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Abstract 

The theory and methodology of ambient noise tomography has been studied and 

applied to North-China successfully. Continuous vertical-component seismograms, 

spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 

broadband stations and 10 very broadband stations, have been used. The cross 

correlation technique has been applied to ambient noise data recorded by North-China 

Seismic Array for each station pairs of the array. Rayleigh wave group velocity 

dispersion curves are measured at periods between 4 s and 40 s by multiple filter 

technique. We obtain 5630 high quality dispersion curves. Surface wave tomography 

is conducted to generate group velocity maps with a grid spacing of 0.25º×0.25º. 

These maps display higher resolution and extend to shorter periods than previous 

surface wave tomography maps. Then genetic algorithm is used to invert pure path 

dispersion curves. The 3-D shear wave velocity structure from 0 to 50 km depth is 

readily constructed. To the authors' knowledge, the resolution presented here is, so far, 

the highest one in China mainland. 

The original results of this thesis are: 

1, The SNR of Green Function is proportional to the square root of observation 

time and can be enhanced by using the symmetric component. The inhomogeneous 

distribution of seismic noise gives rise to the asymmetry of Green Function. Using 

more than one year's data, one can get more symmetric and higher SNR Green 

Function. 

2, The characteristics of ambient seismic noise are different for different period 

bands. In 4-10 s, a coherent phase with large amplitude near zero lag time is observed. 

In 10-20 s, the sources of ambient seismic noise have a very clear seasonal variability. 

The azimuthal distributions of noise share a great similarity with the map of average 

ocean wave height map obtained by TOPEX-Poseidon. In 20-50s range, Rayleigh 

wave Green Functions are almost symmetrical and show less seasonal variation in 

both signal strength and directivity, which indicates that the distribution of noise is 
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almost homogeneous. In 4-20s range, the amplitudes of positive and negative 

components of Green Functions are obviously asymmetrical, but the arrival times are 

almost identical, indicating that the distribution of noise has much influence on the 

amplitude of Green Function, but less influence on arrival time.  

3, Tomographic maps at short periods reveal an evident lateral heterogeneity in 

the curst of North-China, quite well in agreement with known geological and tectonic 

features. The North China Basin is imaged as a broad low velocity area, while the 

Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, 

and the Quaternary intermountain basins show up as small low-velocity anomalies.  

4, The 3-D S-wave crustal velocity model in North China shows a distinct low 

velocity belt with NW trend at 10 km of depth near Zhangjiakou-Bohai seismic zone. 

This low velocity belt and the southern margin of Yanshan high velocity anomaly 

draw the outline of Zhangjiakou-Bohai seismic zone and its northern border line. 

There is a well-defined low velocity zone in middle-to-lower crust (15-25 km) in the 

Beijing-Tianjin-Tangshan region, which may be caused by intrusion of hot mantle 

materials.  

5, We analyzed the seismogenic structure near Tangshan，Luanxian and Ninghe 

earthquake region. We infer that these three earthquakes are mainly caused by vertical 

deformation of upper mantle and material exchange between crust and upper mantle. 

The magma intrudes the crust along faults near the boundary of crust and upper 

mantle, which leads to the low velocity anomaly in the uppermost mantle. The magma 

intrusion heats up the lower crustal material and drops its viscosity. Some minerals 

are dehydrated. The water moves up and is trapped in the middle crust. The existence 

of liquid affects the structure and composition of the fault zone, further changes the 

stress state, weakens the seismotectonic region and triggers the earthquakes. 

Key Words: Ambient Noise Tomography, Cross Correlation, Rayleigh Wave, Group 

Velocity, Genetic Algorithm, North China 
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Chapter 1 Introduction  

1.1 Tectonic background  

Cratons, in which the crust was mainly generated in the Precambrian, are typically 

underlain by mantle lithosphere that is thick, cold, and refractory (e.g., Jordan, 1975). 

Because it is cold and nearly anhydrous, such lithospheric mantle has a high viscosity 

and thus contributes significantly to craton stability (e.g., Pollack, 1986; Hirth et al., 

2000). Thus the ancient cratons have not undergone major tectonism or magmatism, 

and no significant crustal growth followed cratonization. However, several lines of 

evidence suggest that the lithosphere of North China Craton (NCC) is not stable forever, 

but can be lost or severely modified (decratonized), resulting in significant crustal 

growth during major tectonomagmatic events (Yang et al., 2008). 

The NCC is an important natural laboratory for studying the temporal change of 

the lithosphere because there is the juxtaposition of Ordovician diamondiferous 

kimberlites, Mesozoic lamprophyre-basalt and Cenozoic tholeiite-alkali basalts in this 

craton.  

While diamond inclusions, xenoliths and mineral concentrates in kimberlites 

indicate a thick (>180 km), cold and refractory lithospheric keel beneath the NCC prior 

to the Palaeozoic, basalt-borne xenoliths reveal the presence of thin, hot and fertile 

lithosphere in the Cenozoic (Xu, 2001). Petrological and geochemical probing using 

xenolith from the upper mantle carried up by volcanic extrusions indicates that the 

lithosphere is no more than 80 km over much of eastern NCC, and is in places less than 

60 km thick (e.g., Fan et al., 1993; Menzies et al., 1993; Griffin et al., 1998; Xu, 2001). 

Geophysical analyses also point to a much thinner lithosphere in eastern NCC (e.g., Liu, 

1987; Tian et al., 2009; Chen et al., 2008). This indicates the dramatic change in 

lithospheric architecture during the Phanerozoic and raises important questions about 

what processes were involved. Was older crust simply reactivated or does this 

magmatism represent a growth of new continental crust? What were the mechanisms 

that allowed the generation of such large volumes of magma within a previously stable 

craton? 
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1.2 History of geological evolution 

The NCC is one of the oldest ancient continental cores in the world with a 

basement crystalline complex formed 3.7 Ga. Metamorphism of the platform 

basement-complex mainly took place in Precambrian (Chen, 1994). The research on 

Precambrian granitoids indicated (Deng et al., 1999) that the continental crust-forming 

stages in North China can be approximately marked off into the following stages: (1) 

TT-type continental crust in Paleo-Archean (called the juvenile stage of continental 

crust), (2) TTGG-type continental crust in middle-Archean or Neo-Archean (called 

pre-mature continental crust stage) and (3) GG-type continental crust in Neo-Archean 

or Paleo-proterozoic (called mature continental crust stage). This result is consistent 

with the statistic peak of Sm-Nd model ages concentrated in the range of 2.7 Ga and 2.9 

Ga as determined by 198 Precambrian metamorphic rocks (Zhang, 1998), and is well 

correlated with the itabirite deposit mostly developed in Neo-Archean (Sheng, 1998), 

which is a typical mineral resource of banded iron formation prevailed at that period. 

Isotopic ages determined in the Sangan area indicate that granulite facies 

metamorphism of khondalite series, gneiss terrane and high-pressure basic granulite all 

happened by the end of Paleoproterozoic (Guo et al., 2001). SHRIMP ages of detrital 

zircon from the Changzhougou formation at the bottom of Mesoproterozoic 

Changchengian System indicated that the clastic sediments all were come from the 

crustal source area of North China craton about 2.5 Ga (Wan et al., 2003). Evidence 

mentioned above indicated that the North China continental crust was formed in early 

Archean-Paleoproterozoic and has the similar history with the global craton forming 

process. 

The sedimentary cover was mainly formed after Mesoproterozoic and comprise 

five stages (Qiu et al., 2005): (1) from Mesoproterozoic (Pt2) to the early stage of 

middle Ordovician (O1 
2 ) was a continuous sediment of marine facies; (2) from the late 

stage of middle Ordovician (O2 
2 ) to the early stage of Carboniferous Period (C1 

2 ) was the 

period of uplift, denudation, weathering and planation of the North China platform 

entirely lacking of sedimentary records; (3) the sediments of the North China platform 

change from paralic sedimentary facies gradually to basin sediments of continental 

facies from the late stage of Carboniferous Period (C2 
2 ) to Triassic Period (T); (4) 

Yanshanian Orogenic Period was from Jurassic to Cretaceous; (5) rift basin in eastern 
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North China was formed from Paleogene to Quaternary Period (E-Q).  

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Tectonic map of the North China Craton (modified after Kusky et al. 2007). 

The NCC is divided into three major blocks, the Eastern and Western blocks, 

Central Orogenic Belt (Kusky et al., 2007, Figure 1-1). The Eastern and Western 

Blocks are separated by the Late Archaean Central Orogenic Belt, in which virtually all 

U–Pb zircon ages (upper intercepts) fall between 2.55 and 2.50 Ga (Zhang 1989; Zhai 

et al. 1995; Kröner et al. 2002; Zhao et al. 1998, 2005; Kusky et al. 2001, 2004; Kusky 

& Li, 2003; Polat et al., 2006). The stable Western Block, also known as the Ordos 

Block (Bai & Dai 1998; Li et al. 1998), is a stable craton with a thick mantle root, no 

earthquakes, low heat flow, and a lack of internal deformation since the Precambrian. It 

has a thick platform sedimentary cover intruded by a narrow belt of 2.55–2.50 Ga arc 

plutons along its eastern margin (Zhang et al. 1998). Much of the Archaean geology of 

the Western Block is poorly exposed because of thick Proterozoic and Palaeozoic to 

Cretaceous platformal cover. A platformal cover on an Archaean basement is typical of 

many Archaean cratons worldwide. In contrast, the Eastern Block is atypical for a 

craton in that it has been tectonically active and has numerous earthquakes, high heat 

flow, and a thin lithosphere reflecting the lack of a thick mantle root. The Eastern Block 

contains a variety of c. 3.80–2.50 Ga gneissic rocks and greenstone belts locally 

overlain by 2.60–2.50 Ga sandstone and carbonate units (e.g. Bai & Dai 1996, 1998). 
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Deformation is complex, polyphase, and indicates the complex collisional, rifting, and 

underplating history of this block from the Early Archaean to the Meso-Proterozoic 

(Zhai et al. 1992, 2002; Li et al. 2000a; Kusky et al., 2001; Kusky & Li 2003; Zhai, 

2005; Polat et al., 2006), and again in the Mesozoic–Cenozoic. 

The Central Orogenic Belt (COB) includes belts of TTG, granite, and supracrustal 

sequences that were variably metamorphosed from greenschist to granulite facies. It 

can be traced for about 1600 km from west Liaoning in the north to west Henan 

Province in the south. Greenschist- to amphibolite grade metamorphism predominates 

in the southeastern part of the COB (such as in the Qinglong belt), but the northwestern 

part is dominated by amphibolite- to granulite-facies rocks, including some 

high-pressure assemblages (10–13 kbar at 850±50℃; Li et al., 2000b; Zhao et al., 

2001a, b). The high-pressure assemblages occur in the linear Hengshan belt, which 

extends for more than 700 km with a ENE–WSW trend. Internal (western) parts of the 

orogen are characterized by thrust-related subhorizontal foliations, shallow-dipping 

shear zones, recumbent folds, and tectonically interleaved highpressure granulite 

migmatite and metasedimentary rocks. The COB is in many places overlain by 

sedimentary rocks deposited in graben and continental shelf environments, and is 

intruded by c. 2.5–2.4 and 1.9–1.8 Ga dyke swarms. Several large 2.2–2.0 Ga 

anorogenic granites have also been identified within the belt (Li & Kusky, 2007). 

The NCC also suffered two episodes of orogenic modifications during the 

Mesozoic. Main surface features, including major east–west and north–south fold belts, 

widespread plutonism, and extensional faults, are related to these events. The first 

orogenic episode occurred during the Triassic to mid-Jurassic (Indosinian), 

corresponding to the collision of the NCC with the South China Block. The 

consumption of over 200,000 km2 of continental crust had led to ultra-high-pressure 

(UHP) metamorphism. The collisional event also, for the first time since the formation 

of the NCC, caused major tectonism and relative elevations in the interior of the NCC. 

The second orogenic event was the so-called Yanshanian Orogeny developed along 

northern NCC. It was probably related to the closure of the Mongol-Okhotsk Ocean to 

the north. Although thin-skinned thrusting was widespread along northern NCC (e.g., 

Davis et al. 1998), the shallow nature of such structures may not have significant 

bearings on modern tectonics and seismicity. 
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1.3 Magmatic activities 

Though there were some magmatic events in North China before Jurassic, in 

Caledonian only diamond-bearing kimberlites intruded in Mengying of Shandong 

Province and Fuxian of Liaoning Province indicating a small-scale mantle-heat 

disturbance under cratonic environment (Deng et al., 1996); Hercynian was the 

collision period between the North China platform and Mongolia micro-continent 

forming North China continent, and Indosinian was the collision period between the 

North China continent and South China continent to form China continent. The 

distribution of magmatic activities for these two periods were mainly limited to the 

North, Northeast and South margins of the North China platform (Cheng, 1994), and 

there are not any intra-platform magmatic activities, indicating that the magmatic 

activities of Hercynian and Indosinian had only very small influence over the interior of 

North China platform. Therefore, the lacking of large-scale mantle-derived magmatic 

activities since the formation of North China platform in early 

Archean-Paleoproterozoic till Jurassic suggests that the lithospheric crust-mantle 

structure of North China platform kept the long-term stability before Jurassic. 

Since Jurassic, the North China platform has been activated with intensive and 

wide magmatic activities (age of 200–110 Ma) during Yanshanian orogenic movement 

(Wang et al., 1994; Wilde et al., 2003; Wu et al., 2000; Zhou et al., 2003). The source 

area of Yanshanian granitoids bear the characteristics of crust-mantle mixing, and has 

very similar Sr-Nd isotopic composition with coetaneous gabbros, diorite, 

basic-ultrabasic rock and volcanic rocks (Zhou et al., 2003; Hong et al., 2003; Liu et al., 

2004). The recently determined Tectono-magmatic events1) indicate that North China 

has surpassed a whole orogenic cycle of preliminary stage in J1 and early stage in J2 of 

orogeny→peak orogenic stage in J3→late orogenic stage in K1 
1→post-orogenic stage in 

K2 
1 ; among them, thickening continental crust was formed in J1-J2, and then the 

lithosphere was de-rooted at large-acreage after J3. The most violent period of 

magmatic activities was in J3-K
1 
1 , which was homologous with large-scale metallogeny 

of 130―110 Ma (Zhou et al., 2003; Mao et al., 2003) and 120±10 Ma peak period 

(mostly range in 80―160 Ma) of crust-mantle interaction (Wan et al., 2003; Zhou and 

Sun, 2003).The wide-spread Mesozoic igneous rocks can be delimitated into several 

igneous rock belts, such as Jiliao-Ludong, Yanliao, Taihangshan and Luhuai trending 
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NEE, and Yushan (Henan-Shanxi), the west segment of north margin of North China 

trending NWW (Cheng, 1994).  

The characteristics of Himalayan magmatic activity is the eruption of basaltic 

magma and lack of intrusive rocks; the basaltic eruptions are mainly distributed on the 

eastern plain of North China. According to the isotopic ages, volcanic activities can be 

classified into two cycles: the Paleogene cycle and Neogene-Quaternary cycle, the 

former are mainly of tholeiites, while the latter are alkali basalts. Since the tholeiites are 

dominant in the Paleogene cycle and the alkali basalt dominant in the 

Neogene-Quaternary cycle, it is suggested that the depth of the source of basaltic 

magma tended to be deepened gradually with time, which accords with the 

characteristics of typical continental volcanic rifting (Deng, 1989). 

The spatial distribution of igneous rocks mentioned above indicates that in the 

North China platform activation or reconstruction have been inhomogeneous since 

Jurassic. Voluminous intrusion of granitic magma of crust-mantle mixing source in 

Yanshanian and basaltic eruption in Himalayan indicate the influx of material and heat 

of convective mantle into the continental crust in North China in these two magmatic 

cycles, but their dynamic mechanisms are different from each other, the former is 

compressive orogenic-mechanism, while the latter is extensional rifting-mechanism. 

To sum up all evidence of geology and geophysics mentioned above, we make out 

that there are three types of lithosphere in the North China platform: The Eerduosi 

terrane in the West, with fault-depression basin surrounding its boundary with the 

characteristics of cold, stable, and continental-root existing, belongs to cratonic 

lithospheric type; Yanshan and Taihangshan Mountains in the middle belong to 

orogenic lithospheric type, which was formed in the compressive orogenic-mechanism 

in Mesozoic, without basaltic activity in Cenozoic, indicates that the orogenic character 

was still kept in there; the East plain of North China belongs to rift lithospheric type, 

and the massive basaltic eruption is the marker of extensional rifting-mechanism. 

1.4 Previous seismic studies in NC  

The study region is located at the eastern margin of NCC (Figure. 1-2). The central 

part of the study area is NCB (North China Basin). NCB is a large epicontinental basin 

where many uplifts and depression basins developed since the Cenozoic. NCB can be 
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divided in to two major internal uplifts (Chengning, Cangxian) and four major 

depressions (Jizhong, Huanghua, Jiyang, and Linqing) (Chang, 1991). The northeastern 

part of the study area is occupied by the relatively stable Yanshan uplift with its major 

structure and tectonic trend oriented in the E-W direction. The western and 

northwestern portions is dominated by the Taihangshan uplift region with some small 

intermountain basins. To the southeast there is the Luxi Uplift, and to the east the Bohai 

Bay. In the NCB and the Taihangshan uplift region there are many active faults, 

oriented in the NE–SW direction. In the two regions, most of the structures and 

mountain ranges have trends oriented in the NE–SW direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2. Topography and tectonic sketch map of the study region. Modified from Wang et 

al.(1989) and Deng et al.(2004). The legend is shown at the bottom. I, Major faults; II, Deduced 

faults; III, Boundary of Cenozoic basins; IV, Depression areas in North China basin. The names of 

major faults and geological units are as following: 1, Taihangshan fault; 2, Wutaishan fault; 3, 

Yuxian-Yanqing fault; 4, Kouquan fault; 5, Nankou-Sunhe fault; 6, Xiadian-Fengheying fault; 7, 

Luanxian-Leting fault; 8, Changli-Ninghe fault; 9, Cangxian fault. The names of the basin and 

major geological units are: YH, Yanqing-Huailai Basin; YY, Yangyuan-Yuxian Basin; DT, Datong 

Basin; JZ, Jizhong depression; HH, Huanghua depression; JY, Jiyang depression; LQ, Linqing 

depression; CX, Cangxian uplift; CN, Chengning uplift. The black dots represent historical 

earthquakes with magnitude larger than 6.0. The rectangle of the inset map shows the location of 
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the study region. 

This North China is one of the most seismic active areas in China. Historical 

strong earthquakes occurred frequently in this area. More than 200 earthquakes with 

magnitude greater than 5.0 have occurred in this region since 780 BC, among them 37 

events are larger than M= 6.0 and 10 events are larger than M= 7.0 (The Earthquake 

Disaster Prevention Department of China Earthquake Administration, 1995, 1999; 

China Earthquake Networks Center, 2008). In 1679, an earthquake of M= 8.0 occurred 

in Sanhe; it is the largest one among the known historical earthquakes in this region. 

The 1976 Tangshan earthquake (M=7.8) killed at least 240,000 people, and was one of 

the most destructive earthquakes in the world in human history. In the study region, 

there are several large cities (e.g., Beijing, Tianjin, Tangshan, and Shijiazhuang) in 

addition to numerous towns and villages. A detailed investigation of the crustal 

structure and seismotectonics of this region is very important for the understanding of 

physics of continental earthquakes and for the assessment of seismic hazard and for the 

mitigation of the seismic risk. 

The North China has been intensively investigated by a variety of seismic methods 

and techniques, such as deep seismic sounding profiling, wide-angle 

reflection/refraction profiling, body wave and surface wave tomography, receiver 

function, anisotropy and so on. In the following, we will make a brief summary of the 

related studies in NC. 

Deep seismic sounding: A major effort in the NC region is deep seismic 

sounding (DSS) using active sources to image the crustal structure (e.g. Zhang et al., 

1997; Jia et al., 2005a, b). The coverage of the DSS profiles is particularly dense in 

North China. These studies revealed strong lateral heterogeneities in the velocity 

structure of the crust and uppermost mantle as well as significant lateral variations in 

the crustal thickness beneath this area, also low-velocity zones in the mid-crust were 

observed in many regions. 

Body wave tomography: In recent years seismic tomography has become a 

powerful tool for studying the crust and mantle structure. Many researchers have 

investigated the 3D seismic velocity structure of the crust and uppermost mantle 

beneath North China and adjacent areas using earthquake arrival times (e.g., Sun and 

Liu, 1995; Liu et al., 1986; Huang and Zhao, 2004; Ding et al., 2009; Tian et al., 2009). 
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These tomography studies have revealed a complex and dramatically thinned 

lithosphere beneath eastern China.  

Surface wave tomography: Many surface wave tomography studies have also 

been conducted (e.g., Feng & Teng, 1983; Ritzwoller & Levshin，1998，Huang et al., 

2003), but most of them are at China mainland scale and the lateral resolution is of the 

order of 100-200km. Few studies of surface waves in North-China have been 

undertaken, which is due to the relatively low level of seismicity and the consequent 

logistic limitation suffered by earthquake-based surface wave tomography. Recently, 

He et al. (2009) obtained phase velocity tomography results using the surface wave data 

recorded by NCSA. The resolution is greatly enhanced due to the dense array and is 

estimated to be 30-50 km. Previous surface wave tomography studies almost 

exclusively used teleseismic earthquakes. It is difficult to obtain reliable short-period 

(<10 s) dispersion measurements from distant earthquakes due to intrinsic attenuation 

and scattering along the ray paths, but it is the most useful information for constraining 

the structure of the crust and uppermost mantle. Moreover, the long paths also result in 

broad lateral sensitivity kernels which limit the resolution to hundreds of kilometers. 

For these reasons, high-resolution surface wave tomography results are scarce. 

Receiver function: The receiver function method has been applied to study the 

shear wave velocity structures. Recent teleseismic P receiver function studies (Zheng et 

al., 2005, 2006, 2007; Wang et al., 2009) showed marked structural differences of the 

crust among the NCB, the Taihangshan uplift and the Yanshan uplift. Receiver function 

h-k stack results give the lateral variations of sedimentary cover, crust thickness and 

Poisson’s ratio (Xu & Zheng, 2005; Luo et al., 2008; Wang et al., 2009). P-wave 

receiver function migration results reveal a 60- to 80-km-thick present-day lithosphere 

beneath the study region, significantly thinned from the Paleozoic lithosphere of >180 

km (Chen et al., 2006). S-wave receiver function migration results indicate that the 

LAB is as shallow as 60–70 km in the southeast basin and coastal areas and deepens to 

no more than 140 km in the northwest mountain ranges and continental interior. These 

observations indicate widespread lithospheric thinning in North China in comparison 

with the lithospheric thicknesses typical of most cratonic regions (＞180 km). 

Other geophysical methods such as anisotropy, magnetotelluric, gravity and 

aeromagnetic soundings are also used (Liu et al., 1989; Zhao et al., 2008). 
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To sum up, extensive seismic studies have been conducted in North China and 

many meaningful results are obtained. However, in the above-mentioned studies, main 

shortcomings and drawbacks still exist due to the limitations of methodology, low 

precision of earthquakes location, short number of seismic stations and their 

non-uniform spatial distribution. 

1.5 The NCSA project  

North China hosts the most vital industrial, commercial, residential, and political 

centers of China. It is one of the most geologically active continental regions in the 

world, with frequent and devastating earthquakes. It is also geologically the best 

studied regions in China where abundant geological and geophysical data provide a 

firm foundation for the proposed Earth system studies.  

In order to study the formation and evolution of NCC, to obtain crust and upper 

mantle structure and to verify various proposed mechanisms for the interpretation of the 

lithospheric processes which occurred in NCC, a seismic experiment (NCSA) has been 

carried out between November 2006 and November 2008. 250 portable stations were 

deployed in North China. The range of the interstation paths spans from 8 km to over 

600 km, while the average station separation is about 35 km. The experiment ran 

continuously with the sampling rate of 50 Hz. There are three types of sensors, of which 

190 are broadband sensors (Guralp CMG-3ESPC sensor, corner frequency: 0.033 Hz), 

10 are very broadband sensors (Guralp CMG-3T sensor, corner frequency: 0.0083 Hz) 

and 50 are short period sensors (Guralp CMG-40T sensor, corner frequency: 1 Hz). The 

recorder unit is Reftek-130B digitizer with an installed GPS clock correction system. 

Each of the unit was equipped with two 2 Gb memory card. In order to decrease the 

anthropic noise, sensors were buried in a pit with 1 m depth. The main power to the 

units was supplied via a 12 V battery charged with alternating current or solar panel. 

The station locations were chosen not only according to the geological formations but 

also to logistical reasons. Each of the stations was built inside an agricultural property 

which helped to ensure the security of the equipment. 

This experiment is designed to identify some of the fundamental questions 

regarding the geodynamics in the NC. One of the focus areas of this research plan is the 

active crustal deformation and earthquakes, since NC has the most active 

intracontinental seismicity in the world. Another focus area covers the 
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asthenosphere-lithosphere interactions and, in particular, the understanding of the 

mantle processes responsible for the decraton of the NC lithosphere. 

1.6 Thesis structure 

Experimental and theoretical studies have shown that the elastodynamic Green 

function between two points can be estimated from the cross correlation of recordings 

made at the two locations (Weaver & Lobkis, 2001; Derode et al., 2003a, b; Larose et 

al., 2005a, b; Snieder, 2004; Wapenaar, 2004). Surface wave empirical Green functions 

(EGFs) estimated from ambient noise and its dispersion characteristics can be used to 

produce dispersion tomography maps. The ambient noise tomography (ANT) method 

alleviates some of the problems affecting traditional surface wave measurements made 

on teleseismic earthquake recordings. This method has been successfully applied in 

several geographical settings, such as Southern California (Shapiro et al., 2005; Sabra 

et al., 2005a), Tibet (Yao et al., 2006), Europe (Yang et al., 2007), New Zealand (Lin et 

al., 2007), China mainland (Zheng et al., 2008), and elsewhere in the world. 

In view of the above background, the general objective of my doctoral thesis is to 

investigate the crustal velocity structure beneath North-China. Specific objectives 

include: 

(1) Construct a high resolution 3-D shear velocity model in crust beneath North- 

China; 

(2) Probe possible relationship between the velocity structure and major faults 

(e.g., Taihangshan fault); 

(3) Characterize the ambient noise features of NCSA. 

This thesis consists of six chapters.   

In chapter 1, we review the tectonic background of North-China and previous 

studies related to this thesis work. We introduce the North-China Seismic Array project 

and present the objectives of this thesis research.  

In chapter 2, we describe the theory of ambient noise tomography and data 

processing procedure. 

In chapter 3, we discuss the tomographic inversion results. 
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In chapter 4, we describe the theory of inverting dispersion data with Genetic 

Algorithm and present the 3-D S-wave velocity model in North-China. 

In chapter 5, we analyse the noise characteristics in North-China. 

In chapter 6, we present the discussions, conclusions and recommendations of this 

study. 
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Chapter 2 Data and method  

2.1 Data 

Continuous vertical-component seismograms, spanning the period from January 1, 

2007, to February 28, 2008, recorded by 190 broadband stations and 10 very broadband 

stations, are used in this study (Figure 2-1). The broadband stations are equipped with 

Guralp CMG-3ESPC seismometers (60s to 50Hz flat velocity response), while the 

very broadband stations are equipped with Guralp CMG-3T seismometers (120s to 

50Hz flat velocity response). 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Locations of the seismic stations used in this study: blue and red triangles show the 

locations of broadband and very broadband stations, respectively. 

2.2 Ambient noise tomography 

2.2.1 Introduction 

Surface waves are evanescent and propagate along Earth’s surface with group (or 

phase) velocities that depend on frequency; their dispersion can be used to study the 

medium properties at different depths. At long periods (e.g., T > 100s) surface waves 

are mainly sensitive to the shear velocity structure at large depth (e.g., upper mantle), 
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while at short periods (e.g., T < 30s) they sample the shallower structure. As a corollary, 

the depth resolution of short period surface waves is much better than that of longer 

period waves. 

Surface waves propagating from earthquakes to one or more receivers have been 

widely used to study the crust and upper mantle structure, on both regional and global 

scale. Various approaches have been used for regional surface wave tomography, 

including the construction – and point-wise inversion – of group (or phase) velocity 

maps (Ritzwoller & Levshin, 1998; Curtis et al., 1998; Panza et al., 2007; and many 

others), the measurement of inter-station phase velocities through traditional 

two-station analysis (e.g., Yao et al., 2005), or (partitioned) waveform inversion (e.g., 

Nolet, 1990; Simons et al., 1999). Forsyth and Li (2005) developed a two plane-wave 

method to analyze the 2-D variation of surface wave phase velocities across arrays with 

small foot-prints (compared to the source-receiver distance). Surface waves can be used 

to investigate both the isotropic and anisotropic structure in the crust and upper mantle, 

which can help understand subsurface deformation. In fact, surface wave dispersion 

provides more direct constraints on depth variation in azimuthal and radial anisotropy 

(e.g., Montagner & Nataf, 1986; Montagner & Tanimoto, 1991; Simons et al., 2002; 

Sebai et al., 2006) than shear wave splitting of, for instance, SKS waves. 

In North-China and surrounding areas, numerous tomographic studies have been 

conducted with earthquake data. However, due to the small number of stations, the 

lateral resolution of these tomographic studies, especially surface wave tomography, is 

usually quite poor (>100 km). Furthermore, it has been difficult to obtain reliable 

constraints on the crustal structure from surface wave dispersion, since at short periods 

(e.g., T < 10 s) the waveforms are usually affected by scattering due to strong crustal 

heterogeneity. Furthermore, the sparse and uneven distribution of earthquake sources 

and the uncertainties of the spatial characteristics of surface-wave sensitivity kernel 

also limit the resolution and the accuracy of traditional approaches for surface wave 

tomography. 

The lateral resolution of tomographic images can be improved by increasing the 

number of stations in the study area, for example through the deployment of temporary 

seismograph arrays. The deployment of NCSA offers us an opportunity to obtain high 

resolution tomography maps.  
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To improve the radial resolution one must extend the frequency bandwidth, in 

particular towards shorter periods. Research in ultrasonic and seismology (e.g., Lobkis 

& Weaver, 2001; Campillo & Paul, 2003; Shapiro & Campillo, 2004) demonstrates that 

the short period surface wave Green’s function (essentially, ground displacement due to 

a point source) between pairs of receivers can be extracted from the time-domain 

correlation of ambient noise and coda waves (i.e., scattered waves). Since the 

measurements can be made between each station pair, this approach leads to high 

resolution surface wave array tomography at short periods (e.g., Shapiro et al., 2005). 

The first attempts to use ambient noise for surface wave tomography, called 

ambient noise surface wave tomography, were applied to stations in Southern 

California (Shapiro et al. 2005; Sabra et al. 2005a). Ambient noise tomography is now 

expanding rapidly. Recent applications have arisen across all of California and the 

Pacific Northwest (Moschetti et al. 2007), in South Korea (Cho et al. 2006), in Tibet 

(Yao et al. 2006), in Europe (Yang et al. 2007), across New Zealand (Lin et al. 2007), as 

well as elsewhere in the world. 

2.2.2 Theoretical background 

The Green’s function of a medium between two points A and B represents the 

record we would obtain at A if an impulsive source is applied at B. 

In the case of a completely random wavefield, the cross correlation of signals 

recorded between two points converges to the complete Green’s function of the 

medium, including all reflection, scattering and propagation modes (Weaver 2005). To 

demonstrate this result and to define more precisely under which assumption it is valid, 

various experimental, numerical and theoretical approaches have been developed. 

Historically speaking, helioseismology was the first field where ambient-noise 

cross correlation performed from recordings of the Sun’s surface random motion was 

used to retrieve time-distance information on the solar surface (Duvall et al. 1993; 

Gilles et al. 1997). The idea of day-light imaging was proposed by Claerbout (1968) in 

the context of prospecting. More recently, a seminal paper was published by Weaver 

and Lobkis (2001), who showed how diffuse thermal noise recorded and 

cross-correlated at two transducers fastened to one face of an aluminium sample 

provided the complete Green’s function between these two points. They theoretically 

interpreted this result by invoking equipartitioning of the modes excited in the 
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aluminium sample. This result was generalized to the case where randomization is not 

produced by the distribution of sources, but is provided by multiple scattering that takes 

place in heterogeneous media (Lobkis and Weaver, 2001).  

The use of a spectral representation (Lobkis and Weaver, 2001), the 

fluctuation-dissipation approach (Weaver and Lobkis, 2001, 2003; van Tiggelen, 2003; 

Godin, 2007) or a correlation-type representation theorem (e.g. Wapenaar, 2004) are 

rigorous theoretical approaches to interpret experimental results. 

Experimental evidences demonstrated the feasibility of passive imaging in 1) 

acoustics (Lobkis and Weaver, 2001; Weaver and Lobkis, 2001; Larose et al., 2004), 2) 

seismology where Campillo and Paul (2003) retrieve the Green’s function between two 

seismic stations from a collection of earthquakes, and 3) oceanography in shallow 

underwater acoustics where both direct and reflected wavefronts were retrieved from 

ambient-noise cross correlation (Roux and Kuperman, 2004; Sabra et al., 2005b). By 

summing the contributions of all sources to the correlation, it has been shown 

numerically that the correlation contains the causal and acausal Green’s function of the 

medium (Wapenaar, 2004). Cases of non-reciprocal (e.g. in the presence of a flow) or 

inelastic media have also been theoretically investigated (Wapenaar 2006; Godin 

2007).  

Derode et al. (2003a, b) proposed to interpret the Green’s function reconstruction 

in terms of a time-reversal analogy and showed that correlation of multiply scattered 

waves could be used for passive imaging in acoustics. The convergence of the noise 

correlation function towards the Green’s function in an unbounded medium can also be 

interpreted through the stationary phase theorem (Snieder 2004; Roux et al. 2005b). 

In seismology, Aki (1957) proposed a long time ago to use seismic noise to 

retrieve the dispersion properties of surface waves in the subsoil. Shapiro and Campillo 

(2004) reconstructed the surface wave part of the Green’s function by correlating 

seismic noise at stations separated by distances of hundreds to thousands of kilometers, 

and measured their dispersion curves at periods ranging from 5 to about 150 seconds. 

This method led to the first application of passive seismic imaging in California 

(Shapiro et al. 2005; Sabra et al. 2005a) with a much greater spatial accuracy than for 

usual active techniques. Larose et al. (2005) also used noise cross correlation at small 

distances on the moon. 
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For the problem of elastic waves, it has been theoretically shown that the 

convergence of noise correlation to the Green’s function was bonded by the 

equipartition condition of the different components of the elastic field (Sanchez-Sesma 

et al. 2006a, 2007). In other words, the emergence of the Green’s function is effective 

after a sufficient self-averaging process that is provided by random spatial distribution 

of the noise sources when considering long time series as well as scattering (Campillo 

2006; Larose et al. 2006a). 

2.2.3 Extraction of Green’s function by cross correlation 

Gouédard et al. (2008) show that the cross correlation of noise recorded at two 

distant stations A and B yields the Green’s function, assuming that the wavefield is a 

white noise distributed everywhere in the medium, with no assumption about the 

medium. Following is the detailed formula derivation. 

We consider any medium X, that does not need to be homogeneous, where the 

wave propagation equation is controlled by a damped equation that can be written as:  

 

 

Here 0a   is a constant that corresponds to the attenuation of the medium, 

( , )f t r


 is the source field (i.e. the noise field in our case) and ( , )u t r


denotes the 

displacement field. If 2 ( )L c r 


,we recognize the usual wave equation. In a more 

general calculation, L can be any negative self-adjoint elliptic differential operator. In 

more physical terms, L is an operator which preserves energy. 

First of all we will introduce a definition of the Green’s function in the frequency 

domain using the integral kernel of the operator L, and show that this definition is 

equivalent to the usual one. Then, by expressing the displacement field using the 

Green’s function, we will calculate the cross correlation and find how the derivative of 

the cross correlation function is linked to the Green’s function. 

We introduce the integral kernel of an operator P, denoted by  ( , )P x y by: 

 3: , ( , ) ( )
X

u X Pu x P x y u y dy             ( )( ) =  

This is the ‘continuous matrix’ of the operator P. It has to be linked to the case of a 
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finite space where one can define the matrix (Pij) of P and write the following formula: 

3: , i ij j
j

u X Pu P u             ( ) =  

We first consider a medium without attenuation, i.e. 0a  in equation 1. Let us 

define the Green’s function of L in the frequency domain, denoted by ˆ ( , , )sG i r r 
 

, 

with   a small positive value, as the opposite of the integral kernel of 

2 1(( ) )i L    . In other words, Ĝ  is the resolvent of L evaluated at point 2( )i  . 

The ̂  denotes a function defined in the Fourier space.   ensures that 2(( ) )i L    

is invertible as L has real eigenvalues. We will show that this mathematical definition of 

Ĝ  is the same as the usual one, which is the causal solution of the wave equation 

(equation 1) when the source function f is a Dirac impulse in time and space 

( , )st r r 
 

.The Green’s function ˆ ( , , )sG i r r 
 

 admits a limit as 0  ,denoted 

by ˆ ( 0, , )sG i r r 
 

, as a Schwartz distribution on the real axis. If L has a continuous 

spectrum, this limit is a smooth function (the ‘limiting absorption principle’). Ĝ  can 

thus be written as: 

 

 

 

which yields: 

2 ˆ(( 0) ) ( 0, , ) ( )s si L G i r r r r       
   

   

The inverse Fourier transform of this equation gives a relation that is the usual 

definition of G in the case of a medium without attenuation: 

 

 

G is thus the solution of equation 1 in the case of an impulsive source in time and 

space. One can compute the inverse Fourier transform of ˆ ( , , )G i x y   using residue 

calculus, and take the limit as goes to 0 to obtain 
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where Y is the Heaviside-step function, and where we denote L the operator 

which eigenvalues are the images of the eigenvalues of L by the function 

x x (idem for the sinus function).  

If we consider an attenuating medium, the Green’s function ˆ ( , , )sG r r  
 is 

defined by the resolvent of L evaluated at point 2 2ia   instead of 2( 0)i  . It 

thus becomes 

 

 

We now define the time domain cross correlation between the displacement at two 

points A and B as: 

 

 

where the bar denotes the conjugate. ( , )u t r


can be expressed using the Green’s 

function aG  (here attenuation is necessary to ensure convergence of the integral, see 

Roux et al. (2005b)) and the source function f as follows: 

 

We assume that f is a white noise distributed everywhere in the medium X, acting 

at any time t. In the frequency domain, a white noise contains all the frequencies with a 

random phase. In the time domain, this is a random wavefield such that the position and 

the activation time of each source are uncorrelated. In this case, and considering a 

damping medium, we replace the large T limit in the correlation by an ensemble 

average. We then obtain the following explicit expression for the correlation between 

the wavefields recorded at A and B (see Gouédard et al. (2008) for mathematical 

details): 
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where σ is the variance of the noise wavefield.  

The time derivative of this equation is expressed in terms of the Green’s function 

using (2), giving the more familiar expression: 

 

 

This means that for any medium, the time-derivative of the cross correlation 

computed between the wavefields recorded at two stations A and B is the Green’s 

function of the medium, provided that the damping coefficient is small enough and that 

noise sources behave as white noise acting everywhere in the medium. This is the same 

hypothesis as stated in Roux et al. (2005b), Lobkis and Weaver (2001) and others, but L 

is now an arbitrary negative definite elliptic operator, and so the present result is more 

general. 

2.3 Data processing 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Schematic representation of the data processing scheme. 

In its current state, the ambient noise data processing procedure divides into four 

principal phases that are applied roughly in order: (1) single station data preparation, (2) 

cross correlation and temporal stacking, (3) measurement of dispersion curves and (4) 
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quality control, including error analysis and selection of the acceptable measurements. 

These steps are presented schematically in Figure 2-2. After data processing is 

complete, tomography for group or phase speed maps and inversion for a Vs model 

may follow. The discussion about tomography and depth inversion will be presented in 

Chapter 3 and Chapter 4.  

2.3.1 Single station data preparation 

The first phase of data processing consists of preparing waveform data from each 

station individually. The purpose of this phase is to accentuate broad-band ambient 

noise by attempting to remove earthquake signals and instrumental irregularities that 

tend to obscure ambient noise. In addition, because the spectral amplitude of ambient 

noise peaks in the microseism band, methods have to be devised to extract the longer 

period ambient noise from seismic records. Figure 2-2 shows the steps that compose 

Phase 1 of data processing: resample (decimate to 1 Hz), removal of the instrument 

response, de-meaning, de-trending and bandpass filtering (4-100 s) the seismogram, 

time-domain normalization and spectral whitening. This procedure is typically applied 

to a single day of data. Day data with less than 90 per cent ‘on-time’ are currently 

rejected.  

The most important step in single-station data preparation is what we call 

‘time-domain’ or ‘temporal normalization’. Time-domain normalization is a procedure 

for reducing the effect on the cross correlations of earthquakes, instrumental 

irregularities and nonstationary noise sources near to stations.  

 

 

 

 

 

 

 

Figure 2-3. A comparison of two time-domain normalization methods applied to earthquake 

signals for data from LIQ station. (a) Raw broad-band data from Jan. 27, 2007 showing two 
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earthquakes, recorded by LIQ station. (b) Data after temporal normalization using one-bit method. 

(c) Data after temporal normalization using running-absolute-mean method. (d), (e) and (f) are 

bandpass filtered (15 -50 s) waveforms to (a), (b) and (c).  

At present, two normalization methods are often used. The first and most 

aggressive method is called ‘one-bit’ normalization, which retains only the sign of the 

raw signal by replacing all positive amplitudes with a 1 and all negative amplitudes 

with a −1. This method has been shown to increase signal-to-noise ratio (SNR) when 

employed in acoustic experiments in the laboratory (Larose et al. 2004) and has been 

used in a number of early seismic studies of coda waves and ambient noise (Campillo & 

Paul 2003; Shapiro & Campillo 2004; Shapiro et al. 2005; Yao et al. 2006). The second 

method is running-absolute-mean normalization, employed for example by Bensen et al. 

(2007). This method computes the running average of the absolute value of the 

waveform in a normalization time window of fixed length and weights the waveform at 

the centre of the window by the inverse of this average. The temporal weights of the 

running-absolute-mean normalization are computed on the waveform filtered in the 

earthquake band. In this case, if dj is the raw seismogram and ˆ
jd  is the seismogram 

bandpass filtered in the earthquake band. We compute the normalization weight for 

time point n as: 

1 ˆ
2 1

n N

n
j n N

dj
N




 


  , 

so that the normalized datum becomes /n n nd d  . The width of the 

normalization window (2N+1) determines how much amplitude information is retained. 

A one-sample window (N =0) is equivalent to one-bit normalization, while a very long 

window will approach a re-scaled original signal as N→∞. After several tests, we find 

the signal to noise ratio (SNR) of the cross correlation function is a bit higher when the 

running average is computed between 15s and 50s using a 50 s normalization window. 

An example result of the application of this method is shown in Figure 2-3. Figure 2-3f 

shows that the earthquake signals have been removed by running-absolute-mean, 

whereas one-bit method can not remove the earthquake signals effectively (Figure 

2-3e). 

This method is not faultless, however. For example, it does not surgically remove 

narrow data glitches, as it will inevitably down-weight a broad time interval around the 
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glitch. One-bit normalization does not suffer from this shortcoming.  

The principal reason we prefer running-absolute-mean normalization over the 

water-level or one-bit normalization methods is its greater flexibility and adaptability to 

the data. For example, in areas with high regional seismicity it is desirable to tune the 

time domain normalization to the frequency content of the seismicity. 

2.3.2 Spectral normalization or whitening 

Ambient noise is not flat in the frequency domain (i.e. it is not spectrally white), 

but is peaked near the primary (around 15 s period) and secondary (around 7.5 s period) 

microseisms and rises at very long periods above 50 s to form a signal now referred to 

as Earth ‘hum’ (e.g. Rhie & Romanowicz 2004). Inversely weighting the complex 

spectrum by a smoothed version of the amplitude spectrum produces the normalized or 

whitened spectrum. Spectral normalization acts to broaden the band of the ambient 

noise signal in cross correlations and also combats degradation caused by persistent 

monochromatic sources such as the Gulf of Guinea source. Spectral whitening can 

eliminate the persistent monochromatic sources sufficiently and can reduce broad 

imbalances in single-station spectra to aid in the production of a broad-band dispersion 

measurement. 

2.3.3 Cross correlation, stacking and signal emergence 

After the preparation of the daily time-series, the next step in the data processing 

scheme is cross correlation and stacking. We perform cross correlations between all 

possible station pairs and perform data selection later. This yields a total of n(n−1)/2 

possible station pairs, where n is the number of stations. Cross correlation is performed 

daily in the time domain. Once the daily cross correlations are computed, they are 

stacked to produce the final cross correlation.  

The resulting cross correlations are two-sided time functions with both positive 

and negative time coordinates, i.e. both positive and negative correlation lags. We 

typically store the correlations from −1500 to 1500 s. The positive lag part of the cross 

correlation is sometimes called the ‘causal’ signal and the negative lag part the 

‘acausal’ signal. These waveforms represent waves traveling in opposite directions 

between the stations.  
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Figure 2-4. Bandpass filtered (10-50s) cross correlations as a function of distance and lag time. 

The cross correlation is time reversed if the amplitude of the negative component is smaller than 

the amplitude of the positive one. Only cross correlation with SNR greater than 25 are plotted. 

 

 

 

 

 

 

 

Figure 2-5. Calculation of SNR. (a) The SNR of cross correlation obtained between GUY and 

CHL station. The bottom channel is the original cross correlation. Other channels are Gaussian 

filtered waveform. The characters in the panel show the center period of Gaussian filter and SNR 

value. (b) The SNR of the positive and negative lags of the cross correlation and the 

symmetric-component. 

If sources of ambient noise are distributed homogeneously in azimuth, the causal 

(a)                                     (b) 
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and acausal signals would be identical. However, considerable asymmetry in amplitude 

and spectral content is typically observed, which indicates differences in both the 

source process and distance to the source in the directions radially away from the 

stations. We often compress the two-sided signal into a one-sided signal by averaging 

the causal and acausal parts. We call this the ‘symmetric’ signal or component. 

Previous studies indicate that the symmetric signals can enhance the SNR (Bensen et al., 

207; Lin et al., 2007). 

Figure 2-4 shows an example of 14-month stacks of cross correlations plotted as a 

record-section. Clear signals are seen for both positive and negative correlation lags 

with physically reasonable moveouts (~3 km·s-1).  

In this study the SNR is defined as the peak signal in a signal window divided by 

the root mean square (RMS) of the trailing noise, filtered with a 10-30 s bandpass filter. 

The Rayleigh wave signal window is calculated by the inter-station distance divided by 

the group velocity windows (2-5 km/s). The noise window is 500 s in length that trails 

the end of signal window by 500s. It can be seen from Figure 2-5, the SNR of the 

symmetric component is higher than the positive and negative component in all period 

band. 

 

 

 

 

 

 

 

 

Figure 2-6. The relationship between SNR and cross correlation time for GUY and CHL station. A 

square root dependence is shown as the blue dotted lines. 

We analyzed the relationship between SNR and cross correlation time. The SNR 

for each day shows moderate variation as the noise and seismicity varies (Figure 2-6). 

Based on the cross correlation time series for each day, we sum these to obtain the time 
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series for N number of days and compute the SNR. The accumulated SNR based on the 

summed traces shows clearly that the SNR increases proportional to the square root of 

recording time in agreement with Sabra et al. (2004). 

2.3.4 Group velocity measurements 

Rayleigh wave group velocity dispersion curves are determined using a multiple 

filter method (Dziewonski et al., 1969; Levshin et al., 1992; Liang et al., 2008). The 

implementation of this process is illustrated in Figure 2-7. Figure 2-7a is a typical cross 

correlation waveform obtained between two stations in North-China. The original 

seismogram is filtered using a series of Gaussian filters with central periods ranging 

from 4 s to 50 s. The envelope functions of the filtered seismograms, i.e., the FTAN 

(Frequency Time Analysis) spectrum, are plotted in Figure 2-7b with colors 

representing envelope amplitudes. This method constructs a 2D diagram of signal 

power as a function of time or group velocity and the central frequency or period of 

successive narrow-band Gaussian filters. The local power maximum along the period 

axis is picked. The group arrival times of the maximum amplitude as a function of filter 

period are used to calculate a group velocity curve. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7. Example of dispersion measurement. (a) A typical cross correlation function obtained 

between two stations. (b) FTAN diagram obtained after multiple filter analysis. 



- 27 - 

2.3.5 Data selection 

The number of inter-station path grows as the square of the number of stations, but 

not all paths can be used to obtain a high quality dispersion curve. In order to get a 

reliable tomography result and minimize workload, some data quality control criteria 

must be devised to identify and reject bad measurements. In this study, we use four 

criteria to select data, which are minimum inter-station distance, signal to noise ratio, 

cluster analysis and traveltime residual.  

First, we apply a minimum three wavelengths inter-station distance constraint and 

we exclude paths shorter than 120 km. For closely spaced station-pairs, the signals at 

positive and negative lags can interfere with spurious precursory arrivals and each other 

at long periods, rendering the measurements unreliable. Since the average inter-station 

path length is about 300 km in NCSA, the minimum wavelength criterion significantly 

reduces the number of measurements at periods above 30 s because stations must be 

separated by more than 360 km. 

Second, we apply a selection criterion based on the period-dependent SNR, which 

is defined as the peak signal in a signal window divided by the root mean square (RMS) 

of the trailing noise, filtered with a 10-30 s bandpass filter. The Rayleigh wave signal 

window is calculated by the inter-station distance divided by the group velocity 

windows (2-5 km/s). We store the cross correlations from -1500 s to 1500 s. The noise 

window is defined from 1000 s to 1500 s. We only select cross correlations with 

SNR≥7 and measure their dispersion curves.  

Third, we apply clustering analysis to dispersion curves retrieved from ambient 

noise data. Clustering measurements obtained at a particular station from a set of 

earthquakes located near to one another is commonly used to assess uncertainties in 

earthquake dispersion measurements (e.g. Ritzwoller & Levshin, 1998; Pontevivo & 

Panza, 2002, 2006). We select dispersion curves with similar azimuths and similar 

distances obtained at a station. These dispersion curves are considered to be similar to 

each other, because they almost sample the same region. In some cases, one can get a 

very smooth, continuous but dubious dispersion curve. By using clustering analysis, we 

can verify the reliability of this kind of measurement and discard the questionable ones.  
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Chapter 3 Surface wave tomography of NC  

3.1 Introduction 

The Earth, to a first approximation, has a spherically symmetrical seismic velocity 

structure. Models such as PREM, IASPI91 and AK135 allow traveltimes of different 

seismic waves to be predicted. Departures from such predicted traveltimes are known 

as ‘traveltime anomalies’. Seismic tomography addresses this problem: Is it possible to 

construct Earth’s 3-D structure by using the traveltimes?  

Seismic tomography is a technique which is used to generate three dimensional 

images of the inside of the Earth and thus represents one of the most powerful tools to 

explore its interior. Seismic tomography has its roots in the computed tomography (CT) 

scanning, a technique used in medicine to look inside the human body. Although the 

underlying theory is quite similar, in the medical imaging case, the source and receiver 

distribution is controlled by the operator, unlike the seismology where we can only 

control the locations of the receivers. 

It is possible to use much more extensive observational material by incorporating 

data over ‘mixed’ paths, i.e., the ones traversing regions of different structures. If the 

ratio between the segments of a path corresponding to different regions varies with the 

path, then the velocities in each region can be estimated from the traveltimes for such 

paths. This possibility is based on the assumption that the medium is laterally 

homogenous within each region, the boundaries between them are known, while the 

effects of refraction and phase distortion at boundaries can be neglected. 

Phase or group surface wave velocities observed along different paths are widely 

used to study the lateral variations and anisotropy of the lithospheric structures. The 

final aim of most of these studies is to map local values of the velocities and, if possible, 

to display azimuthal anisotropy for a set of periods. For determination of a 3-D model, 

the maps of local surface wave velocities are used. The 3-D model may be constructed 

by solving a set of 1-D inverse problems to determine vertical velocity and density 

distributions at each point of the area under investigation from corresponding 

dispersion curves. Montagner (1986) has shown that this approach is equivalent to 3-D 

inversion, if the vertical and horizontal velocity variations are decoupled. Such a 

two-step approach is more preferable than a direct 3-D inversion, because in this case 
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the calculations are much simpler. Thus the 3-D inverse problem using surface wave 

data may be separated into two independent problems: 2-D inversion for phase or group 

velocities for a fixed period, resulting in lateral variations of these velocities for a set of 

periods, and 1-D inversion for the vertical distribution of the elastic parameters, such as 

P and S velocities as well as density. 

In surface wave inversions, the inverse problem is typically divided into two parts: 

A nearly linear part to estimate 2-D dispersion maps and a nonlinear part in which the 

dispersion maps are used to infer earth structure. It is the nearly linear part that we call 

surface wave tomography. 

There are a number of surface wave tomographic techniques currently in use by 

several research groups around the world. These techniques differ in geometry (i.e., 

Cartesian versus spherical), model parameterization (e.g., glocal versus local basis 

functions), certain theoretical assumptions (particularly about wave paths and 

scattering), the regularization scheme, and whether azimuthal anisotropy can be 

estimated simultaneously with the isotropic velocities.  

3.2 Surface wave tomography method 

In this study, a generalized 2-D linear inversion procedure developed by Ditmar & 

Yanovskaya (1987) and Yanovskaya & Ditmar (1990) has been applied to construct the 

group velocity tomographic maps. This method is a generalization to two dimensions of 

the classical 1-D method of Backus & Gilbert (1968). The tomographic method 

estimates a group velocity map U(x) at each period by minimizing the following misfit 

function: 

2
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In the relations (1–5), ( , )x x    is the position vector, 
0U  is the velocity 

corresponding to a starting model, it  is the observed travel time along the thi  path, 

0it  is the travel time calculated for the starting model,   is a regularization parameter, 

0il  is the length of the thi  path and s  is the segment along which the inversion is 

performed. The parameter   controls the trade-off between the fit to the data and the 

smoothness of the resulting group velocity maps. We select a regularization parameter 

so that (a) the regionalised velocities are within the velocity range defined by the 

individual observed dispersion relations, and (b) the final unaccounted traveltime 

residuals are distributed randomly (Yanovskaya et al., 1998). Calculations of group 

velocity maps are made for several regularization parameters,  =0.05,  =0.1, 

 =0.2,  =0.3. Decrease in   gives a sharper solution region with an increase in 

solution error, whereas increase in   leads to smoothing of the solution region with 

decrease in solution error. Finally, we use the value of  =0.2, which gives relatively 

smooth maps with small solution errors. 

 

 

 

 

 

 

 

 

Figure 3-1. Histograms of final traveltime residuals for the four periods. The RMS of the initial 

(before tomography) and final (after tomography) group traveltime residuals at each period are 

indicated on the panel. 

In order to ensure the quality of the solution, we compared the the initial mean 

square travel time residual and the remaining (unaccounted) residual, . Since it has 

been assumed that the unaccounted residuals are random, can be accepted as an 
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(a)                                         (b)   

estimate of the standard error of the data. As soon as a solution for the lateral velocity 

variations is obtained, the remaining travel time residuals are calculated along all paths. 

Some of them may be large due to measurement errors and other factors. To reduce the 

effect of large errors, the data with the residuals larger than 3  are rejected, and the 

procedure of tomographic reconstruction is repeated. Such selection of the data is 

performed several times, until no large residuals are remained in the data set. The 

histograms of the remaining residuals for the four periods are shown in Figure 3-1. The 

RMS of the initial travel-time residuals is about 5 s and the RMS of the final 

unaccounted residuals is about 2 s. These values are fairly small compared to those 

obtained when earthquakes are used in tomography. 

3.3 Raypath distribution and density 

The resolution of the group velocity maps depends mostly on the density of paths 

and on their azimuthal distribution (crossing paths). In our case, these two parameters 

depend on the geometry of the seismic array and on the distribution of the noise 

sources that can limit the number of available paths for some directions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2. (a) Map of the connecting raypaths between two stations for 12 s period. The blue 

triangles and red dots show the location of broadband and very broadband stations, respectively. (b) 

Number of raypaths used in the tomographic inversion respect to period. 

Figure 3-2a shows the raypath distribution for 12 s period and Figure 3-2b shows 

the total number of raypaths for the selected periods which were used in this study to 

create the tomographic image. We use maximum cutoff period T as a data selection 

criteria. The dispersion curves are more affected by seasonal variation of ambient 

seismic noise for periods large than T. The average interstation distance is ~300 km 
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for NCSA, so the obtained dispersion curves mainly concentrate between 4 and 30 s 

period band. For 6-20 s period, the total number of raypaths exceeds 3000. 

The raypath density diagrams for the four selected periods with cell size of 

0.25°×0.25° are shown in Figure 3-3. The general coverage is sufficient except the 

margins of the study region. For most cells, the raypath density is larger than 300, 

with its maximum equal to 1314. The dense raypath distribution guarantees the 

reliability and the high resolution of tomography results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. Path density diagrams from the data coverage for selected periods with cell size 

of 0.25°×0.25°. The period is indicated in the right-upper corner of each panel. 

3.4 Resolution 

As with any tomographic inversion, the resulting maps are not uniquely defined 

because the initial data do not constrain the seismic velocities at all points of the 

medium. Therefore, the knowledge of the resolving power is important in order to 

estimate the minimum really resolvable feature by a given data set and to sort out 

those features that may be numerical artifacts. Yanovskaya (1997) and Yanovskaya et 

al. (1998) proposed to use two parameters to estimate the lateral resolution: the mean 



- 33 - 

size and the stretching of the averaging area.  

For 2D tomography problems, a function S(x,y) for different orientations of the 

coordinate system is used in order to determine the sizes of the averaging area along 

different directions (Yanovskaya et al. 1998). The “averaging area’’ which gives us an 

idea of the obtained resolution can be approximated by an ellipse centered at a point, 

with axes equal to the largest Smax(x,y) and to the smallest Smin(x,y) values of S(x,y). The 

smallest Smin(x,y) and largest Smax(x,y) axes of the ellipse are calculated, and the 

resolution in each point is given by a single number, which is the mean size of the 

averaging area L=( Smin(x,y) + Smax(x,y))/2. As the resolution is closely correlated to the 

density of the crossing ray paths in each cell, it is clear that small values of the mean 

size of the averaging area (corresponding to high resolution) should appear in the areas 

that are crossed by a large number of ray paths and vice versa. 

The second parameter is the stretching of the averaging area, which provides 

information on the azimuthual distribution of the ray paths and is given by the ratio 

2[Smin(x,y) - Smax(x,y)]/ [Smin(x,y) + Smax(x,y)],   

Small values of the stretching parameter imply that the paths are more or less, 

uniformly distributed along all directions; hence the resolution at each point can be 

represented by the mean size of the averaging area. On the contrary, large values of this 

parameter (usually > 1) mean that the paths have a preferred orientation and that the 

resolution along this preferential direction is likely to be quite small (Yanovskaya, 

1997). 

The mean size of the averaging area of our tomographic results is of the order of 

25 km in most of the study region, but worsens near to the borders of the region where 

the path coverage is poor (Figure 3-4). This means that the areas of different tectonic 

structure with size > 25 km can be resolved in the solution from real data. The values of 

the stretching of the averaging area are between 0.1 and 0.75 in most of the study area 

at the four periods. This indicates that the azimuthal distribution of the paths is 

sufficiently uniform and that the resolution is almost the same along any direction.  
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Figure 3-4. Resolution of the data as mean size of the averaging area in km at different periods. 

The black triangles and blue dots show the location of broadband and very broadband stations, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5. Resolution of the data as stretching of the averaging area at different periods. The 

symbols in this figure are same as those in Figure 3-4. 
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Figure 3-6. Checkerboard test results. (a) Theoretical model of 0.25º×0.25º. A velocity 

perturbation of ±7 percent with respect to the average group velocity for each examined period is 

assumed for the cells. (b), (c) and (d) are the inversion results for 12 s, 20 s and 28 s, respectively.  

 

In order to further validate the tomographic results, we perform additional 

checkerboard tests (Figure 3-6). The study area is divided into 0.25º×0.25º cells and a 

velocity perturbation of ±7 percent with respect to the average group velocity for each 

examined period is assumed for the cells. Using this model, traveltimes along paths 

linking two stations are calculated. Then a solution for the velocity perturbation is 

obtained with the same parameters as for the real data. The estimations of the resolution 

obtained from the mean size of the area and the checkerboard tests indicate that it is 

reasonable to divide the study region into 0.25º×0.25º cells and that the anomalies with 

a surface extension of about 25×25 km2 or larger are reliable. 

3.5 Results and discussion 

Using the tomographic method, as described in the previous section, Rayleigh 

wave group velocity maps at 4.5s, 12s, 20s and 28s have been produced. Surface waves 
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of different periods are sensitive to seismic shear wave speeds at different depths, with 

the longer period waves exhibiting sensitivity to greater depths. In order to guide the 

interpretation, the partial derivatives of Rayleigh wave group velocity with respect to 

shear wave velocity are calculated. The partial derivatives are computed analytically 

(Urban et al., 1993) for the AK135 model but with the crust replaced by a model based 

on DSS data gathered in North-China (Gao et al., 1993, Figure 3-7).  

 

 

 

 

 

 

 

 

Figure 3-7. Analytical partial derivatives (Urban et al., 1993) of the group velocity of fundamental 

mode Rayleigh wave (right), computed with respect to shear wave velocity (left), at 4.5s, 12s, 20s 

and 28s. For each layer the partial derivative is normalized with respect to the layer thickness. The 

velocity profile comes from Gao et al. (1993). 

At 4.5 s (Figure 3-8a), the shortest period of our tomography results, the partial 

derivative shows a peak at a depth of about 7 km. The group velocity map at 4.5s is 

therefore sensitive to variations of shear wave velocity at depths around 7 km and 

mainly reveals the characteristics of the uppermost crust, and can be correlated with the 

sedimentary cover thickness. The boundary between NCB and the surrounding 

mountain ranges is clearly outlined. A broad low velocity zone is observed at NCB, 

which is due to the large thickness of sediments. Zheng et al. (2005) derived the shear 

wave velocity model in NCB by inverting the receiver functions obtained at 44 

temporary seismic stations. Their results indicate that the sedimentary cover of NCB is 

about 2-12 km thick. Taihangshan and Yanshan uplifts are imaged as high velocity 

zones. The Quaternary intermountain basins, such as Yanqing-Huailai, 

Yangyuan-Yuxian, Datong and Zhangjiakou show up as low-velocity anomalies. A 

small low velocity anomaly is observed between Fuping and Yuxian, which is 
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consistent with the location of the Lingqiu basin. In general, the group velocity map 

correlates very well with known geological structures. The resolution in the 

southeastern part (NCB) is relatively low because the local noise in this part is very 

strong and at the same time wave attenuation in the sediment basin is very strong, thus it 

is very difficult to obtain cross correlations with high SNR. 

At 12 s period (Figure 3-8b), the resolution is improved by the increase of 

ray-paths and the group velocity map shows lateral variations as large as 1.2 km/s. 

Geologic units with small areas can be identified clearly and Jizhong depression, 

Cangxian Uplift and Huanghua depression are mapped as well. Affected by the 

thickness of sedimentary deposits, the Jizhong depression and Huanghua depression 

are mapped with relatively low velocities, while Cangxian uplift is mapped with high 

velocities. Taihangshan and Yanshan uplifts are mapped as high velocity anomalies. 

Yanqing-Huailai, Yangyuan-Yuxian and Datong basins still show up as low velocity 

anomalies. Using 30 DSS profiles, Jia & Zhang (2005a) studied the crust velocity 

structure of each sub-block in North-China. Their results reveal that the thicknesses of 

the sediment deposits in the Huanghua and Jizhong depressions are about 7-9 km and 

6-10 km, respectively. Therefore the low velocity anomalies in the tomography maps at 

short period are an excellent indicator of the location and nature of the sedimentary 

basins in North-China, e.g. the extremely thick sedimentary deposit is the direct cause 

of the low velocity anomalies of Rayleigh wave in the Jizhong and Huanghua 

depressions. 

Below the 20 s period, the tomography maps dominantly reflect low velocity 

anomalies caused by sedimentary basins. Almost all the basins are mapped as low 

velocity anomalies. However, at 20 s period the area of low velocity anomaly in the 

Jizhong depression is smaller, while the high velocity anomaly in the Cangxian uplift is 

larger; the velocity contrast between the sediment basin, such as Yangyuan-Yuxian and 

Yanqing-Huailai Basins, and its surrounding areas decreases (Figure 3-8c). 

At 28 s period (Figure 3-8d), waves are primarily sensitive to depths between 30 

and 50 km, namely, the lower crust velocity, the crust thickness and the uppermost 

mantle velocity. In this map the influence of the sediment basins decreases. The group 

velocity map at this period differs greatly from those obtained at 4.5 s, 12 s, 20 s. High 

velocity anomalies are observed in the eastern part of the study region, while low 
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velocity anomalies are observed in the northwest part. Thick crust tends to appear as 

low velocity anomalies and thin crust as fast anomalies on the map. Reflection and 

refraction profiles in North-China (Jia & Zhang, 2005a) show that the crust is relatively 

thin in NCB, while it is thick in the northwest part of our study region: the crust 

thickness is about 28-29 km in Bohai Bay, about 35-36 km in Beijing and more than 40 

km to the west of Taihangshan fault.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8. Rayleigh wave group velocity map at different periods. The blue triangles represent 

major cities in North-China. Some major boundaries and geological features are also shown at 

each panel as in Figure 1-2. The color scale changes between panels. 

Group velocities at 28 s period show a well defined low velocity zone in the 

Beijing-Tianjin-Tangshan region (Figure 3-8d). In fact, Zhu & Zeng (1990) find a low 

velocity region in the Beijing-Tianjin-Tangshan region at 50 km of depth, which 

extends to 100 km depth beneath Tangshan and Tianjin, and, using regional seismic 

arrival data and Simultaneous Iterative Reconstruction Technique, Ding & Zeng (1994) 

reveal that a clear low velocity zone lies between Beijing and Tangshan in the 20-35 km 
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depth range. Recent body wave tomography shows a low velocity zone in the lower 

crust beneath the Beijing-Tianjin-Tangshan region (Huang & Zhao, 2004) as well. In 

our tomography results, the low velocity zone in the Beijing-Tianjin-Tangshan region 

can be seen from 23 s to 30 s. Tomography maps at these periods mainly reveal the 

velocity structures in the lower crust and uppermost mantle. We infer that the low 

velocity zone is related with the upwelling of hot mantle material. Seismic refraction 

and reflection profiles across Tangshan indicate that there is a 3-5 km offset of Moho 

discontinuity beneath Tangshan (Zeng et al., 1988). The hot material of the uppermost 

mantle may migrate to the crust along the offset of Moho discontinuity. The intrusion of 

mantle material heats up the lower crust and can cause the reduction of seismic velocity. 

A high conductivity layer has been found between 20 km to 30 km depth under this 

region using magnetotelluric soundings (Liu et al., 1989). Since the low velocity and 

high conductivity layer is usually related with fluids and partially melting materials, our 

results do not rule out the existence of fluids as suggested by Huang & Zhao (2004).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9. Bouguer gravity anomaly map in mGal, modified from Yin et al. (1989). Some major 

boundaries and geological features are also shown as in Figure 1-1. 

From the tomography maps two further important features can be seen: (a) a high 

velocity zone near Datong, Shouzhou and Qingshuihe and (b) strong velocity gradient 

near the boundary between North-China basin and Yanshan-Taihangshan uplift. The 



- 40 - 

zone with high velocity Rayleigh wave near Datong, Shouzhou and Qingshuihe is 

located at the northeastern margin of the Ordos block that shares the typical features 

of cratonic lithosphere and hasn't been affected by the NCC re-activation. The block is 

characterized by low seismicity, low heat flow, positive vertical velocity gradient and 

lack of active fault and magmatic activity (Qiu et al, 2005). The trend of the strong 

velocity gradients seen near the boundary of the North-China basin and the 

Yanshan-Taihangshan uplift is nearly identical to that visible in the Bouguer gravity 

anomaly map (Figure 3-9, Yin et al. 1989), where, along the NE-SW-trending 

Taihangshan uplift, a continuous gradient zone is outstanding. The Taihangshan fault 

is within this gradient belt and P-wave tomography has shown that the fault cuts 

through the Moho interface and penetrates into the upper mantle (Huang & Zhao, 

2004, Zhang et al, 2007). The belt represents a major lithospheric boundary and 

separates the NCC into western and eastern sectors, which can be shown to have 

fundamentally different architectures. Gravity anomaly values decrease from east to 

west and this indicates that the main density interface (Moho discontinuity) is deeper 

in the west. Thus both densities and velocity structures differ greatly on both sides of 

the Taihangshan fault.  
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Chapter 4 3D S-wave velocity structures beneath NC  

4.1 Introduction 

Surface wave dispersion data can be used to obtain the vertical shear-wave profile 

by inversion. Inversion is a challenging problem due to its highly non-linear nature and 

to the large numbers of local minima and maxima of the objective function. The 

inversion procedure follows the determination of the dispersion curve and allows 

reconstructing the vertical shear-wave velocity distribution from the observed 

dispersion curve.  

In inversions of dispersion curves, a structural model is determined by fitting the 

observed dispersion curves with a theoretical curve. Generally, a dispersion curve is a 

nonlinear function of shear wave velocities, compressional wave velocities, densities, 

and thicknesses for each layer. To invert a dispersion curve into these parameters, 

usually a linearized approximation is used by neglecting higher-order terms in the 

Taylor series expansion. Then, an optimal solution is obtained by an iterative 

perturbation process based on linear inverse theory. However, the linear inversions 

results strongly depend on an assumed initial model. When an appropriate initial model 

can be generated using a priori information, linearized inversions can find an optimal 

solution that is the global minimum of a misfit function. However, if a priori 

information is either scant or unavailable, the inversion may find a local optimal 

solution. 

Many nonlinear inversion methods are used to resolve the inversion problems. 

Search techniques such as Monte Carlo and hedgehog allow a large model space to be 

explored and produce multiple solutions (Keilis-Borok and Yanovskaya, 1967; Valyus, 

1972; Panza, 1981; Shapiro et al., 2002). However these techniques become inefficient 

or impractical in very large model spaces (Lomax and Snieder, 1994, 1995). To tackle 

these problems, we use a nonlinear optimization method that uses a genetic algorithm 

(GA).  

GA has been extensively applied in solving geophysical inversion problems. 

Stoffa and Sen (1991) used a GA in an inversion of 1D reflection seismograms. Wilson 

and Vasudevan (1991) estimated static corrections in reflection data processing by 

using a GA. Sambridge and Drijkoningen (1992) applied a GA to a waveform inversion 
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of reflection seismograms. In an earthquake study, Sambridge and Gallagher (1993) 

examined a GA-based inversion method of travel-time data for determining hypocenter 

locations. GA has also been used extensively in dispersion curve inversion (Lomax et al, 

1994, 1995; Shi et al, 1995; Yamanaka et al, 1996; Wu et al, 2001; He et al, 2001, 2007; 

Pezeshk et al, 2005; Dal Moro et al, 2007; Suresh et al, 2008). Using an analogy to 

population genetics (i.e., where the operations are selection, crossover, and mutation), 

these algorithms can simultaneously search both globally and locally for an optimal 

solution by using several models. Since what is required in using a GA is only to 

compute the objective functions that are to be minimized, these algorithms are robust. 

4.2 Fundamentals of GA 

One of the main objectives of this study is to use a genetic algorithm (GA) to 

estimate shear-wave velocity profiles using dispersion curves. GA is an optimization 

and search technique that simulates the natural evolution process. GA is a global search 

method based on a stochastic approach, which rely on strategy of survival of the best fit 

(Holland, 1975). The results obtained in an inversion process using GA methodology 

are considered more dependable (Goldberg, 1989; Pezeshk and Camp, 2002) because: 

* The GA approach is independent of initial information, so there is no need to 

determine a set of initial design parameters. 

* GA is not gradient-based methodology; it uses objective function information 

and a probabilistic transition scheme with no use of gradient information. 

* GA does not utilize the variables themselves; instead, it uses a coding set of 

variables. 

* GA does not improve a single solution, it works on a population of possible 

solutions. 

GA is based on the mathematical modeling of the mechanism of a genetic 

evolution strategy. GA does not rely on the specific relationship between the objective 

function and the boundary conditions. Basically, GA can be characterized as follows: 

1. They work on a population of problem variables, which are usually created 

randomly. Variables are grouped in variable sets; each is called a string and composed 

of a series of characters that defines a possible solution for the problem. Characters in 
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each string are typically binary numbers, which are evaluated after decoding to real or 

integer numbers to represent the values of the discrete problem variables for a particular 

solution. 

2. The performance of the problem variables, as described by the objective 

function and the constraints, is represented by the fitness of each string. A mathematical 

expression, called a fitness function, calculates a value for a solution of the objective 

function. The fitter solution gets the higher value and the ones that violate the objective 

function and constraints are penalized. Therefore, like what happens in nature, the 

fittest and best solutions will survive and get the chance to be a parent of the next 

generation. 

3. In a crossover procedure, two selected parents reproduce the next generation. 

The procedure first divides the selected parent strings into segments, and then some of 

the segments of a parent string are exchanged with the corresponding segment of 

another parent string. One-point (Goldberg, 1989), multiple-point, and uniform 

crossover (Camp et al., 1998; Pezeshk et al., 2000) are among the several crossover 

patterns.  

4. The mutation operation, which acts as an insurance policy (Goldberg, 1989), 

guarantees diversity in the generated populations. This is usually done by flipping (0 to 

1 or vice versa) a randomly selected bit in the selected binary string to create a mutated 

string. Mutation prevents a fixed model of solutions from being transferred to the next 

generation. It allows for the possibility of generating children with nonexisting features 

from both parent strings. 

4.3 GA inversion scheme 

The most important parameters affecting Rayleigh wave propagation are 

shear-wave velocity and layer thickness. Two schemes are often used in inverting 

dispersion curves. The first way is to fix the layer thickness and only invert S wave 

velocity. When using this method, the layers are divided as thin as possible in order to 

adopt model velocity variations and jumps at interfaces. The second way is to invert 

layer thickness and S wave velocity simultaneously. In general, the first way will 

increase the uncertainty of inversion results, and rapid oscillations of the solutions are 

often observed. The second approach can reduce the total number of layers. However, 
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in practice, we don't know the depth of the interface and how many layers should be 

considered. In addition, the simultaneous inversion of velocity and thickness increases 

the computing time.  

In order to overcome these problems, we develop an indirect smooth constraint in 

GA inversion (Wu et al., 2001). It's very difficult to apply smooth constraint in GA 

inversion directly. If the smoothed models are used in iteration, the diversity of models 

will be greatly suppressed and all models in population tend to be similar with each 

other after a few iterations. The optimal solution can't be guaranteed. We find that if we 

do not change the new models generated by selection, crossover and mutation, but 

modify the model for forward calculation, then the smooth constraint can be easily 

applied to model parameters in GA inversion. 

The process of the method can be summarized as follows: firstly, the new model 

Vs0 generated by selection, crossover and mutation is smoothed by equation (1) to 

produce model Vs, then the smoothed model Vs is used to calculate synthetic dispersion 

curves. The misfit of model Vs0 is set to be identical with that of Vs and is used in the 

next iteration.  

 

 

(1) 

  

 

where Vs0 is velocity model in GA iteration, Vs is the smoothed model; h0 is the 

number of layers used for smoothing. In our case, 3 layers are used for smoothing. 

However, this value can be adjusted by user. σ is the smooth coefficient. The value of σ 

depends on the need of model resolution. In general, the smaller σ is, the smoother the 

model will be. In inversion, σ can be chosen as a function of depth. For example, σ can 

be selected larger near the surface layer and Moho than in other depth in order to fit the 

possible high velocity gradient. Vs is only used for the forward calculation, but not in 

the search of model space. The method is similar to the smooth constraint used in linear 

inversion.  
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After many tests, we find if the layer thickness is thin (less than 3 km), the smooth 

parameter can be set to 0.2-0.4; if the layer thickness is thick (more than 5 km), the 

smooth parameter can be set to 0.5-0.7. The smooth parameters also vary with depth. At 

shallow depth, the smooth parameter can be set to ~0.6. At Moho and other 

discontinuities, the smooth value can be set to ~1.3. 

The key element for any kind of optimization tool is the model evaluation, which 

is performed by means of an objective function obj that allows a quantitative estimation 

of the model. We considered the root-mean square value of the difference between the 

observed and calculated group velocities: 

 

                                            (2) 

 

where n represents the number of observed frequency-velocity couples, 
iobsv is the 

observed phase velocity at the ith period and 
icalv  is the calculated velocity for the 

considered model (individual of the current population). This kind of formulation is 

also referred to as the ℓ2-norm. 

4.3.1 Parameterization and priori constraints 

Model parameterization strongly affects the inversion results. If the inversion is 

too weakly constrained, there will be a broad subset of models that will fit the data and 

large uncertainties will result at each depth. Much tighter constraints on the model 

space reduce the uncertainty in the estimated parameters, but the model will be 

increasingly subject to systematic errors.  

A priori constraints on the model parameters are important not only to speed the 

inversion by limiting the volume of model space searched, but also define what we 

judge to be physically reasonable or plausible candidate models. For this reason, we 

collected the seismic reflection and refraction data, receiver function inversion data and 

receiver function h-k stack results (China Earthquake Administration, 1986; Wang 

2008; Wang et al, 2009; Zheng et al, 2005, 2006, 2007; Luo et al, 2008; Xu et al, 2005, 

see Figure 4-1,).  

The depth of Moho is obtained according to DSS data and receiver function h-k 
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stack results. In inversion, we don’t fix the depth of Moho interface, but design a 

5-layer model with 1 km thickness near the Moho interface. Shear wave velocities near 

surface (0-4 km) obtained by the receiver function inversion are used to set the search 

spaces in the uppermost crust. The compressional wave values are calculated using the 

relation between Vs and Vp (Vp=1.732*Vs). When receiver function h-k data are 

available and the variance is less than 0.05, the ratio of Vp to Vs is set according to RF 

h-k data. The density is estimated using the Nafe-Drake relation (e.g. Fowler, 1995, 

Ludwig et al., 1970). The a priori constraints are applied to ensure that the selected 

models are physically plausible. A model is considered acceptable if the objective 

function is less than 0.04. 

 

Figure 4-1. Assembled geophysical data. Blue triangles show points with shear velocity structure 

obtained via receiver function inversion. Solid red dots show points with Moho depth and Vp/Vs 

ratio obtained via receiver function h-k stack. Blue lines represent the location of DSS profiles. 

Green dotted rectangle shows area with 3D P wave velocity structures. The red line near the edge 

is our study area. 

The maximum period used for inversion is 30 s. The partial derivatives of the 

group velocity of Rayleigh wave (Figure 3-7) shows that the dispersion curve data at 

this period is insensitive to shear wave velocity structures below 150 km. So we 

construct a starting model with 150 km thickness. The shear wave velocity structures 

below 150 km are from AK135 model. 

4.3.2 Inversion examples  
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We tested the genetic inversion method explained above using synthetic Rayleigh 

wave group velocities. The synthetic dispersion curves are calculated using fast 

Schwab-Knopoff method (Schwab 1970; Schwab and Knopoff 1972). The structural 

model we used is shown in Figure 4-2a (red line). This is a four-layer model. Group 

velocities for the fundamental Rayleigh wave were calculated in a period range from 4 

to 70 sec. Two tests were conducted to examine the performance of GA. We set the 

population size Q at 40, crossover probability at 0.8, and mutation probability at 0.015 

in the two tests. We terminated the iterations after 150 iterations. 

Firstly, we construct a model with four layers and the thickness of each layer is 

similar with the real model. We searched for an optimal solution of S wave velocity 

structure. The structural model obtained from the inversion by the modified GA method 

is shown in Figure 4-2a. The true S-wave profile was reconstructed well by the 

inversion. The comparison between the synthetic and inverted group velocities can be 

seen in Figure 4-2b, showing that the synthetic data were perfectly reproduced by the 

inversion. The results demonstrate that the true model can be well recovered by 

inversion, and thus show the robustness of GA inversion. 

 

Figure 4-2. Shear velocity structure obtained by GA inversion. The gray shaded area in (a) and (c) 

are search space of S wave velocity in each layer. The color codes in (b) and (d) represent misfit 

values. The red line in (a) and (b) shows the true model and the cyan one indicates the fittest 

model.  

In a real case, the thicknesses of each layer are unknown, so we construct a model 

with many thin layers. The thickness of each layer is 2 km in the crust and 5 km in the 

mantle. The inversion results show that not only the absolute S wave velocity, but also 

the thicknesses of each layer can be well reconstructed (Figure 4-2c, d). The minimum 

misfit value obtained at each generation is shown in Figure 4-3. The misfit value 

   (a)                  (b)                 (c)                  (d) 
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decreased rapidly in the first 40 generations and then gradually in the next 110 

generations. This gradual decrease suggests convergence near the minimum solution.  

The results from the two tests show a very good agreement between the calculated 

output group velocities and the input experimental group velocities. 

 
Figure 4-3. Minimum misfit value as a function of generation. 

 

 

 

 

 

 

 

 

 

 

Figure 4-4. Inversion results of a cell. (a) shows S wave velocity structures，(b) shows observed 

and synthetic dispersion curves. The cyan line in (a) and (b) indicates the best-fit model and 

dispersion curve, respectively. The gray shaded area in (a) is the search space of S wave velocity 

in each layer. The color codes in (b) represent misfit values. The error bars in (b) are standard 

errors of tomography. 

Using the GA inversion procedure, shear wave velocity structures of a cell is 

obtained (Figure 4-4). The velocity structures are consistent with DSS interpretation 

profile and receiver function inversion results. 

   (a)                      (b) 
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4.4 Results and interpretation 

We construct a ‘favoured model’ developed through GA inversion at each 

gridpoint. Combining these 1-D isotropic models, we obtain a 3-D shear wave velocity 

model for the North-China, with depth range from the surface to about 50 km.  

4.4.1 Reliability of inversion results 

Zhang et al. (1997) determined the velocity structure along Wenan- 

Yuxian-Chahaer by performing 1-D and 2-D ray tracing traveltime fitting and 

calculation of synthetic seismograms from DSS data. We select a profile that is the 

same as Zhang et al. (1997) and compare the results. It can be seen the main features are 

similar (Figure 4-5), such as the thickness of sedimentary cover, the variation of Moho 

interface, the low velocity zone between Jining and Yanggao in the upper crust, the low 

velocity zones in the upper and lower crust in the east of Tianzhen. These similarities 

validate the reliability of our inversion results. 

 

 

 

 

 

 

 

Figure 4-5. A comparison of velocity structures obtained by two methods. The color map shows 

the surface dispersion inversion results, while the contours shows the interpretation of DSS 

profile. 

4.4.2 The thickness of sedimentary cover 

Song et al. (1997) obtained the crystal basement velocities in NC using 

tomographic back projection method with Pg waves from 28 DSS profiles. Their results 

indicate the P-wave velocities in the crystal basement vary from 5.9 to 6.35 km/s. The 

laboratory experiment shows that the ratio of Vp to Vs is very large in sediments, and 

often larger than 2 (Chen & Li, 2003). In this study, we use Vs=3.2 km/s as a criterion 
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to determine the thickness of sedimentary cover. The distribution of sedimentary cover 

thickness is shown in Figure 4-6a.  

 

 

 

 

 

 

 

Figure 4-6. Sedimentary cover thickness map and crustal thickness map. 

The thickness of sedimentary cover in the northwestern part is shallow, in 

Taihangshan uplift and Yanshan uplift is less than 2 km, about 3 km in Datong basin, 

and about 4 km in Yanqing-Huailai basin. The thickness is more than 6 km in NCB, 

about 8 km in Cangxian uplift, and about 11 km in Jizhong depression and Huanghua 

depression. The thickness of sedimentary cover varies from 2 km in the mountain 

ranges to 7 km in NCB. This is consistent with the topography in the region. Previous 

studies show that the thickness of sedimentary cover in Jizhong depression and 

Huanghua depression is about 7-9 km (Editorial Group of “The 1976 Tangshan 

Earthquake”, State Seismological Bureau). The DSS results also suggest that the 

sedimentary is thin in the mountain ranges, about 1-2 km, while it is thick in NCB, 

about 6-10 km in Jizhong depression and about 2-4km in Cangxian uplift (Jia et al., 

2005a). This is consistent with our results. However, previous studies can only give the 

thickness of sedimentary cover along the DSS profiles, but our results give the 

thickness of sedimentary cover of the whole region. We must keep in mind, since the 

layer thickness is about 0.5-1 km in the model and we apply the smooth constraint, so 

the error of thickness is about 1 km. 

Figure 4-6b shows the thickness of crust. The lateral variation of crustal thickness 

is very large, the maximum difference in thickness reaches 16 km. In general, the crust 

is thin in the eastern part, while thick in the western part. The crustal thickness increases 

from 28 km in the Bohai gulf to 44 km in Shanxi highland and Zhangjiakou. The crustal 

(a)                                       (b) 
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thickness in Huanghua depression, Cangxian uplift and Tangshan is relative thin, about 

32 km, about 32-36 km in Jizhong depression.  

Many researchers have studied the crustal thickness of North China using DSS 

profiles and receiver function h-k stack method. Reflection and refraction profiles in 

North-China (Jia & Zhang, 2005a) show that the crust is relatively thin in NCB, while it 

is thick in the northwest part of our study region: the crust thickness is about 28-29 km 

in Bohai Bay, about 35-36 km in Beijing and more than 40 km to the west of 

Taihangshan fault. Our results are also consistent with the receiver function h-k stack 

results (Figure 4-7, Xu et al., 2005; Wang et al., 2009). Due to the limitations of the 

method, the DSS profiles and receiver function h-k stack method can only give the 

crustal thickness along the profile or beneath the station. Our method gives the crustal 

thickness at each knot and the resolution is higher than the traditional methods. 

 

 

 

 

 

 

 

 

 

 

Figure 4-7. The lateral variation of Moho depth retrieved by the receiver function h-k stack. 

4.4.3 S-wave velocity structures at different depths 

Horizontal slices of shear wave speed at a selection of depths are shown in Figure 

4-8, including 1, 8, 10, 12, 27 and 36 km. 

The most striking features at 1 km depth are several large sedimentary basins. The 

NCB, Yanqing-Huailai Basin and Datong Basin clearly appear as low velocity 

anomalies. A broad low velocity zone is observed at NCB, which is due to the large 
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thickness of sediments. Zheng et al. (2005) derived the shear wave velocity model in 

NCB by inverting the receiver functions obtained at 44 temporary seismic stations. 

Their results indicate that the sedimentary cover of NCB is about 2-12 km thick. 

Taihangshan and Yanshan uplifts are imaged as high velocity zones. In general, the 

shear wave velocity structure at 1 km correlates very well with known surface 

geological structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8. Horizontal slices of S-wave velocities at different depths.  



- 53 - 

At 10 km and 12 km depths, Jizhong depression, Cangxian Uplift and Huanghua 

depression are mapped very well. At 36 km depth, high velocity anomalies are 

observed in the eastern part of the study region, while low velocity anomalies are 

observed in the northwest part. Thick crust tends to appear as low velocity anomalies 

and thin crust as fast anomalies on the map. 

A high velocity zone near Datong, Shouzhou and Qingshuihe is observed at 1-23 

km depth. The high velocity zone is located at the northeastern margin of the Ordos 

block that shares the typical features of cratonic lithosphere and hasn't been affected by 

the NCC re-activation. The block is characterized by low seismicity, low heat flow, 

positive vertical velocity gradient and lack of active fault and magmatic activity (Qiu et 

al, 2005). The inversion results reveal the stable characteristics of this region. 

Strong velocity gradient near the boundary between North-China basin and 

Yanshan-Taihangshan uplift can be seen at 1-12 km depth. Below 13 km, the high and 

low velocity anomalies near Taihangshan front fault become blurry, and only can be 

visible in some parts. We thus argue that the Taihangshan front fault does not penetrate 

through the Moho discontinuity along the whole fault, probably penetrate through the 

Moho discontinuity in some region. P-wave tomography has shown that the fault cuts 

through the Moho interface and penetrates into the upper mantle (Huang & Zhao, 2004, 

Zhang et al, 2007). The discrepancy may be caused by different methods and different 

characteristics of P and S waves.   

A well defined low velocity zone in the Beijing-Tianjin-Tangshan region is 

imaged at 22-30 km. This is consistent with many tomography studies in this region. 

Zhu & Zeng (1990) find a low velocity region in the Beijing-Tianjin-Tangshan region 

at 50 km of depth, which extends to 100 km depth beneath Tangshan and Tianjin. Using 

regional seismic arrival data and Simultaneous Iterative Reconstruction Technique, 

Ding & Zeng (1994) reveal that a clear low velocity zone lies between Beijing and 

Tangshan in the 20-35 km depth range. Recent body wave tomography shows a low 

velocity zone in the lower crust beneath the Beijing-Tianjin-Tangshan region (Huang & 

Zhao, 2004) as well. In our tomography results, the low velocity zone in the 

Beijing-Tianjin-Tangshan region can be seen from 22 km to 30 km. We infer that the 

low velocity zone is related with the upwelling of hot mantle material. Seismic 

refraction and reflection profiles across Tangshan indicate that there is a 3-5 km offset 
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of Moho discontinuity beneath Tangshan (Zeng et al., 1988). The hot material of the 

uppermost mantle may migrate to the crust along the offset of Moho discontinuity. The 

intrusion of mantle material heats up the lower crust and can cause the reduction of 

seismic velocity. A high conductivity layer has been found between 20 km to 30 km 

depth under this region using magnetotelluric soundings (Liu et al., 1989). Since the 

low velocity and high conductivity layer is usually related with fluids and partially 

melting materials, our results do not rule out the existence of fluids as suggested by 

Huang & Zhao (2004).  

4.4.4 Connection between velocity structure and occurrence of strong earthquakes  

The North China area is one of the most seismic active areas in China. Historical 

strong earthquakes occurred frequently in this area. More than 200 earthquakes with 

magnitude greater than 5.0 have occurred in this region since 780 BC, among them 37 

events are larger than M= 6.0 and 10 events are larger than M= 7.0 (The Earthquake 

Disaster Prevention Department of China Earthquake Administration, 1995, 1999; 

China Earthquake Networks Center, 2008). Three strong earthquakes occurred in North 

China since modern seismometers. The three earthquakes are Tangshan earthquake, 

Luanxian earthquake and Ninghe earthquake.   

The 1976 Tangshan earthquake sequence consists of three large earthquakes: (1) 

the mainshock (M= 7.8) occurred on July 28, 1976 right beneath the Tangshan city; (2) 

the largest aftershock (M= 7.1) (also known as Luanxian earthquake) occurred 15 h 

after the mainshock and was located about 25 km northeast of the main shock 

hypocenter under Luanxian; and (3) the second largest aftershock (M= 6.9) (also 

known as Ninghe earthquake) occurred on November 15, 1976 west of Tangshan under 

Ninghe city. The focal depths of the three events were determined by the seismic 

network to be 11.0, 10.0 and 17.0 km. The focal depths obtained by waveform 

modeling are 13.0, 8.2 and 17.5 km (Nabelek and Chen, 1987). In this study, we use the 

average values as the focal depths. We select a profile crossing the epicenters of the 

three earthquakes and study their relationships (Figure 4-9). 

We find that the focal depth of Ninghe earthquake is located in the transition zones 

of high and low velocity bodies. The focal depths of Tangshan and Luanxian 

earthquake are located in high velocity bodies. There is a low velocity zone beneath the 

focuses of Tangshan and Luanxian earthquake. Moho interface is locally uplifted in 



- 55 - 

Ninghe and Luanxian. The S-wave velocity is lower in the uppermost mantle of these 

three earthquake regions.  

 

 

 

 

 

 

Figure 4-9. A velocity structure profile crossing Ninghe-Tangshan-Luanxian large earthquake 

source region. From left to right, the stars in the profile show the focal depths of Ninghe, Tangshan 

and Luanxian earthquakes.  

Liu et al. (1989) determined the geoelectric structure in the Tangshan area using 

magnetotelluric soundings and revealed a high-conductivity anomaly below 20 km 

depth under the epicenter of the Tangshan earthquake. Similar low velocity and 

high-conductivity anomalies are also found in the source areas of the 1995 Kobe 

earthquake in Japan and the 2001 Bhuj earthquake in India (Zhao et al., 1996; Mishra 

and Zhao, 2003). Huang et al. (2004) argue that the high-conductivity and low-velocity 

anomaly in the lower crust under Tangshan shows the existence of fluids in the 

earthquake source region.  

We infer that these three earthquakes were mainly caused by vertical deformation 

of upper mantle and material exchange between crust and upper mantle. Seismic 

refraction and reflection profiles across Tangshan indicate that there is a 3-5 km offset 

of Moho discontinuity beneath Tangshan (Zeng et al., 1988). The magma intrudes crust 

along faults near the boundary of crust and upper mantle, which leads to the low 

velocity anomaly in the uppermost mantle. The magma intrusion heats up the lower 

crustal material and drops the viscosity. Some minerals are dehydrated. The water 

move up and store in the middle crust. The presence of liquids affects the structure and 

composition of fault zone, further changes the stress state, weakens the seismotectonic 

region and triggers the earthquakes. 
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4.5 Conclusions 

From our successful inversions of synthetic and observed Rayleigh wave group 

velocities, we confirmed that GA can be applied to the inversion of surface wave 

dispersion data. GA is especially applicable when we cannot prepare appropriate initial 

models needed in the linear inversion methods. Since GA requires only calculating a 

forward model, they were easily incorporated in the inversion of dispersion data as well 

as other geophysical inverse problems.  
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Chapter 5 Noise characteristics in NC  

5.1 Introduction 

It has been recently demonstrated that the time cross correlation function of 

random seismic wavefields such as seismic coda (Campillo and Paul, 2003) or seismic 

noise (Shapiro and Campillo, 2004) computed between a pair of distant stations 

contains the actual Green function between the two stations (Campillo, 2006). This 

provides us with the possibility to retrieve the propagation properties of deterministic 

seismic waves along long paths by analyzing microseisms only. The emergence of the 

Green function is effective only after a sufficient averaging. In the case of diffuse coda 

waves, the averaging is performed over a set of earthquakes (Campillo and Paul, 2003; 

Paul et al., 2005). With the seismic noise (in the following, we use the term noise for the 

microseism which actually have no relation with instrumental noise), it is assumed that 

the averaging is provided by randomization of the noise sources when considering long 

time series (Shapiro and Campillo, 2004; Sabra et al., 2005b). Another important 

process contributing to the randomization is the scattering of seismic waves on 

heterogeneities within the Earth, that is significantly strong at periods less than 40 s. 

Reconstruction of Rayleigh waves from the seismic noise is sufficiently efficient and 

accurate to lead to high-resolution imaging at the regional scale (Shapiro et al., 2005; 

Sabra et al., 2005a). Further optimization of seismic imaging based on noise correlation 

requires better understanding of the origin of the seismic noise and of the spatial and 

temporal distribution of its sources (Pederson et al., 2007; Schulte-Pelkum et al., 2004). 

In particular, it is important to establish the conditions under which the noise can be 

considered as well randomized. To be more precise, a perfect randomization is not 

necessary but at least a distribution of sources covering a sufficiently large surface is 

required when integrating over time. 

In the case of a spatially homogeneous distribution of noise sources, the cross 

correlation is expected to be nearly symmetric in amplitude and in arrival time with its 

positive and negative parts corresponding to the Green function of the medium and its 

anticausal counterpart, respectively (e.g., Lobkis and Weaver, 2001; Van Tiggelen, 

2003; Snieder, 2004; Sánchez-Sesma and Campillo, 2006). In practice, as we will see 

below, the causal and anticausal parts of the cross correlation may strongly differ in 
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amplitude. This amplitude factor depends directly on the energy flux of the waves 

traveling from one station to the other (Van Tiggelen, 2003; Paul et al., 2005). In others 

words, in the case of a perfectly isotropic distribution of sources, the energy flux 

between two stations is the same in both directions and the resulting cross correlation 

between these stations is symmetric (Figure 5-1a). On the other hand, if the density of 

sources is larger on one side than on the other, the amounts of energy propagating in 

both directions are different. In this case, the resulting cross correlation is not 

symmetric anymore in amplitude (although the arrival time remains the same) (Figure 

5-1b, c).  

Snieder (2004) showed that only the sources near the line connecting two stations 

will contribute to the signals observed in the cross correlation function. Sources at 

opposite sides of the line will contribute to the signal at positive and negative lags in the 

cross correlation function respectively. An important consequence is that the 

asymmetry of the cross correlation computed between several pairs of stations of a 

network can be used to measure the main direction of the energy flux across the array. 

Making such measurements at different arrays will allow us to determine the location of 

main sources of the seismic noise. 

 

 

 

 

 

 

 

Figure 5-1. Schematic illustration of the effect of inhomogeneous noise sources distribution on the 

degree of symmetry of cross correlation. (a) Symmetric cross correlation between 1 and 2 obtained 

when the sources of noise are evenly distributed. (b), (c) Asymmetric cross correlation (but 

symmetric travel times) associated with a nonisotropic distribution of sources. Modified from 

Stehly et al. (2006). 

(a)                        (b)                        (c) 
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5.2 The origin of seismic noise 

Ambient seismic noise is mostly made of surface waves (e.g., Friedrich et al., 1998; 

Ekström, 2001). Therefore its sources are likely close to the Earth’s surface. Observed 

noise amplitudes cannot be explained by the background seismicity (Tanimoto and Um, 

1999) and main noise sources are believed to be loads caused by pressure perturbations 

in the atmosphere and the ocean. Moreover, the mechanisms of generation of seismic 

noise are not the same in different period bands. At relatively short periods (<20 s), the 

two strongest peaks of the seismic noise, i.e., the primary and the secondary 

microseisms, are believed to be related to the interaction of the sea waves with the coast 

(Gutenberg, 1951). The primary microseism has periods similar to the main swell 

(10–20 s), while the secondary microseism that is the strongest peak in the noise 

spectrum originates from the nonlinear interaction between direct and reflected swell 

waves that results in half period (5–10 s) pressure variations (Longuet-Higgins, 1950). 

This interaction results in variations of pressure at the sea bottom that do not exhibit the 

rapid exponential decay with depth expected for primary gravity waves. 

Long-period seismic noise, referred to as earth ‘‘hum,’’ is observed in the 

continuous background free oscillations in low-frequency seismic spectra (Nawa et al., 

1998). This term is usually reserved for motions with periods above 100 s. Early studies 

attributed the long-period noise to atmospheric motions (Tanimoto and Um, 1999; 

Ekström, 2001), but more recent studies (Tanimoto, 2005; Rhie and Romanowicz, 2004, 

2006) suggest that the origin of the long-period noise is more likely related to so-called 

ocean infragravity waves, a long-period ocean gravity wave. Rhie and Romanowicz 

(2004) proposed that the generation of long-period seismic noise involves a three stage 

atmosphere-ocean-seafloor coupling process. 

5.3 Seasonal variability and origin of seismic noise 

In this chapter, we use the CCFs (Cross Correlation Function) to determine the 

characteristics of ambient seismic noise in NC. We kept only paths longer than 120 km 

(two wavelengths at 20 s) and SNR≥6.0. This resulted in 7678 paths or 15356 

azimuths when using both the causal and the acausal parts. Figure 5-2 shows three 

typical CCFs obtained from 14-month data. The CCF between VCHL and VFEN is 

symmetrical, the other two are asymmetrical. 
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Figure 5-2. Three typical CCFs. The positive lags represent waves propagate from A301, K008, 

VCHL to A811, L218 and VFEN, respectively. The negative lags represent waves propagate in the 

opposite direction. 

In this study, we apply three methods to analyze the characteristics of ambient 

seismic noise.  

Method 1 

First, we use two 3-month stacked CCFs to investigate the seasonal variability of 

the ambient noise source. The stacked CCFs are centered on February and August; 

namely, months 1, 2, 3 and 7, 8, 9. Following are data selection criteria: 

Azimuth of the CCFs: 0 - 60 º (other azimuths also have similar traits), 

SNR≥6,  

Interstation distances: 40-400 km,  

We then stack the CCFs by 3 km bins in distance and normalize the amplitude 

using the maximum of each CCF. To illustrate the frequency-dependent characteristics 

of ambient noise sources, we filtered the CCFs with three subbands: 4-10 s (the 

secondary microseism), 10-20 s (the primary microseism) and 20-50 s (the low 

frequency noise). The results are shown in Figure 5-3. 

Method 2 

Secondly, we use the amplitudes of the CCFs to determine the direction of 

normalized background energy flow (NBEF) and compare its azimuthal distribution 

with global ocean wave height. The data selection criteria are same as the last step, but 
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using the CCFs from all azimuths. Amplitudes of the causal and acausal parts were 

determined by taking the maximum of their envelopes in a time window corresponding 

to the Rayleigh wave group velocity. We correct our measurement from the 

geometrical attenuation of the Rayleigh wave with distance, by multiplying the 

amplitude by the square root of the interstation distance. In this way we measured 

normalized amplitudes of seismic noise for two azimuths from each cross correlation. 

Combining measurements from all stations pairs we obtain the distribution of the 

normalized amplitude with respect to azimuth. Maxima of this distribution indicate 

main directions of NBEF across the array. Seasonal variation of the normalized 

amplitude and the direction of the NBEF during the year 2007 are illustrated in Figure 

5-4. Amplitudes were normalized between 0 and 1 for the entire set of azimuths.  

One must remark that these azimuthal distributions were computed after 

running-absolute-mean normalization. This means that high amplitude events, likely 

associated with the strongest storms are down weighted by our processing. Figure 5-4 is 

not directly characteristic of the actual absolute noise energy but of the time-averaged 

normalized energy. Note that it is the relevant measure for analyzing the noise in the 

context of Green function reconstruction using the procedure initiated by Shapiro and 

Campillo (2004).  

Method 3 

The third method is beamform analysis. To confirm, quantify, and interpret the 

seasonal amplitude variations of CCFs, we perform a beamforming analysis of the 

same data. The data processing method is similar with Lu et al. (2009) and Gerstoft et 

al., (2008). In this step, only interstation distances larger than 120 km are used. 

For a given frequency , phase slowness s, and azimuth  , the plane wave 

response for the array of geophones is 

( , , , ) exp[ ( )]p s r i s r e     

where (sin ,cos )Te    are the directional cosines and r is the coordinates of the 

geophones with respect to their mean. 

The beamforming output is then given by 

( , , ) ( , , ; ) ( ) ( , , ; )
r

b s p s r C p s r         
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Where ( )C   is the cross-spectral density matrix. ( , ; )C i j   is obtained by the 

FFT transform of CCF between station ith and station jth. ( , ; )C i j   contains the phase 

information between station ith and station jth at frequency  . The angle resolution is 

2 degrees, while the velocity resolution is 0.005 s/km. 

Figure 5-5 and Figure 5-6 show the beamforming outputs of CCFs in summer 

(from April to September) and winter ( from January to March and from October to 

December), respectively. The seasonal variations are observed from the beamforming 

output. 

Following are the primary characteristics of seismic ambient noise in NC. 

Near zero phase: A coherent energetic phase appears at near-zero times in noise 

cross correlations at 4-10 s period band (Figure 5-3a, b). This phase is stronger during 

northern winter than summer. The apparent velocity of this signal is larger than 12 km/s. 

Due to its fast propagating speed, we conjecture that this phase may be composed of P 

waves. Landes et al. (2009) use seismic arrays located in Yellowstone, in Turkey and in 

Kyrgyzstan and apply beamforming analysis and its projection on the Earth, they find 

that, in the 0.1-0.3 Hz frequency band, the energetic "near zero" time arrivals in seismic 

noise cross correlations are mainly formed by teleseismic P, PP, and PKP waves. 

Significant amount of the microseism energy is generated far from the coast in deep 

oceans. 

4 – 10 s: The CCFs at this period band show apparent asymmetry and marked 

seasonal variation (Figure 5-3a, b). The ambient noise is stronger in winter. For this 

period band, the SNR of Green function is relatively low due to the short period surface 

wave attenuation and absorption of large propagating distances. 

Using 1 year of recording at several stations of networks located in North America, 

Western Europe, and Tanzania and similar method, Stehly et al. (2006) found the noise 

between 5 and 10 s is very stable in time with signal mostly coming from the coastline. 

Using stations located in Europe, southern Africa, Asia, and three regions within North 

America, Yang and Ritzwoller (2008) analyzed the signal-to-noise ratios (SNR) of 

CCFs.  They found that the ambient noise in 5-10 s band comes dominantly from the 

directions of relatively nearby coastlines with stronger noise occurring in the Northern 

Hemisphere in northern winter and in the Southern Hemisphere in southern winter. 
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In our case, we observe a marked seasonal variation of noise. This is similar to 

Yang and Ritzwoller (2008), but different to Stehly et al. (2006). This indicates that the 

noise sources and its characteristics are different in different regions. The location of 

the ambient noise is difficult to determine due to the low SNR. 

10 – 20 s: The SNR of CCFs is much higher than 4–10 s. The seasonal variation of 

CCFs is also very clear. The CCFs are more symmetrical in winter than in summer 

(Figure 5-3c, d). Pie charts illustrate the azimuthal dependence of the normalized 

amplitude of the CCFs (or ambient noise energy flux), both for winter (left) and 

summer (right), see Figure 5-4a and b. The background image shows the distribution of 

the normalized global ocean wave height, modified after Stehly et al. (2006). The pie 

charts show that the ambient noise energy in the winter (Figure 5-4a) is more uniformly 

distributed than in the summer (Figure 5-4b). In the winter, noise energy is dominant in 

the north-east direction and also from the south (Indian Ocean) and the north-west 

(Northern Atlantic). In the summer, the main direction of the ambient noise energy is 

from the south-west, pointing to an origin in the Indian Ocean. The effect of attenuation 

is weaker for longer periods and sources at the global scale are contributing. These 

results clearly show that the 10–20 s noise is not generated locally but is excited by 

sources acting at the global scale and having a clear seasonal variability. 

The hypothesis that the average background noise energy originates in the zones 

of storm activity is confirmed by strong similarities between the maps of the apparent 

sources of the 10–20 s seismic noise and the global wave height maps obtained from the 

radar altimeter data collected by the satellite TOPEX-Poseidon (Figure 5-4). Both maps 

show clear seasonal variations with maxima located in deep oceans in the Southern and 

the Northern hemispheres during the summer and the winter, respectively. These 

results are consistent with the observations of Stehly et al. (2006). 

20 – 50 s: The SNR of CCFs is also higher than 4–10 s, but lower than 10–20 s. 

The patterns of energy arriving at this period are quite distinct from waves in the 

microseism band. These waves display little seasonal variability and the azimuthal 

patterns of energy arriving at this period band are very similar to one another. This 

observation is similar to Yang and Ritzwoller (2008). Rhie and Romanowicz (2006) 

also find that the microseism has a seasonal change in amplitude, whereas the 

amplitude in the hum band (with periods above 100 s) does not show clear seasonal 
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variations. Recent studies (Tanimoto, 2005; Rhie and Romanowicz, 2004, 2006) 

suggest that the origin of the long-period noise is more likely related to so-called ocean 

infragravity waves, a long-period ocean gravity wave.  

In our view, the shallow water source location may be more plausible than the 

deep water sources distributed over a much larger area. If the noise is caused by deep 

water sources, the source regions would have to cover much of the ocean basins, which 

we argue is unlikely. However, deep water sources cannot be formally ruled out by the 

methods we apply here.  

Beamforming results: Beamformer output provides valuable information about 

azimuthal distribution of noise. For periods between 10–32 s, there is a nearly 

continuous ring maximum with surface wave slownesses (Figure 5-5 and Figure 5-6), 

suggesting surface waves dominate the signal in this period range. Since the SNR of the 

CCFs for periods shorter than 10 s and larger than 30 s is relatively low, so we stress the 

noise characteristics for 10 – 30 s period band. 

A seasonal variation of ambient seismic noise is clearly observed. Our results also 

show that even though the strongest noise emerges only from a few directions, strong 

ambient noise emerges from many directions. At 10 s and 16 s periods in winter, the 

wave field is dominated by energy coming from the east (30°–240°) in summer, and 

from the northeast, southwest and northwest in winter (Figure 5-5 and Figure 5-6). The 

beamforming outputs are in excellent agreement with results of the azimuthal 

distributions of CCFs’ amplitudes (Figure 5-4). For periods larger than 20 s period, the 

noise sources are less seasonal variant. This is also consistent with the azimuthal 

distributions of CCFs’ amplitudes.  

For beamforming array aperture larger than   is required to resolve the longest 

periods of interest and station spacing < / 2  to prevent spatial aliasing at shortest 

periods for a regularly spaced array, but for irregular arrays it can be relaxed somewhat 

(Harmon et al., 2008). For the NCSA array which consists mainly of two 

regularly-spaced line arrays pointing southeast, beamforming aliasing manifests itself 

as a straight-line beamformer output (perpendicular to the line array directions) rather 

than a point for sources coming from the southwest, as shown in the 9 s band in Figure 

5-8. For shorter periods, the beamformer aliasing becomes more severe making it 

difficult to obtain reliable azimuthal distribution. Overall, the aliasing at the periods of 
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interest, 10–35 s, is minor while it dominates at periods less than 8 s. 

 

Figure 5-3. CCFs of different period bands and different seasons. (a) and (b) are bandpass filtered 

(4-10 s) CCFs for winter and summer. (c) and (d) are bandpass filtered (10-20 s) CCFs for winter 

and summer. (e) and (f) are bandpass filtered (20-50 s) CCFs for winter and summer. The azimuth 

of these CCFs are 0-60º. The interstation distances are 40-400 km. 

(a)                                            (b) 

(c)                                            (d) 

(e)                                            (f) 
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(a)                                         (b)   

(c)                                         (d)   

(e)                                         (f)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4. Normalized amplitude of the cross correlations versus azimuth for various period 

bands averaged during winter (left) and summer (right). (a) and (b) is 4-10 s, (c) and (d) is 10-20 s, 

(e) and (f) is 20-50 s. The background images are normalized global wave height maps measured 

by TOPEX/Poseidon during winter and summer.  
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Figure 5-5. Azimuth distribution of the slowness spectra at different period in winter. After Lu et 

al. (2009). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6. Azimuth distribution of the slowness spectra at different period in summer. After Lu et 

al. (2009). 
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5.4 The effect of inhomogeneous noise distribution 

Recent theoretical work has revealed that, under the assumption that the sources of 

the ambient noise are evenly distributed, the Green’s function between two points can 

be estimated from the cross-correlatation of recordings made at the two locations 

(Weaver and Lobkis 2001, 2004; Derode et al. 2003; Snieder 2004; Larose et al. 2005). 

The observed distribution of ambient noise is far from homogeneous, however, with 

exceptionally strong signals sometimes emanating only from a narrow range of 

azimuths (Paul et al., 2005; Stehly et al., 2006; Yang and Ritzwoller, 2008). Therefore 

questions have been raised about the effect that this will have on the emergence of 

accurate empirical Green’s functions from cross correlations of ambient noise and 

whether the observations can be used meaningfully to obtain dispersion measurements 

and perform tomography. How to improve and optimize ANT?  

This question has been addressed observationally in previous studies (e.g., 

Shapiro et al., 2005; Yang et al., 2007; Lin et al., 2008; Moschetti et al., 2007; Bensen et 

al., 2007, 2008) using several lines of evidence. These studies showed that the observed 

interstation empirical Green’s functions are similar to earthquake signals when 

earthquakes occur near to one of the stations, that dispersion curves are seasonally 

repeatable even though ambient noise characteristics may change substantially, and that 

the dispersion curves are consistent with one another even when azimuths are quite 

different. In addition, they showed that the resulting group and phase velocity maps 

reproduce geological structures faithfully. These and other reasons help to establish the 

veracity of ambient noise tomography. It should be borne in mind, however, that 

considerable efforts are exerted in processing ambient noise data to identify bad 

measurements (commonly more than half of all observations), some of which result 

from low signal levels or incomplete constructive/destruction interference in the 

generation of the observed Green’s functions. 

Sabra et al. (2005b) argues that scattering from heterogeneities and geometric 

effects (such as reflections from the edge of a basin) randomizes the noise field and thus 

partially redistributes the ocean microseism wave field making it more uniform. The 

synthetic experiments show that if ambient noise exists over a broad azimuthal range 

even at relatively low levels, accurate empirical Green’s functions will emerge from 

long time series of the ambient noise even when the distribution is far from azimuthally 
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(a)                              (b)                            (c) 

homogenous (Yang and Ritzwoller, 2008). The numerical experiment shows that 

stronger scattering can improve the reconstruction of the Green function even for an 

inhomogeneous distribution of sources (Paul et al., 2005). This effect was already 

confirmed by laboratory experiments (Derode et al., 2003). The experiments of Lin et al. 

(2008) show that the measured phase velocities of the CCFs match the input phase 

velocity at all periods with errors less than 0.5%. The uncertainty of group velocity 

dispersion measurement is higher, but still less than 2%. Harmon et al. (2008) measured 

the phase velocity dispersion curves from NCFs and teleseismic surface waves, and 

found the discrepancy is within 1%. These experiments and observations confirm that 

ambient noise can be used to perform tomography and ANT is valid. 

For the orientation of most station pairs, sufficiently strong ambient noise is 

present to be the basis for the retrieval of reliable empirical Green’s functions. 

Nevertheless, there are some azimuths in most regions where ambient noise is so weak 

that interstation cross correlations will not provide a good empirical Green’s function. 

From a practical perspective, therefore, these cross correlations have to be identified 

and removed as candidate empirical Green’s functions. Typically, these cross 

correlations have a low signal-to-noise ratio, and SNR is useful in the data processing 

part of ambient noise tomography to identify the acceptable empirical Green’s 

functions (e.g., Bensen et al., 2007).  

 

 

 

 

 

 

Figure 5-7. CCFs of different period bands for 14-month. (a), (b) and (c) are bandpass filtered 

between 4-10 s, 10-20 s and 20-50 s, respectively. It can be seen the SNR of the CCFs obtained 

using 14 month data is higher than only using summer or winter data. 

Figure 5-7 show the extracted CCFs using 14 months data. It can be seen the SNR 

and symmetry of the signal are enhanced greatly by using long period data. The 

beamform outputs (Figure 5-8) using 14 month data also show that the noise 
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distribution is more uniform than only using summer or winter data. These results 

indicate that the longer the observation time, the more homogeneous of seismic noise, 

and higher SNR. So, in order to get more reliable tomography results, we propose to use 

data longer than 1 year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8. The slowness spectra of Rayleigh wave at different periods obtained by beamforming 

using all station records during 2007. 

5.5 Conclusions 

Our results clearly demonstrate that the characteristics of ambient seismic noise 

are different in different period bands. A marked seasonal variation of noise is also 

observed for periods less than 20 s. The seasonal variability of primary microseism 

exhibits good correlation with the maps of average ocean wave height map obtained by 

TOPEX-Poseidon. 

This seasonal variation means that the quality of the Green function reconstruction 

by cross correlation can be different with noise recorded during the summer and during 

the winter. Using simultaneously data recorded during the winter and the summer 

would be a way to increase the number of high-quality measurements and to improve 

the resolution of seismic imaging based on noise cross correlation. 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

We studied the theory and methodology of ambient noise tomography and we 

applied this method to NC successfully. Continuous vertical-component seismograms, 

spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 

broadband stations and 10 very broadband stations, are used in this study. We apply the 

cross correlation technique to the ambient noise data for each station pairs recorded by 

NCSA. Rayleigh wave group velocity dispersion curves are measured at periods 

between 4s and 40s by multiple filter technique. We obtain 5630 high quality dispersion 

curves. Surface wave tomography is conducted to generate group velocity maps with a 

grid spacing of 0.25º×0.25º. These maps display higher resolution and span to shorter 

periods than previous surface wave tomography maps. Then genetic algorithm was 

used to invert local dispersion curves. The 3-D shear wave velocity structure from 0 to 

50 km depth was readily constructed. To the authors' knowledge, the resolution 

presented here is, so far, the highest one in China mainland. 

The important findings are: 

1, We can obtain more reliable dispersion measurement by introducing maximum 

cutoff period. The maximum period extracted from ambient seismic noise is related to 

the aperture of the seismic array. The larger the aperture, the wider the spectrum band is. 

The SNR of Green Function is proportional to the square root of observation time and 

can be enhanced by using symmetric component. The inhomogeneous distribution of 

seismic noise gives rise to the asymmetry of Green Function. Using more than 1 year's 

data, we can get more symmetric and higher SNR Green Function. 

2, We analyzed the characteristic of ambient seismic noise and found the 

characteristics are different for different period band. Between 4-10s period band, there 

is a coherent phase with large amplitude near zero lag time. In 10-20s period band, the 

sources of ambient seismic noise has a very clear seasonal variability. The azimuthal 

distributions of noise share a great similarity with the map of average ocean wave 

height map obtained by TOPEX-Poseidon. In 20-50s period band, Rayleigh wave 

Green Functions are near symmetrical and have less seasonal variation in both signal 

strength and directivity, which indicate the distribution of noise is almost homogeneous. 
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In 4-20s period band, the amplitudes of positive and negative components of Green 

Functions are obviously asymmetrical, but the arrival times are near identical, which 

indicate the distribution of noise has much influence on the amplitude of Green 

Function, but less influence on arrival time. The beamform analysis shows that using 

simultaneously data recorded during the winter and the summer would be a way to 

increase the number of high-quality measurements and to improve the resolution of 

seismic imaging based on noise cross correlation. 

3, Tomographic maps, with a grid spacing of 0.25º×0.25º, are computed between 

4s and 40s period band. The maps at short periods reveal an evident lateral 

heterogeneity in the curst of North-China, quite well in agreement with known 

geological and tectonic features. The North China Basin is imaged as a broad low 

velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged 

as high velocity zones, and the Quaternary intermountain basins show up as small 

low-velocity anomalies. 

4, We constructed the 3-D shear wave crustal velocity model in North China by 

inverting the pure path Rayleigh wave dispersion curves at 432 nodes using genetic 

algorithm. The inversion results reveals the shear wave velocity structure in North 

China crust, the thickness of sedimentary cover and the lateral variation of Moho 

interface very well. Our results show that the thickness of sedimentary cover is less than 

2 km in Taihangshan and Yanshan uplifts, about 5 km in Yanqing-Huailai basin and 

about 3 km in Datong basin. The thickness of sedimentary cover in North China basin is 

more than 6 km and has lateral variation in different tectonic units. The thickness of 

sedimentary cover is about 8 km in Cangxian uplift and about 11 km in Jizhong and 

Huanghua depressions. The depth of Moho interface is thicker in westert part than those 

in the eastern part. The crustal thickness increases from 28 km in Bohai Bay to 44 km in 

Zhangjiakou.  

5, S-wave velocity maps at different depths show that Taihangshan fault is a 

boundary of high and low velocity anomaly in 0-12 km depth. Below 13 km, the 

boundary of high and low velocity anomaly is visible only at some parts of Taihangshan 

fault. We infer that Taihangshan fault only extends to Moho interface in some regions. 

From 0 to 8 km, Yanshan uplift is mapped as broad high velocity anomaly, while its 

southern margin is mapped as high and low velocity anomalies alternatively, which 
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may be caused by the NNE-NE trend faults. There is a distinct low velocity belt with 

NW trend at 10 km depth near Zhangjiakou-Bohai seismic zone. This low velocity belt 

and the southern margin of Yanshan high velocity anomaly draw the outline of 

Zhangjiakou-Bohai seismic zone and its northern boarder line. There is a well-defined 

low velocity zone in middle to lower crust (15-25 km) in the Beijing-Tianjin-Tangshan 

region, which may be caused by intrusion of hot mantle materials.  

6, We analyzed the S-wave velocity structure near Tangshan，Luanxian and 

Ninghe earthquake region. We find the focal depth of Ninghe earthquake is located in 

the transition zones of high and low velocity bodies. The focal depths of Tangshan and 

Luanxian earthquake are located in high velocity bodies. There is a low velocity zone 

beneath the focuses of Tangshan and Luanxian earthquake. Moho interface is locally 

uplifted in Ninghe and Luanxian. The S-wave velocity is lower in the uppermost mantle 

of these three earthquake regions. We infer that these three earthquakes are mainly 

caused by vertical deformation of upper mantle and material exchange between crust 

and upper mantle. The magma intrudes crust along faults near the boundary of crust and 

upper mantle, which leads to the low velocity anomaly in the uppermost mantle. The 

magma intrusion heats up the lower crustal material and drops the viscosity. Some 

minerals are dehydrated. The water move up and store in the middle crust. The 

existence of liquid affects the structure and composition of fault zone, further changes 

the stress state, weakens the seismotectonic region and triggers the earthquakes. 

6.2 Future work 

The presented group velocity tomography from the ambient noise cross 

correlations was conducted only with the vertical components. In practice, using the 

three components at the stations, the nine components of Green’s tensor can be 

recovered between the two stations. A synthetic study, which was conducted about 

recovery of multiple component Green’s tensor for coda waves, was performed by Paul 

et al. (2005). In our study, the cross correlations of radial-radial (R-R) and 

transverse-transverse (T-T) components were also conducted. Figure 6-1 shows the 

extracted Love wave signal and Love wave tomography map. The differences in the 

shear-wave velocity models obtained from Love waves and Rayleigh waves can be 

used to study anisotropy and heterogeneity of the crust. 
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Figure 6-1. (a) Bandpass filtered (10-50s) transverse-transverse cross correlations as a function of 

distance and lag time. The cross correlation is time reversed if the amplitude of the negative 

component is smaller than the amplitude of the positive one. (b) Love wave tomographic map for 

8 s period. 

For traditional surface wave tomography, it is difficult to obtain short period 

dispersion measurements due to the absorption, attenuation and scattering of seismic 

waves. Ambient noise tomography overcomes this drawback and it can get reliable 

short period dispersion curves (e. g. T<30 s). We can constrain the crust-mantle 

velocity structure tightly by combining ambient seismic noise and earthquake excited 

surface waves. Furthermore, surface wave dispersions are sensitive to the average 

shear-velocity structure, receiver functions are sensitive to velocity contrasts between 

layers. Thus, a joint inversion of dispersion curves and receiver functions will results in 

a better-determined shear-wave structure than inversion from either method alone. This 

is a focus of my future study. 

(a)                                         (b) 
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