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ABSTRACT 

 

 Unconjugated Bilirubin (UCB) is the final product of the heme catabolism. The high serum 

UCB concentrations in the first days of life of the newborns, due to immature mechanisms for 

hepatic uptake, conjugation and biliary secretion, is called physiological neonatal jaundice. This 

common condition is generally a benign and transient phenomenon, but in some cases the 

hyperbilirubinemia can progress to bilirubin encephalopaties ranging from minimally neurological 

injury to severe and permanent neurodevelopmental dysfunction. 

In the present thesis the SH-SY5Y neuroblastoma cell line was used to approach the 

molecular events associated to bilirubin neurotoxicity and highlight the biochemical and molecular 

events that are induces in the neurons when get contact with the UCB. 

Depending on the bilirubin concentration and the time of exposure to UCB, we were able to 

define experimental setups for the study of bilirubin resistance and bilirubin toxicity.  

Using the model to study bilirubin resistance, it was demonstrated that the resistance is not 

entirely achieved by limiting the entrance or increasing extrusion of the pigment from the cell, but 

rather by enhancing the cellular defensive mechanisms, in particular against the oxidative stress. 

This was achieved by increasing the intracellular glutathione content via the specific induction of 

the genes and activity of the System Xc
-. Furthermore, the cells exposed to bilirubin over-expressed 

several additional genes that encode for important antioxidant and detoxifying proteins like Heme 

Oxygenase-1 and NAD(P)H:quinone oxidoreductase 1.  

As far as the mechanisms of bilirubin neurotoxicity, we showed that UCB exposure lead to 

the induction of the intracellular ROS accumulation.  Moreover, the data presented report evidences 

that the bilirubin toxicity could be displayed by a mechanism of excitotoxicity carried out by the 

cellular release of glutamate. 

Further studies will be necessary to elucidate the molecular mechanisms by which bilirubin 

produces neurotoxicity and to understand how the cells avoid the damage. The information 

presented here could contribute to the identification of targets to avoid the bilirubin damage. 
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INTRODUCTION 

 

1. Bilirubin physiology and metabolism  

The bilirubin is the oxidative product of the protoporphyrin portion of the heme groups 

present in different proteins currently found in the human body. Several studies have indicated that 

the 80% of the bilirubin produced derives from the heme group present in the hemoglobin 

transported by the red blood cells, 15-20% from the turnover of the myoglobin, cytochroms and 

other hemoproteins, and less than the 3% from the elimination of immature red blood cells coming 

from the bone marrow (Ostrow et al., 1962). All these sources let to one healthy adult person 

produce every day between 250 mg and 400 mg of bilirubin (LONDON et al., 1950). 

The heme degradation is an enzymatic process mainly achieved in the spleen and the liver 

Kupffer cells, the principal places for red blood cells breakdown. The degradation begin when the 

microsomal heme oxygenase-1 (HO-1) directs the stereospecific cleavage of the heme ring, 

releasing the iron ion and the tetrapyrrolic chain with the final formation of the Biliverdin and 

carbon monoxide (figure 1.1). This reaction requires a reducing agent, such as, nicotinamide-

adenine dinucleotide phosphate (NADPH) and three molecules of oxygen (Tenhunen et al., 1968). 

Two different isoforms for HO have been described: the constitutively isoform HO-2, and a 

inducible isoform HO-1 (Foresti et al., 2004; Rublevskaya and Maines, 1994; McCoubrey, Jr. et al., 

1997). Following its synthesis the Biliverdin is subsequently converted in Bilirubin by the cytosolic 

enzyme biliverdin reductase (BVR), in the presence of the NADPH (Foresti et al., 2004). 

The bilirubin molecule has a low aqueous solubility, most probably due to the hydrophobic 

groups it contains and the internal hydrogen bonding of all its polar groups precluding their 

interaction with water (Kaplan and Navon, 1982). The analysis of the experimental solubility at 

neutral pH, determined by chloroform-to-water partition, have indicated that the maximum aqueous 

solubility of the bilirubin at 25°C and ionic strength 0.15, is about 70 nM (Hahm et al., 1992). 

Because of its poor aqueous affinity, once released in the blood the bilirubin is tightly, but 

reversibly, bound to the serum albumin (Weisiger et al., 2001). Carried by the albumin, the bilirubin 

is transported in the blood to different organs, in particular to the liver where the modification of the 

molecule continues. Despite of the high affinity of the bilirubin for the albumin, a small portion 

(less than 0.1%) remains unbound and is known as Free Bilirubin (Bf). The total bilirubin 

composed by the Free Bilirubin and the Bilirubin bound to albumin conform the Unconjugated 

Bilirubin (UCB) (Ahlfors, 2001). 

When UCB reaches the hepatocyte, it is rapidly dissociated and internalized at the sinusoidal 

surface of the cell through mechanisms not fully elucidated (Zucker et al., 1999; Cui et al., 2001). 
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Once inside the hepatocyte the bilirubin is bound to a group of cytosolic Glutathione-S-tranferases 

(GSTs) that prevents the backflow of the molecule from the cell (Zucker et al., 1995). The bilirubin 

is then conjugated with one or two glucuronic acid moieties from UDP-glucuronic acid (UDPGA) 

in a reaction catalyzed by a specific form of the uridine diphosphoglucuronate 

glucuronosyltransferase (UGT1A1). The mono- and di- glucuronide portions confer to the bilirubin 

(Conjugated Bilirubin, CB) a high polarity, rendering the molecule water soluble and unable to 

diffuse across the membranes (Bosma et al., 1994). The CB is then excreted into the bile 

canaliculus by canalicular multispecific anion transporter (cMOAT), also known as multidrug 

resistance-related protein 2 (MRP2) (Kamisako et al., 1999). Finally, the CB excreted in bile passes 

through the small intestine without significant absorption. In the colon, it is both deconjugated, 

presumably by the bacterial β-glucuronidase, and degraded by other bacterial enzymes to a large 

family of reduction-oxidation products, collectively known as urobilinoids, which are mostly 

excreted by feces. 

 

 

Figure 1.1 – Metabolic pathway of the degradation of the Heme and the bilirubin formation. 

Reproduced from Dennery PA,- 2001 N Engl J Med  344:581-590. 
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2. Neonatal hyperbilirubinemia 

2.1. The bilirubin in newborns 

Neonatal hyperbilirubinemia results from an increased production of bilirubin in the 

newborn and their limited ability to excrete it. In utero, the very limited excretory function of the 

fetal liver is compensated by active transport of UCB across the placenta to the maternal circulation. 

At birth, the newborn is suddenly deprived of the placental protection just when a marked increase 

in catabolism of red-cell breakdown, and consequently, a high load of UCB to the liver is produced. 

Delayed maturation of hepatic transport processes results in significant retention of UCB even in 

healthy term neonates. In addition, the neonate lacks anaerobic ileo-colonic flora that convert UCB 

to urobilinogens, leaving more unmetabolized UCB available for absorption into the portal blood, 

thus increasing the entero-hepatic circulation of UCB. In normal infants after the age of 1 month, 

the processes of hepatic uptake, storage, conjugation and biliary secretion of bilirubin have matured 

to near adult levels (Ahlfors and Wennberg, 2004; Ostrow et al., 2003a). Together, these limitations 

lead to physiologic jaundice, characterized by a high serum bilirubin concentrations in the first days 

of life in full-term infants, followed by a decline during the next several weeks to values commonly 

found in adults. The average full-term newborn infant has a peak serum bilirubin concentration of 5 

to 6 mg/dL (86 to 103 µmol/L) around the 5thday from birth. Exaggerated physiologic jaundice 

occurs at values above this threshold (7 to 17 mg/dL [104 to 291 µmol/L]). Serum bilirubin 

concentrations higher than 17 mg/dL in full-term infants are no longer considered physiologic, and 

a cause of pathologic jaundice can usually be identified in such infants (Dennery et al., 2001).  

 

2.2. Bilirubin encephalophaties and Kernicterus 

Usually, plasma bilirubin levels peak at less than 10 mg/dL at approximately 1 week of life 

and return to normal over the next 1–2 weeks. Neonatal physiological jaundice may be aggravated, 

however, by several abnormalities like the common increase that occur in all hyperhemolytic 

conditions and deficiency of uridine diphosphate glucuronosyltransferase (UGT1A1), the enzyme 

required for the conjugation of bilirubin (as in Gilbert syndrome and Crigler–Najjar syndrome) 

(Dennery et al., 2001; Reiser, 2004). The actual available treatments for this last condition, like 

phototherapy, exchange transfusion and liver transplantation seem to be efficient but implicate 

several risks to the patients and reduce a lot the quality of life of patients and their families (Ostrow 

et al., 2003b). 

Bilirubin encephalopathy is usually reversible, particularly at the early stages, characterized 

by hypotonia, lethargy, poor suckling, and abnormal brainstem auditory evoked potentials (BAEPs). 

With more severe and/or prolonged jaundice, hypertonia, opisthotonus, a high-pitched cry, 
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impairment of upgaze or the ‘setting sun sign’, fever and worsening of the BAEPs may supervene. 

Later, irreversible neurological signs may develop, ranging from subtle deficits, including delay in 

motor development, impaired cognitive function, and auditory dysfunction (e.g. auditory 

neuropathy, hearing loss, and deafness), to more severe extrapyramidal motor, auditory, 

oculomotor, and cognitive disorders (Ostrow et al., 2003a). 

Kernicterus is a devastating, chronic disabling neurological disorder whose central nervous 

system (CNS) sequelae reflect both a predilection of bilirubin toxicity for neurons (rather than glial 

cells) and the regional topography of bilirubin-induced neuronal injury that is characterized by 

yellow staining of the basal ganglia, hippocampus and in the several nuclear clusters of the 

brainstem and cerebellum observed in infants who died with severe jaundice (Watchko, 2006). 

 

3. Bilirubin neurotoxicity 

In the past years, interest in newborn’s bilirubin encephalopathy has been reawakened by an 

increase in its prevalence. For a long time the serum or plasma total bilirubin concentration (TB) 

has been the standard clinical laboratory test for evaluating neonatal jaundice, associating it with 

acute bilirubin encephalopathy (ABE) and its sequelae including death, classical kernicterus, or 

bilirubin induced neurological dysfunction (BIND). In contrast, there is strong evidence suggesting 

that is the plasma non–protein-bound (unbound or free) bilirubin concentration (Bf), rather than TB, 

that is more closely associated with central nervous system bilirubin concentrations and therefore 

ABE and its sequelae (Ahlfors and Wennberg, 2004; Calligaris et al., 2007). 

In vitro studies with neurons and astrocytes reveal that neurotoxic effects of UCB develops 

only near or above the aqueous saturation limit of 70 nM, a range in which only UCB monomers, 

soluble oligomers, and metastable small colloids are likely to be present (Ostrow et al., 2003b). By 

contrast, Bf levels well below 70 nM appear to protect CNS cells against oxidative damage and this 

protection is lost because of the countervailing toxic effects of UCB at higher Bf levels (Dore and 

Snyder, 1999; Baranano et al., 2002; Ostrow et al., 2003b; Ostrow and Tiribelli, 2003).  

 

4. Molecular basis of neurotoxicity 

The real mechanisms by which the bilirubin causes cellular toxicity are not yet completely 

understood. Because of the lipophilic characteristics of the bilirubin molecule, several works have 

suggested that the damage is originated at the level of membranes (plasma, mitochondrial, and 

endoplasmic reticulum (ER)) with resultant perturbations of membrane permeability and function 

(Rodrigues et al., 2002a; Rodrigues et al., 2002b; Watchko, 2006). These perturbations could 

contribute to the genesis of neuronal excitotoxicity (Grojean et al., 2001; McDonald et al., 1998), 
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increased intracellular Ca2+ concentration (Brito et al., 2004) and mithocondrial energy failure 

(DAY, 1954; Ernster and ZETTERSTROM, 1956; Vogt and Basford, 1968; Rodrigues et al., 2000; 

Oakes and Bend, 2005; Malik et al., 2010).  

Excitotoxicity refers to an excessive activation of neuronal amino acid receptors. The 

specific type of excitotoxicity triggered by the amino acid glutamate is the key mechanism 

implicated in the mediation of neuronal death in many disorders. The discovery of excitotoxic 

injury is a major clue in the search for answers to fundamental questions as why neurons die in 

disease states and what is the precise or critical mechanism of neuronal death. The activation of the 

NMDA receptor is closely related with the intracellular accumulation of calcium. Excessive 

accumulation of intracellular calcium is the key observed process leading to neuronal death or 

injury, and the NMDA receptors activate channels that allow the influx of extracellular calcium 

(and sodium) (Mark et al., 2001).  

Calcium influx via NMDA receptors elicits more potent toxicity than other modes of 

calcium entry. This type of toxicity involves nitric oxide (NO) since treatment with Nitric Oxide 

Sintetase (NOS) inhibitors, removal of L-arginine or reduced hemoglobin, which scavenges NO, 

blocks this form of toxicity. Understanding the neurotoxic mechanisms of NO requires uncovering 

how NO acts on numerous potential targets to which it can initiate neurotoxic cascades (Figure 1.3). 

NO probably mediates most of its toxic effects through interactions with O2
- to form peroxynitrite. 

The best established candidate for the target of NO and peroxynitrite to achieve toxicity is 

poly(ADP-ribose) synthetase [PARS; also called poly(ADP-ribose) polymerase or 

NAD+:protein(ADP-ribosyl)transferase]. Another potentially important target of NO-mediated 

neurotoxicity is mitochondrial respiration. NO binds to mitochondrial complex I and II and cis-

aconitase leading to inhibition of oxidative phosphorylation and glycolysis (Yun et al., 1997; Brito 

et al., 2010). It is also though that UCB interfere with mithocondrial membrane producing 

permeabilization that result in a perturbation of the cyclosporine A-sensitive large conductance 

channel. This processes consequently produce electron transport chain dysfunction, such as 

decreased ATP production and reactive oxygen species production, may lead to further 

mitochondrial damage, including oxidation of mitochondrial DNA, proteins, and lipids, and 

opening of the mitochondrial permeability transition pore (Rodrigues et al., 2000). 
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Figura 1.3 - A schematic diagram of the mechanisms of NO-mediated neuronal cell 

death in excitotoxic neural injury. Abbreviations: NMDA-R, N-methyl d-aspartate receptor; 
CaMK II, calcium/calmodulin-dependent protein kinase II; ICE, interleukin-1b converting 
enzyme. Reproduced from Yun, H – 1997 Molecular Psychiatry 2, 300-310. 

 

Collectively, these phenomena and downstream events trigger cell death by both apoptosis 

and necrosis. Process like DNA fragmentation, release of cytochrome c, activation of caspase-3 and 

cleavage of poly(ADP)ribose polymerase has been described in bilirubin cell death by apoptosis 

(Rodrigues et al., 2002b; Hanko et al., 2005; Hanko et al., 2006; Malik et al., 2010).  

Conjugated bilirubin excreted in bile passes through the small intestine without significant 

absorption. In the colon, it is both deconjugated, presumably by the bacterial β-glucuronidase, and 

degraded by other bacterial enzymes to a large family of reduction-oxidation products, collectively 

known as urobilinoids, which are mostly excreted by feces. 

Another possible explanations of the UCB neurotoxicity, at least in part, could be the 

oxidative damage that was observed on cellular components after UCB treatments at clinical 

concentrations (Brito et al., 2008). Despite of the cytoprotective properties of free bilirubin levels 

below aqueous saturation, above this value it enhances the formation of free radical that lead to 

protein oxidation, lipid peroxidation, increase the amount of intracellular ROS and decrease the 

glutathione levels. Signs of disturbance of the redox status indicate that oxidative stress is involved, 

at least in part, in UCB-induced neurotoxicity (Brito et al., 2004; Dore et al., 1999). In addition, 

recent evidences demonstrated that UCB-mediated apoptosis in Hepa 1c1c7 cells is associated with 

oxidative stress (Oakes and Bend, 2005) and in HeLa cells, the increase in intracellular reactive 

oxygen species, due to UCB, activate a signaling pathway involving APE1/Ref-1, Egr-1 and PTEN 

(Cesaratto et al., 2007).  
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5. Brain neuroprotective mechanisms 

5.1. The blood brain barrier (BBB) 

Except for the circumventricular region of the brain, two barriers limit penetration of drugs 

and other compounds into the CSF and brain parenchyma: the choroid plexus (CP, the blood–CSF 

barrier) and the brain capillary endothelium (the blood–brain barrier, BBB). The endothelial cells of 

the BBB have tight junctions and no fenestrae, so they severely restrict both paracellular and 

transcellular diffusion of many toxic compounds to the adjacent neurons and astrocytes, but might 

not restrict the free transmembrane diffusion of UCB (Ostrow et al., 2003a; Zucker et al., 1999) 

(Figure 1.2). 

 

Figure 1.2 The Blood Brain Barrier: Schematic representation of the organization of the brain and its 
barriers, including the distribution and, where known, polarity (arrows) of the MDR1/Mdr1 and MRP1/Mrp1 
transporters in the various cell types. Also indicated are the characteristics of the tight junctions and fenestrae 
that account for the lower permeability of the endothelium in the blood–brain barrier (left), as compared with 
the blood–CSF barrier (right). Reproduced from Ostrow, J.D.- 2003 European Journal of Clinical 
Investigation, 33, 988–997. 

A maturational effect on bilirubin uptake by brain is better documented in experimental 

animals. In the rhesus monkey, the susceptibility of the brain-stem auditory evoked response to 

bilirubin is very dependent on gestational age. Ahlfors et al. found that both total and unbound 

bilirubin levels required to produce neurotoxicity (changes in the auditory evoked response) 

increased dramatically with increasing gestational age (Ahlfors et al., 1986). Blood–brain barrier 

permeability to bilirubin in the newborn piglet (2 days) is greater than in the 2-week-old piglet, with 

the highest concentration found in the subcortical (cerebellum and brainstem)regions at both ages 

(Lee et al., 1989; Lee et al., 1995).  
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The transport of bilirubin into brain in the presence of an intact blood–brain barrier presents 

unique problems since the dissociation rate of the albumin/bilirubin complex is slow and the time of 

exposure of the capillary endothelium to the circulating bilirubin–albumin is brief (Wennberg, 

2000). Newborn serum albumin does not bind bilirubin as well as albumin in adults or older infants 

(Ahlfors and DiBiasio-Erwin, 1986; Weisiger et al., 2001; Kapitulnik et al., 1975) and may contain 

many weak competitors for binding, yet to be identified. Such competitive binding of the primary 

site would displace significant bilirubin to the weaker secondary sites. The dissociation rate of these 

sites has not been established, but the lower binding constant implies a higher dissociation rate of 

the secondary binding sites, which would greatly facilitate bilirubin transport into brain. This could 

explain why many babies develop bilirubin encephalopathy before the primary albumin binding 

sites are saturated (Wennberg, 2000). 

 

5.2. Bilirubin transport 

Several mechanisms have been postulated to explain how the bilirubin moves in and out 

from the cells in the different tissues. Uptake studies performed in isolated liver cells showed that 

UCB transport follows a bimodal behaviour being saturative at low concentration (carrier-

mediated)while becoming concentration dependent (diffusion) when UCB reaches higher content 

(Mediavilla et al., 1999). On the contrary studies in hepatocytes performed by Zucker S. (Zucker et 

al., 1999; Zucker and Goessling, 2000) reported that bilirubin exhibit spontaneous diffusion through 

the membrane by a flip-flop mechanism.The penetration of more lipid-soluble molecules capable of 

diffusing across the cell membranes is limited by binding to plasma albumin and regulated by 

transport proteins present in both barriers. These transport systems belong to several subfamilies of 

the ATP Binding Cassette (ABC) efflux transporters and to solute carrier (SLCO) systems such as 

organic anion and cation transporters. Each displays broad substrate specificities, and they can work 

in concert at both cell membranes to achieve a high level of neuroprotection (Ghersi-Egea et al., 

2009). 

The OATP/SLCO superfamily consists of multi- and oligospecific membrane transport 

systems that mediate sodium-independent transmembrane solute transport. The multispecific 

transporters accept a broad range of amphi- pathic endo- and xenobiotics (Roma et al., 2008). Their 

multiple expression in the liver, kidney, small intestine, choroid plexus, blood-brain barrier and 

many other tissue barriers confer a strategic position for absorption, distribution and excretion of 

xenobiotic substances as shown Table 1.1 (Hagenbuch and Meier, 2004; Angeletti et al., 1997). As 

reported by Hagenbuch(Hagenbuch and Meier, 2004) different OATP transporters are able to 

transport bile salts and bilirubin like OATPC, OATPE, OATP1, OATP1a2 and OATP8. The role 
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for bilirubin transport of this transporters was studied by numerous works using different models 

like trophoblast cells from human an rat placenta (Briz et al., 2003b; Briz et al., 2003a), rat 

hepatocytes (Wang et al., 2003), HepG2 cells (Zucker and Goessling, 2000). 

ATP-binding cassette (ABC) transporters are multi-domain integral membrane proteins that 

use the energy of ATP hydrolysis to translocate solutes across cellular membranes in all mammalian 

species. ABC transporters form one of the largest of all protein families and are central to many 

important biomedical phenomena, including resistance of cancers and pathogenic microbes to drugs 

(Jones and George, 2004).  

Pgp, a member of the ABCB subfamily (MDR1), stands out among ABC transporters by 

conferring the strongest resistance to the widest variety of compounds. Pgp transports drugs that are 

central to most chemotherapeutic regimens. Is normally expressed in the transport epithelium of the 

liver, kidney and gastrointestinal tract, at pharmacological barrier sites, in adult stem cells and in 

assorted cells of the immune system. An additional member of the ABCB subfamily implicated in 

drug resistance are normally expressed in the liver, the ABCB4 (MDR3), a phosphatidylcholine 

flippase, has been shown to promote the transcellular transport of several Pgp substrates (Szakacs et 

al., 2006). 

The ABCC subfamily members (the MRPs) also transport organic anions and Phase II 

metabolic products. ABCC1 (widely known as MRP1) is expressed in a wide range of tissues, 

clinical tumours and cancer cell lines. MRP1 confers resistance to several hydrophobic compounds 

that are also Pgp substrates. In addition, like other members of the ABCC subfamily, MRP1 can 

export glutathione (GSH), glucuronate or sulphate conjugates of organic anions. MRP1 homologues 

implicated in resistance to anticancer agents include ABCC2 (MRP2), ABCC3 (MRP3), ABCC6 

(MRP6) and ABCC10 (MRP7). Despite the similarity of their sequences, MRP3 transports fewer 

compounds than MRP1 or MRP2. Interestingly, MRP3 has a preference for glucuronides over GSH 

conjugates. Substrates of MRP3 include anticancer drugs and some bile acid species, as well as 

several glucuronate, sulphate and GSH conjugates (Szakacs et al., 2006). 

MDR1 and MRP1 are two major efflux transporters involved in neuroprotection by 

preventing access to, or increasing elimination, from brain of various endo- and xenobiotics. Both 

MDR1 at the blood-facing luminal membrane of the endothelium and MRP1 at the basolateral      

membrane of the choroidal epithelium (Gazzin et al., 2008; Strazielle and Ghersi-Egea, 2000) are 

ideally localized to prevent the brain entry of blood-borne substrates into the CNS, including UCB 

(Ghersi-Egea et al., 2009; Loscher and Potschka, 2005). UCB has been demonstrated to be a 

substrate for the MRP1 (Deeley et al., 2006). Net cellular uptake of UCB is decreased by specific 

inhibition of MRP1 expressed in polarized human BeWo trophoblastic cells (Pascolo et al., 2001).  



 

1
4

 

 

 

 

 
 

Table 1 - Human and rodent members of the OATP/SLCO superfamily. Summary of new and old classification/nomenclature, predominant transport substrates, tissue 

distribution, chromosomal localization, accession number and known splice variants. Reporduced from Hagenbuch, B. – 2004 Eur J Physiol 447:653–665.



 

15 

 

5.3. Bilirubin metabolism by CYPs 

The cytochrome P450 (CYP) enzymes constitute a superfamily of haemoproteins that are 

involved in the oxidative activation or deactivation of both endogenous and exogenous compounds 

such as drugs, environmental toxins and dietary constituents. They play a critical role in the 

detoxification and activation of xenobiotics, and are expressed in a tissue-selective manner (Miksys 

and Tyndale, 2002).  

Brain CYPs were originally reported to occur at only 1% of the levels found in liver. Many        

of the CYP subfamilies have been observed at the blood–brain interface and in circum ventricular        

organs (regions of the brain that are not protected by the blood–brain barrier) such as the choroid 

plexus and posterior pituitary (e.g., CYP1A, CYP2B and CYP2D). This may have evolved as a 

protection against harmful xenobiotics, but there is the caveat that these regions may also be 

exposed to toxic drug and steroid metabolites produced by local CYP activity (Miksys and Tyndale, 

2002). CYP1A1 has been localized to the cortical regions, midbrain, basal ganglia and cerebellum. 

CYP1A2 has been found in most brain regions examined. A study in different strains of mouse, 

including Cyp1a2 null mutant mice, implicated both Cyp1a1 and Cyp1a2 in the bilirubin-degrading 

activity of the induced liver microsomes. CYP1A2 is believed to possess bilirubin-degrading 

activity intrinsically. CYP1A1 and CYP1A2, in particular, have been implicated in the inducibility 

of this pathway. However, their contribution to microsomal bilirubin oxidation appeared to be 

minor and therefore other CYP isoforms may contribute to the major part of the constitutive and 

inductive microsomal bilirubin oxidation. The induction of microsomal bilirubin degradation by 

CYP2a5 (CYP2A6 in human) were also reported in mice (Abu-Bakar et al., 2005). 

 

5.4. Antioxidant players in neurons 

5.4.1. The Glutathione protection against the oxidative environment 

The glutathione (GSH) is the most abundant thiol present in mammalian cells. Conformed 

by three peptides (γ-l-glutamyl-l-cysteinyl-glycine), GSH is synthesized in vivo by the consecutive 

action of two enzymes (Figure 1.4). γ-Glutamylcysteine synthetase uses glutamate and cysteine as 

substrates to forms the dipeptide γ GluCys, which is combined with glycine in a reaction catalyzed 

by glutathione synthetase to finally generate GSH. Both reaction are supplied with the energy of the 

hydrolysis of ATP. The balance of cellular synthesis and consumption of GSH is regulated by 

feedback inhibition of the γ-Glutamylcysteine synthetase reaction by the end product GSH (Dringen 

et al., 2000).  

GSH has important functions as an antioxidant, is a transport and storage form of      

cysteine, is a reaction partner for the detoxification of xenobiotica, and is a cofactor in isomerisation 
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reactions. In addition, GSH maintains the thiol redox potential in cells keeping sulfhydryl groups of 

cytosolic proteins in the reduced form (Dringen, 2000; Jia et al., 2008). 

 

Figura 1.4 - Metabolism of glutathione: GSH is synthesized by the two consecutive ATP-
consuming reactions of γ-glutamylcysteine synthetase (1) and glutathione synthetase (2). GSH is 
a substrate of the ectoenzyme γGT (3). X represents an acceptor of the glutamyl moiety 
transferred from GSH by γGT. The dipepetide CysGly is generated in equimolar concentrations to 
that of GSH used in the gGT reaction and is hydrolyzed by the reaction catalyzed by a dipeptidase 
(4). Intracellular GSH is conjugated by glutathione-S-transferase(s) (5) to xenobiotics or 
endogenous compounds (represented by Y). These conjugates are substrates of γGT. Reproduced 
from Dringen, R – 2000 Eur. J. Biochem. 267, 4912-4916.       

 

The glutathione system is especially important for cellular defense against ROS. GSH      

reacts directly with radicals in nonenzymatic reactions and is the electron donor in the reduction of 

peroxides catalyzed by Glutathione peroxidise (GPx) (Figure 1.5). The product of the oxidation      

of GSH is glutathione disulfide (GSSG). GSH is regenerated from GSSG within cells in a reaction 

catalyzed by the flavoenzyme glutathione reductase (GR). This enzyme regenerates GSH by      

transferring reduction equivalent from NADPH to GSSG (Figure 1.5) (Dringen et al., 2000).  

 

 

Figura 1.5 - Function of GSH as an antioxidant: GSH reacts nonenzymatically with radicals (R´) and is the 
electron donor for the reduction of peroxides (ROOH) in the reaction catalyzed by GPx. GSH is regenerated 
from GSSG by GR which uses NADPH as cofactor. Reproduced from Dringen, R – 2000 Eur. J. Biochem. 
267, 4912-4916 
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5.4.2. The Cystine transporter System Xc
-
 

The System Xc
- is a highly regulated electroneutral system that exchanges cystine for 

glutamate and one of the main transporters responsible for central nervous system cystine transport 

(Burdo et al., 2006).       

The antiporter is a heterodimer composed of: a heavy chain comprised of a cell surface 

antigen 4F2hc (non specific transporter subunit of the transporter, encoded by the SLC3A2 gene) 

and a light chain known as xCT (encoded by the SLC7A11 gene) (Markowitz et al., 2007). The xCT 

subunit is composed by 502 amino acids and 12 putative transmembrane domains (Figure 1.6) (La, 

V et al., 2007). The analysis in protein expression by Western blot of the System Xc
- performed by 

Shih, A. et. al. have demonstrated the presence of a 35 kDa band corresponded to the monomeric 

form of xCT. A 105 kDa band was detected using both xCT and 4F2hc antibodies under 

nonreducing conditions that represent the xCT plus 4F2hc disulfide-linked heterodimer. The 

monomeric 4F2hc was found to migrate at 80 kDa under reducing conditions. A fainter 55 kDa 

band (xCT-mod) was consistently detected in xCT and Nrf2-overexpressing astrocytes but was 

unlikely to be an xCT homodimer because it was too low in molecular weight and could not be 

disrupted by reducing conditions, suggesting that it is derived from the xCT transcript and may be 

an alternatively spliced or translationally modified form distinct from 35 kDa xCT. No 

heterodimerization was observed between 4F2hc and xCT-mod (Shih et al., 2006). 

The System Xc
- works by exchanging the anionic form of cystine (which is transported      

into the cell) and glutamate (which is travelling outwards down its concentration gradient). The      

exchange is obligatory with a molar ratio of 1:1 and a in Cl- dependent and Na+-independent 

process. Cystine taken up by the cell via System Xc
- is then rapidly reduced to cysteine, which is the 

rate-limiting precursor for the synthesis of the potent intracellular reducing agent glutathione 

(GSH). Cysteine can in its turn be released back to the extracellular space, where the oxidizing 

conditions favour the formation of cystine. Thus, the System Xc
- contributes to driving the 

cystine/cysteine cycle and to maintaining the redox balance between the two amino acids in the 

medium (La, V et al., 2007; Liu et al., 2007). The System Xc
- activity can be quantified using either 

L-glutamate or L-cystine as a substrate, and in both instances, uptake is Cl-dependent and Na+-

independent (Patel et al., 2004). 
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Figure 1.6 – Schematic representation of the System Xc
-: the system is an heterodimer composed by the heavy subunit 4F2hc 

(encode by the SLC3A2 gene) and the light subunit xCT (encode by the SLC7A11 gene).       

 

Within the 5′-flanking region of the xCT gene are several sequences resembling the cis-

acting electrophilic response element (EpRE), also known as the antioxidant response element 

(ARE) that is responsible for the induction of the adjacent genes. As such, xCT is transcriptionally 

regulated by electrophilic agents such as diethylmaleate (Bannai, 1984), oxygen (Bannai et al., 

1989), bacterial lipopolysaccharide (Sato et al., 1995), cysteine and others amino acids (Sato et al., 

2004) and by activation of the endogenous antioxidant response via the Nrf2 transcription factor 

(Sasaki et al., 2002). On the contrary, the cystine uptake carried out by the System Xc
- can be inhibit 

using the L-Quisqualate as demonstrated by Patel et al. and Knickelbein et al. (Patel et al., 2004; 

Knickelbein et al., 1997).  

 

5.4.3. Cysteine providers for glutathione synthesis in neurons 

Cysteine is one of the three amino-acid precursors of glutathione and it has been shown to 

be the rate-limiting substrate for glutathione synthesis in several different types of cells, presumably 

because the two other amino acids, glycine and glutamate, are normally present at much higher 

intracellular concentrations. Studies by Dringen and colleagues showed that the GSH released from 

astrocytes is used as substrate of the astroglial ectoenzyme γGT (encode by the GGT1 gene). The 

CysGly produced in this reaction is cleaved by the neuronal ectopeptidase ApN and the amino acids 

cysteine and glycine generated are subsequently taken up as precursors for neuronal glutathione 

synthesis by their respective transporters (Figure 1.7). The results presented here suggest that in 

these experimental models cysteine is generated from extracellular GSH by the consecutive 

reactions of γGT and ApN (Dringen, 2000; Dringen et al., 2001).  
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Figure 1.7 Scheme of the function of ApN in the proposed metabolic interaction between 

astrocytes and neurons in GSH metabolism: Astrocytes release GSH that serves as substrate 
for the astroglial ectoenzyme γGT. In addition, glutamine is released from astrocytes and used by 
neurons as precursor for the glutamate necessary for GSH synthesis. X represents an acceptor of 
the γ-glutamyl moiety transferred by γGT from GSH. The CysGly generated by the γGT reaction 
is hydrolyzed by the neuronal ectoenzyme ApN and the generated amino acids cysteine and 
glycine are taken up by neurons and serve as substrates for GSH synthesis. Reproduced from 
Dringen R – 2001 J Neurosci Res 66:1003-1008. 

 

The mechanism by which free cysteine is then taken up by neurons has not been fully 

characterized yet. One potential route of cysteine uptake is via excitatory amino acid transporters 

(EAATs), which are members of the System X-AG family of electrogenic, Na
+ - dependent anionic 

amino acid transporters. Cysteine is known to be a substrate for EAAT3 (encode by the SLC1A1 

gene) that is widely expressed by neurons in mature brain (Chen and Swanson, 2003). 

 

5.4.4. Other antioxidant and detoxifying players 

The antioxidant responsive element (ARE) is an enhancer element that initiates the 

transcription of a battery of genes encoding phase II detoxification enzymes and factors essential for 

neuronal survival. The ARE is activated through the binding of its transcription factor, Nrf2 (NF-

E2-related factor 2) (Johnson et al., 2008). Nrf2 is sequestered in the cytosol by kelch-like ECH-

associated protein 1 (Keap1). During oxidative challenge, the modification of Keap1 sulfhydryl 

groups results in the release and nuclear translocation of Nrf2. Nrf2 can transcriptionally activate 

several enzymes involved in cellular protection, including NAD(P)H:quinone oxidoreductase 1 

(Nqo1), Heme oxygenase-1 (HO-1) and γ-glutamylcysteinyl synthetase (γ -GCS) (Maher et al., 

2007).       

NQO1 exemplifies a protein with multiple protective roles that include and extend beyond 

its catalytic function. It is a widely distributed FAD-dependent flavoprotein that catalyzes the 

reduction of quinones, quinoneimines, nitroaromatics, and azo dyes. The classical direct antioxidant 
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role of NQO1 is inherent in its catalytic mechanism: the obligatory two-electron reduction of a 

broad array of quinones to their corresponding hydroquinones by using either NADPH or NADH as 

the hydride donor. In doing so, NQO1 diverts quinone electrophiles from participating in reactions 

that could lead to either sulfhydryl depletion, or to one-electron reductions that can generate 

semiquinones and various reactive oxygen intermediates as a result of redox cycling. In addition, 

the hydroquinone products of the NQO1 reaction can be further metabolized to glucuronide and 

sulfate conjugates, thereby facilitating their excretion (Dinkova-Kostova and Talalay, 2010). 

 HO-1 is a ubiquitous and redox-sensitive inducible stress protein. In mammals, the crucial 

participation of HO-1 gene expression in alleviating organ dysfunction and counteracting metabolic 

disorders is supported by consistent reports showing a protective role for the products of the 

enzymatic activity of HO-1. The main evidences of the involvement of HO-1 come from 

experimental data like demonstrated by Poss, K. D. (Poss and Tonegawa, 1997) where HO-1 has 

been proposed to play an obligatory role in endogenous defense against oxidative stress because 

cells from HO-1-/- mice are highly susceptible to oxidative insults (Scapagnini et al., 2002).       

Heme serves as a substrate for HO-1 in the formation of carbon monoxide, free ferrous iron, 

and biliverdin; the latter is rapidly converted to bilirubin by biliverdin reductase (BVR). The 

antioxidant actions of bilirubin are dramatically amplified by BVR in a biliverdin–bilirubin cycle. 

Thus, when bilirubin acts as an antioxidant, it is itself oxidized to biliverdin which is rapidly 

reduced by BVR to bilirubin. Depletion of BVR by RNA interference markedly diminishes the      

cytoprotective effects of exogenous bilirubin and leads to increased cellular levels of oxygen free 

radicals and cell death (Sedlak et al., 2009; Baranano et al., 2002). 

The detoxification pathway via GSH-conjugation has been studied extensively. Glutathione 

S-transferases (GSTs) play an important role in the conjugation of xenobiotics with GSH, whose 

synthesis is rate determined by γ-GCS (Hayashi et al., 2003). The later is composed by a catalytic 

subunit (GCLC) and a modifier subunit (GCLM). Interestingly, the expression of both GCLC and 

GCLM is increased by Nrf2 activation (Johnson et al., 2008). 

 

6. The SH-SY5Y cell line as a neuronal model 

The SH-SY5Y cell line is the thrice cloned subline of SK-N-SH cells which were originally 

established from a bone marrow biopsy of a neuroblastoma patient with sympathetic adrenergic      

ganglial origin in the early 1970’s (Biedler et al., 1973). The SK-N-SH cell line contains cells with 

three different phenotypes: neuronal (N type), Schwannian (S type), and intermediary (I type). The 

N-type cells appear to be immature neuroblasts characterise by small refractile cell bodies, a high 

nuclear-to-cytoplasmic ratio, and short, sometimes numerous, neuritis. They contain tyrosine 
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hydroxylase, dopamine-b-hydroxylase, the norepinephrine uptake transporter, and the low affinity 

nerve growth factor receptor–enzymes and cell surface receptors present in developing neuroblasts;       

vesicular granins chromogranin A and secretogranin II; and neurofilaments proteins like 

neurofilament 68. By contrast, S-type cells adhere tightly to the substrate, appearing as large flat 

cells with a prominent oval nucleus and abundant cytoplasm. The S cell phenotype is similar to that 

of an Schwannian/glial/melanoblastic precursor cell. In addition to the absence of neuronal marker 

proteins, these cells synthesize the intermediate filament vimentin, epidermal growth factor 

receptor, and fibronectin. Some S cells also express tissue-specific proteins such as the melanocyte 

enzyme tyrosinase, glial fibrillary acidic protein, desmin, or alpha-smooth muscle actin. Finally, the 

I-type cell has morphological features of both N and S cell types and are considered as a precursor 

that give origin to N and S cells (Ross and Spengler, 2007). These cells attach equally well to the 

substrate and to other cells, have a round, prominent nucleus, as do N cells, but with more 

cytoplasm, and may or may not have occasional neurites. No marker proteins specific to I cells have 

been identified yet (Ross et al., 2003; Xie et al., 2010). 

Even if the SH-SY5Y cell line had origin as a homogeneous N type cell line, studies 

reported by Biagiotti, T. et al have demonstrated the presence of positive cells for S type markers. 

They have confirmed that actually the SH-SY5Y are an heterogeneous line composed by cells with 

characteristics of the both N and S types independently that can be inter-converted in culture 

through the I type (Biagiotti et al., 2006). 

The SH-SY5Y cell line has been widely used in experimental neurological studies, including 

analysis of neuronal differentiation, metabolism, and function related to neurodegenerative and 

neuroadaptive processes, neurotoxicity, and neuroprotection. 
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7. Aims of the study 

 

As indicated in the first part of this work, modifying the time of exposure and the 

concentration in which the SH-SY5Y cells are incubated with bilirubin, is possible to study both the 

bilirubin neurotoxicity and the mechanisms by which the neurons overcome the bilirubin damage. 

Based on these models we aimed to the identification of players that contribute to the bilirubin 

resistance induced by a first bilirubin treatment on neurons and molecular events that occur when 

UCB cause cell injury.   
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MATERIALS AND METHODS 

 

1. Chemicals 

 Dulbecco’s Phosphate Buffered saline (PBS), streptomycin and penicillin were purchased 

from Euroclone, Milan (Italy). Ham’s Nutrient Mixture F12 (F12), Fetal calf serum (FCS), 

GlutaMAXTM  and TRIZOL reagent, obtained from Invitrogen (Carlsbad, CA) contained 24 g/L 

albumin. Ham’s Nutrient Mixture F12 (F12), Eagle’s Minimum Essential Medium (EMEM), 

nonessential amino acid solution (MEM), dimethy sulfoxide (DMSO), peroxide (H2O2, 30% 

wt/vol), 3(4,5-dimethiltiazolil-2)-2,5 diphenyl tetrazolium (MTT), L-buthionine-[S,R]-sulfoximine, 

NADPH, DEM, glutathione reductase, 2,2’-dinitro-5,5’-di-thiobenzoic acid (DTNB), Quisqualic 

Acid; Tri Reagent were purchased from Sigma Chemical Co.-Aldrich, Milan (Italy). Chloroform 

was obtained from Carlo Erba, Milan (Italy). 

 Unconjugated bilirubin (UCB)(Sigma Chemical Co, St. Louis MO), was purified as described 

by Ostrow & Murkerjee (Ostrow and Mukerjee, 2007). The 2,7-dichlorodihydrofluorescein 

diacetate (H2DCFDA) was obtainded from Molecular Probes (Carlsbad, CA, USA) and iScript
TM 

cDNA Synthesis kit, iQTM SYBR Green Supermix were purchased from Bio-Rad Laboratories 

(Hercules, CA, USA).  

 

2. Basic procedures and techniques  

2.1. SH-SY5Y Cell Culture 

 Human neuroblastoma SH-SY5Y cells were cultured in a growth medium conformed by a 

mixture of EMEM/F12 (1:1 v/v) containing 15% (v/v) FCS, 1% (v/v) non essential amino acids, 1% 

(v/v) GlutaMAXTM, penicillin (100 U/mL) and streptomycin (100 µg/mL) in 75 cm2 tissue culture 

flasks at 37°C in a humidified atmosphere of 5% CO2. The cells were fed every 2 days and sub-

cultured once they reached 80-90% confluence. Cultures were stopped at the 20th passage, as 

recommended in the European Collection of Cell Cultures. 

 

2.2. Bilirubin preparation 

 Among the experiments presented in this thesis different treatments were done exposing SH-

SY5Y cells to bilirubin.  Immediately before each incubation an aliquot of purified UCB was 

dissolved in DMSO (0.33 µL of DMSO per µg of UCB) obtaining a final concentration of 5 mM 

and then added to the culture with fetal calf serum. In the different UCB solutions, the concentration 

of free bilirubin (Bf) was measured with the peroxidase method (Calligaris et al., 2006). Because 
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DMSO is used to dissolve the bilirubin, for each experiment cells exposed to growth medium with 

the same concentration of DMSO that carry the medium with bilirubin were used as controls.   

 

2.3. Viability determination by MTT test 

 The stock of 3(4,5-dimethyltiazolyl-2)-2,5 diphenyl tetrazolium (MTT) was dissolved in PBS 

pH 7.4 at 5 mg/mL and finally diluted in Growth medium to a final concentration of 0.5mg/mL. The 

cells were incubated with the MTT solution during 1.5 hours at 37 °C. After incubation, to dissolve 

MTT formazan crystals, the medium was replaced discarded, 0.4 mL of DMSO were added and the 

sample gentle shook for 15 min. Absorbance values at 562 nm were determined in a LD 400C 

Luminescence Detector, Beckman Coulter, Milan, Italy. Results were expressed as percentage of 

control cells, not exposed to UCB, which was considered as 100% viability. 

 

2.4. RNA extraction and quantification  

 Total RNA was isolated using Tri Reagent solution according to the manufacture's 

suggestions (T9424 Sigma, Missouri, USA). The total RNA concentration was quantified by 

spectrophotometric analysis in a Beckman DU640 Spectrophotometer. For each sample the 

A260/A280 ratio comprised between 1.8 and 2.0 was considered as good RNA quality criteria. 

Isolated RNA was re-uspended in RNAse free water and stored at -80°C until analysis. 

 

2.5. cDNA Preparation 

 Single stranded cDNA was obtained from 1 µg of purified RNA using the iScripTMcDNA 

Synthesis Kit, according to the manufacture’s suggestions. The reaction was run in a Thermal 

Cycler (Gene Amp PCR System 2400, Perkin-Elmer, Boston, MA, USA) in agreement with the 

reaction protocol proposed by the manufacturer.  

 

2.6. Quantitative Real-Time PCR 

 Real Time quantitative PCR (qPCR) was performed with an iCycler (Bio-Rad Laboratories, 

Hercules, CA, USA) and a IQ5 Multicolor Real-Time PCR Detection System (Bio-Rad 

Laboratories, Hercules, CA, USA). β-actin, HPRT and GAPDH were used as endogenous controls 

to normalize the expression level of the different gene analyzed (Primers sequence are shown in 

table 2.1). The primers were designed using Beacon Designer 4.02 software (PREMIER Biosoft 

International, Palo Alto, CA, USA). All primer pairs were synthesized by Sigma Genosys 

(Cambridgeshire, UK). 
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Table 2.1 

Gene Accession Number Primer Forward Primer Reverse 
Product 

(bp) 

Β-actin NM_001101.3 CGCCGCCAGCTCACCATG CACGATGGAGGGGAAGACGG 120 

HPRT NM_000194 CTGGAAAGAATGTCTTGATTGTGG TTTGGATTATACTGCCTGACCAAG 91 

GAPDH NM_002046 TCAGCCGCATCTTCTTTTG GCAACAATATCCACTTTACCAG 146 

OATPC NM_006446.4 TCAATGGTTATACGAGCACTAGG TGAAGACAAGCCCAAGTAGAC 165 

OATPE NM_016354.3 AGAAGGTGTACCGAGACTG CGGACACATCGTAGAGTTG 187 

OATP1 NM_001145946.1 ATTGAGCAGCAGTATGGACAG ACAGGGAAAGAAATAGGAGGTAAC 190 

OATP1A2 NM_021094.3 GCCCAACACACTTCCAAAG GCATTGAACTGTATCACACTTAC 195 

OATP8 NM_019844.2 TCCAGTCAATGGTTATAAGAACAC AGCCCAAGTAGACCCTTCC 162 

MRP1 NM_004996.3 TGATGGAGGCTGACAAGG GCGGACACATGGTTACAC 127 

MRP2 NM_000392.3 AGCACCGACTATCCAGCATCTC GACGAAACCAAAGGCACTCCAG 117 

MRP3 NM_003786.3 GCCATCTGTCTCCTGTATG CCAGCATCACCAAGAACC 169 

MDR1 NM_000927. TGCTCAGACAGGATGTGAGTTG AATTACAGCAAGCCTGGAACC 122 

MDR3 NM_000443 TTTTTACTTTCTTCCTTCAGGGTTTC TAAAAGCCATTGACCGCAGTCT 81 

SLC7A11 NM_014331.3 GGTGGTGTGTTTGCTGTC GCTGGTAGAGGAGTGTGC 107 

GGT1 NM_001032364.1 TCTCTGACGACACCACTC GACCTTGGAGCCAAAGTAG 152 

SLC1A1 NM_004170.4 CCACTCTCATTGCTGTTATTC CATCCACCGTACTGACTTC 120 

HO-1 NM_002133.2 ATGCCCCAGGATTTGTCA CCCTTCTGAAAGTTCCTCAT 95 

HO-2 NM_001127204.1 TGAGTATAACATGCAGATATTCA CCATCCTCCAAGGTCTCT 75 

NQO1 NM_000903.3 CCTCTATGCCATGAACTT TATAAGCCAGAACAGACTC 107 

GCLC NM_001498.3 AATGTCCGAGTTCAATAC AATCTGGGAAATGAAGTTAT 111 

CYP1A1 NM_000499.3 TATTGGTCTCCCTTCTCTA GCTCAGGTAGTTGTTCTT 188 

CYP1A2 NM_000761.3 TCCATCAACTGAAGAAGAC TTGGCTAAAGCTGCTATT 119 

CYP2A6 NM_000762.5 GCAGTTTAAGAAGAGTGA GGTGAAGAAGAGAAAGAG 136 

UGT1A1 NM_000463.2 CTGAATGTTCTGGAAATGACTT CTTGTGAAGGCTGGAGAG 108 

CACYBP NM_001007214.1 ACAATCTCTTGAAACCCATCTCTG TTCAGTGTCATAGGAGGGCTTC 164 

VIM NM_003380.3 AACTTCTCAGCATCACGATGAC TTGTAGGAGTGTCGGTTGTTAAG 195 

NFL NM_006158.3 AAGAAGAAGGAGGTGAAGGTGAAG TGGTTGGTTGGTTGGTGATGG 184 

CHCA NM_001275 GCATCGTTGAGGTCATCTC AACCGCTGTGTTTCTTCTG 195 

nNOS NM_000620.3 CGTCTTGGAACTGACATAA CTGGACAACTCTTACCTTC 84 

iNOS NM_000325.4 CCTCAAGTCTTATTTCCTCAAC ATCAATCCAGGGTGCTAC 79 

eNOS NM_000603.4 ATTCCTCTTGCCTCTCTC TAGTAGTTCTCCTAACATCTGG 114 
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 Briefly, 25 ng of cDNA were amplified by PCR with 1x iQ SYBR Green Supermix (100 mM 

KCl, 40 mM Tris-HCl, pH 8.40; 0.4 mM each dNTP; 50 U/mL iTaq DNA polymerase; 6 mM 

MgCl2; SYBR Green I; 20 mM fluorescein; and stabilizers) (Bio-Rad Laboratories) and 250 nM 

gene specific sense and anti-sense primers, in a final volume of 25 µL for each well. The PCR was 

performed in 96-well plates, each sample was performed in triplicate and a no-template control was 

included for each amplificate. Standard curves using a “calibrator” cDNA (chosen among the 

cDNA samples) were prepared for each target and reference gene. In order to verify the specificity 

of the amplification, a melt-curve analysis was performed, immediately after the amplification 

protocol. Non-specific products of PCR were not found in any case. The expression analysis and 

relative quantification was made using the Bio-Rad IQ5 2.0 Standard Edition Optical System 

Software. 

 

2.7. Protein extraction and Quantification  

 Total cells extracts were obtained by lising cells in ice-cold Cell Lysis Buffer (#9803, Cell 

Signaling Technology, Inc - Beverly, Massachusetts, USA) for 10 min, on ice, and using scrapper. 

The lysate was centrifugated at 14.000 g for 10 min, at 4°C, and the supernatans were collected and 

stored at -80°C. Protein concentration in the lysate was determined by the Bicinchoninic Acid 

Protein Assay (BCA) (Smith et al., 1985) following the instructions reported by the supplier (B-

9643, Sigma, Missouri, USA).  

 

2.8. Western Blot analysis 

 Equal amounts of protein were subjected to sodium dodecyl sulphate-poliacrilamide gel 

electrophoresis (SDS-PAGE). Molecular weight standards (10-250 kDa, #SM1811 Fermentas) were 

used as marker proteins. 2.5% β-mercapoethanol was added to the samples and finally they were 

subjected to denaturation protocol in a Thermal Cycler (Gene Amp PCR System 2400, Perkin-

Elmer, Boston, MA, USA) for protein denaturation. Proteins were loaded on 10% polyacrylamide 

gel by electrophoresis in a Hoefer SE 250 System (Amersham Biosciences). After SDS-PAGE, gels 

were electrotransferred with a semi-dry blotting system at 100 V for 60 min to a immune-blot 

PVDF membranes (Bio-Rad Laboratories, Hercules, CA, USA). 

 After the protein transfer step, membranes were blocked in 4% BSA (fatty acid free, fraction 

V) in TTBS (0,2% Tween 20, 20 mM Tris-HCl (pH 7.5), 500 mM NaCl) and incubated at 4°C with 

the primary antibody. Then, membranes were washed three times with 5% BSA-TTBS and 

incubated for 60 min with a secondary antibody conjugated with peroxidase. For each particular test 

a normalization was performed by concomitant determination of β-actin using the polyclonal anti-
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Actin antibody (A2066, Sigma Chemical, St. Louis, MO). Protein bands were detected by peroxide 

reaction using ECL-Plus Western Blot detection system solutions (ECL Plus Western Blot detection 

reagents, GE-Healthcare BioSciences, Italy) and visualized by autoradiography with Hyperfilm 

Sigma. The relative intensities of protein bands were analysed using the NIH Image software (Scion 

Corporation Frederick, MD, USA). 

 

3. MODEL DEFINITION 

3.1. Sensitivity of SH-SY5Y cells to free bilirubin (Bf) 

 SH-SY5Y cells were seeded in a 24 multiwell plates at a density of 60,000 cells/cm2. Cell 

viability assays were conducted when 70% confluence was attained uniformly in all wells. After 

washing with pre-warmed PBS, cells were incubated with increasing doses of UCB dissolved in 

growth medium.  

  In the time course studies, cells were exposed to increasing concentrations Bf (10, 40, 70 

and 140 nM) during different periods of time: 1h, 2h, 4h, 6h e 24h. At the end of the incubation, the 

medium containing UCB was discarded, the cells were washed 3 times with pre-warmed PBS and 

finally the viability was tested by the MTT test. 

 In order to standardize DMSO-related effects, cells were incubated with medium containing 

DMSO 0.6% (the quantity of DMSO necessary to dissolve the UCB and obtain the more 

concentrated solution Bf 140 nM) and the viability by MTT test was checked at the end of each 

incubation period. 

 

3.2. Cellular growth curve of SH-SY5Y cells after bilirubin treatment  

SH-SY5Y cells pre-treated with bilirubin (Bf final concentration 140 nM), DMSO 0.6% and 

growth medium during 24h were seeded at 10.000/cm2 in a 24 multiwell plate. A growth curve was 

established counting the quantity of cells by cm2 at 24h, 96h, 120h, 144h, 168h and 196h. At each 

time the cells were washes with PBS and detached incubating them with trypsin (Euroclone – 

Milan, Italy) during 2 minutes. After trypsin neutralization with growth medium cells were counted 

using a Burker chamber.  

 

3.3. Response of SH cells to a second treatment with bilirubin during 4 hours 

60.000 cells by cm2 were seeded in two 6-multiwells plate and 100.000 cells by cm2 in one 

6-multiwells plate. The day after, the cells in the first two 6-multiwells plate were treated with 

growth medium and DMSO 0.6%, respectively, and the last 6-multiwells plate was treated with Bf 

140 nM. All the treatments were performed for 24h. At the end of the first treatment cells in each 6-
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multiwells plate were re-exposed to a second treatment with growth medium, DMSO 0.6% and Bf 

140 nM during 4h. The cell viability was finally assessed by MTT test. 

 

4. SH-SY5Y CELL MODEL TO STUDY BILIRUBIN RESISTANCE 

4.1. The dynamic of the bilirubin  

4.1.1. Bilirubin entrance analysis by 3H-UCB uptake analysis  

 The entrance of H3-bilirubin was assessed in SH-SY5Y cells to measure the accumulation of 

the pigment in the cells. Briefly, cells were seeded in 35 mm dishes at 37 °C in atmosphere of 5% 

CO2 and 95% humidity. H
3-bilirubin was dissolved first in DMSO and then in growth medium to 

obtain a final Bf concentration of 140 nM (controlled by absorbance at 486 nm) and DMSO 0.6%. 

10 µL of this solution were used to measure the concentration. The cells were previously washed 

with the medium and then exposed to the labeled bilirubin for 0, 2, 5, 10, 30 and 60 min. After each 

time interval, the cells were washed three times with cold PBS and incubated with lysing solution 

(NaOH 0.2 N + SDS 2%) for 15 min. After homogenize with a scrapper 375 µL were mixed with 4 

mL of scintillation cocktail (ULTIMA GoldTM, Perkin Elmer Italia Life and Analytical Sciences) 

and the radioactivity was determined using a scintillation counter (Tri-Carb Liquid Scintillation 

Analyzer, Packard Instrument Company). 50 µL were taken for protein determination. 

 

4.1.2. Bilirubin accumulation by HPLC analysis  

The bilirubin accumulation inside the cells was also assessed by High Performance Liquid 

Chromatography (HPLC). Fourteen 75 cm2 flasks were seeded with 80.000 cells/cm2. Cells were 

exposed to bilirubin with a final Bf concentration of 140 nM for 0.25h, 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 

3.5h, 4h, 6h, 18h and 24h.Cells exposed to DMSO 0.6% for 18h and 24h were used as controls. 

After the treatment, the cells were washed three times with PBS and collected in 500 µL of PBS 

detaching them using a scrapper. 50 µL were separated for protein quantification. Finally the total 

bilirubin quantity was determined using a HPLC with diode array (Agilent, Santa Clara, CA, USA) 

as described by Zelenka et al. (Zelenka et al., 2008). 

 

4.1.3. Bilirubin entrance mediated by OATP transporters 

The mRNA expression of membrane transporters considered to be involved in UCB 

entrance into the cells was tested by Real Time PCR, as described in point 2.6, in SH-SY5Y cells 

treated with Bf 140 nM, DMSO 0.6% and growth medium. For the cellular uptake the expression of 

the  OATPC, OATPE, OATP1, OATP1a2 and OATP8 transporters were analyzed at 1h, 4h and 24h 

of treatment using the primers shown in Table 2.1. 
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4.1.4. Bilirubin Extrusion mediated by ABC transporters 

Some ABC transporters are involved in the export of bilirubin from the cell. The mRNA 

expression of these membrane transporters was tested by RT-Real Time PCR (see point 2.6) in SH-

SY5Y cells treated with Bf 140 nM, DMSO 0.6% and growth medium. The mRNA expression of 

the transporters MRP1, MRP2, MRP3, MDR1 and MRD3 was analyzed at 1h, 4h and 24h of 

treatment and 0h, 48h and 156h after a pre-treatment with BF 140 nM for 24h using the primers 

shown in table 2.1. 

 

4.2. Metabolic changes inside the cells 

4.2.1. The Cystine Transporter System Xc
-
 

4.2.1.1. Effect of bilirubin on mRNA expression levels of genes involved in 

cystine uptake. 

The mRNA expression of the transporter able to internalize cystine into the neuron was 

analyzed by qPCR. SH-SY5Y cells were seeded at 80.000 cells/cm2 in 75 cm2 the day before the 

experiment and then exposed to the following experimental conditions: growth medium, DMSO 

0.6% medium or Bf 140 nM medium for 1h, 4h and 24h. 

 Total RNA was extracted, isolated and quantified as described in points 2.4-2.6. 

  

4.2.1.2. L-[
14
C]-Cystine uptake by bilirubin treated and untreated SH-SY5Y cells  

 SH-SY5Y cells were seeded in 6-multiwell plates at a density of 80.000 cell/cm2. Cells were 

exposed to 24h treatment with Bf 140 nM or DMSO 0.6% and medium for controls the second day 

after the cells achieved a 70% confluence. Cells were then rinsed three times with 37 °C uptake 

buffer (140 mM NaCl, 25 mM HEPES, 5.4 mM KCl, 1.8 mM CaCl2, 0.8 mM MgSO4, 5 mM 

glucose (pH = 7.5).  

 Cystine uptake by SH-SY5Y cells was started by incubating the cells in uptake buffer 

containing 0.8 µM L-[14C] cystine (L- [U-14C]-Cystine, 250 mCi/mmol ; PerkinElmer Italia Life 

and Analytical Sciences) at 37°C during 0, 2, 5, 10 and 30 min. The uptake was stopped by rapidly 

rising the cells two times with ice-cold unlabelled uptake buffer. The cells were then lysed by 

adding 0.8 mL of 0.2 N NaOH containing 1% SDS. An aliquot of 50 µL was taken for protein 

determination. The remaining solution (750 µL) was mixed with 5 mL of scintillation cocktail 

(ULTIMA GoldTM, Perkin Elmer Italia Life and Analytical Sciences) and the radioactivity was 

determined using a scintillation counter (Tri-Carb  Liquid Scintillation Analyzer, Packard Instrument 

Company). 
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4.2.1.3. Uptake contribution of neuronal L-Cystine transporters: System Xc
-
, 

XAG
-
 and GGT 

 To analyze the individual contribution of each transporter to the high cystine uptake observed 

in SH-SY5Y cells after 24h of treatment with Bf 140 nM, the uptake was performed in presence or 

absence of sodium (For Na+ -free uptake, NaCl was replaced in the medium with an equal 

concentration of N-metyl-D-glucamine chloride) or In presence or absence of the specific inhibitor 

for the System Xc-, the quisqualic acid (Patel et al., 2004).  

 Briefly, cells were seeded in 6-multiwell plates at a density of 80.000 cell/cm2. The cells were 

then rinsed three times and cystine uptake analyzed by incubating the cells in uptake buffer 

containing 0.8 µM L-[14C] cystine (L- [U-14C]-Cystine, 250 mCi/mmol ; PerkinElmer Italia Life 

and Analytical Sciences) at 37°C for 10 min. For the analysis of Na+-dependent and Na+-

independent cystine transport and quisqualate inhbition, cells were incubated for10 min. The uptake 

was terminated by rapidly rising cells two times with ice-cold unlabelled uptake buffer. The cells 

were then lysed by adding 0.8 mL of 0.2 N NaOH containing 1% SDS. An aliquot of 50 µL was 

taken for protein determination. The remaining solution (750 µL) was mixed with 5 mL of 

scintillation cocktail (ULTIMA GoldTM, Perkin Elmer Italia Life and Analytical Sciences) and the 

radioactivity was determined using a scintillation counter (Tri-Carb  Liquid Scintillation Analyzer, 

Packard Instrument Company). 

 

4.2.1.4. Glutathione determinations after bilirubin treatment 

 Glutathione content was assessed at 1h, 4h and 24h of treatment with Bf 140 nM and 0h, 

48h and 156h after a first treatment with Bf 140 nM for 24h. SH-SY5Y cells were seeded in 60 mm 

diameter dish at a density of 80.000 cell/cm2. After each treatment the cells were rinsed three times 

with PBS at 37°C and 500 µL ice-cold 5% perchloric acid was added. The cells were detached by 

scrapping, harvested, and the dishes rinsed twice with 500 µL ice-cold 5% perchloric acid. All the 

fractions were pooled together, homogenized and transferred to eppendorf tubes. The samples were 

centrifugated at 13.000 g and the acid-soluble fraction was separated from the pellet and both were 

stored at -80°C until analysis were performed. The proteins were quantified using the bicinchoninic 

acid assay from acid-precipitated pellet by treatment with 1 M NaOH. 

 Reduced glutathione (GSH) plus oxidized glutathione (GSSG) were measured as total 

glutathione content in the acid supernatants using an enzymatic method, after its neutralization with 

a 0.76 M KHCO3. Briefly, supernatant aliquots (100 µL) were assessed in 900 µL of the reaction 

mixture (0.1 M sodium phosphate buffer (pH 7.5) containing 1 mM EDTA, 0.3 mM DTNB, 0.4 
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mM NADPH). The rate of the enzymatic product formation (Tiobenzoic acid=TNB) was monitored 

after the addition of glutathione reductase (1 U/mL), in a termostated cuvette (30 °C), at 415 nm, 

for 3 min, with a Beckman DU 640 spectrophotometer. Glutathione concentrations were calculated 

using appropriate standards and normalized by mg of protein.  

 

4.2.1.5. Cell viability of SH-SY5Y cells pre-treated with UCB after hydrogen 

peroxide stress  

 Cells were plated in 24-multiwell plates. Once they achieved a 70–80% confluence the 

growing medium was discarded, the cells were rinsed with PBS at 37°C and exposed to medium 

containing DMSO 0.6% or Bf 140 nM for 24h. Then, the cells were rinsed with PBS and 

maintained in optimal growth media until hydrogen peroxide treatment was performed. Cell 

response to hydrogen peroxide (0 – 700 µM) for 1 h was evaluated immediately after Bf or DMSO 

treatment and at 48h and 156h upon release in growth medium. After the incubation with H2O2, the 

medium was removed and MTT test was performed as described in point 2.3. The results were 

expressed as percentage of MTT reduction respect to cells not exposed to H2O2. 

 

4.2.1.6. Small interference RNA-mediated System Xc
-
 (SLC7A11) gene silencing 

30.000 SH-SY5Y cells/cm2 (for DMSO treatment) or 60.000 SH-SY5Y cells/cm2 (for Bf 

treatment) were plated either in 24-multiwell plates or in 6-multiwell plates for H2O2 treatment or 

Western blot analysis, respectively. Cells were untransfected (MOCK) or transfected with 50 nM 

siGENOME Non-Targeting siRNA #1 (Dharmacon, Lafayette, CO, USA) (NT, silencing control) 

or with 50 nM siGENOME SMARTpool siRNA against human SLC7A11 gene (Dharmacon, 

Lafayette, CO, USA) (anti-xCT). 1.25 µL/well (for 24-multiwell plates) or 5 µL/well (for 6-

multiwell plates) of DharmaFECT 1 transfection reagent were used, according to manufacturer’s 

instructions. Media were changed after 24h, and cells were growth for additional 24h. At this time, 

cells were rinsed once with PBS and exposed to medium containing DMSO 0.6% or UCB (Bf 140 

nM) for 24h, as previously described. Cells seeded in 24-multiwell plates were exposed to H2O2 

during 1h and the viability was assessed by MTT-assay. Cells seeded in 6-multiwell plates were 

lysed with 200 µL of cell lysis buffer 1X (Cell Signaling, Danvers, MA, USA) supplemented with 1 

mM PMSF and the total cell extracts were harvested by scraping.. The protein content of xCT in the 

cell extract was determined by Western blot analysis using an anti-xCT rabbit polyclonal antibody 

(ab37185, Abcam, Cambridge, UK) and normalized by actin protein content using an anti-actin 

antibody (a2066, Sigma, Saint Louis, MO, USA). Bands were analyzed using Kodak 1D image 

software and quantified by Scion image software.  
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4.2.1.7. xCT Protein expression and glutathione content after DEM treatment 

The DEM is an electrolyte able to confer a high glutathione content to the cell by increasing 

the expression of System Xc
- and subsequently the cystine uptake (Sasaki et al., 2002). SH-SY5Y 

cells at a density of 60.000 cells/cm2 were seeded two 75 cm2 flasks and then treated with DEM 0.1 

mM or medium for 24h, respectively. The xCT protein expression after the treatments was assessed 

by Western blot analysis as described in point 2.8, an anti-xCT rabbit polyclonal antibody 

(ab37185, Abcam, Cambridge, UK) and normalized by actin protein content using an anti-actin 

antibody (a2066, Sigma, Saint Louis, MO, USA). Bands were analyzed using Kodak 1D image 

software and quantified by Scion image software.    

The intracellular glutathione content after the treatment with DEM 0.1 mM for 24h was 

tested using the same methodology described in point 4.2.1.4.  

 

4.2.1.8. SH-SY5Y cell viability after DEM and bilirubin treatment 

SH-SY5Y cells at a density of 60.000 cells/cm2 were seeded in two 24-multiwell plates. One 

was treated with medium and the other with DEM 0.1 mM. After 24h, the cells in both multiwells 

were exposed to DMSO 0.6%, Bf 40 nM, Bf 70 nM and Bf 140 nM during 4h. Finally, the viability 

after the last treatment was analyzed by MTT test as described in point 2.3.  

 

4.2.1.9. SH-SY5Y cell viability after DEM and hydrogen peroxide treatment 

SH-SY5Y cells at a density of 60.000 cells/cm2 were seeded in two 24 multiwell plates. One 

multiwell was treated with medium and the other with DEM 0.1 mM for 24h. Once finish the 

treatment, the cells were exposed for 1h to increasing concentration of hydrogen peroxide (50 µM, 

100 µM, 200 µM, 300 µM, 400 µM and 500 µM) and medium as control. The viability at the end of 

the experiment was evaluated by MTT test as described in point 2.3. 

 

 

 

4.2.2. Other possible targets involved in Bilirubin SH-SY5Y resistance 

4.2.2.1. HO-1, HO-2, NQO1 and GCLC mRNA expression 

SH-SY5Y cells were exposed for 1h, 4h and 24h to Bf 140 nM and cells treated with DMSO 

0.6% and Medium were used as controls. The mRNA that encode for the proteins HO-1, HO-2, 

NQO1 and GCLC, involved in detoxifying and antioxidant processes in the cells, was tested by 

qPCR as described in point 2.6 using the primers shown in table 2.1. 
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4.2.2.2. Bilirubin metabolism by CYP1A1, CYP1A2, CYP2A6 and UGT1A1 

The mRNA expression of genes CYP1A1, CYP1A2, CYP2A6 and UGT1A1 was analyzed 

by qPCR in cells exposed to Bf 140 nM, DMSO 0.6% and medium during 1h. 4h and 24h. The 

procedure is described in point 2.6 and the primers used are shown on table 2.1. 

 

4.2.3. SH-SY5Y Cell line population. Possible different susceptibilities to bilirubin 

treatment 

4.2.3.1. Morphologic SH-SY5Y separation and bilirubin treatment 

A morphologic analysis of the SH-SY5Y cell line was carried out by flow cytometry using a 

BD FACS Callibur (Becton Dickinson, Franklin Lakes, NJ, USA). The FSC-A and SSC-A scatter was 

used to distinguish the main populations regarding the cell morphology. Once determined the 

groups of cells morphologically different, they were sorted using a BD FACS Aria (Becton 

Dickinson, Franklin Lakes, NJ, USA). The various populations were incubated with growth medium 

for 48h and then treated for 24h with Bf 140 nM or DMSO 0.6% (Control). The viability at the end 

of the experiment was assessed by MTT test. 

 

4.2.3.2. Specific markers mRNA expression for the “S” and “N” SH-SY5Y 

subpopulations 

 The mRNA expression of some specific markers for “S” and “N” SH-SY5Y subpopulation 

was analyzed by qPCR. After the treatment with Bf 140 nM for24h, the mRNA expression of the 

markers for the “S” subpopulation encoding for the proteins Calcyclin Binding Protein (CACYBP) 

and Vimentin (VIM), and markers for the “N” subpopulation encoding for the proteins 

Neurofilament 68 (NFL) and Chromograning A (CHGA) was assessed. The primers used for each 

gene are reported in table 2.1. 

 

4.2.3.3. Vimentin expression in SH-SY5Y cells after bilirubin treatment 

 The expression of Vimentin protein, a specific marker of the “S” subpopulation, was studied 

in SH-SY5Y cells by Flow cytometry. Briefly, 60.000 cells/cm2 were seeded in three 25 cm2 flasks 

and, the day after, treated with growth medium, DMSO 0.6% and Bf 140 nM during 24h. At the end 

of the treatment the cells were rinsed 3 times with PBS and detached incubating them with trypsin 

and finally neutralized with growth medium. After centrifugation at 200 g for 5 min and 4°C 

(centrifuge Beckman Coulter – Allegra 25R), the pellet was washed in Cold Washing Buffer (10% 

FBS - 1% azide in PBS) and fixed with 0.1% formaldehyde for 15 min. The cells were then 
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permeabilizided with 50% (V/V) methanol on ice for other 15 min, blocked in BSA 3% for 30 min 

and stained with and antibody anti-Vimentin conjugated with Phycoerythin (Vimentin antibody 

[VI-RE/1] (Phycoerythrin) ab49918, Abcam, Cambridge, UK) at concentration 5 mg/mL in BSA 

3% for 1h. Finally the cells were washed with Cold Washing Buffer and the percentage of positive 

cells stained for Vimentin was assessed measuring the intensity of fluorescence with a BD FACS 

Callibur (Becton Dickinson, Franklin Lakes, NJ, USA) and analyzed with CellQuest Pro software. 

 

5. SH-SY5Y MODEL TO STUDY BILIRUBIN NEUROTOXICITY 

5.1. Oxidative stress generation by UCB 

5.1.1. Intracellular ROS accumulation after bilirubin treatment 

The Intracellular ROS accumulation after bilirubin treatment was determined using the 2’7’-

dichlorofluorescein diacetate (DCFH-DA) compound. 60.000 cells/cm2 were seeded in 6 multiwell 

plates and growth up to 70 % of confluence. Cells were pre-treated for 15 min with DCFH-DA 

40nM diluted in serum free medium added with Hepes 25 mM, and finally exposed to a Bf 140 nM 

for15 min, 30 min, 1h, 1.5h, 2h and 4h. Cells treated with DMSO 0.6% (negative control) or H2O2 

200 µM (positive control) were used as controls. At the end of the treatment, cells were washed 

with PBS, detached by trypsinization and re-suspended in PBS for FACS analysis. The intensity of 

fluorescence was measured with a BD FACS Callibur (Becton Dickinson, Franklin Lakes, NJ, USA) 

and analyzed with CellQuest Pro software.  

 

5.2. Glutamate excitotoxicity 

5.2.1. Glutamate release by SH-SY5Y cells exposed to UCB 

60.000 cells/cm2 were seeded in 24 multiwell plate and growth up to 70 % of confluence. 

Then they were treated Bf 140 nM (to dissolve the bilirubin DMEM High Glucose medium W/O 

phenol red was used to avoid interference in the spectrofotometric reading) for 1h, 2h, 3h and 4h, 

and DMSO 0.6% as controls. The glutamate released by the cells in the culture medium was 

measured using a EnzyChromTM Glutamate Assay Kit (EGLT-100) (BioAssay Systems, Hayward, 

CA, USA). The glutamate determination is based on glutamate dehydrogenase catalyzed oxidation 

of glutamate, in which the formed NADH reduces a formazan (MTT) reagent. The intensity of the 

product color, measured at 565 nm, is proportionate to the glutamate concentration in the sample. 

The glutamate levels in the medium were determined using a standard curve provided by the kit. 

 

5.2.2. nNOS, iNOS and eNOS mRNA expression after bilirubin treatment  
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SH-SY5Y cells were exposed for 1h, 4h and 24h to Bf 140 nM for the analysis while cells 

treated with DMSO 0.6% and medium were used as controls. The mRNA encoding for the enzymes 

nNOS, iNOS and eNOS, all involved in nitric oxide generation in the cells, was tested by qPCR as 

described in point 2.6 using the primers shown in table 2.1. 

 

6. Statistical analysis 

 All experiments were performed in triplicate and repeated in at least three different cell 

preparations. Results are expressed as means ± SD. One way ANOVA with Tukey–Kramer post-

test was performed using GraphPad InStat version 3.00 for Windows 95 (GraphPad Software, San 

Diego, CA, USA). Probabilities <0.05 were considered statistically significant. 
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RESULTS 

1. MODEL DEFINITION 

1.1. Sensitivity of SH-SY5Y cells to free bilirubin (Bf) 

The sensitivity of the SH-SY5Y cells to bilirubin was tested exposing cells to Bf 10 nM, Bf 

40 nM, Bf 70 nM and Bf 140 nM during different periods of time (1h, 2h, 4h, 6h and 24 h). In all 

the cases the exposition to DMSO 0.6% was used as control. After the time of exposure the viability 

was evaluated by MTT test (Figure 3.1).  

 

 

Figure 3.1 - Effect of UCB on cell viability: SH-SY5Y cells were incubated with different 
concentrations of free UCB (Bf) for different times, and the viability was evaluated by MTT test. * 
p<0.001 and # p<0.01 treated cells vs. control cells. $ p<0.001 between treatments. 

  

 The reduction on cell viability due to the incubation with different concentrations of 

bilirubin displayed a dose-dependent behavior at times shorter than 4h.  At 4h, 6h and 24h, 

independently on the bilirubin concentration, the cell viability always arrived to a plateau at 60-

70%, even at the highest bilirubin concentration (Bf 140 nM) and after a rather long time of 

exposure (24h).  

 

1.2. Cellular growth curve of SH-SY5Y cells after bilirubin treatment 

To assess the growth capability of cells that resist the bilirubin treatment, a growth curve 

with cells pre-treated with Bf 140 nM during 24h was performed. Pre-treated cells were incubated 

in medium and counted each 24h during 192h. Cells pre-treated with growth medium and DMSO 

0.6% were used as controls (Figure 3.2). 
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Figure 3.2 - Growth capability of SH-SY5Y cells that have resisted the bilirubin 

treatment: SH-SY5Y cells were pre-treated with Bf 140 nM during 24h and then released in 
growth medium to analyze the growth and duplication capability.  

The cells pre-treated with bilirubin showed difficulty to grow, showing a lag phase during 

the first 96h after the treatment. After this time the cells started growing at the same rate as controls 

did. Based in this behavior three different times of study were defined for analysis in the next 

experiments: T0, immediately after bilirubin treatment (this time coincides with the 24h of bilirubin 

treatment); T48, 48h after the end of the incubation with bilirubin when the cells are in the lag 

phase; and T156, 156h after the end of the bilirubin exposure when they recover the growth ability 

(Figure 3.2).  

 

1.3. Response of SH-SY5Y cells to a second treatment with bilirubin during 4 hours 

 In order to study the effect on the cell viability to a second bilirubin treatment, cells at T0, 

T48 and T156 were re-exposed to a second treatment with medium, DMSO 0.6% and Bf 140 nM 

for 4h. The cell viability was assessed after the 4h by the MTT test (figure 3.3).  

Independently on the time of analysis, SH-SY5Y cells previously exposed to medium and 

DMSO 0.6% showed around a 70% of viability after the treatment with Bf 140 nM for 4h. On the 

contrary 100% viability was observed in cells that were previously treated with bilirubin during 

24h, demonstrating the cells continue to be resistant to the pigment.  
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Figure 3.3 - Cell viability after a second bilirubin treatment: Cells at T0, T48 and T156 were re-exposed to medium, DMSO 
0.6% and Bf 140 nM in order to study the effect of a second bilirubin exposure on the cells viability. 

 

1.4. Model differentiation to study bilirubin resistance and bilirubin toxicity using SH-

SY5Y cells 

 The previous results let us highlight two different behaviors achieved by SH-SY5Y cells when 

they are exposed to bilirubin. On one side, when the cells are treated with different bilirubin 

concentration for times shorter than 4h, the cell viability was reducedin a dose-dependent manner, 

thus showing the toxic effect of the bilirubin. These observation allowed us to define the conditions 

to establish a model to study the bilirubin toxicity where the mechanism by which the UCB cause 

the damage could be analyzed. On the other side, when the cells are treated during times larger than 

4h till 24h, independently on the bilirubin concentration, the 60%-70% of the cells not only resist 

the expose to UCB, they are also able to overcome a second bilirubin treatment 156h after the first 

one. This indicate that the cells become resistant to UCB and let us define the conditions to have a 

model to study the mechanism by which the cells are able to resist the bilirubin damage. 

 Due to the double behavior of SH-SY 5Y observed in response to bilirubin treatment, the 

studies carried out in this thesis will be presented separately according to each model proposed for 

bilirubin resistance and bilirubin neurotoxicity.       
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2. SH-SY5Y MODEL TO STUDY BILIRUBIN RESISTANCE 

2.1. The dynamic of the bilirubin  

2.1.1. Bilirubin entrance analysis by 3H-UCB uptake analysis  

To understand the mechanism by which the bilirubin enter in the cells, SH-SY5Y cells were 

exposed to the bilirubin labeled with tritium (3H-UCB) during 0, 2, 5, 10, 30 and 60 min, and the 

accumulation of bilirubin was determined measuring the radioactivity using a scintillation counter. 

In order to assess if the bilirubin entrance is achieved by an active transport the study was 

performed at 4°C and 37°C. Throughout the 60 min of uptake studied, the bilirubin cell content was 

2 folds higher than the initial amount at both temperature, going from 120.82 ± 5.91 pmol/mg of 

protein to 183.56 ± 18.10 pmol/mg of protein at 4°C and from 106.14 ± 11.18 pmol/mg of protein 

to 178.89 ± 14.10 pmol/mg of protein at 37°C (Figure 3.4). The data obtained showed that the 

bilirubin uptake is not modified when the activity of the possible transporters involved is slowed 

reducing the work temperature. This behavior correlates better with a passive diffusion rather than 

an active transport carry out by a transporter.     

 

 

Figure 3.4 - 3H-UCB uptake by SH-SY5Y cells: cells were incubated during  0, 2, 5, 10, 30 
and 60 min with bilirubin labeled with tritium at a Bf concentration of 140 nM. The bilirubin 
accumulation after the uptake was measured using a scintillation counter and normalized by mg 
of protein.  

 

2.1.2. Bilirubin accumulation by HPLC analysis 

To confirm that the bilirubin is being accumulated inside the cell and not eliminated, the 

accumulation of the pigment was measured by High Performance Liquid Chromatography (HPLC). 

SH-SY5Y cells were exposed to Bf 140 nM during 0.25h, 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 6h, 

18hand 24h. Control cells were exposed to DMSO for 18h and 24h. During the time frame 
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analyzed, bilirubin entered in the cell progressively with the time. The data plotted respect to the 

time adjust to a linear trend with a correlation coefficient r2=0.9234 (Figure 3.5). Supporting the 

results obtained at short times by 3H-UCB uptake in point 2.1.1, longer bilirubin incubations 

confirmed the entrance by passive diffusion.  

 

 

Figure 3.5 - Bilirubin accumulation inside SH-SY5Y cells: cells were incubated during  0.25h, 
0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 6h, 18h and 24h with Bf 140 nM and after each time the 
bilirubin accumulation inside the cells was measured by HPLC. Cells incubated with DMSO 0.6% 
for 18h and 24h were used as controls.  

 

2.1.3. Bilirubin entrance mediated by OATP transporters 

The hypothesis that the bilirubin resistance could be due to a partial inability of the pigment 

to enter into the cell was considered. Even if a specific bilirubin carrier was not identified yet, there 

are many indication regarding the role of Organic Anions Transporters Proteins (OATP 

transporters) in bilirubin active transport inside the cell (Hagenbuch and Meier, 2004).  In order to 

study if the uptake of bilirubin on SH-SY5Y cells is carried out by an active transport, the 

expression of OATP1, OATPC, OATP8, OATPE and OATP1A2 mRNA was analyzed by qPCR on 

SH-SY5Y cells treated with medium, DMSO 0.6% and Bf 140 nM during 1h, 4h and 24h. The 

results showed that OATP1, OATPC and OATP8 are not expressed in SH-SY5Y cells. In the case 

of OATPE a low expression was observed in control cells treated with medium and DMSO 0.6 % at 

the three times analyzed. The cells exposed to Bf 140 nM had the same level of expression as 

controls at 1h and 4h while there was an increase of 3.4 folds in mRNA expression of OATPE at 

24h (p < 0.001 - Figure 3.6A). When OATP1A2 was assessed, no significant changes were 

observed among the treatments and times (Figure 3.6B). This results indicate that the bilirubin is 

unable to modulate the expression of the OATP transporters analyzed to let the pigment enter in the 

cell. The increased expression of the OATPE at 24h could be attributed to a late response in the 

induction of the transporter by the bilirubin or to a secondary response not directly correlated with 

the bilirubin itself. 
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Figure 3.6 - mRNA relative expression of OATP transporters possibly involved in SH-SY5Y bilirubin entrance: 

mRNA expression for OATPE (A) and OATP1A2 (B) analyzed on cells exposed to medium, DMSO 0.6% and Bf 140 
nM during 1h, 4h and 24h. *** p < 0.001. 

 

2.1.4. Bilirubin Extrusion mediated by ABC transporters 

ABC transporters family is involved in the extrusion of many toxic compounds from the 

cells. In particular 4 transporters belonging of that family, MRP1, MRP3, MDR1 and MDR3,  are 

considered involved in UCB extrusion (Szakacs et al., 2006; Deeley et al., 2006). To address if the 

bilirubin resistance could be due to an increased extrusion of the compound from the cell, the 

mRNA expression of these ABC transporters was analyzed on cells exposed to medium, DMSO 

0.6% and Bf 140 nM for1h, 4h and 24h by qPCR. The results showed that noneof the ABC 

transporters is over-expressed at the conditions studied (Figure 3.7).  

 

 

Figure 3.7 - mRNA relative expression of ABC transporters possibly involved in SH-SY5Y bilirubin extrusion 

from the cells: The mRNA expression for MRP1, MRP3, MDR1 and MDR3 was analyzed on cells exposed to 
medium, DMSO 0.6% and Bf 140 nM during 1h, 4h and 24h. 

  

R
e

la
ti

v
e

 m
R

N
A

e
xp

re
ss

io
n

0

1

2

3

4

5

1h 4h 24h

OATPE

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

1h 4h 24h

R
e

la
ti

ve
 m

R
N

A
e

x
p

re
ss

io
n

OATP1A2

BA

***

***

Medium DMSO 0.6% Bf 140 nM

MRP1

0

0,5

1

1,5

2

1h 4h 24h

MDR1

1h 4h 24h

MRP3

1h 4h 24h

MDR3

1h 4h 24h

R
e

la
ti

v
e

 m
R

N
A

e
x

p
re

ss
io

n

0

0,5

1

1,5

2

0

0,5

1

1,5

2

0

0,5

1

1,5

2

R
e

la
ti

v
e

 m
R

N
A

e
x

p
re

ss
io

n
R

e
la

ti
v

e
 m

R
N

A
e

x
p

re
ss

io
n

R
e

la
ti

v
e

 m
R

N
A

e
x

p
re

ss
io

n

Medium DMSO 0.6% Bf 140 nM



 

44 

 

The expression of the same transporters was analyzed at T0, T48 and T156, when previous 

results indicated that the cells become resistant to bilirubin. At this three times the results obtained 

were the same than 1h, 4h and 24h, with no significant changes on the mRNA expression for the 

MRP1, MRP3, MDR1 and MDR3 genes (Figura 3.8).  

These results indicate that cell resistance to bilirubin treatment is not conferred by an 

increased extrusion at least as suggested by the gene expression of the main ABC trasporters related 

to UCB trasport. .  

 

 

Figure 3.8 - mRNA relative expression of ABC transporters possibly involved in SH-SY5Y bilirubin 

extrusion from the cells: The mRNA expression for MRP1, MRP3, MDR1 and MDR3 was analyzed on cells 
exposed to medium, DMSO 0.6% and Bf 140 nM during T0, T48 and T156. 

 

2.2.  Cell metabolic changes  

2.2.1. The Cystine Transporter System Xc
-
 

2.2.1.1. Effect of bilirubin on mRNA expression levels of genes involved in 

cystine uptake 

 In order to confirm the previous observation by microarray RNA on SH-SY5Y treated with 

Bf 140nM for 24h (Calligaris et al., 2009) SH-SY5Y cells were treated with medium, DMSO 0.6% 

and Bf 140 nM for 1h, 4h and 24h, and the mRNA expression of the genes involved in cystine 

uptake (SLC7A11, SLC1A1 and GGT1) analyzed by qPCR. As shown in Figure 3.9, after 24h of 

treatment a significant induction of SLC7A11 was observed with mRNA level 5 folds higher 

(p<0.001) respect to the controls. No changes in the expression were observed after 1h or 4h of UCB 

treatment. On the contrary, the SLC1A1 gene expression was decreased (p<0.01) 24h after UCB 

treatment while no change respect to controls (0.6% DMSO and untreated) was observed at 1h and 
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4h. The expression of GGT1 was not affected by UCB treatment at any time in the study (Figure 

3.9).  

 

Figure 3.9 - Effect of bilirubin on mRNA expression levels of genes involved in cystine uptake: SH-SY5Y cells 
exposed to medium , DMSO 0.6% or Bf140 nM were collected after 1h, 4h and 24h of treatment . Specific mRNA 
expressions was analysed by qPCR, the results represent  the mean ± SD of 3 experiments relative to 1 h medium 
control set at 1.0. ***p < 0.001 and **p < 0.01 versus DMSO or medium controls. 

 

2.2.1.2.    L-[14C]-Cystine uptake by bilirubin treated and no treated SH-SY5Y cells 

Once shown that SLC7A11 mRNA expression is up-regulated after 24h of UCB exposure, 

we examined whether the cystine uptake was also increased. Untreated SH-SY5Y, exposed to 

medium, DMSO 0.6% or to Bf 140 nM cells for 24h were incubated for 0, 2, 5, 10, and 30 min with 

an uptake buffer containing 0.2 µCi/mL of L-[14C] cystine (0.8 µM) and cystine uptake was 

measured thereafter. The results are reported in Figure 3.10. 

 

Figure 3.10 - Cellular cystine intracellular accumulation in SH-SY5Y cells treated with bilirubin: 

Cells were exposed for 24h to medium, DMSO 0.6% or Bf 140 nM for 24h. At the end of the treatment 
cells were incubated with L- [ 14C] Cystine (0.8 µM) for 0, 2, 5, 10 and 30 min and the bilirubin 
accumulated inside the cells  was determined and expressed as pmols/mg protein. 

 

SH-SY5Y cells previously treated with UCB showed a cystine uptake significantly higher 

than controls (medium and DMSO 0.6% treated cells) over a 30 min period. The uptake in Bf 
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treated cells was about 8 times higher than controls at 10 min and remained high thereafter. No 

differences were observed between cells exposed to medium and DMSO 0.6%. 

 

2.2.1.3. Uptake contribution of neuronal L-Cystine transporters: Systems Xc
-
, XAG

-
 

and GGT 

The individual contribution of Systems Xc
-, XAG

- and GGT to the whole L-cystine transport 

was studied taking advantage that System XAG
- is a sodium-dependent transporter and System Xc

- 

and GGT are sodium-independent transporters. We also used for the analysis on the contribution of 

System Xc
- the modulation of its activity with L-quisqualate, a specific inhibitor of this System 

(Patel et al., 2004; Knickelbein et al., 1997). The uptake of L-[14C] cystine was measured at 10 min 

in cells previously exposed during 24h to UCB (Bf 140 nM); cells exposed to 0.6% DMSO were 

used as controls. The experiment was performed in presence or absence of sodium ions (140 mM) 

and with or without L-quisqualate (500 µM).  

As shown in Figure 3.11 - panel A, when all the transporters are active (presence Na+ and 

absence of L-quisqualate), cystine uptake was about 8 folds higher in Bf pre-treated cells than the 

control. In presence of sodium and after L-quisqualate addition (Figure 3.11 - panel B), L-cystine 

uptake in UCB treated cells showed values similar to control cells (from 74.7 ± 0.9 to 11.9 ± 0.2 

pmols/mg protein respectively, p<0.001). This result suggests that System Xc
- plays a major role in 

accounting for the increased cystine uptake induced by UCB treatment. 

 

 

Figure 3.11 - Neuronal cystine transporters contribution to cystine uptake in SH-SY5Y cells 

treated with bilirubin: Transport activity was measured in control (DMSO 0.6%, 24h) and treated 
(Bf 140 nM, 24h) cells. L-[14C] cystine (0.8 µM) uptake was measured after 10 min incubation at 
37°C in the presence and absence of sodium ions. L-quisqualate was used as a specific inhibitor for 
System Xc
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 When sodium was removed from the medium (Figure 3.11, panel C) but in presence of L-

quisqualate (System Xc
- blocked), the sodium dependent System XAG

- was further inhibited leaving 

cystine transport accounted only by GGT activity. Under these conditions cystine uptake was not 

significantly decreased both in controls (from 9.7 ± 0.8 to 3.6 ± 0.5 pmols/mg protein) and treated 

cells (from 11.9 ± 0.4 to 7.0 ± 1.6 pmols/mg protein). These results indicate that the contribution of 

System XAG
- is not modified by UCB treatment.  

 When the activity of System Xc
- is added to that of GGT (absence of both Na+ and L-

quisqualate), L-cystine uptake was again significantly higher in UCB treated than in control cells 

(64.0 ± 12.6 pmols/mg protein vs 7.0 ± 1.6 pmols/mg protein, respectively, p<0.001) (Figure 3.11, 

panel D), indicating that only System Xc
- activity and not System XAG

- and GGT activity is induced 

by bilirubin treatment. 

 

2.2.1.4. Glutathione determinations after bilirubin treatment 

The reduced intracellular glutathione content (GSH) was determined at 1h, 4h and 24h after 

the exposure of cells to medium, DMSO 0.6% and Bf 140 nM. The time frame used was the same 

as in the study of the mRNA expression of the cystine transporters (see Figure 3.9). GSH content 

was also evaluated at T0, T48 and T156 when it has been demonstrated that the cells are resistant to 

a second bilirubin treatment. 

 

 

Figure 3.12 - Reduced intracellular glutathione levels in SH-SY5Y cells treated with bilirubin: SH-SY5Y 
cells were exposed to medium, DMSO0.6% or Bf 140 nM and reduced intracellular content of glutathione was 
determined after 1h, 4h and 24 h. **p<0.01 and ***p<0.001 

  

 As shown in Figure 3.12, 1h and 4h after UCB exposure no changes in GSH levels were 

observed in SH-SY5Y cells treated with UCB as compared to controls. On the contrary, after 24 h 
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the total GSH content was 2.5 folds higher in UCB treated cells than controls (25.1 ± 5.3 vs. 7.6 ± 

0.6 nmols/mg protein for DMSO 0.6%, p<0.001; and vs. 9.2 ± 1.1 nmols/mg protein for medium, 

p<0.001). At T0 the same behavior as 24h exposure was observed with 2 folds higher glutathione 

content in cells treated with bilirubin (18.5 ± 0.54 vs. 7.9 ± 0.41 nmols/mg protein for DMSO, 

p<0.001; and vs. 7.6 ± 0.64 nmols/mg protein for medium, p<0.001). At T48 the levels of 

glutathione started to decrease (14.1 ± 3.13 nmols/mg protein) in cells treated with UCB to finally 

return to be normal at T156 (5.5 ± 0.90 nmols/mg protein).   

 

2.2.1.5. Cell viability of SH-SY5Y cells pre-treated with UCB after hydrogen 

peroxide stress  

Experiments were performed to examine if the reductive intracellular environment due to 

GSH increased content in UCB-treated cells may be protective against an oxidative stress insult 

induced by H2O2 treatment. 

As shown in Figure 3.13, the exposure of SH-SY5Y cells previously treated with DMSO 

0.6% for 24h (T0) to increasing concentrations of H2O2 during 60 min produced a dose-dependent 

reduction in cell viability. On the contrary, cells exposed for 24h (T0) to Bf 140 nM showed a 

significantly lower damage. The same analysis was performed at T48, where the results have shown 

that cells exposed to different concentration of H2O2 are not as resistant as T0, however continue to 

be resistant at high concentrations of hydrogen peroxide. When cells pre-treated with 140 nM Bf for 

24h were grown for 156h in the absence of UCB, the sensitivity to the H2O2 was comparable to 

control cells. These results are in agreement with the GSH intracellular contents at each time of 

analysis (Figure 3.12).  

  

 

Figure 3.13 - Cell viability of SH-SY5Y cells previously treated with bilirubin exposed to increasing concentrations of 

H2O2: SH-SY5Y cells previously treated with DMSO 0.6% and Bf 140 nM at T0, T48 and T156, were exposed to increasing 
concentrations of H2O2.  
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2.2.1.6. Response to H2O2 oxidative stress in xCT silenced SH-SY5Y cells after 

bilirubin treatment 

To test the contribution of System Xc
- to the cytoprotective effects induced by UCB we 

performed experiments gene silencing of SLC7A11 using siRNA. The expression of xCT protein 

(55 kDa and 35 kDa) was studied in SH-SY5Y cells untransfected (MOCK), transfected with not 

targeting siRNA (NT) and transfected with siRNA against SLC7A11 gene (anti-xCT) after 24 h of 

Bf 140 nM or DMSO 0.6% treatment. The analysis of protein expression was performed by 

Western blot identifying two bands for xCT protein, one at 35 kDa and the other at 55 kDa. The 

former correspond to the monomeric form of xCT and the latter, even if specific only to xCT it 

function remain still unknown (Shih et al., 2006). As shown in Figure 3.14A, xCT protein 

expression was decreased only in siRNA anti-xCT treatments (lanes 3 and 6). The expression of the 

xCT band of 35 kDa was undetectable in DMSO treated cells (Figure 3.14B, lane 3) and reduced by 

88% in Bf treated cells (Figure 3.14B, lane 6). Reduction of 55 kDa band was 89% in DMSO 

treated cells (Figure 3.14B, lane 3) and 66% in Bf treated cells (Figure 3.14B, lane 6).  

Figure 3.14C shows the cytotoxic effects of 60 min exposure to increasing concentration of 

H2O2 in DMSO or Bf pre-treated cells, after SLC7A11 genesilencing. A dose-dependent reduction 

in cell viability was observed for MOCK and NT groups. Pre-exposure to Bf resulted in a 

significantly lower cytotoxicity than DMSO pre-treated cells (p < 0.05 at 300 µM H2O2 and p < 

0.01 at 600 and 700 µM of H2O2. On the contrary, in anti-xCT group (Figure 3.14C), the sensitivity 

to the oxidative stress was identical between Bf pre-treated cells and controls, supporting a direct 

contribution of the System Xc
- to the protection against H2O2 oxidative stress. 
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Figure 3.14 - Response to H2O2 oxidative stress in xCT silenced SH-SY5Y cells pre-treated with bilirubin: (A) 
Protein expression of xCT (55 kDa and 35 kDa) analyzed by Western blot after siRNA and Bf treatment. Lane 1: 
MOCK and 0.6% DMSO; lane 2: NT and 0.6% DMSO; lane 3: anti-xCT and DMSO 0.6%. Lane 4: MOCK and Bf 
140nM; lane 5: NT and Bf 140nM ; lane 6: anti-xCT and Bf 140nM. (B) Quantification of bands shown in lanes from 
1 to 6 of A. xCT 35 kDa and 55 kDa bands normalized by actin and expressed as relative to MOCK . (C) H2O2 dose-
response by MTT test was evaluated in untransfected (MOCK – left), transfected with not targeting siRNA (NT – 
middle) and transfected with siRNA against SLC7A11 gene (anti-xCT - right) SH-SY5Y cells. After silencing, and 
before 1h H2O2 treatment, SH-SY5Y cells were exposed for 24h to 0.6% DMSO or Bf 140 nM as indicated in the 
legend of each picture.  

 

2.2.1.7. xCT Protein expression and glutathione intracellular content after DEM 

treatment 

The ability of the DEM to induce the expression of the xCT protein was analyzed by 

Western blot. SH-SY5Y cells treated with DEM 0.1 mM for 24h increased an 80% the expression 

of the xCT protein as demonstrated in Figure 3.15A-B.  

The contribution of the high xCT expression to the GSH generation was determined. SH-

SY5Y cells that were previously exposed to DEM 0.1 mM during 24h showed a glutathione 

intracellular content 4.5 folds higher (41.5 ± 5.8 nmols/mg protein) than control cells treated with 

medium (8.7 ± 0.8 nmols/mg protein) (Figure 3.15C). 
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Figure 3.15 - xCT over-expression induction by DEM: the induction of xCT protein was analyzed by Western blot on 
SH-SY5Y cells treated with DEM 0.1 mM for 24h (A) and then quantified (B). The GSH content after the same treatment 
was determined (C).     

 

2.2.1.8. Cell viability after bilirubin treatment on SH-SY5Y cells pre-treated with 

DEM 

In order to identify if the over-expression of the System Xc
- and the high glutathione content 

are the main players on the bilirubin resistance, SH-SY5Y cells treated with DEM 0.1 mM or 

released in medium during 24h were then exposed to a second treatment with Bf 40, 70 and 140 nM 

or DMSO 0.6% for another 4h. If these players are directly involved in bilirubin resistance, cells 

pre-treated with DEM should have a 100% on viability after MTT test.  

As shown in Figure 3.16, cells that were firstly treated with DEM, independently on the 

bilirubin concentration that were then exposed, arrived to 80 % on viability compare to DMSO 0.6. 

The same behavior was observed on cells that have never been treated with DEM. These results 

demonstrate that even if the System Xc
- is up-regulated and the cells contain high intracellular 

glutathione levels, these condition are not enough to confer the resistance against to the UCB injury. 

 

 

Figure 3.16 - System Xc
- and glutathione role in bilirubin resistance: SH-SY5Y cells were 

incubated for 24h with medium or DEM 0.1 mM and then exposed to DMSO 0.6% or Bf 40, 
70 and 140 nM for another 4h to analyze the bilirubin resistance. The cell viability after the 
whole treatment was assessed by MTT.     
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2.2.1.9. Cell viability after hydrogen peroxide treatment on SH-SY5Y cells pre-

treated with DEM 

To corroborate the implication of the System Xc
- and the glutathione on the resistance of 

SH-SY5Y cells to oxidative environment, the over-expression of the system and the increase on 

glutathione intracellular content was induce incubating SH-SY5Y cells with DEM 0.1 mM for 24h 

(control cells were exposed to medium). Then the cells were exposed to increasing concentrations 

of hydrogen peroxide (medium for control, 50, 100, 200, 300, 400 and 500 µM H2O2) and the 

viability after the whole treatment was assessed by MTT (Figure 3.17).  

 

 

Figure 3.17 - System Xc- and glutathione role in hydrogen peroxide resistance:  SH-
SY5Y cells were incubated for 24h with medium or DEM 0.1 mM and then exposed to 
medium or 50, 100, 200, 300, 400 and 500 µM of H2O2. The cell viability after the whole 
treatment was assessed by MTT. *p<0.05.     

The results have demonstrated that cells previously treated with DEM, when are exposed to 

H2O2 300 and 400 µM, are significantly more resistant to the oxidative environment respect control 

cells pre-treated with medium (76.97% ± 7.8% vs. 57.64% ± 8.3% and 50.41% ± 9.1% vs. 34.01% 

± 5.2%, respectively. p<0.05).  

 

2.2.2. Other possible targets involved in Bilirubin SH-SY5Y resistance 

2.2.2.1. HO-1, HO-2, NQO1 and GCLC mRNA expression on SH-SY5Y cells 

treated with bilirubin 

Other targets that are usually involved in detoxifying and antioxidant processes in the cell 

where considered as possible players in the mechanisms of bilirubin resistance. To approach this 

targets, the mRNA expression of the genes Heme Oxigenase 1 (HO-1), Heme Oxigenase 2 (HO-2), 

NADPH Quinone Oxidoreductase 1 (NQO1) and GCLC, the catalytic subunit of the enzyme Gama 

0

20

40

60

80

100

120

140

Medium 50 µM 100 µM 200 µM 300 µM 400 µM 500 µM

H2O2 concentration

Medium

DEM 0.1 mM

*

*

%
 C

e
ll

 v
ia

b
il

it
y

 



 

53 

 

Glutathione-Cysteine Sintetase was analyzed by qPCR on cells treated with medium, DMSO 0.6% 

and Bf 140 nM for 1h, 4h and 24h (Figure 3.18). 

 

Figure 3.18 - mRNA expression of detoxifying and antioxidant genes:  the mRNA expression of the genes GCLC 
(A), HO-1 (B), HO-2 (C) and NQO1 (D) was analyzed by qPCR after the incubation of SH-SY5Y cells with medium, 
DMSO 0.6% and Bf 140 nM during 1h, 4h and 24h. *p<0.05, **p<0.01 and ***p<0.001.  

 

In Figure 3.18A is shown the mRNA expression of GCLC. It was observed a very low 

expression of this gene on SH-SY5Y cells under the conditions above described.  

Interesting results were obtained on mRNA expression analysis of HO-1 (Figure 3.18B). It was 

observed that cells treated with Bf 140 nM for 24h over-expressed (5 folds) the mRNA respect to 

the controls at 24h (Medium and DMSO 0.6%, p<0.001) and the treatments at 1h and 4h.Contrary 

to the over-expression in HO-1, the expression of the HO-2 was low and without significant 

changes among the treatments (Figure 3.18C).The mRNA expression of the NQO1 was 

significantly increased in cells treated with Bf 140 nM for both 4h and 24h as compared to their 

controls and 1h (Figure 3.18D). 

 

2.2.2.2. Bilirubin metabolism by CYP1A1, CYP1A2, CYP2A6 and UGT1A1 

The hypothesis that the bilirubin resistance could be due to the metabolism of the pigment 

by an increase in the expression of the enzymes Cytochrome P450, family 1, member A1 

(CYP1A1); Cytochrome P450, family 1, member A2 (CYP1A2); Cytochrome P450, family 2, 

member A6 (CYP2A6) and UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) was 
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evaluated. For this reason mRNA extracted from SH-SY5Y cells treated with Medium, DMSO 

0.6% and Bf 140 nM for 1h, 4h and 24h was used to analyze the expression of this two genes by 

qPCR. 

The results indicate that SH-SY5Y cells do not express the genes CYP1A2, CYP2A6 and 

UGT1A1. Only the gene CYP1A1 was found to be expressed in SH-SY5Y cells, but no change was 

observed on the mRNA expression under the conditions analyzed (Figure 3.19). 

 

 

Figure 2. CYP1A1 mRNA expression on SH-SY5Y cells treated with bilirubin: the 
mRNA expression of the gene CYP1A1 that for the enzyme Cytochrome P450, family 1, 
member A1 able to metabolize the bilirubin was analyzed by qPCR on SH-SY5Y cells 
exposed to medium, DMSO 0.6% and Bf 140 nM for 1h, 4h and 24h. 

 

 

2.2.3. SH-SY5Y Cell line populations - Possible different susceptibilities to bilirubin 

treatment 

2.2.3.1. Morphologic SH-SY5Y separation and bilirubin treatment 

Considering that SH-SY5Y cell line is an heterogeneous cell line (Biagiotti et al., 2006), 

cells were initially subjected to a morphologic study. To analyze if the resistance to bilirubin 

observed on SH-SY5Y cells could be due to the presence of different susceptible and resistant 

subpopulation, SH-SY5Y cells were studied by flow cytometry. Based on the FSC-A and SSC-A 

parameters, two main morphologic subpopulation (P1 and P2) were identified (Figure 3.20A). The 

subpopulations P1 and P2 were then sorted and treated separately with DMSO 0.6% and Bf 140 nM 

for 24h to analyze the capability to resist the bilirubin exposure. 
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Figure 3.20 - Morphologic SH-SY5Y subpopulation exposed to bilirubin:  P1 and P2 SH-SY5Y cells 
morphologic subpopulation were identified by flow cytometry based on the FSC-A and SSC-A analysis 
(A). The susceptibility to bilirubin of both subpopulations was assessed exposing them to Bf 140 nm and 
DMSO 0.6% (control) for 24h (B). 

The viability of P1 subpopulation cells treated with bilirubin did not differ significantly than 

their controls treated with DMSO 0.6% (100% ± 3.54% vs. 92% ± 4.62%). Instead of P1, P2 have 

shown to be significantly less resistant to the bilirubin treatment (100% ± 4.86% vs. 77.21% ± 

3.35%, p < 0.01) (Figure 3.20B). This result indicates that the morphologic separation is not enough 

to identify a subpopulation on the SH-SY5Y cell line that cannot overcome the bilirubin treatment.      

 

2.2.3.2. Specific markers mRNA expression for the “S” and “N” SH-SY5Y 

subpopulations 

In order to identify the subpopulations reported to be present in the SH-SY5Y cell line and 

their susceptibilities to bilirubin, the mRNA expression for the specific markers of the “S” 

(Calcyclin [CACYBP] and Vimentin [VIM]) and “N” (Neurofilament 68 [NFL] and Chromogranin 

A [CHGA]) populations was analyzed after bilirubin treatment. mRNA obtained from SH-SY5Y 

cells treated with medium, DMSO 0.6% and Bf 24h were used in the study. 

The results shown in Figure 3.21 demonstrated that the four markers analyzed are expressed 

after the bilirubin treatment. These findings indicate that the cell population able to resist the 

bilirubin exposure is composed by N and S cells.    
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Figure 3.21 - mRNA expression of SH-SY5Y N and S cell subpopulation 

markers after bilirubin treatment: the mRNA expression of the specific  
markers for the N and S SH-SY5Y subpopulation was analyzed on cells after 
the treatment with medium, DMSO 0,6% and Bf 140 nM for 24h. 

 

2.2.3.3. Vimentin expression in SH-SY5Y cells after bilirubin treatment 

With the objective of identify if only one of the two main population present in the SH-

SY5Y cell line (N or S) remain after the bilirubin treatment, the Vimentin protein expression 

(specific marker for the S population) was study by flow cytometry. Cells treated with medium, 

DMSO 0.6% and Bf 140 nM for 24h expressed the same percentage of Vimentin protein without 

significant differences (68.41% ± 11.37% vs 69.33% ± 6.74% vs. 65.92% ± 6.11%, respectively) 

(Figure 3.22). The fact that the percentage of positive cells for vimentin is the same despite of the 

bilirubin treatment means that the bilirubin is not able to select one of the two populations. 

 

 

Figure 3.22 - Vimentin protein expression after bilirubin treatment:  The 
Vimentin protein expression, a specific markers for the S SH-SY5Y subpopulation, 
was analyzed after the cell treatment with medium, DMSO 0,6% and Bf 140 nM for 
24h. 
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3. SH-SY5Y MODEL TO STUDY BILIRUBIN NEUROTOXICITY 

3.1. Oxidative stress generation by UCB 

3.1.1. Intracellular Reactive Oxygen Species accumulation induced by bilirubin 

The intracellular ROS accumulation induced by bilirubin was evaluated using 2’7’-

dichlorofluorescein diacetate (DCFH-DA). SH-SY5Y cells were exposed to Bf 140 nM for 15 min, 

30 min, 1h, 1.5h, 2h and 4h and the ROS generated, reported by the DCF fluorescence, was 

determined by Flow Cytometry. Cells treated with DMSO 0.6% for 4h were used as negative 

control and cells treated with H2O2 200 µM for 1h were used as positive control.  

 

Figure 3.23 - ROS induction by bilirubin treatment: SH-SY5Y cells were treated 
with Bf 140 nM for 15 min, 30 min, 1h, 1.5h, 2h and 4h and the ROS generation 
after the treatment was analyzed measuring the DCF fluorescence intensity. For 
controls cells exposed to DMSO 0.6% (Negative) and H2O2 200 µM were used. 

The results demonstrated that when the SH-SY5Y cells enter in contact with the bilirubin 

high levels of ROS are rapidly induced but then decrease within the 4h (Figure 3.23). 

 

3.2. Glutamate excitotoxicity 

3.2.1. Glutamate release in the medium by SH-SY5Y cells exposed to UCB 

The mechanism of excitotoxicity was considered as a possible cause of cell death produce 

by bilirubin. Because this pathway start with the activation of the N-methyl-D-aspartate receptor by 

glutamate, the glutamate release in the medium by SH-SY5Y cells exposed to bilirubin was 

determined (figure 3.24).   

The glutamate determinations on the medium obtained from cells exposed to Bf 140 nM 

during 1h, 2h, 3h and 4h have shown that the concentration of the glutamate increases accordingly 

with the time of exposure. The medium from cells treated with DMSO 0.6 % for 4h was used as 

control. 
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Figure 3.24 - Glutamate release in the medium after bilirubin treatment: The 
glutamate concentration in the medium was determined after the treatment of cells 
with Bf 140 nM for 1h, 2h, 3h and 4h using a EnzyChromTM Glutamate Assay Kit . 
Medium obtained from cells treated with DMSO 0.6% were used as controls. 

 

3.2.2. nNOS, iNOS and eNOS mRNA expression after bilirubin treatment  

To evidence a possible activation of the excitotoxicity pathway the expression of the mRNA 

that encode for the enzyme nNOS, iNOS and eNOS, involved in nitric oxide generation in the cells, 

was tested by qPCR. mRNA obtained from SH-SY5Y cells treated with medium, DMSO 0.6% and 

Bf 140 nM for 1h, 4h and 24h was analyzed. None of the genes was found over-expressed respect to 

the controls after the bilirubin treatment indicating that the excitotoxicity pathway is apparently not 

activated (Figure 3.25). 

 

 

Figure 3.25 - mRNA expression of Nitric Oxide Sintetase enzymes on cells treated with bilirubin: The mRNA obtained 
from cells treated with medium , DMSO 0.6% and Bf 140 nM for 1h, 4h and 24h was used to analyzed the expression of the 
enzymes nNOS, iNOS and eNOS after each treatment.   
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DISCUSSION 

For a long time the bilirubin has been consider as a simple end product of the heme 

catabolism (Foresti et al., 2004; Dennery et al., 2001). Nowadays this overall picture has been 

changed extremely because of the high quantity of data involving the bilirubin as a main player in 

pathologies (Ostrow et al., 2003a; Dennery et al., 2001; CRIGLER, Jr. and NAJJAR, 1952; Reiser, 

2004). In the present study the SH-SY5Y neuroblastoma cell line was used to approach the 

molecular events associated to bilirubin neurotoxicity and highlight the biochemical and molecular 

events that are induces in the neurons when get contact with the yellow pigment.  

A dose-dependent decrease in cell viability was observed on cells exposed for times lower 

than 4h to Bf concentrations of 10 nM, 40 nM, 70 nM and  140 nM, arriving to a 60-70% of 

viability at the highest concentration. Of notice the observation that when the cells were incubated 

for 4h, 6h or 24h, the viability was always around 60-70%, independently on the Bf concentration 

tested. Several mechanisms could be hypothesized to explain this behavior. One possibility would 

be that two different populations of cells are present. Upon exposure to bilirubin, only a portion of 

the cells will activate cellular mechanisms to prevent accumulation/toxicity of the pigment at the 

cellular level. The other hypothesis, not excluding the former, is the presence of 2 cell 

subpopulations with different susceptibility. According to this, the first “hit” will remove the 

sensitive subpopulation leaving the resistant growing. It is know that the SH-SY5Y cell line is 

mainly composed by two subpopulation (Biagiotti et al., 2006; Ciccarone et al., 1989; Ross and 

Spengler, 2007) and it has been demonstrated that different cell types can react differentially to the 

bilirubin damage (Ngai et al., 2000). The idea that one of the two populations is more sensitive to 

bilirubin could explain the observations. This two hypothesis were considered along this thesis.  

An interesting observation was done when the cells that survived to the treatment with Bf 

140 nM for 24h were released in growth medium. These cells had difficulties to grow during the 

first 96h, showing a lag phase. After this time the cells re-start the duplication with the same rate as 

controls. The influence of the bilirubin on the cell cycle has been previously reported by Ollinger et 

al.(Ollinger et al., 2005; Ollinger et al., 2007a; Ollinger et al., 2007b) who showed that UCB acts as 

a natural inhibitor of the proliferation in vascular smooth muscle cells and HRT-18 colon cancer 

cells. Other evidence on the effect of the bilirubin causing arrest on the cell cycle derives from the 

work carried out by Rao et al. (Rao et al., 2006) where it was demonstrated the anti-cancer activity 

of bilirubin acting as a pro-oxidant, inhibited the growth of human carcinoma cell lines. These 

particular behaviors on our studies led us to define 3 different times respect to the growing state 

(T0, when the Bf 140 nM treatment for 24h is just finish; T48, when the cells are in the lag phase 
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not growing; and T156 when the cells have recovered the growth capacity) for further analysis on 

the experiments. 

When cells able to resist a the first bilirubin treatment were re-exposed to second bilirubin 

exposition at T0, T48 and T156, all the cells continue to be resistant. Despite of that the cells have 

not been in contact to bilirubin for almost 7 days, the capacity to resist the bilirubin treatment 

persisted. 

The analysis of the previous results let us define two different model to explain the dual 

behavior observed when SH-SY5Y cells are exposed to bilirubin. From one side, working at 24h of 

bilirubin treatment when the cells become resistant to the pigment, we have defined a model to 

study the bilirubin resistance, where the mechanism involved in the bilirubin resistance could be 

addressed. On the other side, working at times shorter than 4h, when the cells exposed to bilirubin 

die, we have defined a model to study the bilirubin toxicity where the mechanism by which the 

UCB cause the damage could be analyzed. The discussion of the results obtained in each model will 

be addressed separately. 

 

SH-SY5Y MODEL TO STUDY BILIRUBIN RESISTANCE 

The first approach considered to analyze was why the cells became resistant to the UCB 

treatments. This study addressed mainly the bilirubin movements, such as the mechanism by which 

the bilirubin enter and exit in the cell. In addition, we also addressed if the lack of toxic effects may 

be related to intracellular events leading to detoxification of the pigment.  

The possibility that the UCB resistance is achieved by reducing/preventing the entrance of 

the bilirubin was first considered. The mechanisms by which the bilirubin cross the cell membranes 

has not been completely understood. Studies in hepatocytes performed by Zucker S. (Zucker et al., 

1999; Zucker and Goessling, 2000) has proposed that bilirubin exhibit spontaneous diffusion 

through the membrane by a flip-flop mechanism. On the contrary, other studies have shown the 

presence of distinct transporters in the two domains of human placental trophoblast that 

couldcooperate to transfer UCB from the fetus to the maternal circulation(Serrano et al., 2002). 

Similar results were observed in freshly isolated hepatocytes where at low, physiological UCB 

concentrations, UCB uptake showed saturative kinetics with an apparent K(m) of 41 nM, indicating 

carrier-mediated transport. With aqueous supersaturation, UCB entered hepatocytes mainly by 

passive diffusion (Mediavilla et al., 1999). Our results on SH-SY5Y neuroblastoma cells did not 

show differences in the uptake rate of bilirubin measured at 4°C and 37°C, suggesting a passive 

diffusion process rather than an active transport. 
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In order to confirm the passive diffusion we studied the mRNA expression of the OATP 

transporters reported to be involved in UCB transport (Hagenbuch and Meier, 2004; Briz et al., 

2003b). We revealed that the OATP1, OATPC and OATP8 were not expressed in SH-SY5Y cells. 

Neither the expression of the OATP1A2 nor OATPE was found down-regulated. On the contrary, 

the OATPE was up-regulated at 24h. OATPE mRNA is expressed ubiquitously with strongest 

expression in liver, heart, placenta  and pancreas. At the protein level it has been localized to the 

apical surface of the syncytiotrophoblast and has so far been only minimally characterize (Sato et 

al., 2003). In transiently transfected HEK293 cells this transporter has been implicated in the uptake 

of steroid conjugates, PGE2 and benzylpenicillin (Fujiwara et al., 2001; Tamai et al., 2000). The 

fact that the up-regulation is accounted at 24h when most of the cells have already died, and not at 

1h and 4h, suggest us that the up-regulation may be regarded as a secondary reaction not directly 

related with the bilirubin resistance.  

Furthermore, the accumulation of the bilirubin analyzed by HPLC have shown that the 

bilirubin entrance follow a linear trend supporting the passive diffusion hypothesis. This results 

showing a constant bilirubin accumulation into the cells plus the studies carried out on the ABC 

transporter mRNA expressions, where none of the transporters analyzed was up-regulated, strongly 

suggest that UCB resistance is not achieved by pumping out the bilirubin from the cell.  

The exclusion of the theory where the UCB resistance is conferred avoiding the permanence 

of the bilirubin inside the cells led us to concentrate the attention in the metabolic changes induced 

by bilirubin in the cells. Several genes have been demonstrated by microarray analysis to be 

induced when SH-SY5Y cells are exposed to Bf 140 nM during 24h, most of them related with the 

ER stress (Calligaris et al., 2009). Among the up-regulated genes where those of the SLC7A11 and 

the SLC3A2 encoding respectively for the xCT and 4F2hc subunits of the System Xc
-. This system 

together with the System XAG
- (SLC1A1) and the γ-GT (GGT1), is the main suppliers of 

cystine/cysteine for the Glutathione synthesis (La, V et al., 2007; Liu et al., 2007; Dringen, 2000; 

Dringen et al., 2001; Chen and Swanson, 2003; Shanker and Aschner, 2001). In the present study 

we have confirmed that bilirubin induces only the System Xc
- and not the other transporters,. Even 

more, the mRNA data was correlated with an specific functional induction of this system. Cells 

treated with bilirubin for 24h showed a 8 folds higher uptake of cystine, accounted entirely by the 

System Xc
-. As for bilirubin, other compounds have been reported to induce the expression of this 

transporter. Sasaki et al.(Sasaki et al., 2002) demonstrated in BHK21 cells that the activity of 

System Xc
- was significantly induced by various electrophilic agents like diethyl maleate, arsenite, 

CdCl2, hydroquinone. The induction of SLC7A11 gene (the specific subunit of the System Xc
-) was 

mediated by Keap1/Nrf2 pathway. In 1984, Bannai S. (Bannai, 1984) described that electrophilic 
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compounds (diethyl maleate, sulfobromophthalein, ethacrynate) at relatively low concentrations, 

caused an increase in cellular glutathione due to the enhanced uptake of cystine via Na+ 

independent transport.  

Additional observations regarding the role of the intracellular glutathione content were 

provided in this thesis. Cells exposed to bilirubin for 24h showed 2.5 fold higher GSH level respect 

to the controls, and 2 folds higher 48h after UCB removal and growth on medium. Interestingly was 

the observation that at 156h after the deprivation of bilirubin the levels of glutathione returned to 

normal values. The effect of this levels of GSH to overcome an oxidative stress insult was assessed 

in the studies where the cells pre-treated with bilirubin at T0, T48 and T156 were exposed to 

different concentrations of H2O2. This experimental scheme demonstrated that, as expected, the 

higher the intracellular glutathione content, the higher the resistance to the oxidative environment. 

The contribution of the glutathione on the cell resistance could not only derive from the antioxidant 

properties of the molecule. GSH is also recognized as a general regulatory molecule with several 

functions like the modification of proteins as part of normal cell physiology and signaling (Rigacci 

et al., 1997; Gomez et al., 2004; Nakamura et al., 1997; Shackelford et al., 2005). Recent studies 

have shown that intracellular reductive environment is the key requirement for allowing DNA 

synthesis to occur(Chen et al., 2007).  

By analyzing the resistance to H2O2 we observed that the cell exposed to the oxidative 

environment had a higher content of intracellular bilirubin, as shown on the HPLC accumulation 

studies at 24h. This higher bilirubin content could contribute to the cell resistance since previous 

evidence showed that bilirubin has antioxidant capacity at low concentration as described by Doré 

S. et al.  in 1999 by studying the effect of nM concentrations of UCB in the cytoprotection of 

primary hippocampal cultures to H2O2.Furthermore, Baranano et al.(Baranano et al., 2002) propone, 

a biosynthetic cycle wherein oxidize bilirubin is generated from biliverdin by biliverdin reductace 

in a redox cycle. Recently Sedlak et al.(Sedlak et al., 2009) demonstrated that bilirubin protects 

against lipid peroxidation while GSH primarily prevents the oxidation of water soluble proteins. In 

this regard a possible overlapping between the two systems could contibute to confer the resistance. 

The direct implication of the System Xc
- on the H2O2 resistance was proven by the silencing 

the xCT protein using a specific anti-xCT siRNA. Removal of the expression of System Xc
- was 

followed by loss of resistance. Moreover, the increased expression of this system by the exposition 

of the cells to DEM also conferred resistance to hydrogen peroxide. Despite of this results, the 

involvement of this transporter could not be directly associated with bilirubin resistance since the 

over-expression of the System Xc
- did not prevent the damage when the cells were exposed to 

different bilirubin concentrations.  
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Other possible targets that could be contributing to the resistance were analyzed. The γ-

GCS, which forms γ-glutamylcysteine by ligatingglutamate and cysteine using ATP, is known to 

mediate the first rate-limiting step in the glutathione synthesis. γ-GCS is a heterodimericenzyme 

composed of a catalytic subunit encoded by GCLC anda modifier subunit encoded by 

GCLM(Johnson et al., 2008). The importance of this enzyme was demonstrated by several in vivo 

studies with genetically modified mice (Fujii et al., 2011). Shi, ZZ et al. showed that GCLC null 

cells isolated from embryos die, but can survive by supplementation with glutathione or N-

acetylcysteine (NAC) (Shi et al., 2000). Because the gene GCLC, as the System Xc
-, is 

transcriptional regulated by Nrf2 (Wild et al., 1999; Wild et al., 1998; Sasaki et al., 2002), we 

analyzed the mRNA expression. No change on the mRNA expression was observed in cells treated 

with bilirubin in spite of an higher intracellular glutathione. γ-GCS activity was demonstrated to be 

rapidly regulated by post-translational modification of pre-existing GCLC and/or GCLM protein. In 

this regard, oxidative stress has been shown to stimulate γ-GCS activity prior to, or in the absence 

of, an increase in γ-GCS subunits protein expression. Sub-toxicconcentrations of hydrogen 

peroxide, menadione, phorone, or other oxidativeagents, lead to the transient stimulation of γ-GCS 

activity without detectable increases in γ-GCSsubunits protein levels (Franklin et al., 2009; Ochi, 

1995; Ochi, 1996; Toroser et al., 2006). 

Another important proteins with antioxidant and detoxifying properties analyzed were the 

HO-1, HO-2 and NQO1 (Baranano et al., 2002; Dinkova-Kostova and Talalay, 2010). Interestingly, 

except for HO-2, the expression of these genes was found up-regulated which could be indicating 

the participation of these enzymes in the protection processes. To finally corroborate their 

involvement, the enzymatic activity of these two proteins should be analyzed. 

The cytochrome P450 (CYP) enzymes play a critical role in the detoxification and activation 

of xenobiotics(Miksys and Tyndale, 2002). In our studies it was demonstrated that only CYP1A1 is 

expressed in the SH-SY5Y cells, but its expression is not modified by the bilirubin incubation, 

discarding this enzyme as a possible player in the bilirubin resistance. 

The differential susceptibility to bilirubin of the two main subpopulation that composed the 

SH-SY5Y cell line was considered as a possible explanation for the resistance observed after the 

UCB incubation. As described previously, the SH-Y5Y cell line is composed by two main, 

morphologic and phenotypic different cells (N and S type cells) (Biagiotti et al., 2006; Ciccarone et 

al., 1989; Lautrette et al., 2003; Acosta et al., 2009). A morphologic separation was done obtaining 

two main subpopulations, P1 and P2. Even if the exposition of them to Bf 140 nM for 24h 

demonstrated that P2 is more sensitive to the bilirubin treatment, both population remained alive. A 

second approach was considered analysing the Vimentin expression, a specific marker for the S-
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type cells, after the bilirubin treatment. The same percentage of Vimentin expression (around 70%) 

was observed among bilirubin treated cells and the controls suggesting that the bilirubin is not able 

to select one of the subpopulation. Therefore we cannot conclude that the behaviour of SH-SY5Y is 

due to a different susceptibility of UCB toxicity of the 2 subpopulations of this cell line.  

 

SH-SY5Y MODEL TO STUDY BILIRUBIN TOXICITY 

 The exposition of SH-SY5Y cells to different Bf concentration for periods of time no longer 

than 4h demonstrated that the cells die in a dose-dependent manner. This findings allowed us to 

define the conditions to analyze the bilirubin toxicity in the SH-SY5Y model. 

Firstly we examined the bilirubin capacity to generate Reactive Oxygen Species (ROS) 

accumulation that could damage the cells. Our results demonstrate that the UCB induces the 

accumulation of ROS with the highest levels at shorter times of exposure. The effect of UCB in 

ROS generation was also reported on primary culture of rat neurons where the protein oxidation and 

lipid peroxidation is observed after bilirubin treatment (Brito et al., 2008). Additional studies, based 

on spin-labeling electron paramagnetic resonance spectroscopy analysis, indicated that UCB 

disrupts the redox status of isolated mitochondria (Rodrigues et al., 2002a) and intact nerve cells 

(Rodrigues et al., 2002b). Moreover, studies performed by Brito et al showed that injury to 

neocortical synaptosomes was linked to oxidative stress (Brito et al., 2004). 

Neurons submitted to oxidative stress are prone to excitotoxicity and therefore control of 

extracellular glutamate levels is most important to prevent cell death (Yun et al., 1997). In our study 

extracellular glutamate was found increased according with the time of exposure to bilirubin. These 

findings could indicate a possible mechanism of excitotoxicity that enhance the oxidative stress 

damage through the NMDA receptor. This activation leads to the generation of NO and the 

consecutive increase of the Reactive Nitrogen Species (RNS). Excessive amount of these molecules 

leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and 

lipids(Wang and Michaelis, 2010). Even if the mRNA expression of the nNOS, eNOS and iNOS 

was not modified in bilirubin treated cells, the enzymatic activity and NO production should be 

tested to finally confirm this hypothesis. 
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CONCLUSION 

 

In the present study the SH-SY5Y neuroblastoma cell line was used as a model to approach 

the molecular events that take place when the neuron are exposed to bilirubin. The results obtained 

in this thesis let us identify different players in the bilirubin damage and the neuron response to the 

pigment.  

The incubation of cells with pathological concentrations of free bilirubin showed that 

initially the cells are sensitive to the damage generated by the UCB and die in a dose-dependent 

manner. Data supporting the role of the intracellular ROS accumulation and the extracellular 

glutamate release after bilirubin exposure was provided. This findings contributes to the hypothesis 

that the cellular death is achieved by an excitotoxic mechanism.  

After 4h of incubation with bilirubin, the cells develop the ability to resist the UCB injury. 

The presented data do not support the hypothesis that resistance is accounted by preventing  

accumulation of the pigment inside the cells but rather suggest the conclusion that the resistance is 

produced by changes at a metabolic level. 

Even if the exacts mechanisms by which the cells resist to bilirubin damage could not be 

identified, important players that certainly are contributing to the cell defense were recognized. For 

the first time, our work have demonstrated that the bilirubin is able to induce the System Xc
- with a 

consequent increased cysteine uptake and glutathione synthesis. The final product of this pathway, 

the GSH, could contribute to restore the equilibrium of the cellular redox status. Furthermore, we 

showed induction of other antioxidant and detoxifying players like the HO-1 and the NQO1, which 

may contribute further to UCB resistance.  

Much work remains to be performed to finally unravel the mechanism(s) by which the 

bilirubin produce neurotoxicity. The data presented in this thesis not only could help to get closer to 

this goal but may also contribute to the identification of targets that could be used to prevent 

bilirubin damage.          
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