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ABSTRACT 
 
Taste has been described as the body's “nutritional gatekeeper”, affecting the 

identification of nutrients and toxins and guiding food choices. Genetic variation in 

taste receptor genes can influence perception of sweet, umami and bitter tastes, 

whereas less is known about the genetics of sour and salty taste. Differences in 

taste perception, influencing food selection and dietary behavior, have also shown 

important long-term health implications, especially for food-related diseases such 

as obesity, diabetes, cardiovascular diseases. To date, a lot of studies are focused 

on taste receptor genes and function but further investigations are needed to 

better understand which factors, including genetic ones, are involved in influencing 

taste and food preferences and the corresponding connections with health status. 

The aim of this thesis is to understand the genetic bases of taste perception and 

its relationship to food preferences and health outcomes. Data from ~3500 

subjects coming from isolated villages located in Italy, Caucasus and Central Asia 

were collected. The ability to taste PROP (6-n-propylthiouracil) bitterness and 

NaCL saltiness, food liking and intake were measured. Additional information such 

as clinical parameters, professional activity, lifestyle, eating habits and family 

history were also collected. To learn more about taste biology the following steps 

were performed in this thesis: 1) genome-wide association studies (GWAS) of 

bitter and salty taste perception; 2) analysis of the possible impact of bitter taste 

perception on food preferences; 3) investigation of the relationship between 

differences in taste perception genes, food preferences and dental caries, as 

example of health outcome. 

The main specific results emerging from this PhD thesis work are: 1) GWAS 

revealed two SNPs closed to TRPV7 and KCNA5 genes associated to salty 

perception; 2) always through GWAS a SNP closed to GHRL gene, encoding for 

ghrelin and obestatin, was found to be associated to PROP bitter perception. An 

additional SNP closed to the 5’ region of the T2R38 gene showed association to 

the same phenotype; 3) ability to perceive PROP could be a marker for general 

perception of taste stimuli suggesting that differences in taste perception may be a 

driver of food liking; 4) the risk to develop dental caries is associated to genetic 

differences in sweet taste genes. In addition, sweet food liking but not sugar intake 

	
  



	
   III 

results linked to dental caries prevalence, suggesting that food preferences may 

predictive of health outcomes better than food intake.	
   

Overall, these data represent a starting point to better understand how 

chemosensory differences may interact to influence and predict food choices and 

human nutritional behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

	
  



	
   IV 

ABSTRACT (italiano) 

 
Il gusto può essere considerato il “guardiano alimentare” del corpo, permettendo 

l’identificazione di sostanze nutritive o tossiche e guidando le scelte alimentari. 

Variazioni genetiche nei geni che codificano per i recettori del gusto possono 

influenzare la percezione del gusto dolce, umami e amaro, mentre poco 

conosciuta è la genetica del gusto acido e salato. Differenze nella percezione 

gustativa, incidendo sulla scelta del cibo e sul comportamento alimentare, hanno 

anche mostrato importanti implicazioni a lungo termine per la salute, specialmente 

per malattie relate alla dieta come l’obesità, il diabete e le malattie cardiovascolari. 

Finora, molti studi si sono focalizzati sui geni e la funzione dei recettori del gusto, 

ma ulteriori  indagini sono necessarie per comprendere meglio, quali fattori, inclusi 

quelli genetici, possono influenzare gusto e preferenze alimentari e il 

corrispondente legame con lo stato di salute. 

Lo scopo di questa tesi è di comprendere le basi genetiche della percezione del 

gusto e la sua connessione con le preferenze alimentari e lo stato di salute.  Sono 

stati raccolti dati su ~3500 soggetti provenienti da villaggi isolati situati in Italia, 

Caucaso e Asia centrale. Sono stati misurati la capacità di percepire l'amarezza 

del PROP (6-n-propylthiouracile) e il gusto salato del NaCL, le preferenze e i 

consumi alimentari. Sono stati anche raccolti ulteriori informazioni come parametri 

clinici , attività professionale, stile di vita, abitudini alimentari e storia familiare. Per 

comprendere meglio la biologia del gusto in questa tesi sono stati svolti i seguenti 

steps: 1) studi di associazione su tutto il genoma (GWAS) volti a identificare nuovi 

geni coinvolti nella percezione del gusto amaro e salato; 2) analisi del possibile 

impatto della percezione del gusto amaro sulle preferenze alimentari; 3) studio 

della relazione tra differenze genetiche nella percezione del gusto, preferenze 

alimentari e carie dentale, come esempio di relazione con lo stato di salute. 

Le principali scoperte emerse da questa tesi sono: 1) uno studio GWA ha 

identificato due SNPs vicini ai geni TRPV7 e KCNA5 associati alla percezione del 

gusto salato; 2) sempre attraverso GWAS uno SNP vicino al gene GHRL, che 

codifica per la grelina e l’obestatina, è stato trovato associato alla percezione 

amara del PROP. Un ulteriore SNP localizzato vicino alle regione 5' del gene 

T2R38 mostra, inoltre, associazione con lo stesso fenotipo PROP; 3) la capacità di 
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percepire il PROP potrebbe essere un marker per la percezione generale degli 

stimoli gustativi, suggerendo che le differenze nella percezione del gusto possono 

rappresentare un “driver” del gradimento del cibo; 4) il rischio di sviluppare carie 

dentali è associato a differenze nei geni che codificano per il gusto dolce. Inoltre, 

la preferenza per i cibi dolci, ma non il consumo di zuccheri, risulta associata alla 

prevalenza di carie dentale, suggerendo che le preferenze alimentari possano 

risultare migliori predittori dello stato di salute rispetto ai consumi alimentari.	
   

Complessivamente, questi dati rappresentano un punto di partenza per capire 

meglio come le differenze chemio-sensoriali possono interagire nell’influenzare e 

prevedere le scelte alimentari e il comportamento alimentare nell’uomo. 
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GENERAL INTRODUCTION 
 
a. Taste system 
Taste is a sensory modality essential for nutrition and survival, allowing to evaluate 

nutritious content of food and to prevent the ingestion of toxic substances. The 

world “taste” is defined as the sensations arising from the mouth and is commonly 

confused with “flavor”. Taste includes only gustatory sensations originate in organs 

of the oral cavity -taste buds- and elicited by water-soluble compounds that 

interact with the epithelial cells of taste buds. In contrast, flavor indicates the 

combined sensory experience of olfaction and gustation and is generated by the 

integration of taste and smell signals in the orbitofrontal and other areas of the 

cerebral cortex to generate flavors and mediate food recognition (Rolls & Baylis, 

1994; Small & Prescott, 2005). Taste is also frequently confused with 

somatosensory sensations evoked by foods, such as coolness, pungency, 

burning. In contrast to taste signals, sensations such us the cool of menthol or the 

spicy of chili peppers are elicited by the stimulation of ion channels in 

somatosensory nerve fibers in the tongue and taste buds (Caterina et al., 1997; 

McKemy, Neuhausser & Julius, 2002). The taste system allows recognizing and 

distinguishing five basic tastes: salty, sour, sweet, bitter and umami. Each of these 

taste represent different nutritional or physiological requirements. Salty taste 

controls intake of Na+ and other minerals, which play a central role in maintaining 

the body’s water balance and blood circulation. Sour taste detects the presence of 

acids, avoiding ingesting spoiled foods. Sweet taste signals sugars and 

carbohydrates, usually indicating energy rich nutrients. Umami taste, elicited by L-

glutamate and a few other L-amino acids, reveals the protein content in food. 

Finally, bitter taste protects against ingesting toxins and poisons in foods, many of 

which taste bitter (Chaudhari & Roper, 2010). Recent evidences have shown the 

presence of an additional quality, the fat taste, essential to detect the presence of 

fatty acids in foods (Stewart et al., 2010). 

The sense of taste system is mediated by taste receptor cells (TRCs), which are 

organized in taste buds located within gustatory papillae. In humans, there are 

∼5,000 taste buds in the oral cavity, situated on the superior surface of the tongue, 

on the palate and on the epiglottis. Four types of papillae have been described: 
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fungiform papillae, mostly located on the dorsal surface in the anterior two-thirds of 

the tongue; foliate papillae, present on lateral margins towards the posterior part of 

the tongue; circumvallate papillae, arranged in a V-shaped row at the back of the 

tongue. Finally filiform papillae are found all over the surface of the tongue and do 

not contain taste buds. They are considered to have a mechanical function and to 

be not directly involved in taste sensation (Figure 1). TRCs project microvilli to the 

apical surface of the taste bud, where they form the ‘taste pore’; this is the site of 

interaction with tastants (Jayaram Chandrashekar, Hoon, Ryba, & Zuker, 2006).  

 
Figure 1. Taste-receptor cells, buds and papillae (Chandrashekar, Hoon, Ryba, & Zuker 2006). 

Taste buds exhibit different cell types with very distinct morphological features and 

cellular functions: type I, II, and III taste cells and basal cells (Roper, 2006) (Figure 

2). Basal cells are undifferentiated cells regulating taste cells turnover. Type I 
taste cells are termed “glial like” because their primary function is to support other 

taste cell types (Finger, 2005). They appear to be involved in terminating synaptic 

transmission and restricting the spread of transmitters, a role performed in the 

central nervous system by glial cells (Bartel et al., 2006; Dvoryanchikov, Sinclair et 

al., 2009). Finally, Type I cells may exhibit ionic currents implicated in salt taste 

transduction (Vandenbeuch, Clapp & Kinnamon, 2008). Type II taste cells are 

thought to be the actual taste receptor cells. These cells express all of the 
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elements of the taste transduction cascade for sweet, umami and bitter (Finger, 

2005). Type III taste cells express synaptic proteins and are characterized by 

morphologically identifiable synaptic contacts with the gustatory nerve fibers, 

implicating these cells in transmission of information to the nervous system 

(Finger, 2005). In addition, these cells also respond directly to sour taste stimuli 

and carbonated solutions and are presumably the cells responsible for signaling 

these sensations (Huang et al., 2006; Chandrashekar et al., 2009). 

 
Figure 2. The three types of taste cells.  
This classification incorporates ultrastructural features, patterns of gene expression, and the 
functions of each of Types I, II and III taste cells (Chaudhari & Roper, 2010).  
 

TRCs make synapses with primary sensory axons that run in the three cranial 

nerves, VII (facial), IX (glossopharyngeal), and X (vagus), which innervate the 

taste buds. The central axons of these primary sensory neurons in the respective 
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cranial nerve ganglia project to the nucleus of the solitary tract in the medulla. 

Gustatory information is then transferred from the nucleus of the solitary tract to 

the thalamus, and then to gustatory areas of the cortex (Figure 3A). This wide 

representation of taste information in the brain probably serves to integrate it with 

interoceptive (hunger, satiety, appetites) and exteroceptive (vision, olfaction, 

somatosensation) signals and to generate behavioral responses to taste stimuli 

(Figure 3B) (Purves et al., 2001). 

 

 
Figure 3. Organization of the human taste system. 
(A) The relationship between the gustatory system and the nucleus of solitary tract and cortex in 
the brain (B) Diagram of taste information pathways (Purves et al., 2001). 
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b. Taste receptors 
The presence of different taste qualities implies for each taste quality the existence 

of a specific mechanism of signal transduction mediated by specialized taste 

receptors. Reception of sweet, umami, and bitter taste involves proteins from the 

T1R and T2R families, while only candidate receptors have been proposed for 

salty and sour taste. A summary of taste receptors and signal transduction 

mechanism is reported in table 1. 

 

Taste Receptor(s) Signal Transduction 

Bitter T2Rs G-protein-coupled receptors activation 

Sweet T1R2/T1R3 G-protein-coupled receptors activation 

Umami T1R1/T1R3 G-protein-coupled receptors activation 

Salt ENaC Ion channels  

Sour PKD2L1 Ion channels 

Fat CD36 Fatty acid transporter  

Table 1. Summary of taste receptors and their signal transduction mechanism. 

 

Bitter taste is mediated by a family of G-protein-coupled receptors (GPCRs), 

named taste 2 receptors (T2Rs or TAS2Rs) (Adler et al., 2000; Chandrashekar et 

al., 2000, Behrens et al., 2007).  Depending on the species, vertebrate genomes 

contain between 3 T2R genes in chickens and up to 50 in amphibians (Shi & 

Zhang, 2009). Twenty-five T2Rs located on chromosomes 5, 7 and 12 were 

identified in the human genome (Conte et al., 2002). This small number of T2R 

genes raises the question as to how can perceive as bitter such a large number of 

chemically diverse bitter substances with such a limited number of receptors. 

Meyerhof and colleagues have suggested that our ability to perceive the enormous 

number of bitter substances with a limited number of sensors is linked to the 

molecular receptive ranges of T2R bitter taste receptors. In fact, they showed in a 

recent work that many bitter receptors respond to different bitter substances, some 

others instead recognize one or really few compounds. In addition, while one 

compound can activate several receptors, some compounds activate only one 

receptor (Meyerhof et al., 2010). 
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The sweet taste receptor is a heterodimer of two G-protein-coupled receptors, 

T1R2 and T1R3. Functional expression studies revealed that T1R3 combines with 

T1R2 form a sweet taste receptor that responds to all classes of sweet tastants, 

including natural sugars, artificial sweeteners, d-amino acids and sweet proteins 

(Li et al., 2002; Nelson et al., 2001).  

Studies of T1r2- and T1r3-knockout mice showed also that homozygous mutants 

for either receptor subunit show a loss of sweet taste (Zhao et al., 2003; Jiang et 

al., 2004). Similar studies on umami taste established the T1R1 and T1R3 

heteromeric GPCR complex as the umami taste receptor (Nelson et al., 2002; 

Zhao et al., 2003). Metabotropic glutamate receptors mGluR1 and mGluR4 have 

also been proposed as detectors of umami tastants (Chaudhari, Pereira, & Roper, 

2009; Yasumatsu et al., 2012). 

Several receptors and mechanisms have been proposed to be responsible for 

sour taste. These include the activation of hyperpolarization-activated cyclic-

nucleotide-gated (HCN) channels (Stevens et al., 2001), acid-sensing ion 

channels (ASICs)  (Ugawa et al., 1998), potassium (K2P) channels (Lin et al., 

2004) and H+-gated calcium channels (Waldmann et al., 1997), as well as the 

involvement of Na+/H+ exchangers (Lyall et al., 2004) and acid inactivation of K+ 

channels (Cummings & Kinnamon, 1992). However, recent studies have 

demonstrated that a member of the TRP ion-channel family, PKD2L1, demarcates 

sour-sensing TRCs. PKD2L1 is selectively expressed in a population of TRCs 

distinct from those mediating sweet, umami and bitter tastes (Huang et al., 2006).  

A number of studies suggested that the receptor for salt taste is an epithelial 

amiloride-sensitive sodium channel, ENaC (Heck, Mierson, & DeSimone, 1984; 

Avenet & Lindemann, 1988). In humans, there are four ENaC channel subunits, α, 

β, γ, and δ. In addition, a variant of a vanilloid receptor-1, TRPV1, has been 

proposed as an amiloride-insensitive salt taste receptor in rodents (Lyall et al., 

2004). However, the evidence for ENaC or other candidate salt taste receptors is 

not as convincing as it is for the T1R and T2R receptors. 

As regard fat taste, recent data suggest that the fatty acid transporter CD36 is 

expressed in TRCs and may be involved in oral detection of fatty acids 

(Fukuwatari et al., 1997;  Laugerette et al., 2005). 
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The receptors for sweet, bitter and umami taste show a common pathway to 

transduce tastant recognition into cell activation. Tastant binding to T1Rs or T2Rs 

activates the heterotrimeric G proteins gustducin or transducin leading to the 

release of the Gβγ subunits and the subsequent stimulation of phospholipase Cβ2 

(PLC-β2). Activation of PLC-β2 hydrolyses phosphatidylinositol-4,5-bisphosphate 

to produce the two intracellular messengers diacylglycerol and inositol-1,4,5-

trisphosphate (IP3), which opens the IP3R3 ion channels releasing Ca++ and 

leads to the gating of the transient receptor potential channel (TRPM5). The 

combined action of elevated Ca2+ and membrane depolarization of TRPM5 results 

in the release of ATP, which acts as a neurotransmitter linking taste buds to the 

nervous system. ATP secreted from receptor (type II) cells, in fact, excites primary 

sensory afferent fibers and probably also stimulate presynaptic (type III) cells to 

release 5-HT and norepinephrine. On the contrary, salty and sour tastes use a 

different signaling pathway and operate independently of sweet, umami and bitter 

tastes, being both detected through ion channels (Purves et al., 2001; Zhang et 

al., 2003). 

 
 
c. Variation of taste genes and its role in individual variation in taste 
responses 

Perception of taste may vary between individuals depending on genetic variations 

in taste receptor genes. Genetic variation in taste perception was reported in 

humans for sweet, umami and bitter taste (Table 2), while less is known about the 

genetic variability of salt and sour taste (Kim & Drayna, 2005; Mainland & 

Matsunami, 2009; Shigemura et al., 2009). 
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Gene SNP Association mechanism Taste quality 
T1R1 A372T T associated with high sensitivity Umami 
 G1114A A associated with high sensitivity Umami 
 C329T T associated with low sensitivity Umami 
T1R3 R757C C associated with lower sensitivity Umami 
 R247H H associated with increased sensitivity Umami 
 A5T A associated with heightened sensitivity Umami 
 C2269T T more frequent in non tasters Umami 
 C1266T T alleles result in reduced promoter activity Sweet 
 C1572T T alleles result in reduced promoter activity Sweet 
T2R16 G516T G associated with low sensitivity Bitter 
T2R38 P49A P associated with high sensitivity Bitter 
 A262V A associated with high sensitivity Bitter 
 V296I V associated with high sensitivity Bitter 
T2R43 W35S W associated with high sensitivity Bitter 
T2R44 W35R W associated with high sensitivity Bitter 

Table 2. Single nucleotide polymorphisms (SNP) in T1R and T2R genes with known 
functional variation in sweet, umami and bitter perception (modified from Feeney et al 2010). 
 
A number of single nucleotide polymorphisms (SNPs) have been identified in 

T1Rs genes. Some of these have been linked to variation in taste perception of 

both umami and sweet tastes. Recent studies suggested that two C/T SNPs within 

the promoter regions of the T1R3 gene (situated at position 1266 and 1572) were 

associated with sweetness perception (Fushan et al., 2009). Individuals with T 

alleles at both loci had reduced sweetness perception compared to those who 

were homozygous for the C allele at both loci. 

As regard variations in umami taste perception, Shigemura and coworkers 

(Shigemura et al., 2009) showed that the T1R1-372T variant is associated to an 

increased sensitivity to umami and T1R3-757C results in a reduced sensitivity. 

Additional works have identified others SNPs accounting for a part of the 

interindividual variance in umami perception (Raliou et al., 2009; Chen et al., 

2009). 

Very recent, data suggested that variations in TRPV1 and SCNNB1 genes might 

modify salt taste perception in humans. In the SCNN1B gene, 2 SNPs in intronic 

regions of the gene modified salt taste sensitivity. Those homozygous for the A 

allele of the rs239345 (A>T) polymorphism and the T allele of the rs3785368 

(C>T) polymorphism perceived salt solutions less intensely than carriers of the T 

or C alleles. In the TRPV1 gene, the rs8065080 (C>T, Val585Ile) polymorphism 

modified taste sensitivity where carriers of the T allele were significantly more 

sensitive to salt solutions than the CC genotype (Dias et al., 2013). 

Differences in bitter taste perception are the most studied genetic variations in oral 
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sensations. Several variations have been observed in the T2R gene family, 

encoding for the bitter receptors. The known example of this variation is the 

hT2R38 gene, associated to differences in the ability to taste the synthetic 

compounds phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) (more 

details are reported in CHAPTER II and III). Additional examples are provided by 

functional polymorphisms in hT2R16 as well as in hT2R43 and hT2R44.  The 

human T2R16 receptor responds to compounds containing the beta-

glucopyranoside moiety such as salicin and amygdalin, including some with a 

highly toxic cyanogenic activity (Bufe et al., 2002). T2R16 gene contains several 

polymorphic loci and the G516 variant was associated with a lower sensitivity to 

salicin, arbutin, and different cyanogenic glycosides (Soranzo et al., 2005). T2R43 

and T2R44 genes are activated from several compounds, including saccharin and 

aloin (Kuhn et al., 2004). Pronin and colleagues demonstrated that T2R43-W35 

allele is associated to higher sensitive to aloin and aristolochic acid and both 

T2R43 and T2R44 are responsible for increased sensitivity to the bitterness of 

saccharin (Pronin et al., 2007). 

 

 

d. Implications of variations in taste perception for nutrition and health 
Several studies have linked genetic variation in taste receptors to risk of disease. 

This can occur through differences in taste perception, which may lead to 

differences in food preferences and food intake. This variation in food intake may, 

in turn, affect nutritional and health status, as well as the risk of chronic disease 

(Figure 4). 

Figure 4. The link between genetic variation in taste perception and health status 
(Garcia-Bailo et al. 2009). 
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Different examples for the role of taste receptor variation in human nutrition and 

health were provided in the last years. A variety of studies have taken into account 

the influence of bitter taste perception of PTC and PROP, mediated by the T2R38 

gene, on food preferences and intake. In particular, an inverse relationship 

between bitter PROP perception and preference for different foods such as citrus 

fruit, Brussels sprouts, cabbage, spinach, asparagus, curly kale, coffee, beer  and 

overall fruit and vegetable consumption has been reported (Keller et al., 2002; 

Ullrich et al., 2004; Dinehart et al., 2006; Tepper, 2008; Tsuji et al., 2012). PROP 

bitter taste has also been observed to associate with preference for soy products 

and green tea (Gayathri Devi, Henderson, & Drewnowski, 1997), sweet and fatty 

foods (Hayes & Duffy, 2008). Additionally, variations of the T2R38 gene were 

associated with a nutrient intake pattern indicative of healthy eating, or rather fiber 

consumption and intakes of thiamine, vitamin B6 and folate (Feeney et al., 2011). 

A recent study has shown that polymorphisms in or near T2R genes may 

influence the sensations, liking or intake of common beverages that contain 

phytochemicals and other pharmacologically active elements linked to chronic 

diseases such as cardiovascular disease and cancer. Specifically, T2R16 and 

T2R38 polymorphisms were associated to differences in alcohol intake. The 

haploblock formed by SNPs in T2R3, T2R4, and T2R5 were linked to coffee 

bitterness, while T2R19 variation influenced grapefruit juice bitterness and liking 

(Hayes et al., 2011).  
The perception of bitter taste has also been associated with a number of health 

effects. For example, higher sensitivity to ethanol bitterness may protect against 

excess alcohol consumption (Duffy, 2004; Wang et al., 2007). PROP-tasting has 

shown also relationship with consumption of calories and high-fat foods energy 

intake (Shafaie et al., 2013), body mass index and adiposity (Tepper & Ullrich, 

2002; Tepper et al., 2008; Goldstein, Daun, & Tepper, 2007). 

Difference in the risk of colorectal cancer, which is mediated in part by diet, has 

been reported across T2R38 polymorphic groups (Basson et al., 2005). 

Furthermore, the risk of developing dental caries, presumably as consequence of 

higher preference for sugar-containing foods, was linked to variations in bitter 

perception (Lin, 2003; Wendell et al., 2010). 

Association between variation in bitter taste and cardiovascular disease risk was 
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also hypothesized, by dietary behaviors that increase the risk such as higher 

alcohol intake, greater preference and intake of high-fat and sweet foods, higher 

blood pressure, less favorable serum lipids (Duffy, 2004). 

Evidences of a relation between taste perception, food choices and health 

implications have been reported also for others taste quality.  

Sweet perception may influence food preferences, as individuals with an increased 

sweet perception tend to have a lower preference for sugar than less sensitive 

individuals (Looy, Callaghan, & Weingarten, 1992). Genetic variation in T1R2 gene 

was linked to habitual consumption of sugars in overweight and obese individuals 

(Eny et al., 2010). Differences in sweet taste have been also related to alcoholism 

(Mennella et al., 2010), caries development (Kulkarni et al., 2013) and body mass 

index, with a reduced threshold observed in obese children (Donaldson et al., 

2009).  

Common variants in the CD36 gene have been associated with fat preferences for 

added fats and oils, with individuals with higher sensitivity to fat perception 

showing greater liking of these foods (Keller et al., 2012). In addition, several 

report have found relationship between CD36 polymorphisms and body mass 

index (Bokor et al., 2010; Heni et al., 2011; Yun et al., 2007). In others studies, 

genetic variations in CD36 gene were also linked to higher free fatty acids, 

triglyceride levels (Ma et al., 2004; Madden et al., 2008) and metabolic syndrome 

(Farook et al., 2012). 

Overall these data highlight how inter-individual genetic differences may have 

important implications for individual food preferences and intake, therefore for 

nutrition and health. 

 

 

e. Taste is not just for taste buds 
Several evidences showed that taste receptors and taste cascade elements are 

also expressed throughout the gastrointestinal and respiratory tracts (Höfer, 

Püschel & Drenckhahn, 1996; Wu et al., 2002; Kaske et al., 2007) (Figure 5). 
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Figure 5. Sites in the body where cells express the canonical taste receptor cascade 
(Finger and Kinnamon, 2011) 
 

In contrast to taste receptors in the mouth, taste receptors in the gut do not induce 

sensations of taste, but rather initiate molecular pathways that help guide the 

digestion or rejection of food substances traveling through the intestines. 

Likewise, the existence of taste pathways in human airway cells is involved in 

defensive responses to inhaled foreign and potentially toxic substances (Finger & 

Kinnamon, 2011). The existence of T1R receptors in the gut is responsible of the 

regulation of digestive functions. In fact, these receptors detect sweet substances 

and respond by secreting the glucagon-like peptide GLP-1, which in turn 

stimulates the release of insulin from pancreatic ß-cells, promoting the uptake of 

glucose. In addition, activation of the sweet receptors in the gut drives the insertion 

of the glucose transporters SGLT-1 and GLUT2 into the membranes of cells lining 
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the intestines, facilitating uptake of glucose (Mace et al., 2007; Margolskee et al., 

2007). 

Less clear is the function of T2R bitter receptors in the gastrointestinal tract. The 

activation of T2R receptors results in release of the peptide hormone 

cholecystokinin (CCK), which can reduce gut motility. Thus, intake of a potential 

toxin that activates the T2R pathway should decrease the rate at which food 

passes through the stomach and lower the drive for continued eating (Glendinning 

et al., 2008). However, in the colon activation of T2R receptors similarly appears to 

combat toxins, inducing the secretion of anions and water, which leads to fluid 

secretion into the intestine, resulting in diarrhea that flushes out the colon (Kaji et 

al., 2009). 

In the upper airway activation of T2R receptors generate an intracellular cascade 

to affect the release of the neurotransmitter acetylcholine and to activate nearby 

nerve fibers, inducing protective reflexes such as apnea (to prevent further 

inhalation) and sneezing (Tizzano et al., 2010). Interestingly, a recent work 

showed that T2R38 is an upper airway sentinel in innate defense and that genetic 

variation contributes to individual differences in susceptibility to respiratory 

infection. In fact, T2R38 is expressed in human upper respiratory epithelium and is 

activated in response to acyl-homoserine lactone quorum-sensing molecules 

secreted by gram-negative bacteria. Receptor activation regulates calcium-

dependent NO production, resulting in direct antibacterial effects. Moreover, 

common polymorphisms of the T2R38 gene were linked to significant differences 

in the ability of upper respiratory cells to clear and kill bacteria. Lastly, T2R38 

genotype correlated with human sinonasal gram-negative bacterial infection (Lee 

et al., 2012).  

In airway smooth muscle cells of the lungs bitter compounds activate the T2R 

pathway and cause calcium potassium channels activation, allowing the outflow of 

K+, which produces hyperpolarization and subsequent relaxation of the muscle 

cells and reduction of airway obstruction. Given the need for efficacious 

bronchodilators for treating obstructive lung diseases, this pathway can be 

exploited for therapy with the thousands of known synthetic and naturally occurring 

bitter tastants (Deshpande et al., 2010).  

Furthermore, in the lungs T2R receptors on ciliated airway epithelial cells bind 
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bitter compounds, initiating the G protein-mediated pathway that results in an 

increase in ciliary beat frequency, which serves to sweep irritants away from the 

surface of the cell (Shah et al., 2009). 

 
 
d. Aims of the thesis 
 
The aims of this thesis were: 

a) identify new loci involved in bitter and salt perception through genome-wide 

association studies (GWAS) and meta-analysis of data coming from 3 different 

Italian populations (Chapter II). 

b) investigate the possible effect of bitter taste perception on food preferences 

using a population-based approach, based on comparisons between distance 

matrices (Chapter III). 

c) analyse the relationship between differences in taste perception genes, food 

preferences and health outcomes. In particular, the effect of sweet taste genes 

and sweet liking on dental caries prevalence was taken into account (Chapter IV).  

An outline of the objectives of this thesis is shown in Figure 6.  

 

 
Figure 6. Outline of the objectives of the thesis. 
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Genetic analysis of taste perception  
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1. BACKGROUND AND AIM 
 
a. Genetics of PTC/PROP bitter perception 
Study on the genetics of PTC perception began in 1930 when A.L. Fox found that 

some individuals, defined “non tasters”, were unable to detect bitterness of this 

compound, while others, named “tasters”, were much more sensitive (Fox, 1932). 

Following studies showed that the inability to taste PTC (phenylthiocarbamide), 

and similar compound like PROP (6-n-propylthiouracil), is transmitted as a simple 

Mendelian recessive trait (Blakeslee, 1932; Snyder, 1931), while others studies 

have suggested that incomplete dominance, multiple alleles or multiple genes 

explain the inheritance of this trait (Kim et al., 2004). The major gene underlies 

PTC/PROP phenotype is the T2R38, a member of T2R family of bitter taste 

receptor genes. Three SNPs within this gene lead three amino acid substitutions 

(A49P, A262V and V291I) that define two most common haplotypes, designed 

PAV (proline-alanine-valine) and AVI (alanine-valine-isoleucine). While AVI is 

referred as the major non taster haplotype, PAV is indicated as the major taster 

haplotype (Kim et al., 2003). Although the T2R38 gene accounts for a large 

fraction (50%-80%) of PROP/PTC phenotypic variation (Kim et al., 2003; Drayna 

et al., 2003), evidences showed that other genes might contribute to the 

phenotype (Drayna et al., 2003; Reed et al., 2010). A recent work showed that a 

polymorphism in the gustin gene (CA6), a taste-bud trophic factor which controls 

the salivary protein carbonic anhydrase VI, alters the functionality of this enzyme 

and is strongly related to taste responsiveness to PROP (Padiglia et al., 2010). 

Responsiveness to PROP was also associated with salivary levels of two peptides 

belonging to the basic proline-rich protein family and both encoded by the PRB1 

gene.  These finding suggest that PRB1 could contribute to individual differences 

in PROP perception and confirm the hypothesis of the PROP phenotype as a 

complex genetic trait (Cabras et al., 2012). 

 
b. Genetics of salty perception 
Salt intake differs between and within populations, representing a risk factor for the 

development of cardiovascular diseases and hypertension (Dahl, 2005; Strazzullo 

et al., 2009; Whelton et al., 2012). Salty perception and genetic variation in taste 
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receptors may be considered important determinant of differences in salt intake 

(Hayes, Sullivan, & Duffy, 2010). While genetic variations in taste perception are 

well known for bitter, sweet and umami taste, to date little is known on the 

association between genetic polymorphisms in salt receptors and differences in 

salt taste in human. The epithelial sodium channel amiloride-sensitive (ENaC) is 

the most well characterized sodium taste receptor. ENaC is stimulated by NaCl at 

both low (100mM) and high (500mM) concentrations and is amiloride-sensitive 

and sodium-specific. In mice the lack of ENaC expression in taste cells lead to a 

complete loss of salt attraction and sodium taste responses, providing evidence for 

the role of this receptor in salt taste.  Furthermore, amiloride, an ENaC blocker, 

alters sodium currents in taste cells and inhibits taste response to sodium chloride 

(Chandrashekar et al., 2010).  Evidences from rodents have shown that a 

polymorphism in αENaC gene, which encode for the α subunit of the ENaC taste 

receptor, is associated with differences in amiloride-sensitive taste responses to 

sodium chloride (Shigemura et al., 2008). In Drosophila melanogaster, Liu et al. 

(Liu et al., 2003) also reported that ppk11 (Pickpocket11) and ppk19 

(Pickpocket19), genes that code for ENaC channels, are involved in salt taste 

perception. In addition to ENaC, a genetic variant of TRPV1, a non-selective 

cation channel, has been identified as possible candidate receptor for salt 

perception. This receptor responds to a variety of cations including Na+, K+, 

NH4+, and Ca2+ and is amiloride insensitive. Evidence indicates that TRPV1 

mediates in nociceptive neurons thermal pain including the noxious thermal pain 

produced by vanilloids such as capsaicin and resiniferatoxin (Lyall et al., 2004). 

A recent work carried out in humans analysed for the first time the association 

between genetic variations in ENAC (SCNN1A, SCNN1B, SCNN1G, SCNN1D) 

and TRPV1 genes with salt taste sensitivity (Dias et al., 2013). Results showed 

that polymorphisms in the genes that code for TRPV1 cation channel and the β 

subunit of ENAC channel are responsible of human individual differences in salt 

taste perception. Despite these recent evidences on specific candidate genes, 

genetics that underlie salt perception in human is still poorly understood and to 

date genome-wide association studies aiming to identify new genes have not been 

conducted. 
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c. Association analysis for studying genetic bases of taste phenotypes 
Differences in taste perception are influenced by both genetic and environmental 

factors. The study of environmental factors such as dietary habits, culture and 

experiences, age, gender, olfaction, has raised much attention, while the genetic 

background is less understood and the most of studies were focused on candidate 

genes or specific regions of the genome. 

Generally, genetic association studies are used to find candidate genes or 

genome regions that contribute to a specific disease o trait by testing for a 

correlation between disease status and genetic variation. SNPs are the most 

widely tested markers in association studies. Technically, a variation must be 

present in at least 1% of a population to be classified as a polymorphism. A higher 

frequency of a SNP allele or genotype in a series of individuals affected with a 

disease can be interpreted as meaning that the tested variant increases the risk of 

a specific disease or trait. Usually, two different approaches can be used for 

genetic dissection of complex traits: candidate gene approach and GWAS. 

Candidate gene studies typically rely on prior scientific knowledge suggesting that 

the genes have a biological function relevant to the investigated trait (Zhu & Zhao, 

2007). Similar to candidate gene approach, GWAS aim to identify associations 

between SNPs and a trait but involving the characterization of a much larger 

number of SNPs. However, this type of study proceeds without assumptions or 

previous knowledge of the relevant genes and the whole genome is scanned for 

genetic variation, allowing the discovery of new regions or genes of interest 

(McCarthy et al., 2008).  

In the last years, with the help of high-throughput genotyping arrays and genome-

wide-association studies it became possible to investigate the genetic contribution 

to variation in human chemosensory perception.  

In the current study I carried out: i) a GWAS for PROP responsiveness aiming to 

identify new genes in addition to T2R38 contribute; ii) the first GWAS for salty 

perception exploring variants associated to NaCl responses.  
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2. MATERIALS AND METHODS 
 

a. Participants 
This study includes 2600 participants coming from three different Italian 

populations: Carlantino, a small village of the South of Italy situated in the extreme 

northern part of Puglia Region; a population in Northern-Eastern Italy, involves the 

inhabitants of six different communities of Friuli Venezia Giulia region (San Martino 

del Carso, Erto/Casso, Clauzetto, Illegio, Sauris and Val di Resia); and finally a 

population coming from the Val Borbera Valley in Northwest of Italy. Due to 

geographical, historical, linguistic and/or cultural factors, these populations 

showed evidences of genetic isolation (Esko et al., 2013). The use of isolated 

populations, characterized by small effective population size, more inbreeding, 

more uniform genetic background and largely shared environment, was proved 

very useful in identification of genetic variants associated to complex traits or 

diseases (Peltonen, Palotie, & Lange, 2000). 

For each participant a questionnaire to obtain socio-demographic information, as 

well as data on clinical parameters, professional activity, lifestyle, eating habits 

and family history has been collected. 

Subjects gave their written informed consent for participating in the study. The 

ethical committees of the three different institutions approved the protocol. We 

certify that all applicable institutional and governmental regulations concerning the 

ethical use of human volunteers were followed during this research. 

 
b. NaCl and PROP phenotypes 
NACL and PROP taste intensity was determined in all subjects using a filter paper 

method described in Zhao et al. (Zhao, Kirkmeyer, & Tepper, 2003). Each subject 

was given two paper disks, the first one was impregnated with 1.0 mol/l NaCl 

(VWR Scientific, Bridgeport, NJ), and the second disk was impregnated with 50 

mmol/l 6-n-2-propylthiouracil (cat. no. P3755; Sigma-Aldrich, St Louis, MO). The 

subject was asked to rinse the mouth with bottled water, place the paper disk on 

the tip of the tongue and rate the intensity of the taste using the labelled 

magnitude scale (LMS). The subjects were also required to rinse with water 
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between tasting each disk and to wait a minimum 30s before tasting the PROP 

disk. 

The LMS is a quasi-logarithmic 100-mm scale anchored with the labels ‘barely 

taste it’, ‘weak’, ‘moderate’, ‘strong’, ‘very strong’ and ‘strongest imaginable’ oral 

sensation (Green et al., 1996). Participants were instructed first to the verbal 

descriptors of the scale and also to make a mark anywhere on the scale, not only 

near the descriptors.  

In this study the data intensity ratings were used as quantitative phenotype in the 

association analysis. Given that taste responsiveness was measured on a logistic 

scale, for the analysis intensity ratings were all transformed using the log10 of the 

measure (Genick et al., 2011). 

 
c. DNA sampling, genotyping and imputation 
DNA for genotyping was extracted from blood of each participant. Genotyping was 

carried out using the Illumina 370k high density SNP array. Genotype calling was 

performed with the GenomeStudio software (Illumina). Quality control was 

conducted independently in each population. Individual call rate, excess of 

heterozigosity and identity by state (IBS) between each pair of samples were 

checked. If a pair had IBS > 0.95 the sample with lower call rate was excluded. All 

SNP with minor allele frequency (MAF) <0.01, Hardy-Weinberg equilibrium (HWE) 

deviation P-value<1.0E-08 and call rate <0.97 were also removed. 

Genotype imputation was conducted using SHAPEIT2 for the phasing step and 

IMPUTE2 for the imputation using the1000 Genomes phase I v3 reference set 

(Howie et al., 2012). 

 
d. Association analysis 
Association analysis was conducted using the GRAMMAR-Gamma method as 

implemented in GenABEL package for genotyped SNPs and MixABEL for imputed 

data (Aulchenko et al., 2007). Association analysis was performed through a 

mixed model linear regression were the log10 of the PROP or NaCl measure was 

used as the dependent variable and the SNP the independent variable. 

NaCl analysis included sex and age as covariates, while in the PROP analysis 

sex, age, log10 of NaCl measure and rs10246939 SNP at T2R38 gene were used 

as covariates. Each subject’s phenotype was correct for the T2R38 SNP to adjust 
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for T2R38 gene, the major responsible of PROP perception, while NaCl was 

included as covariate to distinguish PROP perception from general taste 

perception. 

In addition, in both analyses the kinship matrix based of on all available genotyped 

SNPs was used as the random effect. Kinship matrix is a method that allows 

assessing for relatedness population stratification in samples from homogeneous 

populations, such as isolated ones. In our study, the genomic kinship was 

calculated with the ibs function in the GenABEL R package by using shared 

genotype counts as a measure of genetic distance between individuals. 

For the association analysis different genetic models were assumed: additive, 

recessive and dominant. 

Association analysis was conducted separately for each cohort and results have 

been pooled together through meta-analysis. Meta-analysis was conducted using 

the inverse variance weighting method. 
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3. RESULTS 
 
a. GWAS of PROP bitter perception 
Meta-analyses have identified some SNPs associated with PROP responsiveness. 

In table 3 are shown the most significant results obtained using different genetic 

models (p-value<1.0E-06). 

 

Table 3. List of SNPs with p<1.0E−06 associated to PROP responsiveness. 
Closest gene refers to closest gene or genes in a region of ±200 Kb upstream and downstream the 
SNP.  
*This snp is associated to the phenotype also using the additive model with p-value=8.46E-07.  
**This snp is associated to the phenotype also using the recessive model with p-value=9.11E-07.  
***This snp is imputed only in two of the three analyzed populations.  
 

The highest hit was found with a SNP located on chromosome 7 near 5’ UTR 

region of the T2R38 gene, the major gene responsible of PTC and PROP 

SNP Chromosome Position p-value Closest Gene Genetic 
Model 

rs78537477* 3 10296849 
 

3.34E-07 
 

TATDN2, 
GHRLOS, GHRL 

dominant 

rs2270454 
 

3 10292140 
 

7.88E-07 
 

“ dominant 

rs2005903 3 10299040 
 

9.56E-07 
 

“ dominant 

rs2003595 
 

3 10299057 
 

8.64E-07 
 

“ dominant 

rs146768860 
 

3 10299656 
 

3.96E-07 
 

“ dominant 

rs56284018 3 10300846 
 

9.02E-07 
 

“ dominant 

rs2241313 
 

3 10302045 
 

4.78E-07 
 

“ dominant 

rs2241314 
 

3 10302056 
 

4.54E-07 
 

“ dominant 

rs12200968** 
 

6 52472541 
 

2.19E-07 
 

TMEM14A 
 

additive 

rs7746307 
 

6 52473126 
 

6.04E-07 
 

“ additive 

rs6458845 6 52473418 
 

7.05E-07 
 

“ additive 

rs35936127*** 7 
 

141674316 5.66E-08 T2R38 dominant 
 

rs11623995 14 22905725 
 

2.66E-07 
 

NA additive 

rs2331619 
 

14 22910451 
 

3.25E-07 
 

“ additive 

rs10137305 
 

14 22914747 
 

5.13E-07 
 

“ additive 

rs7144549 
 

14 22921202 
 

6.37E-07 
 

“ additive 
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perception. It is not in linkage disequilibrium with the three SNPs of T2R38 gene 

already associated to the PROP phenotype, so it could make an independent 

contribution to PROP perception. 

In addition, association was observed for several SNPs located on chromosome 3 

in TATDN2 gene and very closed to GHRL and GHRLOS genes. 

An additional 3 SNPs, associated with the analyzed phenotype, are located on 

chromosome 6 closed to TMEM14A gene. 

Finally, association between PROP responses and further 4 SNPs on 

chromosome 14 were found. These SNPs falls into a gene-free region. 

Figure 7 shows the regional association plots for the identified top hits. 
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Figure. Regional association plot for the top hits of PROP GWAS.  
Plot made using the tool Locus Zoom (https://statgen.sph.umich.edu/locuszoom/).	
   SNPs are 
plotted with their P values (as −log10 values) as a function of genomic position. Estimated 
recombination rates are plotted to reflect the local LD structure around the associated SNPs.	
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b. GWAS of salt responsiveness 
In the meta-analysis for NaCl responsiveness no significant association results 

were observed (p<1.0E-06), while looking at each population interesting signals 

were found. Best hits associated to NaCl responses using different genetic models 

in each population are reported in table 4. 

 
SNP Chromosome Position p-value Closest Gene Genetic 

model 
Population 

rs1892700 
 

21 35016137 
 

1.84E-07 
 

ITSN1 additive CARL 

rs10804137 
 

2 205257059 
 

2.23E-07 
 

NA recessive CARL 

rs12521970 5 135824521 
 

7.89E-07 
 

TRPC7 dominant CARL 

rs547916 12 5324400 
 

5.61E-08 
 

KCNA5 recessive FVG 

rs7983485* 
 

13 111933998 
 

2.76E-07 
 

NA additive VB 

rs2697696 
 

4 17448293 
 

8.40E-07 
 

NA recessive VB 

Table 4. Best hits for NaCl responsiveness 
Closest gene refers to closest gene or genes in a region of ±200 Kb upstream and downstream the 
SNP. 
In FVG addtitive and dominant models do not show results with p<1.0E-06. 
* This SNP is the best hit also using the dominant model (with p-value= 2.7E-08) 
(CARL=Carlantino population; FVG=Friuli-Venezia Giulia population; VB=Val Borbera population) 
  
 
In Val Borbera population two SNPs (rs7983485 and rs2697696) were associated 

to salt perception, although both SNPs fall in a gene-free region. In Carlantino 

population 3 different SNPs show association with NaCl responsiveness: 

rs1892700 in ITSN1 gene, rs10804137 in a gene-free region and rs12521970 

closed to TRPC7 gene. Finally, in FVG population only 1 SNP, located close to 

KCNA5 gene, shows association with the phenotype for all the analyzed genetic 

models. In particular, TRPC7 and KCNA5 genes are of special interest for their 

biological role in taste perception. 

Figures 8 and 9 show the regional association plot for the KCNA5 gene region and 

TRPC7 gene region respectively. 
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Figure 8. Regional association plot for the top hit of salt GWAS in FVG population.  
Plot made using the tool Locus Zoom (https://statgen.sph.umich.edu/locuszoom/). SNPs are 
plotted with their P values (as −log10 values) as a function of genomic position. Estimated 
recombination rates are plotted to reflect the local LD structure around the associated SNPs. 
 

 
Figure 9. Regional association plot for the top hit of salt GWAS in Carlantino population 
Plot made using the tool Locus Zoom (https://statgen.sph.umich.edu/locuszoom/). SNPs are 
plotted with their p-values (as −log10 values) as a function of genomic position. Estimated 
recombination rates are plotted to reflect the local LD structure around the associated SNPs. 
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In addition to further validate the impact of TRPC7 in salt perception, protein–

protein interaction network was constructed using STRING v9.1 (Franceschini et 

al., 2013). The network showed that TRPC7 interacts with others proteins linked to 

taste function, such as ITPR3 (inositol triphosphate receptor 3) and TAC1 

(tachykinin precursor 1) (Figure 10). ITPR3 is involved in bitter, umami and sweet 

taste transduction (Chaudhari & Roper, 2010), while TAC1 is the precursor of 

tachykinins and is known that tachykinin receptors are expressed in mouse taste 

buds (Grant, 2012).  

 

 
Figure 10. Protein interaction network of TRPC7. 
Different line colors represent the types of evidence for the association (green line for previous 
literature knowledge; pink line for high‐throughput experiments, violet line for homology). 
 

 
4. DISCUSSION 
 
a. Other genetic factors of PROP bitter taste perception 
Although a recent GWAS study has failed to detect additional genetic variants that 

impact PROP perception (Genick et al., 2011), past studies have suggested that 

additional genetic factors, other than T2R38, may play a role in influencing the 

variation in PROP bitter taste (Drayna et al., 2003; Reed et al., 2010; Padiglia et 

al., 2010; Cabras et al., 2012). 
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Our GWAS study on PROP perception has not showed significant associations. 

Nevertheless, interesting associations for their biological role were identified such 

as that with GHRLOS and GHRL genes. GHRL gene encodes ghrelin-obestatin 

preproprotein, which generates ghrelin and obestatin. GHRLOS is the antisense 

gene of the ghrelin gene. Ghrelin is an extremely important hormone that regulates 

appetite, food intake, gastric emptying, weight gain and growth hormone secretion. 
T2Rs bitter receptors are found in some gastrointestinal endocrine cells, including 

those that secrete the peptide hormones (e.g., ghrelin) in response to stimulation 

by bitter-tasting compounds. Recent studies on mice have also shown that 

activation of bitter taste receptors in the gut stimulates ghrelin secretion, with 

functional effects on food intake and gastric emptying and thus regulating appetite 

(Janssen et al., 2011). In light of these evidences, the association we found 

between PROP bitter perception and variants closed to GHRL gene is noteworthy 

because it suggests that ghrelin could have negative feed back mechanism which 

regulates bitter perception. However, further studies are needed to clarify the 

GHRL variants role in PROP perception and if its effect is limited to this particular 

bitter compound or if it involves bitter perception in general.  

Another interesting result is the identification of an additional SNP closed to the 5’ 

UTR region of the T2R38 gene, which might indicate a regulatory region, in 

agreement with a recent work showing that mRNA expression amounts of the PAV 

allele of the T2R38 gene correlate with differences in PROP perception (Lipchock 

et al., 2013). Given that T2R38 gene is the major but not exclusive responsible of 

differences in PROP perception, even among individuals with the same genotype, 

our result indicate that both the genotype and the expression levels could 

modulate PROP bitter perception. 

Despite the biological relevance of the genetic variations identified in our study for 

PROP bitter taste further investigations are needed to replicate present results in 

an independent cohort and clarify the biological mechanism associated to 

individual differences in bitter perception. 

 
b. Variants in TPRV7 and KCNA5 genes are linked to salt taste perception 
As previously described, despite recent progress very little is known about the 

genetics bases of salt taste. Our study resulted in the identification of genes that 
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have a convincing biological role in salt taste perception and that may be 

considered as good candidates for further investigations. The most relevant gene 

is KCNA5, encoding a member of a potassium channel voltage-gated, shaker-

related subfamily. It belongs to the delayed rectifier K+ (DRK) class, the function of 

which could restore the resting membrane potential of cells after depolarization. 

Interestingly, in the mammalian taste system, DRK channels may play a central 

roles in specific taste transduction pathways, in which they have been reported to 

serve as direct or indirect targets for modulation by a variety of taste stimuli, 

including acids, sweeteners, bitter stimuli and fatty acids (DeSimone et al., 2001; 

Herness, Sun, & Chen 1997; Zhao, Lu & Herness, 2002; Gilbertson et al., 1997). 

Moreover, a study has shown that KCNA5 is the major functional DRK channel 

expressed in the anterior rat tongue (Liu et al., 2005). 

Another noteworthy gene found in our GWAS analysis is TRPC7, a member of the 

big family of transient receptor potential (TRP) channels. These receptors play a 

crucial role in many mammalian senses, including touch, smell and taste 

(Damann, Voets & Nilius, 2008). As regard taste sensation, different TRP genes 

are expressed in taste receptors cells; for example TRPM5 functions as a 

downstream component in sweet, umami and bitter taste signal transduction; 

PKD1L3 and PKD2L1 are both involved in responses to sour stimuli; TRPV1 is the 

candidate for salt taste perception. Moreover, other members of TRP channels, 

are involved in eating experience through activation of free nerve ending that 

innervate tongue, palate and nose. Among them TRPV1 is the receptor for hot 

compounds responding to capsaicin of chili pepper, TRPM8 is the receptor for cool 

compounds such as menthol and eucalyptol, TRPA1 is the receptor for pungent 

compounds such as mustard and cinnamon (Ishimaru & Matsunami, 2009). 

In addition, STRING analysis has shown that TRPC7 protein interact with others 

proteins with a biological link to taste perception. ITPR3 play a role in the taste 

transduction pathway of bitter, umami and sweet tastes. ITPR3 channels allow the 

flow of calcium out of the endoplasmic reticulum in response to IP3, resulting in 

the activation of TRPM5 with leads to a depolarization generation an action 

potential (Chaudhari & Roper, 2010). TAC1 is the precursor of tachykinins, such 

as substance P, neurokinin A, neuropeptide K and neuropeptide gamma. Nerve 

fibers containing substance P and neurokinin A are present in around taste buds 
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(Nagy et al. 1982; Yoshie et al., 1989) and tachykinin receptors are expressed in 

mouse taste buds (Grant, 2012). Several studies have also shown that substance 

P can stimulate or modulate responses in gustatory neurons of the nucleus tractus 

solitarius and gustatory sensory ganglion (King, Wang & Bradley, 1993; Koga & 

Bradley, 2000). Interestingly, tachykinin agonists are involved in a decreased salt 

intake in rats, suggesting that they might modify salt taste sensitivity (Ciccocioppo 

et al., 1994; Flynn, 2000).  

All these evidences support the association we found between salt responses and 

a variant close to TRPC7 gene, suggesting is involvement in salt taste. 
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CHAPTER III 

The role of PROP bitter perception on food liking 
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1. BACKGROUND AND AIM 

 
a. PROP bitter taste perception  
The sensitivity to bitter taste is a variable trait both within and between human 

populations, and large individual differences in responsiveness to bitternesshave 

been well documented (Tepper, 1998). Bitter perception in humans is mediated by 

a family of 25 T2R taste receptors (Behrens & Meyerhof, 2006). Among them, the 

most studied is the T2R38 gene, associated with the ability to taste PTC 

(phenylthiocarbamide) and PROP (6-n-propylthiouracil) (Bufe et al., 2005). 

Approximately 70% of the world’s population are considered “tasters”, and 

perceive these substances as moderately to intensely bitter. These compounds 

are weak or tasteless for the remaining 30% of the population, who are considered 

“non tasters”. Bartoshuk et al. revealed that taster individuals can be divided into 

two sub-groups: medium tasters, who perceived moderate intensity from 

PTC/PROP, and super-tasters, who perceived these compounds as extremely 

bitter. Thus, the population distribution of non tasters, medium tasters and super 

tasters is approximately 30%, 50% and 20% respectively (Bartoshuk, Duffy & 

Miller, 1994). 

As previously reported (Chapter II), sequence variations in the T2R38 gene 

produce three amino acid substitutions: A49P, A262V and V291I that define two 

common haplotypes, namely PAV and AVI. The AVI haplotype (AVI/AVI 

homozygous individuals) specifies the non taster phenotype, while it was 

supposed that the PAV haplotype (PAV/PAV homozygous or PAV/AVI 

heterozygous individuals) specifies the taster phenotype (Kim et al., 2003). 

Although supertasting is typically associated with heightened responses to the 

bitterness elicited by PROP, T2R38 variations cannot explain “general” 

supertasting more broadly defined as the ability to perceive oral sensations more 

strongly without regard to PROP status or T2R38 polymorphisms (Hayes, 

Bartoshuk, Kidd, & Duffy, 2008). Rare haplotypes (AAI, AAV, PAI, and PVI) have 

also been observed at a frequency of 1–5% (Behrens et al., 2013), but are mainly 

found in African populations (Campbell et al., 2012). 

PTC and PROP are synthetic compounds, not found in nature, but they are 

chemically similar to isothiocyanates commonly found in broccoli, cabbage and 
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other bitter-tasting Brassica vegetables (Drewnowski & Gomez-Carneros, 2000).  

The presence of the thiourea group (N-C=S) within these compounds is 

responsible for their bitter taste. Although the T2R38 receptor is also capable of 

binding non-thiourea substances (e.g., limonin, ethylpyrazine), compounds with 

the N-C=S moiety are considered the primary ligands for this receptor (Meyerhof 

et al., 2010).  

 
b. PROP bitter taste perception and food liking  
Taste is considered one of the most important factors influencing food selection. 

Numerous studies have focused on PROP bitter perception and its relationship 

with taste preference and even food acceptance. Greater perception of PROP is 

generally, but not always, associates with dislike and avoidance of Brassica 

vegetables (Tepper, 2008; Dinehart et al., 2006; Keller et al., 2002; Ullrich et al., 

2004; Tsuji et al., 2012; Gorovic et al., 2011; Feeney, 2011; Baranowski et al., 

2011). There are also numerous reports that supertasters dislike bitter foods that 

do not contain the thiourea group, as well as other foods that produce strong oral 

sensations such as sweets, added fats, spicy foods and alcoholic beverages 

(Hayes & Keast, 2011; Hayes et al., 2011; Hayes & Duffy, 2008). In light of these 

observations, PROP-tasting has gained attention as general marker for oral 

sensations and food preferences. This view remains controversial, however, since 

some studies report no relationship between PROP tasting and general food 

preferences (Drewnowski, Henderson & Cockroft, 2007; Feeney, 2011) and other 

markers for oral sensations have emerged (Hayes, Feeney, & Allen, 2013; Hayes 

et al., 2013). 

The present study was designed to address this gap in knowledge. Here, we 

examined relationships among PROP perception, T2R38 polymorphisms and food 

liking in different rural communities from the Caucasus region (Georgia, Armenia 

and Azerbaijan), Central Asia (Uzbekistan and Kazakhstan) and Tajikistan. Data 

were obtained as part of the scientific expedition Marcopolo 2010 

(www.marcopolo2010.it), whose main goals were to analyse individual differences 

in the human senses (e.g. taste, smell, hearing, vision) across the Silk Road, a 

major pathway for cultural, commercial, and genetic exchange between individuals 

from China and Mediterranean countries for almost 3,000 years. 
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2. MATERIALS AND METHODS 

 

a. Participants 
A total of 496 subjects participated in the study (206 males and 290 females), 

coming from 20 different communities of six countries in the Caucasus and Central 

Asia: Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan and Tajikistan 

(Figure 11).  
 

 
Figure 11. Populations along the Silk Road. 
Populations analysed (linked by dashed line), their geographical location and sample size. 
 

All communities belong to the Terra Madre organization (www.terramadre.org). 

Information, such as age, sex, lifestyle, eating habits, professional activity, 

smoking and alcohol consumption were collected. 

All subjects provided written informed consent before participation. Approval for 

the research protocol was obtained from the ethical committee of IRCCS-Burlo 

Garofolo Hospital.  

 

b. DNA sampling and genotyping 
Saliva samples were collected from all participants using the Oragene DNA 

collection kit and DNA was extracted (DNA Genotek, Ontario, Canada). Three 
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polymorphisms in the T2R38 receptor gene (rs1726866, rs10246939 and 

rs713598) define the genotype. The first two were genotyped with the Omni 

Express 700k Illumina Chip. The third one was analysed using TaqMan probe-

based assays (Applied Biosystems, Foster City, CA, USA). 

 

c. PROP tasting 
PROP taste intensity was determined in all subjects using a filter paper method as 

previously described (Chapter 2). For this study the LMS was translated in the 

local language of each community. In addition, translators verbally defined the 

label descriptors of the scale to each participant and also instructed him/her to 

make a mark anywhere on the scale, not only near the descriptors. 

Using LMS numerical cut-off scores of <15 and >67, the subjects were classified 

as super tasters and non tasters, respectively. Medium tasters fell between those 

two limits (> 16 and 67). NaCl ratings were used as a reference standard for 

classifying subject who gave a borderline rating to PROP. The use of NaCl as a 

reference standard is based on the observation that super tasters give higher 

ratings to PROP than NaCl, medium tasters give similar ratings to both, and non 

tasters give higher ratings to NaCl than to PROP (Tepper, Christensen, & Cao, 

2001). These procedures were developed and validated in previous studies (Zhao 

et al., 2003) and have been used in numerous investigations in English-speaking 

and non-English speaking populations followed in our previous studies (Tepper et 

al., 2008; Tepper et al., 2009; Bembich et al., 2010). 

 

d. Food liking questionnaire  
Participants completed a 79-item food liking questionnaire that was based on an 

instrument used in a previous study (Tepper et al., 2009) and supplemented with 

foods specific to the diets of the communities we studied. The selection of the 

supplemental foods was based on a survey conducted by collaborators from the 

Terra Madre organization who carried out a preliminary survey on the local foods 

consumed by these populations (Pirastu et al., 2012). The questionnaire assessed 

general food likes and dislikes (e.g. garlic, milk, banana, orange juice). It was 

administered in the local language of each community by translators who were 

familiar with the local culture. 
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Subjects rated their liking of each item on a 5-point scale ranging from “like 

extremely” (score 5) to “dislike extremely” (score 1). The option “never tasted” was 

also included.  

 

e. Statistical analysis 
The Chi-square test was used to examine the association between T2R38 

genotypes and PROP status for the whole cohort. Chi-square tests were also 

performed to determine whether the relationship between T2R38 genotypes and 

PROP status differed among the populations tested. Correspondence Analysis 

was also applied to the two-way contingency table of PROP status and 

participants’ country of residence to obtain a graphical representation of the 

relationship between the two variables. 

Analysis of covariance (ANCOVA) was performed to determine the influence of 

PROP taster status and T2R38 genotypes on liking of each food. This analysis 

was applied to the entire cohort and to each population separately. Sex and age 

were used as the covariates. Due to the large number of comparisons, statistical 

significance was set at p<0.00063, following Bonferroni correction (p=0.05/ 79 

foods).  

In addition, the foods were grouped (Ullrich et al., 2004) and the same analyses 

were conducted using food groups. The food groups included fruits (strawberries, 

lemons, orange juice), vegetables (artichokes, spinach, turnip, cooked carrots, 

asparagus, fava beans, cabbage), alcohol (red wine, white wine, vodka, brandy, 

beer), condiments (olives, sardines, onion, garlic, kilka, adgika, chilli pepper), 

sweets (ice cream, cake, sweet ricotta, biscuits, biscuits with cream, jam, honey, 

milk chocolate). The mean number of foods within each food group was calculated 

for each subject and was used for the analyses. 

We also sought to determine if variations in food likes and dislikes across 

populations were related to the distribution of PROP phenotypes or T2R38 

genotypes.  To accomplish this task, a series of data matrices were constructed. 

First, the Kruskal-Wallis test was performed (at p<0.00063) comparing the food 

liking of each population to all others, pairwise. The number of foods that showed 

statistically significant differences between population pairs were tallied and 

entered into a distance matrix.  Higher values indicated dissimilar patterns (large 
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distances) in food liking between populations, and lower values indicated similar 

patterns (small distances) between them. For example, if the pair-wise difference 

between two populations was high, these two populations had many differences in 

food liking.  On the contrary, if the pair-wise difference was small, the two 

populations shared similar food liking responses.  

In order to describe the phenotypic dissimilarities in bitter perception between 

populations, we created another distance matrix. Here, we calculated the chi-

square statistic (as a distance measure) between phenotypic groups (non taster, 

medium taster and super taster) for each population, pairwise. Here, higher values 

represent a large difference (i.e., distance) in PROP bitter responsiveness 

between population pairs, and lower values represent a small difference in 

responsiveness between population pairs. The data inputs and procedures for this 

analysis are similar to those of multiple correspondence analysis (MCA) where 

data are categorical rather than continuous. 

In order to assess possible bias due to the differences in sample size between 

populations, we performed a bootstrap analysis. We constructed a series of 

distance matrices by repeatedly (1000 times) sampling 47 individual (the n of the 

smallest population) from each population. We compared each distance matrix 

built after bootstrapping with the original one (built using the full dataset) and found 

a high correlation between them (r>0.9), showing that differences in sample size 

did not affect our results. 

Then, we calculated the FST (Fixation Index) (Reynolds, Weir & Cockerham, 1983) 

to estimate genetic differences between populations for the SNPs which define 

T2R38 haplotypes. We also constructed a matrix of FST values using the whole 

genome (~356,000 SNPs) to obtain a global estimate of genetic diversity in our 

sample. Pairwise FST was performed using the R package Adegenet v1.3-4 

(Jombart, 2008). 

Finally, the Mantel test (Mantel, 1967) was used to determine the (dis)similarities 

between distance matrices.  The Mantel r statistic is a standardized Pearson 

correlation coefficient calculated following random rearrangement of the data 

matrices across multiple permutations.  1000 iterations were used for a critical cut-

off value of p<0.05. 
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3. RESULTS 
 
a. PROP phenotypes and haplotypes  
All 496 individuals genotyped for T2R38 were tested for PROP taste intensity. The 

distribution of PROP status in each population was analysed and is shown in 

Table 5. In the overall sample 37.0% of individuals were non tasters, 40.0% were 

medium tasters and 23.0% were super tasters.  

 
 PROP phenotype 

 NT MT ST 

All (n=496) 37.0% 40.0% 23.0% 

Sex    

Males (n=206) 44.2% 41.7% 14.1% 

Females (n=290) 32.1 % 39.3% 28.6% 

Population    

Georgia (n=116) 50.9% 38.8% 10.3% 

Azerbaijan (n=47) 38.3% 46.8% 14.9% 

Uzbekistan (n=91) 40.7% 40.7% 18.6% 

Kazakhstan (n=57) 31.6% 50.9% 17.5% 

Tajikistan (n=80) 36.2% 32.5% 31.3% 

Armenia (n=105) 22.0% 39.0% 39.0% 

Table 5. Distribution of PROP phenotype by sex and population 

 

Interestingly, the distribution of phenotypes varied among the populations (X-

squared=42.1077, p-value=7.1E-06). In particular, the prevalence of non tasters 

was higher in Georgia (50.9%) as compared to other populations, while the 

proportion of super tasters was higher in Armenia (39.0%) and Tajikistan (31.3%) 

relative to the other populations.  

Correspondence Analysis revealed the relationships among the populations living 

in different countries with respect to PROP phenotype. In agreement with the 

univariate analyses, Georgia was highly associated with the non taster phenotype 

while Armenia was closely associated with the super taster phenotype. 

Furthermore, medium tasters were highly represented in the cluster of populations 

consisting of Azerbaijan, Uzbekistan and Kazakhstan. Tajikistan was distinct from 

the other groups (having relatively equal frequencies of the three taster 
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phenotypes), although it was more closely associated with the super taster 

phenotype, in accordance with the high prevalence of super tasters in this 

population (Figure 12).  

 
Figure 12. Correspondence analysis between taster status and country.  
Correspondence Analysis between taster status and country shows the relationship between them. 
In particular, super taster status corresponds to Armenia and Tajikistan populations, non taster 
status to Georgia and medium taster status to Azerbaijan, Kazakhstan and Uzbekistan. Circles and 
triangles represent the country and the PROP status respectively. NT=non taster, MT=medium 
taster, ST=super taster. Country accounted for the majority (87.3 %) of variance and taster status 
accounted for 12.7% of variance in the model. 
 

In contrast to the phenotypic differences observed among populations, we found 

no differences in T2R38 haplotypes across populations (X-squared = 8.1822, p-

value=0.611) (Table 6). The AVI/AVI, AVI/PAV and PAV/PAV diplotypes 

accounted for 24.9%, 48.0% and 27.1%, respectively, of the overall sample, in 

agreement with the allelic frequencies typically reported in Caucasian populations  

(Kim et al., 2003).  
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 T2R38 haplotype 

 AVI/AVI PAV/AVI PAV/PAV 

All (n=496) 24.9% 48.0% 27.1% 

Sex    

Males (n=206) 24.8% 48.5% 26.7% 

Females (n=290) 25.0 % 47.6% 27.4% 

Population    

Georgia (n=116) 33.7 % 42.2% 24.1% 

Azerbaijan (n=47) 15.2% 56.5% 28.3% 

Uzbekistan (n=91) 22.2% 51.1% 26.7% 

Kazakhstan (n=57) 24.6% 49.1% 26.3% 

Tajikistan (n=80) 23.8% 47.6% 27.8% 

Armenia (n=105) 22.9% 47.6% 29.5% 

Table 6. Distribution of T2R38 haplotype by sex and population 

 

As expected, there was a strong association between T2R38 diplotypes and 

PROP phenotypes (X-squared=151.4019, p-value<2.2E-16). In the entire sample 

82.9% of AVI/AVI homozygous individuals were non tasters, compared to 11.4% 

who were medium tasters and 5.7% who were super tasters. As expected, 

PAV/PAV homozygous and PAV/AVI heterozygous subjects were mainly medium 

or super tasters. We observed a similar correspondence between genotypes and 

phenotypes in each population.  

 

b. PROP phenotype and food liking 
The relationship between PROP phenotype and liking for each food on the food 

liking questionnaire was examined for the entire cohort, and separately for each 

population, and no associations were found. No relationship was revealed also 

between PROP status and food preference groups. These same analyses were 

repeated for T2R38 haplotypes, and the outcome was the same; no associations 

were found. 

 

c. Multi-dimensional analyses of food liking 
A distance matrix describing the differences in food liking across the populations 

was constructed, and is graphically presented as a dendrogram in Figure 13.  
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Figure 13. Dendrogram based on differences in food preferences between populations.  
The dendrogram shows three groups: one composed by Georgia, the second one by Uzbekistan 
Kazakhstan and Azerbaijan and the third one by Armenia and Tajikistan. 
 

The figure shows three different groups: the first one composed only of Georgia, 

the second one composed of Uzbekistan, Kazakhstan and Azerbaijan and the 

third composed of Armenia and Tajikistan. It is clear that countries do not group 

according to geography, especially in the case of Armenia and Tajikistan. We then 

determined if the PROP responsiveness phenotypes could explain the observed 

clustering. Thus, we compared the two distance matrices (the PROP phenotype 

on one hand and the food liking on the other) and found a strong positive 

correlation between them (Mantel test: r=0.67, p-value=0.003). The results of the 

Mantel test between each pair of distance matrices are summarized in Table 7. 

 

 

 



	
   43 

 Geography GenomicFst T2R38Fst  PROP Status 

     

Genomic Fst 0.79    

T2R38 Fst -0.04 -0.04   

PROP Status -0.32 -0.37 -0.18  

Food liking 0.20 0.02 -0.30 0.67 

Table 7. Mantel test results between distance matrices analyzed. 

 

We also tested if the T2R38 gene was associated with these groupings, and found 

no evidence of correlation (correlation=0.02, p-value=0.3) between the distance 

matrix of food liking and the matrix of genetic distance based on T2R38. In 

addition no correlation was found using the distance matrix based on the whole 

genome using ~356,000 SNPs. 

 
 
4. DISCUSSION 
 
a. PROP phenotype differences between populations  
This study reports, for the first time, data about differences in taste responsiveness 

to PROP bitterness in populations of rural communities of the Caucasus and 

Central Asia located along the Silk Road.  

Interestingly, differences in the distribution of PROP status between the examined 

populations were detected. These results do not agree with a simple geographical 

explanation for the pattern of PROP phenotypes across populations. In particular, 

the phenotype differences between the populations of Armenia and Georgia were 

totally unexpected, because these two countries are closely located and have a 

long standing tradition of cultural and political exchange dating back to the Middle 

Ages, when the two countries were allied against the Muslim empire (Walker, 

1990). 

Differences in age, gender and smoking can influence PROP phenotypes 

(Bartoshuk et al., 1994; Mennella et al., 2010; Mangold et al., 2008). However, 

these factors did not explain the variability across the populations studied here 

since our analyses adjusted for these factors.  These data support recent findings 

suggesting that other genetic loci or non-genetic factors contribute to PROP 



	
   44 

tasting (Calò et al., 2011; Cabras et al., 2012) and efforts to identify and fully 

characterize these factors should be an on going goal. 

 

b. PROP phenotype as marker of food selection 

The relationship between PROP perception and food liking was dissected using a 

“population-based approach”, in which we exploit phenotypic differences between 

populations, comparing a distance matrix based on PROP taste responses and a 

matrix based on food preferences, detecting a strong correlation between the 

matrices of PROP status and food preferences. These results have two important 

implications. First, they show that differences in food liking among populations 

strongly correlate with PROP taster status but not with T2R38 genotypes. This 

finding supports the view that polymorphisms in T2R38 primarily define the ability 

to taste PROP, but also recognizes that this gene is pleiotropic and influences 

multiple phenotypic traits such as the perception of non-thiourea, bitter and non-

bitter tastes, other oral sensations, food liking, and downstream effects such as 

dietary behaviour and weight status (Calò et al., 2011; Tepper, 2008; Tepper et al., 

2008). Nevertheless, PROP status maybe one of several markers for 

chemosensory perceptions (Hayes et al., 2013), and multiple markers may be 

required to fully capture the depth and breath of human chemosensory 

experiences, and their influence on food selection. 

Second, we did not observe any direct relationships between geography and the 

distribution of T2R38 haplotypes or between geography and food liking in the 

populations we studied. Our findings differ from those of Pemberton et al. 

(Pemberton et al., 2008) who studied T2R38 haplotypes in Asian Indians born in 

15 geographic regions across India. They found that haplotype frequencies varied 

along a latitudinal cline with more tasters in the northern groups and more non 

tasters in the southern groups. Although Pemberton et al. did not study food liking, 

it is intriguing that pungent spices, like chilli pepper are more frequently consumed 

in southern India (Ferrucci et al., 2010) in the same areas where non tasters 

predominate. Given the critical role of geography and climate in shaping the 

genetic features of world populations (Cavalli-Sforza, Menozzi & Piazza, 1994), we 

can only speculate that the geographical and ecological barriers to genetic and 

cultural exchanges in the groups residing in India along a north-south gradient 
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were more formidable than those operating along the Silk Road which has been 

an east-west corridor for such exchanges for thousands of years.  

However, asymmetrical gene flow and the availability of different crops could also 

be responsible for variability in genetic features across populations (Mitchell-Olds, 

Willis & Goldstein, 2007).  

Therefore future studies involving a deeper analysis of other genes and 

environmental variables could further elucidate population differences in taste 

responses and food liking. 

In conclusion, we used a population-based approach in which we exploited taste 

phenotypic differences among populations to reveal differences in food liking 

patterns across populations that could not be detected using standard methods. 

This approach, based on comparisons between distance matrices, can be applied 

to different population groups around the globe to obtain a comprehensive view of 

the role of PROP tasting in food preferences as well as to explore the role of novel 

taste-related traits in food choice. 
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CHAPTER IV 
The impact of taste perception and food liking on 

health status 
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1. BACKGROUND AND AIM 
 
a. The influence of taste perception on health and disease 
As described in chapter I, differences in taste perception can be related to dietary 

behaviors that increase the risk to develop several disease such as obesity, 

diabetes, cardiovascular diseases, colorectal cancer, dental caries. Therefore, 

these differences in taste perception, explaining some of the differences in what 

we like/dislike to eat, could be used in applying of dietary recommendations that 

should facilitate the reduction of chronic diseases risk. 

In addition, important clinical implications are associated to the presence of taste 

receptors in the gut and in the airway, with potential effects also for drug 

development and medical practice. For example, inhaled bitter tastants decrease 

airway obstruction in a mouse model of asthma (Deshpande et al., 2010), 

therefore using of synthetic and naturally compounds, which activate bitter taste 

receptors, could be an efficient therapy in the treatment of obstructive airway 

diseases such as asthma. In the same way, taste receptors in the gut, playing a 

key role in digestive behavior and metabolism, could be considered as good 

targets for the treatment of a number of pathological conditions related to diabetes, 

obesity, eating and gastrointestinal motility disorders (Depoortere, 2014). 

Additionally, given that bitter taste evolved as a warning mechanism against the 

ingestion of toxic substances, bitter receptors located both in the gut and in the 

airways may represent a possible defense mechanism toward harmful substances 

and thus control the inflammatory response in the gut or respiratory infection in the 

airway, evoked by bacteria (Lee et al., 2012; Depoortere, 2014). 

 

b. The effect of sweet taste perception and liking on dental caries  
Dental caries is one of the most prevalent multifactorial diseases, directly 

influenced by diet and nutrition (Touger-Decker & Mobley, 2003; Moynihan & 

Petersen, 2004). Evidence from animal and human studies have revealed that 

sugar is the most important factor in caries development and that dietary intake of 

sugar is related with increased levels of caries prevalence (Sreebny, 1982; 

Krasse, 2001). In humans a large number of studies have been conducted in 

different populations (Wang et al., 1998; Beighton, Adamson & Rugg-Gunn, 1996; 
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Bruening et al., 1999; Masalin, Murtomaa & Sipilä, 1994), which show that the 

frequency and amount of intake of sugars are both associated to dental caries. 

Although many works addressed the association between sugar intake and dental 

caries, most of them have been conducted on children or on adolescents, a 

population known to have habitually a higher sugar intake. Similar results were 

obtained on elders in which frequent sugar consumption was identified among 

those variables contributing the most to the risk of caries (MacEntee, Clark & 

Glick, 1993). Despite the attention to this relationship very few studies have been 

conducted in adults with the exception of two studies showing that increased 

frequency of sugar consumption is associated with a marked increase in dental 

caries which halted on withdrawal of sugar from the diet (Gustafson et al., 1954) 

and that the substitution of sucrose in the diet with a non-cariogenic sweetener 

results in a robust reduction in dental caries (Scheinin, Mäkinen, & Ylitalo, 1976). 

Other studies have found that high sugar intake mirrors a greater preference for 

sweet substances and sweet preferences have been also associated with dental 

caries (Jamel et al., 1997; Steiner, Sgan-Cohen & Nahas, 1984). Given the 

influence of diet on caries, several studies have also investigated if the genes 

involved in taste perception, especially sweet taste, could influence its insurgence. 

A recent work has identified a significant association between GLUT2 and T1R2 

genotypes, both individually and in combination, with caries risk in a young 

population (Kulkarni et al., 2013). However, to date no studies on adults 

considering a wide age range have been conducted. Therefore, in the present 

work we analyze the association of DMFT (Decayed-Missing-Filled Teeth), a 

measure of the prevalence of dental caries, with: 1) sweet food preferences; 2) 

sugar intake; 3) polymorphisms in T1R2 and T1R3 (sweet taste receptor genes) 

and GLUT2 gene (glucose transporter).  
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2. MATERIALS AND METHODS 
 
a. Dental caries evaluation 
The study population consisted of 647 healthy individuals aged 18-65 were came 

from six different villages of Friuli Venezia Giulia region. Detailed description of the 

population is reported in Chapter II.  

For all the participants an accurate oral evaluation and an additional x-ray 

examination (panoramic radiography) were collected. Prevalence of dental caries 

was measured using the DMFT (Decayed-Missing-Filled teeth) index (Larmas, 

2010). The DMF Index is applied to the permanent dentition and is expressed as 

the total number of teeth that are decayed, missing or filled in an individual. A 

DMFT score (ranges from 0 to 32) was calculated for each subject.   
 
b. Sweet food liking measurement  
Food preferences were evaluated using a 45-item food preference questionnaire. 

Subjects were invited to rate their food preferences for different sweet foods or 

beverages using a 9-point scale ranging from “like extremely” (score 9) to “dislike 

extremely” (score 1). The option “never tried” was also included in the 

questionnaire. For this study sweet foods or beverages were selected from the 

questionnaire. In particular: marzipan, panettone, whipped cream, ice cream, milk 

chocolate, espresso with sugar. For our analyses in order to adjust for scale use 

and reproducibility differences, the liking scores were modelled taking the 

residuals from a random effect linear regression model where the individual 

represented the random effect, as described in Brockhoff & Skovgaard (Brockhoff 

& Skovgaard, 1994). For each individual a sweet preference was defined as the 

mean of the corrected liking for each sweet food present in the questionnaire. This 

score was used in the subsequent statistical analysis. 

 
c. Sugar intake assessment 
Simple sugar consumption was assessed on a subsample of 322 people using a 

dietary history collected by experienced clinical dietitian. The interview evaluates 

the average daily food intake of a subject, considering its habitual meal patterns 

and the usual amount and frequency of foods eaten from all food groups, covering 
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the period of the previous year. To help subjects to define more acutely their food 

portion sizes visual aids were provided, including a picture atlas of 3 different size 

portions for each major food category and common household items (tablespoons, 

teaspoons, cups and glasses of different volumes). Nutrient intake was then 

assessed trough a software (Win food, 2.7. Medimatica, San Benedetto del 

Tronto, Italy) based on Italian food composition tables.  

 

d. Genotyping 
Details on genotyping were reported in see Chapter II. In this work all the SNP in  

T1R2, T1R3 and GLUT2 are analyzed. 
 

e. Statistical analyses 
The associations between sweet food preferences and consumption with DMFT 

were tested by fitting a linear model where the DMFT was considered as the as 

the dependent variable while sweet food preferences or consumption as 

regressors. Sex and age were used as covariates in the analysis. 

Association analysis for the SNPS in sweet genes (T1R2, T1R3, GLUT2) was 

conducted using linear mixed model regression analysis were DMFT was used as 

the dependent variable and the each SNP dosage as the independent variable. As 

random effect the genomic kinship matrix between all subjects estimated with the 

ibs function in GenABEL was used. Sex and age were also used as covariates. 
Association analysis was conducted using the GenABEL package for genotyped 

SNPs and MixABEL package for imputed SNPs (more details in Chapter II).  
 
 
3. RESULTS 
 
a. Participant characteristics 
Main features of participants are shown in Table 8. The mean age of the study 

sample was 44.9±12.4 (range 18-65 years). 44% (n=285) of the participants were 

males and 56% (n=362) were females. The mean of DMFT in the overall sample is 

15,8±7.3. No differences were detected between males and females. 
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 All 
(n=647) 

Males 
(n=285) 

Females 
(n=362) 

Age  44.9±12.4 45.7±12.5 44.4±12.2 
Teeth (n) 23.2±6.5 22.7±7.1 23.5±6.0 
DMFT  15.8±7.3 15.7±7.2 16.0±7.3 
Sweet Preference score 0.40±1.26 0.45±1.26 0.38±1.27 
Simple Sugar Intake (g/die) 101.8±49.1 107.2±53.8 97.2±44.4 
Table 8. Subject characteristics. Mean±sd are reported for all parameters.  

 
b. Association between sweet food liking and DMFT 
Using the whole sample we found a strong positive correlation between DMFT and 

sweet food preferences (r2=0.26; p=0.0008), with individuals with higher 

preferences for sweet food that show higher DMFT values. 

Using a subsample of 322 for which both preferences and consumption of sweet 

foods were available we found that, although there was a positive relationship 

between sweet preferences and simple sugar intake (r2=0.03, p=0.004), no 

significant association was found between intake of simple sugars and DMFT 

while we confirmed the previously observed association with sweet preference 

(Table 9).   

 

 DMFT 
Caries prevalence 

 R-squared Beta 
estimate 

p-value 

Simple sugar intake 0.18 0.01 0.094 
Sweet preference  0.24 0.80 0.005 

Table 9. Regression analysis between DMFT and sweet intake and preferences.  
Significant results are shown in bold. Sex and age were used as covariates.  
 
c. Association between variations in T1R2 and GLUT2 genes and DMFT 
Genetic association analysis detected a significant association with rs3935570, a 

SNP in the T1R2 gene (p=0.0117).  As shown in figure 14, individuals 

homozygous for the allele G showed higher DMFT compared to both 

heterozygous G/T and homozygous for the allele T. In addition, we found that 

rs1499821 in the GLUT2 gene was associated with DMFT (p=0.0273). Individuals 

homozygous for the allele G showed higher DMFT compared to both 

heterozygous G/A and homozygous A/A. 
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Figure 14. Boxplot comparing DMFT for the genotypes at rs3935570 and rs1499821 SNPs.   
 

 

Table 3 shows results for the SNPs significantly associated with DMFT. 

None of the SNPs in the T1R3 gene were associated with DMFT. 

Table 10. Results for the association analysis of DMFT.  
Beta=effect of the effect allele, MAF=minor allele frequency, p=p-value  
 
 
 
4. DISCUSSION 
 
a. Sweet liking influences dental caries risk  
The present study is the first to examine at the same time the relationship between 

food preferences and intake on dental caries prevalence in a large adult 

population. The positive association we found between sweet food liking and 

dental caries is well supported in the literature. Our findings moreover define that, 

although sweet liking and intake are related between them, only liking for sweet 

foods is associated with the prevalence of dental caries.  

This result supports past works showing that food preferences are predictive of 

health outcomes better than food intakes, increasing the ability to found 

association between diet and risk factors of diseases (Duffy et al., 2007; Duffy et 

SNP Chromosome Position Beta MAF p-value Gene 

rs3935570 1 19167371 -0.937 0.3168 0.0117 T1R2 

rs1499821 3 170724729 -1.047 0.1676 0.0273 GLUT2 
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al., 2009). Duffy and collaborators for the first time have reported that liking of fat 

foods were better predictors of adiposity and blood pressure than fat intake. In 

fact, typical intake measures, such as frequency surveys or dietary records, can 

result difficult to complete and interpret. In addition, cognitive issues, such as 

memory and dietary restraint, and also under- or over-estimate intakes, can lead 

to inaccurate conclusions about diet-disease relationships.  

Others studies also supported the efficacy of measuring liking for studies of taste. 

For example, Keskitalo and colleagues (Keskitalo et al., 2007) found that common 

genetic factor underlie liking for sweet foods, sweet food cravings and use–

frequency of sweet foods. In this work authors also suggested that sweet taste 

preference measures may reveal the most important aspects of the preference 

and could be used to study the effect of taste preferences on the excess use of 

sugar.  

In this study the importance of food liking as predictor of chronic disease risk 

factors is highlighted; in fact, as a proxy for reported intakes, the liking measure 

may represent habitual dietary behaviors. 

 
b. Genetic variations in sweet receptors affect dental caries 
Twin studies support the importance of genetic factors in caries, estimating that 

40-60% of caries susceptibility is genetically determined (Boraas, Messer, & Till, 

1988; Conry et al., 1993; Bretz et al., 2006). To date, only few genes have been 

associated to human caries, including genes involved in tooth formation, salivary 

and immunological factors (Slayton, Cooper & Marazita, 2005; Deeley et al., 2008; 

Peres et al., 2010; Azevedo et al., 2010). Given the influence of dietary habits on 

dental caries, the effect of taste pathway genes on caries risk was also 

investigated (Wendell et al., 2010). In the current study the relationship between 

sweet taste genes and dental caries prevalence was addressed. In agreement 

with a recent work (Kulkarni et al., 2013), our data revealed that genetic variations 

in T1R2 and GLUT2 genes are associated to DMFT, an index of the prevalence of 

dental caries. T1R2 is the receptor responsible of sensitivity to sweet taste, while 

GLUT2 is a glucose transporter involved in regulation of postprandial glucose 

levels. Polymorphisms in both these genes are responsible of individual 

differences in sweet perception and have been already linked to sugar 
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consumption (Eny et al., 2008; Eny et al., 2010). In the present work we identified 

additional polymorphisms in T1R2 and GLUT2 genes associated to dental caries 

risk/protection. We did not observe in our sample differences between identified 

SNPs and sugar intake or preferences. This lack of association could be related to 

the method employed to collect sugar intake and sweet preferences or to the 

sample size. 

Overall, these results underline the importance of understanding the role of taste 

preferences in dental caries risk and the utility of a genetics approach that, 

contributing to the characterization of genes involved in taste preference and 

dental caries, may contribute to improve the identification of individuals at risk and 

to develop targeted preventive strategies before onset of caries. 

It is possible that different and individual intervention strategies may prove more 

helpful for individual subcategories of taste receptor genotypes and thus contribute 

to early and targeted dental caries prevention. This approach may be effective for 

all other diseases strongly related to diet and nutrition, such as diabetes or 

obesity. 
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Conclusion and future perspectives 
 
 
The purpose of these three years of PhD was to try to dissect the genetic bases of 

taste perception and their possible relationships with the health status. 

Overall, the results reported in this thesis indicate that: 

- GWAS studies have the potential to generate important discoveries in the field of 

human chemosensory perception. Our GWAS in Italian isolated population 

identified interesting candidate genes for salt and bitter perception, highlighting the 

role of genetics on taste perception (Chapter II). 

- genetic differences in taste perception may affect food preferences in a complex 

manner. Our work on different populations located along the Silk Road showed 

that differences in food liking among populations strongly correlate with PROP 

taster status but not with T2R38 genotypes or geography, suggesting that the 

ability to perceive PROP could be marker for overall perception of taste stimuli 

(Chapter III). 

- differences in taste perception and food liking may impact on health status. In 

this thesis we showed that genetic differences in sweet taste genes and sweet 

food liking are both associated to the risk to develop dental caries (Chapter IV). 

- food preferences may be better predictors of health outcomes than food 

consumption, thus may provide a good alternative to assess dietary intake. 

Therefore the measurement of food preferences may also have further potential in 

the evaluation of nutrition and intervention programs (Chapter IV). 

 

Future studies are needed to further confirm the findings described in this thesis. 

In particular, it is necessary to collect larger number individuals for GWAS and 

replicate our candidate genes in other cohorts.  

In addition, to identify causative functional variants (poorly captured by existing 

arrays used for GWAS) and their role in taste perception, analysis of 250.000 

functional variants is underway.  

Further analyses on the effect of taste genes and food preferences on obesity, 

diabetes and hypertension are also planned to further dissect the relationship 

between taste perception and health status.  

Furthermore, the dissection of a field poorly investigated such as that of gene-
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environment interactions influencing chemosensory perceptions and food 

preferences could also provide insight into the biological mechanisms of taste and 

food preferences and their impact on health outcomes.  

In the future, new techniques of genetic analysis, larger data sets and establishing 

novel links between genes may help to better understand the genetics and 

lifestyle/environmental factors involved in taste perception, thus contributing to 

define novel molecular targets for diet-related disease treatment and prevention.  

Moreover, in light of the recent evidences on the role of taste receptors in the gut 

and in the airways, further studies on taste detection may also provide commercial 

information that could lead to the creation of new products in the food and drug 

industry, such as functional food or products controlling drug absorption.  
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