Rend. Istit. Mat. Univ. Trieste
Vol. XXXV, 61-67 (2003)

Explicit Parallelizations on Products
of Spheres and Calabi-Eckmann
Structures

MAURIZIO PARTON ()

SUMMARY. - A classical theorem of Kervaire states that products of
spheres are parallelizable if and only if at least one of the fac-
tors has odd dimension. We give explicit parallelizations. We
show that the Calabi-Eckmann Hermitian structures on products
of two odd-dimensional spheres are invariant with respect to these
parallelizations.

1. Introduction

It is a classical result in Algebraic Topology that spheres S™ are
parallelizable only in dimension n = 1, 3 or 7. As for the products of
two or more spheres Kervaire proved in the fifties the following (see

[31):

THEOREM 1.1 (KERVAIRE). The manifold S™ x ---x S"  r > 2, is
parallelizable if and only if at least one of the n; is odd.

In his article [1] Bruni provides explicit parallelizations on some
products of spheres, namely, whenever one of the factors is S*, S3,
S5 or S7. The general case is left as an open problem.

We solve this problem by writing down a set of orthonormal vec-
tor fields on products of two spheres, in terms of their standard
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coordinates as submanifolds of Euclidean spaces. This construction
can be recursively repeated to obtain an explicit orthonormal paral-
lelization on products of any number of spheres.

A parallelized manifold (M, P) shares with Lie groups the prop-
erty of possessing privileged finite-dimensional spaces of tensors, that
is, those which are invariant with respect to the parallelization P.
In the case of two odd-dimensional spheres we consider the standard
almost-Hermitian structure, and prove that it is integrable: in fact,
it coincides with a Calabi-Eckmann structure.

2. The explicit parallelization

The construction of the frame is based on formula (1), where ¥ is

the trivial rank k vector bundle, x denotes the cartesian product and
@ the Whitney sum of vector bundles. The equivalence sign means
“isomorphic in the C°° category”, and the proof is straightforward,
see for instance [4].

ax(ﬂ@ek):(aeBek)XB. (1)

Here and henceforth, let m and n be positive integers, and let
n be odd. Denote by =z = (z1,...,Zm+1), ¥ = (Y1,...,Yn+1) the
coordinates of S™, S™ respectively. It is convenient in the following
to think of T(S™ x S™) as a Riemannian subbundle of TR™"! x

|sm

TR, Denote by {9,,...,0 Oyys---30y,,, } the orthonormal

|S” » YTm41

frame of TR"”’SLII X T]R”‘;l.

Since n is odd, thes multiplication by ¢ defines a length 1 vec-
tor field T on S™ ¢ R*™! = C(™*D/2 and an orthogonal splitting
T(S") =na(T).

The following argument gives an elementary isomorphism ¢ be-
tween T(S™ x S™) and e™~1 x £"t1, as was pointed out by Staples
in [5].

Split T'(S™) in n&(T'), then consider it as a subbundle of T'(S™) x
T(S™) and use formula (1) to shift on the left the trivial summand.
Since T'(S™) @e! is a trivial vector bundle, a rank 2 trivial summand
can be shifted on the right, again using formula (1). Now remark
that n @ £? is trivial to obtain the trivial factor "1,
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In the above construction, choose (0.,,,0x,,,,) as rank 2 trivial

summand to be shifted on the right. This way, the frame

{89617-"7awm7178y17"'78yn+1}

is a trivialization of €™~ x e"*!. Now, define the parallelization P
as the pull-back of this trivialization by means of the isomorphism

¢:
def  _ .
P ; gb* 1{8331’ R al'm—17ay17 S, ayn+1}
In order to provide formulas for P we introduce the following

notation:

M; def orthogonal projection of 0,, on S™ i=1,....m+1,

N; def orthogonal projection of 9,; on S" j=1,....,n+ L

and remark that
M; = 0y, — x; M i=1,....m+1,
szayj—yjN j=1....n+1,

where M and N denote the normal versor field of S™ C R™*+! and
S™ C R™! respectively. Finally, denote by {t;} the coordinates of
T:
= def
T= Z tjayj = —y20y; + Y10y, + - — Ynt10y, + ynaynﬂ-
j=1

A direct computation then proves the following:

THEOREM 2.1. The frame P on S™ x 8™, for any odd n, is composed
by the vector fields
{1, Pmtn} € X(S™ x S") given by

pidéfMi—}—CCiT 1=1,....m—1,

def
P15 = Mo+t M1+ (t2msr + yjam — )T+ N; - (2)

j=1,....,n+1

REMARK 2.2. The frame P is orthonormal with respect to the prod-
uct metric on S™ x S™, as one can check using previous theorem.
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REMARK 2.3. Formula (2) can be used as a direct definition of P.
In this case, Remark 2.2 becomes a Proposition stating that P is
orthonormal with respect to the product metric on S™ x S™.

REMARK 2.4. In the particular case n = 1 one can naturally de-
fine a simpler parallelization. Denote by I' the infinite cyclic group
generated by multiplication by e?* in R™*!\ 0. The vector fields
{|x|0, }i=1,...,m+1 are I'-equivariant, whence they define a paralleliza-
tion B on (R™*1\ 0)/T, which is well-known to be diffeomorphic to
S™ x S by

(R™FIN\ 0)/T — 8™ x St
[z] — (x/|z],log |z| mod 27).

(3)

Using the above map, one obtains that B = {b1,...,by4+1} where
b; = M; + x;T, 1=1,...,m+ 1. (4)

REMARK 2.5. To obtain a parallelization in the general case, use
induction in the following way: suppose that S™2 x --- x S r > 2,
has at least one odd-dimensional factor, whence it is parallelizable.
Then using formula (1) one obtains

T(S"l X e X Snr) — T(Snl) « ghettnr
— (T(Snl) @ 61) X 6”2“1‘""‘1‘”7"—1

— 6erl % 6”2“1’""‘1’”7‘71.

3. Complex structures associated to P

For any even-dimensional parallelized manifold (M, P) denote by Ip
the invariant almost-complex structure represented by the unitary

matrix
def . 0 —1
I = d1ag< 1 0 >

Let m and n be both odd. On (5™ x S™, P) the almost-Hermitian
structure Ip is then defined. Moreover, on (S™ x S!, B) the almost-
Hermitian structure I is also defined.

The following is the main theorem of this paper.
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THEOREM 3.1. Let m and n be odd. The almost-Hermitian structure
Ip on (S™ x S™,P) is integrable.

Proof. First, look at the simplest case n = 1. Recall that the Hopf
complex structure on S™ x S is by definition the complex structure
induced by the map (3) after the identification R\ 0 = C7+1/2\
0. Being B locally conformal to the standard frame on C*+1/2\ 0,
the almost-complex structure I on (S™ x S, B) lifts to the standard
complex structure of C("+1)/2 \ 0, hence I coincides with the Hopf
complex structure on S™ x S'. Moreover, since formulas (2) and (4)
imply that P and B differ by an element of GL((m + 1)/2,C), we
obtain that I'p coincides with the Hopf complex structure on S™x S*,
and therefore it is integrable.

We need now to recall the complex Hopf fibration. It is by defi-
nition the restriction to S™ of the canonical projection C(m+1/2
CP(m=D/2 and the tangent bundle T'S™ is decomposed under this
fibration into a horizontal and a vertical subbundle. We denote by H
the horizontal subbundle, whereas the vertical subbundle is spanned
by the vector field S induced by the multiplication by i in C™+1)/2,

The Hopf complex structure on S x S turns out to be induced
on H by the complex structure of CP" D/ whereas S is mapped
onto the unitary vector field tangent to S?.

Using the Hopf fibrations for S and S™, and collecting all these
arguments, we obtain the following decomposition for the tangent
bundle of S™ x S™, wherethe horizontal subbundles H; and Hs are
closed under Ip:

T(S™ x S™) =H1 @ (S) ® Ho @ (T).

To prove the integrability of Ip for all odd n, we consider its
torsion tensor N, and we show that N(X,Y) = 0 for all X, Y €
T(S™ x S™).

First case: X, Y both in H; or both in Hy. Then N(X,Y) =0
since Ip is a Hopf complex structure.

Second case: X in H; or in Hg, and Y in (S) @ (T'). Then
N(X,Y) =0 since Ip is a Hopf complex structure.

Third case: X, Y both in (S) @ (T"). Then N(X,Y’) = 0 since Ip
is a Hopf complex structure.
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Fourth case: X in H; and Y in Hg. Then N(X,Y) = 0 since H;
and Ho are closed under Ip. O

4. Calabi-Eckmann revisited

We now briefly recall the definition of Calabi-Eckmann complex
structure I™™ on S x S™, for odd m and n, as given in the classical
paper [2].

Denote by (z;, 2;) the complex coordinates of Cm+1)/2y Clnt1)/2
and by V,, g the open subset of S™ x S" given by zaz’ﬁ # 0. Then
the maps

bap: Vag — CD2xCl=D/25(C/zZ%)
(zi,25) = (2i/2a,2j/28, [(In 2o + i ln 25) /2i])

(5)

turn out to define complex coordinates for a complex structure I™"

on S™ x S™. ™™ is called a Calabi-Eckmann complex structure on
S™ x S™,

THEOREM 4.1. The complex structure Ip on S™ x 8™ coincides with
the Calabi-Eckmann complex structure I™", namely:

I"™"™(pi) = pis1 if i is odd,
I"™"™(p;) = —pi—1 if i is even.

Proof. 1t is clear from formula (5) that the Hopf fibration S™ x S™ —
CP—1D/2 « CcP(—1/2 jg locally given by the canonical projection

(C(m—l)/Z % (c(n—l)/Z % (C/Zz) . (c(m—l)/Q % (C(n—l)/Q.

Using notation as in Theorem 3.1, this means that I"™" is induced

on Hi®Hs by the complex structure of CPm—1/2 (CIF’("_D/Q, and a
computation shows that I™"(S) = T'. The argument of Theorem 3.1
ends the proof. O
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