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Abstract

Optical tweezers enable for non-destructive, contact-free manipulation of ultra-
sound contrast agent (UCA) microbubbles, which are used in medical imaging
for enhancing the echogenicity of the blood pool and to quantify organ perfusion.

Understanding the dynamics of ultrasound-driven contrast agent microbub-
bles from a fundamental physical standpoint is a first step for exploiting their
acoustical properties and to develop new diagnostic and therapeutic applications.
However, experiments on bubble dynamics presently suffer from a lack of control
on bubble position, because of buoyancy, microstreaming and bubble clustering.
In this respect, optical tweezers can be used to study UCA microbubbles under
controlled and repeatable conditions, by positioning them away from interfaces
and from neighboring bubbles. In addition, an ultra-high speed imaging system
is required to record the dynamics of UCA microbubbles in ultrasound, as their
oscillations occur on the nanoseconds timescale.

In this thesis, optical tweezers and an ultra-high speed camera are integrated
into an experimental setup to control the boundary conditions and record the
oscillations of the microbubbles. Optical tweezers are commonly obtained by fo-
cusing a laser beam through a microscope objective, as the high intensity gradient
in the focal region causes dielectric microparticles to be attracted in the focus.
In the special case of microbubbles, which exhibit a lower refractive index than
the surrounding liquid, the opposite situation arises: they are pushed away from
the region of maximum intensity. Nevertheless, microbubbles can be trapped in
the dark core of a donut-shaped trap, which can be obtained e.g. by focusing
a Laguerre-Gaussian beam. In our setup, a Gaussian beam is converted to a
Laguerre-Gaussian mode by using diffractive optical elements implemented on a
spatial light modulator. This allows to trap and manipulate single or multiple
microbubbles, and to control the distance from interfaces as well as the bubble-
to-bubble distance. The “Brandaris 128” ultra-high speed camera is used, in
combination with the optical tweezers, to recorded the bubble oscillations at a
frame rate of 15 million frames per second.

The influence of a rigid wall on the resonance frequency and oscillation am-
plitude was experimentally investigated. An experimental phospholipid-coated
agent (BR-14, Bracco Research S.A., Geneva, Switzerland) was used through-
out the experiments. A resonance frequency curve was recorded for the same
bubble positioned at the wall and at controlled distance from the wall. The ex-
periments show a drop in the resonance frequency for the bubble close to the
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wall, as expected from the theoretical models. These results are highly relevant
for molecular imaging applications, where the response of targeted microbubbles
needs to be discriminated from that of freely flowing ones. We also quantify the
bubble-to-bubble interaction, in two ways: first, we compare the change of the ra-
dial oscillations of one bubble with and without a neighboring bubble. Second, we
resolve the change in distance between two bubbles during ultrasonic insonation.
This results from an acoustical, generally attractive, interaction force between the
bubbles, termed secondary Bjerknes force. To understand this rich two-bubble
dynamics, we couple a recent single-bubble model, accounting for both gas and
monolayer properties with a model quantifying the mutual interaction of bubbles
in their translation and oscillations.

Experiments where optical tweezers are used as a force sensor to measure the
binding force in an antigen-antibody complex at the single molecule level are also
presented. In the future, the possibility of combining optical micromanipulation
with the force-sensing capabilities of optical tweezers will open the way to a new
class of experiments which will give us a deeper insight into fundamental bub-
ble phenomena and find direct application to new ultrasound-assisted targeting
strategies.
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Chapter 1

Introduction

Since their advent in 1986 [1], optical tweezers have found many useful and in-
triguing applications, ranging from physics to biology. Nowadays, several opti-
cal tweezers-based techniques have been developed to perform experiments on
micro- and nano-scale systems with well-controlled experimental conditions. In
particular, the ability to exert picoNewton forces on micron-sized particles is now
routinely applied to fields as diverse as the physics of colloids [2], the study of
biomolecular complexes at the single-molecule level [3] or the measurement of
cellular mechanical properties.

It was already recognized in the early studies of Ashkin that optical trapping
of low-refractive index particles would present a separate challenge, as they are
repelled from a conventional optical trap, consisting of a tightly focused laser
beam with a Gaussian intensity profile. Three-dimensional optical trapping of
low-index particles in the dark core of a focused optical vortex beam was first
demonstrated in 1996 by Gahagan et al. [4]. This finding had not been fully ex-
ploited until recently, by applying it to the study of a low-index particles system.

In the past three years several groups demonstrated trapping of ultrasound
contrast agent (UCA) microbubbles [5, 6, 7]. These are micron-sized gas bub-
bles, and therefore low-index particles, which are commonly used to enhance the
contrast in ultrasound medical imaging. Their acoustical response signature in
ultrasound allows discriminating the blood pool from the surrounding tissues,
with important applications to diagnostic imaging. A problem common to all
experiments on UCA microbubbles has been the lack of control on the position
and distance from interfaces and neighboring bubbles, due to buoyancy, flow,
bubble clustering and sticking. Optical tweezers provided an elegant solution for
studying UCA microbubble behavior in ultrasound with controlled boundary con-
ditions. Micromanipulation and positioning of UCAs were successfully applied
to the study of cell sonoporation induced by violently collapsing microbubbles [8]
and of boundary-dependent bubble response to ultrasound [9].

Many aspects of the dynamics of microbubbles in ultrasound remain elu-
sive, as non-linear oscillations, complex surface modes, cavitation phenomena
and mutual interactions between bubbles occur [10]. Microbubble dynamics in
ultrasound under microscopic flow conditions is a field of active research, not only
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for to the potential applications of microbubbles in ultrasound diagnostic imaging
but also from a fundamental physical standpoint. A quantitative study of the
forces acting on these bubbles is hampered by buoyancy and by the difficulty of
controlling the position of bubbles and repeating experiments on the same bub-
ble. The use of optical tweezers in this research area opens the way to a new
class of experiments, where the position and boundary conditions of individual
microbubbles can be precisely controlled and their dynamics can be studied under
prescribed, repeatable experimental conditions. A deeper understanding of bub-
ble phenomena may eventually find direct applications in diagnostic ultrasound,
allowing to further develop bubble technology on one hand, and to improve the
imaging protocols on the other hand.

In recent years, targeted molecular imaging with ultrasound proved indeed
to be a promising technique for diagnosis, and it is now rapidly developing [11].
Molecular imaging with ultrasound contrast agent microbubbles can be achieved
by incorporating targeting ligands onto the bubble coating. Targeting of suitable
markers expressed by cells on their membrane can provide disease-specific imaging
and thus meaningful information for clinical decision making. Microbubbles can
also be used as therapeutic agents for treating thrombosis and vascular plaques,
and for drug and gene delivery. Combining the therapeutic capability of UCA
microbubbles with the targeting offers the potential to integrate targeted therapy
and diagnostic imaging in the same preparation. For molecular imaging applica-

Figure 1.1 Confocal microscopy of fluorescently labeled VCAM-1-targeted microbubbles
(green) and TNF-αactivated labeled (red) microvascular endothelial cells. From
Lankford et al. [12].

tions in ultrasound, it will be crucial to develop methods for selectively detecting
adherent UCA microbubbles that have bound to specific molecular targets, from
freely flowing ones, based on a change in their acoustic response. Considerable
differences in the amplitude of oscillations, which were recently reported [13, 12],
may result in a powerful technique for acoustically discriminating between bound
and free bubbles. A comparison of the bubble response is therefore required for
functionalized bubbles when they are adherent to their target, relative to when
they are freely flowing. The use of optical tweezers for the study of microbubble
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dynamics under controlled experimental conditions therefore offers also exciting
possibilities for developing targeting strategies.

Goal of this study

The goal of this investigation is to apply the optical trapping technique to the
study of microbubble dynamics in ultrasound with well-controlled, repeatable ex-
perimental conditions, namely the position relative to a rigid wall and to neigh-
boring bubbles. This involved first of all developing an optical tweezers setup
for low-index particles trapping and micromanipulation. Next, the optical tweez-
ers setup was combined to an ultra-high speed camera for time-resolved optical
recordings of UCA microbubble dynamics in ultrasound. The first experiments
showing how the very same bubble responds to ultrasound with different bound-
ary conditions are then performed.

Overview of the thesis

• Chapter 2: Optical tweezers reviews the historical development, the
applications and the theoretical description of optical tweezers. The specific
features of optical confinement of microbubbles, which are low-refractive
index particles, are introduced.

• Chapter 3: Laser beam shaping for optical tweezers presents laser
beam shaping by means of diffractive optical elements, which are used in
this work for generating Laguerre-Gaussian beams for trapping low-index
particles. Generation of arbitrary configurations of traps for low-index par-
ticles is demonstrated.

• Chapter 4: Low-index particles trapping using Laguerre-Gaussian
beams presents the experimental results concerning micromanipulation of
microbubbles. 3D trapping and control over the distance from interfaces
is demonstrated, for individual and multiple microbubbles. The flexibility
of our approach, where diffractive optical elements are implemented on a
spatial light modulator, is highlighted.

• Chapter 5: Combined optical micromanipulation and ultra-high
speed imaging of UCA microbubbles describes the development of a
setup for studying microbubble dynamics with controlled boundaries. The
optical tweezers setup is used in combination with the ultra-high speed
camera “Brandaris 128”, at the University of Twente (The Netherlands),
for time-resolved characterization of microbubble dynamics in ultrasound.

• Chapter 6: 3D optical manipulation of microbubbles: bubble-
wall and bubble-bubble interaction shows the first results of the study
of microbubbles with the setup combining optical tweezers and ultra-high
speed imaging. Well-controlled boundary conditions for the microbubbles
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can be set, enabling for the investigation of boundary-dependent signatures
in the bubble response, which are crucial for molecular imaging applications.
Quantification of acoustical and hydrodynamical forces on the microscale
is also an exciting application of the technique.

• Chapter 7: Force spectroscopy of antigen-antibody complexes re-
ports on the use of optical tweezers as a force sensor, in single molecule
experiments for the characterization of antigen/antibody interactions. Ex-
periments performed during a research stay at the Biological Engineering
Division of MIT are presented.

• Chapter 8: Conclusions presents the conclusions and outlines the po-
tential follow-up of this work.

Bibliography

[1] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu. Observation of a
single-beam gradient force optical trap for dielectric particles. Opt. Lett.,
11:288, 1986.

[2] D.G. Grier. A revolution in optical manipulation. Nature, 424:810–816, 2003.

[3] C. Bustamante, J.C Macosko, and J.L. Wuite. Grabbing the cat by the tail:
manipulating molecules one by one. Nature Reviews, 1:130–136, 2000.

[4] K.T. Gahagan and G.A. Swartzlander. Optical vortex trapping of particles.
Opt. Lett., 21:827, 1996.

[5] P.A. Prentice, M.P. MacDonald, T.G. Frank, A. Cuschieri, G.C. Spalding,
W. Sibbett, P.A. Campbell, K. Dholakia. Manipulation and filtration of low
index particles with holographic Laguerre-Gaussian optical trap arrays. Opt.
Exp., 12:593–600, 2004.

[6] V. Garbin, D. Cojoc, E. Ferrari, R.Z. Proietti, S. Cabrini, E. Di Fabrizio.
Optical micromanipulation using Laguerre-Gaussian beams. Japan. J. Appl.
Phys., 44:5772–5775, 2005.

[7] P.H. Jones, E. Stride and N. Saffari. Trapping and manipulation of micro-
scopic bubbles with a scanning optical tweezer. Appl. Phys. Lett., 89:081113,
2006.

[8] P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell.
Membrane disruption by optically controlled microbubble cavitation. Nat.
Phys., 1:107–110, 2005.

[9] V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M.L.J. Overvelde, S.M.
van der Meer, N. de Jong, D. Lohse, M. Versluis. Changes in microbubble
dynamics near a boundary revealed by combined optical micromanipulation
and high speed imaging. Appl. Phys. Lett., accepted for publication.



1.0 Bibliography 5

[10] N. de Jong, A. Bouakaz and P. Frinking. Basic acoustic properties of mi-
crobubbles. Echocardiography, 19:229–240, 2002.

[11] A.L. Klibanov. Microbubble contrast agents. Targeted ultrasound imaging
and ultrasound-assisted drug-delivery applications. Invest. Radiol., 41:354–
362, 2006.

[12] M. Lankford, C.Z. Behm, J. Yeh, A.L. Klibanov, P. Robinson and J.R. Lind-
ner. Effect of microbubble ligation to cells on ultrasound signal enhancement.
implications for targeted imaging. Invest. Radiol., 41:721–728, 2006.

[13] S. Zhao, K.W. Ferrara and P.A. Dayton. Asymmetric oscillation of adherent
targeted ultrasound contrast agents. Appl. Phys. Lett., 87:134103, 2005.



6 Introduction



Chapter 2

Optical tweezers

In the past two decades optical trapping gained a key role in micro- and nanosciences
as it serves the scope of scaling experiments down to single micro- and nano-objects,
from microscopic particles to nanoparticles, from living cells to single molecules. This
chapter reviews the development of the optical tweezers technique and its applications
in the field of biology and medicine. A historical background is first given in Section
2.1, and developments of the original setup enabling more advanced applications,
based on laser beam shaping, are presented. In Section 2.2 the forces involved in the
optical trapping phenomenon are then described from a theoretical standpoint.
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2.1 Optical tweezers

2.1.1 Introduction

Optical tweezers find nowadays application in a wide range of disciplines, from
physics to biology. The first observations of radiation pressure, i.e. the force
exerted by electromagnetic radiation on matter, date back to 1609 when German
astronomer Johannes Kepler noticed that the tails of comets always point away
from the Sun, being blown by what he believed to be a kind of solar breeze. The
fact that electromagnetic radiation exerts a pressure upon a surface exposed to
it was deduced theoretically by James Clerck Maxwell in 1871, and proven ex-
perimentally by Lebedev in 1900 and by Nichols and Hull in 1901.
Experiments on radiation pressure using lasers were performed by Arthur Ashkin
in the early 70s at AT&T Bell Telephone Laboratories [1, 2]. He observed that ob-
jects of high refractive index were drawn towards the center of an unfocused laser
beam, and pushed in the direction of propagation. Three-dimensional trapping of
objects could be performed by using two counter-propagating beams. These ob-
servations led to the invention in 1986 of the so-called single beam gradient force
optical trap [3]. In their seminal paper, Ashkin and co-workers demonstrated
that a single, tightly focused laser beam could be used to trap microscopic dielec-
tric particles in three dimensions. In the following year, Ashkin also pioneered
the biological application of optical tweezers by trapping Tobacco mosaic virus
and single Escherichia coli bacteria [4] and by manipulating particles within the
cytoplasm of cells [5].
The past two decades have seen optical tweezers become a commonplace tool for
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Fig. 1. a) Diagram showing the ray optics of a spherical Mie

particle trapped in water by the highly convergent light of a

single-beam gradient force trap. b) Photograph, taken in

fluorescence, of a 10-,um sphere trapped in water, showing

the paths of the incident and scattered light rays.

beams visible. The sizable decrease in beam angle of

the scattered light, which gives rise to the backward

force, is clearly seen. The stria in the forward-scat-

tered light arise from the usual Mie-scattering ring

pattern.
Next consider the possibility of single-beam trap-

ping of submicrometer Rayleigh particles whose diam-

eter 2r is much less that X. Although we are now in the

wave-optic regime, we will again see the role of the

strong axial gradient in producing a net backward axi-

al force component. For Rayleigh particles in a medi-

um of index nb the scattering force in the direction of

the incident power is Fscat = nbPscat/c, where Pscat is the

power scattered.9 In terms of the intensity Io and

effective index m

Io 1287r
5

r
6

c 3X4

(m 2 - 1 \2

n2 + 2) 
(1)

The gradient force Fgrad in the direction of the intensi-

ty gradient for a spherical Rayleigh particle of polariz-
ability a is6

Fgrad = _ n aVE 2
=- Bj3 2 v E)E (2)

This Rayleigh force component, in analogy with the

gradient force for Mie particles, can be related to the

lenslike properties of the scatterer.
As for atoms,' the criterion for axial stability of a

single-beam trap is that R, the ratio of the backward

axial gradient force to the forward-scattering force, be

greater than unity at the position of maximum axial

intensity gradient. For a Gaussian beam of focal spot

size w0 this occurs at an axial position z = 7rw0A/3 X,

and we find that

R = Fgrad = 33 nb > 
5

Fscat 64Xr
5 (m

2
-1 r3w2

kn2 + 2/ 

(3)

where X is the wavelength in the medium. This condi-

tion applies only in the Rayleigh regime where the

particle diameter 2r < 0.2X _ 80 nm. In practice we

require R to be larger than unity. For example, for

polystyrene latex spheres in water with m = 1.65/1.33

= 1.24 and 2wo = 1.5X = 0.58 Am we find for R 2: 3 that

2r • 95 nm. Thus with this choice of spot size we meet

the stability criterion over the full Rayleigh regime.

The fact that R < 3 for 2r > 95 nm does not necessarily

imply a lack of stability for such larger particles since

we are beyond the range of validity of the formula.

Indeed, as we enter the transition region to Mie scat-

tering we expect the ray-optic forward-scattering pic-

ture to be increasingly valid. As will be seen experi-

mentally we have stability from the Rayleigh regime,

through the transition region, into the full Mie regime.

For silica particles in water with m = 1.46/1.33 = 1.10

and 2wo = 0.58 gm we find for R > 3 that 2r • 126 nm.

For high-index particles with m - 3.0/1.33 = 2.3 we

find that 2r < 61 nm.
The stability condition on the dominance of the

backward axial gradient force is independent of power

and is therefore a necessary but not sufficient condi-

tion for Rayleigh trapping. As an additional suffi-

cient trapping condition we have the requirement1

that the Boltzmann factor exp(- U/kT) << 1, where U

= nbaE2/2 is the potential of the gradient force. As

was previously pointed out,6 this is equivalent to re-

quiring that the time to pull a particle into the trap be

much less than the time for the particle to diffuse out

of the trap by Brownian motion. If we set U/kT 2 10,

514.5 nm LIGHT

Fig. 2. Sketch of the basic apparatus used for the optical

trapping of Mie and Rayleigh particles in water by means of

a single-beam gradient force radiation-pressure trap.

Figure 2.1 Figure from the 1986 seminal paper by Ashkin and co-workers, demonstrating
single-beam gradient force optical trapping. From [5].
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applications as diverse as cooling atoms [6] and confining Bose-Einstein conden-
sates [7], manipulating and sorting microscopic particles [8], and probing cellular
[9] and biomolecular properties [10]. The original setup, based on a laser beam
focused through a high-numerical aperture microscope objective, has been im-
proved to accommodate different experimental requirements. Some of the most
exciting developments of the technique were introduced with the aid of laser beam
shaping, as reported in 2.1.3 and 2.1.4. Optical tweezers can trap objects as small
as 5 nm [11] and can exert forces exceeding 100 pN [12] with sub-pN resolution.
This is the ideal range for exerting forces on biological and macromolecular sys-
tems and for measuring their responses. As a consequence, optical tweezers have
also become a well-established technique for single-molecule studies, as reported
in 2.1.5.

2.1.2 The mechanism of optical trapping

Although the theory behind optical tweezers is still being developed, the basic
principles are straightforward for objects either much smaller than the wavelength
of light or much larger. Small objects develop an electric dipole moment in
response to the light’s electric field, which is drawn up intensity gradients in
the electric field, toward the focus. Such optical gradient force competes with
the scattering component of radiation pressure, which pushes particles down the
optical axis. Stable trapping thus requires the axial gradient force to dominate,
and is achieved when the beam diverges rapidly enough away from the focal
point. For this reason, optical tweezers are usually constructed around microscope
objective lenses, whose high numerical apertures and well corrected aberrations
focus light as tightly as possible. Larger objects act as lenses, refracting the rays
of light and redirecting the momentum of photons. Intense optical fields can also
induce forces between dielectric microparticles, leading to the phenomenon known
as optical binding [13].
In order to understand the forces acting within optical tweezers, it is useful to
adopt this latter approach, which through ray-optics makes the working principle
immediately apparent. Since a light beam carries a linear momentum of h/λ per
photon, the refraction of light by a transparent particle results in a change in
photon momentum, and a corresponding reaction force acting on the object. In
Figure 2.2 one can see that the force arising from refraction of a light ray acts to
move the object towards the center of the beam. Furthermore, when the beam
is tightly focused a force acts to lift the object towards the focus, thus creating
a three-dimensional confinement. The ray-optics approximation holds when the
wavelength of the laser is considerably smaller than the size of the object, and
a model for evaluating the trapping force based on this approximation will be
presented in further detail in 2.2.3.

2.1.3 Multiple tweezers

Optical tweezers can be configured using multiple beams to simultaneously trap
more than one particle. Multiple beams of light passing simultaneously through
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Figure 2.2 Origin of the lateral and axial trapping force in optical tweezers within a ray
optics approach.

the objective’s entrance pupil focus indeed to multiple optical tweezers, the loca-
tion of which is determined by the associated beam’s angle of incidence and degree
of collimation as it enters the objective. Multiple traps have been implemented
by the rapid scanning of a single beam between two or more trap positions [14],
or by splitting the incident beam to produce multiple light paths which are later
recombined before entering the microscope. Their interference at the input pupil
gives an amplitude and a phase pattern that characterize the downstream trap-
ping pattern. Imposing the same modulations on a single incident beam at the
input pupil would yield the same pattern of traps. Such wavefront modification
can be performed by a computer-generated diffractive optical element (DOE),
or hologram [8]. A computer-addressed spatial light modulator (SLM) can be
used to project sequences of DOEs almost in real time [15, 16, 17, 18, 19] so
that by slightly displacing the traps from one pattern to the next the particles
are transferred along arbitrary three-dimensional (3D) trajectories. A different
technique for generating multiple traps with an SLM is based on the general-
ized phase contrast (GPC) technique, where a pattern of phase modulations on
the SLM is directly converted into the corresponding intensity modulation in the
focal plane of the objective lens [20] and thus creates arbitrary planar trapping
patterns. The conversion involves an annular phase plate similar to that used in
the phase-contrast imaging method. The GPC approach avoids the need to cal-
culate holograms and thus is extremely efficient. However, the spatial resolution
of existing SLMs currently limits this technique to creating lateral traps rather
than 3D optical tweezers.

2.1.4 Manipulation with singular beams

The first application within optical tweezers of a laser beam that was not a funda-
mental Gaussian mode, was the use a high-order Hermite-Gaussian mode to align
an asymmetric object within the optical trap [21]. Following that work, significant
interest by many groups has been shown in using computer-generated holograms
to produce Laguerre-Gaussian laser beams for use within optical tweezers. These
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Figure 2.3 Creation of multiple optical tweezers by using a computer-generated hologram.
Projecting a collimated TEM00 laser beam through the input pupil of a micro-
scope objective creates a single optical tweezers. The telescope in this imple-
mentation creates an image of the objective‘s input pupil, centred at point A.
Multiple beams passing through point A therefore pass into the objective lens
to create multiple optical traps. A single TEM00 laser beam can be split into
an arbitrary number of beams all emanating from point A by an appropriate
computer-designed diffraction grating centred there. Adapted from [17].

beams can possess helical wavefronts which carry an orbital angular momentum
[22]. Associated with the helical wavefronts is an annular intensity distribu-
tion with a zero on-axis intensity, also referred to as an “optical vortex”. The
annular nature of these beams led to further applications within optical tweez-
ers. Laguerre-Gaussian modes have enabled the three-dimensional confinement
of low-refractive index particles, e.g. hollow glass spheres between 2 and 50 µm in
diameter [23, 24] and, more recently, of phospholipid-encapsulated micron-sized
gas bubbles [25, 26] as it is reported in the present thesis. A further recent de-
velopment in optical tweezers is the use of Bessel light beams. Bessel beams [27],
which are frequently referred to as “diffraction free” beams, consists of a bright
central spot surrounded by concentric rings of decreasing intensity. Over a char-
acteristic propagation distance, the central region of the beam propagates without
changing shape, creating an intensity distribution which has no gradient in the
propagation direction. Bessel beams have been used within an optical tweezers
to obtain stacking and guiding of trapped objects along the bright central core of
the beam [28]. In this case the Bessel beam was created from a standard Gaus-
sian beam using a specially fabricated glass axicon, although computer-generated
holograms can also be used for the same purpose. Higher-order Bessel beams also
have orbital angular momentum.
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2.1.5 Optical tweezers as a force transducer

Manipulation of biological systems with optical tweezers began with relatively
large objects, such as bacteria [4], yeast and mammalian cells. But optical trap-
ping, combined with microsphere handles linked to molecules of interest enables
also for single-molecule biophysics experiments [29]. It has been experimentally
demonstrated by several authors [30, 31] that for small displacements from the
equilibrium position within the trap, a particle experiences a restoring force which
obeys Hooke’s law, F = −αx. As a consequence of the simple relationship ob-
served between displacement x and restoring force F , an optical tweezers can be
used as a force transducer. Once the trap stiffness α is calibrated, force measure-
ments are reduced to a position measurement. As a consequence, optical tweezers
have quickly become a principal tool to measure directly the forces that hold to-
gether molecular structures. Optical tweezers can also be used for exerting exter-
nal forces that modify reactions, to study the inter-conversion of mechanical and
chemical energy in these processes. This area of research includes bio-chemical
processes as diverse as DNA elasticity [32], protein folding [33], the behavior of
molecular motors [34, 10], and in general the processes of protein-protein recogni-
tion [35]. Among the different methods available for single-molecule biophysics,
optical tweezers have several unique advantages. The force on the trapped ob-
ject can be calibrated against displacement and laser power, thus providing a
method of direct, high-resolution force and position measurement (< 1 pN and
< 10 nm, respectively). Also, the applicable force range (10−1− 102pN) is highly
relevant for biological systems [29]. A major disadvantage of optical tweezers
is the potential for laser damage to active biological systems. Also, the data
throughput is relatively low because only one molecule is handled at a time. A
comparison of the optical tweezers-based force spectroscopy method with various
single-molecule techniques can be found in Table 2.1. The relevant force ranges,
minimum displacements, probe stiffness, practical advantages, and consequently
the applications of each technique vary significantly.

2.2 Radiation trapping forces

2.2.1 Introduction

The interaction of a particle with the impinging light is defined by a momentum
transfer due to scattering, absorption, or emission of photons, and by the fact
that electric dipoles are drawn toward the highest amplitude of an electromag-
netic field (dipole force). Generally, these forces are summarized by the Maxwell
stress tensor (see Appendix A), which is a derivation of the conservation laws
of electromagnetic energy and momentum [36]. These forces were described the-
oretically already in 1909 by Debye who applied the theory of Mie to describe
the radiation pressure on spheres. The Mie scattering theory can be applied to
spheres of arbitrary radius and dielectric susceptibility. However, a major issue
in using this theory is the difficulty of deriving all the components of the elec-
tromagnetic field at the surface of the particle, since these include contributions
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METHODS
Fmin−max

(pN)
xmin

(nm)
STIFFNESS
(pN nm−1)

ADVANTAGES

Cantilevers 10− 105 0.1 1− 105 High spatial resolution
Commercially available

Microneedles 1− 102 1 10−3 − 103 Good operator control
Soft spring constant

Flow field 10−1− 103 10 n.a. Rapid buffer exchange
Simplicity of design

Magnetic
Tweezers

10−2 − 10 10 n.a.
Specificity to magnets

Ability to induce torque

Optical
Tweezers

10−1− 102 1 10−7 − 1 Specific manipulation
High force resolution

Table 2.1 Overview of single molecule manipulation techniques. Adapted from [29]

from the incident field as well as from the scattered and internal fields. A signifi-
cant simplification of the problem can be achieved in the limit of a sphere of very
large radius or very small radius compared to the wavelength. These two limiting
cases will be discussed in Sections 2.2.3 and 2.2.4. Furthermore approximations
are needed for describing the interaction with an arbitrary electromagnetic field
distribution. In the case of optical tweezers, a description is needed of the highly
focused Gaussian beam. The proper description of the fields in the focal region
of a tightly focused Gaussian laser beam involves indeed strong axial electric field
components at the focus, and thus requires the use of the vector wave equation.
Even more complex is the description of the field distribution for a Laguerre-
Gaussian mode, with a multi-ringed intensity distribution and helical wavefronts
(see Section 3.3).

2.2.2 Radiation forces on spherical particles in arbitrary fields

First attempts to theoretically describe the forces on dielectric spheres in a fo-
cused laser beam were made by applying a ray-optics approach [37], which is valid
for sphere diameters of D ≈ λ0 and larger (λ0 is vacuum wavelength). This cal-
culation using Snell’s law and the Fresnel formulas does not take different sphere
sizes into account since the phase front of the incident spherical wave is assumed
not to change its shape in the focus. Gaussian optics satisfy the Helmholtz equa-
tion for small beam-divergence angles (i.e., when sin(x) ≈ x) and were used for
weak focusing of a laser beam [38] to calculate the radiation pressure with Mie
theory. Gaussian beam optics improved by higher-order corrections [39] were
used in an electromagnetic-field model to calculate trapping forces of highly fo-
cused laser beams [40]. Here expansion coefficients were calculated for the radial
components of the incident and the scattered fields, which are used to deter-
mine trapping forces by means of the Maxwell stress tensor. This model delivers
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good results as long as the sphere diameter is not larger than λ0. However, it is
restricted in applicability because realistic incident-field distributions cannot be
simulated (e.g., the influence of the objective lens aperture, which cuts off the
tails of a highly focused Gaussian beam or phase distortions such as spherical
aberrations).

2.2.3 Ray-optics approximation

The full model for the ray-optics approximation was developed by Ashkin [37].
For this calculation, an incident parallel beam of arbitrary mode structure and
polarization is considered, which enters a high-numerical aperture microscope
objective, with a beam diameter equal to the lens objective aperture radius, and
is focused ray by ray to a dimensionless spot f . The effect of neglecting the finite
size of the beam focus is negligible for spheres much larger than λ. Consider first
the force due to a single light ray of power P hitting a dielectric sphere at an
angle of incidence θ with incident momentum per second n1P/c, where n1 is the
refractive index of the medium. Each photon (associated with a light ray) carries
indeed energy

E = hν

where h = 6.6 10−34J s is the Planck’s constant, and momentum

p = h/λ (2.1)

The total number of photons in light with energy W is

N = W/hν (2.2)

The momentum Pm = Np is, from Equations 2.1 and 2.2

Pm =
W

hν

h

λ
=
n1W

c
(2.3)

The force is the time derivative of the momentum, and the force in a medium of
refractive index n1 is

F =
n1P

c
(2.4)

where P is the incident light power in Watts. The acceleration of a 1-µm-
diameter sphere by the radiation pressure force calculated from Equation 2.4
is over 105 times larger than that of gravitation [1]. The total force on the
sphere is the sum of contributions due to the reflected ray of power PR and
the infinite number of emergent refracted rays of successively decreasing power
PT 2, PT 2R, . . . , PT 2Rn, . . . . R and T are the Fresnel reflection and transmis-
sion coefficients of the surface at θ1. The net force acting through the origin O
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Figure 2.4 Ray-optics model for optical trapping [37]. The scattering force Fs points in the
direction of the incident ray, while the gradient force Fg is orthogonal to it. The
angle of incidence is θ1 and the angle of refraction is θ2.

can be broken into Fz and Fy components

Fz =
n1P

c

{
1 +R cos 2θ1 −

T 2 [cos(2θ1 − 2θ2) +R cos 2θ1]
1 +R2 + 2R cos 2θ2

}
(2.5)

Fy =
n1P

c

{
R sin 2θ1 −

T 2 [sin(2θ1 − 2θ2) +R sin 2θ1]
1 +R2 + 2R cos 2θ2

}
(2.6)

where θ1 and θ2 are the angles of incidence and refraction. These formulas sum
over all scattered rays. The forces are polarization dependent since R and T are
different for rays polarized parallel or perpendicular to the plane of incidence. The
intensities of the incident rays are weighted to account for the Gaussian intensity
profile of the laser beam. By using a suitable weighting function, a TEM∗

01

can also be implemented [37]. This approach was also used by Gahagan and
Swartzlander [24] to compute the forces exerted by a focused Laguerre-Gaussian
beam on a low-index particle (see Section 2.1.4; see Section 4.1.1 for further
detail). Again, the approximation holds in the limit where the particle size is
much larger than the beam wavelength. In particular, when a Laguerre-Gaussian
beam is assumed to be focused to a dimensionless spot, the result also becomes
independent of the size of the focused vortex, which is related to the topological
charge of the Laguerre-Gaussian beam (see Section 3.3.2).
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2.2.4 Point-dipole approximation

Harada and Asakura [41] investigated the range of validity of a point dipole ap-
proximation for Rayleigh particles (D � λ0) in a Gaussian beam. A zeroth-order
approximation is used for the description of the Gaussian laser beam. A simple
dipole model for the scattering force can be used in this case, since the particles
scatter isotropically. The radiation force exerted on the induced dipole can be
divided into the two components acting on a dielectric particle: the scattering
and the gradient force. These are associated with momentum changes of the
electromagnetic wave due to the scattering by the dipole, and the Lorentz force
acting on the induced dipole, respectively. The dipole moment p(r, t) of a dielec-
tric sphere with radius a and dielectric constant εs in a medium with a dielectric
constant εm particle, in the electric field E(r, t), is given by

p(r, t) = 4πεma3
( εm − εs
εm + 2εs

)
E(r, t) = 4πn2

mε0a
3
(n2 − 1
n2 + 2

)
E(r, t) (2.7)

where n = ns/nm is the relative refractive index of the particle. The scattering
force is given by

Fscat(r) =
Cpr < S(r, t) >T

c/nmedium
= ẑ
(nmedium

c

)
CscatI(r) (2.8)

being Cpr the cross-section for the radiation pressure of the particle, equal to the
scattering cross-section Cscat for Rayleigh dielectric particles that scatter light
isotropically:

Cpr = Cscat =
8
3
π(ka)4a2

(n2 − 1
n2 + 2

)2
(2.9)

where k is the wavenumber k
2π . The gradient force component, due to the Lorentz

force acting on the dipole induced by the electromagnetic field, is given by

Fgrad(r) =< Fgrad(r, t) >T =
2πnma

3

c

(n2 − 1
n2 + 2

)
∇I(r) (2.10)

The expression of the gradient force in terms of the intensity distribution, in
MKS units, allows to compare its absolute value with that of the scattering
force. By a comparison of their results with a full electromagnetic model, Harada
and Asakura showed that the dipole approximation holds for spheres in the size
range of a > λ/20 [41]. However, their model cannot be applied to a single-beam
gradient optical trap since the zeroth-order approximation for the Gaussian beam
is not valid for a highly focused Gaussian beam.

2.2.5 Additional forces in optical tweezers

The gradient force provides a restoring force which, over distances up to several
hundred nanometers, is a linear function of displacement x [30]. For displace-
ments within the range where the trapping force is elastic, i.e. F = −αx, a
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potential energy can also be defined, simply given by U = 1
2αx

2 (Figure 2.5).
Beyond the favorable balance between gradient force and scattering force dis-

Figure 2.5 Optical trapping potential experienced by a high-index particle in a Gaussian
beam. For small displacements x from the equilibrium position the restoring
force is elastic, F = −α x, being α the trap stiffness.

cussed in the previous Sections, the trap energy must overcome thermal energy
kBT to achieve stable trapping, being kB = 1.38 10−23 J K−1 the Boltzmann’s
constant and T the temperature. The full force balance of a particle in an optical
trap has to account for the presence of the suspension medium: the equation of
motion governing the behavior of a trapped object of mass m, in a medium that
gives a viscous damping β is a balance between inertial, viscous and elastic forces:

m
∂2x

∂t2
+ β

∂x

∂t
+ αx = 0 (2.11)

where α is the elastic constant or stiffness of the optical trap. In absence of
damping, the result would be an oscillator with resonant frequency fres given by

fres =
1
2π

√
α

m
(2.12)

In typical biological applications, the stiffness α of the optical tweezers is around
0.05 pN nm−1 and the trapped objects are around 1µm diameter (corresponding
to a mass of 5 × 10−16 kg). Hence, the resonant frequency is approximately 50
kHz. However, because biological experiments must be performed in an aqueous
medium, significant damping force arises. For micron-sized particles of radius r,
moving in a fluid of viscosity η, the Stokes drag constant β is

β = 6πrη (2.13)

For a sphere 1µm diameter in water, β = 1 10−8 N s m−1. The combination of
viscous damping and the spring-like stiffness of the optical tweezers gives rise to
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a low pass filter with −3 dB frequency f0 given by

f0 =
α

2πβ
(2.14)

For typical biological application this so-called “roll-off frequency” is well below
1 kHz. Since this is much lower than the resonant frequency, the motion is over-
damped, therefore the inertial and gravitational forces can be neglected in a first
approximation. The fluctuating thermal force (with energy kBT ) produces a
mean-squared deviation in position along one axis, < x2 >, calculated from

1
2
α < x2 >=

1
2
kBT (2.15)

Substituting typical values for temperature (biological experiments are typically
performed at room temperature, ∼ 300 K) and tweezers stiffness, we find that
the rms deviation in position is about 10 nm. To obtain a full description of the
observed thermal motion, we find that it is distributed over a Lorenzian power
density spectrum where the amplitude Af of motion over each frequency interval
f is given by

Af =
4kBTβ

α2(1 + f/f0)2
(2.16)

These observation find direct application in the implementation of optical tweez-
ers for force measurements. Such applications will be discussed in detail in Chap-
ter 7.
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Chapter 3

Laser Beam Shaping for
Optical Tweezers

The use of laser beam shaping through diffractive optical elements enables for com-
plex optical trapping configurations. Exciting applications have been demonstrated,
ranging from cell biology to colloidal sciences. The focus of the present Chapter is
on laser beam shaping for low-index particles trapping. A general introduction on
diffractive optical elements is given in Section 3.1. The methods and algorithms for
DOEs calculation in use at TASC National Laboratory (CNR-INFM, LILIT group) are
then reviewed in Sections 3.2 and 3.3. In particular, Section 3.3 reports on the diffrac-
tive optical elements developed in this thesis for trapping of individual an multiple
low-index microparticles with Laguerre-Gaussian beams.
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3.1 Introduction

Complex trapping geometries can be generated, and different tasks can be ac-
complished, by converting the fundamental Gaussian mode emitted from most
commercial lasers into a beam of different intensity and phase structure. Diffrac-
tive optics enables for such a conversion. A general overview of the applications
of laser beam shaping to optical tweezers was given in Section 2.1.1.
Diffractive optical elements (DOEs) are components that modify wavefronts by
segmenting them and redirecting the segments through the use of interference
and phase control. Different types of optical elements fall within the field of
diffractive optics [1]:

• Binary Optics: DOE with a discrete number of phase-controlling levels.
The simplest form has only two phase-levels, which introduce a 0 or π-phase
difference on the incident wavefront.

• Kinoform: DOE whose phase-controlling surfaces are smoothly varying.

• Computer-Generated Hologram: DOE generated by discretizing a cal-
culated interference pattern to a series of amplitude or phase levels. The
useful wavefront is typically one of several orders generated by the pattern.

In its simplest form, a computer-generated hologram is produced from the calcu-
lated interference pattern that results when the desired (output) beam intersects
the illuminating (input) laser beam at a small angle. The annular intensity dis-
tribution of a Laguerre-Gaussian beam can be obtained through computer gener-
ated holograms [2]. Focusing of a Laguerre-Gaussian beam through a microscope
objective generates a so-called “donut” trap, used to trap objects with a lower
refractive index than the surroundings [3].
The simplest DOE is a diffraction grating. It is known that if the incident wave
is plane and monochromatic then the grating produces a set of diffraction orders
propagating at different angles. If the incident wave is normal to the grating,
then the directions of the incident and diffracted rays are related by the equation
sin γ(m) = m λ

D where γ(m) is the angle between the direction of the diffracted (into
mth order) rays and the normal to the grating; m is the order number; λ is the
wavelength; D is the grating period. A DOE with a more complex structure may
be considered as a grating with a variable period and orientation of lines. In this
case, the ray-optics approach is not adequate to describe the energy distribution
among diffraction orders. The wave approach allows describing the wavefront
formed by the DOE. Assuming that the DOE is plane and infinitely thin, it can
be characterized by a transmittance function t(x), where x = (x, y), being x and
y Cartesian coordinates in the DOE plane, and t a complex function in the gen-
eral case. If the complex amplitude of the incident scalar monochromatic wave
is Win, then the complex amplitude of the transmitted wave in the DOE plane
is Wout(x) = t(x)Win(x). Calculating t(x), and therefore the phase DOE needed
to project a desired pattern of traps, is not particularly straightforward. The
algorithms in use at LILIT group will be presented in Section 3.2.
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3.1.1 Implementation of diffractive optical elements for optical
tweezers

Diffractive optical elements can be designed to modulate the amplitude, phase
or polarization of an incoming beam. However, phase-only modulation has be-
come the preferred mode for applications to optical tweezers, because amplitude
modulation implies diverting some of the incident beam energy from the desired
output amplitude/phase distribution. Phase modulation can be achieved through
relief modulation, as shown in Figure 3.1(a). When a wavefront first enters the

(a) (b)

Figure 3.1 A phase diffractive optical element encodes a pattern of phase shifts in thickness
(a) or refractive index (b) modulation. A plane wave incident on the optical
element acquires a spatially modulated phase.

material it is uniformly slowed to a speed v = c/n, where c is the speed of light in
vacuum and n is the material’s refractive index. Parts of the wavefront traveling
through thinner regions of the optical element propagate outside the material
at speed c, while sections remaining in the material are further delayed, with a
phase delay proportional to the extra thickness of material. Consequently the
relative phase at x = (x, y) is proportional to the thickness, h(x)

Φ(x) = 2π(n− 1)
h(x)
λ

(3.1)

Similarly, phase delays can be encoded in a pattern of controlled variations of the
index of refraction n(x). The thickness h of the optical element is constant, and
different segments of the wavefront undergo different phase delays according to
the different optical path lengths ∆(x) = n(x)h.
The computer-generated phase-modulation pattern can be etched on a transpar-
ent substrate (refractive index n) in surface relief with conventional lithographic
processes [4]. Using electron-beam lithography, DOEs with high spatial resolution
and high spatial-bandwidth product (SBWP) can be fabricated [5]. Holographic
patterns can also be transferred to a spatial light modulator (SLM) which im-
poses a prescribed amount of phase shift at each pixel in an array, by varying
the local optical path length. Typically, this is accomplished by controlling the
local orientation of molecules in a layer of liquid crystal. In 1999, Reicherter et
al. [6] reported optical trapping with computer-generated holograms written on
a liquid crystal display. They adapted a miniature display to produce a 640×480
pixelated phase shifter with an update rate of 30 Hz. By calculating successive
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holographic patterns they were able to manipulate three particles independently.
The use of computer-generated holograms in combination with spatial light mod-
ulators have turned optical tweezers into very versatile tools. The hologram can
be changed very quickly, at video-frame rate or faster, which allows dynamic
trapping. This feature is exploited in our setup for trapping multiple low-index
particles, as reported in Section 4.3.2.

Practical considerations Practical DOEs only diffract a portion of the inci-
dent light into the intended modes and directions. The maximum theoretical ef-
ficiencies for some types of holograms [2] are shown in Table 3.1 The undiffracted

Hologram Type Maximum theoretical efficiency

Amplitude, binary, 100% modulation 10.1%

Amplitude, sinusoidal, 100% modulation 6.25%

Phase, binary, π modulation 40.4%

Table 3.1 Maximum theoretical efficiencies for different types of holograms. Adapted from
[2]

portion of the beam typically forms an unwanted central spot. Furthermore,
computer-generated DOEs have phase profiles that vary continuously between 0
and 2π, which need to be discretized prior to implementation. This step neces-
sarily introduces errors. Regardless of the implementation method, any practical
phase DOE will also deviate from its design, and these deviations will further
degrade its performance. In some implementations the central spot can be re-
moved by spatially filtering the diffracted beam. Projecting holographic traps
in the off-axis Fresnel geometry [7] also eliminates the central spot, but limits
the number of traps that can be projected. Finally, practical DOEs also tend
to project spurious “ghost” traps into symmetric positions. Spatially filtering
the ghost traps generally is not practical, particularly in the case of dynamic
implementation of DOEs on a SLM.

3.2 Computer-generated diffractive optical elements

Efficient iterative techniques, based on the thin-element approximation and the
scalar diffraction theory, have been proposed to design phase DOEs with surface
relief modulation in visible light [8]. The two approaches in use at the LILIT
group for DOE calculation are phase retrieval using iterative algorithms (PRIA)
followed by genetic algorithms for optimization [5] and spherical waves propaga-
tion [9]. The two approaches, which can be used for beam shaping and beam
splitting, are shortly reviewed here; the full treatment can be found in [10].
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3.2.1 Phase retrieval using iterative algorithms (PRIA)

The PRIA approach [11] starts from the desired intensity pattern If (x) that the
DOE should generate in the output plane, being x = (x, y) the vector position in
a two-dimensional Cartesian system. This pattern is determined by the electric
field of a collimated laser beam that is shaped by diffraction with a phase DOE
and then transferred to the output plane by a suitable set of lenses. If the set of
lenses is a shift invariant system the input and output fields are related by the
coherent transfer function (CTF):

F [Ef (x)] = CTF F [Eg(x)] (3.2)

where F [∗] is the Fourier transform, Ef (x) is the output field in the exit window
and Eg(x) is the input field generated by the DOE in the system’s entrance
window. In order to provide high efficiency, a phase function φ(x) is considered
as the transfer function for the DOE, since a phase-only DOE doesn’t affect the
amplitude but only the phase of the transmitted wave. When illuminating the
DOE with a collimated laser beam, the diffracted field at a distance z after the
DOE will be:

Eg(x; z) = P
[
Ag(x) exp[iφ(x)]

]
(3.3)

where Ag(x) is the amplitude of the illuminating beam and P[∗] is the propagation
operator, e.g. the Fourier transform for far-field and the Fresnel transform for
near-field. The main problem of the DOE design is the calculation of the phase
function, φ(x), such that the intensity distribution Ig(x) = |Eg(x)|2 is propor-
tional to the desired intensity distribution inside a specified window, called signal
window (SW), of the diffracted pattern window (DPW). The approach used in
the implementation of PRIA developed at LILIT is based on iterative algorithms
that explore the space of phase distributions, φ(x), to retrieve the phase function
that generates the desired intensity distribution. Only the intensity within the
SW of the DPW is constrained, so that not only the phase in the whole DPW but
also the intensity outside the SW represent a degree of freedom that can be used
to facilitate the search. Phase retrieval using iterative algorithms starts with the
initialization of the diffracted field, Eg(x; z). The phase function φ(x) can be
initialized with different phase distributions (e.g. random, constant, Gaussian).
A randomly generated distribution was found to give the best result. One cycle
of the iterative algorithm follows this sequence:

1. back-propagate the field Eg(x; z) to the DOE plane;

2. replace the amplitude of the resulting field with the amplitude of the illu-
minating beam, while the phase remains unchanged;

3. propagate the field at a distance z;

4. replace the amplitude of the resulting field with the desired amplitude,
|Eg(x; z)|, and calculate the mean square error (MSE) between the desired
and obtained intensities
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By repeating this cycle, the MSE decreases monotonically until the change of the
MSE becomes insignificant and the algorithm is stopped. The phase calculated
in the second step of the last iteration cycle is the phase function of the DOE.
The drawback of this approach is that it doesn’t allow controlling the desired
intensity distribution in more than one output plane at a time, i.e. it doesn’t allow
generating three-dimensional intensity distributions. To this aim, the algorithm
can be combined with other iterative schemes, based on genetic algorithms (GA)
[5]. The phase is optimized first for each output plane; then the phase functions
obtained for each plane define preliminary DOEs which are used to find the final
solution in a GA scheme. An example is shown in Figure 3.2, where the desired
intensity pattern in the output plane is a 2D array of four spots with the same
intensities.

(a) (b)

Figure 3.2 Desired intensity pattern in the output plane (a) and DOE (b) calculated using
the iterative algorithm presented in Section 3.2.1

3.2.2 Spherical waves propagation and superposition

The approach based on spherical wave propagation and superposition [9], provides
an alternative solution to the problem of generating three-dimensional intensity
distributions. The assumption is made that the DOE, illuminated by a set of
point sources, generates a set of spots arranged in a prescribed configuration.
This approach allows direct calculation of the DOE, avoiding the use of iterative
algorithms. Assuming that both the light source and the generated pattern can
be described by point sources that emit spherical waves, the phase function is
derived from the propagation and superposition of the spherical wavefronts in the
plane of the DOE. If the DOE is a thin element described by the transmittance
function t(x) = exp[iφ(x)] and Win(x; 0) is the complex amplitude of the incident
wave, the complex amplitude of the output wave after the DOE will be:

Wout(x; 0) = t(x)Win(x; 0) (3.4)
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where z = 0 denotes the DOE plane. For a given input-output pair of waves
satisfying the condition |Win(x; 0)| = |Wout(x; 0)| the phase function is given by:

φ : φ(x) = {arg[Wout(x; 0)]− arg[Win(x; 0)]} mod 2π (3.5)

If {Ps(xs; zs), s = 1 : Ns} is the set of Ns points describing the source and
{Pg(xg; zg), g = 1 :Ng} the set of Ng points describing the generated spots, the
expression for the incident and output wavefronts at the point Pe(xe; 0) in the
DOE plane will be:

Win(xe; 0) =
∑

s

as cosψs,e
exp(ikrs,e)

rs,e

(3.6)

Wout(xe; 0) =
∑

g

ag cosψg,e
exp(ikrg,e + ϕg)

rg,e

where as(g) are constants representing the amplitudes of the waves emitted by

the point sources, cosψs,e = zs
rs,e

is the obliquity factor, rs,e =
−−→
PsPe is the dis-

tance between the point source Ps and the element Pe of the DOE, ϕg is the
desired phase of the outgoing point Pg and k is the wavenumber k = 2π

λ . Using
equations 3.5 and 3.6 the phase function is calculated for the set of sampling
points {Pe(xe; ze), e = 1 :Ne} defined by an equally spaced square grid on the
DOE. The number of the sampling points Ne is limited by the scalar diffraction
approximation and by the sampling theorem to: D

2λ < Ne <
D2

λz , where D is the
lateral size of the DOE and z the distance from the source plane or the plane of
the generated spots to the DOE. In general, equation 3.5 gives only an estimate
of the phase function, which can be optimized using global optimization methods.
Figure 3.3 shows some examples of DOEs, calculated using the spherical waves
propagation method, which generate two- and three-dimensional configurations
of focused laser spots.

3.3 Laguerre-Gaussian beams for optical tweezers

3.3.1 Introduction

A beam with a transversal field component that includes an azimuthal complex
exponential term of the form exp(ilθ) exhibits helical wavefronts, see Figure 3.4.
Since the phase value is not determined on the propagation axis, the beam is said
to possess a phase singularity or a vortex of topological charge l, where the am-
plitude of the field vanishes. Laguerre-Gaussian beams (3.3.2) exhibit vortexes
embedded within their amplitude distribution. Bessel beams also exhibit multi-
ringed transversal structure, and are characterized by an integer index m, the
order of the beam, that determines the charge of the vortex embedded in them.
Since Laguerre-Gaussian beams are relatively easy to produce in the laboratory,
they are the most common example of vortex beams.
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(a) (b) (c)

Figure 3.3 DOEs calculated using the spherical waves approach described in Section 3.2.2.
The DOE in (a) generates two spots and the DOE in (b) four spots; in both cases
the generated spots are arranged in a two-dimensional array. The DOE in (c)
generates five spots, arranged in the three-dimensional configuration.

The vanishing amplitude on the beam axis has found various applications within
optical tweezers. When a Laguerre-Gaussian beam is tightly focused, it produces
a so-called “donut” trap, also referred to as “dark” or “hollow” trap. In his early
considerations of the trapping mechanism, Ashkin pointed out that it is only the
off-axis rays that contribute to the axial trapping force. Indeed, his calculations
predicted that modest improvements in the axial efficiency were possible using
a TEM∗

01 laser mode which has no on-axis rays [12]. With their zero on-axis
intensity, Laguerre-Gaussian modes also satisfy this condition. Experimental re-
sults confirm that high-order Laguerre-Gaussian modes indeed improve the axial
trapping efficiency of optical tweezers [13]. Optical vortex trapping also increased
the versatility of optical tweezers by enabling confinement of low-index particles
[3]. Particles exhibiting a lower refractive index than the surroundings are in-
deed repelled from the high-intensity region of a focused Gaussian beam since
the gradient force is reversed. Once within the annular intensity distribution
of a focused LG beam, a low-index particle experiences a gradient force again
directed to the beam axis. Trapping of low-index particles, namely microscopic
phospholipid-encapsulated gas bubbles used in ultrasound medical imaging, will
be presented in Chapter 4.

3.3.2 Properties of Laguerre-Gaussian beams

The interest which arose in the 90s for the Laguerre-Gaussian laser modes was
mostly due to their potential to carry orbital angular momentum. These modes
were indeed first produced in order to demonstrate their orbital angular mo-
mentum content by Beijersbergen et al. in 1993 [14]. Laguerre polynomials are
frequently encountered within quantum mechanics as the radial term in the so-
lution to Schrödinger’s time-independent wave equation for a harmonic oscillator
potential. As in the quantum mechanical example, the presence of an azimuthal
phase term may be interpreted as indicating the presence of orbital angular mo-
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mentum, hence the interest in those unusual modes.
Laguerre-Gaussian and Hermite-Gaussian beams appear as higher-order solutions
to the conditions of resonance for the laser cavity. In general, transversal laser
modes are best described by a product of a Hermite polynomial and a Gaussian,
and are known as Hermite-Gaussian (HG) modes. In the case of a laser system,
it would seem probable that given circular mirrors, the LG functions would pro-
vide the most accurate description of the transversal modes in a real laser, but
this is not the case. Slight asymmetries in the laser cavity give rise to rectangu-
lar symmetry which results in product of Hermite polynomials providing a more
accurate description [15]. Laser beams are thus usually described by use of a
Hermite-Gaussian basis set, but a beam with helical wavefronts is best described
in terms of the Laguerre-Gaussian basis set which has an explicit exp(ilθ) phase
term. Laguerre-Gaussian (LGl

p) modes are described by the indices l and p where
the l-index relates to the azimuthal phase and the p-index to the number of addi-
tional concentric rings around the central zone. The form for the LG mode field
amplitude is given by

ul
p(r, θ, z) = Cpl e

−ikr2/2R e−r2/w2
e−i(2p+|l|+1) tan−1(z/zr)

e−ilθ(−1)p(r
√

2/w)|l|L|l|
p (2r2/w2) (3.7)

When l 6= 0, the helical phasefronts (see Figure 3.4) result in a phase discontinuity

Figure 3.4 Helical wavefront of a LG3
0 beam. Source: University of Glasgow

on the beam axis and a corresponding zero in the beam intensity. Consequently,
the l 6= 0 modes have the appearance of an annular ring for p = 0, or rings when
p > 0. Note also the Gouy phase term exp(−i(2p + |l| + 1) tan−1(z/zr)) which
describes the phase change as a beam moves through the beam waist [16]. The
index l, named topological charge, gives the number of 2π cycles of phase in the
azimuthal direction around the circumference of the mode, while p+ 1 gives the
number of nodes across the radial field distribution. The radius of maximum field
amplitude RImax(z) is given by

RImax(z) =
√
π

2

√
l w(z) (3.8)

where w(z) is the radius of the Gaussian envelope [17].
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(a) (b)

Figure 3.5 Intensity distribution of a p = 0 Laguerre-Gaussian beam. The field distribution
of a mode with p = 0 is a single ring with a 2πl azimuthal phase variation. (a)
Intensity profile in a plane orthogonal to the optical axis; (b) Intensity profile in
a plane containing the optical axis

3.3.3 Laguerre-Gaussian beam converters

Conversion of a Gaussian laser beam into a Laguerre-Gaussian mode can be
performed using diffractive optical elements. Following Equation 3.3.2, the phase
profile of a Laguerre-Gaussian mode is simply given by

φl(r) = l θ mod 2π (3.9)

where l is the beam’s topological charge, r denotes the radial position in the DOE
plane and θ the angle measured in the plane transversal to the direction of prop-
agation. This phase profile can be simply implemented by a phase DOE, which
by imposing the pattern of phase delays encoded by Equation 3.3.3 converts an
incident plane wave into a helical wavefront. Such DOEs are shown in Figure
3.6 for different values of l. The DOEs were implemented on a reflection-type
Hamamatsu X8267-11 spatial light modulator. The Gaussian mode coming from
a 1064 nm continuous wave Yb-doped fiber laser was converted upon reflection on
the SLM and coupled into the microscope objective of a Nikon TE2000 inverted
microscope. The output beam shape was observed using a CCD or a CMOS sen-
sor. Diffracted patterns in the focal plane are shown in Figure 3.7. Holography
can also be used to generate an optical vortex. A computer-generated hologram
can be easily computed by interfering a singular beam and a plane wave [2]. In
general a phase singularity propagating along the z direction will have the form

E(r, θ, z) = E0 exp(ilθ) exp(−ikz) (3.10)

where l is the topological charge of the singularity and θ is the angle measured
in the plane transversal to the direction of propagation. The interference pattern
between the field in Equation 3.10 and a uniform plane wave u propagating at
an angle to the z axis

u = exp(−ikxx− ikzz) (3.11)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6 Phase-only DOEs for generating Laguerre-Gaussian beams with different topo-
logical charge l. The DOE shown in (a) imposes one 2π phase change for one
revolution around the beam axis, i.e. l = 1. (b) l = 2. (c) l = 3. (d) l = 4. (e)
l = 5. (f) l = 6. (g) l = 12. (h) l = 25.

Figure 3.7 The intensity patterns in the focal plane of a microscope objective are shown
for different topological charges l. The diameter of the ”donut“can be precisely
controlled by tuning l. The conversion of a 1064 nm Gaussian beam into a
Laguerre-Gaussian mode is performed using DOEs such as those shown in Figure
3.6, implemented on a spatial light modulator. The undiffracted light focuses to
a spot in the center of the donut. Magnification of the objective 60×. Scalebar:
10µm.

gives, in the plane z = 0, the intensity pattern expressed by:

I = 1 + E2
0 + 2E0 cos(kxx− lθ) (3.12)
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The resulting phase singularity hologram is shown in Figure 3.8 for l = 4. It is
similar to a grating, except that there is a defect in the center. The experimental
intensity pattern in the output plane for l = 24 is show in Figure 3.9. This

Figure 3.8 Computer generated hologram which, illuminated by a plane wave, generates a
singular beam with topological charge l = 4

Figure 3.9 Diffraction pattern in the far-field obtained by converting a Gaussian beam trough
a computer-generated hologram similar to the one shown in Figure 3.8. The first
diffraction orders are shown (+1 and −1). They are singular beams with l = 24.
The zero order is visible in the center. Scalebar: 10 µm

hologram can be implemented also as an amplitude DOE, with a lower efficiency
in the desired diffracted order.

3.3.4 Multiple helical beams

Multiple donut traps can be generated by superimposing the phase pattern φN (r)
encoding for an array of N optical traps (mod2π) to the pattern of phase delays
φl(r) encoding for a Laguerre-Gaussian beam with topological charge l, see e.g.
[18]. The DOE φN (r) can be calculated with the PRIA method as presented
in 3.2.1. This approach can be used to generate 2D arrays of donut traps and
to trap multiple low-index particles. The diffracted patterns and a discussion
on their efficiency for low-index particle trapping are reported in Section 4.3.2.
An alternative method is to embed multiple vortexes in the incident beam, by
dividing the DOE into several sections, each containing a single-vortex phase
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(a) (b) (c)

Figure 3.10 Phase-only DOEs for generating multiple Laguerre-Gaussian beam. The DOE
shown in (a) generates three spots. The one in (b) generates a LG beam with
l = 4. (c) By superimposing the two phase patterns, a DOE is obtained which
generates 3 LG traps.

mask, see e.g. [19, 20]. The distance between the N juxtaposed DOEs can be
adjusted to change the distance between the traps in the output plane. The
768 × 768 pixels DOEs which generate a single trap are resized so that N of
them fit in the SLM’s active area (768 × 768 pixels). The maximum number of

Figure 3.11 Two Laguerre-Gaussian beams (b) are produced using tiled DOEs (a). The dis-
tance between the two traps can be controlled by changing the distance between
the singularities in the DOE plane. White scalebar left bottom in (b): 5 µm.

traps which can be generated in this case is limited by the minimum number of
pixels needed to encode for each individual trap, and therefore on the topological
charge. For our purposes, the quality of the generated vortices is defined by
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their suitability for low-index particles trapping. Following [20], the minimum
number of pixels required to generated quality vortexes was investigated for a
range of topological charges. Figure 3.12 shows an example of the diffracted
patterns for increasing number of pixels in the case l = 5. The information on
the minimum number of pixels required for generating a quality vortex is crucial
when larger arrays of traps are created, as it determines the maximum number
of traps that can be generated. Figure 3.13 shows an array of nine donut traps
generated by juxtaposing nine 200× 200 pixel DOEs encoding for l = 4 vortexes.
It is straightforward to apply this method also for generating arrays of traps
with different sizes. The approach based on embedding multiple vortexes in

Figure 3.12 Diffracted patterns for increasing number of pixels in the case l = 5. The number
of pixels is indicated at the bottom left of each frame.

(a) (b)

Figure 3.13 The DOE shown in (a) is obtained by tiling 3 × 3 DOEs encoding for a
Laguerre-Gaussian beam. Each DOE is resized to 200 × 200 pixels before jux-
taposing nine of them. The final DOE is 600× 600 pixels. In (b) the diffracted
pattern is shown: nine donut traps are embedded in the incident beam.

the incident beam is efficiently used to trap low-index particles and control their
relative distance with µm precision. Such an ability is exploited in this thesis to
study the interaction between microbubbles in an ultrasound field, see Section
6.3.
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3.3.5 3D position of a vortex trap

Donut traps can also be generated in 3D configurations. In the simplest case,
where the position of an individual trap is controlled, the phase profile of the
converted beam has a very simple form: a spherical wave is superimposed to the
singular beam

φ(r, θ) = exp(ilθ)
exp(ikr)

r0
(3.13)

leading to a phase pattern as shown in Figure 3.14. The distance r0 is taken from
the point originating the spherical wave to the DOE plane. When the generated

Figure 3.14 DOE generated by superimposing a spherical wave to the singular beam. When
the generated beam is focused through a microscope objective, it focuses at
a distance z from the objective’s focal plane according to the parameter r0

describing the superimposed spherical wave, see Equation 3.3.5.

beam is focused through a lens, the vortex is reconstructed on a plane at a
distance from the focal plane which depends on r0 and on the total magnification
of the optical system.
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Figure 3.15 The vortex generated by the DOE in Figure 3.14 focuses at a distance z ∼ 30 µm
from the objective’s focal plane (z = 0). The sequence of frames shows the beam
profile at increasing distance (5 µm steps).
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3.4 Conclusions

We investigated different methods for generating “donut” traps for low-index
particles. We developed DOEs that enable to convert a Gaussian laser beam to
give arbitrary configurations of donut traps. Our goal is to trap and manipulate
phospholipid-coated microbubbles and to study their properties upon insonation
with medical diagnostic ultrasound. Implementation of the DOEs in an optical
tweezers setup, for 2D and 3D trapping of microbubbles, is reported in Chapter
4.
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Chapter 4

Low-index particles trapping
using Laguerre-Gaussian
beams

In this Chapter optical trapping and manipulation of microbubbles will be presented.
First an overview is given of the various methods that have been proposed for
manipulating such particles in 4.1. Our approach is based on Laguerre-Gaussian
beams and the experimental setup is described in 4.2. Three-dimensional trapping is
demonstrated and more complex trapping configurations based on multiple Laguerre-
Gaussian beams are introduced in 4.3.
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4.1 Introduction

4.1.1 Optical trapping of low-index particles

Particles cannot be trapped by a conventional Gaussian laser beam when their
relative refractive index n = nparticle

nmedium
is smaller than 1. From the equation for the

gradient force (2.2.4)

Fgrad(r) =
2πR3

c

(n2 − 1
n+2

)
∇I(r) (4.1)

where R is the particle radius, c the speed of light and I the beam intensity
profile, one can see indeed that Fgrad is directed along the gradient when n > 1,
and in the opposite direction when n < 1.

Arthur Ashkin, in his experiments on radiation pressure, reported in 1974
optical levitation of low-index particles [1]: hollow glass spheres 30-60 µm in
diameter were launched into a vertically directed TEM∗

01 laser beam and levitated
into the air. A force arising from intensity gradients was already known to repel
low-index particles away from high-intensity regions. A beam with a dark core
was in fact used to confine the particles in a minimum-intensity region, but the
scattering force directed along the direction of propagation of the beam could
only be counterbalanced by the downward pull of gravity. Unger et al. achieved
stable levitation of small air bubbles (10-30 µm in radius) in water in a downward
directed visible laser beam [2].

Gradient force optical traps [3] were introduced in 1986. A force due to in-
tensity gradients in a tightly focused Gaussian beam was observed not only on
a plane transversal to the optical axis, but also along the optical axis, pointing
towards the beam focus. Scattering force, always pointing along the propagation
direction, can thus be counterbalanced by the axial component of the gradient
force when focusing is strong enough, enabling three-dimensional confinement of
particles. Low-index particles trapping in a gradient force optical trap was first
demonstrated by Gahagan and Swartzlander in 1996 [4]. They thereafter stud-
ied two different low-index particles systems: hollow glass spheres (12 − 36µm
in diameter) in water and water droplets (4 − 20µm in diameter) in acetophe-
none [5]. Particles were trapped by a charge l = 1 vortex trap generated by
computer generated hologram from a λ = 514 nm Gaussian laser beam, focused
through a 100×, NA = 1.30 microscope objective. In both cases the wavelength
λ and the focused beam radius wf were thus smaller than the particle radius.
Therefore, a ray-optics model could be used to describe trapping: an equilibrium
position where gradient force counterbalances scattering force was predicted and
experimentally observed.

Several methods have been implemented for generating traps for low-index
particles: two-dimensional trapping can be performed by using an interferomet-
ric pattern of bright and dark fringes [6], by generating donut-shaped intensity
distributions using the generalized phase-contrast method [7], or by using a Bessel
beam [8]. In addition to focusing an optical vortex beam, three-dimensional trap-
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ping can be obtained also by rapidly scanning the beam in a circular trajectory
[9].

4.1.2 Optical trapping of UCA microbubbles

Trapping and micromanipulation of low-index particles recently found important
applications in the field of medical imaging. Micron-sized gas bubbles, encapsu-
lated by a thin shell of phospholipids, proteins or polymer, are commonly used
in ultrasound diagnostic imaging as a contrast enhancer. In recent years their
application to drug delivery has also been proposed, although a deeper under-
standing of their behavior remains elusive. One of the difficulties comes from
the fact that bubbles stick together forming bubble clusters, and it is in general
difficult to control their position due to buoyancy and flow. Various groups have
recently demonstrated optical trapping and manipulation of ultrasound contrast
agent microbubbles, to the purpose of studying their properties with controlled
and repeatable experimental conditions [10, 11, 12]. Phospholipid-stabilized gas
microbubbles, such as those used in our experiments, will behave as low-index
particles even if they have a high-index shell [4]. The phospholipid monolayer is
in fact a few nanometers thick, and the behavior of the microparticle is dominated
by the interaction of the laser with the gas core.

4.2 Materials and Methods

We developed an optical tweezers setup based on Laguerre-Gaussian beams for
trapping and micromanipulation of ultrasound contrast agent microbubbles. Laguerre-
Gaussian beams, generated by converting a Gaussian laser beam through diffrac-
tive optical elements (DOEs), are focused through high-numerical aperture objec-
tives, generating “donut” traps. For our system, even for a beam with topological
charge l = 1, the diameter of the focused λ = 1064 nm LG beam is larger than
the bubble size. The effect on trapping is that a transversal confinement due to
the gradient force is still observed, but along the optical axis the scattering force
is not counterbalanced by the gradient force. Therefore, a gradient force optical
trap cannot be obtained. Microbubbles can nevertheless be confined in 3D using
an upright microscope (see Figure 4.1(a)), by balancing bubble buoyancy in a
levitation-type trap [2]. Detail of the setup is given in the present Section, while
information on the DOEs used for beam shaping can be found in Section 3.3.

4.2.1 Optical setup

The setup for three-dimensional trapping of microbubbles was based on a Olym-
pus LUMPLFL objective, 100× magnification with numerical aperture NA = 1.0
in water. A schematic view of the setup is presented in Figure 4.1(b). A TEM00

beam coming from a single-mode, continuous-wave (CW) Yb-doped laser fiber
(YLM-10W from IPG Photonics, λ = 1064 nm, linear polarization, collimated)
is converted into a Laguerre-Gaussian beam by a phase DOE displayed on the
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parallel aligned nematic liquid crystal display (LCD) of a Hamamatsu X8267-11
spatial light modulator (SLM). The SLM exhibits high efficiency (40%) and the
phase mode can be completely decoupled from the intensity mode, allowing very
accurate implementation of multi-level phase-only DOEs. A maximum phase
shift higher than 2π is provided at 1064 nm with 19 lp/mm maximum display
resolution on the LCD, over an active area of 20 mm × 20 mm. A 3× beam ex-
pander is used to fill the whole LCD area with the incident beam (initial diameter
7 mm). Ideally no zero order should be observed when converting the incident
beam with phase-only DOEs, but due to the mismatch of the phase levels imple-
mented on the LCD from the calculated values (see 3.1.1), the sum over the DOE
of the phase modulation errors introduced by the LCD gives a constant term in
the DOE plane, which is converted in the zero (non diffracted) order peak in the
observation plane. Lenses L2 and L3 (plano-convex, f2 = 150 mm, f3 = 75 mm)
resize the beam to properly fill the 100× objective back aperture. The beam is
directed into the objective with a dichroic mirror. The mirror allows the visible
light used for illumination to pass through. Transmission imaging is performed
through the second objective (either Olympus SLCPlanFl 40× or Nikon Plan
Fluor 60×). The image is collected by a CMOS sensor (Epix, VCA1281 sen-
sor; 1280× 1024 maximum resolution, sensor size 8.96 mm× 7.17 mm, pixel size
7µm× 7µm).

(a) (b)

Figure 4.1 (a) Schematic of a microbubble in a Laguerre-Gaussian optical trap. (b) Optical
setup. 1064 nm Ytterbium doped fiber laser; SLM: spatial light modulator; 3×:
beam expander; L2 and L3: 150 mm and 75 mm plano-convex lenses; DM: dichroic
mirror, directs laser beam into microscope objective and lets illumination light
pass through; 100×: water immersion objective for trapping; 40×, 60×: long-
working distance objectives for imaging; the sample cell is mounted on a x, y, z
piezo stage.



4.2 Materials and Methods 45

4.2.2 Sample preparation

Ultrasound contrast agent (UCA) microbubbles are phospholipid-shelled gas bub-
bles, ranging in radius from 0.5 to 4 µm. The inner gas core refractive index is
assumed to be unity. Since their shell is a phospholipid monolayer, approximately
2 nm thick, it is negligible compared to the bubble size. Therefore, they behave as
low-index particles. The experimental contras agent BR-14 used throughout this
thesis was provided by Bracco Research S.A. (Geneva, Switzerland). A solution
containing UCAs is injected in a sample cell made of two microscope cover slides
separated by 100-150 µm thick sticky tape. The sample cell is placed on a pro-
grammable piezo-actuated translation stage (Nanocube, Melles-Griot) to enable
trapping force measurements.

4.2.3 Forces balance on UCA microbubbles

Gas bubbles and water exhibit, in addition to the refractive index mismatch,
a strong density mismatch. The buoyancy force is relevant in determining the
forces balance. The buoyancy force acting on gas microbubbles ranging in radius
R between 0.5 µm and 4 µm is calculated from

Fbuoy =
4
3
πR3 (ρwater − ρair) g (4.2)

The following values are used for the constants: ρwater = 1000 kg m−3 (water
density at 4 ◦C); ρair = 1kg m−3; g = 9.81 m s−2. Some values for the buoyant
force are shown in Table 4.1. The terminal rise velocity is also shown. The drag
force is given by

Fdrag = 6πRηwater v (4.3)

where ηwater = 1.01 ·10−3 N s m−2 is the viscosity of water at 20 ◦C. The terminal
rise velocity is then given by

vmax =
vbubble ρwater g

6πRη
(4.4)

The values of velocity for buoyant bubbles show that, short after sample prepa-
ration, even the smallest bubbles reach the top surface of the sample cell. For
UCA microbubbles, the buoyancy force ranges from 0.01 pN (R = 0.5µm), up
to 3 pN (R = 8µm), and it is counterbalanced by the optical scattering force
enabling 3D confinement.

The transversal trapping force can be estimated my measuring the escape
velocity from the trap. The programmable piezo stage enables for controlled
displacements of the sample with increasing velocity. When the drag force expe-
rienced by the microbubble due to the viscous fluid flow overcomes the trapping
force, an estimate of the maximum trapping force is obtained. Typical values of
the transversal trapping force of 10− 20 pN are observed for UCA microbubbles
(R ∼ 0.5÷ 4µm), corresponding to velocities of the order of 100 µm s−1.
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Bubble radius
(µm)

Buoyant force
(pN)

Velocity
(µm s−1)

0.5 0.01 0.54

1.0 0.04 2.16

1.5 0.14 4.86

2.0 0.33 8.63

2.5 0.64 13.49

3.0 1.11 19.43

3.5 1.76 26.44

4.0 2.63 34.54

Table 4.1 Values of buoyancy force and velocity are estimated for free gas bubbles immersed
in water. Typical radii for BR-14 UCAs. The contrast agent is provided by Bracco
Research S.A. (Geneva). The effect of the phospholipid shell is assumed to be
negligible.

4.3 Results

4.3.1 Three-dimensional trapping

Low-index particles are not entering spontaneously the Laguerre-Gaussian trap,
since they experience a force directed away from high-intensity regions. One
procedure for trapping individual microbubbles is to block the beam, align its
position over a microbubble, and then unblock the beam. The microbubble will
be confined in the dark center of the beam, and will reach an equilibrium position
in the vertical direction (below the trapping objective focal plane) given by the
balance between scattering force, gradient force and buoyancy. The DOE encod-
ing for a suitable vortex can be chosen depending on the microbubble’s size. In
Figure 4.2 a sequence shows trapping of an individual UCA microbubble, 3−4µm
diameter, away from the top surface of the sample cell. The topological charge of
the vortex is l = 7. After trapping the microbubble with the procedure described
above, we change its distance from the chamber wall by positioning the sample
chamber upwards. The final position is at 20µm from the wall. Imaging is per-
formed through the second objective (see Figure 4.1) and is thus decoupled from
trapping; this enables easy monitoring of the system. The sequence in Figure 4.2
shows a microbubble stably trapped away from the top surface; the sequence is
taken by scanning the second objective along the optical axis with 5µm steps.
The first image (a) is taken at the top surface of the sample cell. The following
images are taken 5µm (b), 10µm (c), 15µm (d) and 20µm (e) below the top
surface. We thus proved that confinement is three-dimensional. We could move
the trapped microbubbles at a desired position up to 100 − 150µm away from
the top surface.
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Figure 4.2 Individual, 3 µm microbubble trapped with a l = 7 Laguerre-Gaussian beam.
The images are taken by scanning the imaging objective, 5 µm step. Initially the
bubbles at the top surface are shown (a) and the trapped microbubble is out of
focus. Images (b), (c) and (d) show the top surfaces going out focus and the
trapped bubble coming in focus. In the last image (e) the trapped microbubble
is in focus, 20 µm below the initial position. Scale bar 10 µm.

4.3.2 Multi-trapping of microbubbles

Here we report our procedures for sorting microbubbles from a set, trapping them
on an array, and dynamically changing the trapping configuration [11, 13, 14]. As
mentioned above, low-index particles are not entering spontaneously the donut
trap. The procedure of blocking the beam, aligning its position over a microbub-
ble, and unblocking the beam is not as reliable for multiple trapping as it is
for individual trapping. Microfabricated DOEs do not allow to change in real-
time the configuration of traps, and multiple trapping can only be achieved when
the concentration of microbubbles ensures a reasonable probability for trapping
multiple microbubbles when the beam is unblocked [10]. A procedure for subse-
quently switching on multiple traps is highly desirable. The ability of individually
switching on and off individual traps is crucial when the particles in solution ex-
hibit a large size distribution, as it happens for UCA microbubbles, and one is
interested in sorting particles of a given size. This ability was demonstrated by
applying the generalized phase contrast [7] but only two-dimensional confinement
was obtained.

2D multi-trapping Preliminary experiments were performed to demonstrate
multiple trapping by coupling the laser beam into an inverted microscope (Nikon
TE2000) [13]. This gives only two-dimensional confinement, since buoyancy is
not counterbalanced, and the microbubbles are trapped at the sample chamber
wall. A sequence of DOEs was prepared with an increasing number of donut
traps, following the method presented in 3.3.4. In Figure 4.3 the sequence of
DOEs for subsequently switching on three identical traps with l = 8 is shown:
we locate the first trap, obtained by displaying the first DOE (a), and block the
beam; we position the trap over the first microbubble to trap, and finally unblock
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the beam. The second microbubble is selected and after positioning where the
second trap will be generated, we change DOE (b) so that two traps are obtained
and the second microbubble is trapped. The same procedure allows to trap the
third microbubble by switching to the third DOE (c) and so on for bigger arrays.
This procedure allows effective sorting of the desired microbubbles from the set,
as shown in Figure 4.4.

Figure 4.3 Sequence of DOEs for multiple microbubbles trapping. They encode respectively
for one (a), two (b) and three (c) vortex traps with l = 8. They are displayed in
sequence on the SLM and allow to trap subsequently microbubbles chosen from
the set.

Figure 4.4 Three microbubbles are stably trapped in identical l = 8 vortex traps. They have
been subsequently trapped by displaying a suitable sequence of DOEs on the
SLM. The stability of trapping is proved by moving the sample chamber. Scale
bar: 10 µm.

3D multi-trapping and manipulation Here we show an additional function-
ality that can be implemented by displaying a sequence of DOEs on the SLM.
After trapping multiple microbubbles in a desired configuration following the pro-
cedure described above, we can control the distance and move the microbubbles,
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simply by changing the DOE. We calculate sequences where small displacements
are imposed so that the microbubbles remain stably trapped. In Figure 4.5 the
intensity pattern generated by such a sequence is shown: the bright spot in the
center is the on-axis non-diffracted order, the topological charge of the two vor-
texes is l = 8. With a first DOE a single trap is generated (a) beside the optical
axis; a second DOE switches on the second trap (b) in a symmetric position
relative to the optical axis. The following DOEs change the distance between
the two traps. Manipulation of two microbubbles is then performed, as shown
in Figure 4.6. Two microbubbles are trapped following the procedure described
before. They are then positioned 30 µm below the top surface, by moving the
sample chamber upwards. Images on different planes are taken by scanning the
imaging objective. The first image shows the microbubbles at the top surface of
the sample chamber, and the laser intensity in this plane (a). The second image
(b) shows a plane half the way between the top surface and the plane where two
microbubbles are trapped. The third image (c) shows two microbubbles, 4−5µm
diameter, stably trapped on a plane 30µm below the initial plane. The following
images (d, e, f, g, h) show manipulation and control of the distance between the
two microbubbles: by changing the DOEs displayed on the SLM, the distance
is slowly increased. For our applications, the approach of embedding multiple

Figure 4.5 Laser beam shaping for two microbubbles trapping and manipulation. The images
show the laser intensity obtained in the microscope objective focal plane for 6
different DOEs. The first DOE displayed on the SLM creates a trap for the
first bubble (a). The second DOE adds a trap for the second bubble (b) in a
symmetric position with respect to the optical axis. The sequence of DOEs that
follows changes the distance between the two traps (c, d, e, f). Scale bar: 10 µm.

vortexes in the beam, using the DOEs presented in 3.3.4, is very convenient, and
even more flexible. The distance between the two juxtaposed DOEs can be in-
deed easily adjusted to change the distance between the two traps, resulting in
precise, sub-µm positioning of the two trapped microbubbles, as in Figure 3.11
[14]. Furthermore, it is straightforward to adjust the trap size for each individ-
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Figure 4.6 Two microbubbles trapping and manipulation. The first image shows the mi-
crobubbles at the top surface of the sample cell and the laser intensity in this
plane (a). The second image shows a plane between the top surface and the plane
where two microbubbles are trapped (b). The third image shows two microbub-
bles stably trapped on a plane 30 µm below the initial plane (c). The following
images (d, e, f, g, h) show manipulation and control over the distance between
the two microbubbles by changing the DOEs displayed on the SLM. Scale bar:
5 µm.

ual trap. Figure 4.7 shows a set of bubble pairs, with different sizes, trapped at
different distances, using this approach.

Figure 4.7 Trapping of two UCA microbubbles. A filter blocks the laser light so that the
traps are not visible. Bubbles with different sizes are trapped, and the distance
can be precisely controlled. Scale bar: 5 µm.
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4.4 Conclusions

Optical trapping of ultrasound contrast agent microbubbles is demonstrated. The
confinement is observed to be three-dimensional in a setup where a downward
directed trapping beam counterbalances buoyancy. Single and multiple Laguerre-
Gaussian beams are generated by means of phase diffractive optical elements
implemented on a programmable spatial light modulator. The use of a SLM al-
lows to reconfigure the traps in real time: this enables full control on multiple
microbubbles. Positioning and manipulation can also be performed, by simply
switching between suitable DOEs. Microbubbles can be trapped in arrays that
can be subsequently rearranged by individually switching on and off each trap,
and by changing the distance between the traps. These features can be exploited
for studying ultrasound contrast agent microbubbles under well-controlled, re-
peatable experimental conditions.
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Chapter 5

Combined optical
micromanipulation and
ultra-high speed imaging of
UCA microbubbles

The dynamics of micron-sized phospholipid-coated gas bubbles, which are used in
medical ultrasound imaging as contrast enhancers, can be studied using an ultra-
high speed camera which can record up to 25 million frames per second (5.1). These
studies are hampered by buoyant forces that make the bubbles rise, by bubble clus-
tering, or by the presence of hard and soft interfaces that change the dynamics of the
bubbles. Optical tweezers allow overcoming such difficulties (5.2). The microbub-
bles can be trapped and manipulated by Laguerre-Gaussian laser beams, so that
their position relative to a neighboring wall or interface can be precisely controlled
in 3D space. This enables studying the dynamics of microbubbles with prescribed,
repeatable conditions (5.3).
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5.1 Introduction

Micron-sized gas bubbles are routinely used as contrast agent in ultrasound med-
ical imaging. They are usually encapsulated by a phospholipid, protein or poly-
meric shell and contain air or an inert gas. In the ultrasound field, at typical
medical imaging frequencies between 1 and 10 MHz, they undergo linear and
non-linear oscillation. This acoustical response signature allows discriminating
the blood pool from the surrounding tissues [1]. In the past decade, the study
of the acoustical response of ultrasound contrast agent (UCA) microbubbles has
attracted wide interest, both from the medical and acoustical communities, as
non-linear oscillations, complex surface modes and cavitation phenomena are in-
volved in bubble dynamics [2]. The dynamics of UCA microbubbles is commonly
recorded acoustically using ultrasound transducers, collecting the backscattering
generated from bubble oscillations. More recently, bubble oscillations at ultra-
sound frequencies were successfully recorded optically [3, 4, 5], with the advantage
of providing direct evidence of phenomena involving non-linear oscillations [6],
bubble rupture, surface modes and interactions with neighboring objects [7, 8].
Optical recordings of UCA microbubbles dynamics upon insonification require a
sampling rate in the million frames per second (Mfps) range, to allow accurate
representation of the oscillation period and amplitude. In addition, more than 100
frames are desirable as the ultrasound typically lasts for 10 cycles during which
the response of the microbubbles can be highly non-linear, and the number of
frames should be sufficient to record the whole process. In this thesis, ultra-high
speed imaging is performed using a digital rotating mirror camera, named “Bran-
daris 128”,capable of 128-frame recordings at 25 Mfps [9]. This instrument has
been specifically developed to investigate microbubble dynamics. The microbub-
bles are traditionally studied by confining them in space either by injection in
a soft, acoustically transparent capillary [10] or by producing bubbles in a ris-
ing train [11]. A problem common to all experiments on UCA microbubbles is
the lack of control on the position and distance from interfaces and neighboring
bubbles, due to buoyancy and flow. Even though soft capillaries do not scat-
ter ultrasound, their walls do affect bubble dynamics; in addition, the effect of
neighboring bubbles may not be negligible.

Optical tweezers provide an elegant solution for studying UCA microbubble
behavior with controlled boundary conditions. As shown in Chapter 4, this tech-
nique enables indeed full manipulation of microbubbles, which can be sorted and
precisely controlled in 3D space. Recently, optical trapping of UCA microbub-
bles for the purpose of studying their properties with controlled experimental
conditions was demonstrated by various groups [12, 13, 14].

In addition, optical trapping has been combined with different imaging sys-
tems, allowing the study of a wide variety of biologically relevant phenomena:
optical tweezers were successfully combined with e.g. micro-Raman spectroscopy
for resonance Raman studies of single functional trapped cells [15], and with
single molecule fluorescence for monitoring biomolecular interactions [16]. The
possibility of coupling optical trapping with fluorescence microscopy for probing
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single cell mechanics has also been demonstrated [17]. We developed a setup that
combines optical trapping with ultra-high speed imaging: UCA microbubbles can
be manipulated with Laguerre-Gaussian optical tweezers (see Chapter 4) to ob-
tain desirable boundary conditions, and their dynamics can be optically recorded
at up to 25 Mfps using the ultra-high speed camera described in Section 5.2.2.
In Section 5.2 the combined setup is presented in full detail.

5.2 Methods and apparatus

The setup combines an optical tweezers system based on an upright microscope
and a spatial light modulator, with the ultra ultra-high speed camera Brandaris
128 [9]. The camera is directly connected to the output port of the microscope.

5.2.1 Optical tweezers setup

The optical tweezers setup is based on the setup described in Chapter 4. The laser
beam shaping for generating a Laguerre-Gaussian beam is performed by using
phase-only diffractive optical elements (DOEs), implemented on a programmable
spatial light modulator (SLM): the DOE is displayed on a liquid crystal display
(768×768 pixels) in the front part of the SLM, allowing a refresh rate of up to 60
Hz. The use of computer-generated DOEs enables us to generate arrays of traps,
which may contain up to tens of bubbles and/or particles, and the possibility
to change the DOE in real-time on the LCD allows dynamically reconfiguring
the number, positions and size of traps [16]. The setup for optical trapping (see
Figure 5.1) is based on an upright microscope (BXFM, Olympus). The Gaussian
beam coming from a 1064 nm continuous wave Yb-doped fiber laser (YLM, IPG
Photonics) is converted into a Laguerre-Gaussian mode upon reflection on the
SLM (X8267-15, Hamamatsu). The beam is then resized by lenses L1 and L2

to fit the objective entrance pupil. These lenses also allow adjusting the con-
vergence of the beam. A dichroic mirror (CVI Laser) reflects the beam into the
100× microscope objective (LUMPLFL, Olympus; NA = 1.00, water immersion).
The Laguerre-Gaussian beam is then focused into a sample cell containing the
microbubbles. Transmission imaging is performed by illuminating the sample
either with a metal-halide high-brightness CW light source (ILP-1, Olympus)
or with a xenon flash source (MVS-7010, Perkin-Elmer) via a fiber optic cable.
Real time imaging is performed through a CCD camera (LCL-902HS, Watec). A
beam splitter (BS) transmits 20% of the incident light to the CCD, and reflects
the remaining 80% into the high speed camera. Beam shape and position can be
monitored on the CCD, while an IR filter (CVI Laser) is inserted in the path of
the high speed camera.

5.2.2 The “Brandaris 128” camera

The ultra-high speed camera, named Brandaris 128, is a digital rotating mirror
camera (Figure 5.2). A rotating three-faced mirror prism directs the incoming
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Figure 5.1 Optical setup for microbubble trapping and ultra-high speed imaging. The laser
beam is reflected by the spatial light modulator (SLM) and resized by a telescope
(lenses L1 and L2); it enters the objective (100×) upon reflection on a dichroic
mirror (DM) and is focused into the sample volume. Imaging is performed by
illuminating the sample in transmission. The image is formed by the microscope
tube lens at the primary image plane of the high-speed camera, and on a CCD
camera. A beam splitter (BS) enables the two imaging modes. An IR filter blocks
any residual IR light coming through the dichroic mirror.

light to 128 optical channels arranged in an arc of 70 degrees. The images are
transferred by a bank of small lenses to the image arc, where they are recorded
on 128 high sensitivity CCD detectors. The mirror is driven by a pressurized
helium flow, controlled by a mass flow controller which keeps the flow, and hence
the rotation of the mirror, at a preset speed, corresponding to a given frame rate
of the camera. The number of pixels used is 500 × 292. The optical resolution
is determined by the resolving power of the small lenses in the lens bank; in
combination with the microscope it can resolve to a scale of 500 nm [9]. The 128
CCDs are controlled by custom-designed electronics. The high rotation speed
of the mirror, together with the high sensitivity of the CCD cameras, enables
interframe intervals down to 40 ns (25 million frames per second). 128 frames
are stored in each recording, and 6 full recordings can be stored consecutively,
with a minimum time interval of 40 ms. This instrument has been specifically
developed to investigate microbubble dynamics in ultrasound. The camera and
its working principle are described in detail in [9].



5.2 Methods and apparatus 57

Figure 5.2 The “Brandaris 128” ultra-high speed camera, coupled to an upright microscope
for combined optical trapping and ultra-high speed imaging. The red pathline
represents the laser beam, which is resized by a telescope before entering the mi-
croscope through the fluorescence port. The blue pathline represents the imaging
optical path. The image is focused in the primary image plane of the camera, and
transferred by a set of relay lenses to the rotating mirror. The mirror sweeps the
image over the 128 CCD sensors arranged in an arc of 70 degrees.

5.2.3 Ultrasound setup

A small water container with an unfocused 2.25 MHz transducer (V306, Pana-
metrics Inc.) is mounted on a x, y, z micropositioning stage located below the
objective. The transducer is mounted with 45◦ incidence angle to the optical axis,
so that the acoustical field overlaps the optical focal volume. The transducer is
driven using a function generator (33120A, Agilent) in conjunction with an RF
power amplifier (350L, ENI). An OptiCell cell culture chamber (BioCrystal, Inc.),
which is formed by two polystyrene-matrix material membranes of 75µm thick-
ness, positioned at 2 mm spacing, is placed perpendicular to the optical axis into
the overlap region. In previous experiments [18], the membranes were observed
to exhibit optimum optical and acoustical transmission. The chamber volume
(10 ml) is filled with a degassed 0.9% NaCl aqueous solution prior to UCA mi-
crobubble injection. A 100µl volume of UCA microbubbles is then injected in the
chamber. All studies are performed with an experimental contrast agent, BR-14
(Bracco Research S.A., Geneva), which is a phospholipid-stabilized agent com-
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Figure 5.3 Picture of the combined Brandaris camera and optical tweezers setup (Feb 03,
2006)

prising of perfluorobutane-filled microbubbles. The bubble density is optimized
to have up to 5-10 bubbles in the field of view of the camera.

5.2.4 Combined optical trapping and ultra-high speed imaging

The setup for optical trapping (Figure 5.1) is very similar to the one described
in Section 4.2.1. In that case the trapped bubbles were imaged through a second
objective. Here, the imaging and trapping objective need to coincide, since a
second objective cannot be easily introduced in the setup. The intrinsic mismatch
between trapping and image plane needs to be compensated for. The bubbles
are indeed trapped below the focal plane of the objective, at a distance ztrap ∼
20−30µm, where a favorable balance between the scattering force, gradient force
and buoyancy arises. The trap position thus needs to be lifted by a distance z′

so that the bubbles are trapped in focus. This can be achieved by causing the
beam to enter the objective with a slight convergence. The distance between the
lenses L1 and L2 can be adjusted to serve this scope.
First, the optical system consisting of lenses L1 (focal length f1) and L2 (focal
length f2) and microscope objective (focal length f0 = 1.8 mm) is considered.
The shift z′ is expressed in terms of the distance d1−2 between the lenses using
Newton’s equation for image formation by thin lenses

f2 = −s s′ (5.1)
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where f is the focal length off the thin lens, s is the distance of the object and s′

the distance of the image. We find:

z′ =
f2
0

f0 − d0−2 + f2 −
f2
2

f1+f2−d1−2

(5.2)

In Figure 5.5 z′ is plotted as a function of the distance d1−2 between the lenses, for
three different sets of lenses. Two sets of lenses were tested before choosing the

Figure 5.4 The system of lenses is considered, consisting of lenses L1 (focal length f1) and L2

(focal length f2) and microscope objective (focal length f0 = 1.8 mm) The shift
z′ of the focused trap relative to the microscope objective’s focal plane, located
at F ′

0, depends upon the distance d1−2 between lenses L1 and L2

Figure 5.5 The plots show the calculated shift z′ of the focused trap relative to the microscope
objective’s focal plane, as a function of the distance d1−2 between lenses L1 and
L2. z′ is negative taking the direction of propagation as positive. Different sets
of lenses are considered.

combination with f1 = 150 mm and f2 = 125 mm, which gave the best control on
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the position of the bubble for small displacements of L1 and small adjustments
of the incident laser power.

Initially, the possibility to simply compensate for the image plane position,
using relay optics, was also considered. When an object is at a distance f0 + z
from the objective, its image is produced at a distance f3− z3 (see Figure 5.6) so
the image plane is inside the microscope. The easiest is therefore to adjust the
trap position.

Figure 5.6 The system of lenses is considered, consisting of the microscope tube lens L3 and
the microscope objective. The image of an object placed in A0 is formed in A3.
It is thus inside the microscope in our setup.
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5.3 Results

The setup combining optical tweezers and ultra-high speed imaging, enables for a
characterization of the boundary-dependent UCA microbubble dynamics at the
single-bubble level. We are able to compare the behavior of the very same UCA
microbubble under different boundary conditions, by a well-controlled positioning
of individual bubbles. The laser is blocked during the recording to avoid inter-
fering optical forces, but short enough for the bubble to remain in the trapped
position. More experiments can thus be repeated on the same bubble, as it is
always found back in the trap after the laser is retransmitted. For analysis and
comparison with theoretical models, the movies are processed to track the bub-
ble radius as a function of time, resulting in a so-called radius-time curve of the
bubble, R − t. An FFT algorithm is applied to the R − t curve to compute its
Fourier transform. The square of this quantity gives the power spectrum PR of
the radius-time curve.

5.3.1 Recordings of freely oscillating microbubbles

An individual UCA microbubble can be selected and trapped. It can be subse-
quently positioned at a prescribed distance from the chamber wall, my moving
the chamber upwards with µm precision, using a micropositioning stage. The dy-
namics of a freely oscillating microbubble can thus be investigated. A sequence
is shown in Figure 5.7, where an individual bubble oscillates at 50 µm from the
sample chamber wall. The insonifying ultrasound wave consists of a burst of 8
cycles, the first and the last of which are modulated by a Gaussian envelope.
The applied acoustic pressure PAC is 150 kPa (peak negative pressure, PNP) at
a frequency of 2.25 MHz. The acquisition frame rate is 15 Mfps, corresponding
to a temporal resolution of about 65 ns. Figure 5.8 shows the results of the im-
age processing: the experimental R− t curve is obtained, and from it the power
spectrum is calculated.

5.3.2 Influence of the laser trap on bubble dynamics

The possible influence of the laser trap was also investigated by recording the
same bubble free from the trap and inside the trap with the laser beam switched
on. No apparent influence on the frequency or amplitude of the oscillations was
observed (see Figure 5.9) in 12 repeated experiments carried out at 2.25 MHz with
an applied pressure of 150 − 200 kPa. As a consequence, experiments requiring
longer acquisition times than those described here can also be performed, as
the laser needs not to be switched off during the recording, thus providing the
necessary 3D confinement for the bubble not to go out of focus due to buoyancy.
It is also noteworthy that laser absorption by the particle is negligible in this
trapping configuration, as it is confined in the region of minimum intensity, and
thermal damage of contrast bubbles does not occur.
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Figure 5.7 Microbubble freely oscillating at 2.25 MHz recorded at 15 Mfps, after release from
the optical trap. In figure, 24 of the 128 frames are shown; each frame is recorded
by a different CCD. The interframe time is 65 ns. Scalebar 2 µm.

5.4 Conclusions

A setup was described that allows time-resolved optical monitoring of ultrasound
contrast agent microbubble dynamics under ultrasound, with controlled bound-
ary conditions. A digital rotating mirror high-speed camera allows achieving
the temporal resolution required for investigating the oscillation dynamics in the
sub−µs timescale. Coupling of this instrument to an optical tweezers setup al-
lowed manipulation of microbubbles, so that controlled boundary conditions for
the oscillating bubbles can be achieved. We therefore introduced a powerful
tool for investigating how the bubble dynamics, hence the acoustical signature,
changes with varying distance to neighboring objects. The results of the experi-
ments performed with this setup will be the subject of Chapter 6.
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Figure 5.8 Bubble radius oscillations upon insonification. Red curve: applied acoustic pres-
sure PAC (ultrasound burst of 8 cycles at a frequency of 2.25 MHz, with Gaussian
envelope on first and last cycle, PNP 150 kPa). Black curve: the R − t curve
is obtained by image processing from the recorded 128-frame movie. In the plot
112 of the 128 data points are shown. Blue curve: power spectrum of the bubble
oscillations. The linear response is remarkably pronounced (peak at 2.25 MHz)
compared to the non-linear contribution (peak at 4.5 MHz, second harmonics).
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Figure 5.9 The dynamics of the very same, single 2.5 µm bubble is recorded with the bubble
trapped in the LG beam (red dashed line) and after the bubble is released from
the optical trap (blue solid line). The applied pressure amplitude is 150 kPa
with a frequency of 2.25 MHz. In repeated experiments on different bubbles, no
significant difference is observed in the amplitude or frequency of oscillation.
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Chapter 6

3D optical manipulation of
microbubbles: bubble-wall and
bubble-bubble interactions

The first experiments performed with the setup which combines 3D optical micro-
manipulation and ultra-high speed imaging of UCA microbubbles are presented here.
The influence of a neighboring object (a rigid interface or a second bubble) on the
bubble dynamics is studied with well-controlled and repeatable conditions. In our
experiments we compare the behavior of the very same bubble under different bound-
aries. The experimental results are compared to a Rayleigh-Plesset-like model for the
single-bubble case. For a precise quantification of the force balance in the two-bubble
case, the translation dynamics is also modeled. A recent model accounting for the
shell properties is used to extend the model for uncoated bubbles.The importance
of this investigation for molecular imaging applications is presented in 6.1. Bubble
phenomena are shortly described from a theoretical standpoint in 6.2. Experimental
results showing changes in the dynamics of one and the same UCA microbubble near
a boundary are presented and discussed in 6.3.
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6.1 Introduction

6.1.1 UCA microbubbles

Ultrasound contrast agents increase the echo from the blood pool in ultrasound
diagnostic imaging, and allow the delineation of blood vessels [1]. Microbubbles
are widely used as ultrasound contrast agents in clinical use and research. These
agents consist of a gaseous center stabilized by an outer shell. The shell prevents

(a) (b)

(c) (d)

Figure 6.1 Ultrasound image of a rabbit kidney before (a) and after (b, c, d) injection of UCA
microbubbles. The perfusion to the kidney is visualized when bubbles circulate
in the vasculature. Courtesy of: Bracco Research S.A. (Geneva).

the core gas from rapidly dissolving in the surrounding medium. Gas dissolution
for these bubbles is driven by surface tension σ0 of the gas-water interface, which
generates a Laplace pressure 2σ0

R inside the bubble, therefore smaller bubbles lose
gas and disappear faster. Coated bubble preparations have the ability to pass
through the lungs and successfully recirculate in the bloodstream. The shell can
be made from denatured protein (e.g. human serum albumin), polymer, or a
phospholipid monolayer. However, a thin shell is not sufficient to prevent gas
diffusion, therefore a poorely soluble gas is used to achieve sufficient circulation
time. In typical clinical use, a small amount (microliters to milliliters) of prepared
contrast agent solution is injected intravenously during an ultrasonic examination,
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and the microbubbles travel through the circulation enhancing the echo signal
from the blood pool.

6.1.2 Interaction of UCA microbubbles with ultrasound

When a gas bubble is insonified by a US wave, it generates two kinds of re-
sponses. First, the wave will be reflected at the surface of the bubble because
of the large difference in acoustic impedance between the surrounding medium
and the gas inside the bubble. More importantly, however, when the bubble size
is much smaller than the wavelength of the US wave, it is forced into volume
pulsation (for a 3-MHz US wave, the wavelength in water is 0.5 mm). The vol-
ume pulsation of the bubble is frequency-dependent and shows a clear maximum
at a specific frequency, which is referred to as the resonance frequency, and is
inversely related to the bubble size (see Section 6.8). The resonance phenomenon
is an important effect because a resonating bubble yields an enhancement of the
backscatter signal. The response of a gas bubble to a US wave depends on the
acoustic pressure amplitude [2]. For small amplitudes of the US wave, the relative
compression and expansion of the bubble is the same and, therefore, the bubble
size is linearly related to the applied acoustic pressure. For higher amplitudes,
however, the compression and expansion curves are different and nonlinearity oc-
curs. Consequently, the bubble size is not linearly related to the applied acoustic
pressure [3], and the bubble vibration contains second and higher multiples of
the transmitted frequency. In this way, the backscatter signal from the bubble
not only contains the fundamental (transmitted) frequency, but also harmonic
frequencies, most notably at twice the fundamental frequency. This effect is not
shown so markedly by tissue and it, therefore, offers the possibility of separating
the response of the bubble from that of the surrounding tissue. Important appli-
cations to diagnostic imaging include the quantification of organ perfusion (see
Figure 6.1), or the visualization of angiogenesis.

6.1.3 Experimental characterization of UCA microbubble dy-
namics

Many aspects of the dynamics of UCA microbubbles still remain elusive, and this
has attracted in the past two decades the interest of both the medical and acous-
tical communities, as non-linear oscillations, complex surface modes, cavitation
phenomena and mutual interactions between bubbles occur [4]. A precise, quan-
titative understanding of such bubble phenomena may find direct applications in
diagnostic ultrasound, as it would allow to further develop bubble technology on
one hand, and to improve the imaging protocols on the other hand. Furthermore,
lively interest in the study of UCA microbubble oscillations in the vicinity of a
wall has been raised by their use for sonoporation [5, 6] and molecular imaging
[7]. For molecular imaging applications, it will be crucial to develop methods
for selectively detecting adherent UCA microbubbles that have bound to specific
molecular targets from freely flowing ones, primarily based on a change in their
acoustic response. Considerable differences in the amplitude of oscillations [8, 9]



70 Bubble-wall and bubble-bubble interactions

and in the spectral response [10] were reported recently. In general, however, the
studies on UCA microbubble dynamics suffer from the lack of control on bubble
position, due to buoyancy and bubble clustering, and they are therefore based on
ensemble averaging and statistical observations of many different bubbles.

The use of optical tweezers for 3D micromanipulation and positioning of UCA
microbubbles was presented in Chapter 4, and the setup combining optical trap-
ping capabilities to ultra-high speed imaging, for time-resolved optical recordings
of bubble dynamics was described in Chapter 5. Here we show how the dynamics
of one and the same UCA microbubble changes under different boundary condi-
tions, namely in the vicinity of a wall or in close proximity to a second bubble,
by controlling the position of individual microbubbles with optical tweezers and
recording their dynamics at 15 million frames per second.

6.2 Theory

In this Section a model is presented for the dynamics of UCA microbubbles
in ultrasound. For simplicity the dynamics is first described in the case of an
uncoated bubble. The effect of a coating is then included.

6.2.1 Radial dynamics of a free gas bubble

To examine the dynamics in ultrasound of gas microbubbles, the model developed
in 1917 by Lord Rayleigh for collapsing voids in water is used as the theoretical
basis. The response of a spherical bubble to an external, time-varying pressure
field in a boundless, inviscid incompressible fluid obeys [11]:

ρ(RR̈+
3
2
Ṙ2) = Pg − Pl (6.1)

where R = R(t) is the instantaneous bubble radius, ρ is the density of the sur-
rounding liquid, Pl is the pressure in the liquid, and Pg is the gas pressure inside
the bubble. The bubble is assumed to remain spherical at all times, therefore
it is characterized simply by its radius R(t). The acoustic wavelength is much
larger than R, the density of the liquid ρ is large compared to the gas density,
and the gas pressure inside the bubble is uniform. Also, the vapor pressure is
assumed to be constant during the oscillations. The pressure in the liquid writes
Pl = P0 + PAC(t), P0 being the hydrostatic pressure and PAC(t) the externally
applied acoustic pressure. An extension of Equation 6.1 leads to what is now
called the Rayleigh-Plesset equation [12, 13], a model for many important bub-
ble phenomena. This includes the effect of surface tension, through the Laplace
capillary pressure term 2σ0/R, and the effect of viscosity, which gives an effective
pressure 4µṘ/R, yielding:

ρ(RR̈+
3
2
Ṙ2) = Pg − P0 − PAC(t)− 2

σ0

R
− 4µ

Ṙ

R
(6.2)
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where σ0 denotes the surface tension of the liquid/gas interface, and µ denotes
the liquid viscosity.
To account for the gas pressure inside the bubble an ideal polytropic gas law
can be chosen, Pg ∝ R−3κ, with κ as the polytropic gas exponent. It is 1 for
bubbles behaving isothermally, and equal to the ratio of specific heats (close
to 1.07 for C4F10) for bubbles behaving adiabatically [14]. When the thermal
diffusion length in the gas during a period is small compared to the radius, the
adiabatic version is used. The Keller-Miksis equation [15], a modified version
of the Rayleigh-Plesset equation which describes large amplitude oscillations by
incorporating the effects of acoustic radiation by the bubble, in the approximation
of a linear polytropic exponent, gives for a free gas bubble with resting radius
R0:

ρ
(
RR̈+

3
2
Ṙ2
)

=
(
P0 +

2σ0

R0

)( R
R0

)−3κ(
1− 3κṘ

c

)
− P0 − PAC(t)− 2σ0

R
− 4µ

Ṙ

R

(6.3)

This highly nonlinear equation can be solved numerically to predict the radial
dynamics of non-encapsulated gas bubbles. Thermal damping is neglected.

6.2.2 Sound radiation

In an incompressible fluid, the pressure gradient is related to the fluid velocity
by Euler’s equation. The sound radiated by an oscillating bubble at a distance
r � R0 from the bubble is given by [11]:

Ps(r, t) = −ρ ∂
∂t

(R2Ṙ

r

)
= ρ

2RṘ2 +R2R̈

r
(6.4)

The radius R of a UCA microbubble is ∼ 2µm. For a typical radial excursion of
0.2 µm at a frequency of 2 MHz, the velocity of the wall is therefore of the order of
1 ms−1. The corresponding acceleration of the bubble wall is ∼ 2×106 ms−2. The
sound radiation is inversely proportional to the distance; at r = 10µm (typical
distance from a neighboring bubble) the magnitude of the radiated pressure is 1
kPa, and at r = 1 cm (typical distance from the transducer) it decays to 10−3

kPa.

6.2.3 The microbubble as a forced linear oscillator

The bubble approximates to a linear oscillator when driven at low amplitude
[11, 16]. The oscillator mass is provided by the fluid surrounding the bubble, and
the elastic restoring force by the internal energy stored in the bubble gas. Letting
the radius be R = R0(1 + x), where x is a small perturbation, gives:

ẍ+ ω0δẋ+ ω2
0x = F (t) (6.5)
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with f0 = ω0/2π the eigenfrequency of the system and δ the linear dimension-
less damping coefficient. F (t) is the time-dependent forcing term, e.g. F (t) =
F0 sinωt. The amplitude of the radial variation of the bubble depends on the
driving frequency f = ω

2π . Writing x(t) = x0 sin(ωt+ φ) one gets from Equation
6.5:

x0(ω) =
F0√

(ω2
0 − ω2)2 + (δωω0)2

(6.6)

This equation defines the resonance curve, displaying a maximum at the reso-
nance frequency:

fres = f0

√
1− δ2

2
(6.7)

which is lower than the eigenfrequency in the presence of damping. The damping
mechanisms for an uncoated bubble are the re-radiation of sound by the oscillating
bubble and viscosity, both of which are accounted for in Equation 6.3, and thermal
damping: δ = δrad + δvis + δtherm. Here, thermal damping is neglected.

For a mass-spring system, when ω � ω0 the driving force and the oscillator
displacements are in phase (stiffness controlled) and at ω � ω0 (inertia con-
trolled) they are in antiphase. Similarly, the bubbles oscillate in phase or in
anti-phase with the driving pressure, depending on whether the frequency of the
incoming wave is smaller or larger then their resonance frequency.

6.2.4 Resonance frequency

Linearization of Equation 6.3 yields the eigenfrequency as a function of the bubble
resting radius R0:

f0 =
1
2π

√√√√ 1
ρR2

0

(
3κP0 +

2(3κ− 1)σ0

R0

)
(6.8)

Neglecting the surface tension in Equation 6.8 gives the Minnaert frequency [17].
For a given insonation frequency, a resonant radius can therefore be defined, for
which the insonation frequency corresponds to the resonance frequency.

6.2.5 Dynamics of a bubble near a rigid wall

The behavior of oscillating bubbles close to a rigid wall is of great practical
interest, and it has been studied extensively both in theory and experiments
[18, 19, 20, 21, 22]. The model presented here is very simple, but still it contains
some remarkable features of the bubble-wall system. The flow field near a wall
can be modeled, in a first approximation, by replacing the wall with an acoustic
image located symmetrically on the other side of the wall, in order to satisfy a
vanishing normal velocity at the wall [11]. This can be accounted for by simply
including the sound radiation of the image bubble in Equation 6.3. The image
bubble has the same radius R(t) of the oscillating bubble at all times, and we
assume that the bubble remains spherical. We use the far-field approximation
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for the sound radiated by the image bubble, see Equation 6.4, although this is
clearly not the case for a bubble in contact with the wall. The equation of motion
of the bubble wall then writes:

ρ
(
RR̈+

3
2
Ṙ2
)

=
(
P0 +

2σ0

R0

)( R
R0

)−3κ(
1− 3κṘ

c

)
+

− P0 − PAC(t)− 2σ0

R
− 4µ

Ṙ

R
− ρ

∂

∂t

(R2Ṙ

r

) (6.9)

where r is the center-to-center distance between the bubbles. For a bubble in
contact with the wall r = 2R and the equation becomes:

ρ
(3

2
RR̈+ 2Ṙ2

)
=
(
P0 +

2σ0

R0

)( R
R0

)−3κ(
1− 3κṘ

c

)
+

− P0 − PAC(t)− 2σ0

R
− 4µ

Ṙ

R

(6.10)

Linearizing to a harmonic oscillator, the mass at the wall is increased by a factor
3
2 (increased pre-factor of R̈) and this results in a decrease of the natural fre-

quency by a factor
√

2
3 . A resonance frequency shift for non-spherical bubbles

was predicted using this simple approach by Strasberg in 1953 [23]. Figure 6.2
shows the resonance frequency curves predicted by the image bubble model for
an uncoated bubble with resting radius R0 = 1.5µm. The blue solid line is for
the bubble in free space, the red dashed line for the bubble in contact with the
wall. Besides a decrease in the resonance frequency, this model also predicts a
larger amplitude of the resonance curve for the bubble at the wall. We anticipate
that this is not observed in experiments (see Section 6.3.2), as the model does
not account for important dissipation effects occurring in the viscous boundary
layer at the wall.

Figure 6.2 Resonance frequency curves predicted by the image bubble model for an uncoated
bubble with resting radius R0 = 1.5 µm. The blue solid line is for the bubble in
free space, the red dashed line for the bubble in contact with the wall. From [24].
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6.2.6 Acoustic radiation pressure

A pulsating bubble, driven by a sound field, absorbs and scatters the incident
acoustic wave. Absorption of the momentum associated with the incoming wave
gives rise to a radiation pressure. A body of volume V in a pressure gradient ∇p
experiences a force [11]:

FB = −V∇p (6.11)

The radiation force on a bubble in a standing-wave field is termed primary Bjerk-
nes force. In a standing-wave field, the pressure gradient oscillates. As discussed
in Section 6.2.3, a bubble of less then resonant size oscillates in-phase with the
sound field, and a bubble larger than resonance oscillates π out of phase with
the field. When the bubble and the field are oscillating in phase, the bubble
volume is minimum when the pressure is maximum, and viceversa if the two are
oscillating out of phase. Therefore the quantity − < V∇p > will be in one direc-
tion for bubbles below resonance and in the opposite direction for bubbles above
resonance. Therefore, in a standing wave field, bubbles of less than resonant size
travel up a pressure gradient towards the pressure antinodes, and those larger
than resonance travel down the gradient to the node.

The pressure field radiated by one pulsating bubble (see Section 6.2.2) also
generates radiation forces on neighboring bubbles. The radiation force exerted on
one pulsating bubble by the sound field emitted by another is termed secondary
(or mutual) Bjerknes force. The mutual force between two pulsating gas bubbles
in a liquid was first studied by V. F. K. Bjerknes (1906) and C. A. Bjerknes
(1915). They observed that this mutual force, caused the bubbles to either attract
or repel each other depending upon whether the bubble pulsations were in phase
or out of phase, respectively. In particular, when the frequency of an applied
acoustic field was greater than or less than the natural oscillation frequencies
of both bubbles, then the bubbles were found to oscillate in phase and attract,
whereas if the driving frequency was in between the two natural frequencies,
the bubbles would oscillate out of phase and repel each other. Note that the
instantaneous secondary Bjerknes force is alternatively attractive and repulsive.
Averaging over time, however, if the two bubbles oscillate in phase (out of phase)
they will experience a net attractive (repulsive) secondary Bjerknes force.

6.2.7 Dynamics of a bubble pair

We adapt the model presented by Harkin et al. [25], which is derived in the
context of potential flow theory up to the 4th order in the inverse separation
distance between the bubbles, and gives the equations of motion for a bubble
pair in oscillation and translation, in the case R1 6= R2.

The force balance which gives the translation equations of the bubble centers
is shortly discussed here. Considering the forces acting along the direction of the
line of centers z, the bubbles experience the following inertial force components:
the added mass force, due to the acceleration of the fluid, and the secondary
Bjerknes acoustic force. Dissipative forces are the translation drag force and
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the expansion drag force which is caused by the oscillations of the other bubble.
Magnaudet and Legendre [26] showed that when at least one of the translation
and radial Reynolds numbers is large, a high-Reynolds number formalism for the
drag force can be safely used. When both Reynolds numbers are small, then a
history force term needs to be included. For our system the translational velocity
ut is ∼ 1 ms−1, as is the radial velocity ur. Typical bubble radii are ∼ 2µm.
Therefore, both the translation Reynolds number Ret = Rut/ν and the radial
Reynolds number Rr = Rur/ν are not in the small number range. However, we
are in an intermediate region where low Reynolds numbers effects may play a
role.

Within these approximations, we linearize the set of equations for the radial
and translation dynamics derived by Harkin et al. [25]. Let R1(t), R2(t) be the
bubble radii, and z1(t), z2(t) their positions along the direction of the line of
centers. Linearization yields the following set of equations:

RiR̈i +
3
2
Ṙ2

i =
1
ρ

(
Pgas(Ri)− 4µ

Ṙi

Ri
− 2σ0

Ri
− P0 − PAC(t)

)
+

+
ż2
i

4
−

2RjṘ2
j +R2

j R̈j

|z2 − z1|

(6.12)

for the radial motion (i, j = 1, 2 with i 6= j), where

Pgas(Ri) =
(
P0 +

2σ0

Ri,0

)( Ri

Ri,0

)−3κ(
1− 3κ

Ṙi

c

)
(6.13)

The second term on the right-hand side of Equation 6.12 accounts for the effect
of the bubble translation on the oscillations, and the third term is the pressure
radiated by the other bubble. For the translation the two equations of motion
write:

z̈1 = −3
R2

2R̈2 + 2R2Ṙ2
2

(z2 − z1)2
− 18ν

ż1
R2

1

− 3
Ṙ1ż1
R1

(6.14)

z̈2 = 3
R2

1R̈1 + 2R1Ṙ1
2

(z2 − z1)2
− 18ν

ż2
R2

2

− 3
Ṙ2ż2
R2

(6.15)

The first term on the right-hand side is the secondary Bjerknes force, the second
term is the viscous drag force and the third term is the added mass force of a
bubble with time-varying radius [27]. The expansion drag force is a higher order
term and it is here neglected.

6.2.8 Dynamics of a coated bubble

The model presented by Marmottant et al. [28] accounting for the UCA mi-
crobubble coating is shortly presented here. The coating modifies the effective
surface tension. We focus on phospholipid monolayer coatings, used in sev-
eral contrast agent bubbles, including the agent BR-14 (Bracco Research S.A.,
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Geneva) used throughout this investigation. The phospholipid molecules nat-
urally adsorb to the interface and shield the water from the air, reducing the
surface tension to a value lower than that of pure water (0.072 N/m). The com-
pression of the monolayer decreases the area available per molecule. When this
area reaches that covered by the lipid molecules, the effective surface tension
decreases sharply. The variation of surface tension with the area A = 4πR2 is ex-
pressed with the elastic compression modulus defined by χ = A(dσ/dA), of order
0.2 N/m for a slow compression [28]. Further compression leads to an unstable
situation where the monolayer buckles and the surface tension nearly vanishes.
In contrast, a slow expansion separates molecules from each other: surface ten-
sion rises. For small vibration amplitudes, |R − R0| � R0, the lipid monolayer
behaves as if composed of a thin solid and elastic material. The surface tension
can be linearized around a constant value:

σ(R) = σ(R0) + χ
(R2

R2
0

− 1
)
' σ(R0) + 2χ

( R
R0

− 1
)

(6.16)

The shell is elastic only in a narrow area range. The lower limit is given by
buckling, the upper limit by the maximum surface tension, σwater, before rupture
of the shell. During the oscillation, the balance of normal stresses at the interface
is:

Pg(t)− Pl(t) =
2σ(R)
R

+ 4µ
Ṙ

R
+ 4κs

Ṙ

R2
(6.17)

with Pg the gas pressure in the bubble, Pl the the liquid pressure, µ the surround-
ing liquid viscosity, and κs the surface dilatational viscosity from the monolayer.
The second term on the right-hand side is the stress arising from the frictions in
the liquid and the third from frictions in the shell [29]. In this model κs does
not depend on the surface area. Combining Equation 6.3 with the boundary
condition 6.17 we obtain the model for the bubble dynamics

ρ
(
RR̈+

3
2
Ṙ2
)

=
(
P0 +

2σ(R0)
R0

)( R
R0

)−3κ(
1− 3κṘ

c

)
−

− P0 − PAC(t)− 2σ(R)
R

− 4µ
Ṙ

R
− 4κs

Ṙ

R2
(6.18)

Equation 6.18 differs from the free gas bubble Equation 6.3 only for the effective
surface tension σ(R) term and the shell viscosity term. This model has been
shown to capture the features of coated bubble phenomena, such as the bubble
compressibility, even for large-amplitude oscillatons (e.g. compression-only be-
havior) [28]. Linearization of equation 6.18 yields the following eigenfrequency in
the elastic regime [30]:

f0 =
1
2π

√√√√ 1
ρR2

0

(
3κP0 +

2(3κ− 1)σ(R0)
R0

+
4χ
R0

)
(6.19)



6.3 Experimental results 77

The eigenfrequency has two contributions, the eigenfrequency 6.8 for an uncoated
bubble, and a shell contribution which increases the eigenfrequency. The lin-
earization also gives the expression of the total damping coefficient (neglecting
thermal damping) in presence of a shell: [30] δ = δrad + δvis + δshell, with a
contribution coming from the re-radiation of sound:

δrad =
ω0R0

c
(6.20)

a viscous contribution:
δvis =

4µ
R2

0ρω0
(6.21)

and a shell viscosity contribution:

δshell =
4κs

R3
0ρω0

. (6.22)

6.3 Experimental results

The experiments presented in this section were performed with the setup combin-
ing the optical tweezers to the ultra-high speed camera “Brandaris 128”, which
is described in Chapter 5.

6.3.1 Amplitude of oscillations near a boundary

The influence of the sample chamber wall on the bubble dynamics was studied by
comparing the behavior of the same bubble near the wall and away from the wall
[31]. A bubble with a resting radius of R0 = 2.45µm, initially floating at the top
wall of the sample chamber, was trapped with the optical tweezers and positioned
in a region of the sample where no other bubbles were present in an area of
approximately 50 × 50µm2. The radial oscillation upon ultrasound insonation
was initially recorded with the bubble freely floating against the wall. Operating
at 15 Mfps the temporal resolution of the high-speed camera was 65 ns. Then the
bubble was positioned 50 µm away from the wall and its dynamics was recorded;
finally it was positioned back at the wall and the oscillations were recorded again,
to double-check whether a difference in its behavior should be ascribed to a change
in bubble properties. The radius-time curves shown in Figure 6.3 indicate that
the vicinity of the wall suppresses the amplitude of oscillations for one and the
same microbubble by more than 50%. This finding can be attributed to three
distinct effects. First, the vicinity of a rigid wall is expected to cause a shift in the
resonance frequency of the bubble [23]. As these experiments were carried out at a
fixed insonation frequency of 2.25 MHz, a shift in the resonance frequency results
in different amplitudes of oscillations being observed at the wall and away from
the wall. Second, a full description of the bubble-wall system has to account also
for a dissipation introduced by the viscous boundary layer at the wall, which is not
taken into account when applying the image bubble method. This phenomenon
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Figure 6.3 Three R−t curves of a single bubble with an initial radius R0 = 2.45 µm, insonified
with a 8-cycle ultrasound burst at 2.25 MHz with an applied pressure of 200 kPa.
The frame rate is 15 Mfps. The solid line represents the amplitude of oscillations
at the wall; the dash-dotted line is recorded with the bubble at a distance of 50 µm
away from the wall. The dashed line is the radius-time curve of the same bubble
repeated at the wall.

contributes to the damping of the oscillations, in addition to the other damping
mechanisms for coated bubbles (bulk and shell viscosity, thermal diffusion, re-
radiation of sound). Finally, asymmetric oscillations may arise in the vicinity of
the wall. The eccentricity of bubbles in the vicinity of a capillary wall and driven
at comparable pressures has been indeed reported to be close to 0.7 [8], although
these observations were made on adherent bubbles. In our experiments, the
possible adhesion to the wall was excluded by verifying with the optical tweezers
whether bubbles were indeed non-adherent, yet in contact with the wall. In order
to visualize asymmetric oscillations the behavior in a plane orthogonal to the wall
should be observed, however this was not possible in our present setup without
major modifications. The optical tweezers setup allowed nonetheless decoupling
of the mechanisms listed above. The resonance frequency shift induced by the
image bubble can be observed by studying a real two-bubbles system. Then the
viscous boundary layer induced by the wall is not present. Furthermore in this
case the system is imaged in the plane containing both the bubbles. Should
asymmetric oscillations arise, they would then be detected from this point of
observation. We therefore investigated the radial dynamics of a bubble pair, then
released one bubble and studied the behavior of the residual bubble. Two bubbles
having similar size were trapped using a two-trap DOE (see Section 4.3.2), with
a distance between the bubbles in the same order as their diameter. The bubble
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pair was then positioned 50 µm away from the wall to reduce wall effects as
previously discussed, and to extract information purely on the bubble-bubble
interaction. Figure 6.4 shows the result of such an experiment: the initial radius
of the bubbles is 2.25 µm and 2.40 µm, respectively, the bubble centers being 8
µm apart. The dynamics of the bubble pair in ultrasound (f = 2.25 MHz, PAC =
150 kPa) was first recorded at 15 Mfps, see the radius-time curves of Figure 6.4(c).
Subsequently one trap was switched off and the dynamics of the remaining bubble
was recorded. Figure 6.4(d) shows the corresponding radius-time curve, together
with the radius-time curve previously recorded for the same bubble in presence
of the second bubble. When comparing the two R − t curves for the very same
bubble in presence and in absence of a second bubble, it is apparent that bubble
oscillations are highly suppressed by the presence of the neighboring bubble. In
repeated experiments the two bubbles retained their spherical symmetry. In this
case, we can thus ascribe the change in the bubble response to the coupling of
oscillations. In order to get a deeper insight in these mechanisms, experiments
were then performed to measure the resonance frequency curves.
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(a) (b)

(c)

(d)

Figure 6.4 (a) Two UCA microbubbles are trapped at a center-to-center distance of 8 µm,
and positioned 50 µm away from the wall; (b) One of the microbubbles is released
by switching off one of the optical traps. Scalebar: 5 µm. (c) R− t curves of the
two bubbles as shown in Figure 6.4(a); the dashed curve 1 corresponds to bubble
1, the solid line 2a corresponds to bubble 2. (d) The dashed line 2b represents
the R− t curve of bubble 2 oscillating after bubble 1 has been released. The R− t
curve 2a is also plotted for comparison.
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6.3.2 Resonance frequency shift

Resonance frequency curves of individual microbubbles can be reconstructed us-
ing the Brandaris 128 camera [32], with the method developed by van der Meer et
al. [30]. The method, termed bubble spectroscopy, is shortly described here. The
camera can record six movies of 128 frames at up to 25 million frames per second.
Furthermore, it was designed to operate in a segmented mode: the conventional
single acquisition of 128 frames can be replaced by recording two segments of 64
frames each. The camera houses memory space for six conventional acquisitions
of 128 frames, before the images are transferred to the PC. This procedure results
in the recording of 12 sets of 64 frames. The camera is operated at a framing
rate of 15 million frames per second. The segmented mode allows to construct
a resonance curve of the bubble in a single acquisition. We initially estimate
the radius of the bubble from the images of the CCD camera, and estimate its
approximate resonance frequency through Equation 6.8, taking into account that
the shell elasticity shifts the resonance frequency up. The bubble is then sub-
jected to a scan of 12 different frequencies, in a range of roughly 1 MHz below and
above the expected resonance frequency. The movies are processed to obtain the
12 R − t curves and the amplitude of oscillation for each frequency component
is quantified using the algorithm presented in [30]. Plotting the results yields
an experimental resonance frequency curve. We extract a resonance frequency
curve by fitting the data with a linear oscillator response (6.2.3). Any non-linear
influence of the acoustic amplitude is neglected, even though in that case the res-
onance curves can become asymmetrical, with the maximum shifted to a lower
frequency.

Resonance frequency shift for a bubble close to a wall We performed
a bubble spectroscopy experiment on the very same microbubble under different
boundary conditions: close to the sample chamber wall, and positioned 50 µm
away from the wall. In this experiment the laser trap is not switched off during the
recordings for the bubble away from the wall. The 12 recordings are performed in
a single run, with a delay of 40 ms between the recordings, therefore the bubble
would rise up due to buoyancy. The optical trap allows controlling the position of
the bubble throughout the experiment. The possible influence of the optical trap
on the dynamics was preliminarily assessed, and repeated measurement showed
that the bubble behavior is not affected by the laser, as reported in Section 5.3.2.
Figure 6.5 shows the result of a bubble spectroscopy experiment on a bubble
having resting radius R0 = 1.7µm, insonified with a set of frequencies from 1.7
MHz to 3.5 MHz with an applied pressure PAC = 100 kPa. The red curve is
recorded when the bubble is freely floating against the wall. Positioning of the
bubble 50 µm away from the wall results in the blue curve. A shift in resonance
frequency due to the wall vicinity is indeed observed, as predicted by the image
bubble model. The amplitude of the resonance frequency curve at the wall is
smaller than for the free bubble, as opposed to the predictions of the image-
bubble model which does not include the dissipation at the viscous boundary



82 Bubble-wall and bubble-bubble interactions

Figure 6.5 Bubble spectroscopy experiments on a bubble having resting radius R0 = 1.7 µm.
The very same bubble is first insonified when it is freely floating against the cham-
ber wall (red curve), and then after positioning it 50 µm away from the wall using
the optical tweezers (blue curve). To reconstruct the two resonance frequency
curves, in both experiments the bubble is insonified with a set of frequencies from
1.7 MHz to 3.5 MHz, with an applied pressure PAC = 100 kPa. The shift in
resonance frequency due to the wall vicinity is consistent with the theoretical
predictions.

layer at the wall. Again, the same experiment can be performed on the real two-
bubble system, with the advantage of decoupling boundary layer effects from the
acoustic mechanism responsible for the change in bubble behavior.

Resonance frequency shift for a bubble pair Using the same method, we
compared the resonance frequency curves for one and the same bubble oscillating
in vicinity of a second bubble, and then freely oscillating after releasing the
other bubble from the optical trap. Figure 6.6 shows the resonance frequency
curves for a 1.9µm bubble. Two bubbles are initially trapped, with a center-to-
center distance of 8 µm, and resting radius R1,0 = 1.9µm and R2,0 = 2.0µm,
respectively. They are then positioned 70 µm away from the chamber wall to
reduce wall effects. The resonance frequency curves are reconstructed for the
two bubbles: in Figure 6.6 the curve for the 1.9µm bubble is plotted in blue.
The 2.0µm bubble is then released by switching off the corresponding trap. The
residual bubble is insonified again and its resonance frequency curve as a freely
oscillating bubble is recorded (green). In both experiments the applied pressure
is PAC = 90 kPa. The resonance frequency is decreased for the case where the
bubble oscillates close to the second bubble, as expected from the analogy with
the bubble-image bubble system. Note that in this case the shift is smaller, due
to the fact that the two bubbles are a few µm apart, whereas the shift calculated
in Section 6.2.5 was for a bubble in contact with the wall (i.e. for two bubbles
in contact). Remarkably, in this case the amplitude of the curves follows the
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predictions of the image bubble model, since there is no boundary layer due to
a wall. The amplitude of the resonance curve for the bubble oscillating next to
another bubble is indeed larger than for the free bubble.

Figure 6.6 Resonance frequency curves for the same bubble when it freely oscillates (green)
and when it oscillates in proximity of a second bubbles. The bubble radii are
R1,0 = 1.9 µm and R2,0 = 2.0 µm respectively. The two curves are recorded for
the 1.9 µm bubble. The bubbles are positioned 70 µm away from the wall to
reduce wall effects. The applied pressure is 90 kPa. The resonance curve for the
bubble oscillating in close vicinity to the second bubble exhibits a lower resonance
frequency and a larger amplitude, as expected from the models.
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6.3.3 Secondary Bjerknes force

The effect of the secondary Bjerknes force in the two-bubble experiments is eval-
uated by tracking the bubble centers coordinates, calculating the displacements
along the line of centers z, z1(t) and z2(t) respectively, and plotting the evolution
in time of the distance between the bubbles, D(t) = |z2(t)−z1(t)|. We calculated
such distance-time curves for the experiments where 128-frame movies of bubble
pairs were recorded. In Figure 6.7 a distance-time curve is shown (green) for two
bubbles with resting radius R1,0 = 2.0µm and R2,0 = 2.0µm. The interframe
time (65 ns) allows resolving the translation oscillations due to the alternating
secondary Bjerknes force. A net attractive force is observed, since the bubbles
oscillate in phase (see R− t curves in Figure 6.7). Initially, the distance between
the bubbles is 6.7 µm. During the insonation the bubbles are attracted, and when
the acoustic pressure is removed their final distance is 5.5 µm. A comparison of

Figure 6.7 Distance-time curve (green) for two bubbles with resting radius R1,0 = 2.0 µm
and R2,0 = 2.0 µm. Initially, the distance between the bubbles is 6.7 µm. A
net attractive secondary Bjerknes force is observed, since the bubbles oscillate in
phase, as it can be seen from the R− t curves (red, blue).

these observations with the theoretical force balance described in Section 6.2.7
can provide quantitative information on the interplay of acoustical and hydro-
dynamical forces acting on the system. Quantification of viscous forces remains
elusive on the microscale, and small-Reynolds number effects may not be negligi-
ble in the present case. We compute distance-time curves by numerically solving
the set of ODEs 6.12, 6.14 and 6.15. The effect of the coating is also included,
as described in Section 6.2.8, through a shell viscosity κs and a shell elasticity χ.
In Figure 6.8(a) the resulting distance-time curve, z(t) is shown for two bubbles
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having initial radius R1,0 = 1, 96µm and R2,0 = 1.98µm, respectively, with an
initial distance z0 = 6.7µm, corresponding to the experiment of Figure 6.7. A
good agreement is already observed both in the R − t and distance-time curves.
The model will be refined for a direct, quantitative comparison with the experi-
ments, to give an estimate of the secondary Bjerknes force and of the importance
of small-Reynolds number effects.

(a)

(b)

Figure 6.8 Result of numerical simulations for two bubbles with initial radius R1,0 = 1, 96 µm
and R2,0 = 1.98 µm at an initial distance z0 = 6.7 µm insonified at 90 kPa. The
parameters of the shell are κs = 2× 10−8 kg/s and χ = 0.6 N/m. Distance-time
curve (green) and radius-time curves (blue, red).
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6.4 Conclusions

We presented some preliminary experiments directed to the quantitative charac-
terization of the boundary-dependent UCA microbubble dynamics at the single-
bubble level. We compared the behavior of the very same UCA microbubble
under different boundary conditions, by a well-controlled positioning of indi-
vidual bubbles using Laguerre-Gaussian optical tweezers and by recording their
ultrasound-driven oscillations with an ultra-high speed camera. We therefore in-
troduced a powerful tool for investigating how the bubble dynamics, hence the
acoustical signature, changes with varying distance to neighboring objects. A
deeper understanding of these phenomena may lead to novel imaging modali-
ties together with the use of functionalized microbubbles specifically designed for
targeted diagnostic ultrasound imaging.
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Chapter 7

Force spectroscopy of
antigen-antibody complexes

This Chapter presents the experiments performed during a research stay at Lang
Lab, Biological Engineering Division of MIT. Optical tweezers were applied to single-
molecule force spectroscopy of antigen-antibody complexes. The interest in single-
molecule studies is shortly motivated in 7.1. The working principles of optical tweezers
as a force sensor are first reviewed in 7.2. The optical tweezers setup in use at Lang
Lab, and the protocols for tethered bead assays preparation, are then described in
7.3. Finally, some preliminary rupture force measurements on the fluorescein-anti
fluorescein complex are presented in 7.4.
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7.1 Introduction

The characterization of ligand-receptor interactions is crucial for targeted molec-
ular imaging applications. Antigen-antibody recognition and binding plays an
important role besides the immune response, as antibodies against different mo-
lecules can be produced and engineered, and used for specific targeting. Single-
molecule techniques can aid ligand optimization, receptor design, and screening
processes, by giving a deeper insight in the interaction than the macroscopic,
ensemble-averaged, affinity measurements. Probe microscopy techniques, mainly
atomic force microscopy [1] and optical tweezers [2], enabled examination of inter-
molecular interactions for individual molecular pairs, by measuring the rupture
force of the bond, which is typically of the order of few pN for DNA base pairing,
or tens to hundreds of pN for protein-protein interactions.

7.1.1 Characterization of individual intermolecular bonds

Weak bonds are central to reversible interactions between biomolecules. Noncova-
lent forces play a key role in DNA replication, protein folding, specific recognition
of substrates by enzymes, and detection of signal molecules. Intermolecular bonds
are traditionally investigated in bulk, with the reactants free in solution under
equilibrium conditions. The ensemble average of the behavior of the molecules
is thus observed. For some molecules, however, the environment of the solution
is not an accurate reproduction of the relevant in vivo conditions: for example
membrane proteins, which are not water-soluble, in solution change their con-
formation and then their behavior. Optical tweezers have been demonstrated to
function as an effective force transducer in the range spanning fractions of pN
to few hundreds of pN [3]. They are thus a suitable tool for characterizing weak
bonds, also in severe environmental conditions. In addition, this technique can
be coupled to well established imaging techniques (single- and two-photon fluo-
rescence, single molecule fluorescence, FRET) giving simultaneously mechanical
and optical information.

7.1.2 Rupture force probability distribution

The relevant parameters in describing a ligand-receptor system displaying simple
reversible 1:1 binding are the rates of spontaneous association (kon), and dissoci-
ation (koff ) and their ratio, the dissociation constant KD = koff

kon
, which describes

the equilibrium behavior. Biomolecular linkages will fail under any level of pulling
force if held for sufficient time [4]: under external force the energetic state of a
chemical bond drops as the constituents separate to an ultimate state comparable
to infinite dilution. Dissociation under force is far from equilibrium kinetics: the
on-rate of bond association can be neglected. Rupture strengths depend on the
rate of force application and duration of loading. By definition [4], bond strength
is the force that produces the most frequent failure in repeated testes of break-
age, i.e. the peak in the distribution of rupture forces. The likelihood of bond
detachment under force represents a first-order kinetic process. The probability
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of failure is expressed by [5, 6]:

p(F ) =
koff

∂F
∂t

exp
( F x
kBT

)
exp

(
koffkBT

∂F
∂t x

(
1− exp

( F x
kBT

)))
(7.1)

where kB is the Boltzmann constant, T the temperature and ∂F
∂t is the (constant)

loading rate. From the rupture force distributions, we extract zero-force param-
eters for the system, namely the thermal off-rate koff in absence of load and the
distance x to the transition state along the reaction coordinate. F represents the
x component of the rupture force.

7.2 Methods

7.2.1 Optical-trap force sensor

The approach for probing biomolecular complexes includes the use of polystyrene
or silica microbeads as tiny handles. Such materials are strongly trapped by opti-
cal tweezers, and the shape and uniform size of commercially available microbeads
facilitate calibration. The molecules of interest can be linked through non-specific
adhesion, covalent bond or through a tether molecule to beads and various sub-
strates. Typically, one of the molecules is linked to a microbead confined in the
optical trap. The other molecule can be linked to another bead confined in a
second optical trap [7], to a micropipette [8], or to a coverslip. The displacement
x of the trapped bead from its equilibrium position in the optical trap gives a
measurement of the force exerted on the system. For small displacements x from
the center of the trap, the particle indeed experiences an approximately harmonic
potential and the force on the particle is given by Hooke’s law:

F = −αx

To compute the force F , the stiffness α of the trap is first determined. It is then
used in conjunction with the measured displacement x from the equilibrium trap
position. In most applications, forces are calibrated against viscous drag exerted
by fluid flow. Calibration is facilitated by the fact that the Reynolds number is
typically small for micron-sized objects: Re = vaρ/η ∼ 10−5, where v is the fluid
velocity, a is the particle size, ρ is the particle density, and η is the fluid viscosity.
Inertial forces are therefore negligible, and the drag force on a stationary object
is Fdrag = βv, where β is the drag coefficient and v is the fluid velocity [9]. For
a sphere of radius a, β is given by Stokes’ law: β = 6πηa. Position detection
can be performed in different ways, for instance by directly imaging the particle,
or by interferential methods (for a recent review including design considerations,
see e.g. [10]).
Here, position measurement is performed with nm-precision by detecting, in the
back-focal plane of the microscope condenser, the pattern of fringes generated
by the interference between the light forward-scattered by the particle, and the
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Figure 7.1 Back-focal plane detection.

unscattered portion of the beam. A second, low power laser beam is used for
generating such interference pattern, which is detected by a quadrant photodiode
(QPD) or other position sensitive detector (PSD). For the commonly employed
geometry in which the molecular complex of interest is attached between the
surface of the trapping cell and a trapped bead, incorporation of a piezoelectric
stage enables for dynamic positioning of the sample chamber relative to the trap
and for calibration.

Back-focal plane position detection As mentioned above, laser light pass-
ing through the specimen is collected on a PSD placed on the optical axis in a
position that is optically conjugate to the back-focal plane of the condenser. In
this configuration the PSD response is insensitive to the (x, y) position of the
optical trap, wherever the trap is located (within an area ∼ 5µm× 5µm). Only
displacements of trapped objects relative to the center of the trap are detected
(see Figure 7.1). Position measurement would be indeed totally independent of
trap location, if the beam was perfectly collimated by the trapped bead. In
practice, position-independent response can be achieved for a given particle by
adjusting the axial position of the sensor while moving both the optical trap and
the particle together, until the detector signal is nulled.

7.2.2 Force measurements

The procedure for measuring F can be summarized as follows:

• position calibration: calibration of the detector output as a function of
position. A stuck bead is scanned through the trap area, see 7.2.3. This
step is required also for stiffness calibration.

• trapping of a bead and positioning at a known distance h from the wall

• stiffness calibration with one of the methods presented in 7.2.4

• force measurement: by measuring the displacement x of the bead from
the center of the trap during the experiment.
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7.2.3 Position calibration

Position calibration can be accomplished by moving a fixed bead through the
detection beam and recording the detector output as a function of position. The
bead can be moved in a raster scan across the detection region, while recording
output signal for each point on the grid. One can either move a stuck bead, by
moving the stage, or a trapped bead, by moving the trapping beam (when the
detection beam is not the same as the trapping beam), for instance by deflecting
the trapping beam using acousto-optic deflectors (AOD).

7.2.4 Stiffness calibration

Stiffness calibration can be performed following different methods. Here, three
methods are described which rely on back-focal plane (BFP) detection of the
particle’s displacement relative to the center of the trap.

7.2.4.1 Power spectrum

The power spectrum of the thermal fluctuations of a trapped object in a harmonic
potential (see Section 2.2.5) is described by a Lorentzian (for one dimension, x
or y)

S(f) =
kBT

π2β(f2
0 + f2)

(7.2)

where the roll-off frequency f0 is given by

f0 =
α

2πβ
(7.3)

One can thus record the power spectrum of a trapped particle, fit the data in order
to extract the roll-off frequency and, knowing the drag coefficient β, calculate the
stiffness α. The drag coefficient calculation will be discussed in 7.2.4.3.

7.2.4.2 Equipartition

The equipartition theorem for the Brownian motion of an object in a harmonic
potential reads:

1
2
kBT =

1
2
α〈x2〉 (7.4)

The positional variance 〈x2〉 can be measured (acquisition of a number N of

displacements xi, due to Brownian motion, average
PN

i=1 xi

N ) and, knowing the
temperature T (K), and the Boltzmann constant kB = 1.3810−23 m2 kg s−2K−1,
the stiffness can be calculated.

7.2.4.3 Drag force

The displacement of a trapped bead from its equilibrium position is measured,
in response to viscous force. This can be produced by moving the stage. A set
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of measurements can be acquired performing subsequent steps, each one with
increasing velocity v (not so high as to cause the particle to escape the trap). For
each velocity v the displacement from the center of the trap is measured, and the
drag force can be estimated (F = −βv) allowing to calculate the stiffness:

α = −F
x

(7.5)

The results for α can finally be averaged.

Drag coefficient The main drawback to the drag force method is that the drag
must be corrected for the proximity to the coverglass surface, the effect of which
can be large when the distance from the surface is comparable with the particle
radius. The viscous drag coefficient of a sphere with radius a whose center is at
a distance h from the surface is given by the Faxen’s law [9]:

β =
6πηa

1− 9
16( a

h) + 1
8( a

h)3 − 45
256( a

h)4 − 1
16( a

h)5
(7.6)

where a is the bead radius, h the distance above the surface, η the medium
viscosity. For this reason it is important to know the distance of the trapped
bead from the wall before stiffness calibration, for instance by moving the trap
down and then back to the desired position.

7.2.4.4 Influence of axial trapping position

The detection schemes described above were developed to measure lateral dis-
placement of objects within the specimen plane, a major focus of most optical
trapping work. Detecting axial motion within the optical trap has rarely been
implemented and has not been as well characterized until recently, see e.g. [11].
However, the axial equilibrium trapping position is a function of transverse po-
sition [12]. Therefore, the interpretation of calibration measurements in (x, y)
is not necessarily straightforward. The transverse position-dependent axial dis-
placement would lead to an underestimate of force in experiments that strictly
confine the particle to the equilibrium plane. Ashkin’s computations suggest that
this underestimate leads to only a small error (-5%), at least for larger particles
[13].

7.3 Materials and apparatus

7.3.1 Fluorescein-anti fluorescein assay

Antigen binding affinities, reaction kinetics, spectral properties of several mon-
oclonal anti-fluorescein antibodies are characterized in [14]. Five IgG antibod-
ies were found exhibiting different, yet relatively high (nanomolar) affinities for
fluorescein. We used the high-affinity, murine anti-fluorescein monoclonal anti-
body, clone 4-4-20 for unbinding measurements performed using a tethered-bead
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Figure 7.2 Schematic optical layout of the instrument combining optical trapping and single
molecule fluorescence [6].

(see Figure 7.2), manipulated with optical tweezers, as a probe [6]. The 4-4-
20/fluorescein model system was also characterized in [15]. A correlation of the
unbinding force measured with AFM to the off-rate was found for single-chain
Fv fragments of three unrelated fluorescein-binding antibodies and their mutants.
This indicates that the unbinding experiments on the molecular system are fol-
lowing a dissociation path not too dissimilar to the one at zero force [16, 17]. We
measured the rupture force at a low, constant loading rate and extracted from
the experimental rupture force probabilty distribution the thermal koff . By mea-
suring the rupture force for a set of loading rates, following [17] it will be possible
to extract the natural koff at zero force.

7.3.1.1 Assay preparation

Flow cells (∼ 30µl) were assembled from 1.5” glass coverslips attached to a
microscope slide by two parallel strips of double-sticky tape, arranged to form a
channel (∼ 0.5 cm wide) running across the narrow axis of the slide. Prior to
assembly, coverslips were sonicated in a saturated KOH-ethanol solution, rinsed
with deionized water, and dried in an oven [18]. Flow cells were first incubated for
40 min with 25 µl of 15 µg/ml anti-fluorescein murine monoclonal 4-4-20 antibody
(Molecular Probes), then washed with 200 µl of 1 mg/ml caseine in buffer solution
(100 mM phosphate buffer, pH 7.5, 0.1% Tween). To reduce nonspecific binding
of beads, the flow cells were incubated for 20 min with the caseine solution. The
flow cells were then perfused with 40 µl DNA:bead complexes, and incubated
for 15 min, followed by a final wash of 400 µl 1 mg/ml casein in buffer. All
incubations took place in a humidity chamber at room temperature.
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Figure 7.3 The quality of the PCR products is checked by running them in an electrophoresis
gel. 1010 bp DNA tethers are detected.

Antibody concentration titration The best antibody concentration to be
immobilized on the glass coverslip surface was determined. Using an antibody
concentration of 20 µg/ml, re-binding events were observed. To reduce the num-
ber of free antibodies on the surface, concentration of anti-fluorescein was de-
creased to 15 µg/ml. The number of re-bindings significantly decreased. Further
decreasing antibody concentration (10 µg/ml), decreased the overall number of
tethered beads. An antibody concentration of 15 µg/ml was used in the experi-
ments.

7.3.1.2 Tethered beads preparation

Beads were attached to the DNA tethers by incubating for 4 h at 4 ◦C avidin-
coated 500 nm beads (60 pM) with 20 pM DNA tethers, making sure that fewer
than 10% of the beads had multiple complexes, assuming independent binding.
DNA:bead complexes were then washed and resuspended 6 times in phosphate
buffer before perfusion in the flow cells. The beads can be resuspended in casein
to prevent sticking on the coverslip.

DNA tethers amplification 1010 bp DNA tethers were made using a PCR
protocol from a M13mp18 plasmid (Bayou Biolabs, P-105). Biotin, for linkage to
the avidin-coated bead, and fluorescein were incorporated via conjugation to the
PCR primers (Operon Biotechnologies). The quality of the PCR products was
checked by running them in an electrophoresis gel (see Figure 7.3).

Beads:DNA concentration titration A range of DNA concentrations for the
DNA:beads mixture was tested, to determine the best ratio for the preparation
of tethered beads. DNA was mixed 1:1 (volumes) to 60 pM beads, for a set
of DNA concentrations (0.2 pM, 2 pM, 20 pM, 200 pM, 2 nM). For 200 pM
and higher DNA concentrations, multiple tethers occur on the same bead: the
majority of the beads appear to be stuck on the surface. For 2 pM and lower DNA
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concentrations, few beads are tethered to the coverslip. A 20 pM concentration
of DNA was used for the experiments.

7.3.2 Optical setup

The instrument (see Figure 7.4) combines optical trapping capabilities with single
molecule fluorescence, and it is presented in full detail in [6]. The instrument is
based on a Nikon TE2000 commercial inverted light microscope. Three lasers
are coupled into the microscope objective: one for trapping (1064 nm); one for
position detection (975 nm); and one for fluorescence excitation (532 nm and
488 nm). The light from all lasers overlaps at the specimen. The wavelengths
used for trapping and position detection are well separated from those devoted
to fluorescence excitation and emission, allowing the use of high-efficiency filters
to reject the infrared trapping and detection light without compromising the
fluorescence signal.

In order to position the PSD in a plane optically conjugate to the BFP of
the condenser, the distance between the PSD and the relay lens has to be fixed
(and equal to the focal length of the relay lens). The two elements are then
moved together, until the condition of position-independent response of the PSD
is realized: the laser beam is slightly moved and the response of the PSD is
monitored; when the response is insensitive to displacements of the beam, the
PSD is optically conjugate to the BFP.
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Figure 7.4 Schematic optical layout of the instrument combining optical trapping and single
molecule fluorescence. Light paths are shown for the transmission illumination
(light green), trapping laser (dark red), position detection laser (orange), fluo-
rescence excitation lasers (dark blue, green) and fluorescence emission (red). A
QPD/PSD is used for BFP detection of the position, a video-rate analog camera
for general imaging, a digital EMCCD camera for single-molecule fluorescence
imaging. Acousto-optic deflectors (AODs) deflect the trapping beam. Electronic
shutters (S1-S4) provide automatic control of the instrument. Optical filters iso-
late the diode laser emission (F1) and block the trap, detection and excitation
laser wavelengths before fluorescence detection (F2-F5). Flipper mirrors (FM1-
FM2) alternate between the photodetectors. Adapted from [6].
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7.4 Results and data analysis

Measurement and calibration procedures are computer automated, using custom
software. To begin each measurement, the detector beam is aligned with the
center of the trap and the PSD. Next, the tethered bead is centered in (x, y)
coordinates based on a measurement of the elastic extension of the DNA tether.
Tethers producing abnormal stretching curves are discarded, eliminating beads
with multiple tethers or non-specific attachments. To cause the rupture event,
the stage pulls the bead out of the trap center, increasing the force on the complex
until rupture. After rupture is detected, the bead is raster-scanned with the AODs
over the detection region to calibrate the PSD sensitivity. Accurate calibration
of the PSD over the full detector range for each individual bead is required, as it
avoids errors caused by bead size variations and instrument drift. The PSD signal
is then converted to a displacement value, see Figure 7.5. Bead displacement from
the trap center at the point of rupture is converted to a force in the direction of
pulling, based on the measured trap stiffness, determined separately. The true
force component along the direction of the tether is slightly greater than the
measured force, owing to the changing angle between the tether and the plane of
the coverglass.

(a) (b)

(c)

Figure 7.5 Trace of the force exerted on the 4-4-20/fluorescein complex. The system is loaded
at a constant pulling rate of 100 nm/s, until the mechanical break occurs at ∼ 6
pN. The event is detected by the PSD (a) which is calibrated to convert the PSD
signal to position (b). Stiffness calibration allows converting position to applied
force (c).
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Figure 7.6 Experimental rupture force probability distribution for the 4-4-20/fluorescein
complex, measured with a loading rate of 43.00 pN/s (± 6.52 pN/s). The rupture
force for this pulling rate is 41.2 pN. The fit to Equation 7.1 leads koff = 0.33
s−1 and x = 0.16 nm.

From the force-time traces (Figure 7.5(c)) the rupture force is extracted. the
A set of 62 rupture events was recorded with a constant loading rate of 43.00
pN/s (± 6.52 pN/s). The variability of the loading rate is due to the variable
trap stiffness, as previously discussed. By plotting the histogram of the rupture
force probability p(F ) (Figure 7.6) and fitting to the distribution of Equation 7.1
the values of the thermal off-rate koff in absence of load and the distance x to the
transition state along the reaction coordinate are extracted. We find koff = 0.33
s−1 and x = 0.16 nm.
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7.5 Conclusions

A model system was used for developing an optical tweezers-based antibody-
antigen binding interaction assay. The binding interaction between the antigen
fluorescein and its murine monoclonal antibody, clone 4-4-20, was probed using a
tethered bead assay. Fluorescein-conjugated, 1010 bp DNA tethers were obtained
with PCR. The tethers were attached to 500 nm polystyrene beads using a biotin-
avidin linkage. The bond breakage force was then measured at a constant loading
rate, to obtain a rupture force probability distribution. This was fitted to the
theoretical distribution in the single energy-barrier formalism to give the thermal
off-rate in absence of load. By performing the rupture force measurements for a
set of loading rates, it will be possible to extract the natural thermal off-rate. To
further develop the assay and achieve simultaneous single-molecule fluorescence
measurement, a different dye should be considered, as fluorescein is not well suited
for single-molecule detection.
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Chapter 8

Conclusions

In this thesis, a setup was presented which combines optical tweezers, specifically
designed to trap and micromanipulate individual microbubbles, with ultra-high
speed imaging at nanoseconds timescale. The setup allowed to study for the
first time the dynamics in ultrasound of the very same microbubble under well-
controlled conditions, i.e. near or away from a neighboring wall or in the presence
of a second trapped bubble. Microbubble phenomena are interesting from a
fundamental physical standpoint, and a deeper understanding of their dynamics
will also find direct applications in diagnostic imaging, as coated microbubbles
are used in ultrasound medical imaging as contrast enhancer.

The first part of this work focused on the development of an optical tweezers
setup for microbubbles manipulation. Since bubbles exhibit a lower refractive
index than the medium, they are repelled by conventional optical traps. Laser
beam shaping techniques were applied, where diffractive optical elements are
used for converting a Gaussian laser beam to a Laguerre-Gaussian mode, as to
obtain an optical trap with a dark core where microbubbles can be confined. Fur-
thermore, full flexibility of the trapping configuration was obtained. Diffractive
optical elements allow for the generation of multiple traps for microbubbles, and
the implementation of the optical elements on a spatial light modulator enables
to change the position, size and number of traps almost in real-time.

The second part of the work was aimed at combining the optical tweezers
setup with a ultra-high speed camera, which enables time-resolved optical char-
acterization of the microbubble dynamics in ultrasound, which occurs at MHz
frequencies.

Finally, several experiments performed by controlling the position of mi-
crobubbles relative to interfaces or neighboring bubbles, proved the combined
micromanipulation and imaging technique to be very powerful for unraveling the
physical mechanisms underlying microbubble dynamics. The first experiments
showed how the oscillations in ultrasound of one and the same bubble are influ-
enced by the vicinity of a rigid wall or of a second bubble. Particularly, changes
in the response of a bubble close to or away from a wall were studied, as changes
in the acoustic signature may provide new diagnostic opportunities. A resonance
frequency curve was recorded for the same bubble positioned at the wall and at
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controlled distance from the wall. The experiments show a drop in the resonance
frequency for the bubble close to the wall, as expected from a theoretical model
based on a Rayleigh-Plesset-like equation and the so-called “method of images”.
Nevertheless, a deeper insight is needed in the viscous boundary layer effects at
the wall to fully describe the changes in bubble behavior.

We also quantified the bubble-to-bubble interaction, by comparing the change
of the radial oscillations of one bubble with and without a neighboring bubble,
and by resolving the change in distance between two bubbles during ultrasonic
insonation. This results from an acoustical interaction force between the bub-
bles, termed secondary Bjerknes force. We compared the experimental results
with the predictions of a model quantifying the mutual interaction of bubbles
in their translation and oscillations, combined with a recent single-bubble model
accounting for the shell properties. The agreement is very good but the model
will be refined for a direct, quantitative comparison, to give an estimate of the
secondary Bjerknes force and of the importance of small-Reynolds number effects.

Experiments where optical tweezers were used as a force sensor to measure
ligand-receptor interactions at the single molecule level are also presented. A
model system (fluorescein-anti fluorescein) was studied to develop a force spec-
troscopy assay on antigen-antibody complexes. Antibodies against different mo-
lecules can be produced and engineered, and used for specific targeting. The
characterization of antigen-antibody interactions is therefore crucial for targeted
molecular imaging applications.

Outlook

A new class of contrast microbubbles is being developed, which are functionalized
to adhere to specific markers of disease in the human body. If adherent microbub-
bles can be acoustically discriminated from freely flowing ones, new ultrasound
imaging protocols can be developed to provide disease-specific contrast enhance-
ment. Besides targeted molecular imaging applications, these microbubbles are
also generally recognized to have a great potential for drug and gene delivery.
Optical tweezers provide also in this case the necessary control of bubble position
to perform precise characterization of bubble phenomena.

The perspective of combining optical micromanipulation with the force-sensing
capabilities of optical tweezers presented in Chapter 7 is also particularly appeal-
ing. A position detection-based force measurement strategy, similar to the well-
established ones for high-index particles, will give us detailed insight in the force
balance acting on microbubbles in a shear flow within blood vessels, during in-
sonation with ultrasound. A quantitative understanding of the balance between
ultrasound radiation pressure and the viscous drag force, the latter one being
dependent on the distance of the bubble from the vessel wall, together with a
quantitative characterization of the binding interaction between targeted bub-
bles and target cells (see Figure 8.1), is crucial for optimizing ultrasound-assisted
targeting strategies.
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Figure 8.1 A medical microbubble, functionalized with ligands for binding to specific cell
receptors, experiences a drag force due to the viscous shear flow; the applied
ultrasound wave causes an acoustic radiation force to push the bubble in the
direction of propagation of the wave; optical tweezers ca be used to elucidate the
forces balance between fluid dynamical and acoustical forces, and how these affect
the ligand-receptor interaction in bubble-cell adhesion.The efficiency of binding
can be studied to a single-microbubble level by measuring the adhesion force with
optical tweezers.
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Appendix A

Interaction of the
electromagnetic field with
objects

The laws of conservation of energy and momentum for the electromagnetic field
will be shortly recalled here, following the derivation given by Jackson [1].
The conservation of energy is stated in the Poynting’s theorem. Consider a
continuous distribution of charge and current. For a single charge q the rate of
doing work by external electromagnetic fields E and B is qv · E where v is the
velocity of the charge. The magnetic field does no work since the magnetic force
is perpendicular to the velocity. The total rate of doing work by the fields in a
arbitrary, finite volume V is ∫

V
J ·Ed3x (A.1)

This power represents a conversion of electromagnetic energy into mechanical
or thermal energy. It must be balanced by a corresponding decrease of energy
in the electromagnetic field within the volume V . To exhibit this conservation
law explicitly, Maxwell equations can be used to express A.1 in other terms. By
substituting the Ampère-Maxwell law for J:∫

V
J ·Ed3x =

∫
V

[
E ·
(
∇×H

)
−E · ∂D

∂t

]
d3x (A.2)

By rearranging using vector identitites and Faraday’s law:∫
V

J ·Ed3x = −
∫

V

[
∇ ·
(
E×H

)
+ E · ∂D

∂t
+ H · ∂B

∂t

]
d3x (A.3)

Assuming that the medium is linear in its magnetic and electric properties, with
negligible dispersion or losses, and being the total electromagnetic energy density
represented by

u =
1
2
(
E ·D + B ·H

)
(A.4)
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A.3 can be written

−
∫

V
J ·Ed3x =

∫
V

[
∂u

∂t
+∇ ·

(
E×H

)]
d3x (A.5)

Since the volume V is arbitrary, this can be cast into the form of a differential
continuity equation or conservation law,

∂u

∂t
+∇ · S = −J ·E (A.6)

where S = E × H is the Poynting vector, representing the energy flow. The
physical meaning of A.6 is that the time rate of change of electromagnetic energy
within a certain volume, plus the energy flowing out through the boundary sur-
faces of the volume per unit time, is equal to the negative of the total work done
by the fields on the sources within the volume. The work done per unit time per
unit volume by the fields (J · E) is a conversion of electromagnetic energy into
mechanical or heat energy. If we denote the total energy of the particles within
the volume V as Emech and assume that no particles move out of the volume, we
have

dEmech

dt
=
∫

V
J ·Ed3x (A.7)

The Poynting’s theorem expresses the conservation of energy for the combined
system as

dE
dt

=
d
dt

(Emech + Efield) = −
∮

S
n · Sda (A.8)

where the total field energy within V is

Efield =
∫

V
u d3x =

ε0
2

∫
V

(
E2 + c2B2

)
d3x (A.9)

The conservation of linear momentum can be similarly considered. The total
electromagnetic force on a charged particle is

F = q(E + v ×B) (A.10)

If the sum of all the momenta of all the particles in the volume V is denoted by
Pmech we can write, from Newton’s second law,

dPmech

dt
=
∫

V

(
(ρE + J×B

)
(A.11)

where the sum over particle is converted into an integral over charge and current
densities. We then can use again the Maxwell equations to eliminate ρ and J
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from A.11 and get the rate of change of mechanical momentum

dPmech

dt
+

d
dt

∫
V
ε0
(
E×B

)
d3x =

= ε0

∫
V

[
E
(
∇ ·E

)
−E×

(
∇×E

)
+ c2B×

(
∇×B

)]
d3x (A.12)

By identifying the volume integral on the left as the total electromagnetic mo-
mentum Pfield in the volume V:

Pfield = ε0

∫
V

E×Bd3x = µ0ε0

∫
V

E×Hd3x (A.13)

the integrand can be interpreted as a density of electromagnetic momentum.
This momentum density is proportional to the energy-flux density S, with pro-
portionality constant c−2. To complete the identification of the volume integral
of

g =
1
c2
(
E×H

)
(A.14)

as electromagnetic momentum, and to establish A.12 as the conservation law for
momentum, we must convert the volume integral on the right into a momentum
flow. Let the Cartesian coordinates be denoted by xα, α = 1, 2, 3. With the
definition of the Maxwell stress tensor Tαβ as

Tαβ = ε0
[
EαEβ + c2BαBβ −

1
2
(
E ·E + c2B ·B

)
δαβ

]
(A.15)

we can therefore write A.12 in component form as

d
dt
(
Pmech + Pfield

)
α

=
∑
β

∫
V

∂

∂xβ
Tαβ d3x (A.16)

Application of the divergence theorem to the volume integral gives

d
dt
(
Pmech + Pfield

)
α

=
∮

S

∑
β

Tαβnβ da (A.17)

where n is the outward normal to the closed surface S. If A.17 states the con-
servation of momentum,

∑
β Tαβnβ is the αth component of the flow per unit

area of momentum across the surface S into the volume V , i.e. the force per
unit area transmitted across the surface S and acting on the system of particles
and fields inside V . Equation A.17 can therefore be used to calculate the forces
acting on material objects in electromagnetic fields by enclosing the objects with
a boundary surface S and adding up the total electromagnetic force according to
the right-hand side of A.17.
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