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An Algorithm for Reconstructing

a Convex Polygon

from its Covariogram

Carlo Benassi and Giuliana D’Ercole (∗)

Summary. - The covariogram of a compact convex set K ⊂ Rn is
the function that at each point x ∈ Rn associates the volume of
K ∩ (K + x). The covariogram determines, among all convex
bodies, any planar convex polygon. In this paper we present an
algorithm for reconstructing an arbitrary convex polygon from its
covariogram.

1. Introduction

Let K be a convex body in Rn, that is a compact, convex subset of
Rn with non empty interior. By Sn−1 we denote the set of all vectors
u ∈ Rn whose Euclidean norm is 1. The n-dimensional Lebesgue
measure in Rn is denoted by λn. If x ∈ Rn, then K + x denotes the
translate of K by x, i.e.

K + x = {k + x ∈ R
n : k ∈ K}.

The covariogram of a convex body K ⊂ Rn is the function gK
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defined for x ∈ Rn by

gK(x) = λn (K ∩ (K + x)) .

Some properties of the covariogram are immediate. The support
of gK coincides with the difference set DK of K (see, for example,
[13]):

DK = K − K = {k1 − k2 ∈ R
n : k1, k2 ∈ K}.

Moreover gK is unchanged by a translation or a reflection (in a point)
of K. Matheron introduced in [9] the covariogram and posed in [8]
the following question.

Covariogram problem Does the covariogram determine a con-
vex body, among all convex bodies, up to translations and reflections?

Matheron [9] observed that, for u ∈ Sn−1 and for r > 0, the
derivatives dgK(ru)/dr give the distribution of the lengths of the
chords of K parallel to u. The covariogram problem is thus equiva-
lent to the problem of determining a convex body from these data.
This information is available in stereology, statistical shape recogni-
tion and image analysis, when properties of an unknown body have
to be inferred from chord length measurements; see, for example, [7],
[12], [14].

The covariogram problem appears in several other contexts.
Adler and Pyke [1] asked whether the distribution of the difference
X −Y of two independent random variables X and Y uniformly dis-
tributed over K determines K up to translations and reflections. It
is easy to check that

gK = 1K ∗ 1−K (1)

and this convolution, up to a multiplicative factor, is just the prob-
ability density of X − Y . Hence this problem is equivalent to the
covariogram problem.

The covariogram problem is also a particular case of the phase
retrieval problem in Fourier analysis. This problem involves deter-
mining a function f from the modulus of its Fourier transform f̂ ;
see [11]. Taking Fourier transforms in (1) and using the relation

1̂−K = 1̂K , we obtain

ĝK = 1̂K 1̂−K = |1̂K |2.
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Thus, the phase retrieval problem reduces to the covariogram prob-
lem when f is the characteristic function of a convex body.

The covariogram also arises in X-ray crystallography. Here the
covariogram appears in the cut and projection scheme for quasi-
crystals; see [4]. In particular, to obtain the atomic structure of a
quasi-crystal, it is necessary to determine a lattice N and a convex
set W , called window. The diffraction image provides N and the
covariogram of W .

The first contribution to the question posed by Matheron was
made by Nagel [10], who gave a positive answer when K is a planar
convex polygon. After a long period without any new result and
stimulated by a renewed interest in geometric tomography, Bianchi,
Segala and Volčič [6] confirmed that if K is a planar convex body
whose boundary is C2

+ (that is, C2 with strictly positive curva-
ture), then K is determined, among all convex bodies, by its co-
variogram. Bianchi [5] and Averkov and Bianchi [3] gave other two
partial answers to the covariogram problem in the plane. Only re-
cently Averkov and Bianchi [2] have settled Matheron’s conjecture
for arbitrary planar convex bodies.

The present paper is devoted to present an algorithm which re-
constructs any convex polygon from its covariogram. Till now the
only result in this direction is due to Schmitt [12] who describes
a procedure to reconstruct convex polygons under the assumption
that the polygon does not have any pair of parallel edges. It will be
clear that our algorithm, if applied under the assumption made by
Schmitt, is greatly simplified. If the polygon has no pairs of parallel
edges, then out of the many cases that the algorithm deals with, only
one has to be considered.

2. Determination of edges

Let K ⊂ R2 be a convex polygon and denote by F (K,u) the face
of K with outward normal u, that is the subset of the boundary of
K made by points with unit outward normal u. Clearly F (K,u) is
either an edge or a vertex of K. Let now F (K,u) be an edge of K.
If F (K,−u) is a vertex, then F (K,u) will be called a single edge; if
F (K,−u) is an edge and λ1(F (K,u)) = λ1(F (K,−u)), we will refer
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to (F (K,u), F (K,−u)) as to a pair of parallel edges of equal length;
if F (K,−u) is an edge and λ1(F (K,u)) 6= λ1(F (K,−u)), we will
refer to (F (K,u), F (K,−u)) as to a pair of parallel edges of different
length.

In order to determine the lengths of the edges of K, let us
consider the edges of the polygon DK. As DK is origin sym-
metric, its edges are pairwise parallel and with equal length. Let
v0, ..., vr−1,−v0, ...,−vr−1 ∈ S1 be the unit outward normals to the
edges of DK, in counterclockwise order and let mi, i = 0, ..., r − 1,
be the midpoint of the edge F (DK, vi). In what follows the symbol
∂− denotes the left derivative.

Proposition 2.1. Each edge of K is parallel to one of the edges of
DK and vice versa. The vector difference of the midpoint of F (K, vi)
and F (K,−vi) equals the midpoint of F (DK, vi). Moreover

(i) if ∂−gK

∂vi
(mi) = li, with li 6= 0, then both F (K, vi) and F (K,−vi)

are edges of K; the shorter edge has length li and the longer
one has length λ1(F (DK, vi)) − li;

(ii) if ∂−gK

∂vi
(mi) = λ1(F (DK,vi))

2 , then both F (K, vi) and F (K,−vi)

are edges of K, of length λ1(F (DK,vi))
2 ;

(iii) if ∂−gK

∂vi
(mi) = 0, then exactly one between F (K, vi) and

F (K,−vi) is an edge of K, of length λ1(F (DK, vi)).

Proof. The first and the second claim follow from standard results
on the relation between the edges of K and of DK; see Theorem
1.7.5 (c) in [13].

Suppose both F (K, vi) and F (K,−vi) are edges of K, the shorter

one of length li, with li 6= 0, and compute ∂−gK

∂vi
(mi). Then

∂−gK

∂vi

(mi) = lim
h→0−

λ2(K ∩ (K+mi+hvi))−λ2(K ∩ (K+mi))

h

= lim
h→0−

lih + O(h2)

h
= li, (2)

because in this case K∩ (K +mi +hvi) is the union of triangles with
edges of length proportional to h and of a rectangle of height h and
base li, whereas K ∩ (K + mi) is a segment (see Fig. 1).
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i+mK

K

K+mi+hvi

Figure 1: The intersections of a body K, having a pair of parallel
edges of different length, with its translated K+mi and K+mi+hvi.

As λ1(F (DK, vi)) is the sum of λ1(F (K, vi)) and λ1(F (K,−vi)),
then the longer edge has length λ1(F (DK, vi)) − li.

Suppose now both F (K, vi) and F (K,−vi) are edges of K, of

equal length λ1(F (DK,vi))
2 . Then

∂−gK

∂vi
(mi) = lim

h→0−

λ2(K ∩ (K + mi + hvi)) − λ2(K ∩ (K + mi))

h

= lim
h→0−

λ1(F (DK, vi))h + O(h2)

2h

=
λ1(F (DK, vi))

2
, (3)

because in this case K∩ (K +mi +hvi) is the union of triangles with
edges of length proportional to h and of a rectangle of height h and
base λ1(F (DK,vi))

2 , whereas K ∩ (K + mi) is a segment.
Finally, suppose exactly one between F (K, vi) and F (K,−vi) is

an edge of K. Then

∂−gK

∂vi
(mi) = lim

h→0−

λ2(K ∩ (K + mi + hvi)) − λ2(K ∩ (K + mi))

h

= lim
h→0

O(h2)

h
= 0, (4)

because K ∩ (K + mi + hvi) is a triangle with edges of length pro-
portional to h, whereas K ∩ (K + mi) is a point.

The above three cases complete all the possibilities and the com-

parison of ∂−gK

∂vi
(mi) with λ1(F (DK, vi)) implies the choice. In each
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case these two values determine the lengths of the corresponding
edges of K.

In this way we can determine all the lengths and the directions
of the edges of the polygon K. However we do not know on which
side of K each edge is. That is, given an edge F of K orthogonal
to a given direction vi, we do not know wether the outward normal
to K in F is vi or −vi. As a first step to overcome this difficulty
let us remark that the proof of Lemma 3.2 in [5] shows the following
results. Given a single edge F (K, vi), we can determine the direc-
tions vi,p and vi,f of the edges of K which are adjacent to the vertex
F (K,−vi). More precisely, that proof shows that there are some level
sets of gK which contain line segments parallel to F (K, vi). More-
over, the endpoints of these segments are aligned on lines parallel
to vi,p and vi,f . A similar result holds also in the presence of a pair
of parallel edges (F (K, vi), F (K,−vi)) of different length. If, say,
λ1(F (K, vi)) < λ1(F (K,−vi)), then we can determine the directions
vi,p and vi,f of the edges adjacent to F (K, vi). In fact the proof of
Lemma 3.2 in [5] shows that some level sets of gK contain segments
parallel to F (K, vi). The endpoints of these segments are aligned on
lines parallel to vi,p and vi,f .

Let us order in a table all the information obtained till now. Fill
the first line with the unit vectors vi, i = 0, ..., r − 1 and the second
line with the vectors −vi, i = 0, ..., r − 1. Dispose in the third and
fourth line the lengths λ1(F (K,±vi)): if in correspondence to vi

there is a single edge of K, then write its length in the third line of
the i-th column and 0 in the fourth line of the i-th column. If in
correspondence to vi there are two edges of equal length, then write
this length both in the third and fourth line of the i-th column. If
in correspondence to vi there are two edges of different length, then
write in the third line of the i-th column the value of the shorter edge
and in the fourth line of the i-th column the value of the longer edge.
Finally, if in correspondence to vi there is a single edge, then dispose
in the fifth line of the i-th column of the table the directions vi,p and
vi,f of the edges adjacent to the opposite vertex; if in correspondence
to vi there are two edges of different length, then dispose in the
fifth line of the i-th column the directions vi,p and vi,f of the edges
adjacent to the shorter edge; if in correspondence to vi there are two
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edges of equal length, then let the fifth line of the i-th column be
empty.

v0 v1 ... vr−1

−v0 −v1 ... −vr−1

li λ1(F (DK, vi)) ... λ1(F (DK,vi))
2

λ1(F (DK, vi)) − li 0 ... λ1(F (DK,vi))
2

v0,p, v0,f v1,p, v1,f ... - -

3. Reconstruction of K

The reconstruction of the boundary of K develops along two different
”antipodal” sequences, S1 := (Si

1)i=0,...,r−1 and S2 := (Si
2)i=0,...,r−1,

of consecutive edges. For each i = 0, ..., r − 1, at the end of the i-th
step of the reconstruction, Si

1 and Si
2 will coincide with the portion

of the boundary of K made of all the edges with outward normal vh

and −vh respectively, 0 6 h 6 i.

The (i+1)-th step consists in positioning all edges with outward
normals ±vi+1. Clearly, we have only to decide which edge, between
the edges of K orthogonal to vi+1, has to be added to Si

1 and which
one has to be added to Si

2. Once this decision is made, each edge is
added at the corresponding sequence so that the added edge follows,
in counterclockwise order, the other edges of the sequence. For each
positioned edge, we call first vertex its endpoint which precedes the
edge in the sequence, and second vertex its endpoint which follows
the edge in the sequence.

In what follows, if in correspondence to ±vi there is a single
edge, F−

i will denote the single edge and F+
i will denote the opposite

vertex. If in correspondence to ±vi there is a pair of parallel edges
of different length, we denote by F−

i the shorter edge and by F+
i the

longer one. Moreover, if in correspondence to ±vi there is a pair of
parallel edges of equal length, we denote by F−

i and F+
i these two

edges.
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In the reconstruction of K we denote by ûv one of the two angles
formed by the vectors u and v. We will see that it is not necessary
to specify the choice.

Let us start with the 0-th step. Distinguish the following cases:

1. In K there is no pair of parallel edges.

Locate F−

0 so that it is orthogonal to v0 and dispose the oppo-
site vertex F+

0 so that the difference of the midpoint of F−

0 and
F+

0 coincides with the midpoint of F (DK, v0). This choice is
motivated by Proposition 2.1. In this case S0

1 is the edge F−

0

and S0
2 is the vertex F+

0 .

2. In K there are pairs of parallel edges of equal length and there
are not pairs of parallel edges of different length.

Rename the edges F (DK,±vi), i = 0, ..., r − 1, of DK so that
±v0 are the outward normals of a pair of parallel edges of equal
length. Dispose F−

0 and F+
0 so that they are orthogonal to v0

and the difference of the midpoints of F−

0 and F+
0 coincides

with the midpoint of F (DK, v0). In this case S0
1 is the edge

F−

0 and S0
2 is the edge F+

0 .

3. In K there are pairs of parallel edges of different length.

Rename the edges F (DK,±vi), i = 0, ..., r − 1, of DK so that
±v0 are the outward normals of a pair of parallel edges of dif-
ferent length. Dispose F−

0 and F+
0 so that they are orthogonal

to v0 and the difference of the midpoints of F−

0 and F+
0 coin-

cides with the midpoint of F (DK, v0). In this case S0
1 is the

edge F−

0 and S0
2 is the edge F+

0 .

To make the i-th step we have to consider many cases and sub-
cases. Let us first summarize them:

a) The vectors ±vi are in correspondence to a single edge F−

i ;

aa) The vectors ±vi−1 are in correspondence to a single edge
F−

i−1;

ab) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of equal length (F−

i−1, F+
i−1);
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ab1) The sequence Si−1
1 is the reflection of Si−1

2 with re-
spect to some point;

ab2) The sequences Si−1
1 and Si−1

2 are not one the reflec-
tion of the other (this case splits into two further
subcases);

ac) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of different length (F−

i−1, F
+
i−1);

b) The vectors ±vi are in correspondence to a pair of parallel
edges of equal length (F−

i , F+
i );

c) The vectors ±vi are in correspondence to a pair of parallel
edges of different length (F−

i , F+
i );

ca) The vectors ±vi−1 are in correspondence to a single edge
F−

i−1;

cb) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of equal length (F−

i−1, F
+
i−1) (this case splits

into two further subcases);

cc) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of different length (F−

i−1, F
+
i−1).

Let us now describe in details each case.

a) The vectors ±vi are in correspondence to a single edge F−

i .

Consider the vectors ±vi−1.

aa) The vectors ±vi−1 are in correspondence to a single edge
F−

i−1.

In this case, if one of vi,p, vi,f is orthogonal to vi−1, then
add F−

i to the sequence which does not contain F−

i−1; oth-
erwise add F−

i to the sequence which contains the single
edge F−

i−1. Proceed with the (i + 1)-th step.

ab) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of equal length, (F−

i−1, F
+
i−1).

In this case consider the following cases:
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Fi−s−1
+

F+
i−1

δuvi−s−j ...

...

  u

F −

F −
i−s−2

i−s−1

Fi−1
− +x

+x

+x

Figure 2: The intersection of K with K + x (left) and of K with
K + x + δu (right).

ab1) The sequence Si−1
1 is the reflection of Si−1

2 with re-
spect to some point.
This situation occurs when all edges already posi-
tioned are pairwise parallel and of equal length. In
this case the edge F−

i can be added indifferently to
S1 or to S2. Add F−

i to S1 and proceed with the
(i + 1)-th step.

ab2) The sequences Si−1
1 and Si−1

2 are not one the reflec-
tion of the other.
This means that at a certain moment we have po-
sitioned a single edge or a pair of parallel edges of
different length. Let s, s > 0, be the smallest index
such that F−

i−1, ..., F−

i−s−1 and F+
i−1, ..., F+

i−s−1 are
consecutive edges of pairs of parallel edges of equal
length and (F−

i−s−2, F
+
i−s−2) is not a pair of parallel

edges of equal length.

ab2s) If ±vi−s−2 is in correspondence to a single edge
F−

i−s−2, then consider the translation x which
maps the second vertex of F−

i−1 to the first ver-
tex of F+

i−s−1 (see Fig. 2 on the left). Compute
gK(x).
Afterwards, consider the two edges which are
adjacent and precede the edges F−

i−s−1 and
F+

i−s−1. One of them has outward normal
±vi−s−2, whereas the other one has outward nor-
mal ±vi−s−j, j > 2. Denote by u the unit vector



AN ALGORITHM FOR RECONSTRUCTING etc. 467

orthogonal to vi−s−j with orientation such that
gK(x + δu) > gK(x), where δ is a positive num-
ber such that

δ ≤ min
k=i,...,r−1

{
λ1(F

−

i−s−2)
| sin( ̂vkvi−s−2)|

| sin( ̂vkvi−s−j)|
,

λ1(F
−

i−s−j), λ1(F
−

k )
| sin( ̂vkvi−s−2)|

| sin( ̂vi−s−2vi−s−j)|

}
.

The number

gK(x + δu) − gK(x) +

−

s∑

k=0

λ1(F
−

i−k−1)| cos( ̂uvi−k−1)|δ

is equal to the area of a triangle (see the shadowed
triangle in Fig. 2 on the right).
Here, the maximum value for δ is computed con-
sidering separately the three borderline cases for
which one of the edges of the aforementioned tri-
angle coincides with a whole edge of K.
About this triangle we know that the length of
the edge parallel to u is δ, and we also know the
direction of an edge adjacent to the aforemen-
tioned edge, since it is orthogonal to vi−s−2. By
these data and the area of the triangle, we can
determine also the direction of the other edge. If
this direction is orthogonal to vi, then add F−

i

to the sequence which does not contain F−

i−s−2;
otherwise add F−

i to the sequence which contains
F−

i−s−2. Proceed with the (i + 1)-th step.

ab2p) If ±vi−s−2 is in correspondence to a pair of par-
allel edges of different length, (F−

i−s−2, F
+
i−s−2),

then consider the translation x which maps the
first vertex of F−

i−s−2 to the second vertex of the
edge with outward normal ±vi−1 located in the
sequence which does not contain F−

i−s−2 (see Fig.
3 on the left). Compute gK(x).
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δu

vi−s−j

Fi−1
− +x

Fi−s−2
+

F+
i−s−1

F+
i−1

...

...

u

F −
i−s−1

F −
i−s−2+x

+x

Figure 3: The intersection of K with K + x (left) and of K with
K + x + δu (right).

Afterwards, let u be the direction of the edge
which belongs to the sequence containing F−

i−s−2

and that precedes F−

i−s−2 (u is parallel to vi−s−2,p

or vi−s−2,f ). Let j, j > 2, be such that u is or-
thogonal to vi−s−j. Let us orient u in such a way
that gK(x + δu) > gK(x), where δ is a positive
number such that

δ ≤ min
k=i,...,r−1

{
λ1(F

−

k )
| sin( ̂vkvi−s−2)|

| sin( ̂vi−s−2vi−s−j)|
,

[λ1(F
+
i−s−2) − λ1(F

−

i−s−2)]
| sin( ̂vkvi−s−2)|

| sin( ̂vkvi−s−j)|
,

λ1(F
−

i−s−j)
}

.

The number

gK(x + δu) − gK(x) +

−

s+1∑

k=0

λ1(F
−

i−k−1)| cos( ̂uvi−k−1)|δ
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is equal to the area of a triangle (see the shadowed
triangle in Fig. 3 on the right).
About this triangle we know that the length of
the edge parallel to u is δ, and we also know the
direction of an edge adjacent to the aforemen-
tioned edge, since it is orthogonal to vi−s−2. By
these data and the area of the triangle, we can
determine also the direction of the other edge. If
this direction is orthogonal to vi, then add F−

i

to the sequence which contains F−

i−s−2; otherwise
add F−

i to the sequence which contains F+
i−s−2.

Proceed with the (i + 1)-th step.

ac) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of different length, (F−

i−1, F
+
i−1).

In this case, if one between vi−1,p and vi−1,f is orthogonal
to vi, then add F−

i to the sequence which contains F−

i−1;
otherwise add F−

i to the sequence which contains F+
i−1.

Proceed with the (i + 1)-th step.

b) The vectors ±vi are in correspondence to a pair of parallel edges
of equal length, (F−

i , F+
i ).

In this case add F−

i to S1 and add F+
i to S2. Proceed with the

(i + 1)-th step.

c) The vectors ±vi are in correspondence to a pair of parallel edges
of different length, (F−

i , F+
i ).

Consider ±vi−1.

ca) The vectors ±vi−1 are in correspondence to a single edge
F−

i−1.

In this case, if one between vi,p and vi,f is orthogonal to
vi−1, then add F−

i to the sequence which contains F−

i−1

and add F+
i to the other sequence. Otherwise add F+

i

to the sequence which contains F−

i−1 and add F−

i to the
other sequence. Proceed with the (i + 1)-th step.

cb) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of equal length, (F−

i−1, F
+
i−1).
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δuM1+x

F i−s−1
+

F i−1
+

M 2

vi−s−j

...

...

u

Fi−1
− +x

F −
i−s−1

F i−s−2
−

+x

+x

Figure 4: The intersection of K with K + x (left) and of K with
K + x + δu (right).

In this case we have to decide if F−

i has to be added to S1

and F+
i to S2 or vice versa. In any case both Si

1 and Si
2

contain a segment orthogonal to vi and of length λ1(F
−

i );
call these two segments M1 and M2. Add M1 and M2

to S1 and S2, respectively. Let s, s > 0, be the smallest
index such that F−

i−1, ..., F−

i−s−1 and F+
i−1, ..., F+

i−s−1 are
consecutive edges of pairs of parallel edges of equal length
and (F−

i−s−2, F
+
i−s−2) is not a pair of parallel edges of equal

length.

cbs) If ±vi−s−2 is in correspondence to a single edge
F−

i−s−2, then consider the translation x which maps
the second vertex of M1 to the first vertex of the edge
with outward normal ±vi−s−1 located in the sequence
which does not contain M1 (see Fig. 4 on the left).
Compute gK(x).
Afterwards, consider the two edges which are adjacent
and precede the edges F−

i−s−1 and F+
i−s−1. One of

them has outward normal ±vi−s−2, whereas the other
one has outward normal ±vi−s−j, j > 2. Denote by u
the unit vector orthogonal to vi−s−j with orientation
such that gK(x + δu) > gK(x), where δ is a positive
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number such that

δ ≤ min
k=i+1,...,r−1

{
λ1(F

−

k )
| sin( ̂vkvi−s−2)|

| sin( ̂vi−s−2vi−s−j)|
,

λ1(F
−

i−s−2)
| sin( ̂vivi−s−2)|

| sin( ̂vivi−s−j)|
,

λ1(F
−

i−s−2)
| sin( ̂vkvi−s−2)|

| sin( ̂vivi−s−j)|
,

[λ1(F
−

i−s−j), λ1(F
+
i ) − λ1(F

−

i )] ×

×
| sin( ̂vivi−s−2)|

| sin( ̂vi−s−2vi−s−j)|

}
.

The number

gK(x + δu) − gK(x) − λ1(F
−

i )| cos(ûvi)|δ +

−
s∑

k=0

λ1(F
−

i−k−1)| cos( ̂uvi−k−1)|δ

is equal to the area of a triangle (see the shadowed
triangle in Fig. 4 on the right).
About this triangle we know that the length of the
edge parallel to u is δ, and we also know the direction
of an edge adjacent to the aforementioned edge, since
it is orthogonal to vi−s−2. By these data and the area
of the triangle, we can determine also the direction of
the other edge. If this direction is orthogonal to vi,
then remove M1 and M2 and add F−

i to the sequence
which contains F−

i−s−2 and add F+
i to the sequence

which does not contain F−

i−s−2; otherwise remove M1

and M2 and add F−

i to the sequence which does not
contain F−

i−s−2 and add F+
i to the sequence which

contains F+
i−s−2. Proceed with the (i + 1)-th step.

cbp) If ±vi−s−2 is in correspondence to a pair of parallel
edges of different length, (F−

i−s−2, F
+
i−s−2), then con-

sider the translation x which maps the first vertex
of F−

i−s−2 to the second vertex of the segment Mi,
i = 1, 2, located in the sequence which does not con-
tain F−

i−s−2 (see Fig. 5 on the left). Compute gK(x).
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vi−s−j

F −
i−1+x

M 1+x
Fi−s−2

+

F i−s−1
+

F i−1
+

M 2

uδ

F −
i−s−1+x

...

...

u

F −
i−s−2+x

Figure 5: The intersection of K with K + x (left) and of K with
K + x + δu (right).

Afterwards, let u be the direction of the edge which
belongs to the sequence containing F−

i−s−2 and that
precedes F−

i−s−2 (u is parallel to vi−s−2,p or vi−s−2,f ).
Let j, j > 2, be such that u is orthogonal to vi−s−j.
Let us orient u in such a way that gK(x+δu) > gK(x),
where δ is a positive number such that

δ ≤ min
k=i+1,...,r−1

{
λ1(F

−

k ))
| sin( ̂vkvi−s−2)|

| sin( ̂vi−s−2vi−s−j)|
,

λ1(F
−

i−s−j), [λ1(F
+
i−s−2) − λ1(F

−

i−s−2)] ×

×
| sin( ̂vkvi−s−2)|

| sin( ̂vkvi−s−j)|
,

[λ1(F
+
i−s−2) − λ1(F

−

i−s−2)]
| sin( ̂vivi−s−2)|

| sin( ̂vivi−s−j)|
,

[λ1(F
+
i ) − λ1(F

−

i )]
| sin( ̂vivi−s−2)|

| sin( ̂vi−s−2vi−s−j)|

}
.

The number

gK(x + δu) − gK(x) − λ1(F
−

i ))| cos(ûvi)|δ +
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−
s+1∑

k=0

λ1(F
−

i−k−1)| cos( ̂uvi−k−1)|δ

is equal to the area of a triangle (see the shadowed
triangle in Fig. 5 on the right).
About this triangle we know that the length of the
edge parallel to u is δ, and we also know the direction
of an edge adjacent to the aforementioned edge, since
it is orthogonal to vi−s−2. By these data and the area
of the triangle, we can determine also the direction of
the other edge. If this direction is orthogonal to vi,
then remove M1 and M2 and add F−

i to the sequence
which contains F+

i−s−2 and add F+
i to the sequence

which contains F−

i−s−2; otherwise remove M1 and M2

and add F−

i to the sequence which contains F−

i−s−2

and add F+
i to the sequence which contains F+

i−s−2.
Proceed with the (i + 1)-th step.

cc) The vectors ±vi−1 are in correspondence to a pair of par-
allel edges of different length, (F−

i−1, F
+
i−1).

In this case we have to decide if F−

i has to be added to S1

and F+
i to S2 or vice versa. In any case both Si

1 and Si
2

contain a segment orthogonal to vi and of length λ1(F
−

i );
call these two segments M1 and M2. Add M1 and M2 to
S1 and S2, respectively. Consider the translation x which
maps the first vertex of F−

i−1 to the second vertex of the
segment Mi, i = 1, 2, located in the sequence which does
not contain F−

i−1 (see Fig. 6 on the left). Compute gK(x).

Afterwards, let u be the direction of the edge which be-
longs to the sequence containing F−

i−1 and that precedes
F−

i−1 (u is parallel to vi−1,p or vi−1,f ). Let j, j > 2, be
such that u is orthogonal to vi−j . Let us orient u in such
a way that gK(x + δu) > gK(x), where δ is a positive
number such that

δ ≤ min
k=i+1,...,r−1

{
[λ1(F

+
i ) − λ1(F

−

i )]
| sin(v̂ivi−1)|

| sin( ̂vi−1vi−j)|
,

λ1(F
−

k ))
| sin(v̂kvi−1)|

| sin( ̂vi−1vi−j)|
,
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M1+x

M2

vi−j

uδ

Fi−1
+

Fi−1
− +x

u

Figure 6: The intersection of K with K + x (left) and of K with
K + x + δu (right).

[λ1(F
+
i−1) − λ1(F

−

i−1)]
| sin(v̂kvi−1)|

| sin(v̂kvi−j)|
,

λ1(F
−

i−j), [λ1(F
+
i−1)−λ1(F

−

i−1)]
| sin(v̂ivi−1)|

| sin(v̂ivi−j)|

}
.

The number

gK(x + δu) − gK(x) − λ1(F
−

i−1)| cos(ûvi−1)|δ +

−λ1(F
−

i )| cos(ûvi)|δ

is equal to the area of a triangle (see the shadowed triangle
in Fig. 6 on the right).

About this triangle we know that the length of the edge
parallel to u is δ, and we also know the direction of an edge
adjacent to the aforementioned edge, since it is orthogonal
to vi−1. By these data and the area of the triangle, we
can determine also the direction of the other edge. If this
direction is orthogonal to vi, then remove M1 and M2 and
add F−

i to the sequence which contains F+
i−1 and add F+

i
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to the sequence which contains F−

i−1; otherwise remove
M1 and M2 and add F−

i to the sequence which contains
F−

i−1 and add F+
i to the sequence which contains F+

i−1.
Proceed with the (i + 1)-th step.

After concluding the (r − 1)-th step, the union of Sr−1
1 and Sr−1

2

coincides with the boundary of K and the algorithm stops.
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