 1 for each i, which means all α̃j (j ̸= i) should be non-zero.

Considering W̃
−1

i ∀i, this translates to having αi ̸= αj for i ̸= j. Hence,
Proposition 5 is proved.

Appendix C: Proof of Proposition 6

Selecting ÃT = ITP
and ÃB as in (27) leads to

B̃ =

[
1Φ×1 [1Q2×1 ⊗ IJ ]1:Φ,: IΦ · · · IΦ︸ ︷︷ ︸

Q1

−IΦ
]T

.

Note the similarity of the previous B̃ with (37), which for αi = 1 only the
Q1 extra IΦ would be added. Applying similar arguments as in the proof of
Proposition 5, which include fixing W 1 to an arbitrary full-rank matrix, we
can transform the equivalent formulation of the WAX decomposition (17) into

27H̃0 and H̃i do not destroy rank since they are blocks from a randomly chosen matrix,
and they are full-rank with probability 1.
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a series of independent equations of the form

11×Q2
⊗ Ĥ0 =

[
Ŵ

−1

1 · · · Ŵ
−1

(Q1+1)Q2+1

]

×



Ĥ1 · · · Ĥ1

Ĥ2

. . .

ĤQ2+1

...

ĤQ1Q2+2

. . .

Ĥ(Q1+1)Q2+1


,

(47)

where we have relaxed notation by removing the blocks of zeros. Again, only

Ĥ0 is shared among the different independent equations. Let us have

Ĥm =
[
Ĥm,sq Ĥm,r

]
, m = 0, . . . , (Q1 + 1)Q2 + 1,

where Ĥm,sq and Ĥm,r are L × L and L × (K − L) blocks from a randomly

chosen matrix, respectively. We can then have Ĥ1,r = 0L,(K−L) by absorbing

the corresponding right unitary matrix in the rest of Ĥm as before. We then
get the set of equations{

Ŵ
−1

1 Ĥ1,sq +
∑Q1

q=0 Ŵ
−1

i+1+qQ2
Ĥi+1+qQ2,sq = Ĥ0,sq∑Q1

q=0 Ŵ
−1

i+1+qQ2
Ĥi+1+qQ2,r = Ĥ0,r

, (48)

where i = 1, . . . , Q2. Let us isolate W̃
−1

i+1+Q1Q2
in the first equation of (48)

Ŵ
−1

i+1+Q1Q2
=

(
Ĥ0,sq − Ŵ

−1

1

−
Q1−1∑
q=0

Ŵ
−1

i+1+qQ2
Ĥi+1+qQ2,sq

)
Ĥ

−1

i+1+Q1Q2,sq,

(49)

which, assuming full-rank Ŵ i+1+qQ2 for q < Q1, corresponds to a random

combination of full-rank matrices, so it will lead to full-rank Ŵ
−1

i+1+Q1Q2
with

probability 1. Substituting in the second equation from (48), absorbing some
square randomly chosen matrices (full-rank with probability 1) in the corre-
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sponding Ŵ i, and renaming blocks, we get

W̃
−1

1 H̃1i +

Q1−1∑
q=0

W̃
−1

i+1+qQ2
H̃i+1+qQ2

= H̃0 + H̃1i, (50)

where all H̃m (or H̃mn) correspond again to blocks of size L× (K − L) from
a randomly chosen since they come from sums and products of different blocks

from a randomly chosen matrix. Multiplying both sides by Ṽ 1i, where Ṽ
H

1i

corresponds to the right unitary matrix of H̃1i, we reach[̃
H01 + H̃11 · · · H̃0Q2 + H̃1Q2

]
=
[
W̃

−1

1 · · · W̃
−1

Q1Q2+1

]

×



H̃11 · · · H̃1Q2

H̃2

. . .

H̃Q2+1

...

H̃(Q1−1)Q2+2

. . .

H̃Q1Q2+1


,

(51)

where H̃0i = H̃0Ṽ 1i, and H̃1i = [H̃1i,sq 0L×(K−2L)]. We then reach the
following set of equations for i = 1, . . . , Q2{

W̃
−1

1 H̃1i,sq+
∑Q1−1

q=0 W̃
−1

i+1+qQ2
H̃i+1+qQ2,sq=H̃0i,sq∑Q1−1

q=0 W̃
−1

i+1+qQ2
H̃i+1+qQ2,r = H̃0i,r

, (52)

where H̃m = [H̃m,sq H̃m,r], with H̃m,sq being square blocks as before. Note
that (52) is almost like (48), but the dimensions have been reduced, as well

as the number of sum elements, and we have now different H̃1i,sq and H̃0i,sq.

If we follow the same steps as before, isolating W̃ i+1+(Q1−1)Q2
instead, we

would reach an expression as (51) with one less diagonal block where each H̃m

(still randomly chosen) has reduced the column dimension by L. We can thus



214 PAPER VI

perform these reductions inductively until we reach[
(|H01+|H11) · · · (|H0Q2

+|H1Q2
)
]
=
[

|W
−1

1 · · · |W
−1

Q2+1

]

×


|H11 · · · |H1Q2

|H2

. . .
|HQ2+1

,
(53)

where |H0i = |H0Ṽ i, with qV i being a unitary matrix coming from a product of

unitary matrices from randomly chosen blocks, |H1i = [|H1i,sq 0L×(K−(Q1+1)L)]

with |H1i,sq randomly chosen, and |Hm for m = 0, 2, . . . , Q2 + 1 are different
L × (K −Q1L) randomly chosen blocks. It only remains to show that (53) is

solvable with full-rank |W
−1

i for i = 1, . . . , Q2+1. If we compare (53) with (39)
we can note that they have the same structure, but the changes in the blocks,
which will allow to have αi = 1, require a new proof.

Let us now prove that (53) allows for a solution with full-rank |W
−1

i if (29)
is fulfilled. By trivial linear algebra, we immediately note that (29) follows from
the need to have at least as many rows as columns in the matrix multiplying
the RHS of (53), since said matrix will be full-rank with probability 1. We

should then check we can have full-rank |W
−1

i given (29). Proceeding as before
we express the set of equations{

|W
−1

1
|H1i,sq + |W

−1

i+1
|Hi+1,sq = |H01i,sq

|W
−1

i+1
|Hi+1,r = |H0i,r

, i = 1, . . . , Q2 (54)

with |Hm = [|Hm,sq
|Hm,r], where |Hm,sq are again square, and |H01i,sq =

|H0i,sq + |H1i,sq. Isolating |W
−1

i+1 in the first line of (54), substituting it in the

second line, and solving for |W
−1

1 ,28 we reach

|W
−1

1 = qH qH
†
+
[
(Θ1−|H0i,r) · · · (ΘQ2

−|H0i,r)
]

qH
†
+N

|H, (55)

where Θm = |H0m,sq
|H

−1

m+1,sq
|Hm+1,r, which has dimensions L × (K − Q1L),

28 Note that reaching from (54) to (55) corresponds to the same set of steps as reaching
from (41) to (43) in the proof of Proposition 5, with the only difference that in the first line
of (54) each term has an invertible (with probability 1) matrix multiplying from the right.
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N
|H is an L× L matrix to be selected from the left null-space of qH,

qH =
[

|H11,sq
|H

−1

2,sq
|H2,r · · · |H1Q2,sq

|H
−1

Q2+1,sq
|HQ2+1,r

]
,

and qH
†
is the left pseudo-inverse of qH. Note that the existence of said pseudo-

inverse also leads to the condition (29). By similar arguments as in the proof of

Proposition 5, we have a sum between a matrix in the row space of qH, having
rank Q2(K −Q1L) with probability 1, and a matrix free to choose in the left

null-space of qH, so |W 1 is full-rank with probability 1 as long as N
|H is selected

such that its rows span the whole left null-space of dimension L−Q2(K−Q1L)

(with probability 1). We then substitute the expression of |W
−1

1 obtained in
(55) into the first equation from (54) and get

|W
−1

i+1
|H

−1

1i,sq
|Hi+1,sq= |H0i,sq+

( [
|H01,r · · · |H0Q2,r

]
qH

†

+IL − qH qH
†
−N

|H −
[
Θ1 · · · ΘQ2

]
qH

†)
|H1i,sq,

(56)

where we only need to check that the RHS is full-rank, since multiplying square
randomly chosen blocks cannot reduce the rank (with probability 1). Reasoning

as in the proof of Proposition 5, (IL − qH qH
†
) is a matrix in the null-space of

qH which gives rank L − Q2(K − Q1L), and N
|H can be selected so as to

not destroy said rank. Then, the other two matrices multiplying qH
†
can add

the remaining rank. Furthermore, |H0i,sq only shares space with Θi (the rest
are made of different randomly chosen blocks), so it can at most reduce rank

(K −Q1L), which would be then compensated with the rank added by |H0i,r,

which does not share randomly chosen blocks with either |H0i,sq or Θi. Hence,

we have proved that we can obtain full-rank |W
−1

i+1, and this concludes the
proof of Proposition 6.
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Increased Multiplexing Gain with

Reconfigurable Surfaces: Simultaneous

Channel Orthogonalization and

Information Embedding

RS has been shown to be an effective solution for improving wire-

less communication links in general MU-MIMO setting. Current research

efforts have been largely directed towards the study of RIS, which corre-

sponds to an RS made of passive reconfigurable elements with only phase

shifting capabilities. RIS constitutes a cost- and energy- efficient solution

for increased beamforming gain since it allows to generate constructive

interference towards desired directions, e.g., towards a BS. However, in

many situations, multiplexing gain may have greater impact on the achiev-

able transmission rates and number of simultaneously connected devices,

while RIS has only been able to achieve minor improvements in this aspect.

Recent work has proposed the use of alternative RS technologies, namely

ARIS and FRIS, to achieve perfect orthogonalization of MU-MIMO chan-

nels, thus allowing for maximum multiplexing gain at reduced complexity.

In this work we consider the use of ARIS and FRIS for simultaneously

orthogonalizing a MU-MIMO channel, while embedding extra informa-

tion in the orthogonalized channel. We show that the resulting achievable

rates allow for full exploitation of the degrees of freedom in a MU-MIMO

system with excess of BS antennas.
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“Increased Multiplexing Gain with Reconfigurable Surfaces: Simultaneous Channel

Orthogonalization and Information Embedding.”
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1 Introduction

Massive MIMO [1] constitutes one of the main state-of-the-art solutions for
BS implementation in 5G networks and beyond[2], [3]. This technology cor-
responds to an evolution of the traditional MU-MIMO [4] where the number
of antennas at the BS grows large, leading to increased spatial resolution for
effectively multiplexing UEs in the spatial domain [1], [5].

Commercial deployments of massive MIMO are already available [2], con-
firming the potential and maturity of this technology. Thus, the research com-
munity is now directing efforts towards exploring new disruptive technologies
beyond massive MIMO. These technologies include LIS [6], which correspond
to the natural evolution of massive MIMO by considering BSs consisting of
whole walls covered with electromagnetially active material,29 or RIS [7], [8],
which consider surfaces made of passive elements with tunable reflecting co-
efficients, thus offering some control over propagation channel between two
communication ends. This work considers some RS technologies, initially pro-
posed in [9], which lie in between the concepts of LIS and RIS, but which are
mainly inspired by RIS since they are used to adjust the propagation channel,
i.e., they are not a BS technology like LIS.

Also known as IRS, RIS constitutes an attractive enabling technology for
6G [10] due to it cost- and energy-efficient implementation, which can still lead
to important improvements in link connectivity [7], [8]. Much of the work on
RIS rely on exploiting its impressive power scaling laws [8], which is a result of
the increased beamforming gain associated to redirecting the reflected waves
towards the intended directions. However, RIS has also been considered for im-
proving multiplexing capabilities either directly, e.g., by improving the rank of
the single-user MIMO system [11], or indirectly, e.g., by maximizing sum-rates
in different settings [12], [13]. Moreover, in [9], two alternative RS technologies,
namely ARIS and FRIS, are considered in a MU-MIMO scenario to achieve
perfect channel orthogonalization without the need for RS amplification, i.e.,
leading to perfect multiplexing of UEs at the BS with reduced complexity. This
work builds upon the results from [9], since we use the proposed RS technolo-
gies to achieve perfect channel orthogonalization while embedding information
in the process.

The use of RIS as a low-complexity energy-efficient transmitter has also
been considered in various works, with interesting proposals on how the RIS
can modulate information [8]. These proposals combine the concept of symbi-
otic radio [14], where backscatter devices passively modulate information on in-
coming waves, with the RIS paradigm. For example, in [15], index-modulation
is proposed for embedding information from the RIS to both modulated and

29As discussed in [6], practical implementations of LIS may consist of discrete antenna
arrays, i.e., giving a sampled version of the continuous LIS.
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unmodulated carrier signals, while in [16] an 8-PSK modulation is practically
implemented using RIS.

On the other hand, it is also possible to use the RIS for simultaneously
improving a communication link while embedding its own information. Some
examples include [17], where a solution is proposed for employing RIS to achieve
beamforming gains to a UE while transmitting information to the BS by turning
on/off some of its elements—thus sacrificing RIS beamforming performance—or
[18], which studies the capacity of a RIS-assisted single-user MIMO communi-
cation where the RIS selects its reflecting states from a predesigned codebook
to embed information. However, the literature has failed to characterize the
achievable multiplexing gain when using RS technologies for allowing effective
multiplexing of UEs while simultaneously embedding information in the chan-
nels. To this end, we consider the RS technologies proposed in [9], ARIS and
FRIS, to study an extra RS-to-BS communication link simultaneous to the
UEs-to-BS over a MU-MIMO channel orthogonalized by the RS. We show
that we can achieve maximum multiplexing gains, i.e., scaling with the total
number of BS antennas, even when there is a large excess of BS antennas with
respect to UEs.

The rest of the paper is organized as follows. Section 2 presents the system
model, together with some background on how to achieve channel orthogonal-
ization with ARIS and FRIS. In Section 3 we derive the achievable rates for
simultaneous UE-BS and RS-BS communication with orthogonalized channels.
Section 4 presents the derivation of the multiplexing gain associated to the
achievable rates. Finally, Section 6 concludes the paper.

2 System model

Let us consider an uplink MU-MIMO scenario where K single-antenna UEs
are transmitting to an M -antenna BS, with M > K, through a narrow-band
channel with the aid of an RS with N reconfigurable elements, N ≫ M . The
M × 1 received complex vector, y, can be expressed as

y = Hs+ n, (1)

where H is the M ×K channel matrix, s is the K× 1 vector of symbols trans-
mitted by the users, and n is a zero-mean complex white Gaussian noise vector
with sample variance N0.

30 Considering that there exists a direct channel as
well as a reflected channel through the RS, we can express the channel matrix
as

H = H0 +H1ΘH2, (2)

30We assume that the RS does not add correlated noise since it may not require relevant
amplification [9].
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where H0 corresponds to the M ×K direct channel from the BS to the UEs,
H1 and H2 correspond to the M ×N channel from the BS to the RS and the
N ×K channel from the RS to the UEs, respectively, and Θ is the matrix of
reflection coefficients at the RS.

2.1 Background

We consider two types of RS systems proposed in [9], namely ARIS and FRIS,
which give the reflection matrices

ΘARIS = diag (α1, . . . , αN ) , αi ∈ C ∀i, (3)

ΘFRIS ∈ CN×N . (4)

Note the increased requirement in processing capabilities with respect to the
widely studied RIS, which is typically modeled as an ARIS with the additional
restriction |αi|2 = 1 ∀i.

In [9] it is shown that both ARIS and FRIS can create a perfectly orthogonal
channel, which is given by

H =
√
βŨ , (5)

where we restrict Ũ
H
Ũ = IK . Equivalently, we can express

Ũ = U

[
IK

0(M−K)×K

]
, (6)

where U is an M ×M unitary matrix. Note that we do not lose generality in
(6) by disregarding the multiplication from the right of another unitary matrix
since said matrix could be absorbed by the firstK rows of U , leading to another
unitary matrix.

From [9], we can obtain the desired orthogonal channel matrix H =
√
βŨ

by selecting the reflection coefficients of the ARIS as

α = H†
12vec

(√
βŨ −H0

)
, (7)

where H†
12 corresponds to the right pseudo-inverse of the MK × N matrix

H12 =
[
vec(h11h

T
21) . . . vec(h1NhT

2N )
]
. The existence of H†

12 gives the
conditions N > MK, together with full-rank H12, for appropiate operation of
the ARIS. For the FRIS, the same channel would be achieved by selecting the
reflection matrix as

ΘFRIS = H†
1

(√
βŨ −H0

)
H†

2, (8)
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where H†
1 is the right pseudo-inverse of H1 and H†

2 is the left pseudo-inverse

of H2. The existence of H†
1 and H†

2 gives the conditions N > min(M,K),
together with full-rank H1 and H2, for appropriate operation of the FRIS.
Note that we can also achieve any arbitrary channel using ARIS or FRIS by
substituting

√
βŨ in (7) or (8) with the desired channel matrix, respectively.

However, this work restricts to the case where the desired channel is given by
(5) due to the beneficial properties of orthogonal channels in MU-MIMO [9],
[19].

3 Achievable rates for simultaneous RS-plus-
UEs transmission

In Section 2, we show that ARIS and FRIS can be configured so as to generate
arbitrary channel matrices. Let us, however, maintain the channel orthogo-
nality constraint, i.e., H is restricted to (5) with Ũ given in (6), since this
corresponds to the most desirable channel structure for spatially multiplexing
the UEs at reduced complexity, as discussed in [9]. Note that we still have free-
dom in selecting U as long as it is unitary. We propose to use this freedom for
embedding extra information at the RS, hence opening a new communication
link between the RS and the BS which comes at essentially no cost.

In order to understand the potential of embedding extra information in the
RS, we will compute I

(
y; s, Ũ

)
, i.e., the mutual information between the re-

ceived vector, and the RS and UEs symbols for some input distribution. This
corresponds to the rate at which the RS and the UEs can simultaneously trans-
mit information to the BS over an orthogonalized channel. However, assuming
that there is no cooperation between the UEs and the RS, the information that
can be transmitted by the UEs is upper bounded by I

(
y; s|Ũ

)
, i.e., the mutual

information of the corresponding orthogonal MIMO channel with perfect-CSI,
so I

(
y; s, Ũ

)
would correspond the achievable sum-rate for the UEs-plus-RS

data. From the chain rule of mutual information we have

I
(
y; s, Ũ

)
= I

(
y; Ũ

)
+ I

(
y; s|Ũ

)
, (9)

so we can always have a non-negative information gain, given by I
(
y; Ũ

)
,

with respect to the baseline for common MIMO systems, corresponding to
I
(
y; s|Ũ

)
. An interpretation of (9) is that we can embed information at

the RS by making use of the freedom to select Ũ , which can then be ex-
tracted from y with arbitrarily small error as long as the respective information
rate is below I

(
y; Ũ

)
[20].31 Assuming the UEs transmit Gaussian symbols,

31Changing the variable order in the chain rule from (9) gives I
(
y; s, Ũ

)
= I

(
y; s

)
+

I
(
y; Ũ |s

)
, which means that we could sacrifice UE rate to achieve maximum RS rate,
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s ∼ CN (0K×1, EsIK), which corresponds to the input distribution achieving

capacity for the perfect-CSI case, I
(
y; s|Ũ

)
is maximized and leads to the

famous log-det formula [19], which for the orthogonal channel is given by

I
(
y; s|Ũ

)
= K log

(
1 +

βEs

N0

)
. (10)

It would then remain to compute I
(
y; Ũ

)
, which can be expressed as

I
(
y; Ũ

)
= h(y)− h

(
y|Ũ

)
. (11)

The conditional differential entropy h
(
y|Ũ

)
is well defined since we have y|Ũ ∼

CN
(
0M×1, βEsŨŨ

H
+N0IM

)
, which gives

h
(
y|Ũ

)
= log det

(
π exp(1)

(
βEsŨŨ

H
+N0IM

))
=K log (π exp(1)(βEs +N0))

+ (M −K) log (π exp(1)N0) ,

(12)

where we have used (6) and extracted the unitary matrix from the determinant
to reach the final simplified expression. On the other hand, h(y) is given by

h(y) = −E{log(p(y))}, (13)

which may be computed through Monte-Carlo simulations by averaging over
random realizations of y. However, in order to compute (13) we first need to

specify an input distribution for Ũ and then characterize p(y), the correspond-
ing probability distribution function (PDF) of y from said input distribution

of Ũ . The most meaningful input distribution for Ũ is for it to be isotropically
distributed in the unitary subspace where it lies, i.e., Ũ would be constructed
by (6) with U uniformly distributed in the unitary space U(M). Furthermore,
works like [21] motivate the use of isotropically distributed random matrices
since they achieve capacity under Rayleigh fading scenarios, while our work
considers the multiplication of the information transmitting orthogonal chan-
nel with a Gaussian vector, which is the vector equivalent of a Rayleigh fading
channel. The following proposition gives the expression for p(y) with isotropi-

cally distributed Ũ .

Proposition 7 Let y be the M × 1 random vector from (1), where we have
s ∼ CN (0K×1, EsIK), and n ∼ CN (0M×1, N0IM ). Assume H is given by

I
(
y; Ũ |s

)
. However, this has lower practicality since the UEs are likely have more infor-

mation to transfer.
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(5), where Ũ is defined in (6) for an isotropically distributed random unitary
matrix U . We can then express the PDF of y as

p(y) = exp

(
−∥y∥2

N0

)
(M − 1)!

(−1)K(M−K)
(
π(βEs +N0)

)K
× det(Z)

(πN0)M−K(−γ∥y∥2)M−1
K−1∏
k=1

k!
M−K−1∏

n=1
n!

,
(14)

where γ = βEs

N0(βEs+N0)
, and Z is an M×M matrix whose (i, j)th entry is given

by

[Z]i,j =



(γ∥y∥2)j−1 exp(γ∥y∥2), j ≤ K, i = 1

(γ∥y∥2)j̃−1, K < j ≤ M, i = 1

(ĩ−1)!
(ĩ−j)!

, j ≤ K, ĩ ≥ j

(̃i− 1)!, K < j ≤ M, ĩ = j̃

0, otherwise,

(15)

with j̃ = j −K, and ĩ = i− 1.

Proof See Appendix A □

Using Proposition 7 we can substitute p(y), given by (14), into (13), and
compute the expected value through Monte-Carlo simulations to obtain h(y).

This way we can characterize I
(
y; Ũ

)
, hence characterizing the potential of

simultaneous RS-BS and UEs-to-BS communication through orthogonalized
MU-MIMO channels.

4 Increased multiplexing gain

In the previous section we reached a closed-form expression for p(y), i.e., the
PDF of the received vector y for an orthogonal channel with isotropically dis-
tributed Ũ . The obtained p(y) is fairly complex, so finding a closed-form

expression for I
(
y; s, Ũ

)
becomes extremely challenging. However, we may

simplify this expression by considering the asymptotic regime, which may al-
low the characterization of the multiplexing gain achieved by such a system.
Let us thus focus on the high-SNR regime, i.e., Es

N0
→ ∞. The following propo-

sition gives the multiplexing gain associated to (9).

Proposition 8 Let us have the same input distribution assumptions as in
Proposition 7 such that y is distributed according to the respective p(y). The
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multiplexing gain associated to I
(
y; Ũ

)
, i.e., the asymptotic pre-log factor for

Es

N0
→ ∞, is given by (M − K). Furthermore, the overall multiplexing gain

associated to I
(
y; s, Ũ

)
is given by M .

Proof Without loss of generality, let us consider the high-SNR regime Es

N0
→

∞ by having fixed Es and N0 → 0. We can then find the following limit

lim
N0→0

p(y) =
(M − 1)!∥y∥2(K−M)

(−1)(K+1)M−K2−1(βEs)K

× det(Z̃)

πM
K∏

k=1

k!
M−K−1∏

n=1
n!

,
(16)

where the last M − 1 rows of Z̃ coincide with Z from (15), while [Z̃]1,j = δjK ,
i.e., it is independent of ∥y∥2. Thus, we can use it in (13) to find the limit

lim
N0→0

h(y) = (M −K) log(βEs) +K log(βEs) + c1, (17)

where c1 is a constant independent of Es, and thus of SNR. We can then plug
(17) into (11), which using (12) leads to

I
(
y; Ũ

)∣∣∣
N0→0

= (M −K) log
(βEs

N0
+ c2

)
+ c3, (18)

where c2 and c3 are fixed constants independent of the SNR. The pre-log factor
in (18) gives the multiplexing gain achieved by the RS-to-BS data transmission.
By summing it to the pre-log factor K from (10), i.e., considering (9), we obtain
the overall multiplexing gain M . A more detailed proof may be included in the
extended version, e.g., with extra steps to reach expressions like (16). □

Proposition 8 shows that the considered RSs can exploit the available de-
grees of freedom for transmitting to the BS while a simultaneous UEs-to-BS
communication is established through a desirable orthogonal channel. Further-
more, the total multiplexing gain of such a communication scheme is maximum,
i.e., we could potentially transmit a number of information streams equal to
the total number of BS antennas, thus taking full advantage of systems with a
large excess of BS antennas, e.g., massive MIMO, LIS, cell-free massive MIMO.

5 Numerical results

In Fig. 1 are shown the achievable UEs-plus-RS sum-rates, given by I
(
y; s, Ũ

)
with isotropically distributed Ũ , for different values for M . These rates have
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Figure 1: Information rates with K = 4 UEs, and channel gain β = 1 (left) and
β = M (right).

been computed using (9), (10) and (11), where h(y) has been computed through
Mote-Carlo simulations considering (13) with p(y) given by Proposition 7. As
baseline, we may take the UEs sum rate for perfect CSI knowledge with an
orthogonal channel, corresponding to I

(
y; , s|Ũ

)
, i.e., given in closed-form by

(10). Note that, since we consider perfectly orthogonal channels Ũ , the UE sum
rate can be shared equally among UEs without interference. In Fig. 1 (left) we
ignore the possible array gains by fixing β = 1, hence the lack of dependency
on M of I

(
y; , s|Ũ

)
, while in Fig. 1 (right) we have β = M to account for

the respective array gain. Considering (9), the gap between I
(
y; s, Ũ

)
and

I
(
y; s|Ũ

)
corresponds to I

(
y; Ũ

)
, i.e., the achievable rate at which the the RS

can communicate with the BS while allowing maximum transmission rate for
the UEs. The results show that the extra link between the RS and the BS can
exploit the M − K degrees of freedom of the channel to increase the overall
multiplexing gain of the transmission, which seems to scale with M instead
of with K as for common MU-MIMO uplink transmissions [19]. Thus, these
numerical results confirm the asymptotic study from the previous section.

6 Conclusions

We have considered the use of two RS technologies, namely ARIS and FRIS,
for simultaneous communication of UEs and RS data to a MU-MIMO BS. The
main advantage of these RS technologies is that they can achieve perfectly
orthogonal channels, thus allowing for perfect multiplexing of UEs in the spa-
tial domain at reduced complexity. We have proposed employing the freedom
in the desirable channel selection, which should only fulfill the orthogonality
constraint, to embed extra information from the RS to the BS at essentially
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no cost. We have computed the mutual information of such a framework, and
showed that the resulting multiplexing gain allows to exploit all the available
degrees of freedom from the excess of BS antennas.

Appendix A: Proof of Proposition 7

Given (1), using straightforward probabilistic identities, we can express the
PDF of y as

p(y) = EH

{∫
s∈CK

p(y|H, s)p(s)ds

}
. (19)

Considering the assumptions s ∼ CN (0K×1, EsIK) and n ∼ CN (0M×1, N0IM )
we have

p(s) =
1

(πEs)K
exp

(
−∥s∥2

Es

)
, (20)

p(y|H, s) =
1

(πN0)M
exp

(
−∥y −Hs∥2

N0

)
, (21)

which can be substituted in (19). Given the singular value decomposition
(SVD) of the channel matrix, H = UΣV H,32 if we expand the norms and
perform some matrix manipulations over (19) (with (20) and (21)) we reach

p(y) =
exp

(
−∥y∥2

N0

)
(πEs)K(πN0)M

EH

{∫
s̃∈CK

exp

(
−∥s̃∥2

Es

)

× exp

(
− s̃HΛs̃

N0

)
exp

(
2

N0
ℜ{yHUΣs̃}

)
ds̃

}
,

(22)

where Λ = ΣHΣ is the diagonal matrix with the eigenvalues of HHH, and
where we have considered the change of integration variable to s̃ = V s. Further
expanding the norms and multiplications leads to

p(y) =
exp

(
−∥y∥2

N0

)
(πEs)K(πN0)M

EH

{
K∏

k=1

∫
s̃k∈C

exp

(

− (Esλk +N0)|s̃k|2

EsN0
+

2

N0
ℜ{yHukσks̃k}

)
ds̃k

}
,

(23)

32Note that, assuming (5), the SVD of H is given by (6) after including the scaling of the
singular values

√
β.
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where λk is the kth eigenvalue of HHH, uk is the kth column of U , and
σk =

√
λk is the kth singular value of H. The integrals from (23) can be solved

in closed form by considering the real and imaginary part of each s̃k (see [22,
Entry 3.323.2]). Thus, after integrating and performing trivial operations we
get

p(y) =
exp

(
−∥y∥2

N0

)
πK(πN0)M−K

EH

{
K∏

k=1

1

λkEs +N0

× exp

(
λkEs∥uky

H∥2

N0(λkEs +N0)

)}
.

(24)

Given the orthogonality constraint on the channel (5) with (6), we can substi-
tute the eigenvalues λk = β for k ≤ K, and eigenvectors uk, directly corre-
sponding to the kth row of Ũ from (5), which is itself a sub-matrix (6) of U
hereby assumed to be uniformly distributed on the unitary space U(M). By
substituting in (24) and regrouping we reach

p(y) =
exp

(
−∥y∥2

N0

)
(
π(βEs +N0)

)K
(πN0)M−K

× EU

{
exp

(
βEs∥ŨyH∥2

N0(βEs +N0)

)}
,

(25)

which, after expanding the expectation and operating, leads to

p(y) =
exp

(
−∥y∥2

N0

)
(
π(βEs +N0)

)K
(πN0)M−K

∫
U∈U(M)

p(U)

× exp
(
trace

(
γyyHUĨUH

))
dU ,

(26)

where p(U) is the PDF of an isotropically distributed unitary matrix, and
where we have defined

γ =
βEs

N0(βEs +N0)
(27)

Ĩ = diag

([
1K×1

0(M−K)×1

])
. (28)
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The integral (26) has closed-form solution [23], [24], giving

p(y) =
exp

(
−∥y∥2

N0

)
(
π(βEs +N0)

)K
(πN0)M−K

M−1∏
m=1

m! det(G)

∆(γyyH)∆(Ĩ)
,

(29)

where ∆(A) =
∏

1≤i<j≤T (λj(A) − λi(A)) corresponds to the Vandermonde
determinant of the decreasing eigenvalues λi(A) of some T × T positive semi-
definite matrix A, and where the (i, j)th entry of G is given by

[G]i,j = exp
(
λi(γyy

H)λj(Ĩ)
)
. (30)

Given the rank deficiency of Ĩ, which has K non-zero eigenvalues λj(Ĩ) = 1
for j = 1, . . .K, as well as of γyyH, which has only one non-zero eigenvalue
λ1(γyy

H) = γ∥y∥2, the right quotient in (29) evaluates to an indeterminate
form 0/0. Let us define G in function form as G = {gi(aj)} for 1 ≤ i, j ≤ M ,

where aj = λj(Ĩ), which leads to

gi(x) = exp
(
λi(γyy

H)x
)
. (31)

We can then apply [25, Lemma 2] to find the limit

lim
a1,...,aK→1

aK+1,...,aM→0

det({gi(aj)})
∆(Ĩ)

=
det(F )

(−1)K(M−K)
K−1∏
k=1

k!
M−K−1∏

n=1
n!

, (32)

where the ith column of F is given by

[F ]i,: =
[
gi(1) · · · g

(K−1)
i (1) gi(0) · · · g

(M−K−1)
i (0)

]
. (33)

Note that g
(n)
i (a) corresponds to nth derivative of gi(x) at x = a, which is

given by

g
(n)
i (x) = λn−1

i (γyyH) exp
(
λi(γyy

H)x
)
. (34)

After substituting (34) into (33), we can also define F in function form as
F = {fj(bi)} for 1 ≤ i, j ≤ M , where bi = λi(γyy

H)), leading to

fj(x) =

{
xj−1 exp(x), j ≤ K

xj̃−1, K < j ≤ M,
(35)
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with j̃ = j −K. We can then apply [25, Lemma 2] again to find the limit

lim
b1→γ∥y∥2

b2,...,bM→0

det({fj(bi)})
∆(γyyH)

=
det(Z)

(−γ∥y∥2)M−1
M−2∏
q=1

q!

, (36)

where the jth column of Z is given by

[Z]:,j =
[
fj(γ∥y∥2) fj(0) f ′

j · · · f
(M−2)
j (0)

]T
, (37)

with the nth derivative of fj(x) given by

f
(n)
j (x) =


n∑

k=0

(
n
k

) n−k∏
l=1

xj−n+k−1 exp(x), j ≤ K

n∏
l=1

(j̃ − l)xj̃−n−1 exp(x), K < j ≤ M,

(38)

Substituting (38) in (37) and operating leads to (15). Furthermore, substituting
(29) with the obtained limits leads directly to (14), which concludes the proof.
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