
FinOps :
Monitoring and Controlling GCP costs

Saad AIT CHIKH - 2201837
Master’s Thesis in computer science
ÅAU Supervisor : Sébastien Lafond
INSA Supervisor: Laurence Rozé
Faculty of Science and Engineering
Double Degree INSA Rennes - Åbo Akademi University (ÅAU) - 2023

Abstract

Cloud computing has gained significant popularity in today’s digital landscape, with
companies relying on cloud-based solutions to manage their data, applications, and in-
frastructure. The cloud offers several advantages, including scalability, flexibility, and
cost-effectiveness, making it a popular choice for businesses of all sizes. However, with
the increasing adoption of cloud technologies, it is important for companies to keep a
close eye on their cloud usage costs to ensure they are using the cloud efficiently and ef-
fectively. This is where the discipline of Financial Operations (FinOps) comes into play.
FinOps seeks to optimize cloud spending, and it has become increasingly important for
organizations that utilize cloud computing. By implementing FinOps practices, compa-
nies can achieve better cost visibility and control, leading to more efficient and effective
cloud usage. While several cloud providers are available in the market, such as Amazon
Web Services (AWS) and Microsoft Azure, this work will focus specifically on Google
Cloud Platform (GCP).

The goal of this thesis is to present two implemented solutions for managing GCP
costs: proactive anomaly detection and cost forecasting using machine learning (ML) al-
gorithms. Thanks to anomaly detection, companies can detect unusual patterns in their
cloud billing data and proactively alert teams to investigate and address any issues. Fur-
thermore, forecasting future costs can help companies anticipate potential cost spikes and
take proactive measures to avoid them.

Keywords : Machine Learning, Anomaly Detection, Cost Forecasting, Google Cloud
Platform (GCP), API

1

Preface

This thesis is the outcome of my end-of-studies internship that I had the pleasure to
complete at Neoxia. Before starting talking about this professional experience, it seems
natural to me to first express my gratitude to all the people who have been able to partici-
pate in the smooth running of this internship and the achievement of this thesis.
First, I would like to warmly thank my internship tutors, Mrs Audrey KAMTA DJAKOU
and Mr Kais ARBI, Data Full Stack Consultants at Neoxia, for their monitoring of my in-
ternship, their continuous support, their contribution to my mission and their availability
throughout this period.
A special thanks to Mr Mohamed Amine BERGAOUI, the Data Factory Director and Mr
Jean-Baptiste PACCOUD, the CEO of Neoxia, for the importance they attach to my work.
At the same time, I would like to thank the entire Neoxia technical team. It was a real
pleasure to work alongside them, both at office and remotely.
I also like to express my deep gratitude to all my professors at INSA Rennes, and my
professors of my double degree at Åbo Akademi University for the quality of the training
they provided.
Finally, I also express my appreciation to Laurence Rozé, my supervisor at INSA Rennes
and Sébastien Lafond, my tutor at Åbo Akademi University, for their support.

2

Contents

List of Abbreviations . iv
List of Figures . v
List of Tables . vii

1 Introduction 1
1.1 The company : Neoxia . 1
1.2 Internship context and goals . 2

2 Google Cloud Platform 3
2.1 Cloud Compute . 3

2.1.1 Compute Engine . 3
2.1.2 Cloud Functions . 3

2.2 Big Data - Analytics . 4
2.2.1 BigQuery . 4
2.2.2 Looker Studio . 4

2.3 Cloud Management . 4
2.3.1 Billing API . 5
2.3.2 Cloud Scheduler . 5

2.4 Cloud AI . 5
2.4.1 Vertex AI . 5

3 Time Series: state-of-the-art 6
3.1 Time Series Analysis . 6

3.1.1 Time series patterns . 6
3.1.2 Time series components . 7
3.1.3 STL decomposition . 7
3.1.4 Autocorrelation . 8
3.1.5 Partial Autocorrelation . 8

3.2 Time Series Anomaly Detection . 9
3.2.1 Anomaly definition . 9

i

3.2.2 Anomaly types . 9
3.2.3 Anomaly Detection Approaches 10

3.2.3.1 Inter-Quantile Range 11
3.2.3.2 Local Outiler Factor 12
3.2.3.3 Isolation Forest . 13

3.2.4 Evaluation metrics . 15
3.3 Time Series Forecasting . 16

3.3.1 Prophet . 16
3.3.2 ARIMA models . 17

3.3.2.1 Stationarity and differencing 17
3.3.2.2 Autoregressive models 18
3.3.2.3 Moving average models 18
3.3.2.4 Non-seasonal ARIMA models 18
3.3.2.5 Seasonal ARIMA models 19

3.3.3 LSTM . 19
3.3.4 Forecast Performance Metrics 21

4 Stime : a Proof of Concept 22
4.1 Development phase . 22

4.1.1 Data Exploration . 22
4.1.2 Data Processing . 23
4.1.3 Anomaly detection models . 25

4.1.3.1 Results and conclusions 26
4.1.4 Forecasting models . 30

4.1.4.1 Results and conclusions 33
4.2 Deployment phase . 33

4.2.1 Alerteam - Alerting API . 34
4.2.1.1 Architecture . 34
4.2.1.2 Parameters . 35
4.2.1.3 Alerteam approach . 37
4.2.1.4 Prerequisites for Deployment 39
4.2.1.5 Deployment with Terraform 40

4.2.2 Forecasting API . 43
4.2.2.1 Existing dashboard overview 43
4.2.2.2 Architecture . 45
4.2.2.3 Parameters . 46
4.2.2.4 Data preparation . 47
4.2.2.5 Models development in Vertex AI 48

ii

4.2.2.6 Forecasting process 49

5 Future work and Conclusion 50

iii

List of Abbreviations

GCP Google Cloud Platfrom.

AI Artificial Intelligence.

API Application Programming Interface.

ML Machine Learning.

R&D Research and experimental Development.

HTTP Hypertext Transfer Protocol.

IQR Inter-Quantile Range.

ARIMA AutoRegressive Integrated Moving Average.

ACF Autocorrelation Function.

PACF Partial Autocorrelation Function.

NN Neural networks.

LSTM Long-Short-Term-Memory.

iv

List of Figures

3.1 Decomposition of time series - Number of international airline passengers
per month - R language AirPassengers package 8

3.2 Example of a point anomaly . 9
3.3 Example of a contextual anomaly . 10
3.4 Example of a collective anomaly . 10
3.5 IQR method . 11
3.6 Illustration of reachability distance . 12
3.7 An example of a fitted tree with Isolation Forest 14
3.8 Isolation Forest algorithm . 14
3.9 Confusion matrix . 15
3.10 Forecasting a time series - Number of international airline passengers per

month - R language AirPassengers package 16
3.11 LSTM unit . 20

4.1 Example of Billing Export Data . 23
4.2 Daily total cost of all resources used across all projects of STIME from

January to May 2023 . 24
4.3 Daily total cost of different projects of STIME from January to July 2022 25
4.4 Ground truth anomalies in STIME’s projects 26
4.5 Detected anomalies using Interquantile range method 27
4.6 Detected anomalies using Local Outlier Factor method 28
4.7 Detected anomalies using Isolation Forest algorithm 29
4.8 GCP cost forecasting for all the projects of STIME 31
4.9 GCP cost forecasting for the project stime-red-prod 31
4.10 GCP cost forecasting for the project stime-red-preprod 32
4.11 GCP cost forecasting for the project itm-oneplace-prod 32
4.12 Performance comparison of ARIMA, Prophet, and LSTM models 33
4.13 Architecture of Alerteam . 35
4.14 Alerteam Cloud Function Execution Flow 38

v

4.15 Alert message sent by Alerteam . 43
4.16 Existing dashboard . 44
4.17 Forecasting API . 46

vi

List of Tables

4.1 Confusion matrix for IQR. 27
4.2 Confusion matrix for LOF. 28
4.3 Confusion matrix for Isolation Forest. 29

vii

Introduction

In this first chapter, we will present the company, Neoxia, where I did my internship.
Then, we will introduce the context of the internship as well as its objectives.

1.1 The company : Neoxia

Neoxia is a digital services company founded in 2000 in Paris and is now established in
seven different offices that span three countries : France, Morocco and Canada. Neoxia
now includes more than 300 highly skilled professionals, working on three core activities
of the company which are:

• Business Technology Consulting: offering services in digital strategy, up-to-date
architecture, technical audit, experiments and Proof of Concept.

• Digital and Data Factory: working on Design and Delivery of digital platforms
(web, mobile, IoT, data driven) and offering solutions related to different Data dis-
ciplines: Data Science, Machine Learning and finally Data Engineering.

• DevOps Run 24/7 : integration, industrialization and 24/7 cloud managed services.

Through those three units, Neoxia tries to respond to its customers’ business issues by
deploying operational solutions as quickly as possible. The services offered include infor-
mation systems architecture design, information systems audit, applications development
and deployment. Also, the company spends 20% of its time on R&D projects and does
not hesitate to take risks, partnering with the best entrepreneurs or business leaders to de-
sign, build and even fund highly innovative solutions. During this internship, I integrated
the Digital & Data factory unit, and especially the Data team in the Paris office.
Since 2000, Neoxia has been a key player in the digital transformation of all cloud pio-
neering companies, from start-ups to large enterprises. For instance, Neoxia has recently
worked with several clients such as: Eurosport, Veolia, Intermarché, Fnac-Darty, Air Liq-
uide, Bouygues Construction, L’Equipe, Pernod-Ricard and others.
In the following, we will present the clients I worked for, as well as my mission.

1

1.2 Internship context and goals

Neoxia has several clients who use Google Cloud Platform (GCP) to host their data, ap-
plications and projects. These customers want to have an alert system to detect high costs,
which can be caused by GCP services charged at high rates. They would also like to have
a detailed monitoring of their GCP hosting invoices and anticipate future costs to avoid
budget overruns.
Two of Neoxia’s clients, Ouest France and Stime, expressed the need for a detailed moni-
toring of their GCP costs. Ouest France is a French newspaper company, founded in 1944,
which publishes regional and national daily newspapers. Stime, in turn, is the Informa-
tion Systems Department of the Groupement Les Mousquetaires, which has seven brands
(Intermarché, Netto, Bricomarché, Bricorama, Brico Cash, Roady, Rapid Pare-Brise).
In this context, the objectives of this internship can be divided into three main parts:

• The first goal is to develop an anomaly detection method to alert customers when
they detect high costs.

• The second objective is the development of a model that forecasts GCP costs for
the upcoming months.

• The third objective is the deployment and industrialization of the two solutions, i.e.
the anomaly detection method and the GCP cost forecasting model.

This internship will focus on Stime data, but the main goal is to develop a generic solution
that can be deployed for Ouest France and other clients.

Before diving into the details of the proposed solutions, it is appropriate to present an
overview of the GCP services relevant to our study in chapter 2. Then, we will continue
with a state of the art on time series in chapter 3. In chapter 4, the accomplished work
will be presented.

2

Google Cloud Platform

Google Cloud Platform (GCP) [5] is a major player in the cloud market. It allows compa-
nies to host their data and applications in the cloud. GCP offers a suite of cloud computing
services including storage, machine learning, big data, security, and networking. Com-
panies are only charged for the amount of time and resources that they consume, rather
than having to pay for pre-allocated amounts of computing power. This chapter provides
a short review of some GCP services that will be used in this project.

2.1 Cloud Compute

Google Cloud Compute services are virtual machines that are provisioned and physically
running on Google’s infrastructure. As part of this project, we will be using two main
services : Compute Engine and Cloud Functions.

2.1.1 Compute Engine

Google Compute Engine (GCE) [4] provides a scalable number of virtual machines called
instances that allow clients to run workloads. GCE can be managed through an API, the
Google Cloud console or the Google command line interface. When creating instances,
some properties can be specified, such as the number of virtual CPUs and the amount of
memory, by using a set of predefined machine types or by creating custom machine types.

2.1.2 Cloud Functions

Google Cloud Functions [13] are serverless cloud-based functions for connecting and
extending cloud services. With cloud functions, developers can write code which will be
executed in a fully managed environment. These functions are triggered by events emitted
from other cloud services. Their code is typically stored in a Google Cloud Storage
bucket. Buckets are containers for storing data and code in GCP. Cloud functions supports

3

various programming languages, with Python being the main programming language for
this project.

2.2 Big Data - Analytics

GCP offers a wide variety of Big Data1 and Analytics services to manage and analyze
data. These services include solutions for data warehousing2, data exploration, stream,
and batch analytics. Out of all the offered services, the two that we will be use are Big-
Query and Looker studio.

2.2.1 BigQuery

BigQuery [1] is a highly scalable, and cost-effective analytics and data warehousing plat-
form. BigQuery allows oraganizations to store massive amounts of data. Its serverless
architecture allows it to operate at scale and speed to provide incredibly fast SQL analyt-
ics over large datasets.

2.2.2 Looker Studio

Looker Studio [9] , formerly known as Data Studio, is a powerful data expolaration and vi-
sualization platform to create fully customizable dashboards and interactive reports. Users
can easily collaborate on reports and share insights with other team members. Looker
Studio can be connected to a wide variety of data sources, including GCP services like
BigQuery or third-party data, like Facebook and LinkedIn Ads.

2.3 Cloud Management

Google Cloud Management is a wide range of tools provided by Google to simplify ap-
plication management tasks. Customers have access to different services and APIs to
manage their Google Cloud projects, schedule tasks and monitor cloud resources such as
Compute Engine instances. Billing API and Cloud scheduler are our point of emphasis
among the suite of Cloud Management services.

1The massive amount of data available to organizations
2Collecting data from a wide range of sources into a single database

4

2.3.1 Billing API

Billing API [2] is a set of tools to plan, monitor, and control costs of cloud resources.
This API provides the Billing export feature which allows organizations to export billing
data automatically to a BigQuery dataset. The billing data contains detailed usage and
billing information for all the used cloud resources. This data helps identifying specific
resources that might be driving up costs. It can be accessed from BigQuery for detailed
analysis, or using Looker Studio for visualization. The billing export will be the primary
data we use for this project.

2.3.2 Cloud Scheduler

Google Cloud Scheduler [3] is a fully managed service that enables users to schedule
and automate the execution of recurring tasks at defined times or regular intervals. Each
scheduled task is commonly known as cron job. Cron jobs are sent to a target in a specified
schedule to accomplish a task. Typical targets are HTTP endpoints like Cloud Functions.

2.4 Cloud AI

Cloud AI is a suite of artificial intelligence services (AI) offered by Google. The AI
services include Cloud Natural Language to analyze documents, Cloud Speech API to
transcribe audio to text, Cloud Video Intelligence API for video analysis, Cloud AutoML
to build high-quality custom machine learning models automatically and, finally, Vertex
AI which is the tool used for this project.

2.4.1 Vertex AI

Vertex AI [12] is a fully managed Machine Learning (ML) platform for building, deploy-
ing, and scaling ML models. In Vertex AI, users can easily train and compare models
using Cloud AutoML or custom code training; it integrates with open source frameworks
such as TensorFlow and scikit-learn.
Once the relevant GCP services are presented, we will continue with a state of the art of
time series.

5

Time Series: state-of-the-art

A time series is a set of observations xt , each recorded at a specific time t. This set of
data points is indexed in chronological order with a fixed frequency. Time series appear
in many different domains: economics, finance, engineering, environmental modeling,
meteorology, and more.

Each time series has certain characteristics that need to be considered before creating
time series models. These characteristics will be discussed in the first section (3.1) of
this chapter, before moving on to the second section (3.2) to discuss time series anomaly
detection and then forecasting models in the last section (3.3).

3.1 Time Series Analysis

Time series analysis is a mathematical approach for identifying characteristics and ex-
tracting knowledge from time series. This approach highlights the time series patterns,
components and certain correlations that may be difficult to detect with the naked eye.

3.1.1 Time series patterns

Time series patterns are recurring behaviors that can be observed in many different types
of data. Here are three important time series patterns:

• Trend: a long-term movement in the data that follows a consistent direction, either
upwards or downwards.

• Seasonality: refers to patterns that repeat themselves over a fixed period, such as
weeks, months, or quarters.

• Cycle: refers to patterns that repeat themselves over a period of time that is longer
than seasonality.

Overall, identifying and understanding these time series patterns is essential for under-
standing the components of a time series.

6

3.1.2 Time series components

A time series Xt can be decomposed into :

• Trend Tt corresponding to the trend-cycle component.

• Seasonality St corresponding to the seasonal component.

• Error et which is the random part of the series.

This decomposition can be additive or multiplicative. A multiplicative decomposition
would be written as in equation (3.1):

Xt = Tt ⇤St ⇤ et (3.1)

Alternatively, if we assume an additive decomposition which is commonly used for finan-
cial data, then the mathematical equation is written as follows in equation (3.2):

Xt = Tt +St + et (3.2)

There are several methods to decompose a time series; we will discuss the most robust
one : STL.

3.1.3 STL decomposition

STL (Seasonal-Trend decomposition using LOESS1) [16] is a robust method for time
series decomposition. STL uses regression models to decompose the time series into its
three components (trend, seasonality and error).
Figure 3.1 shows an example of the STL decomposition of an additive time series. Notice
that if we add the three components (random, seasonal and trend) together, the time series
(observed data) will be reconstructed.

1A method for estimating nonlinear relationships.

7

Figure 3.1: Example of a time series and its STL decomposition

3.1.4 Autocorrelation

Autocorrelation function (ACF) [10] measures the degree of similarity between the cur-
rent values of a variable and the historical data of that same variable —hence, the name.
Autocorrelation rk refers to the relationship between a time series Xt , and a lagged version
of itself Xt�k, where Xt�k is a version of the original time series Xt that is k periods behind
in time. k is the lag.
When k=1, autocorrelation is assessing adjacent observations. For each lag, there is a
correlation. For example, the autocorrelation at lag 2 measures how correlated is this
month’s value with the value two months ago.

3.1.5 Partial Autocorrelation

The partial autocorrelation function (PACF) [10] is a measure of the direct relationship
between a time series and its lagged counterparts while removing the effects of intermedi-
ate lags. It provides a way to determine the direct influence of a specific lag on the current
value of the time series, independent of any indirect effects from other lags. For instance,
the PACF can be used to identify the direct impact of the number of passengers from six
months ago on this month’s number of passengers, by removing the effects of the number
of passengers from each of the intervening months. The process involves iteratively re-
moving the effects of the intermediate lags until only the direct influence of the specified
lag remains in the calculation.
We will not delve into the technical details of how to calculate ACF and PACF in this con-
text, as it involves complicated computations and they are not essential for our purposes.

Now that we have covered the basics of time series analysis, we can move on to the
next step: time series anomaly detection.

8

3.2 Time Series Anomaly Detection

While analyzing time series data, we have to make sure of unusual data points. These
observations are often referred to as anomalies. In this section, the main concepts are
defined. Then, anomaly detection approaches will be presented.

3.2.1 Anomaly definition

In time series, an anomaly [6] is a data point that is significantly different from the overall
nature of the time series. Commonly named as an outlier, this data point deviates consid-
erably from the patterns of the rest of the data. Thus, in a set W containing N observations
denoted xi, then xk 2 W will be considered as an anomaly if it differs significantly from
the observations contained in the set W\{xk}.
In the context of this work, a data point is considered as an anomaly when it does not
conform to the expected behavior. Classifying a data point as abnormal depends a lot on
the context. Thus, anomalies are often divided into types.

3.2.2 Anomaly types

There are multiple types of anomalies, but we will focus on the most important ones [6]:

• Point anomaly : otherwise called global anomaly, corresponds to a single data
point that deviates with respect to a given metric (distance for example). After the
anomaly has occurred, the time series recovers its normal behavior. In Figure 3.2,
the red dot is a point anomaly, so it is outside the "normal" behavior of the series.

Figure 3.2: Example of a point anomaly

• Contextual anomaly : An anomaly is contextual if it depends on the context where
it occurs. In this case, it will be difficult to decide correctly on the anomalous aspect
without having information about the context. We can take the example of a time

9

series modeling the temperature over a year. In figure 3.3, at time t1 a temperature
of 5 °C can be considered as normal in the winter but abnormal at time t2 in the
summer.

Figure 3.3: Example of a contextual anomaly

• Collective anomaly : A single observation will not be considered as a collective
anomaly. When analyzing a complete time series, a subsequence2 will reveal ab-
normal behavior relative to the rest of the series. We illustrate this example in figure
3.4.

Figure 3.4: Example of a collective anomaly

In this project, we will be facing point anomalies. Understanding the type of anoma-
lies will guide us in choosing the appropriate approaches to detect them.

3.2.3 Anomaly Detection Approaches

In literature, anomaly detection has been extensively studied, starting from statistical
methods to sophisticated machine learning algorithms. This section will explore three
different techniques. The first one is Inter-Quantile Range.

2A segment/sequence of the time series

10

3.2.3.1 Inter-Quantile Range

To explain the Inter-Quantile Range (IQR) method [15], we will start by understanding
the concept of a box plot. Also known as a box-and-whisker plot, it is a graphical repre-
sentation of a dataset that provides information on the spread, skewness, and range of the
data. A box plot is shown on the top part of figure 3.5 :

Figure 3.5: IQR method

• Median is the center point of the data; it is the value separating the higher half of
the data from the lower half.

• Q1 is the first quartile of the data, meaning that 25% of the data lies below Q1.

• Q3 is the third quartile of the data, meaning that 75% of the data lies below Q3.

The difference between Q3 and Q1 is called the Inter-Quartile Range or IQR (3.3):

IQR = Q3�Q1 (3.3)

In order to identify anomalies using this method, a new range known as the decision
range is defined. Any data point that falls outside this range is classified as an anomaly.
The decision range [Lower Bound,Upper Bound] is determined as follows:

• Upper Bound = Q3+b ⇤ IQR

• Lower Bound = Q1�b ⇤ IQR

11

IQR is denoted as IQR(b). To determine the decision range, generally we set b at 1.5
in the bounds. This is because any data point that falls beyond 2.7 standard deviations
s from the mean µ in either direction is considered an anomaly. This decision range
aligns closely with the threshold of 3s specified by the Gaussian distribution approach
for outlier detection. Refer to figure 3.5 for a visual representation.
After understanding the Inter-Quantile Range (IQR) method for anomaly detection, we
will now move on to another popular technique called Local Outlier Factor (LOF).

3.2.3.2 Local Outiler Factor

The Local Outlier Factor (LOF) algorithm [8] is an unsupervised ML method for finding
anomalies in a dataset by measuring an individual’s local deviation from its neighbors [8].
The approach involves comparing the local density of each individual with respect to the
densities of its k-nearest neighbors. Outliers are identified as individuals with a lower
density compared to their neighbors.
Let distk(i) be the distance between data point Xi and its kth nearest neighbors, and let
Nk(Xi) be the set of Xi’s k-nearest neighbors; Nk(Xi) includes a set of points that lie in
the circle of radius distk(i). This distance is used to define what is known as reachability
distance (3.11):

distreach(Xi,Xj) = max(distk(Xj),d(Xi,Xj)) (3.4)

In the example below 3.6, k = 2 and ||Nk(Xj)|| = 3. In regards to reachability dis-
tance, if a point Xi lies within Nk(Xj), distreach(Xi,Xj) will be distk(Xj) (blue line), else
distreach(Xi,Xj) will be the distance between Xi and Xj (orange line).

Figure 3.6: Illustration of reachability distance

The reachability distance is then used to calculate another concept called local reach-
ability density (LRD). The LRD of a data point A is calculated as follows (3.5) :

12

LRDk(A) =
1

ÂXj2Nk(A)
distreach(A,Xj)

k

(3.5)

Intuitively, the LRDk (Distance to Nearest Cluster) informs about the distance that
needs to be covered from A in order to reach the nearest cluster of points. The LRDk of
each individual can then be compared to the LRDk of its k-nearest neighbors using LOF
formula (3.6):

LOFk(A) =
ÂXj2Nk(i)LRDk(Xj)

k⇥LRDk(A)
(3.6)

A value of LOF ⇡ 1 indicates that the data point is similar to its neighbors, while a
value of LOF > 1 indicates that the data point is an anomaly. Local Outlier Factor model
will be denoted as LOF(k), where k represents the parameter for the number of neighbors
used in the model.
After discussing the Local Outlier Factor method, we will explain the last method, Isola-
tion Forest, which is a tree-based algorithm for anomaly detection.

3.2.3.3 Isolation Forest

Isolation forest [7] is an unsupervised anomaly detection algorithm. The algorithm se-
lects a set of randomly drawn samples. Each sample is separated according to a randomly
chosen threshold value between the maximum and minimum of the time series. Data
points of each sample are classified according to this threshold to build a decision tree,
all the lower values will be on the left and the higher ones on the right. This operation is
repeated according to another threshold value in each sub-tree created, until we have iso-
lated each data point. Figure 3.7 shows a fitted tree on a given sample. We can notice that
the anomaly (Point G) is close to the root node (i.e. at a lower depth); however, normal
instances are not.

13

Figure 3.7: An example of a fitted tree with Isolation Forest

As often in machine learning, the key is iteration. In fact, if we randomly fit many
decision trees, and then take an average of the depth of each data point over the different
trees, we find an average depth that represents an anomaly score. Thus, the p data points
with lower average depth are more likely to be anomalies. Therefore, Isolation Forest is
denoted as IF(p), where p represents the percentage of anomalies in the dataset and is set
at 0.01 by default. Figure 3.8 shows a conceptual illustration of Isolation Forest.

Figure 3.8: Isolation Forest algorithm

Now that we have explored different algorithms for anomaly detection, it is important
to evaluate their performance using appropriate metrics.

14

3.2.4 Evaluation metrics

Confusion matrix is a useful tool to evaluate the performance of a binary classification
model. It represents the classification results, where normal instances are classified as
negative (0) and anomalous instances are classified as positive (1).
The confusion matrix is defined as follows 3.9:

Figure 3.9: Confusion matrix

In the confusion matrix, True Positives (TP) represent the number of correctly classi-
fied anomalous instances, False Positives (FP) are the number of normal instances that are
incorrectly classified as anomalous, True Negatives (TN) are the number of correctly clas-
sified normal instances, and False Negatives (FN) are the number of anomalous instances
that are incorrectly classified as normal. Since we are primarily interested in identify-
ing anomalies, TN doesn’t provide us with useful information about the performance of
the model in this context. From the confusion matrix, various metrics can be derived to
evaluate the model’s performance, such as precision, recall and F-1 score :

• Precision measures the proportion of correctly classified anomalous instances over
all instances classified as anomalous.

Precision =
T P

T P+FP
(3.7)

• Recall measures the proportion of correctly classified anomalous instances over all
anomalous instances in the dataset.

Recall =
T P

T P+FN
(3.8)

• F1-score provides a balanced measure between precision and recall.

F1� score = 2⇤ precision⇤ recall
precision+ recall

(3.9)

Now that we have covered a state of the art of time series anomaly detection techniques,
it is time to explore the topic of time series forecasting.

15

3.3 Time Series Forecasting

The usual objective of time series analysis is to predict the future values of a series: given
a series of observations x1, ...,xT , the objective is to predict (at time T) the value of the
series at time T +h, noted xT+h. See figure 3.10 for the time series forecast of the same
example 3.1.3.

Figure 3.10: Forecasting a time series

This section provides an overview of the main models available for time series fore-
casting.

3.3.1 Prophet

Prophet [11] [14] is an algorithm based on an additive model for time series forecast-
ing. This open source library is developed by Facebook with the aim of democratizing
time series forecasting. This model is integrated into Stan, a programming language for
statistical inference written in C++. Prophet fits linear and non-linear trends with three
main model components: trend, seasonality, and holidays. The equation (3.10) shows the
mathematical representation of this algorithm :

y(t) = g(t)+ s(t)+h(t)+ et (3.10)

• The trend g(t) models non-periodic changes : continuous linear or piecewise lo-
gistic. The change points of the trend are automatically detected by the model.

• The seasonality s(t) (i.e. daily, weekly, monthly, yearly) is approximated by a
Fourier series which given in (3.11):

16

s(t) =
N

Â
n=1

(ancos(
2pnt

P
)+bnsin(

2pnt
P

)) (3.11)

where :

– P is the period (365.25 for annual data, 30.5 for monthly data, 7 for weekly
data)

– N is the length of the time series

• A function of holidays h(t) integrated by Prophet which allows the capture of va-
cations and recurring events. This component will not be used in this project.

• et is the error component accommodated by the model. et is normally3 distributed.

One notices that this approach is simply fitting a curve without analyzing the time
based dependency between individual data points. One of the most popular models for
analyzing this type of relationships is the ARIMA family models.

3.3.2 ARIMA models

ARIMA [18], for AutoRegressive Integrated Moving Average, is a set of statistical models
that are widely used for time series forecasting. This section explores the literature of
these different models: I, AR, MA, ARIMA and seasonal ARIMA.

3.3.2.1 Stationarity and differencing

A stationary time series is one whose statistical properties, such as mean and variance,
do not change over time. In other words, the series does not have any trend component.
ARIMA is based on the assumption that the data is stationary, as it simplifies the modeling
process and allows for more accurate forecasts. However, it is common for real-world
time series data to exhibit trend patterns, which must be removed before modeling.
To make a non-stationary time series stationary, we can use differencing. By taking the
difference between consecutive observations, we can remove the trend component and
obtain a stationary series. In ARIMA models, this differencing process is presented by
the I(d) model where d is the degree of differencing.

3Normal distribution, also known as the Gaussian distribution

17

3.3.2.2 Autoregressive models

In an autoregressive model (AR), the variable of interest is forecasted by using a linear
combination of its past values. This type of model is called autoregression because it is a
regression of the variable against itself. Specifically, an autoregressive model of order p
is represented by the equation (3.12) :

yt = f1yt�1 +f2yt�2 + · · ·+fpyt�p + et (3.12)

Similar to multiple regression, the autoregression model also uses lagged values of y as
predictors. Therefore, we denote it as an AR(p) model, where p represents the order of
the autoregression.

3.3.2.3 Moving average models

A moving average (MA) model takes a different approach than an autoregressive model in
time series forecasting. Instead of using past values of the forecast variable as predictors,
it utilizes past forecast errors in a regression-like model:

yt = et +q1et�1 +q2et�2 + · · ·+qqet�q (3.13)

An MA model of order q is denoted as MA(q), where q represents the number of past
forecast errors that are included in the model.

3.3.2.4 Non-seasonal ARIMA models

By combining differencing with autoregression and a moving average model, we can
create a non-seasonal ARIMA model. This model can be expressed as a combination of
the AR, I, and MA models. The equation is written as follows (3.14) :

y0t = f1y0t�1 + · · ·+fpy0t�p +q1et�1 + · · ·+qqet�q + et (3.14)

where the differenced series is denoted as y0t and the predictors on the right-hand side of
the equation include both lagged values of yt and lagged errors. This model is denoted as
an ARIMA(p, d, q) model, where:

• p is the order of the autoregressive part

• d is the degree of differencing

• q is the order of the moving average part

18

We can determine the appropriate values of p and q that capture the autoregressive and
moving average components of the series by using the ACF and PACF discussed in 3.1.4
and in 3.1.5. The value of d is determined by the number of times the series needs to be
differenced to achieve stationarity.

3.3.2.5 Seasonal ARIMA models

So far, we have focused on analyzing and modeling non-seasonal data using non-seasonal
ARIMA models. Nonetheless, ARIMA models are also applicable for modeling seasonal
data. To incorporate the seasonal patterns present in the data, we can include additional
seasonal terms in the ARIMA models. This results in a seasonal ARIMA model, ex-
pressed as (3.15):

ARIMA (p,d,q)| {z }
Non-seasonal part

(P,D,Q)m| {z }
Seasonal part

(3.15)

where m represents the number of observations per season. To differentiate between the
seasonal and non-seasonal components, uppercase notation is used for the seasonal parts
and lowercase notation is used for the non-seasonal parts. The seasonal part of the model
involves terms that are similar to the non-seasonal components, but incorporate backshifts
of the seasonal period to account for the seasonal variation.
Moving on from the state-of-the-art ARIMA model, we now shift our focus to a more
advanced approach in time series forecasting: Long Short-Term Memory (LSTM) neural
networks.

3.3.3 LSTM

LSTM [17] is an artificial recurrent neural network (RNN) architecture used in deep learn-
ing. RNNs take as input a sequence of vectors (x1,x2, ...,xn) at time t and return another
sequence of vectors (h1,h2, ...,hn), the hidden state, which stores all useful information
at (and before) time t. Although RNNs can theoretically learn long-term dependencies,
in practice they fail to do so and tend to become biased towards the most recent inputs of
the sequence. LSTMs were designed to address this problem by incorporating a memory
cell, and it has been shown that they are capable of detecting long-term dependencies.
This is achieved through the presence of multiplicative gates that control the amount of
information from the previous state to forget and the information from the inputs to let
through to the next memory cell; the state of the LSTM cell can be modified through an
input gate that allows or blocks updates. Similarly, an output gate controls whether the
cell state is communicated as output from the LSTM unit. The most commonly used ver-
sion of LSTM also includes a forget gate that allows for resetting the cell state. Figure

19

3.11 shows the basic schema of an LSTM unit.

Figure 3.11: LSTM unit

The formulas for updating an LSTM unit at time t are:

• Input gate :
it = s(Wiht�1 +Uixt +bi) (3.16)

c̃t = tanh(Wcht�1 +Ucxt +bc) (3.17)

ct = ft � ct�1 + it � c̃t (3.18)

• Forget gate :
ft = s(Wf ht�1 +Uf xt +b f) (3.19)

• Output gate :
ot = s(Woht�1 +Uoxt +bo) (3.20)

ht = ot � tanh(ct) (3.21)

where :

• s is the sigmoid function

• � is the product function

• xt is the input vector at time t

• ht is the hidden state vector that stores all the useful information at (and before)
time t

• Ui,Uf ,Uc,Uo denote the weights of the matrices for the different gates for input xt

• Wi,Wf ,Wc,Wo are the weight matrices for the hidden state ht

• bi,b f ,bc,bo denote the bias vectors

20

In the following section, we will introduce and discuss some commonly used forecast
performance metrics to assess the accuracy of our models.

3.3.4 Forecast Performance Metrics

To evaluate the quality of predictions, the two criteria commonly used in ML are the root
mean squared error (RMSE) and the mean absolute error (MAE).
The RMSE measures the difference between the predicted values and the actual values,
taking into account the square of the differences. The RMSE is defined as (3.22):

RMSE =

s
1
n

n

Â
i=1

(xi � x̂i)2 (3.22)

where :

• xi is the actual value of the ith data point

• x̂i is the predicted value

• n is the total number of data points

The MAE measures the average absolute difference between the actual and predicted
values. The MAE is defined as (3.23):

MAE =
1
n

n

Â
i=1

|xi � x̂i| (3.23)

where :

• yi is the actual value of the ith data point

• x̂i is the predicted value

• n is the total number of data points

Now that we have discussed the state-of-the-art of time series, it is time to move on to
the implementation phase of our project.

21

Stime : a Proof of Concept

As previously mentioned in the internship context and goals in section 1.2, two of Neoxia’s
clients, OuestFrance and Stime, expressed the need for detailed monitoring of their GCP
costs. While this thesis will focus on Stime data, the overall goal is to develop a generic
solution that can be deployed for Ouest France and other clients. To achieve this, a proof
of concept will be conducted with Stime, and the chosen solution will be adapted for
OuestFrance and other clients as needed. This proof of concept will encompass both the
development and deployment phases of the project. First, we will begin by focusing on
the development phase.

4.1 Development phase

The development phase is a crucial step in achieving our project objectives of develop-
ing an anomaly detection method and forecasting GCP costs for Stime. This phase will
involve exploring and understanding the Stime data, building anomaly detection and fore-
casting models, and finally evaluating their performance. By the end of this phase, we aim
to deliver a robust and effective solution that enables Stime to forecast their GCP costs
and detect any anomalies that require attention.

4.1.1 Data Exploration

As mentioned in the Billing API section 2.3.1, the Billing export feature provided by
GCP allows organizations to export detailed usage and billing information for all the used
cloud resources. In this section, we will explore the structure of the billing export data
and provide an example of what it looks like.
It is worth noting that organizations often create multiple projects in order to divide their
resources into logical groups. However, when it comes to the monthly invoice for the
organization, it represents the cumulative sum of resources across all projects.
The billing export data is structured as a table with many columns, each representing a

22

different aspect of the cloud resource usage and billing information. Some of the relevant
columns for our analysis include:

• Project Name: The name of the project associated with the cloud resource usage.

• Service Description: A description of the used cloud service (e.g. Compute En-
gine, BigQuery).

• Usage Start Time: The start time of the cloud resource usage.

• Usage End Time: The end time of the cloud resource usage.

• Cost: The total cost of the cloud resource usage.

There are many other columns in the billing export data that provide additional infor-
mation about the cloud resource usage and billing.

To illustrate what the billing export data looks like, we have included an example of
ST IME billing data in figure 4.1.

Figure 4.1: Example of Billing Export Data

From this example, we can see that each row of the billing export data represents a
specific usage instance of a particular resource, and contains detailed information about
the resource usage and cost.
Now that we have explored the structure of the billing export data, we can move on to the
pre-processing step, where we will extract and process the relevant information.

4.1.2 Data Processing

In this section, we will pre-process the billing export to create time series of daily costs
for both the total cost of all resources used across all projects of STIME and the cost

23

by project. This will allow us to analyze the organization’s spending and identify any
inefficiencies or opportunities for optimization.

To start, we will first focus on the total cost of all projects in the organization. An-
alyzing the total cost can provide a high-level overview of the organization’s spending.
We can pre-process the billing export data using the following SQL query to compute the
total daily cost:

SELECT
FORMAT_TIMESTAMP(’%Y-%m-%d’, usage_end_time) AS day,
ROUND(IFNULL(SUM(cost),0),2) AS total_cost

FROM
‘billing_export_table‘

GROUP BY
day

This query calculates the daily cost for the total resources used across all projects of
ST IME. We can visualize the results of this query as a line plot from January to May
2023, as shown in Figure 4.2. The daily cost ranges from around 4000$ to 5000$, with a
mean value of approximately 4500$. As we can see on the plot, the total cost exhibits a
relatively stable seasonal pattern, with some fluctuations.

Figure 4.2: Daily total cost of all resources used across all projects of STIME from
January to May 2023

To get a better understanding of how costs are distributed across projects, we can look
at the cost by project. This will allow us to monitor the costs for individual projects and
identify potential areas for optimization. We use the following SQL query to access the
daily cost for each project:

24

SELECT
project.name AS project_name,
FORMAT_TIMESTAMP(’%Y-%m-%d’, usage_end_time) AS day,
ROUND(IFNULL(SUM(cost),0),2) AS total_cost

FROM
‘billing_export_table‘

GROUP BY
day, project_name

However, as ST IME has over 60 projects, covering all of them in this proof-of-concept
would be time-consuming and difficult. Therefore, we have chosen to focus on three
representative projects, stime-red-preprod, itm-oneplace-prod, and stime-red-prod, which
were selected based on their size and complexity, and they are also among the projects
that the business would like to closely monitor and track. These projects will serve as a
guide for our analysis. We can visualize the daily cost from January to July 2022 for the
specified projects in Figure 4.3. We can see that the three time series exhibit a monthly
seasonal pattern.

Figure 4.3: Daily total cost of different projects of STIME from January to July 2022

After constructing the time series for the daily cost of all resources and the cost by
project, we are interested in detecting high costs using anomaly detection algorithms.

4.1.3 Anomaly detection models

In this section, we will compare different anomaly detection models to choose the best-
performing one. Again, we will focus on the three projects, stime-red-preprod, itm-
oneplace-prod, and stime-red-prod, over a certain period of time with a few anomalies.

25

For STIME, an anomaly is usually a higher GCP cost than usual. The client’s objective
is to receive timely alerts, allowing them to verify whether a high cost is a normal occur-
rence or if it indicates a potential resource failure. These alerts provide the client with
the opportunity to investigate and determine the cause behind the elevated cost, ensuring
proactive management of their resources. Firstly, we will present in the figure 4.4 the
three projects with points that the client considers as true anomalies, which will serve as
a ground truth to measure the performance of our models.

Figure 4.4: Ground truth anomalies in STIME’s projects

Looking at the figure 4.4, we observe that the first project has several spikes with
high values that are considered as anomalies. In contrast, the second project has a single
prolonged period with a persistent anomaly, while the third project has no anomalies
during this period.
Now, we will explore and compare the three different anomaly detection models presented
in the state of the art 3.2 to draw conclusions.

4.1.3.1 Results and conclusions

First, we begin with the Interquartile Range (IQR) method.

1. Interquartile Range (IQR):

We consider a point to be an anomaly if it is greater than the upper bound of the decision
range discussed in 3.2.3.1, since we are only interested in high costs. Figure 4.5 shows
the anomalies detected on the three projects using IQR(b = 1.5):

26

Figure 4.5: Detected anomalies using Interquantile range method

The following table shows the confusion matrix for the IQR model across the three
time series:

TP = 28 FP = 1
FN = 2 TN = -

Table 4.1: Confusion matrix for IQR.

The following metrics are computed to evaluate the performance of the model:

• Precision = 0.97

• Recall = 0.93

• F1-score = 0.95

The computed metrics demonstrate a strong performance for the model, with an F1-score
of 0.95, indicating a good balance between precision and recall. Now, we will delve into
the second method.

2. Local Outlier Factor (LOF):

The second method is Local Outlier Factor. The figure below 4.6 shows the detected
anomalies using LOF(k = 30) with the value of k tuned and set to 30:

27

Figure 4.6: Detected anomalies using Local Outlier Factor method

The following table shows the confusion matrix for the LOF model across the three
time series:

TP = 30 FP = 44
FN = 1 TN = -

Table 4.2: Confusion matrix for LOF.

The following metrics are computed to evaluate the performance of the model:

• Precision = 0.41

• Recall = 0.97

• F1-score = 0.57

The model’s overall performance can be described as average, with a precision of 0.41,
recall of 0.97, and an F1-score of 0.57. We will explore the potential of the third model.

3. Isolation Forest (IF):

the last model is Isolation Forest. Figure 4.6 shows the detected anomalies using IF(p =

0.02) with the anomaly percentage p tuned and set to 2%, :

28

Figure 4.7: Detected anomalies using Isolation Forest algorithm

The following table shows the confusion matrix for the IF model across the three time
series:

TP = 14 FP = 14
FN = 7 TN = -

Table 4.3: Confusion matrix for Isolation Forest.

The following metrics are computed to evaluate the performance of Isolation Forest:

• Precision = 0.50

• Recall = 0.67

• F1-score = 0.57

It is evident from the performance metrics of the three methods that the IQR outperforms
the other two with an F1-score of 0.95, while LOF and IF only have an F1-score of 0.57.
One of the strengths of IQR is its flexibility, as it only considers upper bounds to detect
large values and omits lower bounds. This characteristic is particularly suitable for our
use case, where our main objective is to identify only high costs. On the other hand, LOF
and IF have a limitation because they may also detect small values as anomalies, which is
not relevant in our context. Therefore, IQR seems to be the most appropriate method for
detecting anomalies in our data.
Having completed the first task of this project, which involved developing an anomaly
detection model, we now move on to the second task, which is to develop a time series
forecasting model.

29

4.1.4 Forecasting models

In order to predict future costs, we will build forecasting models for four different time
series: the daily total cost of all resources used across all projects first, and the three se-
lected projects. To achieve this, we trained three different models - ARIMA, LSTM, and
Prophet - for each of the four time series.
During the training phase, we have experimented different historical data lengths (1 year,
6 months, 2 months), and found that using a 6-month training period provides good per-
formance for our models.
While Prophet doesn’t require any parameter tuning, for the LSTM model, we used the
same architecture for all projects, with two LSTM layers of 100 dimensions and a Dense
layer with one output neuron; we use a sequence length of 60 to predict one point in the
future, which means we use the past 60 daily total cost values as input to predict the next
day’s cost.
As for the ARIMA model, one important thing to note is that we chose to use auto-ARIMA
because it automatically determines the appropriate parameters (p,d,q) and the seasonal
parameters (P,D,Q,m) for each time series. This is very useful because determining these
parameters manually can be time-consuming and difficult. By using a generic approach
like auto-ARIMA, we can save a lot of time and effort while still achieving accurate fore-
casts. we used the auto-ARIMA algorithm to obtain the best parameters for the different
time series.
After presenting the different models and how they are trained. For all our training, we
use a period of approximately 6 months of data and predict 30 days into the future. Now,
we will give you an example of forecasting for the four time series. We will show the
predicted values of each model (ARIMA, Prophet, and LSTM) for each time series and
compare their performances. Before presenting each figure, we will provide the param-
eters used for the ARIMA model. This will give us a better understanding of how each
model performs and how they compare to each other.
Figure 4.8 shows the predicted costs for the daily cost across all STIME projects us-
ing the three models: ARIMA, Prophet, and LSTM. For ARIMA, the resulting model is
ARIMA(0,1,0)(0,1,0,30.5).

30

Figure 4.8: GCP cost forecasting for all the projects of STIME

Figure 4.9 shows the predicted costs for project stime-red-prod using the three models.
Once again, the resulting ARIMA model is ARIMA(2,1,1)(2,1,1,30.5).

Figure 4.9: GCP cost forecasting for the project stime-red-prod

Figure 4.10 shows the predicted costs for project stime-red-prod using the three mod-
els: ARIMA, Prophet, and LSTM. The resulting ARIMA model is ARIMA(1,1,1)(1,1,0,30.5).

31

Figure 4.10: GCP cost forecasting for the project stime-red-preprod

Figure 4.11 shows the predicted costs for project itm-oneplace-prod using the three
models. The resulting ARIMA model is ARIMA(1,1,0)(0,1,0,30.5).

Figure 4.11: GCP cost forecasting for the project itm-oneplace-prod

Based on these initial tests, we can conclude that the ARIMA and Prophet models
perform well in detecting the seasonal pattern and capturing the overall trend of the time
series. In contrast, the LSTM model predicts the average of the historical data for the next
30 days without detecting any clear pattern, except for two figures where a sinusoidal
signal is observed. However, this signal is still far from resembling the actual curve.
Based on these initial tests, we cannot make a conclusive decision to choose the best
model among the three presented. Therefore, we will conduct a testing phase and we will
present the results and the conclusions in the next section.

32

4.1.4.1 Results and conclusions

For each of the four time series, we will split the data into three periods and evaluate the
performance of each model :

• Training on 20-10-2022 to 01-02-2023 and testing on 01-02-2022 to 01-03-2023

• Training on 01-03-2022 to 01-10-2022 and testing on 01-10-2022 to 01-11-2022

• Training on 01-05-2021 to 01-11-2021 and testing on 01-11-2021 to 01-12-2021

The performance metrics used are RMSE, MAE, and training time (TT(s)), which is the
time taken by the model to train. We have compiled the test results in the figure 4.12,
(Highlighted in Green: Best Average Performance).

Figure 4.12: Performance comparison of ARIMA, Prophet, and LSTM models

After analyzing the average results presented in the table 4.12, it can be concluded that
Prophet generally outperforms the other two models in terms of RMSE and MAE, while
also having a smaller training time (TT(s)). Therefore, based on these results, Prophet is
the chosen model to be deployed for the time series forecasting task.
Now that we have completed the first two tasks of the project, namely developing the
anomaly detection model using IQR and the forecasting model using Prophet, it is time
to move on to the next step, which is deploying these solutions.

4.2 Deployment phase

In this section, we will outline the steps for deploying the two developed models:

• The anomaly detection model will be deployed using an API called Alerteam.

33

• The forecasting model will be deployed using an API that displays the forecasts on
a Looker studio dashboard.

We will start by exploring the Alerteam API.

4.2.1 Alerteam - Alerting API

Alerteam is the chosen name for the API that monitors the cost of Google Cloud Platform
(GCP) resources by detecting cost overruns and sending alerts. Initially, alerts are limited
to email, which may not be convenient for some users. However, Alerteam is flexible and
can be customized to suit send alerts to teams via different collaboration spaces (Matter-
most - Slack - Teams).
In this section, we will explore the architecture of Alerteam, the prerequisites for deploy-
ment, and the different features and capabilities it offers.

4.2.1.1 Architecture

The proposed deployment architecture aims to integrate alerts with the collaboration space
of the organization, enabling users to receive notifications about anomalies in GCP costs
via their preferred communication channel. Whether the organization is using Slack, Mat-
termost or Teams, the process for integrating alerts is essentially the same. The alerting
process involves four main steps:

1. Exporting billing data to BigQuery: GCP billing data is exported to a BigQuery
?? table, where it can be easily queried and analyzed.

2. Triggering a Cloud Function: A Cloud Function 2.1.2 is created to implement an
anomaly detection approach. It is triggered by a Cloud Scheduler 2.3.2 cron job in
a daily schedule.

3. Getting billing data from BigQuery : The Cloud Function queries data from the
exported data in BigQuery and uses IQR to detect anomalies.

4. Sending alerts: When an anomaly is detected, the cloud function sends an alert
to the collaboration space via a configured webhook. It is a user-defined HTTP
callback which is configured in the collaboration space of the company (e.g., Slack,
Mattermost, or Teams).

Figure 4.13 shows a visual architecture of Aletream:

34

Figure 4.13: Architecture of Alerteam

The deployment process is achieved using Terraform, an infrastructure as code tool
that enables the creation, modification, and versioning of cloud infrastructure. Terraform
ensures that the entire deployment process is automated, making it easy to manage and
maintain over time.
After describing the architecture of the API, it is important to understand the different
parameters required to run it effectively. These parameters are mainly defined in the file
terraform.tfvars. In this section, we will go through the different parameters and how they
can be configured to deploy the Alerteam infrastructure.

4.2.1.2 Parameters

There are three main sections of parameters that we will cover. The first section is
params_deployment_project, which contains parameters related to the project where
Alerteam will be deployed. Finally, the second section is default_webhook, which is
used to specify the default channel where alerts will be sent when high costs are detected
on one or more projects. We will start by the first section of parameters :

1. params_deployment_project

The params_deployment_project section contains the following parameters:

• project_name (string): the name of an existing project where we will deploy
the API.

35

• BQ_DATA_PATH (string): the path to the BigQuery table containing the billing
data.

• credentials (string): the path to the credentials JSON file for a service ac-
count. A service account is similar to a user login account, but it is used for appli-
cations and services rather than human users. Terraform will use a service account
to authenticate with GCP and perform the necessary actions to deploy Alerteam.
We need to create a service account and download its credentials in the form of a
JSON key file, which will be saved locally.

An example configuration for params_deployment_project would be:

params_billing_export = {
project_id = "stime-sandbox"
BQ_DATA_PATH = "stime_billing_export_v1_987654_AB12CD_345F67"
credentials = "../stime-key.json"

}

The second parameter is default_webhook:

2. default_webhook

The default_webhook parameter is used to specify the default channel where alerts will
be sent when high costs are detected on one or more projects. By default, Alerteam tracks
all active projects using an automated approach. If an alert is detected on one or more
projects, it will be sent to the default webhook channel defined by the default_webhook
variable:

default_webhook = "https://mattermost.stime.com/hooks/mj5u1h"

Alerteam comes with a default configuration that tracks all active projects using the Inter-
Quantile algorithm. However, users may want to customize their configuration to meet
their specific needs. we will see the difference between the default and customized con-
figurations:
- Default Configuration
By default, Alerteam tracks all active projects using the Inter-Quantile algorithm. If an
anomaly is detected on one or more projects, it will be sent to the default webhook chan-
nel defined by the default_webhook variable.
- Customized Configuration
In contrast, the customized configuration allows users to have more control over how
alerts are triggered and where they are sent. Two additional features can be defined :
project_webhook_threshold and projects_to_ignore.

36

The first feature is the variable project_webhook_threshold. It is a list of dictionaries
with three fields: project_name, webhook, and threshold. It allows the user to define
a custom webhook for a specific project, so alerts for that project will be sent only to
that webhook and not to the default_webhook. It also allows the user to set a threshold
for a project, which specifies the maximum amount in dollars that can be spent on the
project in a day. In this case, the inter-quantile algorithm will not be used, and the alert
will be sent immediately if the day’s spend exceeds the defined threshold. This feature is
useful for users who have a good understanding of their business and want to set specific
thresholds for individual projects.
For example, consider the following configuration:

project_webhook_threshold = [{
project_name = "stime-preprod"
webhook = "https://slack.stime.com/hooks"
},{
project_name = "dns-staging"
threshold = 200
}]

In this configuration, the "stime-preprod" project will have anomalies detected using the
inter-quantile algorithm, and alerts will be sent to "https://slack.stime.com/hooks". On
the other hand, for the "dns-staging" project, alerts will be sent to the default webhook
if the day’s spend exceeds 200 dollars. This feature is useful for users who have a good
understanding of their business and want to set specific thresholds or custom webhooks
for individual projects.

Finally, the last feature is defined when specific projects need to be ignored, the
projects_to_ignore variable can be defined as a list of project names. For example, if
the project "3dns-dev" needs to be ignored, the variable can be defined as follows:

projects_to_ignore = ["3dns-dev"]

Now that we have a better understanding of the main parameters used to run our API, let’s
take a closer look at how our cloud function leverages these parameters to send alerts.

4.2.1.3 Alerteam approach

Alerteam is designed to track the costs of active projects. By active projects, we mean
those with data for the previous day in the billing data. It is important to note that Alerteam
cannot operate in real-time due to a delay in the export of billing data to BigQuery tables
by the Billing API. Therefore, we wait until the next day to ensure all exported data is
available for the previous day. Alerteam performs a daily check of yesterday’s costs for

37

all active projects and sends an alert if the cost is higher than expected. To do so, it
uses a hybrid method between InterQuantile Range (IQR) and pre-defined thresholds to
determine if an alert should be sent. The figure 4.14 shows the execution flowchart of the
cloud function alerteam.py:

Figure 4.14: Alerteam Cloud Function Execution Flow

Before deploying Alerteam with Terraform, there are some prerequisites that need to
be met.

38

4.2.1.4 Prerequisites for Deployment

The first prerequisite is to enable the required APIs.

1. Enable APIs :

All the resource creation, update and deletion with Terraform are through a set of API
calls. APIs in Google Cloud Platform (GCP) are disabled by default, so we need to have
the following APIs enabled :

• Compute Engine API

• Cloud Function API

• Cloud Scheduler API

Once the required APIs have been enabled, the next step is to assign the necessary roles
and permissions to the created service account in 4.2.1.2.

2. Service account permissions :

Terraform uses the created service account to deploy the API. However, we need to as-
sign this service account the necessary roles in GCP. These roles define what the service
account can and cannot do in the project. It is important to ensure that the service account
has the correct roles assigned to it to avoid any issues during the deployment process.
Therefore, we need to grant the created service account the following roles:

• Cloud Functions Admin: to create cloud functions

• Cloud Functions Developer: to deploy, update, and delete functions

• Cloud Functions Service Agent: Gives Cloud Functions access to managed re-
sources (Google Storage Buckets for example).

• Cloud Scheduler Admin: to schedule the execution of the cloud function

• BigQuery Data Viewer and BigQuery User: to access and query the exported
billing data in BigQuery.

Having covered the prerequisites for deployment, we will now move on to the process of
deploying the API using Terraform.

39

4.2.1.5 Deployment with Terraform

The main resources we need to deploy Alerteam are:

1. Bucket resource

2. Bucket object resource which holds our code

3. Cloud function alerteam.py

4. Cloud scheduler to trigger our cloud function in a daily schedule

In Terraform, the resources that need to be created are specified in a file named main.tf.
This means that the creation of the bucket, bucket object, cloud function and the cloud
scheduler will be defined in the main.tf file. First, we will create a bucket resource.

1. Bucket

The bucket gets only a name, we add the following code in main.tf :

resource "google_storage_bucket" "bucket" {
name = "alerteam_billing_alerts"

}

After that we have created the Cloud Storage bucket, the next step is to create an object
within the bucket to store the code for our Cloud Function.

2. Bucket Object

A cloud function has the possibility to load a zip folder containing the code to run. Having
a Python application running by Cloud Function, we need to put the requirements.txt1 and
a Python file alerteam.py in a zip folder named alerting-api-code.zip. Now, we will create
the bucket object that contains alerting-api-code.zip:

resource "google_storage_bucket_object" "cloud-function-archive" {
name = "alerting-api-code.zip"
bucket = google_storage_bucket.bucket.name
#relative path to your alerting-api-code.zip file
source = "./alerting-api-code.zip"

}

We have created the Cloud Storage object to store our code. With this resource in place,
we can proceed to create the Cloud Function.

1a text file that lists the required Python modules for the function. which can then be installed automat-
ically by the Cloud Function’s runtime environment.

40

3. Cloud function

Now, it is time for our Cloud function to run alerteam.py, the following Terraform code
deploys a Google Cloud Function. The code contains several parameters that configure
the function’s runtime environment, trigger settings, and access to resources:

resource "google_cloudfunctions_function" "function" {
name = "alerteam"
runtime = "python39"
available_memory_mb = 256
source_archive_bucket = google_storage_bucket.bucket.name
source_archive_object =

google_storage_bucket_object.cloud-function-archive.name
trigger_http = true
entry_point = "alerteam"
environment_variables = local.env_vars

}

Here is an overview of the different parameters :

• name: specifies the name of the Cloud Function.

• runtime: specifies the runtime environment that the function will use. In this case,
the function is written in Python 3.9.

• available_memory_mb: specifies the amount of memory (in MB) that is allocated
to the function when it runs.

• source_archive_bucket and source_archive_object: specify the Cloud Stor-
age bucket and object where the function’s deployment package is stored. The
deployment package alerting-api-code.zip contains all the code and dependencies
required for the function to run.

• trigger_http: specifies that the function will be triggered by an HTTP request.

• entry_point: specifies the name of the function that will be invoked when the
Cloud Function is triggered.

• environment_variables: sets the environment variables that will be available to
the function at runtime. In this case, the local.env_vars variable is used to pass
environment variables to the function. With reference to 4.2.1.2, local.env_vars
is defined as:

41

locals {
env_vars = {
"billing_project_id" =

var.params_deployment_project.project_name
"BQ_BILLING_DATA_PATH" =

var.params_deployment_project.BQ_DATA_PATH
"DEFAULT_WEBHOOK" = var.default_webhook
"project_webhook_threshold" = var.project_webhook_threshold)
"projects_to_ignore" = var.projects_to_ignore

}
}

After creating the Cloud Function, the next step is to create a Cloud Scheduler job that
will trigger an HTTP call to the function at regular intervals.

4. Cloud scheduler

We will configure the Cloud Scheduler job to run at 15:00 AM every day in the Paris
timezone using the schedule parameter. We will also specify the http_target param-
eter with the uri parameter set to the https_trigger_url for our Cloud Function. This
will trigger an HTTP call to our Cloud Function at the specified schedule. The Cloud
Scheduler job will be created using the following configuration:

resource "google_cloud_scheduler_job" "billing-alerts" {
name = "billingAlerts"
schedule = "0 15 * * *"
time_zone = "Europe/Paris"
http_target {
uri = google_cloudfunctions_function.function.https_trigger_url

}
}

With the main.tf and terraform.tfvars files in hand, the next step is to execute the com-
mand terraform apply to deploy Alerteam. Once deployed, the system will send alert
messages when necessary. An example of the alert message sent by Alerteam can be seen
in the following figure 4.15 :

42

Figure 4.15: Alert message sent by Alerteam

After successfully deploying the Alerteam API for our client Stime, the next step is to
deploy our forecasting Prophet models.

4.2.2 Forecasting API

The forecasting API involves enhancing an existing dashboard at Stime by deploying our
previously developed Prophet models to incorporate cost trends. First, let us delve into an
overview of the existing dashboard.

4.2.2.1 Existing dashboard overview

A cost tracking dashboard has already been developed for the client Stime using Looker
studio. This dashboard provides valuable insights into cost monitoring and analysis. It
consists of three pages, each serving a specific purpose:

• Global cost tracking by project: this page presents an overview of the overall cost
for each project, allowing stakeholders to understand the cost distribution and iden-
tify projects with significant expenses.

• Monthly cost tracking by project: the second page focuses on monitoring the monthly
evolution of costs for individual projects. It enables stakeholders to visualize and
analyze cost trends, identifying any spikes or fluctuations in expenditure.

• Cost tracking by GCP service: the third page of the dashboard offers a breakdown
of costs based on different Google Cloud Platform (GCP) services utilized. It pro-
vides valuable insights into the specific services contributing most to the overall
costs.

43

Figure 4.16 illustrates the monthly cost evolution tracking for three projects: stime-
red-preprod, itm-oneplace-prod, and stime-red-prod. It demonstrates how the dashboard
visually represents the cost changes over time for each project.

Figure 4.16: Existing dashboard

In the next sections, we will outline the proposed addition; the goal is adding a trends
page to this existing dashboard to display estimated future cost trends. To achieve this,
we plan to deploy forecasting models that will predict costs per project for the upcoming
months. These predictions will then be used to populate the new page of the dashboard.
This trends dashboard will provide stakeholders with valuable insights into the expected
cost patterns, enabling them to make informed decisions and plan their budgets effec-
tively. To build the trends page and enable cost forecasting within our dashboard, we will
need to develop an API in the backend. This API will implement the Prophet model to
generate accurate cost predictions before displaying them to the users. Now, we will dive
into the architecture of this API.

44

4.2.2.2 Architecture

The proposed deployment architecture aims to integrate forecasts into the existing dash-
board. The process involves six main steps:

1. Exporting Billing Data to BigQuery: GCP billing data is exported and stored in
a BigQuery table for easy querying and analysis.

2. Triggering the Cloud Function: A Cloud Function is triggered on a scheduled
basis using Cloud Scheduler. This function makes API calls to Vertex AI for the
creation of machine learning models. Each project is associated with a Prophet
model.

3. Data preparation: The Cloud Function prepares the required data (training and
prediction data) to develop models.

4. Model Development: The Cloud Function interacts with Vertex AI to develop
Prophet models for cost forecasting. These models use the daily cost data retrieved
from BigQuery in step 3.

5. Getting training data from BigQuery: Vertex AI requires access to the daily cost
data per project from BigQuery to train the Prophet models effectively.

6. Storing Forecasts in BigQuery: Once the Prophet models are created, the result-
ing forecasts are stored in BigQuery. This allows for easy access and retrieval for
visualization purposes.

7. Visualization in Looker Dashboard: The Looker dashboard accesses the forecast
tables in BigQuery and displays the predicted cost values in the newly created page.

Figure 4.17 shows a visual architecture of the Forecasting API:

45

Figure 4.17: Forecasting API

Again, the deployment process is achieved using Terraform. We require enabling
the same APIs as in the case of Alerteam, in addition to Vertex AI API. Again, similar
to Alerteam, the deployment of the forecasting API requires the same main resources:
Bucket, Bucket object, a cloud function and a cloud scheduler. These resources can be
created using the same code provided for deploying Alerteam. This code can be reused
and modified to accommodate the specific requirements of the forecasting API. Note that
the creation of a new page in the existing dashboard to visualize the forecasts will be done
manually and not with Terraform.
In contrast to Alerteam, the forecasting API is designed to be less configurable, as its
primary purpose is to populate a dashboard with forecasts. Users of the dashboard do
not need to concern themselves with the configuration aspects, except for three specific
parameters that we will see in the next section.

4.2.2.3 Parameters

The first parameter is forecast_horizon_days:

1. forecast_horizon_days

The forecast_horizon_days variable determines the number of days for which the
forecasting API will generate forecasts for each project. By default, this parameter is set
to 30 days, providing a one-month projection of cost trends.

forecast_horizon_days = 30

The second parameter is SERVICE_ACCOUNT:

2. SERVICE_ACCOUNT

46

It specifies the corresponding credentials key JSON file of a service account. In analogy
with the required permissions and roles for the service account used by Alerteam, we
will need the same set of permissions for the service account of the forecasting API.
However, we will add the Vertex AI Admin role. This role is used for developing and
training forecasting models.

service_account_credentials = "../stime-key.json"

Finally, the last parameter is BILLING_EXPORT_BQ_DATA_PATH which is the path to the
BigQuery table containing the billing data:

3. BILLING_EXPORT_BQ_DATA_PATH

BILLING_EXPORT_BQ_DATA_PATH =
"stime_billing.stime_billing_export_v1_987654"

A crucial part of the forecasting API is preparing data for the development of Machine
Learning models.

4.2.2.4 Data preparation

Using the exported data located at BILLING_EXPORT_BQ_DATA_PATH, the forecasting API
requires three fixed parameters that represent the table paths for model development by
Vertex AI. To accommodate this, we create a dataset named forecasting_api within the
deployment project stime_billing, which consists of three tables: train, pred, and fore-
casts. The DATA block defines the paths of these three tables : the path of the training data
(TRAINING_DATA_BQ_PATH), input data for making predictions (PREDICTION_INPUT_BQ_PATH),
and storing the forecast results in BigQuery (FORECASTS_DATASET_BQ_PATH).

DATA = {
TRAINING_DATA_BQ_PATH = "stime_billing.forecasting_api.train"
PREDICTION_INPUT_BQ_PATH = "stime_billing.forecasting_api.pred"
FORECASTS_DATASET_BQ_PATH = "stime_billing.forecasting_api.forecasts"

}

To develop our models, we need to prepare the training data which is located at a Big-
Query table TRAINING_DATA_BQ_PATH. It consists of a table containing the columns Day,
project_name, and cost. This table holds six months of historical data for each unique
project_name. Once the model is trained, we can make predictions using it. However,
for the model to generate accurate forecasts, it requires input data. Thus, we create a sec-
ond table, known as the prediction input table, located at PREDICTION_INPUT_BQ_PATH.
This table adheres to a predefined structure set by Vertex AI, featuring a Day column for

47

timestamps, an identifier for each time series (project_name), and NULL values in the cost
column, which is the target for prediction.

The resulting forecasts generated by the models are stored in the
FORECASTS_DATASET_BQ_PATH table, which is created by Vertex AI. This table contains
the Day column for timestamps, a project_name column, and a predicted_cost column.
The predicted_cost column represents the forecasted costs by Vertex AI for the designated
forecast horizon.
Understanding how Vertex AI creates and uses these models for predictions is important.

4.2.2.5 Models development in Vertex AI

Google Cloud offers a pipeline for Prophet model training and a pipeline for Prophet
batch prediction.Because Prophet models can only fit a single time series, the train-
ing pipeline uses a Vertex AI Custom Training Job to train multiple Prophet models
in parallel. The number of models trained equals the number of unique values in the
time_series_identifier_column parameter. The pipeline and the parameter values
are defined by the following function:

(
train_job_spec_path,
train_parameter_values,

) = utils.get_prophet_train_pipeline_and_parameters(
time_column="Day",
time_series_identifier_column="project_name",
target_column="cost",
forecast_horizon=var.forecast_horizon_days,
data_source_bigquery_table_path=var.DATA.TRAINING_DATA_BQ_PATH

)

The following sample code demonstrates how to run a Prophet model training pipeline:

job = aiplatform.PipelineJob(
template_path=train_job_spec_path,
parameter_values=train_parameter_values

)
job.run()

Like with the training job, the prediction pipeline is defined as:

(
prediction_job_spec_path,
prediction_parameter_values,

48

) = utils.get_prophet_prediction_pipeline_and_parameters(
model_name=model,
time_column="Day",
time_series_identifier_column="project_name",
target_column="cost",
data_source_bigquery_table_path=var.DATA.PREDICTION_INPUT_BQ_PATH,
bigquery_destination_uri=var.DATA.FORECASTS_DATASET_BQ_PATH

)

We need to specify two important parameters: data_source_bigquery_table_path
and bigquery_destination_uri. The data_source_bigquery_table_path param-
eter refers to the BigQuery table path in a specific format. This table contains the data that
will serve as input for the forecasting model. Additionally, the bigquery_destination_uri
parameter specifies the desired destination dataset where the generated forecasts will be
stored. We launch the prediction pipeline using the job.run() function, similar to how we
executed the training pipeline. Now that we have understood the data preparation and
model training processes, we will explore how these two tasks are orchestrated.

4.2.2.6 Forecasting process

The forecasting process, executed by the cloud function, follows a specific sequence of
tasks that occur every forecast_horizon_days:

1. The training (train) and prediction (pred) tables are overwritten to ensure the
latest data is used.

2. The models are trained, with each project_name having its own dedicated model.

3. Forecasts are generated for each project, looking forecast_horizon_days into
the future.

4. The forecast results are overwritten in the specified table FORECASTS_DATASET_BQ_PATH.

To ensure the proper execution order of these tasks, the cloud function first performs
task 1, overwriting the training and prediction tables. This ensures that the models have
access to the most up-to-date data for training. Once the forecasts have been stored in the
table specified by FORECASTS_DATASET_BQ_PATH, they can be visualized on a new page
in the dashboard, this page will be created manually in Looker studio.
With the deployment of the forecasting API underway, we are successfully achieving the
objectives of this thesis. Moving forward, the following section will provide a summary of
my work during this internship and highlight the personal and professional contributions
I have made.

49

Future work and Conclusion

In conclusion, this thesis has made significant contributions to the field of cost man-
agement in Google Cloud Platform (GCP). The successful development and deployment
of the Alerteam API for cost monitoring and anomaly detection have provided Neoxia’s
client, Stime, with a powerful tool to detect high costs and take prompt action. This has
enabled Stime to optimize their cloud spending and ensure efficient resource allocation.
The next step in the project is to deploy the forecasting API, which will enhance the exist-
ing dashboard by providing valuable insights into future cost trends. This will empower
stakeholders to make informed decisions, proactively manage their budgets, and avoid
potential budget overruns.

From a professional standpoint, this internship has been a remarkable learning expe-
rience. Working alongside talented professionals at Neoxia has exposed me to a wealth
of knowledge and expertise, enabling me to build a strong professional network. On the
technical front, I have gained proficiency in various GCP services and obtained the Pro-
fessional Data Engineer certification, solidifying my understanding of cloud technologies.
I have also developed essential coding and packaging skills to ensure maintainable and
readable code. Additionally, I have gained hands-on experience in designing API archi-
tectures and deploying them using infrastructure-as-code tools like Terraform. Moreover,
I had the opportunity to apply agile methodologies by utilizing tools like Trello for manag-
ing tickets and sprint planning. This internship has been a truly enriching experience both
personally and professionally, providing valuable insights into the industry and equipping
me with a diverse skill set.

Overall, this thesis has not only addressed the challenges of cost management in GCP
but has also contributed to the growth of knowledge in the field. The implemented so-
lutions and the lessons learned during this internship will have a lasting impact on the
organization and its clients. This experience has been instrumental in shaping my career
as a data scientist and engineer, and I am confident that the skills acquired will pave the
way for future success in the industry.

50

Bibliography

[1] Bigquery documentation. "https://cloud.google.com/bigquery".

[2] Cloud billing api. "https://cloud.google.com/billing/docs/how-to/
budget-api-overview".

[3] Cloud scheduler : Fully managed cron job service. "https://cloud.google.
com/scheduler".

[4] Compute engine documentation. "https://cloud.google.com/compute/
docs".

[5] Google cloud platform. "https://cloud.google.com".

[6] Hawkins, d.m.: Identification of outliers. springer netherlands (1980). "https:
//doi.org/10.1007/978-94-015-3994-4".

[7] Isolation forest. "https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.IsolationForest.html".

[8] Lof: identifying density-based local outliers. "https://dl.acm.org/doi/10.
1145/335191.335388#sec-ref".

[9] Looker studio. "https://cloud.google.com/looker-studio".

[10] Partial autocorrelation function (pacf). "https://
towardsdatascience.com/a-step-by-step-guide-to-calculating-\
autocorrelation-and-partial-autocorrelation-8c4342b784e8".

[11] Prophet: Automatic forecasting procedure. "https://pypi.org/project/
fbprophet/".

[12] Vertex ai. "https://cloud.google.com/vertex-ai".

[13] What are google cloud functions? "https://cloud.google.com/functions/
docs/concepts/overview".

51

[14] Kriegel H. P. Ng R. T. BREUNIG, M. M. et J. (2000) SANDER : Taylor sj, letham
b. 2017. forecasting at scale. "https://doi.org/10.7287/peerj.preprints.
3190v2".

[15] Shivam CHAUDHARY : towardsdatascience : Why “1.5” in iqr method of outlier
detection?

[16] Cleveland W. S. McRae J. E. Terpenning I. J. CLEVELAND, R. B. : STL: A seasonal-
trend decomposition procedure based on loess. Journal of Official Statistics, 1990.

[17] J. (1997) HOCHREITER, S. et Schmidhuber : Long short-term memory. neural com-
putation, 9(8), 1735–1780.

[18] Athanasopoulos G. (2018) HYNDMAN, R.J. : Forecasting: principles and practice,
2nd edition, otexts: Melbourne, australia. otexts.com/fpp2.

52

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	The company : Neoxia
	Internship context and goals

	Google Cloud Platform
	Cloud Compute
	Compute Engine
	Cloud Functions

	Big Data - Analytics
	BigQuery
	Looker Studio

	Cloud Management
	Billing API
	Cloud Scheduler

	Cloud AI
	Vertex AI

	Time Series: state-of-the-art
	Time Series Analysis
	Time series patterns
	Time series components
	STL decomposition
	Autocorrelation
	Partial Autocorrelation

	Time Series Anomaly Detection
	Anomaly definition
	Anomaly types
	Anomaly Detection Approaches
	Inter-Quantile Range
	Local Outiler Factor
	Isolation Forest

	Evaluation metrics

	Time Series Forecasting
	Prophet
	ARIMA models
	Stationarity and differencing
	Autoregressive models
	Moving average models
	Non-seasonal ARIMA models
	Seasonal ARIMA models

	LSTM
	Forecast Performance Metrics

	Stime : a Proof of Concept
	Development phase
	Data Exploration
	Data Processing
	Anomaly detection models
	Results and conclusions

	Forecasting models
	Results and conclusions

	Deployment phase
	Alerteam - Alerting API
	Architecture
	Parameters
	Alerteam approach
	Prerequisites for Deployment
	Deployment with Terraform

	Forecasting API
	Existing dashboard overview
	Architecture
	Parameters
	Data preparation
	Models development in Vertex AI
	Forecasting process

	Future work and Conclusion

