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Some Nonexistence Results for
Systems of Nonlinear Partial
Differential Inequalities

EVGENY GALAKHOV ()

SUMMARY. - We obtain nonezistence results for systems of station-
ary and evolutional partial differential inequalities that involve
p-Laplacian and similar nonlinear operators as well as gradient
nonlinearities. QOur proofs are based on the nonlinear capacity
method.

1. Introduction

In this paper, we consider problems of existence of positive solutions
for systems of quasilinear differential inequalities of different types.

Due both to theoretical reasons and to numerous practical appli-
cations (see [13], [14]), necessary conditions for existence of solutions
to partial differential equations and inequalities, including quasilin-
ear and higher order ones, got to be treated in quite a number of
papers in the last decades. Up to our knowledge, most results in
this direction deal with the class of radial solutions, or with those
decaying at infinity at a certain rate (see, in particular [12], [15] for
single equations and [3], [4] for reaction diffusion systems).
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A more general approach to these problems is due to E. Mitidieri
and S. Pohozaev (see their papers [9]-[11] and the monography [8]).
Their "nonlinear capacity” method consists in obtaining a priori es-
timates based on the weak formulation of the problem with a special
choice of test functions, usually in the form x(z) = pgr(x)u?(x),
where u is the eventual solution, ¢ a standard mollifier, the size
of whose support depends on a parameter R > 0, and v € IR. The
subsequent passage to a limit for R — oo (in the case of unbounded
domains) or R — 0 (for bounded ones) yields a contradiction to
assumed properties of the solution. In evolution problems, the test
functions depend upon the temporal variable as well, but the general
structure of the argument is similar.

Our method is based on appropriate modifications of this ap-
proach. However, for stationary systems with singular terms in
bounded domains, we sometimes combine it with the strong max-
imum principle, similarly to our earlier papers [5] and [6]. We also
cover systems with gradient terms, that were not investigated previ-
ously to the best of our knowledge.

This paper consists of five sections besides the introduction. In
the second one we formulate basic assumptions and introduce test
functions for subsequent use. Section 3 deals with systems of station-
ary differential inequalities with singular nonlinearities, but without
gradient ones, which get added in Section 4. In Section 5 we pass on
to evolution systems without gradient nonlinearities, and in Section
6, to those that do contain ones.

The author thanks Enzo L. Mitidieri and Stanislav I. Pohozaev
for introducing him to the field and for fruitful discussion.

2. Basic Definitions

Let Q@ C IR™ be a smooth domain, and let S be a closed (eventually
empty) lower dimensional subset of Q2. We denote Q\ S = . (Ev-
idently, for S = or S C 99, one has Q' = .) For € > 0, we shall
use the notation S¢ = {z € Q' : p(z,5) < e}.

Suppose that A : Q' x IRy x IR" — IR, is a Carathéodory func-
tion, and let

Lyu = div(A(z,u, Vu)Vu)
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for any u € I/Vllocl(Q’) such that A(x,u, Vu) € LL ().
In what follows we shall use the notation p’ = -£-. Our termi-

p—1-
nology is derived from [1].

DEFINITION 2.1. The function A and the corresponding elliptic oper-
ator L are called strongly-p-coercive (S-p-C) if, for some constants
¢,C >0 and all (x,u,n) € O xRy x IR", there hold the inequalities

clnP=* < Az, u,n) < ClypfP~ (1)

with some p, 1 < p < n. The operator —L 4 is called strongly-p-
anticoercive (S-p-A) in this case.

EXAMPLE 2.2. The Laplace operator is strongly-2-coercive. In gen-
eral, the p-Laplace operator with A = |n|P~2 is strongly-p-coercive.

To establish a priori estimates of the solution of an inequality, we
put into its weak formulation parameter-dependent test functions of
the form

Xe(z) = €() (2)
with A > 0 large enough (which can be specified further according
to the nature of the problem), where &, (and hence x. itself) belong
to CL(€V;[0,1]). In case S C 2, where a model situation may be
S = {0} and p(z) = |z|, we shall use functions supported in a thin
layer which surrounds S, but does not intersect with it:

0 (zeS°u()\sh)),

e(r) = (3)
1 (x € 8%\58%),

where € > 0 is so small that S% C Q.

If S = 09, we introduce test functions equal to 1 in the most
part of the domain 2, with the exception of a thin layer near the
boundary where they vanish:

1 (z€Q)\o0%),

Ee(z) = (4)
0 (x € 00F).

In both cases, we shall additionally assume that

DA (2)| < P (2 € Q) (5)
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for each multi-index § that appears in the formulation of the problem
or in the proof.
Finally, in case 2 = @ = IR"™ we shall take

Xr(z) = Ex(x) (6)
with A > 0 large enough and £g € C}(IR™; [0, 1]) such that

1 (z € Bgr(0)),

r(z) = (7)
0 (a: c R" \ BQR(O))

and
|D%¢p(x)] < R (z € R™) (8)

for each multi-index f.
Here and in the sequel, ¢ denotes generic positive constants in-
dependent of z and u.

3. Stationary Systems

In this section, we consider the problem

div(A(z,u, Vu)Vu) > fo?t in Q,
div(B(z,v, Vv)Vv) > guP! in Q, (1)

u,v >0 in Q

assuming that A (or —A) is S-p-C and B (or —B) is S-¢-C with
constants p,q > 1 respectively.
Let v € IR. We consider the class of solutions

X"/(Q/) = {(’LL,’U) QY — ]R'-i- X R+7qu1u’y7f’um7

guPtvY, guPt, |[VulPu =1 |[Vo|%7~t € L (Q)}.

loc
We also define intersection sets

X (@) =[] X4(®) and X_(2) = [ ) X, (€.

v>0 <0
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DEFINITION 3.1. We shall say that a pair of nonnegative functions
(u,v) € WIP(Q) x W) satisfies the system (1) in the weak

loc loc
(distributional) sense if

A(z,u(z), Vu(z)), B(z,v(x), Vo(x)) € Li,. (),
Lau, Lpv € L (Q),

and for any nonnegative test function @ € Cé(Q’ ) one has

—/A(aj,u, Vu)(Vu,V)dr > /qulgpdw,

y y 2)
_/B(m,v,VU)(V%V@ dz > /guplsoda:,
Q/ o

where all integrals are supposed to exist. If

ess in£ max(u(z),v(z)) > 0,
xelY

then the solution is called strictly positive.
The results of this section are based on

LEMMA 3.2. Let A, B : Q2 xRy xIR™ — IR. Suppose that A is S-p-C
(resp. S-p-A) and B is S-q-C' (resp. S-q-A) with min(p,q) > 1 and

p—1<p, ¢g—1<aq. (3)

Then all eventual solutions of (1) satisfy apriori estimates

p1g1—(p—1)(¢—1)
<m/ futpdz < epPr = ®=DEY (supp|Vp|)-
max <|V@($)|Q1(q(p—1)+pp1)f—(p—l)(q—l)(x)g—(p—l)ql (x))’
zesupp| V|

p1q1—(p—1)(g—1)
/ guP' o d < cuP =06 (supp| )

’

max (WM@‘pl(p(q—l)Jrqql)f—(q—l)pl (z)g~ P~ 1la=1) (@)7
z€supp| V|
(4)

where @ s any admissible test function.
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Proof. To prove this lemma, we adapt a method developed in [8]-[9]
for quasilinear elliptic systems with a,b = 1 in IR" (see, in particular,
Theorem 8.1 of [8]). In case of anti-coercive systems and S = 01,
our result was proven in [5]. Here we assume that both operators
are coercive, otherwise we take v < 0 and test functions (u + 6)7¢p
and (v+9)Yp with § — 0.

Let (u,v) € X,(€) be a solution to (1), and let ¢ € C§(;Ry)
be a standard cut—off function.

By multiplying the first and the second equation of (1) respec-
tively by u7y and by v7¢ and integrating by parts we find

/qu1u7¢ dx < —/A(a;,u, V) (y| Vv o 4+ (Vu, Ve)u?) dz,
Q Q

/guplvygoda: < — /B(m,v,Vv)(fy|Vv|21ﬂ_lgo + (Vou,Vp)v7) dz.
Q Q

Using inequalities (1), we obtain

/qu1u7g0d$§ —c 'y/|Vu|pu7_1g0daj+/|Vu|p_1|Vg0|u7da: ,
o) 91 o)

/guplvygoda: < —c fy/\Vv\qqﬂ_lgoda:—k/\Vv\q_l\Vgo\zﬂdm
Qf Qf Q

Further, by the Young inequality with parameter n > 0 we have

VoolP
/qulu“/gpd:c+c(|fy| —n)/|vu|puv—l¢d$ < cn/ |@p§f|1 WP g,
Q Q! &

(5)
q
/guplv“’goda: + (vl —n) / |Vo|i Lo de < dy / |Vq—sf|11ﬂ+q_1 dz,
94 94 94 4
(6)

where the constants ¢,, d, > 0 depend only on the operators and
v, m>0.
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Next we test (1) with ¢ and obtain by the Holder inequality

7

D =

p
/qulcpd:r < /|Vu\pu7_1g0d:r ‘Z;ﬁ‘ NE=Y dy )
(7)
1 1
q q
/guplcpd:r < /\Vv\qqﬂ_lgod:r |qu0|1 Na=1) gy
(8)

By using (5) and (6), the last estimates imply that

/qulgoda:<D (JV@ uP 1 da
Vl|P
(r//sozo |1 U070 dy » (9)

1
I

B =

q
/guplgoda: <E, @v”“‘l dzx
Q/
1
q
Bl oiaaz) - o)

where D,, and E; > 0 depend only on the operators and v, n > 0.
Now we apply the Holder inequality with parameters a,a’ to the
first integral on the right—hand side of (9) and we get

1
1

Pl
YVol|P
@p~1
!
pla pla

o |VeplPe!
< / guPT =D dy / g% ;j'_l de | |
%

upp|Ve| upp|Ve|
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1 1

where — + — = 1. By choosing the parameter a so that (p+vy—1)a =
a a

p1 from (9) and (11) we have

1
p’a
/ folpdx < D, / guPtp dx .
! supp| V|

1

J V pa’ Plal
. / g_?| f/|_1 dm .

supp| V| ©P

1
. </ ‘vp_sf‘lpu(l—'y)(zv—l) d:c) ’ . (12)
supp| V| ¥

By repeating this procedure with parameters y,4’ > 1 with the last
integral of (12) we obtain

1
p
Vel a-ne-1 g, | <
pr1
P , P
< / qul=NE=Dy 5 g / g—%lvwllpy |
> SOpy -1
upp| V| upp| V|
(13)

1 1

where — + — = 1. By choosing y so that (1 —v)(p — 1)y = p1 in
y oy

(13) and combining it with (12) we deduce that

1

p’a

/ folpdx < D, / guPtp dx .
! supp| V|

1

1 1
Py J |V pa’ p’a’
. / guP* o dx / g_F‘ pf/‘_l dx .
supp| V| supp| V| i
1
_d |VeltV =
. / g v | soll_l I
supp| V| PPy
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that is,
Yoty
/qulgoda: <D, / guPlp dx
o upp| V| )
, plal , Py’
< |VolPe | VolPY
/ o 90,|1dx ' / P Ak i I
P’ — opy'—1
upp| V| upp| V|
(14)
where we have chosen the parameters a, y so that
1 1
—+—==1 1-7FE-y=p,
y Y
(15)

1 1
—+;=1, (y+p—1)a=p:.

We observe that this choice of a and y is admissible by our assump-
tion (3) provided that |y| is chosen sufficiently small. Introducing
new parameters b and z such that

1 1
Sho=1, 1-y(g-1)z=
-t =1L - -Yz=a,
(16)
L (Y+qg—-1b=
b by -5 T4 =qQ1
and estimating now the right-hand side of (10), we obtain
7ite
/guplgpd:c < E, / folodx
o upp| V|
L i
b q’b’ v qz’ qz’
/ q S/
/ [ ALk B / i
SOq — Squ -1
upp| V| upp| V|
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Combining (14) and (17), we get

m2

1—-mima ¥ q’v
Vol|?
/qulgpd:c < D,E;" / f__%d:c
! upp|Ve|
mo 1
qz’ , p’a’
V qZ a/ V pa
([ ) ([ e
UPP\V80| ) upp|Ve|
,\
/ Py
/ —%\Vsol\ g |
Py -1
\§upp\Ve0|
(18)
1-mime , %
o, |Vep|P?
/gum@dﬂ? < E,D;" / a (x)mdw
! upp| V|
my L
/ v |py’ " |V |qb o
o @ @
| e | et
\gupp\vwl . upp| Vel
| | "
_Z Vo 2!
/ G
upp\VAOI
(19)
and finally
1—-mimao

/fv‘“(pda:

max
z€supp|Ve|

Tot At o
< Dy E)" p(supp|Vep|) o
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1—-mimso
m P+ T4+
guPto dx < By Dy pu(supp|Vep|) oo ey T T asT
, a1 _my_my
max (|Vp(a)|™etef 7w g,
z€supp| V|
(21)
where
1 + 1 1 + 1 (22)
mpi=—+—, Mmg:=—+—.
P gz 2T pa py

An easy computation, by taking into account of (15) and (16),
gives the explicit values of m; and meo, that is

g—1 p—1

, Mg = .

q1 p1

Consequently from assumption (3) it follows that the exponent
appearing on the left-hand side of (20)-(21) satisfies

p1g1 — (p—1)(g — 1)
p1q1

1—mimo = > 0.

Calculating the explicit values of the exponents on the right by (15)—
(16), we obtain (4). O

Using Lemma 3.2, we can prove a series of nonexistence results
for systems. Here we start with Case 2 (boundary singularity).

THEOREM 3.3. Let the assumptions of Lemma 3.2 hold. If f, g €
C(Y) are non-negative functions such that

fl@) 2 ep™*(x), g(x) = dp~"(x) (24)

in Q with p = dist(x,0Q) for some c¢,d > 0 and o, satisfying the
assumption

max((a—1)(¢—=1)+(B-p1—q)q1, (B-1)(p—1)+(a—q —p)p1) >0,

(25)
then problem (1) with A S-p-C (resp. S-p-A) and B S-q-C (resp.
S-g-A) has no solutions (u,v) € X, (') such that both u # 0 and
v # 0 for sufficiently small v > 0 (resp. v <0).
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Proof. Choosing ¢ = x. that satisfy (2), (3), and (5), by Lemma
3.2, we get that for any € > 0 such that Q\ 902 # () one has

foltde < eghHm (26)

Q\002e

and
/ guPt da < %2172 (27)
0\002e

where

5 =6, = P Di+aa+g—1)

pg—(p—1D(g—1)

5y =5, = A= Dllat+pp+p—1)

g —(p—1)(g—1)

(p—1)(alg—1) + Baq1)

TN = Ty = s
Y - -1 1)
(¢ = D(ap1 +B(p— 1))
pigr—(p—1)(g—1)
From assumptions (3) and (25) it follows that either 6; +7; > 0,
or 09 + 70 > 0. Letting € | 0, we complete the proof . O

T2 = Ty ‘=

In Case 1 (S C ), as soon as A is S-p-A and B is S-¢-A, estimate
(4) with test functions . that satisfy (2), (4) (instead of (3)) and
(5) leads to

(a=p)p1+(B—q)(p—1)
ess inf u(z) < ce Pra-G-Dla-D
zeqY

(e=p)(a=D)+(B=a)ay
ess inf v(x) < cg” Prar--D-1)
ze)
This results in

THEOREM 3.4. Let (3) hold. Suppose that S C Q and

max((a—p)p1+(B—q)(p—1),(a—p)(g—1)+(B—q)q1) > 0. (29)

Then problem (1) has no strictly positive solutions in X ().
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REMARK 3.5. If the operators La and Lp satisfy the strong maxi-
mum principle (see conditions of its validity in [2]), then Theorem
3.4 implies that system (1) has no nonnegative nontrivial solutions
at all.

Finally, consider Case 3, i.e.
div(A(x,u, Vu)Vu) > folt in R",
div(B(z,v, Vv)Vv) > guP! in R"™, (30)
u,v >0 in IR".

In this case, Lemma 3.2 implies

THEOREM 3.6. Let (3) hold with A S-p-C (resp. S-p-A) and B S-¢-C
(resp. S-q-A). Suppose that Q =R" and

min(@l,ﬁg) S 0 (31)

with

0, = (e—p)p1 +(B—q)(p—1) 4 n—g

p1q1—(p—1)(q—1) q—1’

_ (a=p)(g=D)+(B-q)q1 | n—p
0= oD@y T

p—1°

Then problem (30) has no positive solution in X (IR™) (resp.
X_(IR™)).

Proof. Putting ¢ = xr that satisfy (6)—(8) into (4), applying Lemma
3.2 and taking R — oo, we immediately obtain the result if inequality
(31) is strict. If, for instance, §; < 03 = 0 (the symmetrical case is

analogous), then from Lemma 3.2 it follows that [ fo? dz < oo
Rn
and hence

/ foordr — 0

supp|Ver|

as R — oo. Combining this with (14) and (18), we obtain u = v =0
in IR™. O
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REMARK 3.7. In case a = 3 =0, Theorem 3.6 essentially reduces to
Theorem 22.1 from [8], which is known to be sharp (see Remark 22.1
therein). This suggests to consider eventual solutions of the form

u(z) = e(1 + |2")%, v(z) = d(1 + |z]*2)"

with a suitable choice of the constants in order to establish positive
solvability of problem (30) with

A=—A, B=-A,,
flx) =+ Jz)%, g(x) = (1 + |2*)F

if the assumptions of the theorem do not hold.

4. Stationary Systems with Gradient Nonlinearities

Consider the system of parabolic inequalities containing gradient
terms:

div(A(z,u, Vu)Vu)u > avBp=® — 01| Vuls1p~  (x € ),
div(B(z,v, Vo)Vv)v > aguPp=8 — by|Vul*2p7P  (z € Q).
(1)

We can also consider the case @ = IR", S = 0 and p(x) = |z|.
We assume that

p1>p—1, q>q—1,

(2)
pbp1 0< sy < qq1

0<s < , ,
! p1+1 g1+ 1

and the operator A (resp. B) is S-p-C (resp. S-¢-C) with

Cl|77|p_2 < A(%%U) < Cl|77|p_2¢ C2|77|p_2 < B(xvyan) < 02|,’7|p—2
(3)
for all (z,y,n) € @ x Ry x IR".
Suppose that (1) has a nontrivial positive solution in the following
sense.
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DEFINITION 4.1. A pair of nonnegative functions (u,v) € (L1 10c(€'))?
is called a solution of (1) iff for each test function p € C3°(Y;IR4)
there hold inequalities

o [0 e pde < [( A0, Tu)(T0,T0) + 0 [Tul ) d,
Q Q
GQ/UPI Bodr < /(—B(m,v,Vv)(Vv,Vgo) + by V|*2p~P1) duz,
Q/ Qf
(4)
where all integrals are supposed to exist.

Now choose a parameter 7 so that max(l —p,1 —¢q) < vy < 0,
and let ¢ be a test function that will be specified later. Testing the
first equation against u”y and the second one against v” ¢, with the
help of inequalities (3) we obtain

al/vqlqu_agoda:—i—clM/|Vu\pu7_1g0da:
Q Q
<Cl/|Vu|p 2(Vu, Vgo)u”d:c—l—bl/WuFluV “Ypdr

<01/|Vu\p 1|Vg0|u7dm+b1/wu|81u7 “Yodr,

ag/uplzﬂp gpcl:v4—62|'y|/|Vv|qv7 Yo da
Q/
<02/|Vv|q 2(Vw, Vgp)v”da:+b2/|Vv|321ﬂ P dy

<02/|Vv|q 1|Vg0|v”da:+bg/|Vv|s21ﬂ P d,

and, by the Young inequality with appropriate parameters,

al/vqluyp godx—l— M /|Vu|pu7 Loda

Q/
s1 a1p

< 6(7)/16”” NPt pdm+C(blm)/uw"‘ﬂp_p‘ﬂsodw,

9 97
(5)
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aQ/uplzﬂp_ﬁgoda:—l—@/|V@|qu7_lg@dﬂv
Q/

Q/
sp  _ _Pig
< 6(7)/“q+7_1|v<ﬂlqs01‘q dm+6(bz,7)/”7+q‘520 =52 da.

07 Qo
(6)

Now, testing both equations in (1) with ¢, we get

al/vqlp_agoda: < /(—A(m,u, Vu)(Vu, Vo) + b1|Vul® p~ ) dx
o) 01
_p
Scl/\Vu|p_l\Vg0\ dm+b1/|Vu\51p =
Qf Qf

(7)

and likewise

aQ/uplp—ﬁgp dr < /(—B(:L’,v, Vou)(Vu, V) + b2‘vv‘52p—ﬁlw) dr
Q Q ;
_ P19
<o [ 190 il t b [ (9o i pda,
4 Q!

(8)
By the Young inequality (note that it is applicable since s; < p; and
s2 < q1 by (2)), we get

/ VulP |V da < / (0 VulPu? o + ayu DD TPl P) de,
Q Q

/ Vol |Vl da < / (I Voli L 4 b Tl 9) de,
Q/

!
(A=v)sy _ oqp

/|Vu|slg0daj §77/|Vu|pu7_lgpd$+cn/u P=stop Posipdr,
Q/

v @ 1 (I-=v)so _ B1a
/\Vv\‘”gpda:gn/\Vv\qvV gpda:—i—dn/v =3 p 2 pdx
Qf Q

Q/

9)
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with some constants a,), by, ¢;;, d;, > 0. Combining (5) — (9) leads to

s alp
/v‘“p_agoda: <c(ﬂ/ uPTT TV PP da + /uwﬁp”lﬂ pdz

Q &
(1—v)s o
+ /u(l—v)(p—l)‘vgp‘pgol—p dx + /u lp—wsfp_ﬁgodm ,
ot o
(10)
-8 +y-1 1- Ty
/up1p pdr <c /vq 71Vl qdm—l—/v sz p =2 pdx
o ! v
A-)s B
+ /’U(l_ﬂ/)(q_l)|Vgp|qul_q da:—l—/v lq:YSQQp_%@dgj ,
Q 94
(11)

where the constant ¢ depends only on the parameters of the system
and on the choice of 7.
Now define parameters

m=—2r 5=
p+y-1 qg+~v-1
_ pilp—s1) 5 — q1(q — s2)
Y2 =7 2 — — /N
Y(p — 51) + 51 Y(q — s2) + 52
(12)
AU SN NS —
1-mp-1) (1=y(g—1)
_ pi(p—s1) 5 q1(q — s2)
= et g=
(1—7)s1 (1—7)s2
and arp
M=X=0, do=A=——1)
p—s1
(13)
o  Pug
pr=p3 =0, po=ps=— .
q— 82

Note that, for v < 0 small enough, we have ; > 1 and §; > 1 (i =
1,...,4) due to (2). Thus applying the Young inequality with these



254 E. GALAKHOV

parameters to respective terms on the right hand sides of (10) — (11)
results in

/”q1 “pdz </(77uplp‘%+c ZP” M)V plotl) d,
Q 4
(14)

/uplp‘ﬁsodx S/(nv‘“p“‘wc Zp ) 197 g1 0%)
Q Qf

(15)
Y., 00 (1 = 1,...,4) being conjugate exponents to ;,d;, with n > 0
arbitrary small.

Now suppose that S C €2, and choose a family of test functions
© = xe with x. satisfying (2), (3), and (5). With this choice of ¢,
substituting (14) with n < 1 into (15) and vice versa, we obtain the
following estimates:

max / v p~%p. d, / wPp P dr | < cet™  (16)
45\55 345\35

where
Ko = min(K1, K2),
o (B L
= min o (5 2= p), (17)
Ko = min45£ (6% + pi — q) .

i=1,...,

Restricting integration on the right hand to the set S3¢\ S2¢, where
ve(x) =1, yields

max / v p~%dx, / wPp P dr | < cefot™
35\5‘25 335\525
and hence

Ko to Ko+8

max( inf w(z), inf v(aj)) §c<6 notem > (18)

xeS3e xeS3e
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Taking ¢ — 0, we see that inequality (18) contradicts the strong
positivity of the solution if kg > max(—a, —(3). Thus we come to
the following result.

THEOREM 4.2. Let (2) hold. Assume that one has ko > max(—a, —f3)
with ko defined by (12), (13), and (17).

Then problem (1) with S C Q has no strictly positive solution.

REMARK 4.3. If A, B additionally satisfy the strong mazimum prin-
ciple, Theorem 4.2 implies nonexistence of any nonnegative notrivial
solutions to (1).

In a similar manner, for 2 = IR™ and p := |z|, we can choose
¢ = xr(x) with xr(z) =1 (Jz| < R), suppy C Bar(0). In this
situation, an analogue of (16) with ¢p instead of ¢, implies

max /vq1|x\_°‘daz, / uPt|z| P de | < cRMotm,

r(0) Br(0)

where
M() = maX(Ml, MQ),
_ (B L
My = max of (54X - ). (19)

My = '_max45£ (6% —l—,uz-—q).

i=1,...,

Thus, taking R — oo leads to

THEOREM 4.4. Let (2) hold and My > —n, where My is defined by
(12), (13), and (19).

Then problem (1) with Q@ = IR"™ and p = |z| has no positive
solution.
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5. Parabolical Systems: Nonexistence
Now consider a system of first order evolutional inequalities
up + div(A(z, u, Vu)Vu) > ap~ v  ((x,t) € Q = ' x Ry),

vy + div(B(z,v, Vo)Vv) > bp PuPt  ((z,t) € Q),

u(z,0) = up(z) (x € V),
v(x,0) = vo(x) (x € ).
- (1)
Here we assume that ug,vg € C'(£;IRy) and one has
p1 > max(p — 1,1), g1 > max(q — 1,1). (2)

The operators A and B are supposed to satisfy (7).

DEFINITION 5.1. A pazr of nonnegative functions (u,v) € (C(Q) U
WE(Q)  (C(Q) U WEQ)), u(w,0) = uo(e), v(w,0) — vo(a) is
called a solution of (1) iff for each test function ¢ € C3°(Q;IR+)
there hold inequalities

//vql goda:dt—l—/uogo(:c 0) dx

Ry
< - / / <A(a:,u, Vu)(Vu, Vgo)—i—uaa—t) dx dt,
e (3)
b//uplp_ﬁcpd:rdt—i-/vogo(m 0)dx
Ry
<—//< x,v, Vv)(Vu, Vgo)—l—v%—t> dx dt.
Ry Q'

The argument that follows is based on those from Section 40,
[8], where a similar system is considered with f(z) = g(x) = 1 and
Q=R"

Assume that problem (1) has a solution in the sense of Definition
5.1, and let ¢ be a standard test function. Testing the first inequality
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in (1) with u”¢ and the second one with v7¢p, similarly to the proof
of Theorem 4.2, due to (7), we obtain

/ /(avqlu“’p_a + c1 Y| | VulPuY Yo da dt +/ ul ™ o dr

Ry Q
1
< / / <01|W\P—2(vu, Vo)u? dxdt — L V“gf) dz dt,
R,
buP v pP o + ol || Vol o) da dt + VH dx
( p e gl @ @
R, Q
< // ol Vol T2(Vo, Vi) da di — —— 122 gt
- ’ v+ 1" ot ’
Ry Q

and, by the Young inequality with appropriate parameters,

/ /(avq%ﬂp_o‘ + #Wu?u”‘l)gpdzpdt +/ ngoda:
Ry o)

< Cy(vy //<up+” VPP + )t 8t ) dx dt,

/ /(buplv“’p_ﬁ + @\Vz}\qv“’_lw) dx dt +/ vl o da

Ry O 97
< Ca(y //(vqﬂ V|t~ 4 o7 8t > da dt

with some constants ¢y, ca, C1(7y), C2(y) > 0 for v < 0 small enough.
Now let 6 > 0 and

A = {(x,t) o), 10 < R}, B.=A.N{t =0l

(4)

Recall that ' € IR™ and m := n—dim S. We introduce the notation

ap = b, = pPiq1 . ag = by = P11 7
(p—1(g—1) p—1
(5)
az3=1>b pig ay = by = p1qa,
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as well as
= (m+0)Ao+ (p—1)(Blg — 1) + (@ — ¢)q1) — pp1a
q1 ’
oy = m(pign —p+1) +0A1 + (p — 1)(aq1 + B) — ppr1a
q1 ’
(6)
s = mpig —q+1)+B-0)(¢—1)+ (a—qga
q1 ’
vy = m(pign —1) —0(q1 + 1) + aq + B
q1 ’
and symmetrically
5, = MmO+ (@ Diep—1)+ (B —pp) ~ ama
P1 ’
5y = 1@ — g+ 1) +0As 4 (g = (1 + ) — g
b1 ’
(7)
5y = Mg —p+ DA (= 0)p—1) + (8- plps
b1 ’
51— m(piqr —1) —0(p1 +1) + Bp1 + «

b1

with Ag :=pra — (p—1)(¢—1), Ay :=p1gs — (@1 + 1)(p— 1) and
Ay ==pigs — (p1 +1)(g = 1).
Our next aim will be to prove the estimates

a/ /vqlp_o‘ dx dt + /uo dr < c{e’“‘l/l eM | M% E'““il} )
5 B.

b/ /uplp_ﬁ dx dt + /vo dr <c {5511’/1 + 02y gOath 5541’21} )
5 Bs

(8)

where a}, b (i = 1,...,4) are conjugate exponents to a; and b; defined
by (5).



SYSTEMS OF DIFFERENTIAL INEQUALITIES 259

For this purpose, we test (1) against ¢ and, due to positivity of
ug and vg, obtain

a / /vqlp_agod:z dt g—/ /<A(m,u, Vu)(Vu, Vo) +u88—f> dx dt

Ry O Ry O

8 dp
b uPrp™Podrdt <— B(z,v,Vv)(Vv,Vy) + Vo dx dt,
Ry Ry

which by (3) and the Hélder inequality leads to

a//vqlp_o‘god:rdtgc //\Vu|pu7_lg0d:rdt

R, O R, O

/ /u(l—v)(p—l)wﬂpgpl—p dx dt

1/p'

1/p

Ry Q
1/p} 1/p1
Py
+ //‘g—f =911 da dt (R//uplp “odxdt
+ +
(9)
and
1/q
b//uplp_ﬁgpd:cdtgc //|Vv|qv“’_1g0da:dt
Ry Q Ry Q
1/q
/ =N |9~ da: dt
R
1/q /¢
, Bay
//‘ ey a drdt //vqlp_ﬂgoda:dt .
+ & + &

(10)



260

E. GALAKHOV

We introduce parameters

Denote

_ P1 Y1 = P1 2 = P1
pt+y—1 v+1 (1="-1)
qg+vy-1 v+1 (I=7)(¢—1)

X://vql,o_o‘dmdt, Y = //upl,o_ﬂda:dt.

R, O R,

Then from (4), (9), and (10) we get

where

1 4, 1 1 41 1
X <cedYvem' vzt ALY ' p21BLYrn(C ,

#-i-i L_,_L 1
Y <edXim Dy Xdn 2FfYaF

_1
p'w]

/ ! OL_KL&
4= //'Vsolp”lwl_p“lp“l dz dt
R €

, , o
' //|V90|‘m%01_7"21pz1 dx dt

Ry

(1

R, O

' / / VPl p =1 da dt

R, O

Pl o)
C= //‘88—(5 gpl_plpTllda:dt )

+ &

=
IS}
=

w0 e
O Yipn dxdt

XS

(11)
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1
q’ Kb
b= //'Vsol"”wl "2p e da dt
Ry
Bz =
/ ! Q
//'leqZQle‘qZQpZQ dx dt :
R O
1
o 2 Byb 2
;222
//‘a_f P Vep e dudt
Ry
Bz i
/ !/ Q
//'leqZQle‘qZQpZQ dx dt ,
Ry
i/
dp | , 1 "
//'5 e T Np o drdt
R Q

Using the definitions of x;,y; and z;, ¢ = 1,2, from (11), we obtain

2 71
X§c<YP1 A4+Y 1 B+YP10>

g=1 2(¢=1) 1
Y§c<X a D+ X E+X‘11F>,

that is,
XP1 < ¢ <Yp Lapt Y Bm +YCPr
(12)
Yo < C( 2 g + XFo
Further, we choose a family of test functions ¢(z,t) = & ()Tx (%)

with & satisfying (2), (3), and (5), and T € C§°([0,7];[0,1]) such
that 7,-(0) = 1, T-(7) = 0, and

T'|° /
/‘TT‘_1 drdt < cr'™* (13)
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with ¢ >0, 7 =¢? and s € {p1,q1}. This leads to

A<CA€ B<CB€ C<CC<€
D < ¢peM , B < cpeM , < CFEM

o _ M40 —p+ D) —pptalp-1)
=

b1 ’
[, = M0 =200~ 1) —0pi(p — 1) —pp1 +2a(p — 1)
br1

)

m(pr —1) —0+a

L3: ’
P1
v MA@ —a+1) —ga +Blg—1)
=

)

A, = (Mt 0) (g — 2= 1)) — 0a1( — 1) — qq1 +26(g = 1
2

1 p qq1
M=V =05
q1
(15)
Note that I I M M
Ly = l—l- 3 M2:—1+—/3 (16)
b 4 q q

Combining (12) and (14) results in

XP1 < c <YP 1 L1p1 + Y 2(p=1) L2p1 4 YEL3p1> ,
M3q1>

XPt <¢ (Yp_]-ELlpl 4 YEL3p1) , Y& < (Xq—IEMlql + XEngl) )
Thus

Yo < <Xq leMigr

and, by (16) and the Young inequality,

(=D(g=1) p=1
Xt <el X a1 EMl(P—l)"‘LlPl 1+ X a EMg(p—1)+L1p1

q—1 1
"1 sMi+L: a1 «M3+Ls:
4+ X a1 gMitlspr | X cMst 5p1> ,
(p—1)(g—1)

Ya g c <Y P1 ELl(q_l)+M1q1

g—1 p—1 1
4Y 1 glsle=D)+Miar |y oy JLatMsar YplEL3+M3q1>
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or, again by the Young inequality,

X<ec <€(M1(p—l)+L1p1)a'1 + e(Mz(p=1)+Lip1)ay
+e(MitLapi)ay 4 o(Ms+Lspi)a)

Y <e (E(Ll(q—1>+M1q1>ba 4 e(Lala=1)+Mi1g1)bh
4eLr+Msqu)by 5(L3+M3q1)bﬁ;> ,

where a, b, (i = 1,...,4) are conjugate exponents to a; and b; defined

by (5). A direct calculation shows that

M =M(p—1)+ Lipi, 6 =Li(qg—1)+ Miq,
Yo = Msz(p—1)+ Lip1, 2 = Lz(q— 1)+ Miq,

17
v3 = My + L3pa, 03 = L1 + M3qa, (17)
v4 = M3 + L3p1, 04 = L3 + M3qy,
and estimates (8) follow.
Now assume that for some constants 01,09 € IR
ug(z) > cp® (z) (x € Q) with ,nlain4'yia; > 01 (18)
i=1,...,
or, alternatively,
vo(z) > cp??(z) (z € Q) with .nllin4(5ib; > 09. (19)
=

yooay

Then, taking ¢ — 0, we immediately obtain a contradiction. Hence,
the following result can be formulated.

THEOREM 5.2. Let (2) and either (18) or, alternatively, (19) hold
with parameters defined by (5)-(7). Then system (1) has no positive
solutions in the sense of Definition 5.1.

REMARK 5.3. The optimal choice of 0 in this and the next chapter
can be made similarly to [8], Theorem 40.6.
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6. Evolution Systems with Gradient Nonlinearities

Now consider the system of evolutional inequalities containing gra-
dient terms:

up 4+ div(A(z, u, Vu)Vu)u > a1v? p=® — by |Vul*1 p~*
((z,1) € Q)
vy + div(B(z, v, Vo)Vv)v > aguPt pB — by|Vu|52p~
((z,1) € Q)
u(x,0) =ug(z) >0 (x e ),
v(x,0) = vo(x) >0 (x € Q).
(1)
We assume that
p1>p—1, q>q—1,
(2)
pPp1 aq1
0<s1< , 0<sy< .
o p1+1 52 q+1
For S C 2, we shall also suppose that
wo(@) = o™ (2), wo(z) = op(x) (& € ) 3)

with some ¢, 61,09 > 0.

DEFINITION 6.1. A pair of nonnegative functions (u,v) € (L110c(Q))?

is called a solution of (1) iff for each test function ¢ € C3°(Q;IR4)
there hold inequalities

a1//vqlp_o‘goda:dt—F/uogo(a:,O) dx <

Ry Y Qo
// (z,u, Vu)(Vu, Vo) + b1|Vul*t p™ ) p dz dt+
Ry

- [ [ e

R,
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ag//uplp_ﬁgpdwdt—l—/vogo(x,O)dw <

Ry 01
// (z,v, V) (Vo, V) + ba|Vo|*2p~ 1) o da di+ (4)

//v—d:cdt

Ry

Suppose that (1) has a nontrivial positive solution. We test the
first equation against u” and the second one against v7y, where
max(l —p,1 —¢,—1) < v < 0 (if A is S-p-A and B is S-¢-A) or
v >0 (if Ais S-p-C and B is S-¢-C) and ¢ is a test function that
will be specified later. Using our assumptions on A and B (see (3)),
we obtain

/ /(alvqlzﬂp_a + a1 ly| - [VulPu' ™) e da dt —I—/ 7+1<p dx
Ry 9%

Iy
< -1, by |Vl p= “ u da dt,
< //(CHIW\ [Vl + b1 [Vul* p™p — 7—1—18t> x
Ry
//(aguplzﬂp_ﬁ—kcﬂfﬂ . \Vv\qvv_l)goda:dt—i-/vgﬂgodm
Ry € Qo
_ _ Jp
< C q-1, b s2,-B1, _ Y 9% Y da dt
_//< 2 VOl - [Vl 4 bof Vo2p R = —=2 | o dardt,
Ry Q'

and, by the Young inequality,

//(awafzﬂ —« M\Vﬂpu”’_l)godxdt—k/ ul o dr

< c(y //upﬂl 1P dy dt + c(by1,7) // PSl,o PSlgoda:dt
// 41

’y+1

Ry

‘ddt
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//(aguplv“*p%%—mwmqu_l)gpd:pdt+/ 7Jrlgoalar:

Ry
Bia
< ey //v‘””’ Yol=0 dx dt + c(bo, v // - S2p - Szgoda:dt
R, Q R,
11920 g gt
74—1// ot ‘ o

Ry &

Now, testing both equations in (1) with ¢, we get

a1 / /vqlp_o‘gpd:cdt—l-/uogoda:

Ry 9%
< //<—A(m,u,Vu)(Vu,Vg0)+b1|Vu\slp_o‘1go—u%—f> dx dt
Ry
-1 51—« dp
§//<01|Vu|p Vol + b [Vl p~*1 o + u WD dodt (7)
Ry

and likewise

ag//uplp_ﬁgod:rdt—i-/vogo(x,O)da:

Ry ol
< //(—B(m,v,Vv)(Vv,Vgo)+b2\Vv\52,0_ﬁ1 —v%—) dx dt
Ry
-1 so —f 890
< Co|Vu|T V| 4+ bo|[Vu|2p o+ v e dz dt.
Ry

(8)

Using the Young inequality again, we get

/ / \Vu|P~1 V| da dt

R, O

< //(77|Vu|pu7_lg0+cnu(1_7)(p_l)|Vg0|pgol_p) dx dt,
Ry
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/ / |V V| d dt

Ry
< //(17|Vv|qv7_1g0—I—cnv(l_”’)(q_1)|Vgp|qg01_q) dx dt,
Ry
//|Vu|slp_o‘1g0d:cdt
IR+ v (I-v)s1 _ ap (9)
< //(77|Vu|pu7 Yo+ cpu 7=t p o Slgp) dz dt,
Ry O
//|Vv|52p_ﬂlgoda:dt
Ry
(I-=v)so _ B1a
//( IVo|9 o + v a- 522/) q152cp> dzx dt.
Ry

Combining (5) — (9) leads to

a1//vq1p godmdt+/ 7+1g0da:

R, O

//upﬂ L WlPpl™ 4o e s1p Pms1p) da dt
R,

(A—7)sy ayp (10)
—i—//(u(l NE=D|GpPol P 40 7751 p~ o1 @) da di

Ry

//u7+1+1‘ ‘d dt |,

R, Q
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aQ//uplp goda:dt+/ 7Hgodﬂv

R, O

B1q
//vqer A\ ¢4t 20 2¢)ddt
R

1 1 1— (1—>)sg _ B1q (11)
—|—//< @) |G|t 4y a2 pT a2 ) da di

Ry

/:/UW1+1' ‘ddt,

R, O

where the constant ¢ depends only on the parameters of the system
and on the choice of 7.
Now define parameters

= o — 1
py -1 gy
_ nle—s) o alg—s)
Y(p —s1) + 51 Y(q — s2) + 52
g = /4! by = q1
1— 1)’ (11— 1)’
1-7p@-1) (1-7)(qg—-1) (12)
~ pi(p —s1) 5 — q1(q — s2)
Y4 = 75—~ 4 — 75 N
(1—7)s1 (1—7)s2
s = p1 55 = q1
v+1 v+
Y6 = P1, d6 = q1
and a1p
M=X=0 dp=X\=—2
p—S1
(13)
o g
pr=p3 =0, po=ps=— .
q— 52

Note that, for v < 0 small enough, we have v/ > 1 and 0} > 1 (i =

1,...

,6) due to (2). Thus applying the Young inequality with these
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parameters to respective terms on the right hand sides of (10) — (11)

results in
a1 / /v‘“ gpd:cdzH—/ V+1g0da:

R,
gn//uplp_ pdxdt
R,
4 (14)
(B . / /
el / / S ) gt d dt
Ry @ =1
5. 4519 mé )
() / [ % et
e =5
ag//upl gpd:rdt—l—/ V+190d:17
R,
§7]//vq1p_ag0da:dt
R, €
. (15)
5 8 -
Ry Q@ =1
//Zp —‘ 0 da
L =5
v, 00 (i = 1,...,6) being conjugate exponents to v;,d;, with n > 0

arbitrary small.

Now suppose that S C Q, and choose a family of test functions
o(x,t) == @ (x,t) = xe(x)T:(t) with x. satisfying (2), (3), and (5),
and T.(t) = T(e%) where T(t) € C®(IR;[0,1]), T(t) =1 (0 < t <
1/2) and T( )=0(t>3/4), 0 > 0is fixed, € > 0 arbitrary. We may
assume |2 St L| < ¢ and thus

‘8T5(t)

o ‘ <ce ? (t>0) (16)

with some ¢ > 0 independent of ¢ and . With this choice of ¢,
substituting (14) with n < /ajaz into (15) and vice versa, and taking
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into account that the solution is supposed to be nonnegative, we
obtain

max / U dex, / voe dx | < ceotm™, (17)
48\55 5‘48\5’6
where
Ko = min K;,
=1,...,
_ : B ) _ : .
w= i o (54X —p), we = in 8 (§+ - a).
— 1 / ﬁ_ = 1 , a
m=pinsd ($-0),  wi=pinl (g -0).
(18)

Restricting integration on the right hand to the set S3¢\ S2¢, where
Xe(z) = 1, yields

max / uo(x) dx, / vo(x)dz | < eghfot™

35\525 335\325
and hence
inf , inf < ce™. 19
max <x1€%55 up(x) Inf vo(az)> <ce (19)

Taking ¢ — 0, we see that (19) contradicts (3) if ko > max(d1, d2).
Thus we come to the following result.

THEOREM 6.2. Let ko be defined by (12) and (18). Assume that (2)
holds and one has ko > max(d1,d2).
Then problem (1) has no strictly positive solution.

In a similar manner, for ' = IR" and p := |z|, we can choose
QO(ZL‘,t) = @R(xvt) = XR(x)T(Rat) with XR(:E) =1 (|33| < R)v
suppy C Bar(0), and T and € defined as herefore. In this situa-
tion, an analogue of (17) with pp instead of . implies

R9

R9
max //vql\mradmdt,/ / uPt|z| P drdt | < cRMotnto

0 Bgr(0) 0 Bgr(0)
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where
My = M.
0 z‘g?ﬁ v
_ (B L . 1 (a o
M1—i£11?§47¢ (%_ + A\ p)7 MZ"Q??{&(& + p; q),
= (L - = I o
M= i5.6 <%’ 0) ’ My =56 & (5i 0) '

(20)

Thus, taking R — oo leads to

THEOREM 6.3. Let (2) hold and My > —n for some 6 > 0, where
My is defined by (12) and (20).

Then problem (1) with ' = IR™ and p = |z| has no positive

solution.
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