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1. Introduction

The theory of Euler structures and their Reidemeister torsion was
founded by Turaev in [15] for compact manifolds of arbitrary dimen-
sion, and the special case of dimension three was later discovered
to have deep connection with the three-dimensional version of the
Seiberg-Witten invariants [11], [17], [18]. In [2], restricting to di-
mension three, we have generalized Turaev’s theory by considering
boundary configurations more general than those he allows, and as a
main application we have shown how to lift the classical Alexander
invariant of knots to (pseudo-)Legendrian knots. This generalization
strongly relies on sophisticated results of Turaev [15]. In the present
paper we develop a more elementary and purely combinatorial ap-
proach to a certain variation of the theory of Euler structures with
boundary and their torsion.

The key technique we will employ below is that of branched stan-
dard spines, originally developed in [3]. This technique was already
used in [2] to give an explicit and geometric description of the in-
verse of Turaev’s reconstruction map Ψ from the space of combina-
torial Euler structures (which are represented by suitable integral
1-chains, called Euler chains) to the space of smooth Euler struc-
tures (which are represented by non-singular vector fields having a
prescribed configuration on the boundary). We have shown that if
a branched standard spine P of a manifold M carries (in the sense
of [3]) a field v which represents a smooth Euler structure ξ on M ,
then P entirely determines an Euler chain sP (called the spider of
P ) which represents Ψ−1(ξ). As a matter of fact sP splits as a sum
i(sP )+b(sP ), where i(sP ) is explicitly constructed as a certain union
of half-orbits of the flow of v, whereas b(sP ) lies on ∂M and actually
depends only on the boundary configuration, not on v. So it is really
i(sP ) which carries the key information about ξ. The basic idea of
the present paper is to remove all prescriptions to v on ∂M and use
i(sP ) only instead of sP .

The idea just explained leads to a variation of the theory of Eu-
ler structures and torsion. Namely, since we only consider compact
manifolds M with non-empty boundary and we allow non-singular
vector fields with arbitrary behavior on ∂M , it turns out that an Eu-
ler structure is naturally defined just as a homotopy class of vector
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fields. In addition, since we only use the internal part of the spider,
to define torsion we cannot use M directly, instead we consider the
space X obtained from M by collapsing ∂M to a point.

As mentioned above, to show the crucial facts that torsion is
well-defined and H1-equivariant, we only use below the technology
of branched standard spines [3], together with two results from [1]
and [7]. The key point is to describe elementary moves combin-
ing which one can obtain from each other any two branched stan-
dard spines of the same M , and to show that equivariance holds
for all these moves. Our approach is certainly less conceptual than
Turaev’s, but it has some technical advantages. For instance, the
general notion of subdivision rule is a rather demanding step of Tu-
raev’s approach (which, we recall, works in any dimension). On the
contrary, having only a small number of well-determined elementary
catastrophes to deal with, we can treat all the subdivisions we need
by hand.

As a final point we note that, when M is obtained from a closed
manifold M̂ by removing a ball, our theory of Euler structures for M
is equivalent to Turaev’s theory for M̂ , and by [2] torsion coincides
(because i(sP ) = sP in this case). So, in the three-dimensional
closed case, the present paper gives a faithful, elementary, and self-
contained alternative approach to Turaev’s original theory.

2. Euler structures

From now on, M will be a compact, connected, oriented 3-manifold
with non-empty boundary. Using the Hauptvermutung, we will freely
intermingle the differentiable, piecewise linear and topological view-
points. Homeomorphisms will always respect orientations. All vector
fields used in this paper will be non-singular unless the contrary is
explicitly stated, and they will be termed just fields for the sake of
brevity.

We will denote by Vect(M) the set of (non-singular) vector fields
on M up to homotopy through (non-singular) fields. Using the fact
that ∂M 6= ∅, one can show that Vect(M) has the structure of an
affine space over H1(M,∂M ; Z). We will denote the map giving this
structure by α : Vect(M) × Vect(M) → H1(M,∂M ; Z). For ξ = [v]
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and η = [w] in Vect(M), we will call α(ξ, η) the comparison class
between ξ and η, and, to compute it, we will use the following geo-
metric construction. Up to homotopy we can assume that v and −w
are unitary with respect to some metric and in general position with
respect to each other and to ∂M . Then {x ∈ M : v(x) = −w(x)}
is a properly embedded curve. Looking at v and −w as sections of
the unit tangent bundle to M we can now see this curve as the pro-
jection of the intersection of two oriented 3-manifolds in an oriented
5-manifold, and hence we can give the curve a canonical orientation.
Now α(ξ, η) is precisely the homology class of this oriented curve.
We also mention that for ξ = [v] ∈ Vect(M) and h ∈ H1(M,∂M ; Z),
the element ξ + h of Vect(M) such that α(ξ + h, ξ) = h can also be
defined by an explicit geometric procedure (see [15, §. 5.2] and [3,
§. 6.2]).

Recall now from [15] that, for a closed manifold M̂ , Turaev’s

refined Reidemeister torsion is a function of M̂ and an Euler class
on M̂ . The set Eul(M̂ ) of Euler classes can be defined as Vect(M̂)/∼,
where ξ ∼ η if there exist representatives v and w of ξ and η such
that v(x) = w(x) for all x in M̂ \ B, where B ⊂ M̂ is an embedded
3-ball. Of course this definition makes sense also for ∂M 6= ∅, but in
this case one canonically has Eul(M) ∼= Vect(M). As Turaev shows,

Eul(M̂ ) is an affine space over H1(M̂ ; Z). We can now show that
the closed situation is actually contained in the bounded situation
described above. Namely, take M to be M̂ \ B, so that ∂M ∼= S2

and M̂ can be identified with M/∂M . Denote by x0 ∈ M̂ the image

of ∂M under the projection p : M → M̂ .

Proposition 2.1. The projection p : M → M̂ induces a well-defined
and canonical bijection Vect(M) → Eul(M̂ ). This bijection is an iso-
morphism of affine spaces under the isomorphism of H1(M,∂M ; Z)

with H1(M̂ ; Z) induced by p and the inclusion (M̂ , ∅) →֒ (M̂ , {x0}).

Proof. We confine ourselves to a sketch. Of course p, viewed as a
smooth map, is singular on ∂M , but, if we consider a ball B in M̂
centred at x0 and we take a field v on M , we see that p∗(v) is non-

singular on M̂ \B. A computation of Euler characteristic now shows

that p∗(v) extends to a non-singular field v̂ on M̂ , and by definition

of Eul(M̂ ) we can set p∗([v]) = [v̂]. Equivariance under the actions
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Figure 1: The MP-move (left) and the lune move (right).

of homology is now easy, and it implies bijectivity.

3. Branched spines

In this section we recall the notion of (branched) spine and ideal
triangulation of a 3-manifold M as above.

Standard spines A quasi-standard polyhedron P is a finite, con-
nected, and purely 2-dimensional polyhedron with singularities of
stable nature (triple lines and points where 6 non-singular compo-
nents meet). Such a P is called standard if all the components of the
natural stratification given by singularity are open cells. Depending
on dimension, we call the components vertices, edges, and regions.

A quasi-standard polyhedron P is called a spine of M if it em-
beds in M so that M collapses onto P . It is by now well-known,
after the work of Casler [4], Matveev [9] and Piergallini [14], that a
standard spine determines M up to homeomorphism, that every M
has standard spines (because ∂M 6= ∅), and that any two standard
spines of the same M can be transformed into each other by certain
well-understood moves. More precisely, assuming both spines have
at least two vertices, the MP-move shown in Fig. 1-left and its in-
verse are already enough. We will often call an MP-move positive to
emphasize that we are considering the move in the direction which
increases (by one) the number of vertices.

Embedded spines In the sequel it will be more convenient to
switch to the embedded viewpoint of the theory of standard spines,
described with care in [16, Chapter IX, §. 2] and [3, §. 4.1]. The idea
is just to fix M and consider the set StSpin(M) of all standard spines
P embedded in the interior of M , where the embedding is regarded
up to isotopy in M . With a slight abuse, we will write just P also
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for the isotopy class of P .

It is easy to see that the MP-move mentioned above can be de-
fined within StSpin(M), and the embedded version of the Matveev-
Piergallini theorem can now be stated (and proved) just as the non-
embedded version: two elements of StSpin(M) both having at least
two vertices are related by embedded MP-moves and their inverses.

Another move in StSpin(M) used in the sequel is the lune move,
shown in Fig. 1-right. Since this move is non-local, it must be de-
scribed with some care. This move, which increases by two the num-
ber of vertices, is determined by an arc α properly embedded in a
region R of P . The move acts on P as in Fig. 1-right, but, to define
its effect non-ambiguously, we must specify which pairs of regions,
out of the four regions incident to R at the ends of α, will become
adjacent to each other after the move. This is achieved by noting
that R is a disc, so its regular neighborhood in M is a product, and
we can choose for R a transverse orientation. Using it, at each end
of α we can tell from each other the two regions incident to R as be-
ing a positive and a negative one, and we can stipulate that the two
positive regions will become incident after the move, and similarly
for the negative ones.

In the rest of the paper we will always regard M to be fixed, and
we will only consider spines and moves embedded in M , without
explicit mention.

Branched spines and fields A branching on P ∈ StSpin(M)
is a collection b of one orientation for each region of P , such that
no edge is induced the same orientation three times by the three
regions incident to it. As mentioned in [3, §. 3.1], b can be used
to consistently smoothen the singularity of P so to turn it into a
branched surface, see [19]. Namely, the embedding of P can be
isotoped so that an oriented tangent plane is defined at each point,
and all the regions are smoothly immersed in P in an orientation-
preserving way. A pair (P, b) will be called a branched spine of M ,
and b will often be dropped from the notation. The set of branched
spines of M will be denoted by BrSpin(M). Note that not every
P ∈ StSpin(M) carries a branching.
The following is taken from [3, §. 4.1].
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Figure 2: Field associated to a branched spine.

Proposition 3.1. Every P ∈ BrSpin(M) defines up to isotopy a
field v(P ) on M such that v(P ) is positively transversal to P .

The topological construction which underlies this proposition is
illustrated in a cross-section in Fig. 2. From the proposition we get a
well-defined map Φ : BrSpin(M) ∋ P 7→ [v(P )] ∈ Vect(M) which we
call reconstruction map. The following was essentially shown in [3,
§. 4.6], see below for details.

Theorem 3.2. The reconstruction map Φ : BrSpin(M) → Vect(M)
is onto.

MP-move on branched spines When P ∈ BrSpin(M) and a
positive MP-move is applied to P to get some P ′ ∈ StSpin(M), all
the regions of P survive through the move, and a new (triangular)
one is created. It is a fact (see [3, §. 3.5]) that the new region can
always be oriented so to turn P ′ into a branched spine. Any move
within BrSpin(M) arising as just described will be called a branched
MP-move.

Two quite different types of branched MP-move exist. In the first
type of move, the field carried by the spine is unchanged up to ho-
motopy and the move itself can be viewed as a continuous evolution
of a branched surface within M , with one instance of non-generic
singularity along the evolution. The moves of this type are pictured
in Fig. 3 and called sliding MP-moves. The second type of move is
called bumping MP-move and shown in Fig. 4. As opposed to the
case of sliding MP-moves, one can show (see [3, §. 4.6]) that under
a bumping MP-move the homotopy class of the field carried by the
spine gets modified (at least locally), see Proposition 5.5.



8 G. AMENDOLA ET AL.

Figure 3: Sliding MP-moves.

Figure 4: Bumping MP-move: complete picture and a vertical cross-
section.

Remark 3.3. In the context of non-branched spines, a positive MP-
move is completely determined by the edge which disappears during
the move. On the contrary, when branchings are present, to deter-
mine the move intrinsically one must specify the orientations of all
the regions involved. As a result, there are 16 different sliding MP-
moves and 4 bumping MP-moves. In Figg. 3 and 4 we are actually
showing fewer moves, because they allow to understand all the essen-
tial physical modifications.

We can now explain better how Theorem 3.2 is deduced from [3].
First recall that, by Proposition 3.4.7 of [3], BrSpin(M) is non-empty.
Then the theorem follows from Theorem 4.6.4 of [3], which we now
recall:

Theorem 3.4. Given P ∈ BrSpin(M) and ξ ∈ Vect(M), there ex-
ists a sequence of sliding MP-moves and bumping MP-moves which
transforms P into another embedded branched spine P ′ such that
[v(P ′)] = ξ.

To be completely precise, another move between branched spines
besides the MP-moves was considered in Theorem 4.6.4 of [3], but
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Figure 5: Branched versions of the lune move.

this move was later shown in [1] to be implied by the branched MP-
moves.

Lune move on branched spines When considering the lune
move in the context of branched spines, the same phenomena men-
tioned above for the MP-move appear again. Namely, if a spine
P ∈ BrSpin(M) and P is transformed into P ′ by a positive lune
move, then P ′ can be turned into a branched spine so that all the
regions which survive through the move, including the region split
into two new regions, keep their orientation. The resulting trans-
formation of P ∈ BrSpin(M) into P ′ ∈ BrSpin(M) will be called
a branched lune move. As for the MP-move, there are two sorts
of branched lune move, called sliding and bumping respectively and
pictured in Fig. 5.

Remark 3.5. As for MP-moves (see Remark 3.3), there are sev-
eral branched versions of the lune move. More precisely, there are
4 sliding lune moves and 2 bumping lune moves, but the essential
phenomena are those described in Fig. 5.

Ideal triangulations An ideal triangulation of a manifold M with
non-empty boundary is a partition I of Int(M) into open cells of
dimensions 1, 2, and 3, induced by a triangulation I ′ of the space
Q(M), where:

1. Q(M) is obtained from M by collapsing to a point each com-
ponent of ∂M , so Q(M) minus its vertices can be identified
with Int(M);
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Figure 6: The dual version of the MP and lune moves.

2. I ′ is a triangulation only in a loose sense, namely self-adjacency
and multiple adjacency of tetrahedra are allowed;

3. The vertices of I ′ are precisely the points of Q(M) which cor-
respond to the components of ∂M .

Duality It turns out ([10], [13], [8]) that there exists a natural
bijection between standard spines and ideal triangulations of a 3-
manifold. Given an ideal triangulation, the corresponding standard
spine is just the 2-skeleton of the dual cellularization, as illustrated
in Fig. 7-left. We denote by P 7→ I(P ) the inverse of this correspon-
dence, and we call I(P ) the ideal triangulation dual to P . It will be
convenient in the sequel to call centre of a cell c of P the only point
at which c meets the simplex of I(P ) dual to c.

Before turning to a branched context, we show in Fig. 6 the MP
and lune moves on a spine in terms of the dual ideal triangulations.

Now assume P ∈ BrSpin(M). First of all, we can realize I(P )
in such a way that each edge is an orbit of the restriction of v(P ) to
Int(M), and each 2-face is a union of such orbits. Since the edges of
I(P ) are orbits, they have a natural orientation, and the branching
condition means that if we look at a (triangular) face of a tetrahedron
of I(P ), we never see the boundary of the triangle oriented as a
closed circuit. So the branching can be encoded by an assignment
of edge-orientations on I(P ). Moreover, edge-orientations allow us
to describe the orbits of the field also on the interior of the triangles
and the tetrahedra of the triangulation, as shown in Fig. 7-right.

It is worth remarking that not only the edges, but also the faces
and the tetrahedra of I(P ) have natural orientations. For tetrahedra,
we just restrict the orientation of M . For faces, we first note that
the edges of P have a natural orientation (the prevailing orientation
induced by the incident regions). Now, we orient a face of I(P ) so
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Figure 7: Left: portion of spine dual to a tetrahedron of an ideal
triangulation. Right: how to deduce the field from the orientation
of the edges.

that the algebraic intersection in M with the dual edge is positive.

4. Basic definition of torsion

Fixing M as above, we define in this section torsion functions on
Vect(M), using suitable representations of the fundamental group of
the space X = M/∂M . We will denote by p : M → X the projection,
and by x0 be the image of ∂M . Using p, we will often tacitly identify
Int(M) with X \ {x0}.

Spider carried by a branched spine Let P ∈ BrSpin(M), and
consider the field v(P ) and the ideal triangulation I(P ) defined by
P on M . Since X \ {x0} ∼= Int(M), we can consider v(P ) to be
defined on X \ {x0}, and note that the α-limit and the ω-limit in X
of any orbit of v(P ) are both given by {x0} only. When we project
I(P ) to X we obtain a triangulation (in a loose sense) of X, which
we will denote by T (P ), with only one vertex x0 and open positive-
dimensional simplices which correspond to those of I(P ) and are
unions of orbits of v(P ).

Remark 4.1. Stipulating x0 to be positive and using the facts already
remarked, we see that also in T (P ) all the simplices have a natural
orientation.

Definition 4.2 (spider associated to P ). We define s(P ) as
the singular 1-chain in X obtained as

∑
p βp, where p runs over the

centres of cells of P and βp is the closure of the positive orbit of v(P )
which starts at p. Note that the final endpoint of each βp is x0.
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Remark 4.3. Let ǫ(p) = (−1)d if p is the centre of a d-cell of P . We
note right here that ǫ(p) = (−1)d

′+1 when p is viewed as the centre
of the dual d′-cell of T (P ), because d′ = 3 − d. When ∂M ∼= S2, so

X is a closed manifold M̂ , the chain
∑

p ǫ(p)βp is easily recognized

to be an Euler chain on M̂ with respect to the cellularization T (P ),
according to Turaev’s terminology [15]. For arbitrary ∂M we have

∂
(∑

p
ǫ(p)βp

)
= (1 − χ(X)) · x0 −

∑
p
ǫ(p)p,

where the Euler characteristic of X is given by 1+χ(M)−χ(∂M) =
1 − χ(M).

For the sake of brevity, in the sequel we will denote π1(X,x0) just
by π. We denote now by (X̃, x̃0) a universal cover of (X,x0). The
reason for considering pointed spaces is that any two such covers are
canonically isomorphic and all our constructions will obviously be
equivariant under such isomorphisms. On X̃ we consider the action
of π defined using the basepoint x̃0. We denote by T̃ (P ) the
π-invariant lifting of T (P ) to X̃. We will consider in the sequel the
complex Ccell

∗ (X̃ ; Z) of integer chains in X̃ which are cellular with
respect to the triangulation T̃ (P ). In a natural way, Ccell

∗ (X̃ ; Z) is a
complex of Z[π]-modules. Moreover, each Ccell

i (X̃ ; Z) is a free Z[π]-
module: a free basis is determined by the choice of an ordering for
the i-simplices in T (P ) and one lifting for each of them (as remarked,
orientations are canonical).

Lifted spider and free bases We define s̃(P ) as the singular
1-chain

∑
p β̃p in X̃, where β̃p is the only lifting of βp with final

endpoint x̃0. We choose x̃0 as preferred lifting of x0. For a positive-
dimensional simplex of T (P ) dual to a cell with centre p, we choose
as preferred lifting the one which contains the initial endpoint of β̃p.
If σ is an ordering of the simplices in T (P ), we denote by gi(P, σ)
the free Z[π]-basis of Ccell

i (X̃; Z) obtained from σ and from these
preferred liftings.

We briefly review now the general algebraic machinery used to
define torsions [12]. We consider a ring Λ with unit, with the prop-
erty that if n and m are distinct positive integers then Λn and Λm are
not isomorphic as Λ-modules. We recall that the Whitehead group
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K1(Λ) is defined as the Abelianization of GL∞(Λ). Moreover, K1(Λ)
is the quotient of K1(Λ) under the action of −1 ∈ GL1(Λ) = Λ∗ ⊂ Λ.

Given a free Λ-module M and two finite bases b = (bk) and
b′ = (b′k) of M , the assumption on Λ guarantees that b and b′ have
the same number of elements, so there exists an invertible square
matrix (λh

k) such that b′k =
∑

h λh
kbh. We denote by [b′/b] the image

of (λh
k) in K1(Λ).

Twisted homology and chain bases Going back to the topolog-
ical situation, let us consider now a group homomorphism ϕ : π → Λ∗

and its natural extension to a ring homomorphism ϕ̃ : Z[π] → Λ. We
can define now the twisted chain complex Cϕ

∗ (P ), where Cϕ
i (P ) is de-

fined as Λ⊗eϕ Ccell
i (X̃; Z) and the boundary operator is induced from

the ordinary boundary. Note that Cϕ
i (P ) is a free Λ-module and each

Z[π]-basis of Ccell
i (X̃ ; Z) determines a Λ-basis of Cϕ

i (P ). We denote
by g

ϕ
i (P, σ) the Λ-basis of Cϕ

i (P ) corresponding to gi(P, σ) and by
Hϕ

i (P ) the i-th homology group of the complex Cϕ
∗ (P ). The canon-

ical isomorphism which exists between two pointed universal covers
of (X,x0) induces an isomorphism of the corresponding homology
groups, so Hϕ

∗ (P ) is intrinsically defined.

Remark 4.4. 1. It readily follows from the excision and dimen-
sion axioms of homology that H1(M,∂M ; Z) is canonically iso-
morphic to H1(X; Z). (A special case of this fact was tacitly
used in Proposition 2.1 above.)

2. Given ϕ : π → Λ∗ as above, if we compose ϕ with the nat-
ural projection Λ∗ → K1(Λ), we get a new homomorphism
ϕ′ : π → K1(Λ). Now, noting that K1(Λ) is Abelian and using
the isomorphism just mentioned, we obtain another homomor-
phism

ϕ′′ : H1(M,∂M ; Z) → K1(Λ)

which will be crucial below.

3. The isomorphism H1(M,∂M ; Z) → H1(X; Z) is most easily
understood using a spine P , because the 1-cells of I(P ) are
precisely the same as those of T (P ), and they are all cycles.
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This will allow us below to compute ϕ′′ directly on X, using
T (P ).

Torsion - Acyclic case Assume that Hϕ
∗ (P ) is equal to 0. Then

we can apply the general definition of torsion of an acyclic chain
complex of free Λ-modules with assigned bases. We briefly review
this definition, confining ourselves to the case where the boundary
modules are free (in general, stable bases should be used). So, let bi

be a finite subset of Cϕ
i (P ) such that ∂bi is a basis of ∂Cϕ

i (P ). The
complex being acyclic, (∂bi+1) ·bi is now a basis of Cϕ

i (P ), so we can
compare it with g

ϕ
i (P, σ).

Definition 4.5. We set

τϕ
0 (P, σ) =

3∏

i=0

[(∂bi+1) · bi/g
ϕ
i (P, σ)](−1)i+1

∈ K1(Λ).

Independence of the bi’s and invariance under isomorphism of uni-
versal covers (with basepoint) is readily checked. Of course σ is re-
sponsible of at most a sign change, so τϕ(P ) = ±τϕ

0 (P, σ) ∈ K1(Λ)
is well-defined.

Torsion - General case Often Cϕ
∗ (P ) is not acyclic. It is a general

fact that a torsion τϕ(P, h) ∈ K1(Λ) can be defined also in this case,
provided the homology Λ-modules are free and have assigned bases
h∗. Namely, if hi is a Λ-basis of Hϕ

i (P ), we replace (∂bi+1) ·bi in the

above formula by (∂bi+1) · h̃i ·bi, where h̃i is a lifting of hi to Cϕ
i (P ).

It is maybe appropriate here to remark that the choice of bases
h∗ of Hϕ

∗ (P ) and the definition of τϕ(P, h) implicitly assume a de-
scription of the universal cover of X, which is typically undoable
in practical cases. However, if one starts from a representation of π
into the units of a commutative ring Λ, one can use from the very be-
ginning the maximal Abelian rather than the universal cover, which
makes computations more feasible.

5. Torsion of vector fields

This section is devoted to the (long) proof of the following:
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Theorem 5.1. If Pi ∈ BrSpin(M) and ξi = Φ(Pi) ∈ Vect(M) for
i = 1, 2, then the following equality holds in K1(Λ):

τϕ(P2, h) = ϕ′′(α(ξ2, ξ1)) · τ
ϕ(P1, h). (⋆)

Before plunging into the proof, we state the main result of the
present paper, which follows directly from Theorems 3.2 and 5.1:

Corollary 5.2. If we set τϕ(ξ, h) = τϕ(P, h) for P ∈ Φ−1(ξ), we
get a well-defined map

τϕ( · , h) : Vect(M) → K1(Λ)

such that
τϕ(ξ + h, h) = ϕ′′(h) · τϕ(ξ, h)

for all ξ ∈ Vect(M) and h ∈ H1(M,∂M ; Z).

The proof of Theorem 5.1 is organized as follows. We first show
that the equivariance formula (⋆) holds when P2 is obtained from P1

either by a positive branched MP-move, or by a positive branched
lune move, or by a change of branching. Then we conclude using
a recent result of Makovetskii [7] on the existence of a spine which
dominates, as far as the positive MP and lune moves are concerned,
any two given spines of M .

5.1. Equivariance under MP-moves

To show that the equivariance formula (⋆) holds when P2 is obtained
from P1 by a positive branched MP-move, namely by a move either
as in Fig. 3 or as in Fig. 4, we first discuss how to compute torsion
using a subdivision of a triangulation carried by a spine.

Spider of a subdivision Given a triangulation T and an Euler
chain s for T , a general technology of Turaev [15] explains how to
construct an Euler chain s′ for a subdivided triangulation T ′, and
shows that torsion is unchanged. In the special context of triangula-
tions coming from branched spines we can give a simplified version
of this technology, which does not use any of Turaev’s results.

Consider P ∈ BrSpin(M) and the corresponding triangulation
T (P ) of the complex X, and let D be a subdivision of T (P ). We are
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Figure 8: Common subdivision of dual triangulations for the MP-
move.

mainly interested in the case where also D is a triangulation (possibly
with multiple and self-adjacencies). A subdivided spider sD(P ) can
be defined as

∑
p βp, where {p} is a collection of one interior point

for each simplex of D and βp is (the closure of) the orbit of v(P )
which starts at p and reaches x0. The reader can easily check that
the choice of {p} is inessential.

Now consider the data Λ, ϕ, h which allow to define a torsion
τϕ(P, h). We can define the Λ-modules Cϕ,D

∗ (P ) using cellular chains
with respect to the lifting of D to X̃ and we can construct preferred
Λ-bases of these modules, using the spider sD(P ). Recall that there
exists a canonical isomorphism Hϕ,D

∗ (P ) ∼= Hϕ
∗ (P ), so we can use

the same symbol h for a Λ-basis of Hϕ,D
∗ (P ), and define a torsion

τϕ,D(P, h), exactly as we have done in Section 4.

Invariance of torsion under subdivision In the above setting,
it is a general fact that τϕ,D(P, h) = τϕ(P, h), but we will use this fact
only in two special cases, so we concentrate on these cases, giving
an elementary combinatorial proof. Namely, we refer to the situ-
ation under consideration of a positive branched MP-move which
transforms a certain P1 ∈ BrSpin(M) into another P2 ∈ BrSpin(M).
In this case there is an obvious easiest subdivision D of T (P1) and
T (P2), shown in Fig. 8. And the following holds:

Proposition 5.3. For i = 1, 2, we have τϕ,D(Pi, h) = τϕ(Pi, h).

Note that of course τϕ,D(P1, h) and τϕ,D(P2, h) can differ from
each other, because the spiders sD(P1) and sD(P2) may provide dif-
ferent instructions for the liftings of the cells of D.

Proof. Note first that the definition of subdivided spider sD(P ) leads



BRANCHED SPINES AND TORSION 17

to the following very natural rule: a simplex of D lying in a simplex
S of T (P ) is lifted in X̃ to the only preimage which lies in the lifting
of S determined by s(P ). Now, this rule makes sense also for more
general subdivisions than for triangulations, in particular for cell
complexes, so we will use them. One easily sees that the subdivisions
of T (P1) and T (P2) into D can be expressed as combinations of the
following elementary transformations (including inverses):

1. The subdivision of an edge into two edges by insertion of a
vertex;

2. The subdivision of a square into two triangles by insertion of
a diagonal;

3. The transformation which inserts one triangle in a polyhedron
with 5 vertices, 9 edges and 6 triangular faces, thus splitting
the polyhedron into two tetrahedra.

We are left to prove that torsion is invariant under these trans-
formations. In all three cases, the proof goes as follows:

i. We consider data gi, bi, h̃i, with i = 0, . . . , 3, which allow to
compute τ before subdivision;

ii. We describe new data g′i, b′i, h̃′i for the subdivided complex;

iii. We analyze the matrices

((∂bi+1) · h̃i · bi)/gi and ((∂b′i+1) · h̃
′
i · b

′
i)/g

′
i

to show that they have the same image in K1(Λ).

Note that this proves that torsion is unchanged “term by term”,
not only globally. We only make the proof explicit for the third type
of subdivision, leaving the other two (easier) cases to the reader.
Denote by Q the polyhedron which is split into tetrahedra T1 and
T2 by the insertion of a triangle ∆. Then, in a natural way, we have
that g′0 is equal to g0, that g′1 is equal to g1, and that g′2 is obtained

from g2 by inserting the lifting of ∆ which lies in the lifting Q̃ of
Q. To get g′3 from g3, we need to remove Q̃ and insert the liftings
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T̃1 and T̃2 of T1 and T2 which lie in Q̃. For the lifted homology
bases, we have h̃′i = h̃i, for i = 0, 1, 2, whereas h̃′3 is obtained from

h̃3 by replacing each occurrence of Q̃ with T̃1 + T̃2. Similarly, we
have b′i = bi except for i = 3, and again b′3 is obtained from b3 by

replacing each occurrence of Q̃ with T̃1 + T̃2 and then inserting T̃2.
The transition matrices are unchanged in dimensions 0 and 1, while
in dimension 2 and 3, with obvious meaning of symbols, we have:

((∂b′3) · h̃
′
2 · b

′
2)/g

′
2 =




*

∂b3/g2
... h̃2/g2 b2/g2

*

0 · · · 0 1 0 · · · 0 0 · · · 0




(h̃′3 · b
′
3)/g

′
3 =




0

h̃3/(g3\{Q̃}) b3/(g3\{Q̃})
...
0

h̃3/Q̃ b3/Q̃ 0

h̃3/Q̃ b3/Q̃ 1




.

When Λ is a field, one immediately gets the conclusion by taking
determinants. For the general case, one needs to recall the definition
of K1(Λ), but the conclusion follows anyway.

Equivariance of torsion We prove now formula (⋆) in the case
under consideration of a branched MP-move transforming P1 into P2.
The proof is split in two steps. We first show that, after the move,
torsion gets multiplied by ϕ′′(h) for a certain h ∈ H1(M,∂M ; Z)
which we describe explicitly. Later we show that h is precisely the
comparison class of the fields carried by P2 and P1 respectively.

Proceeding with the same notation as above, consider the sub-

divided spiders sD(Pi) =
∑

p β
(i)
p . Recall from Remark 4.3 that we

have defined ǫ(p) as (−1)d+1 when p is the centre of a d-cell of T (P ).
This definition of course extends to the centre of any cell of D. It is



BRANCHED SPINES AND TORSION 19

now easy to see that
∑

p ǫ(p)(β
(2)
p − β

(1)
p ) is a cycle, so we can define

h(P2, P1) to be its class in H1(M,∂M ; Z).

Proposition 5.4. τϕ(P2, h) = τϕ(P1, h) · ϕ′′(h(P2, P1)).

Proof. By Proposition 5.3, it is enough to show that

τϕ,D(P2, h) = τϕ,D(P1, h) · ϕ′′(h(P2, P1)).

With obvious meaning of symbols, we have

τϕ,D(P2, h) = ±
3∏

i=0

[(
(∂bi+1) · h̃i · bi

)/
g

ϕ,D
i (P2)

](−1)i+1

= ±
3∏

i=0

[(
(∂bi+1) · h̃i · bi

)/
g

ϕ,D
i (P1)

](−1)i+1

·
[
g

ϕ,D
i (P1)

/
g

ϕ,D
i (P2)

](−1)i+1

= τϕ,D(P1, h) ·
( 3∏

i=0

[
g

ϕ,D
i (P1)

/
g

ϕ,D
i (P2)

](−1)i+1)
.

To compute the last correction factor, for k = 1, 2, let us denote

by ẽ
(k)
p the lifting to X̃ determined by sD(Pk) of the cell of D centered

at p. Note that we have ẽ
(1)
p = γp · ẽ

(2)
p , where γp is the image of the

loop (β
(1)
p )−1 ·β

(2)
p in π. This implies that [gϕ,D

i (P1)
/
g

ϕ,D
i (P2)] is the

image in K1(Λ) of a diagonal matrix with entries ϕ(γp), as p varies
in the centres of the i-cells of D. It easily follows that

3∏

i=0

[
g

ϕ,D
i (P1)

/
g

ϕ,D
i (P2)

](−1)i+1

= ϕ′′(h(P2, P1))

whence the conclusion.

Proposition 5.5. If ξi = Φ(Pi) ∈ Vect(M) then

α(ξ2, ξ1) = h(P2, P1).

If moreover the move from P1 to P2 is a sliding one, then α(ξ2, ξ1)=0.
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Figure 9: Left: the bumping move of Fig. 4 in terms of edge-
orientations. Right: notation for the subdivided triangulation.

Proof. Instead of treating in detail all the moves, we confine our-
selves to the description of a general framework and then we apply
the method to one particular move (a bumping one), the other cases
being similar. Recall that Fig. 8 describes the portion U of X where
the move takes place, i.e. the intersection with U of the triangu-
lations T (P1) and T (P2) and their common subdivision D. More
precisely, the figure shows an “unfolded version” U ′ of the portion
U , because in U all the “external” vertices of the figure are identi-
fied together (giving the point x0), so for example each edge of T (P1)
and T (P2) represents a (possibly non-trivial) element of π, and some
external edges or faces could be glued together.

The basic idea of the proof is to lift the cycle
∑

p ǫ(p)(β
(2)
p −β

(1)
p )

to a 1-chain in U ′, to study this chain in U ′ and then show that its
image in U is precisely the comparison class of the fields.

Recall that a branching on a spine is encoded by a (suitable)
system of orientations for the edges of the dual triangulation. So a
branched MP-move from P1 to P2 is described by a system of edge-
orientations for T (P1) and one for T (P2), such that orientations
coincide on common edges. The systems define fields as in Fig. 7-
right, and h(P2, P1) is constructed by integrating these fields from
the centres of the cells and taking the difference. In particular, the
non-zero contributions to h(P2, P1) can only come from simplices of
D which are not shared with both T (P1) and T (P2). So we only have
to deal with the internal simplices of U ′, namely 1 vertex, 5 edges, 9
faces and 6 tetrahedra. Namely, we must compute the liftings to U ′

of the loops ǫ(p) · (β
(2)
p − β

(1)
p ) for these internal simplices, and show

that the projection in U gives α(ξ2, ξ1).

We will now carry out the computations for a bumping move.
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For a sliding move we would have that α(ξ2, ξ1) vanishes, and the
computations would be very similar. The bumping move of Fig. 4
translates in terms of edge-orientations as described in Fig. 9-left. In
Fig. 9-right we introduce notation for the subdivided triangulation
(note that a = b = c = d = e = x0 in X, because U is shown
unfolded). We want to analyze the contributions of the internal
simplices to the lifted chain: since U ′ is contractible, it is enough to
determine, for both fields, the targets of the orbits starting at the
centres of simplices. This is done in the next tables.

Simplex σ v va vb vc vd ve

(−1)dim(σ)+1 −1 +1 +1 +1 +1 +1

End β̃
(1)
p(σ) b b b b d e

End β̃
(2)
p(σ) d d d d d d

Boundary b − d d − b d − b d − b 0 d − e

vab vbc vac vae vbe vbd vad vce vcd

−1 −1 −1 −1 −1 −1 −1 −1 −1

b b b e e d d e d

d d d d d d d d d

b − d b − d b − d e − d e − d 0 0 e − d 0

vabe vabd vace vbce vbcd vacd
+1 +1 +1 +1 +1 +1

e d e e d d

d d d d d d

d − e 0 d − e d − e 0 0
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The sum of the bottom rows of the tables is equal to b − e, so

the chain
∑

p ǫ(p)(β
(2)
p − β

(1)
p ) is homologous to the class of the edge

eb, oriented from e to b. To conclude the proof we note now that, by
Lemma 4.6.3 of [3] and the isomorphism between H1(M,∂M ; Z) and
H2(M ; Z), the comparison class between v(P2) and v(P1) is precisely
equal to [eb] ∈ H1(M,∂M ; Z).

5.2. Equivariance under lune moves

We now show that (⋆) holds when P2 is obtained from P1 by a
branched lune move (see Fig. 5).

Remark 5.6. We know from [14] that, in presence of more than one
vertex, the lune move can be obtained by a finite combination of MP-
moves, including inverse moves. However, this fact cannot be used
directly to prove (⋆) for the lune move, because along the sequence of
MP-moves we may find some negative ones which cannot be turned
into branched moves. So we use an alternative argument.

Remark 5.7. As Fig. 6-right shows, the dual version of the lune
move replaces two triangles by two tetrahedra. In particular, to find a
common subdivision of T (P1) and T (P2), we would have to consider
all the tetrahedra incident to the two triangles which get replaced,
and there can be any number of such tetrahedra. Therefore, if we
want to describe the transformation of T (P1) into T (P2) explicitly,
we cannot use subdivisions only.

Square-fattening We call square-fattening a transformation of a
triangulation which acts on a pair of adjacent triangles by enlarging
them to a pillow which is then cellularized by four triangles, a bigon,
and two 3-cells, as suggested in Fig. 10. Of course this transformation
also requires a deformation of the surrounding simplices.

Back to the situation of a branched lune move from P1 to P2,
let us apply the square-fattening to the triangles of T (P1) which get
doubled in T (P2), and let us call T ′ the result. Of course T ′ and
T (P2) now have a common subdivision D which we can describe in
local terms (see Fig. 11). To show (⋆) for the lune move we will now
proceed as follows:
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Figure 10: An unfolded version of the square-fattening.

1. We define a specific field v′ on Int(M) ∼= X \{x0} and bases h′∗,
such that a torsion τϕ((T ′, v′), h′) can be defined as τϕ(P, h) in
Section 4; moreover we show that τϕ((T ′, v′), h′) = τϕ(P1, h);

2. We show that τϕ((T ′, v′), h′) and τϕ(P2, h) are both unchanged
when passing to the common subdivision D;

3. We conclude, as in Subsection 5.1, by first showing that the tor-
sion τϕ,D(P2, h) differs from τϕ,D((T ′, v′), h′) by ϕ′′(h), where
h is a specific element of H1(M,∂M ; Z), and then proving that
h = α(ξ2, ξ1) if ξi = Φ(Pi) ∈ Vect(M) for i = 1, 2.

Invariance under square-fattening Let us denote by ∆1, ∆2

and e the two triangles and their common edge before the square-
fattening. After the move we denote the new triangles by ∆j

i for
i, j = 1, 2, the bigon by Q, the new edges by e1 and e2, and the
new 3-cells by T1 and T2. Noting that there is a natural “flattening”
projection f : T1 ∪ T2 → ∆1 ∪∆2, we choose indices so that f(Ti) =
∆i, f(∆j

i ) = ∆i, and ∆j
1 is adjacent to ∆j

2 along ej . See Fig. 10.

Now we define v′ on T1∪T2 as the pull-back of v(P1) under f , and
on X \ (T1 ∪ T2) as the pull-back under the natural diffeomorphism
f ′ : X \ (T1 ∪ T2) → X \ (∆1 ∪ ∆2). Since f ⊔ f ′ is a homotopy
equivalence and it fixes x0, we see that v′ is homotopic to v(P1) on
Int(M).

Back to torsion, since every cell of T ′ is a union of orbits of v′ and
both the α-limit and ω-limit of any orbit of v′ is {x0}, we can define a
spider s(T ′, v′) just as we did above for T (P ) using v(P ). Moreover,

since the canonically isomorphic modules Hϕ,T ′

∗ (P1) ∼= Hϕ
∗ (P1) are

free over Λ (by hypothesis), we can select a basis h′i of Hϕ,T ′

i (P1)
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corresponding to hi. We can now define a torsion τϕ((T ′, v′), h′) ∈
K1(Λ), exactly as we have done in Section 4 and the following lemma
holds:

Lemma 5.8. τϕ((T ′, v′), h′) = τϕ(P1, h).

Proof. Let us consider T̃ (P1) and T̃ ′, the π-invariant liftings respec-
tively of T (P1) and T ′ to X̃ , the universal cover of X. We consider

the complexes C
cell,T (P1)
∗ (X̃, Z) and Ccell,T ′

∗ (X̃, Z) of integer chains
in X̃ which are cellular with respect to T̃ (P1) and T̃ ′. In a natu-
ral way, each one of these complexes also has a structure of com-
plex of Z[π]-modules. The proof that the two torsions τϕ(P1, h) and
τϕ((T ′, v′), h′) are equal goes as follows:

i. We consider data gi, bi, h̃i, with i = 0, . . . , 3, which allow to
compute τϕ(P1, h) before the square fattening;

ii. We describe new data g′i, b′i, h̃′i for the complex Ccell,T ′

∗ (X̃, Z);

iii. We analyze the matrices

((∂bi+1) · h̃i · bi)/gi and ((∂b′i+1) · h̃
′
i · b

′
i)/g

′
i

to show that they have the same image in K1(Λ).

To define gi and g′i we use respectively the spiders s(P1) and
s(T ′, v′): note that in the second case, due to the behavior of v′,
the lifting T̃i contains in its boundary the liftings ∆̃1

i and ∆̃2
i , for

i = 1, 2. Note also that there is a natural correspondence (given
by f ⊔ f ′) between the cells of T (P1) \ {∆1,∆2, e} and those of
T ′\{T1, T2,∆

1
1,∆

2
1,∆

1
2,∆

2
2, Q, e1, e2}. We can extend this correspon-

dence to Z[π]-module homomorphisms

Fi : C
cell,T (P1)
i (X̃, Z) → Ccell,T ′

i (X̃, Z)

by defining F2(∆̃i) = ∆̃1
i , for i = 1, 2, and F1(ẽ) = ẽ1. So, we

have g′0 = F0(g0), g′1 = F1(g1) · ẽ2, g′2 = F2(g2) · ∆̃2
1 · ∆̃2

2 · Q̃ and

g′3 = F3(g3) · T̃1 · T̃2; moreover, for the boundary modules, we have

b′0 = F0(b0), b′1 = F1(b1), b′2 = F2(b2) · Q̃ and b′3 = F3(b3) · T̃1 · T̃2. It
is not difficult to see that the b′i’s actually are bases of the boundary
modules.
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Figure 11: Common subdivision of T ′ and T (P2).

Let us pass to the homology bases. If we apply Fi to a cycle α of
h̃i, which represents an element of hi, we do not necessarily obtain
a cycle (the cycle can get “punctured” under the square-fattening);
but it is not difficult to see that, adding a suitable multiple of Q̃ (for
the 2-cycles) or of T̃1 and T̃2 (for the 3-cycles), we obtain a cycle
Fi(α)′ which represents the class (f ⊔ f ′)−1

∗ ([α]).
The computations for step (iii) are similar to those of Proposi-

tion 5.3, so we omit them.

Subdivision In Fig. 11 we describe the common subdivision D of
T ′ and T (P2). Exactly as we have done in Subsection 5.1, we can
now define torsions τϕ,D((T ′, v′), h′) and τϕ,D(P2, h) and show the
following using the same arguments as in Proposition 5.3:

Proposition 5.9. τϕ,D((T ′, v′), h′) = τϕ((T ′, v′), h′) and
τϕ,D(P2, h) = τϕ(P2, h).

Equivariance of torsion As in Subsection 5.1, let h(P2, P1) be

the class in H1(M,∂M ; Z) of the cycle
∑

p ǫ(p)(β
(2)
p − β

(1)
p ), where p

varies over centres of cells of D and the β
(i)
p ’s come from the subdi-

vided spiders sD(T ′, v′) =
∑

p β
(1)
p and sD(P2) =

∑
p β

(2)
p . The next

two results imply (⋆) for the lune move. The first proof is omitted
because similar to that of Proposition 5.4.

Proposition 5.10. τϕ(P2, h) = τϕ((T ′, v′), h′) · ϕ′′(h(P2, P1)).

Proposition 5.11. If ξi = Φ(Pi) ∈ Vect(M) then

α(ξ2, ξ1) = h(P2, P1).

If moreover the move from P1 to P2 is a sliding one, then α(ξ2, ξ1)=0.
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Proof. As already noted there are essentially 3 branched lune moves
(see Fig. 5). For each of them, the calculation of h(P2, P1) is car-
ried out along the lines of the computation in the proof of Proposi-
tion 5.5. For the sliding lune moves, h(P2, P1) turns out to vanish,
and α(ξ2, ξ1) also vanishes, because v(P1) and v(P2) are homotopic.
For the bumping lune move, h(P2, P1) may not vanish, but it equals
α([v(P2)], [v(P1)]), which was computed in Lemma 4.6.3 of [3].

5.3. Equivariance under change of branching

In this section we prove that, if P1, P2 ∈ BrSpin(M) are the same in
StSpin(M), namely if they differ only for the branching, then their
torsions are related as in formula (⋆), where ξi = Φ(Pi) for i = 1, 2.

Once again we consider the cycle
∑

p ǫ(p)(β
(2)
p − β

(1)
p ) and call

h(P2, P1) its class in H1(M,∂M ; Z). The next two results imply the
desired equivariance. The proof of the first one is omitted because
it is similar to that of Proposition 5.4.

Proposition 5.12. τϕ(P2, h) = τϕ(P1, h) · ϕ′′(h(P2, P1)).

Proposition 5.13. h(P2, P1) = α(ξ2, ξ1).

Proof. By the geometric description of α(ξ2, ξ1) mentioned at the
beginning of Section 2, it is sufficient to construct fields v′1 and v′2
such that:

• v′i is homotopic to v(Pi) for i = 1, 2;

• v′1 and v′2 are in general position with respect to each other and
to ∂M ;

• the curve {x ∈ M : v′2(x) = −v′1(x)}, that is properly embed-
ded and oriented, represents h(P2, P1) in H1(M,∂M ; Z).

To construct v′1 and v′2 we start with some notation. Let P ∈
StSpin(M) be the non-branched spine underlying P1 and P2, so Pi =
(P, bi) for i = 1, 2. The fact that P is a spine of M means that M
can be viewed as a thickening of P , so the cellular structure of P
induces a decomposition of M into solid blocks of the three types
shown in Fig. 12. Up to homotopy, we can suppose that v(P1) and
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Figure 12: The three types of blocks into which the manifold M is
decomposed.

v(P2) are tangent to the boundary of the blocks and “vertical” on
the blocks of type I. We also denote by q : M → P the projection
induced by collapse.

We now define a singular field wR on M for every region R of P ,
and another such field we for every edge e. We define wR first on R
to be tangent to R, radial and vanishing near ∂R, with one repelling
singularity at the centre of R (recall that R is a disc). Then we extend
wR to q−1(R) ∼= R × [−1, 1] to be constant in the [−1, 1]-factor, and
we set wR to be zero outside q−1(R).

Similarly, we on e is tangent to e and null near ∂e, with one
repelling singularity at the centre of e. On the rest of P the field we

vanishes, except very close to e, where it is parallel to e with length
rapidly decreasing to zero as one gets far from e. The extension to
M is again taken to be “constant” with respect to q : M → P .

Of course we can adjust things so that
∑

R wR is non-zero on
each type I block (except on a segment at the centre of the block)
and

∑
e we is non-zero on each type II block (except on a hexagon

which cuts the block into two halves). We define now v′i to be the
field v(Pi) +

∑
R wR +

∑
e we. Since

∑
R wR +

∑
e we is never a

negative multiple of v(Pi), we have that v′i is homotopic to v(Pi). By
construction v′2 and −v′1 are in general position, so α(v′2, v

′
1) can be

constructed geometrically as the curve where v′2 is a negative multiple
of v′1. Moreover v′1 and v′2 both point outside the blocks of type I and
inside the blocks of type III. This implies that the contributions to
α(v′2, v

′
1) can be analyzed block by block. We conclude the proof by

analyzing the contributions to α(v′2, v
′
1) and showing that they are

the same as those to h(P2, P1).

Blocks of type I. Consider a block determined by a region R with
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Figure 13: Left: the fields v′1 and v′2 on the hexagon where we van-

ishes. Right: the relative cycle −(β
(2)
p − β

(1)
p ).

centre p. If b1 and b2 are the same on R, the situation is quite sim-
ple: v′1 and v′2 are obviously homotopic on the block, and the chain

β
(2)
p − β

(1)
p is null-homologous. If b1(R) is opposite to b2(R), then v′2

is a negative multiple of v′1 precisely on the support of β
(2)
p − β

(1)
p ,

a properly embedded segment. If we project v′1 and v′2 to a cross-
section orthogonal to the segment we see an index-1 repelling singu-
larity in both cases, which easily implies that the right orientation

for the segment is the same as that given by β
(2)
p − β

(1)
p .

Blocks of type II. Up to isomorphism there are 6 possible config-
urations for (b1, b2) near an edge e with centre p, and the analysis
is easy in all cases. We only make one case explicit in Fig. 13. One
sees from the figure that again v′2 is a negative multiple of v′1 only on

the support of −(β
(2)
p − β

(1)
p ), and a careful computation of indices

shows that also orientations match.

Blocks of type III. Up to isomorphism we have 24 possible config-
urations for (b1, b2) near a vertex v. Analyzing them directly would
be cumbersome, but we can avoid doing this by considering the local
figure only and expressing the transition from b1 to b2 as a combina-
tion of more elementary transitions. Intermediate branchings may
not be traces of global branchings on P , but looking at the local pic-
ture we do not need to worry about this: the local contribution to
α(v′2, v

′
1) is just the sum of the local contributions of the elementary

transitions. Showing that elementary transitions contribute as they
do to h(P2, P1) of course implies the conclusion.

To describe the elementary transitions, recall first that a system b
of orientations for the edges of a tetrahedron ∆ is dual to a branching
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of a vertex of P if and only if one vertex of (∆, b) is a source and one
is a sink (this was first remarked in [6]). We call little sink the vertex
of (∆, b) with two incoming and one outgoing edge. Of course any
two branchings on ∆ are related by a combination of modifications
of the following types:

Type A: Any of the 6 modifications of b which leave the sink fixed;

Type B: The modification of b which interchanges the sink with
the little sink.

To analyze the contribution to α(v′2, v
′
1) when b1 and b2 are re-

lated by a type A or type B modification we need an extra construc-
tion. Inside the type-III block corresponding to the vertex under
exam we consider a tetrahedron ∆ as suggested in Fig. 14: note that
∆ can be viewed as a shrunk copy of the tetrahedron dual to the
vertex. In particular both b1 and b2 define orientations for the edges
of ∆. Now we can further homotope v′1 and v′2 on the interior of the
type III block, getting new fields v′′1 and v′′2 such that:

1. On ∆ the field v′′j coincides with the vector field determined
by the edge-orientation carried by bj as shown in Fig. 7-right;

2. On the complement of ∆ both v′′1 and v′′2 point towards ∆ (so
all orbits asymptotically tend to some vertex of ∆).

The second condition implies that v′′1 and v′′2 can be a negative mul-
tiple of each other only within ∆. So we can consider ∆ only, dis-
missing the rest of the type-III block. Moreover on ∆ the fields are
completely determined by b1 and b2.

If b2 is obtained from b1 by a type-A modification, then β
(2)
p −β

(1)
p

is null-homologous, and the points where v′′2 is a negative multiple of
v′′1 are contained in the face of ∆ opposite to the common sink. We
can then get rid of these points by adding a field directed towards
the common sink and supported within a neighborhood of that face.

For a type-B modification, note that b2 only differs from b1 on
the edge e which joins the little sink to the sink of (∆, b1), therefore

[β
(2)
p −β

(1)
p ] = [−e] in H1(M,∂M ; Z). The construction of v′′1 and v′′2

now readily implies that α(v′′2 , v′′1 ) is precisely [−e].
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Figure 14: A shrunk version of the dual tetrahedron sits in a type-III
block.

We conclude the subsection by mentioning an alternative ap-
proach to Proposition 5.13 which has independent interest and pro-
vides a complete proof when H1(M,∂M ; Z) has no 2-torsion. Con-
sider again P1 and P2 in BrSpin(M) which differ only for the branch-

ing, and the corresponding chain
∑

p ǫ(p)(β
(2)
p − β

(1)
p ) which repre-

sents h(P2, P1), see above for notation. Proposition 5.13 implies that

2PD(h(P2, P1)) = E(v⊥2 ) − E(v⊥1 ) ∈ H2(M ; Z) (1)

where PD denotes Poincaré duality, E denotes the Euler class of
a plane distribution, and v⊥j is any plane distribution positively
transversal to vj. In addition, equation (1) implies Proposition 5.13
when the 2-torsion of H2(M ; Z) ∼= H1(M,∂M ; Z) vanishes.

We sketch now a direct geometric proof of equation (1). We first
remind that in [3, § 7.1] we have exhibited a preferred 2-cochain
e(P ) representing E(v(P )⊥) for a branched spine P . This cochain is
obtained by defining near Sing(P) a non-singular field µ(P ) (called
the “maw” by Christy [5]) which is tangent to P and points from the
locally twofold region to the locally onefold region. For a region R of
P the value of e(P ) on R is then computed as the algebraic number
of singularities which an extension of µ(P ) to R must have.

Back to the situation where P1 and P2 are the same spine P
except for the branching, we orient the regions of P as dictated
by P1 and note that E(v⊥2 ) − E(v⊥1 ) has a certain representative
e(P2)− ẽ(P1), where e(P2) is as just described and ẽ(P1) is obtained
from e(P1) by switching signs to the duals of the regions which have
different orientation in P1 and P2. Now we canonically modify the
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Figure 15: Modification of the 1-chain in a cross-section transversal
to an edge.

relative 1-chain
∑

p ǫ(p)(β
(2)
p −β

(1)
p ) described above to a new relative

1-chain c(P2, P1) which is transversal to the regions of P and hence

defines a 2-cochain, see Fig. 15. The modification for β
(2)
p − β

(1)
p

when p is the centre of an edge of P is suggested in Fig. 15. When p
is the centre of a region no modification is needed, and when p is a
vertex the situation is only slightly more complicated. Now one can
show that

2c(P2, P1) = e(P2) − ẽ(P1), (2)

namely that the desired equality (1) holds at the level of preferred
cochains, not only of cohomology classes. Equation (2) is most easily
understood when P2 is obtained from P1 by reversing the orientation
of all regions. In this case of course ξ2 = −ξ1 and ẽ(P1) = −e(P2),
and c(P2, P1) is easily recognized to be precisely e(P2) because it is

obtained by sliding the original chain
∑

p ǫ(p)(β
(2)
p − β

(1)
p ) along the

maw.

5.4. Conclusion

The following result, stated informally above, was proved in [7]:

Theorem 5.14. Given P1 and P2 in StSpin(M), there exists Q in
StSpin(M) such that:

• Q can be obtained from P1 using positive MP-moves only;

• Q can be obtained from P2 using lune moves only.

Let us now recall that a positive MP or lune move applied to a
branched spine can always be turned into a branched move. This
fact and Theorem 5.14 easily imply that any two branched spines of
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M can be obtained from each other by a combination of branched
MP-moves, branched lune moves, and changes of branching. Having
already shown that torsion is equivariant under these three elemen-
tary operations, we readily get the proof of Theorem 5.1 from the
facts that α defines an affine structure on Vect(M) and that ϕ′′ is a
homomorphism.
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