
“tesi” — 2014/3/21 — 14:32 — page 1 — #1

UNIVERSITÀ DEGLI STUDI DI TRIESTE
Sede Amministrativa del Dottorato di Ricerca

XXVI Ciclo - Dottorato in
Ingegneria dell’Informazione

Genetic Programming Techniques in
Engineering Applications

(Settore scientifico-disciplinare ING-INF/05)

DOTTORANDO RESPONSABILE DOTTORATO DI RICERCA

Andrea De Lorenzo Chiar.mo Prof. Walter Ukovich
Università degli Studi di Trieste

RELATORE

Chiar.mo Prof. Alberto Bartoli
Università degli Studi di Trieste

CORRELATORE

Chiar.mo Prof. Eric Medvet
Università degli Studi di Trieste

Anno Accademico 2012/2013

“tesi” — 2014/3/21 — 14:32 — page 2 — #2

“tesi” — 2014/3/21 — 14:32 — page 3 — #3

Contents

Abstract 1

Riassunto 3

1 Introduction 5

1.1 Thesis outline . 6

1.2 Publication list . 9

2 Text extraction 11

2.1 Overview . 11

2.2 Related work . 12

2.3 Problem statement . 14

2.4 Our approach . 15

2.4.1 User experience . 15

2.4.2 Implementation . 16

2.4.3 Observations . 18

2.5 Experiments . 19

2.5.1 Extraction tasks and datasets . 19

2.5.2 Methodology . 20

2.5.3 Results . 21

2.6 Remarks . 29

3 Regex golf 31

3.1 Overview . 31

3.2 Related Work . 32

3.3 The Problem . 33

3.4 Our Approach . 34

3.5 Experimental Evaluation . 37

3.5.1 Baseline . 38

3.5.2 Results . 38

3

“tesi” — 2014/3/21 — 14:32 — page 4 — #4

CONTENTS 4

3.6 Remarks . 45

4 Evolutionary learning of patterns 47

4.1 Overview . 47

4.2 Problem statements . 48

4.2.1 Abbadingo-style by examples . 48

4.2.2 Abbadingo-style for text extraction 49

4.2.3 Hardness indicators . 49

4.3 Approaches . 50

4.3.1 GP-Regex . 50

4.3.2 SSL-DFA . 51

4.4 Experiments . 51

4.5 Remarks . 54

5 Search and replace 55

5.1 Overview . 55

5.2 Related works . 56

5.3 Our approach . 58

5.4 Implementation . 59

5.4.1 Generating the context pattern . 59

5.4.2 Building the replacement expression 62

5.4.3 Generating the search pattern . 63

5.5 Experiments . 64

5.5.1 Results . 65

5.6 Concluding remarks . 67

6 Schema generation 71

6.1 Overview . 71

6.2 Related work . 72

6.3 XML and DTD . 73

6.4 Our approach . 74

6.4.1 Pre-processing . 75

6.4.2 Expressions generation . 75

6.4.3 Post-processing . 76

6.5 Experiments . 77

6.5.1 Datasets . 77

6.5.2 Methodology . 77

6.5.3 Results . 78

6.6 Remarks . 81

7 Electricity prices forecasting 83

7.1 Overview . 83

7.2 Our approach . 84

7.2.1 Overview . 84

“tesi” — 2014/3/21 — 14:32 — page 5 — #5

5 CONTENTS

7.2.2 GP approach . 85
7.2.3 Hybrid approach . 86

7.3 Experimental evaluation . 87
7.3.1 Dataset and Baseline . 87
7.3.2 Settings . 89
7.3.3 Results . 90

7.4 Remarks . 93

8 Estimation of tracheal pressure 95
8.1 Overview . 95
8.2 Related work . 96
8.3 Our approach . 96
8.4 Experiments . 97

8.4.1 Experimental setup . 97
8.4.2 Methodology . 99
8.4.3 Results . 100

8.5 Remarks . 101

Bibliography 103

“tesi” — 2014/3/21 — 14:32 — page 6 — #6

“tesi” — 2014/3/21 — 14:32 — page 1 — #7

Abstract

Machine learning is a suite of techniques that allow developing algorithms for performing
tasks by generalizing from examples. Machine learning systems, thus, may automatically
synthesize programs from data. This approach is often feasible and cost-effective where
manual programming or manual algorithm design is not. In the last decade techniques
based on machine learning have spread in a broad range of application domains.

In this thesis, we will present several novel applications of a specific machine Learning
technique, called Genetic Programming, to a wide set of engineering applications grounded
in real world problems. The problems treated in this work range from the automatic
synthesis of regular expressions, to the generation of electricity price forecast, to the
synthesis of a model for the tracheal pressure in mechanical ventilation. The results
demonstrate that Genetic Programming is indeed a suitable tool for solving complex
problems of practical interest. Furthermore, several results constitute a significant
improvement over the existing state-of-the-art.

The main contribution of this thesis is the design and implementation of a framework
for the automatic inference of regular expressions from examples based on Genetic
Programming. First, we will show the ability of such a framework to cope with the
generation of regular expressions for solving text-extraction tasks from examples. We
will experimentally assess our proposal comparing our results with previous proposals
on a collection of real-world datasets. The results demonstrate a clear superiority of
our approach. We have implemented the approach in a web application that has gained
considerable interest and has reached peaks of more 10 000 daily accesses.

Then, we will apply the framework to a popular “regex golf” challenge, a competition
for human players that are required to generate the shortest regular expression solving a
given set of problems. Our results rank in the top 10 list of human players worldwide and
outperform those generated by the only existing algorithm specialized to this purpose.

Hence, we will perform an extensive experimental evaluation in order to compare our
proposal to the state-of-the-art proposal in a very close and long-established research
field: the generation of a Deterministic Finite Automata (DFA) from a labelled set of
examples. Our results demonstrate that the existing state-of-the-art in DFA learning is
not suitable for text extraction tasks.

1

“tesi” — 2014/3/21 — 14:32 — page 2 — #8

CONTENTS 2

We will also show a variant of our framework designed for solving text processing
tasks of the search-and-replace form. A common way to automate search-and-replace is to
describe the region to be modified and the desired changes through a regular expression
and a replacement expression. We will propose a solution to automatically produce both
those expressions based only on examples provided by user. We will experimentally
assess our proposal on real-word search-and-replace tasks. The results indicate that our
proposal is indeed feasible.

Finally, we will study the applicability of our framework to the generation of schema
based on a sample of the eXtensible Markup Language documents. The eXtensible
Markup Language documents are largely used in machine-to-machine interactions and
such interactions often require that some constraints are applied to the contents of the
documents. These constraints are usually specified in a separate document which is often
unavailable or missing. In order to generate a missing schema, we will apply and will
evaluate experimentally our framework to solve this problem.

In the final part of this thesis we will describe two significant applications from
different domains. We will describe a forecasting system for producing estimates of the
next day electricity price. The system is based on a combination of a predictor based on
Genetic Programming and a classifier based on Neural Networks. Key feature of this
system is the ability of handling outliers—i.e., values rarely seen during the learning
phase. We will compare our results with a challenging baseline representative of the
state-of-the-art. We will show that our proposal exhibits smaller prediction error than
the baseline.

Finally, we will move to a biomedical problem: estimating tracheal pressure in a
patient treated with high-frequency percussive ventilation. High-frequency percussive
ventilation is a new and promising non-conventional mechanical ventilatory strategy. In
order to avoid barotrauma and volutrauma in patience, the pressure of air insufflated
must be monitored carefully. Since measuring the tracheal pressure is difficult, a model
for accurately estimating the tracheal pressure is required. We will propose a synthesis
of such model by means of Genetic Programming and we will compare our results with
the state-of-the-art.

“tesi” — 2014/3/21 — 14:32 — page 3 — #9

Riassunto

Il Machine Learning è una serie di tecniche che permettono di sviluppare algoritmi per
svolgere dei compiti generalizzandoli da degli esempi. I sistemi di Machine Learning,
quindi, possono sintetizzare automaticamente dei programmi da dei dati. Questo approc-
cio è spesso fattibile e conveniente dove invece non lo sono la programmazione manuale o
la progettazione manuale di algoritmi. Nell’ultima decade le tecniche basate sul Machine
Learning si sono diffuse in una vasta gamma di domini applicativi.

In questa tesi verranno presentate diverse nuove applicazioni di una specifica tecnica di
Machine Learning, chiamata Genetic Programming, ad una vasta gamma di applicazioni
di ingegneria collegate con il mondo reale. I problemi trattati in questo lavoro spaziano
dalla sintesi automatica di espressioni regolari, alla generazione di previsioni per il
prezzo dell’energia elettrica, alla sintesi di un modello per la pressione tracheale nella
ventilazione meccanica. I risultati dimostrano che il Genetic Programming è effettivamente
uno strumento adatto per risolvere problemi complessi di interesse pratico. Inoltre, diversi
risultati costituiscono un significativo miglioramento rispetto allo stato dell’arte esistente.

Il principale contributo di questa tesi è la progettazione e l’implementazione di uno
strumento per la deduzione automatica di espressioni regolari da esempi basato sul Genetic
Programming. Inizialmente verrà mostrata l’abilità di questo framework di far fronte alla
generazione automatica di espressioni regolari per risolvere il compito di estrarre testo a
partire da esempi. La proposta sarà valutata sperimentalmente confrontando i risultati
su una collezione di dati reali con quelli delle proposte precedenti. I risultati mostreranno
una chiara superiorità dell’approccio. L’approccio è stato anche implementato in una
applicazione web che ha suscitato un notevole interesse e ha raggiunto picchi di oltre
10 000 accessi giornalieri.

Dopo, lo strumento verrà applicato alla popolare sfida “regex golf”, una competizione
per giocatori umani ai quali è richiesto di generare l’espressione regolare più corta che
risolve un dato insieme di problemi.

Quindi, sarà effettuata una valutazione sperimentale estensiva al fine di confrontare
lo strumento proposto in questa tesi con la proposta allo stato dell’arte in un campo di
ricerca molto vicino e ormai consolidato: la generazione di Automi Finiti Deterministici
(DFA) da un insieme etichettato di esempi. I risultati mostrano che lo stato dell’arte

3

“tesi” — 2014/3/21 — 14:32 — page 4 — #10

CONTENTS 4

esistente nell’apprendimento di DFA non è adatto per i compiti di estrazione di testo.
Sarà anche mostrata una variante dello strumento progettata per risolvere il compito

di elaborazione del testo nella forma della ricerca e sostituzione. Un modo comune
per automatizzare la ricerca e sostituzione è di descrivere la regione da modificare e
il cambiamento desiderato per mezzo di una espressione regolare e di una espressione
di sostituzione. Verrà proposta una soluzione per produrre automaticamente entrambe
queste espressioni basandosi solo su esempi forniti dall’utente. La proposta verrà valutata
sperimentalmente su dei compiti reali di ricerca e sostituzione.

Infine, verrà studiata l’applicabilità del nostro strumento alla generazione di schemi
basandosi su campioni di documenti eXtensible Markup Language. I documenti eXtensible
Markup Language sono largamente utilizzati nelle interazioni macchina-macchina e queste
interazioni spesso richiedono che alcuni vincoli siano applicati al contenuto dei documenti.
Questi vincoli sono solitamente specificati in un documento separato che spesso è non
disponibile o mancante. Al fine di generare uno schema quando questo è mancante, verrà
applicato e valutato sperimentalmente lo strumento per risolvere questo problema.

Nella parte finale di questa tesi verranno descritte due applicazioni significative da
due domini differenti. Verrà descritto un sistema di previsione per produrre stime del
prezzo del giorno dopo dell’energia elettrica. Il sistema si fonda su una combinazione di
un predittore basato sul Genetic Programming e un classificatore basato su reti neurali.
Caratteristica principale di questo sistema è la sua abilità di gestire i valori anomali—
valori raramente visti nella fase di apprendimento. I risultati saranno confrontati con un
riferimento molto competitivo e rappresentativo dello stato dell’arte. Verrà mostrato che
la proposta esibisce errori di predizioni minore del riferimento.

Infine, verrà spostata l’attenzione su un problema biomedicale: stimare la pressione
tracheale nei pazienti trattati con la ventilazione percussiva ad alta frequenza. La
ventilazione percussiva ad alta frequenza è una nuova e promettente strategia non
convenzionale di ventilazione meccanica. Per evitare barotrauma e volutrauma nei
pazienti, la pressione tracheale dell’aria insufflata deve essere controllata attentamente.
Siccome misurare la pressione tracheale è difficile, è necessario un modello per stimare
accuratamente la pressione tracheale. Verrà proposta una sintesi di questo modello per
mezzo del Genetic Programming e i risultati verranno confrontati con lo stato dell’arte.

“tesi” — 2014/3/21 — 14:32 — page 5 — #11

Chapter 1
Introduction

Machine learning encloses a variety of techniques and strategies able to discover general
conjectures and knowledge from specific data. This ability allows developing algorithms
to perform complex tasks by generalizing from examples and observations. In other words,
machine learning may automatically generate programs from data. Machine learning
provides a very attractive alternative to the manual design of algorithms, specially
when this is expensive in terms human effort and human time. The growth in avaiable
computational power and the large amount of data available today have made the machine
learning approach feasible and cost-effective. Nowadays machine learning has spread in a
wide range of application domains. Its techniques are broadly employed in applications
such as web search, spam filters, recommender systems, advertising, natural language
processing, fraud detection, forecasting, drug design, medical diagnosis and many other.

One of the most promising techniques in field of machine learning is the Genetic
Programming (GP). GP is a computational paradigm inspired by biological evolution [48]
in which a solution for a given problem is encoded as a computer program. Initially,
in GP, a population of computer programs is generated at random starting from a
predefined set of building blocks. Each such program is called an individual. The ability
of any individual to solve the problem of interest is measured by the fitness function
and called fitness. Individuals that exhibit highest fitness are selected for producing a
new population. The new population is obtained by recombining the selected individuals
through certain genetic operators, such as “crossover” and “mutation”. These steps
constitute a generation. This process is iterated until either a solution with perfect fitness
is found or some termination criterion is satisfied, e.g., a predefined maximum number of
generations have evolved.

In this thesis we will present applications of GP to a collection of practical problems,
problems which range from the inference of regular expressions to forecasting of time series
and estimation of physical models. The results demonstrate that Genetic Programming
is indeed a suitable tool for solving complex problems of practical interest. Furthermore,
several results constitute a significant improvement over the existing state-of-the-art.
The applications presented in this thesis have been published in international journals

5

“tesi” — 2014/3/21 — 14:32 — page 6 — #12

1. Introduction 6

and conferences.

1.1 Thesis outline

In chapter 2 we propose a system for the automatic generation of regular expressions
for text-extraction tasks. The user describes the desired task only by means of a set of
labeled examples. The generated regular expressions may be used with common engines
such as those which are part of Java, PHP, Perl and so on. Usage of the system does
not require any familiarity with regular expressions syntax. We performed an extensive
experimental evaluation on 12 different extraction tasks applied to real-world datasets.
We obtained very good results in terms of precision and recall, even in comparison to
earlier state-of-the-art proposals. The results are highly promising toward the achievement
of a practical surrogate for the specific skills required for generating regular expressions,
and significant as a demonstration of what can be achieved with GP-based approaches on
modern IT technology. Moreover, we have implemented the approach in a public available
web application which has been very well received and has gathered peak of more than
10 000 visits per day. These results have been published in the international journal
IEEE Computer [10] and the international conference ACM Genetic and Evolutionary
Computation Conference (GECCO) [8].

Chapter 3 describes the application of system presented in chapter 2 to the so-called
“regex golf” problem. Regex golf has recently emerged as a specific kind of code golf, i.e.,
unstructured and informal programming competitions aimed at writing the shortest code
solving a particular problem. A problem in regex golf consists in writing the shortest
regular expression which matches all the strings in a given list and does not match any of
the strings in another given list. The regular expression is expected to follow the syntax
of a specified programming language, e.g., Javascript or PHP. In this chapter, we propose
a regex golf player internally based on GP. We generate a population of candidate regular
expressions represented as trees and evolve such population based on a multi-objective
fitness which minimizes the errors and the length of the regular expression. We assess
experimentally our player on a popular regex golf challenge consisting of 16 problems
and compare our results against those of a recently proposed algorithm—the only one we
are aware of. Our player obtains scores which improve over the baseline and are highly
competitive also with respect to human players. The time for generating a solution is
usually in the order of tens minutes, which is arguably comparable to the time required
by human players.

The problem of synthesizing a Deterministic Finite Automata (DFA) automatically,
based on a set of labelled examples, is long-established and the literature abounds of
proposals in this area. The state of the art is focussed on a class of so-called Abbadingo-
style problems, which are not inspired by any real application. Recent proposals in
the area of automatic synthesis of regular expressions from examples have obtained
results of potentially practical relevance on text extraction problems, by following a
radically different line of research. Since a DFA may be converted to a regular expression,
two key questions arise: are research results in the area of DFA learning practically

“tesi” — 2014/3/21 — 14:32 — page 7 — #13

7 Thesis outline

useful for text extraction problems? how do they compare to the state of the art in
text extraction? In chapter 4 of this thesis we address these questions by performing
an extensive experimental evaluation of two state-of-the-art proposals of the respective
approaches on real datasets. Our analysis suggests that the state of the art in DFA
learning is not competitive for solving text extraction problems. We believe this result is
insightful for assessing the actual relevance of Abbadingo-style problems and, perhaps,
for explaining their lack of practical impact.

Search-and-replace is a text processing task which may be largely automated with
regular expressions: the user must describe with a specific formal language the regions
to be modified (search pattern) and the corresponding desired changes (replacement
expression). Writing and tuning the required expressions requires high familiarity with
the corresponding formalism and is typically a lengthy, error-prone process. In chapter 5
we propose a tool based on GP for generating automatically both the search pattern and
the replacement expression based only on examples. The user merely provides examples
of the input text along with the desired output text and does not need any knowledge
about the regular expression formalism nor about GP. We are not aware of any similar
proposal. We experimentally evaluated our proposal on 4 different search-and-replace
tasks operating on real-world datasets and found good results, which suggests that
the approach may indeed be practically viable. These results have been published in
the international conference ACM Genetic and Evolutionary Computation Conference
(GECCO) [29]

The eXtensible Markup Language (XML) is an essential ingredient of modern web
technology and is widely used for describing structured documents to be exchanged in
machine-to-machine interactions. The specific constraints to be enforced by a specific
application are described in a separate schema document. Although availability of a
schema for a specific application is very important, for example, for automating input
validation processing, in practice many applications either do not have any schema or the
corresponding schema is incomplete. For this reason, several proposals have been made
for synthesizing a schema based on a sample of the XML documents used by the specific
application. In chapter 6 we describe the design, implementation and experimental
evaluation of a tool that solves this problem based on GP. Our GP-DEI tool (Genetic
Programming DTD Evolutionary Inferer), takes as input one or more XML documents
and automatically produces a schema, in DTD language, which describes the input
documents. Usage of the GP-DEI requires neither familiarity with GP nor with DTD
or XML syntaxes. We performed an extensive experimental evaluation of our tool on a
large collection of several sets of real world XML documents, including documents used
in an earlier state-of-the-art proposal.

Chapter 7 focuses on the time series forecasting. The electric power market is
increasingly relying on competitive mechanisms taking the form of day-ahead auctions,
in which buyers and sellers submit their bids in terms of prices and quantities for each
hour of the next day. Methods for electricity price forecasting suitable for these contexts
are crucial to the success of any bidding strategy. Such methods have thus become very
important in practice, due to the economic relevance of electric power auctions. In this

“tesi” — 2014/3/21 — 14:32 — page 8 — #14

1. Introduction 8

thesis we propose a novel forecasting method based on GP. Key feature of our proposal
is the handling of outliers, i.e., regions of the input space rarely seen during the learning.
Since a predictor generated with GP can hardly provide acceptable performance in these
regions, we use a classifier that attempts to determine whether the system is shifting
toward a difficult-to-learn region. In those cases, we replace the prediction made by GP
by a constant value determined during learning and tailored to the specific subregion
expected. We evaluate the performance of our proposal against a challenging baseline
representative of the state-of-the-art. The baseline analyzes a real-world dataset by
means of a number of different methods, each calibrated separately for each hour of the
day and recalibrated every day on a progressively growing learning set. Our proposal
exhibits smaller prediction error, even though we construct one single model, valid for
each hour of the day and used unmodified across the entire testing set. We believe that
our results are highly promising and may open a broad range of novel solutions. These
results have been published in the international conference EuroGP [9]

Finally in chapter 8 we move our attention to a biomedical problem: the estimation
of tracheal pressure during the HFPV mechanical ventilation. High-frequency percussive
ventilation (HFPV) is a non-conventional mechanical ventilatory strategy which has
proven useful in the treatment of a number of pathological conditions. HFPV usually
involves the usage of endotracheal tubes (EET) connecting the ventilator circuit to the
airway of the patient. The pressure of the air flow insufflated by HFPV must be controlled
very accurately in order to avoid barotrauma and volutrauma. Since the actual tracheal
pressure cannot be measured, a model for estimating such a pressure based on the EET
properties and on the air flow properties whom can actually be measured in clinical
practice is necessary. In this chapter we propose a novel methodology, based on GP,
for synthesizing such a model. We experimentally evaluated our models against the
state-of-the-art baseline models, crafted by human experts, and found that our models
for estimating tracheal pressure are significantly more accurate. These results have been
published in the international conference Image and Signal Processing and Analysis
(ISPA) [1]

“tesi” — 2014/3/21 — 14:32 — page 9 — #15

9 Publication list

1.2 Publication list

• [9] A. Bartoli, G. Davanzo, A. De Lorenzo, and E. Medvet. Gp-based electricity
price forecasting. In Genetic Programming, pages 37–48. Springer Berlin Heidelberg,
2011

• [63] E. Medvet, A. Bartoli, G. Davanzo, and A. De Lorenzo. Automatic face annota-
tion in news images by mining the web. In Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology-
Volume 01, pages 47–54. IEEE Computer Society, 2011

• [8] A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri, E. Medvet, and E. Sorio.
Automatic generation of regular expressions from examples with genetic program-
ming. In Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference companion, pages 1477–1478. ACM, 2012

• [29] A. De Lorenzo, E. Medvet, and A. Bartoli. Automatic string replace by exam-
ples. In Proceeding of the fifteenth annual conference on Genetic and evolutionary
computation conference, pages 1253–1260. ACM, 2013

• [10] A. Bartoli, G. Davanzo, A. De Lorenzo, E. Medvet, and E. Sorio. Automatic
synthesis of regular expressions from examples. 2013

• [1] M. Ajcevic, A. De Lorenzo, A. Accardo, A. Bartoli, and E. Medvet. A novel
estimation methodology for tracheal pressure in mechanical ventilation control.
In Image and Signal Processing and Analysis (ISPA), 2013 8th International
Symposium on, pages 695–699. IEEE, 2013

“tesi” — 2014/3/21 — 14:32 — page 10 — #16

“tesi” — 2014/3/21 — 14:32 — page 11 — #17

Chapter 2
Regular expressions generation for
text extraction

2.1 Overview

A regular expression is a means for specifying string patterns concisely. Such a specification
may be used by a specialized engine for extracting the strings matching the specification
from a data stream. Regular expressions are a long-established technique for a large
variety of textual document processing applications [94] and continue to be a routinely
used tool due to their expressiveness and flexibility [19]. Regular expressions have become
an essential device in broadly different application domains, including construction of
XML schemas [14, 15], extraction of bibliographic citations [23], network packets rewriting
[44], network traffic classification [96, 11], signal processing hardware design [91], malware
[77, 24] and phishing detection [81] and so on.

Constructing a regular expression suitable for a specific task is a tedious and error-
prone process, which requires specialized skills including familiarity with the formalism
used by practical engines. For this reason, several approaches for generating regular
expressions automatically have been proposed in the literature, with varying degrees
of practical applicability (see next section for a detailed discussion). In this work we
focus on text-extraction tasks and describe the design, implementation and experimental
evaluation of a system based on genetic programming (GP) for the automatic generation
of regular expressions. The user is required to describe the desired task by providing a set
of positive examples, in the form of text lines in which each line is accompanied by the
string to be extracted, and an optional set of negative examples, i.e., of text lines from
which no string has to be extracted. The system uses these examples as learning corpus
for driving the evolutionary search for a regular expression suitable for the specified task.
The regular expression generated by the system is suitable for use with widespread and
popular engines such as libraries of Java, PHP, Perl and so on. It is important to point
out that all the user has to provide is a set of examples. In particular, the user need not

11

“tesi” — 2014/3/21 — 14:32 — page 12 — #18

2. Text extraction 12

provide any initial regular expression or hints about structure or symbols of the target
expression. Usage of the system, thus, requires neither familiarity with GP nor with
regular expressions syntax.

Essential components of our implementation include the following. First, the fitness of
individuals is based on the edit distance between each detected string and the correspond-
ing target string. Several earlier works use a fitness based on the number of examples
extracted correctly (see Section 6.2), but, as it turned out from our experiments, such
a fitness definition is not adequate for this task. Second, we incorporate in the fitness
definition a function of the size of the individual, in order to control bloating and obtain
more readable results. Third, individuals are generated so as to make sure that each
individual represents a syntactically correct expression.

We performed an extensive experimental evaluation of our proposal on 12 different
extraction tasks: email addresses, IP addresses, MAC (Ethernet card-level) addresses,
web URLs, HTML headings, Italian Social Security Numbers, phone numbers, HREF
attributes, Twitter hashtags and citations. All these datasets were not generated syn-
thetically, except for one: the Italian Social Security Numbers dataset. We obtained very
good results for precision and recall in all the experiments. Some of these datasets were
used by earlier state-of-the-art proposals and our results compare very favourably even
to all these baseline results.

We believe these results may be practically relevant also because we obtained very
good figures for precision and recall even with just a few tens of examples and the time
required for generating a regular expression is in the order of minutes.

It seems reasonable to claim, thus, that the system may be a practical surrogate
for the specific skills required for generating regular expressions, at least in extraction
problems similar to those analysed in our evaluation.

A prototype of our system is publicly available at http://regex.inginf.units.it.

2.2 Related work

The problem of synthesizing a regular expression or deterministic finite automata
(DFAs) [60] from a set of examples is long-established (e.g., [20]) and has been studied
from several points of view. We restrict our discussion to evolutionary solutions and to
recent proposals focussed on practical application domains of text-extraction.

An evolutionary approach based on grammatical evolution, i.e., a grammar-based
genetic algorithm for generating programs written in languages specified with the Backus-
Naur Form, is proposed in [22] and assessed on the extraction of hyperlinks from HTML
files. The approach takes a set of examples in the form of text lines as input: a positive
example is a text line from which some string has to be extracted and a negative example
is a line from which no string has to be extracted. The cited work, thus, considers a
flagging problem: a positive example is handled correctly when some string is extracted,
irrespective of the string. We consider instead a more difficult extraction problem: in
our case a positive example consists of a text line paired with a substring in that line;
a positive example is handled correctly only when exactly that substring is extracted.

“tesi” — 2014/3/21 — 14:32 — page 13 — #19

13 Related work

We included in our experimental evaluation the dataset of [22]. Interestingly, our results
improve those of the cited work even in terms of flagging precision and recall.

Problem and fitness definition in [7] and [39] are more similar to ours. The proposal
in [7] applies a genetic algorithm for evolving regular expressions in several populations,
followed by a composition module that composes two given regular expressions in several
predefined ways and selects the composition which scores better on a validation set. The
criteria for choosing from the final populations the two specific expressions to be input
to the composition module are not given. The proposal is assessed in the context of web
data extraction, in particular URLs and phone numbers. According to the authors, when
applied to real web documents, the generated expressions are often not able to extract
essential URLs components. A more direct application of genetic algorithms is presented
in [39], which proposes to restrict the search space by selecting the symbol alphabet
based on a preliminary frequency string analysis on a subset of the corpus. The approach
is applied to URL extraction, but no details are given about size and composition of
training and testing set.

Concerning evolutionary approaches based on genetic programming, the automatic
induction of deterministic finite automata from examples was proposed in [32], whereas
the generation of regular expressions was proposed in [93] and applied to the Tomita
benchmark languages [95]. Stochastic regular expressions, also applied to the Tomita
languages, were considered in [87]. Our approach follows the same lines of these works,
in that regular expressions are directly encoded as program trees. On the other hand,
the computing power available today enable us to place much stronger emphasis on
real-world text processing problems, with regular expressions suitable to be input to
widespread engines such as Java, PHP and so on.

Concerning recent proposals focussed on text extraction, an active learning approach is
explored in [106]. The application domain is criminal justice information systems and the
main focus is minimizing the manual effort required by operators. Starting from a single
positive example, human operators are introduced in the active learning loop in order to
manually prune irrelevant candidate examples generated by the learning procedure. The
approach is assessed on datasets with training set larger than the corresponding testing
set—in our experiments the training set is a small fraction of the testing set. The cited
work proposes an algorithm that may generate only reduced regular expressions, i.e., a
restricted form of regular expressions not including, for example, the Kleen operator used
for specifying zero or more occurrences of the previous string (e.g., “a*” means zero or
more occurrences of the “a” character). Similar constraints characterize the learning
algorithm proposed in [33]. This limitation is not present in the active learning algorithm
proposed in [46], which requires a single positive example and an external oracle able to
respond to membership queries about candidate expressions—the role played by human
operators in the previous works. This algorithm is provably able to generate arbitrarily
complex regular expressions—not including the union operator “|”—in polynomial time.
No experimental evaluation is provided.

An approach that may be applied to a wide range of practical cases is proposed in
[53]. This proposal requires a labelled set of examples and an initial regular expression

“tesi” — 2014/3/21 — 14:32 — page 14 — #20

2. Text extraction 14

that has to be prepared with some domain knowledge—which of course implies the
presence of a skilled user. The algorithm applies successive transformations to the
starting expression, for example by adding terms that should not be matched, until
reaching a local optimum in terms of precision and recall. The proposal is assessed on
regular expressions for extracting phone numbers, university course names, software
names, URLs. These datasets were publicly available and we included some of them
in our experimental evaluation. Another approach based on successive transformations,
which also relies on an initial regular expression, is proposed in [5]. The main focus here
is the ability to cope with a potentially large alphabet over noisy data. The requirement
of an initial regular expression is not present in [19], which is based on the identification
in the training corpus of relevant patterns at different granularity, i.e., either tokens or
characters. The most suitable of these patterns are then selected and combined into
a single regular expression. This proposal is assessed on several business-related text
extraction tasks, i.e., phone numbers, invoice numbers, SWIFT codes and some of the
datasets in [53] (we included these datasets in our evaluation).

As a final remark we note that the earlier proposals more promising for practical
text-extraction applications are not based on evolutionary approaches (i.e, [53, 5, 19]).
Our experiments, though, exhibit precision and recall that compare very favourably to
all these works.

Automatic generation of regular expressions from examples is an active research
area also in application domains very different from text extraction, in particular, gene
classification in biological research [50]. The algorithm proposed in the cited work is
tailored to the specific application domain, i.e., extraction of patterns (mRNA sequences)
with biological significance which cannot be annotated in advance. Our approach focusses
on a radically different scenario, because we require that each positive example is
annotated with the exact substring which is to be identified.

Automatic generation of an appropriate schema definition from a given set of XML
documents is proposed in [14, 15]. These works develop probabilistic algorithms able to
generate subclasses of regular expressions that, as shown by the authors, suffice for the
specific application domain—e.g., expressions in which each alphabet symbol occurs a
small number of times.

Automatic generations of regular expressions to be used for spam classification is
described in [82]. The algorithm proposed in the cited work is trained by examples of
textual spam messages paired with a regular expression generated by a human expert for
flagging those messages as spam.

2.3 Problem statement

We define the problem of text extraction by examples. Let EG be a problem generator
entity which poses the problem to a problem solver entity ES , whose aim is to find a
solution. The problem is described by: (i) a tuple I which univocally identifies a problem
instance; (ii) a procedure followed by EG to generate from I the learning information L
available to ES ; (iii) the metrics to be maximized by ES .

“tesi” — 2014/3/21 — 14:32 — page 15 — #21

15 Our approach

Text extraction involves input strings constructed over a large alphabet α = UTF-8.
A problem instance is defined by I = (T, h). The dataset T is composed of pairs of strings
〈t, t′〉, where t′ is a substring which has to be extracted from t—t′ may be the empty
string ∅. We call positive example a pair in which t′ 6= ∅, negative example otherwise.
The number h < |T | is a positive integer.

EG generates the learning information L = (TL) by uniformly sampling T such that
|TL| = h. The sampling is done so as to ensure that positive and negative examples in
TL are balanced.

The objective of ES consists in proposing a solution r∗ which maximizes the following
metrics on TE = T \ TL (note that TE is not available to ES):

precision :=

∣∣{t ∈ TE : E(t; r∗) = t′ 6= ∅
}∣∣

|{t ∈ TE : E(t; r∗) 6= ∅}|

recall :=

∣∣{t ∈ TE : E(t; r∗) = t′ 6= ∅
}∣∣

|{t ∈ TE : t′ 6= ∅}|

F-measure := 2
precision · recall

precision + recall

where E(t; r∗) is the leftmost substring of t extracted by r∗.
In practical settings, EG is a user and ES is a regular expression generation tool. EG

will typically use the generated expression not only on T , but also on a larger dataset.
In other words, despite being TL a uniform sampling of T , no guarantees exist about
whether T is indeed a “good model” of the regular expression actually needed by the
user. Consider, for example, a user who wants to generate a regular expression for
extracting dates. The dataset T could include many “recent” dates (e.g., 2013-11-10,
2011-02-07, . . .), which could not be an uniform sampling of all possible dates. Of
course, this generalization issue is intrinsic to any realistic machine learning application.

2.4 Our approach

2.4.1 User experience

The user provides a set of examples, each composed by a pair of strings 〈t, t′〉 where t is
a text line and t′ is the substring of t that must be extracted by the regular expression.
A pair where t′ is empty, meaning that no string must be extracted from t, is a negative
example.

The system generates a regular expression fully compatible with all major regular
expression engines, including those of Java, Perl and PHP. The generated expression is
not compatible with the JavaScript engines included in popular browsers, for reasons
discussed below. However, the expression may be made compatible with JavaScript by
means of a simple mechanical transformation [35] and our system is able to execute this
transformation automatically.

We remark that the user should not provide any further information like an initial
regular expression, a restricted set of important words, or hints about the structure of

“tesi” — 2014/3/21 — 14:32 — page 16 — #22

2. Text extraction 16

Node Type Arity Label

possessive star

1

“c1*+”
possessive plus “c1++”
possessive question mark “c1?+”
non-capturing group “(c1)”
character class “[c1]”
negated character class “[ˆc1]”

concatenator 2 “c1c2”

possessive repetition 3 “c1{c2,c3}+”

Table 2.1: Function set

the example. Moreover, our approach does not required any knowledge about the syntax
of the regular expressions or about the GP algorithm. As pointed out in the introduction,
a prototype is available at http://regex.inginf.units.it.

2.4.2 Implementation

Every individual of the genetic programming (GP) search process is a tree τ . The
terminal set consists of: (i) a large alphabet of constants including common characters
and punctuation symbols, (ii) the numerical and alphabetical ranges, (iii) two common
predefined character classes, i.e., “\w” and “\d”, (iv) the wildcard character “.”. Mem-
bers of the terminal set are listed in Table 2.1, in which the Label column is the string
that represents the corresponding node in the tree.

The function set consists of the regular expressions operators listed in Table 2.1:
(i) the possessive quantifiers “star”, “plus”, “question mark”, (ii) the non-capturing
group, (iii) the character class and negated character class, (iv) the concatenator, that is
a binary node that concatenates its children, (v) and the ternary possessive quantifiers
“repetition”. Labels of function set elements are templates used for transforming the
corresponding node and its children into (part of) a regular expression. For example, a
node of type “possessive question mark” will be transformed into a string composed of
the string associated with the child node followed by the characters “?+”. The string
associated with each child node will be constructed in the same way, leaf nodes being
associated with their respective labels as listed in Table 2.2.

A tree τ is transformed into a string Rτ which represents a regular expression by
means of a depth-first post order visit. In detail, Rτ := Node2Regex(root(τ)),
where the function Node2Regex is defined in Algorithm 1: child(N, i) denotes
the i-th child of node N and replace(t1, t2, t3) is a function that substitutes string t2
with string t3 in string t1. A simple example is shown in Fig. 2.1.

Upon generation of a new candidate individual, the syntactic correctness of the
corresponding candidate expression is checked. If the check fails, the candidate individual
is discarded and a new one is generated. The GP search is implemented by a software
developed in our lab. The software is written in Java and can run different GP searches

“tesi” — 2014/3/21 — 14:32 — page 17 — #23

17 Our approach

Node Type Labels

constants
“a”, . . . ,“z”,“A”, . . . ,“Z”,
“0”, . . . ,“9”,“@”,“#”, . . .

ranges “a-z”,“A-Z”,“0-9”
predefined character classes “\w”,“\d”
wildcard “.”

Table 2.2: Terminal set

Algorithm 1 Transformation function from node N to regular expression RN .

function node2regex(N)
RN :=label(N)
if N is leaf then

return RN
else

for i := 1; i ≤ arity(N); i++ do
NC :=child(N, i)
RN :=replace(RN ,“ci”,node2regex(NC))

end for
return RN

end if
end function

“c1c2”

“[c1]” “c1++”

“c1c2”

“@” “#”

“\w”

Figure 2.1: Tree representation of the “[@#]\w++” regular expression.

“tesi” — 2014/3/21 — 14:32 — page 18 — #24

2. Text extraction 18

Quantifier Greedy Lazy Possessive

0 or more times * *? *+
1 or more times + +? ++
0 or 1 time ? ?? ?+
from m to n times {m,n} {m,n}? {m,n}+

Table 2.3: Sample quantifiers

in parallel on different machines.
We used a fitness function that implements a multiobjective optimization, minimizing:

(i) the sum of the Levenshtein distances (also called edit distances) between each detected
string and the corresponding desired string, and (ii) the length of the regular expression.
In detail, we defined the fitnesses fd(r) and fl(r) of an individual r as follows:

fd(r) =
n∑
i=1

d(t′i, Er(ti)) (2.1)

fl(r) = l(r) (2.2)

where: (i) ti is the i-th example text line in a set of n given examples, (ii) t′i is the
substring to be found in ti, (iii) Er(ti) is the leftmost string extracted by the individual
r for the example ti, (iv) d(t′, t′′) is the Levenshtein distance between strings t′ and t′′,
(v) l(r) is the number of characters in the individual r—i.e., the length of the regular
expression represented by that individual. The multi-objective optimization is performed
by a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [31].

We remark that the fitness is not defined in terms of precision and recall, which are
the performance metrics that really matter in the final result. Other prior works attempt
to minimize the number of unmatched strings in the training corpus, thereby focussing
more directly on precision and recall [50, 22]. Our early experiments along this line did
not lead to satisfactory results. Looking at the generated individuals, we found that this
approach tends to be excessively selective, in the sense that individuals failing to match
just a few characters are as important in the next evolutionary step as those that are
totally wrong. We thus decided to use the Levenshtein distance (along the lines of [7, 39])
and obtained very good results. A more systematic comparison between different fitness
definitions is given in the experimental evaluation.

2.4.3 Observations

The choice of function set and terminal set has been influenced by the results of our early
experiments, as follows. Regular expressions may include quantifiers, i.e., metacharacters
that describe how many times a given group of characters shall repeat to be considered a
match. Quantifiers can be grouped by their behaviour in three macro groups (Table 2.3):
greedy, when they return the largest matching string, lazy, when they return the minimal
match, and possessive, that are very similar to greedy quantifiers except that a possessive
quantifier does not attempt to backtrack when a match fails. In other words, once the

“tesi” — 2014/3/21 — 14:32 — page 19 — #25

19 Experiments

engine reaches the end of a candidate string without finding a match, a greedy quantifier
would backtrack and analyse the string again, whereas a possessive quantifier will continue
the analysis from the end of the candidate string just analysed. Since greedy and lazy
quantifiers have worst case exponential complexity, we decided to generate individuals
that include only possessive quantifiers.

This design choice has been corroborated by the results of early experiments in which
we allowed individuals to include either greedy or lazy quantifiers. The execution time of
these experiments was way too long to be practical—in the order of several tens of hours
for generating a regular expression, as opposed to the minutes or few tens of minutes
typically required when only possessive quantifiers are allowed (Section ??). Allowing
regular expressions to contain only possessive quantifiers lead to results that cannot be
handled by JavaScript engines included in major browsers. However, as pointed out
in Section 2.4, a simple mechanical transformation—which consists in replacing each
possessive quantifier with an equivalent expression composed of group operators and a
greedy quantifier—makes the resulting expression compatible with JavaScript.

2.5 Experiments

2.5.1 Extraction tasks and datasets

We considered 12 different datasets, 2 of which are taken from [53], and [19] and other 2
are taken from [22]. We made our best to include in the evaluation all earlier proposals
that address our problem. In this respect, it is useful to remark that our setting is
more challenging than some of these works: (i) the proposal in [53] improves a regular
expression initially provided by the user, whereas in our case the user does not provide
any hint about the regular expression to be constructed; and, (ii) the proposal in [22]
counts the numbers of examples in which a match has been found, irrespective of the
content of the matched string—a flagging problem. We count instead the number of
examples in which exactly the searched string has been matched.

Each dataset corresponds to an extraction task, as described below, and we manually
labelled all the data. The size of each dataset, including its composition in terms of
number of positive and negative samples, is given in Table 2.5. A list of the datasets
follows.

ReLIE URL Extract URLs from a collection of 50,000 web-pages obtained from the
publicly available University of Michigan Web page collection [54] (used by [53]).

ReLIE Phone Number Extract phone numbers from a collection of 10,000 emails
obtained from the publicly available Enron email collection [73] (used by [53, 19]).

Cetinkaya HREF Extract the HTML attribute HREF from the HTML source of a set
of 3 web pages (used by [22]).

Cetinkaya URL Extract URLs from a set of 3 web pages (used by [22]).

“tesi” — 2014/3/21 — 14:32 — page 20 — #26

2. Text extraction 20

Twitter Hashtag/Cite Extract hashtags and citations from a big corpus of Twitter
messages collected using the Twitter Streaming API1; a superset of this corpus has
been used in [61].

Twitter URL Extract URLs from a subset of the corpus used in the previous task.

Log IP Extract the IP addresses from a firewall log. These log were collected from our
lab gateway server running the vuurmuur2 firewall software.

Italian SSN Extract Italian SSNs3 from a text corpus partly composed of synthetically
generated examples including some form of noise, and partly obtained by OCR
processing of low quality printed documents, mostly produced by dot-matrix printers.
These documents were invoices issued by sixty different Italian dealers and have
been used in [62].

Email Header IP Extract the IP addresses from the headers of an email corpus com-
posed of 50 email collected from personal mail boxes of our lab staff. This task
is more challenging than extracting IP addresses from a server log because email
headers typically contain strings closely resembling to IP addresses, such as serial
numbers, unique identification numbers or timestamps.

Website Email Extract the email addresses from the HTML source of the address book
page obtained from the website of a local nonprofit association.

Log MAC Extract the MAC (Ethernet card) addresses from the same log used in the
Log IP task.

Website Heading Extract the HTML headings from the HTML source of a set of pages
taken from Wikipedia and W3C web sites.

2.5.2 Methodology

We executed each experiment as follows:

1. We split the dataset in three subsets selected randomly: a training set, a validation
set and a testing set. The training set and the validation set are balanced, i.e.,
the number of positive examples is always the same as the number of negative
examples. Those sets are used as learning corpus, as described below.

2. We executed a GP search as follows: (i) we ran J different and independent GP
evolutions (jobs), each on the training set (without the examples in the validation
set) and with the GP-related parameters set as in Table 2.4; (ii) we selected the
individual with the best fitness on the training set for each job; (iii) among the
resulting set of J individuals, we selected the one with the best F-measure on the

1https://dev.twitter.com/docs/streaming-apis
2http://www.vuurmuur.org/
3http://it.wikipedia.org/wiki/Codice fiscale

“tesi” — 2014/3/21 — 14:32 — page 21 — #27

21 Experiments

Parameter Settings

Population size 500
Selection Tournament of size 7
Initialization method Ramped half-and-half
Initialization depths 1-5 levels
Maximum depth after crossover 15
Reproduction rate 10%
Crossover rate 80%
Mutation rate 10%
Number of generations 1000

Table 2.4: GP parameters

validation set and used this individual as the final regular expression R of the GP
search.

3. We evaluated precision, recall and F-measure of R on the testing set. In detail,
we count an extraction when some (non empty) string has been extracted from an
example and a correct extraction when exactly the (non empty) string associated
with a positive example has been extracted. Accordingly, the precision of a regular
expression is the ratio between number of correct extractions and number of
extractions; the recall is the ratio between number of correct extractions and
number of positive examples; F-measure is the harmonic mean of precision and
recall.

4. We executed each experiment with 5-fold cross-validation, i.e., we repeated steps
1–3 five times.

5. We averaged the results for precision, recall and F-measure across the five folds.

2.5.3 Results

We executed a first suite of experiments with a learning corpus size of 100 elements, 50
training examples and 50 validation examples, and J = 128 jobs. The learning corpus is
always a small portion of the full dataset, around 1-4% except for the Cetinkaya URL
task in which it is 8.1%. The results were very good in all tasks as we always obtained
values of precision, recall, and F-measure around or higher than 90% (Fig. 2.2). The only
exceptions are the precision indexes for Cetinkaya HREF and the ReLIE Phone precision.
However, even these results constitute a significant improvement over earlier works as
discussed in detail in the following.

Tasks ReLIE URL and ReLIE Phone Number have been used in earlier relevant
works [53, 19]. We repeated our experiments with different sizes for the training set
(as clarified in more detail below) and plotted the average F-measure of the generated
expressions on the testing set against the training set size. The results are in Fig. 2.3(a)

“tesi” — 2014/3/21 — 14:32 — page 22 — #28

2. Text extraction 22

0

20

40

60

80

100

R
eL

IE
U

R
L

R
eL

IE
P

h
on

e
N

u
m

b
er

C
et

in
ka

ya
H

R
E

F

C
et

in
ka

ya
U

R
L

T
w

it
te

r
H

as
h
ta

g/
C

it
e

T
w

it
te

r
U

R
L

L
og

IP

It
al

ia
n

S
S

N

E
m

ai
l

H
ea

d
er

IP

W
eb

si
te

E
m

ai
l

L
og

M
A

C

W
eb

S
it

e
H

ea
d

in
g

Prec. Recall F-m.

Figure 2.2: Experiment results, in terms of Precision, Recall and F-Measure, of each task

Task Examples Positive Negative
ReLIE URL 3877 2820 1057
ReLIE Phone Number 41832 4097 37735
Cetinkaya HREF 3416 211 3205
Cetinkaya URL 1233 466 767
Twitter Hashtag/Cite 50000 34879 15121
Twitter URL 5300 2200 3100
Log IP 10000 5000 5000
Italian SSN 5507 2783 2724
Email Header IP 2207 480 1728
Website Email 25590 1095 24495
Log MAC 10000 5000 5000
Website Heading 49513 566 48947

Table 2.5: Dataset compositions

“tesi” — 2014/3/21 — 14:32 — page 23 — #29

23 Experiments

0

20

40

60

80

100

10 100 1000 10000 100000

T
es

ti
n

g
F

-m
ea

su
re

%

Training size

Our approach
Li et al.[53]

(a) ReLIE URL task

0

20

40

60

80

100

10 100 1000 10000 100000

T
es

ti
n

g
F

-m
ea

su
re

%

Training size

Our approach
Li et al. [53]

Brauer et al. [19]

(b) ReLIE Phone Number task

Figure 2.3: Analysis of tasks ReLIE URL and ReLIE Phone Number. Performance comparison
between our approach and earlier state-of-the-art proposals.

“tesi” — 2014/3/21 — 14:32 — page 24 — #30

2. Text extraction 24

for ReLIE URL and in Fig. ?? for ReLIE Phone Number. The figures show also curves
for the corresponding F-measure values as reported from the cited works. It seems fair to
claim an evident superiority of our approach—note the logarithmic scale on the x-axis.

The performance indexes of our approach are obtained, as described in the previous
section, as the average performance of the best expressions generated in each of the five
folds, where the best expression for each fold is chosen by evaluating J = 128 individuals
on the validation set. We analyzed all the 5 × 128 individuals that compose the final
populations of the five folds and reported the corresponding performance distributions in
Fig. 2.4 and Fig. 2.5 (learning set with 100 examples and J = 128, i.e., the experiment
in Fig. 2.2). It can be seen that the very good performance that we obtain is not the
result of a bunch of lucky individuals: our approach manage to generate systematically a
number of different expressions with high values of precision, recall and F-measure.

Task
Dataset Results (%) Time

Learn. % Train. Prec. Recall F-m. (min)

ReLIE URL

25 0.7 12 77.3 82.5 78.3 2
50 1.3 25 79.9 98.1 88.0 4
100 2.6 50 88.6 98.1 93.0 6
250 6.4 150 89.7 99.0 94.1 10
400 10.3 300 92.0 98.6 95.2 23

ReLIE
Phone
Number

25 0.1 12 80.9 90.9 84.0 2
50 0.1 25 85.4 99.2 91.7 5
100 0.2 50 83.2 98.7 90.2 7
250 0.6 150 87.7 99.1 93.0 11
400 1.0 300 90.2 99.1 94.5 28

Cetinkaya
HREF

25 0.7 12 34.5 94.8 46.9 5
50 1.5 25 72.2 94.4 81.6 10
100 2.9 50 81.3 99.9 89.6 17
250 7.3 150 85.6 99.2 91.8 30
400 11.7 300 88.1 100.0 93.5 41

Cetinkaya
URL

25 2.0 12 79.4 89.6 83.4 3
50 4.1 25 87.6 98.4 92.7 7
100 8.1 50 90.6 99.7 94.9 12
250 22.3 150 95.0 99.8 97.3 22
400 32.4 300 97.1 99.8 98.5 29

“tesi” — 2014/3/21 — 14:32 — page 25 — #31

25 Experiments

Twitter
Hashtag/Cite

25 0.1 12 98.7 91.2 94.8 1
50 0.1 25 99.1 95.6 97.3 2
100 0.2 50 100.0 100.0 100.0 3
250 0.5 150 99.9 100.0 100.0 8
400 0.8 300 99.8 99.9 99.9 13

Twitter URL

25 0.5 12 95.4 99.5 97.3 1
50 0.9 25 97.3 99.4 98.3 2
100 1.9 50 96.6 99.7 98.1 7
250 4.7 150 96.5 99.6 98.0 12
400 7.5 300 97.4 99.4 98.4 24

Log IP

25 0.3 12 100.0 100.0 100.0 4
50 0.5 25 100.0 100.0 100.0 7
100 1.0 50 100.0 100.0 100.0 9
250 2.5 150 100.0 100.0 100.0 7
400 4.0 300 100.0 100.0 100.0 30

Italian SSN

25 0.5 12 95.6 99.6 97.6 1
50 0.9 25 90.7 99.7 94.9 2
100 1.8 50 94.7 99.7 97.1 2
250 4.5 150 98.6 99.7 99.2 3
400 7.3 300 98.5 99.6 99.1 6

Email
Header IP

25 1.1 12 84.2 99.8 91.3 2
50 2.3 25 86.1 99.4 92.4 4
100 4.5 50 87.0 99.4 92.8 6
250 11.3 150 89.5 98.1 93.6 9
400 18.1 300 89.8 99.9 94.6 20

Website
Email

25 0.1 12 75.3 99.2 81.0 2
50 0.2 25 88.3 99.8 92.3 5
100 0.4 50 89.0 98.1 91.8 7
250 1.0 150 99.1 100.0 99.6 10
400 1.6 300 99.1 100.0 99.6 23

Log MAC

25 0.3 12 100.0 100.0 100.0 4
50 0.5 25 100.0 100.0 100.0 7
100 1.0 50 100.0 100.0 100.0 10
250 2.5 150 100.0 100.0 100.0 19
400 4.0 300 100.0 100.0 100.0 29

Website
Heading

25 0.1 12 79.9 100.0 88.7 6
50 0.1 25 72.4 91.4 78.7 10
100 0.2 50 89.8 95.4 92.4 15
250 0.5 150 90.6 89.9 89.2 28
400 0.8 300 92.7 100.0 96.2 42

Table 2.6: Experiment results with different learning size

“tesi” — 2014/3/21 — 14:32 — page 26 — #32

2. Text extraction 26

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
o
f

in
d

iv
id

u
al

s

Testing precision %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
o
f

in
d

iv
id

u
al

s

Testing recall %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
o
f

in
d

iv
id

u
al

s

Testing F-measure %

Figure 2.4: Distributions of precision, recall and F-measure on the testing set of ReLIE URL
task.

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
al

s

Testing precision %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
al

s

Testing recall %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
a
ls

Testing F-measure %

Figure 2.5: Distributions of precision, recall and F-measure on the testing set of ReLIE Phone
Number task.

“tesi” — 2014/3/21 — 14:32 — page 27 — #33

27 Experiments

The datasets of tasks Cetinkaya HREF and Cetinkaya URL were also used in earlier
relevant works in the context of a flagging problem [22]: a positive example is counted as
correct when some string is extracted, irrespective of the string—an extraction problem
simpler than ours. We assessed the performance of our result and of the regular expressions
described in [22] according to this metric—i.e., we used all these expressions for solving
a flagging problem on our testing set. The results are in Table 2.7. Our results exhibit
better performance, which is interesting because: (i) the regular expressions in [22] were
generated with 266 and 232 learning examples for the two tasks, whereas our result used
100 learning examples; (ii) our GP search aimed at optimizing a different (stronger)
metric.

Having ascertained the good performance of the previous configuration, we investigated
other dimensions of the design space in order to gain insights into the relation between
quality of the generated expressions and size of the training set. We executed a large
suite of experiments by varying the size of the learning set, as summarized in Table 2.6.
This table reports, for each task, the number of learning examples, the percentage of the
learning corpus with respect to the full dataset and the number of training examples. The
rows with 100 learning examples are a duplicate of the previous configuration provided
for clarity. It can be seen that the quality of the generated expression is very good in
nearly all cases, even when the learning corpus is very small. Not surprisingly, for some
tasks a learning corpus composed of only 25–50 examples turns out to be excessively
small—e.g., Cetinkaya HREF. Even in these cases, however, enlarging the learning corpus
does improve performance and 100 examples always suffice to achieve F-measure greater
than 90%.

The table also reports the average execution time for each fold. We executed our
experiments on 4 identical machines running in parallel, each powered with a quad-core
Intel Xeon X3323 (2.53 GHz) and 2GB of RAM. Execution time is in the order of a few
minutes, which seems practical. Indeed, although constructing the learning corpus is not
immediate, the size of such a corpus is sufficiently small to be constructed in a matter of
minutes as well. Most importantly, though, this job does not require any specific skills to
be accomplished.

We also explored the possibility of reducing the number of jobs J = 128, in order
to save computing resources. We repeated each of the experiments in Table 2.6 twice,
with J = 64 and J = 32. We found that performance does not degrade significantly even
when the number of jobs drops from 128 to 32—which roughly corresponds to dividing
the execution time in Table 2.6 by four. In this perspective, we decided to set J = 32 in
the prototype of our system available at http://regex.inginf.units.it.

We believe that our fitness definition plays a crucial role in determining the very good
results. In order to gain further insights into this issue, we executed further experiments
with different fitness definitions. First, we defined a linear combination of the objectives
in Eqn. (6.1) and (8.5):

f(r) =

n∑
i=1

d(t′i, Er(ti)) + αl(r) (2.3)

“tesi” — 2014/3/21 — 14:32 — page 28 — #34

2. Text extraction 28

Approach
Cetinkaya Cetinkaya

HREF URL
Cetinkaya [22] 99.97 76.07
Our approach 100.00 99.64

Table 2.7: Comparison between our approach and the one presented in [22] (flagging-based
metric)

Task Regular expression
Twitter Hashtag/Cite [@#]\w++

Twitter URL \w++[ˆ\w]*+\w\.\w\w[ˆ#]\w*+

Log IP \d++\.\d++\.\d++\.\d++

Italian SSN ([A-Z]{4,8}+(\w\w\w)*+[A-Z])*+

Email Header IP \d*+\.\d*+\.\d*+\.\d*+

Website Email (\-?+\w*+@*+\.*+\w++)*+

Log MAC \w*+:\w*+:\w\w:\w\w:\w\w:\w\w

Website Heading \<h[ˆX]*+

ReLIE URL
((\w++:)?+/*+\w++\.[a-z]\w([ˆ1]\w)

?+\w(\.([ˆ1]\w++)++)?+)++

ReLIE Phone Number ([ˆ\)]\d)++[ˆ:][ˆ:]\d++[ˆ:]\d\d[ˆ:]\d

Cetinkaya HREF
h[r][ˆ\.]*+(([ˆ1][ˆh][ˆ1]*+\w*+[ˆ1])*+)

+/+(\.*+\w\w*+/*+[ˆ1])*+\w*+

Cetinkaya URL ([/\w:]*+\.([ˆ:][/\w\.]++)*+)

Table 2.8: Regular expressions obtained with a training set of 50 elements. For each task, we
report only the shortest expression among those obtained in the five folds.

“tesi” — 2014/3/21 — 14:32 — page 29 — #35

29 Remarks

Next, we focussed on the experiment of the Twitter URL task with learning corpus
of 400 examples and executed this experiment with the following fitness definitions.

MO [Edit,Length] the multi-objective fitness function of our approach (Section 2.4.2).

MO [Edit,Depth] a multi-objective fitness function in which the length of the regular
expression is replaced by the depth of the tree representing the individual.

Edit + αLength a linear combination of the objectives, with varying values for the α
parameter (Eqn. 2.3);

Edit + αDepth the same as the previous definition, but using the depth of the tree instead
of the length of the expression;

Errors a set of four fitness definitions obtained from the four above by counting the
number of missed examples rather than the sum of the edit distances between each
detected expression and the corresponding example.

The results are given in Table 2.9. We omitted the results of the experiments with
fitness functions based on the number of missed examples (Errors in the above list) as
they all exhibited precision and recall equal to zero. This analysis has three key outcomes.
First, fitness definitions aimed at minimizing the number of missed examples do not
work. Indeed, this observation is perhaps the reason why the earlier approaches shown in
the Fig. 2.3(a) and Fig. ?? need a much larger training set. Second, when minimizing
the sum of the edit distances, the various fitness flavours have essentially no effect on
precision and recall, but they do have a strong impact on the complexity, and thus on
readability, of the generated expression. Third, a multi-objective framework avoids the
problem of estimating the linearisation coefficients, but a broad range of values for α
provide expressions that are shorter and of comparable quality.

Finally, we show a sample of the expressions generated by our system in Table 2.8.
The table has one row for each of the previous experiments with training set of 50
elements. Each row shows the shortest expression generated across the corresponding
five folds. The expressions have not been manipulated and are exactly as generated by
our machinery.

2.6 Remarks

We have proposed an approach for the automatic generation of regular expressions for
text extraction implemented with genetic programming (GP). The approach requires
only a set of labelled examples for describing the extraction task and it does not require
any hint about the regular expression that solves that task. No specific skills about
regular expressions are thus required by users.

We assessed our proposal on 12 datasets from different application domains. The
results in terms of precision and recall are very good, even if compared to earlier state-of-
the-art proposals. The training corpus was small, in a relative sense (compared to the

“tesi” — 2014/3/21 — 14:32 — page 30 — #36

2. Text extraction 30

Prec. Recall F-m.
Fitness α % % % l
MO [Edit,Length] 97.39 99.47 98.42 54
MO [Edit,Depth] 97.72 99.63 98.67 150
Edit 97.41 98.50 97.05 285
Edit + αLength 0.01 97.40 99.50 98.44 30
Edit + αLength 0.10 97.36 99.50 98.42 28
Edit + αLength 1.00 97.36 99.50 98.42 28
Edit + αDepth 0.01 97.41 99.50 98.44 51
Edit + αDepth 0.10 97.67 99.50 98.58 55
Edit + αDepth 1.00 97.41 99.50 98.44 47

Table 2.9: Performance indexes and average length l of the resulting regular expressions for
different fitness functions and values for the α parameter used for weighing the two objectives.
MO indicates a Multi-Objective approach.

size of the testing set), in an absolute sense and in comparison to earlier proposals. The
execution time is sufficiently short to make the approach practical.

Key ingredients of our approach are: (i) a multi-objective fitness function based on
the edit distance and the length of the candidate regular expression, (ii) the enforcement
of syntactical and semantic constraints on all the individuals constructed during the
evolution, (iii) the choice of speeding up fitness evaluation by constructing individuals
that may include only possessive quantifiers.

Although our approach has certainly to be investigated further on other datasets
and application domains, we believe that our results are highly promising toward the
achievement of a a practical surrogate for the specific skills required for generating regular
expressions, and significant as a demonstration of what can be achieved with GP-based
approaches on contemporary IT technology.

“tesi” — 2014/3/21 — 14:32 — page 31 — #37

Chapter 3
Regex golf

3.1 Overview

Regex golf has recently emerged as a specific kind of code golf, i.e., unstructured and
informal programming competitions aimed at writing the shortest code solving a particular
problem. A problem in regex golf usually consists in writing the shortest regular expression
which matches all the strings in a given list and does not match any of the strings in
another given list. Examples of such lists could be the names of all winners of an US
presidential election and of the names of all losers (the specific constraints on the contents
of these lists will be clarified later, e.g., their intersection must be empty). A trivial way
for generating systematically a regular expression with these requirements consists in
building a disjunction of all the desired matches—i.e., all the matches glued together
by the | character which, in common regex syntax, means “or”. To reward non trivial
solutions, the score assigned to a given solution is higher for more compact expressions.

There has recently been a growing interest toward regex golf in the programmers’
communities, motivated more by the challenge itself than by the actual utility of any given
problem. Such interest has been fueled further by a blog post of a famous researcher—
Peter Norvig—in which a simple yet powerful algorithm for solving regex golf problems
systematically is proposed [76]. Norvig points out that problems of this sort are related
to set cover problems, which are known to be NP-hard, and describes a greedy algorithm
which is very efficient and works well in a number of cases, while at the same time
identifying the fundamental trade-offs made in his proposal.

In this thesis work, we propose a methodology based on Genetic Programming (GP)
for generating solutions to regex golf problems—a regex golf player. We generate a
population of candidate regular expressions represented as trees and constructed with
carefully selected regular expression operators and constants. We evolve such population
based on a multi-objective fitness which maximizes the correct handling of the provided
matches and unmatches while minimizing the length of the regular expression represented
by the individual.

We implemented our proposal and assessed its performance on a recently proposed

31

“tesi” — 2014/3/21 — 14:32 — page 32 — #38

3. Regex golf 32

suite of 16 regex golf problems which is very popular. We used as baseline the algorithm
proposed by Norvig—the only one we are aware of—and an existing GP-based system for
generating regular expressions for text extraction tasks by examples [10]. Our proposal
compares very favorably to the baseline and obtains the highest score on the full suite.
We also attempted the construct a baseline based on scores obtained by human players,
which is difficult because no structured collections of human players results are available:
however, we collected several results by crawling the web and found that our proposal is
ranked in the top positions.

A prototype of our regex golf player is available at http://regex.inginf.units.it/golf.

3.2 Related Work

The only algorithm explicitly designed for solving regex golf-related problems which we
are aware of is the one by Peter Norvig mentioned in the introduction. We used this
algorithm as baseline for our proposal.

Several proposals for learning regular expressions from examples exist for text ex-
traction problems [106, 53, 7, 46, 19, 8, 10]. Text extraction from examples is radically
different from regex golf in several crucial points. First, regex golf assumes an input
stream segmented so that the input strings listed in the problem specification are pro-
cessed by the solution one segment at a time. Text extraction requires instead the
ability to identify and extract specific portions from a longer stream. In other words,
regex golf consists in binary classifying input strings whereas text extraction requires
the identification in the input string of the boundaries of the substring(s) to extract, if
any. Second, a regex golf problem places no requirements on how strings not listed in
the problem specification will be classified. Text extraction requires instead a form of
generalization, i.e., the ability of inducing a general pattern from the provided examples.
Third, text extraction requires the ability to identify a context for the desired extraction,
that is, a given sequence of characters may or may not constitute a match depending on
its surroundings. A requirement of this form is not meaningful in regex golf.

For example, a regex golf problem requiring the match of all winners of US presidential
elections and no loser may be solved with a disjunction of ls and several short regexes [76].
Such a regular expression is not useful for the text extraction problem, because applying
it to a superstring of a winner would provide no information about the substring which
actually identifies the winner. Furthermore, any string containing the substring ls will
thus be matched by the regex. On the other hand, a regex generated for text extraction
might be applied to regex golf but it would be largely suboptimal: the solution generation
process must induce a general pattern and there is clearly no syntactical pattern capable
of predicting the names of future US presidents. In other words, learning approaches
tailored to text extraction purposefully attempt to prevent any overfitting of the examples
which is instead a necessity in regex golf.

Our proposal builds on the text extraction method in [10], which we modified and
specialized by taking the specific requirements of regex golf into account. We included the
cited method in the baseline because, although it was designed for a different problem, it

“tesi” — 2014/3/21 — 14:32 — page 33 — #39

33 The Problem

is available as a webapp1 and its inclusion demonstrates that solving regex golf effectively
calls for a specialized solution.

Another proposal for learning regular expressions from examples is [22], but this work
considers a problem whose requirements are a mix of regex golf and text extraction. On
the one hand, the problem consists in merely classifying input strings without the need of
identifying the boundaries of the matching substrings. On the other hand, the problem
assumes input streams not necessarily segmented in advance at the granularity of the
desired matches and unmatches. Moreover, and most importantly, the cited work aims
at inferring a general pattern capable of solving the desired task beyond the provided
examples.

Since a regular expression may be obtained from a deterministic finite automata
(DFA), approaches for learning a DFA from labelled examples and counterexamples could
be used (e.g., [60, 18]; see [26] for a survey). On the other hand, such proposals assume
the number of states of the target DFA is known and, most importantly, they are not
concerned with minimizing the length of the regular expression corresponding to the
generated DFA. While approaches of this form may deserve further investigation, they
do not appear to match the specific requirements of regex golf. Similar remarks may be
applied also to proposals for induction of non-deterministic finite automata (NFA) from
labelled examples [36, 104].

Finally, regex golf might be seen as a problem in the broader category of program-
ming by examples (PBE), where a program in a given programming language is to be
synthesized based on a set of input-output pairs. Notable results in this area have been
obtained recently for problems of string manipulation [40, 66] and some of the correspond-
ing algorithms have been included in the latest release of Microsoft Excel (Flash-Fill
functionality). While such approaches are able to deal with context-free grammars and
are thus potentially able to solve classification problems of the form encountered in regex
golf, they use an underlying language which is much richer than regular expressions and
thus may not generate solutions useful for regex golf.

3.3 The Problem

While the term “regex golf” may indicate any challenge requiring the generation of
a regular expression, its usual meaning is the one described in the introduction and
formalized as follows.

We consider strings constructed over a large alphabet α = UTF-8. Strings may
potentially include arbitrary characters in the alphabet, including spaces, newline and so
on. A problem instance is defined by I = (M,U), where M and U are sets of strings
whose intersection is empty.

The problem consists in generating a regular expression which:

1. matches all strings in M ;

2. does not match any string in U ; and,

1http://regex.inginf.units.it

“tesi” — 2014/3/21 — 14:32 — page 34 — #40

3. Regex golf 34

3. is shorter than the regular expression constructed as a disjunction2 of all strings in
M .

Note that, for a given problem instance, it might not be known whether a regular
expression satisfying the above requirements actually exists. Furthermore, given a
solution r′ satisfying the three requirements, it might not be known whether there exists
a shorter solution r′′ satisfying requirements 1 and 2.

Solutions may satisfy requirements 1 and 2 in part. That is, a solution might fail
to match one or more strings in M and/or match one or more strings in U . Solutions
are thus given a score quantifying their behavior in terms of the desired matches and
unmatches, as well as their compactness.

We use the score definition in http://regex.alf.nu, from which we have also collected
the suite of problem instances for our experimental evaluation. The definition is as
follows. Let r be a candidate solution, let nM and nU denote the number of elements in
M and U , respectively, which are matched by r. The score of r on instance I = (M,U)
is:

wI(nM − nU)− length(r)

where wI is a statically defined value which is meant to weigh the “difficulty” of the
problem instance I. Note that the numerical value of the score, as well as the range of
possible values, is problem instance-dependent and that a solution may obtain a negative
score.

3.4 Our Approach

The system requires a description of the problem instance I = (M,U) and generates a
Javascript-compatible regular expression. A prototype is available at http://regex.inginf.
units.it/golf.

Our proposal builds on the text extraction method in [10], which we modified and
specialized by taking the specific requirements of regex golf into account. We will
summarize the differences at the end of this section.

Every individual of the GP search process is a tree τ , where labels of leaf nodes are
taken from a specified terminal set and labels of internal nodes from a specified function
set as follows.

The function set consists of the following regular expressions operators (the central
dot · represents a placeholder for a child node): possessive quantifiers (·*+, ·++, ·?+ and
·{·,·}+), group (·), character class [·] and negated character class [ˆ·], concatenator
··—a binary node which concatenates its children—and disjunction ·|·. We did not
include greedy or lazy quantifiers [35] because, as indicated in [10], these operators lead
to execution times which are not practically acceptable.

The terminal set consists of a set of terminals which do not depend on the problem
instance I and other terminals which depend on I. Instance independent terminals are:

2More precisely, the disjunction of all strings in M , where each string is prefixed by the “start of
string” anchor ˆ and postfixed by the “end of string” anchor $.

“tesi” — 2014/3/21 — 14:32 — page 35 — #41

35 Our Approach

Table 3.1: Salient information for the 16 problems.

Problem name |M | |U | wI Ideal score

1 Plain strings 21 21 10 210
2 Anchors 21 21 10 210
3 Ranges 21 21 10 210
4 Backrefs 21 21 10 210
5 Abba 21 22 10 210
6 A man, a plan 19 21 10 190
7 Prime 20 20 15 300
8 Four 21 21 10 210
9 Order 21 21 10 210

10 Triples 21 21 30 630
11 Glob 21 21 20 420
12 Balance 32 32 10 320
13 Powers 11 11 10 110
14 Long count 1 20 270 270
15 Long count v2 1 21 270 270
16 Alphabetical 17 17 20 340

Total 4320

the alphabetical ranges a-z and A-Z, the start of string anchor ˆ and the end of string
anchor $, and the wildcard character .. Instance dependent terminals are: all characters
appearing in M , partial ranges appearing in M , and n-grams.

Partial ranges are obtained as follows. We (i) build the sequence C of all characters
appearing in M (without repetitions), sorted according to natural order; (ii) for each
maximal subsequence of C which includes all characters between subsequence head ch
and tail ct, build a partial range ch-ct. For example, if M = {bar,den,foo,can}, then
the partial ranges are a-e and n-o.

n-grams are obtained as follows. We (i) build the set N of all n-grams occurring in
M and U strings, with 2 ≤ n ≤ 4; (ii) give a score to each n-gram as follows: +1 for
each string in M which contains the n-gram and −1 for each string U which contains
the n-gram; (iii) sort N according to descending score and (iv) select the smallest subset
N ′ of all top-scoring n-grams such that the sum of their scores is at least |M | and
each individual score is positive. For example, if M = {can,banana,and,ball} and
U = {indy,call,name,man}, then the n-grams are an and ba, as they are the two
top-scoring n-grams and the sum of their scores is 2 + 2.

A tree τ is transformed into a string rτ which represents a regular expression by
means of a depth-first post order visit—Figure 3.1 shows an example of a tree and the
corresponding regular expression (in the caption). In our implementation, each regular
expression is evaluated by the Java regular expression engine, which works with possessive
quantifiers. However, the regex golf competition being considered accepts only Javascript-
compatible regular expressions and Javascript regular expression engine does not work

“tesi” — 2014/3/21 — 14:32 — page 36 — #42

3. Regex golf 36

Table 3.2: Best human score and solutions for the 16 problems.

Problem name Best human score Best human solution

1 Plain strings 207 foo

2 Anchors 208 k$

3 Ranges 202 ˆ[a-f]*$

4 Backrefs 201 (...).*\1
5 Abba 193 ˆ(?!.*(.)(.)\2\1)
6 A man, a plan 177 ˆ(.)[ˆp].*$

7 Prime 286 ˆ(?!(..+)\1$
8 Four 199 (.)(.\1){3}
9 Order 199 ˆ.5[ˆe]?$

10 Triples 596 00($|3|6|9|12|15)|4.2|.1.+4|55|.17

11 Glob 397 ai|c$|ˆp|[bcnrw][bnopr]

12 Balance 289 ˆ(<(<(<(<<?>?>|.9)>)>)>)$
13 Powers 93 ˆ(?!(.(..)+)\1*$)
14 Long count 254 ((.+)0 \2?1){7}
15 Long count v2 254 ((.+)0 \2?1){7}
16 Alphabetical 317 .r.{32}r|a.{10}te|n.n..

Total 4072

with possessive quantifiers. Hence, we further transform rτ into a Javascript-compatible
regular expression by means of a mechanical transformation [35].

The initial population is generated as follows. Let nP = 500 be the size of the popu-
lation to be generated. For each string s in M , we generate an individual corresponding
to s, built using only the concatenator node and single characters of s as terminals. We
generate the remaining nP − |M | individuals randomly, with the ramped half-and-half
method and depth of 1–5 levels.

We drive the evolutionary search based on two fitness indexes associated with each
individual. Let r be an individual and let nM and nU be the number of elements in M
and U , respectively, which are matched by r. The two fitness indexes are: nM − nU ,
which has to be maximized (the upper bound being |M |), and the length of r (in the
Javascript-compatible version), which has to be minimized. We use the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) [31] to rank individuals according to their fitness
values.

We evolve the population for a number of generations ng = 1000, according to the
following iterative procedure. Let P be the current population. We generate an evolved
population P ′ as follows: 10% of the individuals are generated at random, 10% of the
individuals are generated by applying the genetic operator “mutation” to individuals of
P , and 80% of the individuals are generated by applying the genetic operator “crossover”
to a pair of individuals of P . We select individuals for mutation and crossover with
a tournament of size 7, i.e., we pick 7 individuals at random and then select the best
individual in this set, according to NSGA-II. Finally, we generate the next population by

“tesi” — 2014/3/21 — 14:32 — page 37 — #43

37 Experimental Evaluation

|

(·) (·)

foo ··

··

b ·++

r

a

Figure 3.1: Tree representation of the regular expression (foo)|(ba++r).

choosing the individuals with highest fitness among those in P and P ′. The size of the
population is kept constant during the evolution. Upon generation of a new individual,
we check the syntactic correctness of the corresponding expression: if the check fails, we
discard the individual and generate a new one.

In order to generate a solution for a problem instance I, we evolve ne = 32 independent
populations, with different random seeds, obtaining 32 candidate regular expressions.
Finally, we choose the regular expression with the highest score.

We remark the key features of our proposal (w.r.t. [10]):

1. a method for constructing the terminal set based on the problem instance I, rather
than being defined once and for all;

2. a method for initializing the population based on the problem instance I, rather
than being completely random;

3. a different functions set which includes, in particular, a disjunction operator—which
is difficult to use in text extraction because it tends to promote overfitting;

4. fitness definitions based on the number of examples handled correctly—definitions
proven to be inadequate for text extraction [10];

5. usage of all learning information for synthesizing candidate solutions, that is,
without reserving any partition as validation set for assessing the generalization
capabilities of those solutions.

3.5 Experimental Evaluation

We considered the 16 problem instances along with the accompanying scores proposed
in http://regex.alf.nu. Salient properties of these instances are summarized in Table 3.1

“tesi” — 2014/3/21 — 14:32 — page 38 — #44

3. Regex golf 38

and 3.2. The Table 3.1 shows, for each problem instance, the ideal score—i.e., the score
equal to wI |M | which could be obtained with a zero-length regular expression matching
all strings in M and no strings in U . The Table 3.2 shows, for each problem instance,
the highest score obtained by (different) human players3 and the corresponding regular
expression.

3.5.1 Baseline

We used as baseline the algorithm by Peter Norvig, which we call Norvig-RegexGolf, and
the system for generating regular expressions for text extraction presented in [10], which
we call GP-RegexExtract.

We provide a brief outline of Norvig-RegexGolf below. Full details, including the
(partially for fun) motivations and design trade-offs can be found in [76]. The solution for
a given problem instance I = (M,U) is obtained as a disjunction of a set of components,
a component being a short regular expression which matches at least one string in M
and does not match any string in U . Initially, a pool of components is built with several
heuristics, including the generation of a component for each n-gram of each string in
M (up to n=4) and, for each such component, the generation of a component for every
possible substitution of a single character with the dot character (meaning “match any”
in regular expression syntax). Next a set of components from that pool is built, such
that each string in M is matched by at least one component in the set. Components in
the resulting set are then glued together by the or regular expression operator |.

Concerning GP-RegexExtract, we reimplemented the algorithm according to the
details presented in [10] (see also Section 3.2). We set those parameters which determine
the computational weight of GP to the same values for GP-RegexExtract and GP-
RegexGolf, in order to allow a fair comparison of the results w.r.t. computational weight:
ne = 32, ng = 500 and nP = 500. Note that GP-RegexExtract requires that examples
are partitioned in a training set and a validation set: while using it as a regex golf player,
we chose to use half of M and half of U strings as training set, and the remaining string
as validation set.

3.5.2 Results

We executed each of the algorithms on each problem instance and computed the score of
the corresponding solution. Tables 3.3, 3.4 and 3.5 summarize the resulting scores, which
are presented as absolute value and as the percentage of the ideal and the best human
score associated with each problem instance. Table 3.6 shows the regular expressions
generated by GP-RegexGolf for each problem.

It can be seen that GP-RegexGolf outperforms both Norvig-RegexGolf and GP-
RegexExtract: 3090 vs. −665 and 249, respectively. In particular, considering individual
problem instances, GP-RegexGolf performs better than Norvig-RegexGolf in 6 problems,
worse in 8 problems and obtains the same score in 2 problems. Despite obtaining a better

3The information is obtained from https://gist.github.com/jonathanmorley/8058871.

“tesi” — 2014/3/21 — 14:32 — page 39 — #45

39 Experimental Evaluation

Table 3.3: Results of the Norvig-RegexGolf as score, score %, score % w.r.t. to best human
score and competitive ratio (C.R., see text). For each problem, the score of the best algorithm is
shown in bold.

Norvig-RegexGolf
Problem Score Score % Hum. % C.R.

1 207 98.6 100.0 66.3
2 208 99.1 100.0 105.5
3 191 91.0 94.6 8.5
4 175 83.3 87.0 8.0
5 186 88.6 96.4 11.5
6 157 82.6 88.7 5.1
7 −398 < 0 < 0 1.0
8 192 91.4 96.5 17.5
9 190 90.5 95.5 8.7

10 589 93.5 98.8 6.1
11 392 93.3 98.7 25.2
12 −1457 < 0 < 0 1.0
13 −1969 < 0 < 0 1.0
14 189 70.0 74.4 1.0
15 189 70.0 74.4 1.0
16 294 86.5 92.7 18.8

Total −665 - - -

score in 8 problems, Norvig-RegexGolf obtains a negative score on the full suite because
on three problems (7, 12 and 13) it is not able to generate a non trivial solution: in these
problems, the regular expression generated by Norvig-RegexGolf is the disjunction of all
the M strings. Our algorithm, on the contrary, generates non trivial solutions for these
problems. Concerning GP-RegexExtract, both its score on the full suite and its score on
individual instances make it clear that this approach does not the requirements of regex
golf.

Tables 3.3, 3.4 and 3.5 list also, for each algorithm, the competitive ratio of the
solutions [76], defined as the ratio between the length of a trivial solution (disjoining all
the strings in M) and the length of the corresponding solution. Note that this index does
not take matches or unmatches into account. It can be seen that both Norvig-RegexGolf
and GP-RegexGolf generate solutions which are much shorter than the trivial solution
for several problems: regular expressions generated by GP-RegexGolf are shorter than
those of Norvig-RegexGolf in 9 problems, longer in 5 problems and with the same length
in 2 problems.

Table 3.7 shows the time required by GP-RegexGolf and GP-RegexExtract for
generating a solution. It is similar for all the problems (around 50 min) with the exception
of 13, 14 and 15. For the latter problems, in which M is composed by very long strings,
GP-RegexExtract attempts to generate a regular expression which extracts (rather than

“tesi” — 2014/3/21 — 14:32 — page 40 — #46

3. Regex golf 40

Table 3.4: Results of the GP-RegexGolf algorithm as score, score %, score % w.r.t. to best
human score and competitive ratio (C.R., see text). For each problem, the score of the best
algorithm is shown in bold.

GP-RegexGolf
Problem Score Score % Hum. % C.R.

1 207 98.6 100.0 66.3
2 208 99.1 100.0 105.5
3 195 92.9 96.5 10.7
4 138 65.7 68.7 6.7
5 184 87.6 95.3 17.2
6 136 71.6 76.8 7.0
7 188 35.3 37.0 24.1
8 183 87.1 92.0 11.7
9 186 88.6 93.5 7.3

10 430 68.3 72.2 12.6
11 340 81.0 85.6 17.7
12 130 40.6 45.0 11.1
13 51 46.4 54.8 109.4
14 191 70.7 75.2 1.0
15 191 70.7 75.2 1.0
16 132 38.8 41.6 8.0

Total 3090 - - -

“tesi” — 2014/3/21 — 14:32 — page 41 — #47

41 Experimental Evaluation

Table 3.5: Results of the Gp-RegexExtract algorithm as score, score %, score % w.r.t. to best
human score and competitive ratio (C.R., see text). For each problem, the score of the best
algorithm is shown in bold.

GP-RegexExtract
Problem Score Score % Hum. % C.R.

1 170 81.0 82.1 5.0
2 185 88.1 88.9 8.4
3 107 51.0 53.0 7.0
4 −70 < 0 < 0 4.0
5 77 36.7 39.9 4.4
6 −246 < 0 < 0 0.7
7 −52 < 0 < 0 13.4
8 −45 < 0 < 0 7.0
9 −39 < 0 < 0 4.5

10 −106 < 0 < 0 2.4
11 −163 < 0 < 0 4.3
12 −85 < 0 < 0 20.9
13 −47 < 0 < 0 44.2
14 191 70.7 75.2 1.0
15 191 70.7 75.2 1.0
16 181 53.2 57.1 11.0

Total 249 - - -

“tesi” — 2014/3/21 — 14:32 — page 42 — #48

3. Regex golf 42

Table 3.6: Regular expressions generated by GP-RegexGolf.

Problem Regular expression

1 foo

2 k$

3 (ˆ..[a-f][a-f])

4 v|[ˆb][ˆo][ˆp]t|ngo|lo|[n]o|rp|rb|ro|ro|rf

5 z|.u|nv|st|ca|it

6 oo|x|ˆk|ed|ˆm|ah|ˆr|v|ˆt

7 ˆ(?=((?:x[A-Zx])+))\1x
8 ell|j|W|ele|o.o|Ma|si|de|do

9 ch|[l-p]o|ad|fi|ac|ty|os

10 24|55|02|54|00|95|17

11 lo|ro|ˆp|(?=((c)+))\1r|en|ˆw|y.|le|ˆp|rr
12 ((?=((?:<<\>\>\>)*))\2(?=((?:<<<(?=(<*))\4\>\><<<<)*))\3

(?=((?:<<<<<\>\>\>(?=(<*))\6\>\>\>)*))\5(?=((?:<<<<<<)*))
\7ˆ(?=((?:<<\><<)*))\8(?=((?:<<<\>\>\>)*))\9<<)

13 ˆ(?=(((x|ˆ)x)+))\1$
14 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

1011 1100 1101 1110 1111

15 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

1011 1100 1101 1110 1111

16 tena|[ˆet][ˆetren](?=((?:(?:ren|eren.(?=((?:(?:ren|[ˆren]

))+))\2|eren.(?=((?:(?:ren|[ˆren]))+))\3))+))\1|eas

“tesi” — 2014/3/21 — 14:32 — page 43 — #49

43 Experimental Evaluation

Table 3.7: Execution times of GP-RegexGolf and GP-RegexExtract algorithms in minutes.

Problem GP-RegexGolf GP-RegexExtract

1 53 51
2 52 52
3 53 65
4 38 25
5 34 18
6 20 23
7 33 43
8 19 27
9 46 21

10 45 25
11 44 47
12 56 71
13 71 269
14 94 289
15 95 173
16 66 64

Total 820 1262

just matching) the each M string entirely: this leads to a population composed by very
long regular expressions which require long times to be evaluated. The time required
by Norvig-RegexGolf is practically negligible (less than a second per problem). All the
experiments have been performed on a quad core Intel Xeon E5-2440 (2.40GHz) with 4
GB of RAM.

We wanted to investigate whether our approach can achieve better scores at the
expense of increased computational weight. To this end, we repeated the experiments by
setting nP = 1000 and nP = 1500, i.e., with an enlarged population: Table 3.8 shows the
results in terms of score and competitive ratio. It can be seen that the full score does
improve for larger values of nP . Moreover, with nP = 1500, the number of problems for
which GP-RegexGolf score is not worse than Norvig-RegexGolf score is 11 vs. 8 with
nP = 500. The computation time for the full suite goes from 820 min for nP = 500 to
1551 min and 2611 min for np = 1000 and np = 1500, respectively. As expected, with
higher values for nP GP-RegexGolf takes longer to generate a solution: yet, it is fair to
claim that even such longer times may be acceptable for playing to a game of this kind.

Finally, we attempted to assess the performance of our proposal with respect to scores
of highly skilled human players. We remark that there are several caveat concerning the
assessment of the results obtained by human players. The web site hosting the challenge
does not, at the time of this writing, provide a score ranking computed on the full suite of
problems—on the other hand, there exists a collection of “Best possible answers collected
so far for regex golf” (see Table 3.1) which shows, for each problem, the best solution.
Results by human players are advertised on web forums by players themselves, often

“tesi” — 2014/3/21 — 14:32 — page 44 — #50

3. Regex golf 44

Table 3.8: Scores and competitive ratio (C.R.) of GP-RegexGolf with different values for nP .

nP = 1000 nP = 1500
Problem Score C.R. Score C.R.

1 207 66.3 207 66.3
2 208 105.5 208 105.5
3 196 11.5 197 12.4
4 146 5.2 147 6.5
5 188 12.5 186 11.5
6 142 6.0 151 4.3
7 188 24.1 188 24.1
8 183 11.7 180 10.5
9 190 8.7 190 8.7

10 456 10.5 354 27.2
11 355 28.2 522 3.2
12 36 7.3 223 26.5
13 65 46.2 40 29.7
14 191 1.0 191 1.0
15 191 1.0 191 1.0
16 259 21.1 237 10.4

Total 3201 - 3412 -

without providing any actual evidence of their results. On the other hand, there are
players which do make some very good solutions publicly available, thereby simplifying
the job of other players, which may either attempt to improve those solutions further or
may use them for the corresponding problem instance while focusing their efforts on the
remaining instances. In other words, the score obtained by a given player may actually
result from efforts by multiple players. Finally, human players generally do not care to
indicate the time they spent for generating a solution.

We collected several human players scores on the full suite from different web locations
(including Reddit, Hacker News, Github) which we obtained by querying Google and
Twitter with the search string “regex golf”. Table 3.9 shows the 10 best scores we found,
along with the total ideal score (i.e., the sum of ideal scores on the 16 problems), the
best human score (i.e., the sum of the highest human player scores on the 16 problems)
and the score of the three considered algorithms.

It can be seen that GP-RegexGolf would rank from 6th to 8th among human players
(with nP = 1500 and nP = 500, respectively), whereas the scores of the other two
algorithms are significantly lower than those of human players. In other words, leaving
aside any caveat about how we gathered human scores, GP-RegexGolf is in the top ten
of worldwide regex golf players.

“tesi” — 2014/3/21 — 14:32 — page 45 — #51

45 Remarks

Table 3.9: Total scores obtained by the 10 best humans and by the three algorithms.

Player Score

Total ideal score 4320
Best human score 4072

1 geniusleonid 4006
2 k hanazuki 3785
3 bisqwit 3753
4 AlanDeSmet 3736
5 adamhiker 3693

GP-RegexGolf (nP = 1500) 3412
GP-RegexGolf (nP = 1000) 3201

6 adamschwartz 3181
7 flyingmeteor 3171

GP-RegexGolf (nP = 500) 3090
8 jpsim 3060
9 ItsIllak 2939

10 bg666 2683
GP-RegexExtract 249
Norvig-RegexGolf −665

3.6 Remarks

We have proposed and assessed experimentally an approach based on Genetic Program-
ming for playing regex golf automatically, i.e., for generating automatically solutions to
challenges which have recently become popular in the programmers’ communities. The
challenges consist in writing the shortest regular expression that matches all strings in a
given list and does not match any string in another given list.

Our approach collects a score that is highly competitive against human players and
improve significantly over a challenging baseline including a recently proposed algorithm
tailored to this specific problem class and the proposal for automatic generation of
regular expressions tailored to text extraction tasks presented in chapter 2. The time for
generating a solution is in the order of tens of minutes and a prototype is available at
http://regex.inginf.units.it/golf.

We think that our work shows how a GP-based approach running on modern IT
machinery may deliver results, at least for this task, which are practically useful and can
compete with humans.

“tesi” — 2014/3/21 — 14:32 — page 46 — #52

“tesi” — 2014/3/21 — 14:32 — page 47 — #53

Chapter 4
Evolutionary learning of text
extraction patterns: Abbadingo-style
vs. GP-regex

4.1 Overview

The problem of learning Deterministic Finite Automata (DFA) from examples is long
established [26]. Research in this area has mostly been driven by synthetic benchmarks
and Abbadingo-style problems have played a key role in this respect [49, 26]. Abbadingo-
style problems involve the learning of a DFA acting as binary classifier of input strings
constructed over a binary alphabet. The target DFA is generated randomly and the
learning information is sampled uniformly from the input space. The learner knows in
advance the number of states of the target DFA as well as the maximum length of input
strings.

A problem related to the learning of DFAs from examples is the learning of regular
expressions. Recent research in this area has produced results of practical relevance in
text processing applications [22, 7, 39, 106, 46, 53, 5, 19, 8] demonstrating, for example,
high precision and recall on text extraction problems such as extraction of HTML headings
from web pages and of phone numbers from email messages [10]. This field of research
proceeded independently from the proposals for DFA learning and, in particular, was not
based on synthetic benchmarks.

Since DFAs and regular expressions are intimately related, two key questions arise:
are research results in the area of DFA learning practically useful for text extraction
problems? how do they compare to the state of the art in text extraction?

These questions are relevant because Abbadingo-style problems are not inspired by
any real world application [26] and the applicability of learning algorithms proposed for
Abbadingo-style problems to other application domains is still largely unexplored [18].
Indeed, similar questions have been recently addressed in the software engineering field,

47

“tesi” — 2014/3/21 — 14:32 — page 48 — #54

4. Evolutionary learning of patterns 48

where automated inference of state machines from examples may be of great help for
constructing models of software behavior automatically. In this context, Abbadingo-style
problems have not been considered to be an adequate framework [101].

In this chapter we compare experimentally two approaches representative of the state
of the art in the respective fields. We consider the DFA learning algorithm in [60] which
was developed several years after the Abbadingo One competition and outperformed
(optimized versions of) the winners of the competition, on the same class of Abbadingo-
style problems. We also consider the recently developed GP-Regex approach specifically
designed for text extraction [10], whose performance improves over early proposals for
regular expression learning on the same datasets. We implemented both the approaches
and carefully assessed them on different and challenging text extraction problems from
real data: URLs, phone numbers, href HTML attributes, Twitter hashtags and citations.

Our analysis and experimental evaluation suggest that the GP-Regex is much more
suitable for solving text extraction problems by examples than the Abbadingo-style
approach. While this outcome might not appear surprising—the former was tailored
to text extraction while the latter was not—we do believe the result is important for
gaining further insights on the actual relevance of Abbadingo-style problems for a specific
application domain.

4.2 Problem statements

We define the Abbadingo-style problem. Let EG be a problem generator entity which
poses the problem to a problem solver entity ES , whose aim is to find a solution. The
problem is described by: (i) a tuple I which univocally identifies a problem instance;
(ii) a procedure followed by EG to generate from I the learning information L available
to ES ; (iii) the metrics to be maximized by ES .

4.2.1 Abbadingo-style by examples

Abbadingo-style problems consist in binary classifying input strings constructed over a
binary alphabet α = {0,1}. A problem instance is defined by I = (n, ρ), where n is a
positive integer representing the number of states of the target DFA and ρ ∈ [0, 1] is a
number called density that quantifies the relative amount of learning examples available.

EG generates the learning information L = (n, SL, α) as follows: (i) randomly generate
a target DFA d with n states; d either accepts or rejects each input string; (ii) construct
the set of all binary strings s with length `(s) ≤ 2 log2 n+ 3; (iii) determine the output
of d for each such string s, which may be {accept, reject} and is denoted by M(s; d);
(iv) select a maximum length for the input strings 2 log2 n+ 3; (v) build the set S of pairs
〈s,M(s; d)〉 including all the inputs along with the corresponding labels; (vi) build a
subset SL ⊂ S by uniformly sampling S and such that |SL| = ρ|S|; the sampling is done
so as to ensure that SL is balanced, i.e., the number of elements with M(s; d) = accept
is equal to the number of elements with M(s; d) = reject.

“tesi” — 2014/3/21 — 14:32 — page 49 — #55

49 Problem statements

The objective of ES consists in proposing a DFA d∗ which maximizes the accuracy1:

accuracy :=

∣∣{s ∈ SE : M(s; d∗) = M(s; d)
}∣∣

|SE |

We remark three crucial properties of the learning information. First, the number of
states n of the target DFA is known to ES—in text extraction problems ES has no clue
about the structure of the pattern to be generated. Second, the symbols of the input
alphabet are known to occur all with the same probability. Third, the learning examples
SL are generated by uniformly sampling the set of all possible inputs, thus they are by
construction a “good model” of the possible inputs themselves—in practical applications
of the text extraction problem, the set of all possible inputs may be much bigger than
the set of examples T available to EG.

4.2.2 Abbadingo-style for text extraction

In order to learn a DFA suitable for text extraction, we need to define procedures for:
(i) obtaining an Abbadingo-style learning information (n, SL, α) from a text extraction
problem instance (T, h); (ii) using the Abbadingo-style solution d∗—i.e., a DFA that acts
as a binary classifier—as a text extraction tool.

We obtain the learning information (n, SL, α) from (T, h) as follows: (i) assign SL+
and SL− to the empty set; (ii) for each element 〈t, t′〉 ∈ TL, add all the substrings of t
different from t′ to SL− and, if t′ is non empty, add t′ to SL+; (iii) assign SL = SL+ ∪ SL−;
(iv) assign n = max〈t,t′〉∈T ` (t′); (v) include in α all the symbols occurring in T .

This procedure for obtaining the learning information generates a learning set SL

that may be not balanced, with a number of negative examples typically much larger
than the number of positive examples. We executed several experiments with a balanced
learning set, as required by the original Abbadingo-style formulation, by selecting one
random substring of t for each 〈t, t′〉 ∈ TL, rather than all substrings of t. We chose
to not use a balanced learning set because this strategy exhibited significantly worse
performance.

We define E(t; d∗), i.e., the leftmost substring of t extracted by d∗, as follows: E(t; d∗)
is the leftmost substring t′ of t for which M(t′, d∗) = accept (if there are multiple
substrings with the same left alignment for which M(t′, d∗) = accept, then E(t; d∗) is the
longest substring); in case no such substring t′ exists, then E(t; d∗) is the empty string.

4.2.3 Hardness indicators

The hardness of an Abbadingo-style problem instance I = (n, ρ) grows with the number
of states of the target DFA n and when the density of the examples ρ decreases. This
consideration is supported by the results of the Abbadingo competition itself, which
consisted of 12 problem instances resulting from the combinations of 4 values for n and

1This is the objective used in [60]. The learning competition used a different testing protocol [49] on
SE = S \ SL (SE is not available to ES) but such a difference is irrelevant to this discussion.

“tesi” — 2014/3/21 — 14:32 — page 50 — #56

4. Evolutionary learning of patterns 50

3 values for ρ. The problems with smallest density ρ remained unsolved, with the only
exception of the one with the smallest number of states n [49].

We remark that, when applying an Abbadingo-style algorithm to a text extraction
problem instance, n and ρmay not be very meaningful hardness indicators. An Abbadingo-
style problem involves the learning of a randomly-generated DFA, i.e., one for which the
occurrence of a symbol in a given input string provides no information about the next
symbol. In a text extraction problem, in contrast, input strings are not composed of
symbols drawn uniformly from the alphabet. It follows that the difficulty in constructing
a pattern describing the desired extractions does not depend only on, say, the length of
the extractions and the number of provided examples with respect to the full size of the
dataset. The nature of the examples and of the dataset clearly play a key role in this
respect. The problem of developing meaningful hardness indicators for a specific text
extraction problem instance is beyond the scope of this technical note.

4.3 Approaches

4.3.1 GP-Regex

We consider the evolutionary approach based on Genetic Programming proposed in [10],
that we call GP-Regex and outline below.

A candidate solution (i.e., a regular expression) is represented by an abstract syntax
tree. Each leaf node is an element from a predefined terminal set composed of constants
(a, . . . , z, A, . . . , Z, 0, . . . , 9, @, #, . . .) and character classes (\w, 0-9, a-z and A-Z).
Each branch node is an element from a predefined function set which includes: the
concatenator ··, which concatenates its two children, the character class operators [·]
and [ˆ·], the non-capturing group (?:·) operator and the possessive quantifiers (·*+,
·++, ·?+, ·{·,·}+). A regular expression r is produced from a tree by concatenating node
labels encountered in a depth-first post order visit of the tree (the dot character · in the
function set represents a placeholder for the children nodes).

The evolutionary search is based on the NSGA-II [31] multi-objective minimization.
Each candidate solution r has two fitness indexes to be minimized (t′ is the substring to
be extracted from t): fE(r) =

∑
〈t,t′〉∈TT L(t′, E(t; r)) and f`(r) = `(r), where L(x, y) is

the Levenshtein distance between strings x and y, T T is defined below, and `(r) is the
length of the regular expression r.

A partition of TL into a training set T T and a validation set T V is generated, such
that: (i) |T T | = |T V | and (ii) positive examples are distributed equally between T T and
T V . Then, a set of 128 different and independent GP searches are performed. Each GP
search has available only T T and consists of 500 candidate solutions that evolve for 1000
generations (see the cited paper for full details about the GP search procedure). Among
the 128× 500 trees resulting at the end, the generated solution r∗ is the one with the
highest F-measure on T V :

F-measure := 2
precision · recall

precision + recall

“tesi” — 2014/3/21 — 14:32 — page 51 — #57

51 Experiments

4.3.2 SSL-DFA

We consider the evolutionary algorithm for Abbadingo-style problems proposed in [60],
which we call SSL-DFA after the name adopted in the cited paper (Smart State Labelling
Evolutionary Algorithm). We implemented this algorithm for text extraction according
to the procedures in the previous section.

A candidate solution (i.e., a DFA) is represented by a pair composed of an output
vector of size n and a transition matrix of size n×|α|: the former has one element for each
DFA state and each element contains the label {accept, reject} for the corresponding state;
the latter contains, for each state and transition, the corresponding destination state
index. The fitness of a candidate solution d is the rate of examples classified correctly:
f(d) = 1

|ST |
∣∣{〈s, l〉 ∈ ST : M(s; d) = l

}∣∣.
The search algorithm is as follows (with parameter values set as in [60]): (i) a DFA

d is built by randomly filling the above representation; (ii) an intermediate DFA d′ is
built by mutating the current DFA d: the one with the highest fitness becomes the new
current solution. Step ii is repeated until no fitness increments have shown for a given
number of consecutive iterations; then, the procedure restarts from step i. The search
terminates when either a DFA with perfect fitness is found or a predefined number of
iterations have been executed. The solution d∗ is the DFA represented at the end of the
procedure.

The size of the search space in SSL-DFA is nn|α|2n, hence it grows exponentially with
the alphabet size |α|. Text extraction problems involve a very large value for |α|. For
this reason, we experimented also with a variant of this approach in which solutions are
represented in a more compact form. We grouped several alphabet symbols in three
classes, similarly to the regular expression formalism: [A-Z] containing the uppercase
letters, [a-z] containing the lowercase letters and [0-9] containing the digits. This
way, the transition matrix of a solution has a smaller number of rows hence the search
space is smaller. We call this variant SSL-DFA-classes.

4.4 Experiments

We consider the 5 datasets T listed below and 3 values for h ∈ {25, 50, 100}, resulting in
15 problem instances (T, h). These datasets have been previously used (with much larger
values for h) to assess earlier proposals [53, 19, 22, 10].

ReLIE URL: T contains the HTML code—split by lines—of several web-pages obtained
from the publicly available University of Michigan Web page collection, where URLs
have been annotated. The annotation consists of pairing each positive example t
with another string t′ equal to the substring to be extracted from t.

ReLIE Phone Number: T contains the body—split by lines—of several emails ob-
tained from the publicly available Enron email collection, where phone numbers
have been annotated.

“tesi” — 2014/3/21 — 14:32 — page 52 — #58

4. Evolutionary learning of patterns 52

Table 4.1: Datasets.

Dataset T |T | |T+| |α| n ρ

ReLIE URL 3877 2820 92 153 0.026
ReLIE Ph. N. 41 832 4097 93 14 0.002
Cetinkaya HREF 3416 211 101 513 0.074
Cetinkaya URL 1233 767 49 49 0.063
Twitter 50 000 34 879 92 42 0.002

Cetinkaya HREF: T contains the HTML code—split by lines—of 3 web-pages, where
the HTML attributes href have been annotated.

Cetinkaya URL: T is the same as above, but URLs have been annotated.

Twitter: T contains thousands of Twitter posts (a superset of these posts has been
used in [61]), where hashtags and citations have been annotated.

Table 4.1 summarizes the composition of the datasets. The table includes values for
the Abbadingo-style learning information: n and |α|, computed as in Section 4.2.2, and ρ,
computed as |SL| divided by the number of all possible substrings in the dataset T . We
provide these values for completeness of analysis and remark that their meaning in text
extraction problems and in Abbadingo-style problems is very different (Section 4.2.3).
The experimental evaluation in [60], concerned with Abbadingo-style problems, considered
a binary alphabet, n ≤ 32 and ρ values in the range [0.01, 0.2].

We applied the three approaches (GP-Regex, SSL-DFA, SSL-DFA-classes) 5 times to
each problem instance, varying only the seed for the random generator. The corresponding
performance indexes, averaged across the 5 repetitions, are in Table 4.2. It is evident
that GP-Regex outperforms the two other approaches in all the problem instances.
Furthermore, both SSL-DFA and SSL-DFA-classes exhibit values for precision and recall
that are not practically useful.

We wondered if SSL-DFA performed sharply worse than GP-Regex because it had
fewer iterations for finding a good solution during the evolutionary search. We verified
that 65 on 75 searches terminated before reaching the maximum number of iterations
(which we doubled with respect to [60]): hence, in those 65 searches the approach
provided its best possible performance and it would not have benefited from a further
increase of this bound. Table 4.2 also shows that SSL-DFA-classes does not exhibit better
performance than SSL-DFA, with the only exception of Twitter-related tasks.

For completeness of analysis, we assessed performance of the generated solutions on
TE also with requirements weaker than extraction. We considered a positive example t
handled correctly when some non-empty string is extracted, irrespective of the desired
substring t′, and measured the accuracy as:

accuracy :=

∣∣{t ∈ TE : (E(t; r∗) 6= ∅ ∧ t′ 6= ∅) ∨ (E(t; r∗) = t′ = ∅)
}∣∣

|TE |

“tesi” — 2014/3/21 — 14:32 — page 53 — #59

53 Experiments

Table 4.2: Precision and recall, in percentage.

GP-Regex SSL-DFA SSL-DFA-classes
Dataset T h Prec. Recall Prec. Recall Prec. Recall

ReLIE URL
25 77.3 82.5 9.8 23.5 6.1 40.7
50 79.9 98.1 14.8 22.7 13.0 30.7

100 88.6 98.1 15.0 25.5 15.1 27.2

ReLIE Ph. N.
25 80.9 90.9 30.2 10.6 17.5 9.0
50 85.4 99.2 12.1 18.3 6.8 17.8

100 83.2 98.7 14.0 22.5 15.5 14.4

Cetinkaya HREF
25 34.5 94.8 20.1 8.5 16.0 6.5
50 72.2 94.4 20.4 8.5 19.3 6.3

100 81.3 99.9 10.1 30.7 8.8 27.3

Cetinkaya URL
25 79.4 89.6 13.2 15.2 7.3 16.2
50 79.4 89.6 14.2 20.5 13.7 23.1

100 90.6 99.7 15.4 17.2 24.0 11.0

Twitter
25 98.7 91.2 12.5 32.8 27.6 33.1
50 99.1 95.6 16.0 34.0 28.3 32.2

100 100.0 100.0 24.1 34.6 39.9 42.6

We report for brevity only the accuracy with h = 100 in Table 4.3 (results for h = 25, 50
are qualitatively similar). Even from this point of view, the results still indicate a clear
superiority of GP-Regex.

Finally we report the execution time for each experiment with h = 100 averaged across
the 5 repetitions. The execution times for the GP-Regex method are: 365 s for ReLIE
URL, 421 s for ReLIE Phone, 1017 s for Cetinkaya HREF, 727 s for Cetinkaya URL and
229 s for Twitter. The execution times for the SSL-DFA are (those for SSL-DFA-classes
are nearly identical): 183 s, 251 s, 286 s, 225 s and 48 s. Experiments have been executed
in parallel on 4 machines with a quad-core Intel Xeon X3323 (2.53 GHz) and 2GB of
RAM.

Table 4.3: Accuracy, in percentage, assessed when some non-empty substring is extracted,
irrespective of the desired substring (h = 100).

Dataset T GP-Regex SSL-DFA SSL-DFA-classes

ReLIE URL 98.5 32.2 26.7
ReLIE Ph. N. 91.0 89.5 90.3
Cetinkaya HREF 99.3 94.3 94.9
Cetinkaya URL 99.2 65.8 63.2
Twitter 100.0 30.5 30.2

“tesi” — 2014/3/21 — 14:32 — page 54 — #60

4. Evolutionary learning of patterns 54

4.5 Remarks

We have empirically investigated the relevance of research results in the area of DFA
learning for solving text extraction problems. We have considered an approach that is
representative of the state-of-the-art in DFA learning and exhibits excellent results in so
called Abbadingo-style problems (SSL-DFA [60]). We have compared this approach to a
recent proposal representative of the state-of-the-art in the learning of regular expressions
for text extraction (GP-Regex [10]).

Our analysis indicates that GP-Regex is much more suitable for solving text extraction
problems by examples than SSL-DFA. We have currently no evidence of the reason for
such sharp difference. Text extraction problems involve values for α, ρ (i.e., alphabet size
and relative amount of learning examples) which are much larger than those typically
used in Abbadingo-style problems (Section 4.4, discussion of Table 4.1). On the other
hand, text patterns are not made up of symbols drawn uniformly from the alphabet thus
such parameters are not meaningful indicators of the problem difficulty (Section 4.2.3).
We speculate that GP-Regex exhibits much better performance because it represents
candidate solutions in a way that is much more compact and much more suitable
for describing patterns of interest in text extraction, thereby greatly simplifying the
evolutionary exploration of the solution space.

We believe this contribution allows gaining further insights on the actual relevance of
Abbadingo-style problems for specific application domains, an issue that has just begun
to be addressed in depth [18, 101].

“tesi” — 2014/3/21 — 14:32 — page 55 — #61

Chapter 5
Regular expressions generation for
search and replace

5.1 Overview

Techniques for automated text processing are becoming increasingly important due to
the uninterrupted growth and diffusion of text sources that are unstructured or loosely
structured, e.g., logs—which exist in many different forms and application domains,
including server administration, web access, phone calls, intrusion detection—web catalogs,
email messages, social networking sites and so on. A specific text processing task
potentially suitable to being automated is search-and-replace, where all text regions
matching a given pattern should be replaced according to a given scheme. Many tools
offer powerful support for this task based on the usage of regular expressions, which are a
way of specifying a pattern using a formal language. The user must specify a search pattern
for identifying the text regions to be modified and a separate replacement expression
for describing the changes to be applied. The replacement expression usually include
references to specific subregions of the region to be modified and the description of these
subregions must be encoded in the search pattern appropriately. This framework requires
the involvement of technically savvy users because defining the expressions required for
solving a specific search-and-replace task requires high familiarity with the corresponding
formalism. Furthermore, tuning the expressions is usually a time-consuming, error-prone
process.

In this thesis, we propose a tool based on Genetic Programming (GP) that is capable
of generating both the search pattern and the replacement expression automatically, only
by means of examples. The user merely provides a set of examples of the search-and-
replace task, each example consisting of the text before and after the desired replacement
without any further annotation. The tool then generates automatically both the search
pattern and the replacement expression for fulfilling the task. The output can be used
with popular processing engines, e.g., Java, PHP and so on. We emphasize that the user

55

“tesi” — 2014/3/21 — 14:32 — page 56 — #62

5. Search and replace 56

does not need to have any knowledge about genetic programming nor is she required to
provide any hints about the structure of the search pattern or replacement expressions
to be obtained. We are not aware of any other method capable of automatically defining
the required expressions, based solely on examples.

Our tool internally works in three phases. In the first phase, it executes a GP search
for generating a regular expression able to localize the text regions to be processed.
This regular expression defines a single pattern across all the provided examples, usually
including the text to be modified and some surrounding text, thereby defining a sort of
context for characterizing the scope of the desired replacements. For instance, consider
the anonimization of Twitter usernames (e.g., @GECCO2013 → @xxxxxxxxx): a letter
should be replaced by x, but only when it is part of a Twitter username—which is the
context. This phase is essential for making the user experience as simple as possible:
the user merely specifies the input text t and the desired output text t′; she does not
need to annotate t for indicating which of its portions have to be modified. The regular
expression produced in the first phase is required internally in the next phases and is
not visible to the user. In the second phase, the tool builds the replacement expression
by identifying the subregions to be modified and using references to those subregions
appropriately, i.e., according to the provided examples. In the third and final phase, the
tool executes a further GP search for generating the search pattern to be used along with
the replacement expression generated at the previous step.

We evaluated our proposal on 4 search-and-replace tasks executed on different real-
world datasets, each including several hundreds of manually-labelled examples. The tasks
consist of anonymization of usernames in tweets, partial anonymization of IP addresses,
format change of dates and phone numbers. The experimental evaluation shows that our
tool is indeed able to define an effective search-and-replace task with only few tens of
examples. Even leaving aside the potential of our tool for non technically savvy users,
this result also suggests that evolutionary computing, coupled with the power of modern
computing resources, may increasingly become a surrogate for some specific technical
expertise of human specialists.

5.2 Related works

Automatic generation of regular expressions from examples of the desired behavior may
be useful in a variety of problems. We categorize these problems in increasing order of
difficulty, as follows. (1) The flagging problem consists in assigning a binary label to
a text: true, if some region of the text matches the regular expression, false otherwise.
The examples consist of text regions, each accompanied by the respective desired label.
(2) The text extraction problem consists in extracting from a text each region which
matches the regular expression. The examples consist of texts, each accompanied by the
annotation of the region to be extracted or the indication that nothing has to be extracted.
(3) The search-and-replace problem is a generalization of the text extraction problem:
the extracted regions have to be modified according to the specification encoded into an
additional replacement expression. The examples consist of texts, each accompanied by

“tesi” — 2014/3/21 — 14:32 — page 57 — #63

57 Related works

the corresponding modified text or the indication that nothing has to be modified.

To the best of our knowledge, no method for automatic generation of expressions
suitable for search-and-replace has been proposed before. Accordingly, we briefly review
in this section: (i) approaches suitable for the flagging problem or the text extraction
problem; (ii) proposals not based on regular expressions for facilitating users while
performing search-and-replace tasks.

The authors of [22] propose an evolutionary approach for generating regular expres-
sions for the flagging problem. Their approach is based on grammatical evolution and
individuals are specified in the Backus-Naur Form. The method effectiveness is assessed
on the task of identifying those lines of HTML documents which contain hyperlinks.

Several earlier works addressed the text extraction problem with evolutionary ap-
proaches, such as genetic algorithms (GA) [7, 39] and genetic programming (GP) [95,
32, 93, 8]. In [7], after an initial evolution, individuals are recombined and then selected
to obtain the final regular expression. In [39], the alphabet for regular expressions is
chosen after a preliminary frequency analysis on the set of examples. Both proposals are
evaluated on the task of URL extraction (composition and size of training and testing
sets are not provided in [39]). Methods based on GP encode regular expressions as
GP trees and evolve the corresponding individuals—each individual being a candidate
expression—to maximize effectiveness according to some metric [95, 32, 93].

The large computing power widely available today revamped GP-based solutions,
allowing them to outperform earlier proposals and solve practically relevant problems [8].
In this work we solve a more general problem than in [8]—search-and-replace, rather than
mere text extraction. Our proposal generates automatically, in the first and third phase,
regular expressions for text extraction. The corresponding procedures are built according
to the proposal in [8] but extend that proposal in several key aspects. First, part of the
initial population contains individuals generated directly from the examples, rather than
randomly. Second, we generate regular expressions including capturing groups, a feature
which is needed for solving the search-and-replace problem (we describe this feature in
the next section). Third, we use fitness definitions tailored to the specific requirements
of search-and-replace. In the first phase, the evolutionary search promotes individuals
describing a suitable context across all the examples, which is usually larger than the
region to be extracted and modified. In the third phase, the fitness of an individual
depends on the behavior of that individual when coupled with the replacement expression
found in the second phase.

The scenario considered in [106] concerns criminal justice information systems and
the goal consists in minimizing human effort for data mining. The proposed approach
starts from a single example and produces a reduced form of regular expression exploiting
the operator interventions during the learning process, which is hence not fully automatic.
A similar scheme for regular expression generation which involves the human operator
is presented in [46]: here an active learning algorithm is proposed which starts from a
single example and then requires an external operator to respond to membership queries
about candidate expressions. In our work, instead, we just require a set of examples and
never require human involvement during the search.

“tesi” — 2014/3/21 — 14:32 — page 58 — #64

5. Search and replace 58

Other promising proposals for the text extraction problem which are not based on
evolutionary approaches have been presented in [53, 5, 19]. In [53] the user is required to
provide a set of examples and an initial regular expression: the algorithm then applies
successive transformations until it reaches a local optimum in terms of precision and recall.
The system proposed in [5] works similarly but the authors focus on noisy data. The
method proposed in [19] does not rely on an initial regular expression: instead, it identifies
relevant patterns in the set of examples and then combines the most promising pattern
into a single regular expression. The proposal is evaluated on several business-related
text extraction tasks, e.g., phone numbers and invoice numbers.

Concerning proposals for facilitating users in automated text editing that are not
based on regular expressions, the authors of [69] propose a system (LAPIS) based on a
pattern language. This pattern language, previously proposed by the same authors [71],
can replace regular expressions in many common tasks, including simple forms of search-
and-replace. Since some skill is still required to use the language, LAPIS offers an assisted
mode in which an initial pattern is inferred from a set of positive and negative examples.
Differently from our work, the assisted mode addresses only the search portion of the
search-and-replace task. Furthermore, the results produced by our tool are not bound to
a specific text processing system but can be used in a wealth of different environments.
A similar scheme for inferring a pattern from examples is used in [70]: the goal here is to
guess multiple selections for simultaneous editing.

A method for assisting the user in executing a search-and-replace tasks is proposed
in [68]. The authors consider a scenario where, in order to mitigate the difficulty of
defining a search pattern—which is the point we address in this work—users often work
with less precise patterns and then manual check each suggested match. They propose to
cluster the suggested matches so as to reduce the number of manual checks, since the
user approve or reject the whole cluster instead of inspecting each single match.

5.3 Our approach

The user provides a set of examples T . Each example is composed by a pair of strings
〈t, t′〉, where t is a string to be modified in t′. An example in which t′ = t is called a
negative example.

The output of our system is a pair of strings 〈s, r〉, where s is the regular expression
which defines the search pattern and r is the replacement expression.

The regular expression s may contain zero or more capturing groups. A capturing
group is a substring of s enclosed between round parenthesis. A capturing group is
itself a regular expression: when a string t matches a regular expression s containing a
capturing group, a substring of t matches the capturing group. The substring matched
by a capturing group can be referenced in the replacement expression. The corresponding
syntax is $n1, where n is the index of occurrence of the capturing group in the regular
expression—e.g., $1 indicates the substring matched by the first capturing group. For

1Some regular expression engines (e.g., Python, .NET, Ruby) use the \n notation, instead of the $n
notation used, e.g., in Java, JavaScript, PHP, . . .)

“tesi” — 2014/3/21 — 14:32 — page 59 — #65

59 Implementation

example, suppose the user needs to change the date format from month-date-year to
day-month-year: a suitable search pattern, which includes three capturing groups, is the
regular expression (\d+)-(\d+)-(\d+) and the corresponding replacement expression
is $2-$1-$3.

Solving the search-and-replace problem by means of regular expressions requires
a notion of context. In general, a single pattern identifying only the substrings to be
replaced might not exist. That is, it might not exist a single regular expression which, for
each example 〈t, t′〉, exactly matches the shortest substring of t including the characters
which have to be modified in order to obtain t′. In practice, however, a pattern may
often be found for superstrings of the strings to be replaced: we call these superstrings
the context and this pattern the context pattern.

To clarify, the first two columns of Table 5.1 show a few examples related to three
different search-and-replace tasks (the other columns show intermediate results discussed
later). The third column illustrates the substring of t that is to be replaced: it is
apparent that, for each of the three tasks, there is not any pattern identifying these
substrings. On the other hand, a context pattern as defined above does exist for each of
the three tasks: column ck contains the contexts—i.e., superstrings of the substring to
be replaced—extracted by the context pattern in column sc.

The context thus describes portions of input that do have to be replaced and where
replacements have to be confined. An essential component of our approach is that we do
not require the user to specify the context. On the contrary, the context is discovered
automatically by the system. For instance, in the third row in Table 5.1, we do not
require that the user specifies that ic has to be replaced by xx only when ic is part of
the Twitter username @Toxic, but not when is part of Sick. It is up to the system to
extract that information from the examples. The user only describes the input text and
the desired output.

Note that, for a given set of examples, the context pattern may not be determined
univocally—e.g., in Table 5.1, each context could also start with the space character, or
with multiple arbitrary characters followed by a space. A given set of examples might
thus be associated with 0, 1 or more context patterns and finding those patterns is not
straightforward.

Our proposal consists of three phases, described in the next sections in full detail:
(i) generate a context pattern sc, (ii) build the replacement expression r, (iii) generate
the search pattern s which works with r. We remark that phase 1 is necessary because
we decided to not rely on the user for specifying the context of the desired changes. The
result sc of this phase is not exposed to the user and is only an input for the next phase.

5.4 Implementation

5.4.1 Generating the context pattern

In this phase we aim at generating the context pattern sc. To this end, we build from T
a learning set Tc suitable for a text extraction problem: for each example 〈t, t′〉 in T we

“tesi” — 2014/3/21 — 14:32 — page 60 — #66

5. Search and replace 60

Table 5.1: Three sets of synthetic examples and corresponding intermediate and final results: ∅
indicates the empty string.

t k
t′ k

D
(t
k
,t
′ k)

s c
c k

c′ k
r k

s
r

I
l
i
k
e
@
G
E
C
C
O
1
3
c
o
n
f

I
l
i
k
e
@
G
E
x
x
x
x
c
o
n
f

C
C
O
1
3

@
\w
\w
(
\w
+
)

@
G
E
C
C
O
1
3

@
G
E
x
x
x
x

$
1
x
x
x
x

(
@
\w
\w
)
\w
+

$
1
x
x
x
x

R
T
@
M
a
l
e
L
a
b
T
s
N
e
w
p
a
p
e
r

R
T
@
M
a
x
x
x
x
N
e
w
p
a
p
e
r

l
e
L
a
b
T
s

@
M
a
l
e
L
a
b
T
s

@
M
a
x
x
x
x

$
1
x
x
x
x

S
i
c
k
o
f
@
T
o
x
i
c
c
h
a
t
t
e
r

S
i
c
k
o
f
@
T
o
x
x
x
x
c
h
a
t
t
e
r

i
c

@
T
o
x
i
c

@
T
o
x
x
x
x

$
1
x
x
x

n
o
t
h
i
n
g
n
e
w
h
e
r
e

n
o
t
h
i
n
g
n
e
w
h
e
r
e

∅
∅

∅
∅

t
o
d
a
y
i
s
1
-
2
3
-
1
3

t
o
d
a
y
i
s
2
3
/
0
1
/
1
3

1
-
2
3
-

\d
+
-
\d
+
-
\d
+

1
-
2
3
-
1
3

2
3
/
1
/
1
3

$
2
/
$
1
/
$
3

(
\d
+
)
-
(
\d
+
)
-
(
\d
+
)

$
2
/
$
1
/
$
3

h
e
l
e
f
t
o
n
3
-
1
3
-
1
2

h
e
l
e
f
t
o
n
1
3
/
3
/
1
2

3
-
1
3
-

3
-
1
3
-
1
2

1
3
/
3
/
1
2

$
2
/
$
1
/
$
3

g
r
e
a
t
1
-
1
-
1
3
p
a
r
t
y
!

g
r
e
a
t
1
/
1
/
1
3
p
a
r
t
y
!

-
1
-

1
-
1
-
1
3

1
/
1
/
1
3

$
1
/
$
2
/
$
3

h
e
i
s
N
i
c
k

h
e
i
s
*
N
i
c
k
*

N
i
c
k

[
A
-
Z
]
\w
+

N
i
c
k

*
N
i
c
k
*

*
$
1
*

(
[
A
-
Z
]
\w
+
)

*
$
1
*

J
o
h
n
w
a
s
h
e
r
e

*
J
o
h
n
*
w
a
s
h
e
r
e

J
o
h
n

J
o
h
n

*
J
o
h
n
*

*
$
1
*

“tesi” — 2014/3/21 — 14:32 — page 61 — #67

61 Implementation

construct exactly one example 〈t,D(t, t′)〉 for Tc, where D(t, t′) is the substring of t to be
replaced and is determined as described below. Then, we run a GP search for generating
a regular expression that attempts to satisfy the examples in Tc.

The string D(t, t′) is the shortest substring of t which includes all characters that have
to be modified in order to obtain t′ (see also the third column in Table 5.1). Formally, let ti

be the i-th character in t and let L(t) be the length of t. Then D(t, t′) = titi+1 . . . tL(t)−j ,
where: i ≥ 1 is the lowest integer for which ti 6= t′i, and j ≥ 0 is the lowest integer for
which tL(t)−j 6= t′L(t′)−j ; if t = t′, D(t, t′) = ∅.

For the purpose of the GP search, we partition the learning set Tc in a training set T tc
and a validation set T vc . We form these two sets so as to distribute the negative examples
evenly.

We then run a GP search on T tc , as follows. Every individual is a tree which represents
a regular expression. The function set consists of (we assume the reader has some
familiarity with regular expressions [35]): (i) the concatenator, that is a binary node that
concatenates other nodes or leaves, (ii) the character class operators [·] and [ˆ·], (iii) the
capturing group (·) and the non-capturing group2 (?:·) operators, (iv) the possessive
quantifiers (·*+, ·++, ·?+, {·,·}+). The terminal set consists of: (i) constants—i.e., a
single character, a number or a string, (ii) ranges—i.e., a-z or A-Z and (iii) character
classes, i.e., \w or \d.

We build the initial population of P individuals so that half of them are generated
directly from the examples, rather than randomly. If the number of examples is smaller
than P

2 , then we use them all and generate the remaining individuals randomly. In detail,
let PE = min

(
P
2 , 2|T

t
c |
)
, where |T tc | is the size of T tc , and let 〈tk, D(tk, t

′
k)〉 denote the k-th

example in T tc . Then, the initial population consists of: PE
2 individuals, each representing

one of the strings D(tk, t
′
k); PE

2 individuals, each representing one of the strings D(tk, t
′
k)

where each digit is replaced with a \d and each alphabetical character with a \w; the
remaining P − PE individuals are generated at random with a Ramped half-and-half
method. We chose this strategy because we found, after preliminary experimentation,
that it greatly speeds up the convergence toward good solutions.

The fitness function to be minimized during the search is the sum of the Levenshtein
distances, across all the examples in the training set, between the string to be extracted
and the string actually extracted by the first capturing group:

fE(sc) =

|T t
c |∑

k=1

L(D(tk, t
′
k), E1(tk, sc)) (5.1)

where: (i) sc is the evaluated individual, (ii) L(x, y) is the Levenshtein distance between
strings x and y, (iii) E1(tk, sc) is the substring of tk matched by the first capturing group
of sc—if sc does not contain a capturing group, we set fE(sc) = +∞. We designed the
fitness based on the key requirement of this phase, that is, automatic generation of a
single pattern capable of extracting a superstring of the substring to be modified. For
this reason, we promote individuals with at least one capturing group and such that this

2A non-capturing group is a group which cannot be referenced in the replacement expression.

“tesi” — 2014/3/21 — 14:32 — page 62 — #68

5. Search and replace 62

group matches D(tk, t
′
k). We did not include in the fitness any component depending on

what is extracted beyond D(tk, t
′
k) because, as discussed in the previous section, we have

no explicit information about what the whole expression should extract, i.e., about the
context.

We run N1 independent GP searches, differing only for the random seed. We evaluate
on the validation set T vc each of the N1 resulting regular expressions, and select as output
sc of this phase the one which minimizes fE .

5.4.2 Building the replacement expression

In this phase we aim at generating the replacement expression r. To this end, we generate
a candidate replacement expression rk for each positive example 〈tk, t′k〉 in T , as follows.

Let ck be the substring of tk extracted by the context pattern sc; let b, e be the

integers such that ck = tbkt
b+1
k . . . t

L(tk)−e
k ; let c′k be the substring of t′k delimited in the

same way by b and e, i.e., c′k = t′bkt
′b+1
k . . . t′

L(t′k)−e
k (if b ≥ L(t′k)− e, then c′k = ∅). We set

the candidate replacement expression rk for the example 〈tk, t′k〉 by executing Algorithm 2,
which takes as input c′k and the list of tuples Ck constructed with the following steps.
Intuitively, Ck describes the boundaries of all the (maximal) substrings of ck which appear
in c′k. In detail, we (i) construct the list Ck containing all tuples 〈i, j, i′, j′〉 such that

cik . . . c
j
k = c′k

i′ . . . c′k
j′ ; (ii) remove from Ck each tuple 〈i, j, i′, j′〉 for which there exists

another tuple 〈i∗, j∗, i′∗, j′∗〉 such that i ≥ i∗ and j ≤ j∗; (iii) sort Ck according to index
i, in ascending order, and insert into each tuple an increasing integer n that represents
the position of the tuple in Ck; (iv) sort Ck according to index i′, in ascending order.
At this point, we set rk = R(c′k, Ck) where R is defined in Algorithm 2. As pointed out
above, Ck describes the boundaries of the substrings of ck which appear in c′k—in brief,
of the common substrings. Algorithm 2 builds rk by concatenating the substrings of c′k
between two common substrings, replacing common substrings by tokens $n, after an
appropriate sorting—see Figure 5.1 for an example.

Algorithm 2 Algorithm for building a candidate replacement expression rk.

function R(c′,C = {〈i1, j1, i′1, j′1, n1〉, . . . })
r ← ∅
b← 1
e← i′1 − 1
for h← 1, |C| − 1 do

r ← rc′b . . . c′e$nh . concatenation
b← j′h + 1
e← i′h+1 − 1

end for
r ← rc′b . . . c′e$n|C|c

′j′|C|+1
. . . c′L(c′) . concatenation

return r
end function

“tesi” — 2014/3/21 — 14:32 — page 63 — #69

63 Implementation

Figure 5.1: Example of execution of R(c′k, Ck) where Ck has been constructed from ck, c
′
k

ck = 07-14-1789

c′k = 14/07/1789

Ck=

i, j, i′, j′, n
〈4, 5, 4, 5, 2〉 14→ $2
〈1, 2, 7, 8, 1〉 07→ $1
〈7, 10, 10, 13, 3〉 1789→ $3

rk = $2/$1/$3

Different examples might generate different replacement expressions, owing to con-
flicting or ambiguous examples. For instance, in Table 5.1, the third example generates
a replacement expression $1xxx different from the one corresponding to the first and
second example $1xxxx. The reason is the ambiguity associated with the x character,
which is both part of the input text to be modified (Toxic) and of the text to be obtained
(Toxxxx).

We select as output of this phase the replacement expression r which occurs most
frequently among all the examples. In case two or more candidates occur the same
number of times, we choose one of them at random.

5.4.3 Generating the search pattern

In this phase, we aim at generating the search pattern s. To this end, we partition the
set of examples T in a training set T t and a validation set T v, by distributing negative
examples evenly, and execute a GP search similarly to Section 5.4.1 with a crucial
difference in the fitness definition. In this case we associate with each individual, i.e.,
regular expression, s two objective functions to be minimized:

fR(s) =

|T t|∑
k=1

L(t′k, R(tk, s, r)) (5.2)

fG(s) = |Gs(s)−Gr(r)| (5.3)

where: (i) R(tk, s, r) is the string obtained by performing on tk the search-and-replace
task defined by the regular expression s and the replacement expression r (found in the
previous phase), (ii) Gs(s) is the number of capturing groups defined in s and (iii) Gr(r)
is the number of capturing groups defined in r. We minimize this multi-objective fitness
by means of NSGA-II [31].

We run N2 independent GP searches, differing only for the random seed, thereby
obtaining N2 search patterns sh. Finally, we evaluate on the validation set T v each of the
N2 candidate solutions 〈sh, r〉 for the search-and-replace task, and select as final result
the one which minimizes fR and fS by means of NSGA-II.

“tesi” — 2014/3/21 — 14:32 — page 64 — #70

5. Search and replace 64

5.5 Experiments

We experimentally evaluated our proposal on real-world datasets that we manually
annotated for 4 search-and-replace tasks:

Twitter anonymization Replace each username found in a tweet corpus with @xxxxxx—
e.g., @GECCO2013 becomes @xxxxxx. The tweet corpus has been taken from [61];

IP partial anonymization Replace the second two digit groups of each IP address
(expressed in dot-decimal notation) found in a web server log with xxx.xxx—e.g.,
127.0.0.1 becomes 127.0.xxx.xxx.

Date format change Change each date found in the web server log of the previous task
from the Gregorian little-endian slash separated format to the Gregorian big-endian
dash separated format—e.g., 31/Dec/2012 becomes 2012-Dec-31.

Phone number format change Change each phone number found in an email collec-
tion by removing the parenthesis around the area code and adding a dash—i.e,
(555) 555-5555 becomes 555-555-5555. The email corpus has been taken
from [73] and was used by [53, 19].

The dataset consists of 1000 examples for each task, i.e., 1000 pairs 〈t, t′〉, of which 500
are negative. We executed three experiments for each task, varying the size of the set of
examples.

We executed each experiment as follows: (i) we randomly split the dataset in two
subsets T and T e; each subset is balanced, i.e., contains the same number of positive
and negative examples; (ii) we generated a solution 〈s, r〉 using T and evaluated the
solution on T e—i.e., T is the learning set and T e is the testing set (during phases 1 and
3 the learning set is further split in training and validation, as discussed in the previous
sections). We report results obtained with 5-fold cross-validation, i.e., we repeated the
two steps above 5 times and averaged the performance indexes exhibited by the 5 solutions
on the testing set of the corresponding experiment. We set the parameters for the GP
searches as in Table 5.2. We chose the number of generations and the population size,
which are different between phase 1 and phase 3, after some preliminary experimentation.
We chose an equal number of independent searches in phase 1 and phase 3: N1 = N2 = 32.

We evaluated each generated solution 〈s, r〉 by means of two metrics. The distance
error rate εd quantifies the percentage of characters that have not been processed correctly,
i.e., it averages on T e pairs the distance between the expected string and the string
actually obtained, divided by the length of the former. The count error rate εc quantifies
the percentage of T e pairs that have not been processed correctly. In detail:

εd =
1

|T e|

|T e|∑
i=1

L(t′k, R(tk, s, r))

L(t′i)
(5.4)

εc =
1

|T e|

|T e|∑
i=1

1(t′k, R(tk, s, r)) (5.5)

“tesi” — 2014/3/21 — 14:32 — page 65 — #71

65 Experiments

Table 5.2: GP parameters

Parameter Settings

Population size (phase 1) 500
Population size (phase 3) 3000
Number of generations (phase 1) 1000
Number of generations (phase 3) 200
Selection Tournament of size 7
Initialization depths 1–5
Max. depth after crossover 15
Reproduction rate 10%
Crossover rate 80%
Mutation rate 10%

where 1(x, y) is a function whose value is 1 if x and y are equal, 0 otherwise.

5.5.1 Results

The salient results are summarized in Table 5.3 and Table 5.4. Table 5.4 shows the
values of εd for each repetition. In Table 5.4 each row corresponds to one experiment
and reports the results in terms of εd and εc, with average µ and standard deviation σ
across the 5 repetitions. We remark that the learning set T = T t ∪ T v is always a small
portion of the dataset, less than 10%.

It seems fair to claim that the approach does provide very good performance. A set
of 50 examples suffices to execute the “IP partial anonymization” and “Date format
change” tasks without any mistake, which seems to be a remarkable result. Furthermore,
50 examples for the “Twitter anonymization” task suffice to achieve correct processing of
97%–98% of the testing set instances. Concerning the “Phone number format change”
task, the percentage of testing instances processed correctly ranges between 92% and 95%,
again as long as 50 or more examples are available for the learning procedure. To place
this result in perspective we observe that the dataset for this task has been used in earlier
works addressing automatic generation of solutions for the text extraction problem from
examples [53, 19]. The cited works used training sets much bigger than ours. The results
were provided in terms of F-measure and range in 85%–87% with 4100–33400 learning
examples for [53] and 65%–92% with 400–52000 learning examples for [19]. Although
our indexes cannot be compared directly to F-measure, which is not meaningful in our
context, our ability of processing more than 92% of the testing instances correctly, even
with a learning set smaller by one order of magnitude or more, seems to be a good result.

The previous results are the average performance across 5 repetitions of each ex-
periment, where the result of each experiment is the best solution (on the learning set)
across the 32 independent GP searches in phase 3. Further insights can be obtained
by analyzing the performance of all the 5× 32 = 160 solutions found for each task. To
this end, Figure 5.3 plots the number of solutions with εd < 10% and εc < 10% (on the

“tesi” — 2014/3/21 — 14:32 — page 66 — #72

5. Search and replace 66

Table 5.3: Experiment results for each fold

Task
Dataset Repetition (εd %)

|T t| |T v| |T e| 1 2 3 4 5

Twitter
anonymization

10 10 980 1.7 0.0 7.7 10.7 0.0
25 25 950 0.0 53.9 0.0 14.0 0.0
50 50 900 0.0 0.0 14.0 9.5 0.0

IP partial
anonymization

10 10 980 0.0 0.0 0.0 0.0 0.0
25 25 950 0.0 0.0 0.0 0.0 0.0
50 50 900 0.0 0.0 0.0 0.0 0.0

Date format
change

10 10 980 32.7 58.5 58.1 0.0 0.0
25 25 950 0.0 0.0 0.0 0.0 0.0
50 50 980 0.0 0.0 0.0 0.0 0.0

Phone number
format change

10 10 980 7.2 4.7 6.7 6.2 7.1
25 25 950 1.9 0.9 0.0 0.0 12.9
50 50 900 12.3 0.0 0.0 2.8 0.0

Table 5.4: Experiment results

Task
Dataset Overall (εd %) Overall (εc %)

|T t| |T v| |T e| µ σ µ σ

Twitter
anonymization

10 10 980 4.0 4.9 5.5 10.5
25 25 950 13.6 23.3 3.1 3.7
50 50 900 4.7 6.6 2.0 1.6

IP partial
anonymization

10 10 980 0.0 0.0 0.5 0.7
25 25 950 0.0 0.0 0.0 0.0
50 50 900 0.0 0.0 0.0 0.0

Date format
change

10 10 980 29.9 29.2 60.0 54.8
25 25 950 0.0 0.0 0.0 0.0
50 50 980 0.0 0.0 0.0 0.0

Phone number
format change

10 10 980 6.4 1.0 52.4 4.13
25 25 950 3.2 5.5 8.2 10.8
50 50 900 3.0 5.3 6.6 11.2

“tesi” — 2014/3/21 — 14:32 — page 67 — #73

67 Concluding remarks

Table 5.5: Experiment execution times

Task |T t|+ |T v| Time (min)
1 2 3 Overall

Twitter
anonymization

20 0 0 1 1
25 0 0 1 1
50 0 0 2 2

IP partial
anonymization

20 2 0 10 12
25 7 0 26 33
50 4 0 39 43

Date format
change

20 3 0 15 18
25 7 0 29 36
50 13 0 65 78

Phone number
format change

20 7 0 28 35
25 17 0 63 80
50 27 0 105 132

testing set). Each bar corresponds to an experiment repetition. It can be seen that our
approach does generate a number of good solutions systematically, that is, the good
performance is not the result of a single lucky individual.

It is also interesting to point out that there is a clear correlation between performance
of an individual on the validation set T v and its performance on the testing set T e:
Figure 5.2 shows εd on the two sets, for each of the 5× 32 = 160 solutions found in our
experiments (one plot per task). This outcome demonstrates that the relative performance
on individuals on the validation set is a good predictor of their relative performance on
the testing set.

Table 5.5 reports the average execution time for each experiment repetition, with
the indication of the time taken by each of the three phases. Each experiment has been
executed in parallel on 4 identical machines powered with a quad-core Intel Xeon X3323
(2.53 GHz) and 2GB of RAM. The execution times are, in most cases, too high to devise
a possible interactive use of our approach. On the other hand, they seem to be sufficiently
low to be practical, especially in a not far away future. Besides, the corresponding
computing effort might be leased at 1 or 2 USD per hour3—a less accurate but much
cheaper surrogate for the specific skills of a specialist.

5.6 Concluding remarks

We have considered the feasibility of solving a search-and-replace task described solely
through examples by means of regular expressions. The motivation for this problem
follows from the ever increasing wealth of unstructured or loosely structured text sources,

3http://aws.amazon.com/ec2/pricing/

“tesi” — 2014/3/21 — 14:32 — page 68 — #74

5. Search and replace 68

0
10
20
30
40
50
60
70
80
90

0 1 2 3 4 5 6

T
es

ti
n

g
ε d

%

Validation εd %

+++++++++ ++++++ +++++++++++++++++

++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++

(a) Twitter anonymization

0
100
200
300
400
500
600

0 2 4 6 8 10121416

Validation εd %

++

+

+++++

+

++

+
+

+

+

+

++++++++++++

+

+

+++

+

+++
+

+

+

+

+

+

+

+
+

+

++

+
+

+

+

+
+

+

+

+

++

+

+
+

+

+
+

+
+

+

+
+

++

+

+

+

+
+

+

+

+
+

+

++

+

+

+

+

+
+

+

++
+

+

+
+

+

+
++

++

+

+++++

+

+

+

+
+

+

+
+

+

+

+

+
+

+

++

+

+

+
++

+++
+

++++++
+

++++++++++++++++++

(b) IP partial anonymization

0
100
200
300
400
500
600
700

0 2 4 6 81012141618

Validation εd %

+
+++

++++

++
+

+

+

+

+
+++
+

+

+

+
++

+

+

+

+

+++++

+

++++++
+

+

+

+

+

+

++
+++

+

+++
+

+
+

+++
+

+

+

+
++

+
++

+

+++

+

++
+++

+ ++++
+

+
+++

+

+

+

+

++
+++

+
+

+
+ +

+++++

+

+
+ +

+
+

++

+

++ +
+++

+

+ +

+
+

+
+

+++
+

++
+++

+

+++
+

++
++

++++
++

+

++++

(c) Date format change

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12

Validation εd %

++

+

+++++++++++++++

+

+++++++

(d) Phone n. format change

Figure 5.2: Validation εd vs. testing εd.

along with the need of automated techniques for their processing.
We have presented the implementation of a tool able to generate the required search

pattern and replacement expression automatically. The user merely provides examples
of the input text coupled with the desired output text, without any further annotation
or hints about the expected results. We are not aware of any other proposal with these
features.

We assessed the performance of our tool on challenging search-and-replace tasks
executed on real-world datasets. The experimental evaluation provided very good results
and suggests that the approach may indeed be practically viable.

“tesi” — 2014/3/21 — 14:32 — page 69 — #75

69 Concluding remarks

05
1015202530

20
50

10
0

#individuals

L
ea

rn
in

g
se

t
si

ze
|T
|

05
1015202530

20
50

10
0

#individuals

L
ea

rn
in

g
si

ze
|T
|

(a
)

T
w
it
te

r
a
n
o
n
y
m
iz
a
ti
o
n

051015202530

20
50

1
00

L
ea

rn
in

g
se

t
si

ze
|T
|

051015202530

20
50

1
00

L
ea

rn
in

g
si

ze
|T
|

(b
)

IP
p
a
rt
ia
l
a
n
o
n
y
m
iz
a
ti
o
n

051015202530

20
50

1
00

L
ea

rn
in

g
se

t
si

ze
|T
|

051015202530

20
50

1
00

L
ea

rn
in

g
si

ze
|T
|

(c
)

D
a
te

fo
rm

a
t
c
h
a
n
g
e

05
1015202530

20
50

1
00

L
ea

rn
in

g
se

t
si

ze
|T
|

05
1015202530

20
50

1
00

L
ea

rn
in

g
si

ze
|T
|

(d
)

P
h
o
n
e
n
.
fo
rm

a
t
c
h
a
n
g
e

Figure 5.3: Number of generated solutions with εd ≤ 10% (above) and εc ≤ 10% (below). Each
bar corresponds to a repetition.

“tesi” — 2014/3/21 — 14:32 — page 70 — #76

“tesi” — 2014/3/21 — 14:32 — page 71 — #77

Chapter 6
Schema Generation for XML
validation

6.1 Overview

The eXtensible Markup Language (XML) is a markup language for encoding data in a
format which is both human-readable and machine-readable. XML documents consist of
Unicode text and can represent arbitrary data structures. Although XML documents
may be produced and/or consumed also by humans, in practice XML is widely used in
machine-to-machine interaction, especially on the web.

Practical applications may impose specific encoding constraints on the data to be
exchanged and these constraints take the form of a schema. Schemas are specified in a
schema language, the most widely used schema languages being those used in Document
Type Definitions (DTD) [99] and XML Schema Definitions (XSD) [100]. Schemas provide
human users with a conceptual description of the data contained in XML documents
and, most importantly, greatly facilitate automated processing. For example, availability
of the expected schema for a given XML document allows machine consumers to validate
input data automatically. In fact, unvalidated input data from web requests is a very
important and pervasive class of security vulnerabilities in web applications.

XML documents are not required to refer their schema, however. Although the pres-
ence of schemas constitutes an important advantage, a large portion of XML documents
found in the wild actually does not refer any schema [67, 6]. Furthermore, even when
XML documents do refer a schema, the schema is often unavailable (e.g., it has been
moved to another web site) or incomplete. For example, the DTD schema for requests and
responses to the OpenStreetMap API1 is stated to be “incomplete”, yet made available by
the organization itself who defined and primarily uses the corresponding XML documents.

For these reasons, the need arose for methods capable of generating and maintaining
good-quality schemas from existing XML data, in order to allow more effective production,

1http://wiki.openstreetmap.org/wiki/API v0.6/DTD, visited in November 2012

71

“tesi” — 2014/3/21 — 14:32 — page 72 — #78

6. Schema generation 72

processing and consumptions of XML encoded data [34]. In this thesis work, we propose
the design, implementation and experimental evaluation of a tool based on Genetic
Programming (GP) for generating DTD schemas automatically. Our tool, which we
called GP-DEI (Genetic Programming DTD Evolutionary Inferer), takes as input one or
more XML documents and automatically produces a DTD schema which validates the
input documents. Usage of the GP-DEI requires neither familiarity with GP nor with
DTD or XML syntaxes.

The contribution of this work includes: (i) a way of encoding DTD element type
declarations as trees that is suitable for a GP-based DTD schema generation; (ii) a set of
multi-objective fitness definitions which allow obtaining a DTD which allow generating
practically useful DTDs.

We performed an extensive experimental evaluation of our tool on a large collection
of several sets of real world XML documents, including a portion of a dataset previously
used in [15]. We compared a DTD generated by our tool against the real counterpart
and we assessed the ability of GP-DEI to generate a DTD which, when used to validate
corrupted XML documents, correctly detect wrong XML elements.

6.2 Related work

We are not aware of any evolutionary-based approach for inferring DTD schemas auto-
matically from a set of examples; yet, there are some works on automatic generation of
DTDs. The approach in [37] generates a DTD based on a sequence of induction steps.
The proposed algorithm finds sequential and choice patterns in the input data, performs
a form of factorization and generalization, and finally applies a Minimal Description
Length principle. The approach in [15] is based on the observation that content models
in DTDs contain large alphabets but every alphabet symbol occurs only a small number
of times. Moreover, certain restricted forms of regular expressions suffice to represent
DTDs, i.e., single occurrence regular expression (SORE) and chain regular expression
(CHAREs). The approach proposes a learning algorithm that automatically infers the
latter based on a set of examples.

Use of spanning graphs is proposed in [74]. The XML input documents are converted
into document trees, then all trees are merged in a spanning graph. The conversion from
the final spanning graph into the DTD form is performed by applying a set of heuristic
rules. It is also possible to perform a relaxation of the generated DTD according to a
parameter specified by the user. A variation to this approach is proposed in [72], where a
restricted content model is inferred from each element and some heuristic rules are applied
to the merging procedure for generating the spanning graph. The algorithm proposed
in [90] is based on converting XML documents to an entity-relationship model, which is
done by extracting semantics information from the input documents, like cardinalities
among entities and parent-child relationship.

The use of the DTDs goes beyond the document validation, therefore a tool able to
infer DTDs from a set of XML documents could be useful in other application domains.
For instance in [98] the DTDs are used to automatically create tables definition in a

“tesi” — 2014/3/21 — 14:32 — page 73 — #79

73 XML and DTD

relational data base. A method for generating XForms and XSL code automatically
starting from a DTD, in order to reduce development cost for coding forms, is presented
in [51].

Since a DTD expression is a form of regular expression, as will be discussed in section
6.3, our approach, for each element in the documents, tries to find a suitable regular
expression. In literature the problem of learning a regular expressions from a set of
examples is long-established (e.g., [20]) and has been studied from several points of view.
For example, [33] provides a learning algorithm for finite unions of pairwise union-free
regular expressions, and two approaches for generating regular expressions based on
Genetic Programming are proposed in [8, 93].

Finally, the inference of XML Schemas (i.e., XSD, which are not addressed in this
work) from examples is addressed in [25, 43, 72, 16].

6.3 XML and DTD

An XML document is a string of characters which are either markup or content: the
former describes the structure of the information while the latter is the information
itself. Markup constructs are known as tags, which can be of three types: start tags (e.g.,
<author>), end tags (e.g., </author>) and empty-element tags (e.g., <reviewed/>).
Start tags and empty-element tags may include zero or more pairs of named values known
as attributes (e.g., <paper doi="10.1145/2330784.2331000">). A tag can have
at most one attribute with a given name. The portion of a document between a start tag
and the first matching end tag (tags included) is an element. Each element may include
other markups, i.e., other elements. An XML document may easily be transformed into a
tree in which each node corresponds to an element and the node descendants corresponds
to the elements contained in the element. An example is in Figure 6.1-left.

The XML specification does not impose any constraints on: (i) the element names
that may be present in an XML document; (ii) the content of the elements; (iii) the
attribute names that may be present in the elements; (iv) the value of the attributes. Such
constraints may be described in a schema, an external document which can be written
using different schema languages and can be possibly referred by an XML document. An
XML document that is both syntactically correct and conforms to its schema is said to
be valid.

A widely used schema language is the one used in Document Type Definitions (DTD).
A DTD is composed by a set of element type declarations, a set of attribute type declarations
and possibly further constructs (entity declarations and notation declarations) that are
rarely used and not addressed in this work.

An element type declaration defines an element and its possible content. The content
is defined as: (i) EMPTY, which specifies that the element cannot have any content,
(ii) ANY, which specifies that no constraints exist for the element content, or (iii) an
expression e, which is a form of reduced regular expression over the alphabet A of element
names allowed by the DTD.

Expression e can be defined with a context free grammar: e := #PCDATA, e := a,

“tesi” — 2014/3/21 — 14:32 — page 74 — #80

6. Schema generation 74

<dblp>
<inproceedings doi="10.1145/2330784.2331000">

<author>Alberto Bartoli</author>
<author>Giorgio Davanzo</author>
<author>Andrea De Lorenzo</author>
<author>Marco Mauri</author>
<author>Eric Medvet</author>
<author>Enrico Sorio</author>
<title>

Automatic generation of regular expressions from
examples with genetic programming

</title>
<year>2012</year>

</inproceedings>
<article doi="10.1016/0304-3975(86)90088-5">
<author>Gerard Berry</author>
<author>Ravi Sethi</author>
<title>

From regular expressions to deterministic automata
</title>
<year>1986</year>

</article>
</dblp>

<!ELEMENT dblp (inproceedings|article)*>
<!ELEMENT inproceedings (author+|title|year?)>
<!ELEMENT article (author+|title|year?)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ATTLIST inproceedings

doi CDATA #REQUIRED
venue CDATA #IMPLIED>

<!ATTLIST article
doi CDATA #REQUIRED>

Figure 6.1: An XML document (left) and a DTD (right) which validates the XML document.

e := (e1, . . .,en), e := (e1| . . .|en), e := e?, e := e+, e := e*, where: (i) #PCDATA
is text content ; (ii) a ∈ A is an element name; (iii) the list operator , specifies that
an element content must include all the given expressions, in the exact order; (iv) the
choice operator | specifies that an element content must include exactly one of the given
expressions; (v) the ?, + and * quantifiers specify that the given expression must appear
respectively 0 or 1 times, 1 or more times, 0 or more times.

An example is in Figure 6.1-right, which shows a DTD describing a set of constraints
satisfied by the XML document on the left.

An attribute type declaration defines the possible attributes for a given element.
The declaration simply consists of a list of triplets, each describing: (i) the name of the
attribute, (ii) its data type or an enumeration of its possible values, and (iii) an indication
of whether the attribute is required (#REQUIRED), optional (#IMPLIED) or has a fixed
value (#FIXED)—the latter being accompanied by an actual value. Figure 6.1-right
contains 2 attribute type declarations.

6.4 Our approach

Our tool, named GP-DEI, takes a set of XML documents and generates a DTD. The output
DTD includes all and only the element type declarations and the attribute list declarations
which allow to validate the input documents. The tool has the following limitations:
(i) generated DTDs does not include other DTD artifacts (as entity declarations and
notation declarations) and (ii) generated attribute list declarations include only one data
type (CDATA) and only the #REQUIRED and #FIXED keywords. These limitations do not
prevent GP-DEI from generating DTDs that are useful in the vast majority of practical
cases, though.

GP-DEI operates in three steps: (i) pre-processing of the documents, (ii) evolutionary

“tesi” — 2014/3/21 — 14:32 — page 75 — #81

75 Our approach

Table 6.1: Part of the result of pre-processing step, including the set τE (third column) built
from the document in Figure 6.1. Character C is the character associated with #text during
pre-processing.

Element name e Character ce Training corpus Ee

dblp a {bf}
inproceedings b {ccccccde}
author c {C, C, C, C, C, C, C, C}
title d {C, C}
year e {C, C}
article f {ccde}

generation of the schema, (iii) post-processing of the schema which produces a syntactically
correct DTD.

6.4.1 Pre-processing

In this step, GP-DEI parses the input XML documents and produces two sets of training
corpora: (i) a set τE which will be used for generating the element type declarations, and
(ii) a set τA which will be used for generating the attribute type declarations. The set τE
contains one training corpus Ee for each element name e which occurs at least once in
the input documents. A training corpus Ee is generated as follows: (i) parse each XML
input document d and,

(ii) for each found element with name e in d, adds the sequence of e children names
to Ee; in case e contains textual content, the name #text is included in the sequence
(this name is used only by our tool and has not any XML/DTD meaning). The set τA
is built in the same way, except that each training corpus Ae contains the sequences of
attribute names instead of children element names.

A further pre-processing step is then performed on τE and τA, as follows: (i) we
associate each element name e with a single (globally unique) unicode character ce,
(ii) we associate each attribute name a with a single (globally unique) unicode character
ca, (iii) for each Ee, we replace each sequence of children element names with a string
obtained by concatenating the corresponding associated characters, (iv) we repeat the
previous step for each Ae and, finally, (v) we replace in each Ee string all character
repetitions of three or more times with a repetition of two characters (e.g., aaa→aa,
bbbb→bb). As an example, Table 6.1 shows the set τE (third column) built from the
input document of Figure 6.1.

6.4.2 Expressions generation

Since a DTD element type declaration is a form of regular expression (Section 6.3), we
generate a regular expression Re for each element name e in the set τE . We generate
regular expressions with a GP-based procedure similar to the one described in [8].

The terminal set varies for each element name e and consists of all the characters
appearing in Ee. The function set consists of the following regular expressions operators:

“tesi” — 2014/3/21 — 14:32 — page 76 — #82

6. Schema generation 76

(i) the possessive quantifiers *+, ?+ and ++, (ii) the non-capturing group, (iii) the
concatenator, that is a binary node that concatenates its children, (iv) and the choice
operator |.

We use two fitness functions to be minimized: (i) the sum of the Levenshtein distances
between each example string and the corresponding matched portion of the string, and
(ii) the number of optional quantifiers (*+ and ?+) in the regular expression. More in
the detail, we define the fitnesses fd(R) and fc(R) of an individual R as follows:

fd(R) =
∑|Ee|

i=1 d(ti, R(ti)) (6.1)

fc(R) = s(R) + q(R) (6.2)

where ti is the i-th element of Ee, R(ti) is the string matched by the individual R in ti,
d(t′, t′′) is the Levenshtein distance between strings t′ and t′′, s(R) is the number of *+
quantifiers in R and q(R) is the number of ?+ quantifiers in R. We use a multi-objective
NSGA-II based optimization to drive the GP-search.

The choice of the fitness function in Equation 6.2 was made to reduce the bloating
in the regular expressions: an optional element may be useless, increases the length
of regular expression and can also allow the regular expression to match strings never
seen in the training set, which may result in producing DTDs which are “too general”.
Therefore, we give an advantage to individuals containing a smaller number of optional
quantifiers.

It is important to point out that we represent each element name with only one
character in order to equally weigh the errors on all elements independently by their
name length. If element names were represented in their native form, the fitness function
in Equation 6.1 would penalize errors on elements with a longer name. Moreover,
compressing example strings speeds up the evaluation of the individual, since the regular
expression processor takes more time to analyze longer strings.

Regarding the generation of the attribute list declarations, we do not use an evolution-
ary approach. Instead, for each e, we check the presence of an attribute character ca in
all the strings s of Ae and, if ca occurs in each s, we set a as required (i.e., #REQUIRED),
otherwise, we set a as optional (i.e., #IMPLIED). We finally set all attributes data type
as CDATA.

6.4.3 Post-processing

In this step, we transform each regular expression Re obtained in the previous step in an
equivalent DTD markup declaration for e, as follows: (i) remove useless parts of Re—e.g.,
redundant parentheses or element repetitions, (ii) replace each single character represen-
tation ce with its corresponding element name e, and (iii) convert Re to the corresponding
DTD element declaration according to DTD syntax—e.g., replace concatenations with
the list operator ,.

Regarding the attributes declaration, we generate a DTD declaration by replacing
each single character representation ca with the corresponding attribute name a.

“tesi” — 2014/3/21 — 14:32 — page 77 — #83

77 Experiments

6.5 Experiments

6.5.1 Datasets

We assessed our approach on a number of XML documents, that we grouped based on
their origin, as follows:

Mondial a single XML document (1.8 MB) containing information on various countries
used in [15];

Genetic a single XML document (683 MB) representing a protein sequence used in [15];

SVG a set of 10 XML documents (1.7 MB, globally), each containing a copyright-free
image represented in SVG and collected by searching on Google Images;

OpenStreetMap a set of 20 XML documents (12 GB, globally) containing free geo-
graphic data and mapping of the Italian administrative regions, downloaded from
OpenStreetMap2.

RSS a set of 10 XML documents (278 KB, globally), each containing a Rich Site
Summary (RSS) files, obtained from an online scientific library3.

The datasets are publicly available on our lab web site4. For ease of discussion, all the
results are grouped as above.

6.5.2 Methodology

For each XML document in a group, we generated a DTD as follows: (i) we executed
the pre-processing described in Section 6.4.1 and obtained τE and τA; (ii) for each Ee in
τE , we executed 8 different and independent GP evolutions (jobs) with the GP-related
parameters set as in Table 6.2 using Ee as training corpus; (iii) we selected the individual
Re with the best fitnesses on the training corpus among the best individuals of each job;
(iv) for each Ae in τA, we determinated which attributes are required or implied for e
(see Section 6.4.2) (v) we transformed each Re into a DTD element declaration through
the post-processing described in Section 6.4.3; (vi) we obtained the DTD attribute list
declarations through the post-processing described in Section 6.4.3.

A validation task consists in applying a standard XML validator5 on a pair 〈d,D〉.
If a validation task does not terminate correctly, the validator indicates the number
of errors found on d using the DTD D. We executed a number of validation tasks, as
explained in the next section.

2http://download.gfoss.it/osm/osm/
3http://ieeexplore.ieee.org/
4http://machinelearning.inginf.units.it/data-and-tools
5http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html#setFeature(java.lang.String,

boolean)

“tesi” — 2014/3/21 — 14:32 — page 78 — #84

6. Schema generation 78

Table 6.2: GP parameters

Parameter Settings

Population size 500
Selection Tournament of size 7
Initialization method Ramped half-and-half
Initialization depths 1–5 levels
Maximum depth after crossover 15
Reproduction rate 10%
Crossover rate 80%
Mutation rate 10%
Number of generations 200

Table 6.3: DTD generation results

Name # docs
Elements Preprocess (s) Generation (s) Errors

avg sd avg sd avg sd avg sd
Mondial 1 22423 - 1.0 - 241.0 - 0.0 -
Genetic 1 21305818 - 1078.0 - 897.0 - 0.0 -
SVG 10 290 335 0.1 0.0 6.8 6.3 0.0 0.0
OpenStreetMap 20 7343984 7758557 144.9 151.6 6.7 0.5 0.0 0.0
RSS 10 244 66 0.1 0.0 17.7 2.0 0.0 0.0

6.5.3 Results

The salient results are summarized in Table 6.3. The table provides: (i) number of
XML elements in each XML document; (ii) time for pre-processing each XML document
d; (iii) time for generating the corresponding DTD Dd (not including pre-processing);
(iv) number of errors found by the validator using 〈d,Dd〉. The values are averaged
across all documents in the same group. The key, important result is that each generated
DTD indeed validates correctly the corresponding document. The time taken by the pre-
processing step is clearly proportional to the number of elements in the input documents.
Otherwise, the generation time is deeply influenced by the complexity of the DTD we
aim to infer—i.e., the OpenStreetMap dataset, although is the biggest one in terms of
elements, has quite simple structure and take less time to find an optimal solution.

In the next suite of experiments we investigated the generalization ability of our
approach. For each document d in groups SVG, OpenStreetMap and RSS, we executed a
validation task by using Dd on each of the other documents in the group. We measured
the percentage of elements for which a validation error has been found, averaged across
all validation tasks on each group. We obtained 0 errors for OpenStreetMap and RSS
documents and an error rate of 22.7% for SVG group. In other words, for documents in
groups OpenStreetMap and RSS, one single document suffices to infer a DTD suitable
for validating every other document. This interesting outcome does not occur with
SVG documents. We believe the reason is because the set of element names that may

“tesi” — 2014/3/21 — 14:32 — page 79 — #85

79 Experiments

0

20

40

60

80

100

0 20 40 60 80 100

C
or

re
ct

E
le

m
en

ts
(%

)

Training size (%)

+++++
+ + + + +

86

88

90

92

94

96

98

100

0 10 20 30 40 50 60

Training size (%)

+
+++

+
+

+ +

Figure 6.2: Generalization ability for SVG task (detail in the rightmost figure).

potentially be found in a SVG file is very large and a single SVG is unlikely to contain
all those element names.

To gain insights into this issue, we investigated how many files are needed for inferring
a DTD suitable for validating any SVG document. We focussed on documents in the SVG
group and proceeded as follows: (i) we sorted the documents based on the number of
contained XML elements, in increasing order; (ii) we chose the first d1, . . . , dn documents;
(iii) we generated a DTD Dd1,...,dn from these n documents; (iv) we executed a validation
task on each document in the group using Dd1,...,dn . Figure 6.2 plots the percentage
of elements that are validated correctly against the training set size, expressed as a
percentage of number of elements with respect to all SVG documents.

We can see that using DTD Dd1—which is generated only with the smallest document
(corresponding to 0.27% of the training set)—we can correctly validate slightly more
than the 90% of our dataset. Using a DTD Dd1,...,d6—generated with the first six smaller
documents (corresponding to the 9.6% of the training set)—we can reach the 95%.

Having ascertained the ability of our approach to indeed generate useful DTDs, we
investigated its robustness when a generated DTD has to validate a corrupted XML—a
generated DTD Dd which is not “too general”, should be able to detect the corrupted
elements. We focussed on the SVG group and proceeded as follows: (i) we generated
ten DTD Dd1 , . . . , Dd10 , one for each document of the group, (ii) we generated a new set
d′1, . . . , d

′
10 of corrupted SVG files, (iii) for each Ddi and each d′j , we executed a validation

task.

The corrupted SVG files are generated using the following procedure: for each element
of the document we randomly select one of these operation: (i) the element remains
unmodified, (ii) the element is removed from the document, or (iii) the element is replaced
with an empty element whose name is randomly selected from the DTD DSVG defined
in the SVG specification6. We define the corruption rate r for a corrupted document d′i
as ratio between the number of errors raised by running a validation task on 〈d′i, DSVG〉

6http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

“tesi” — 2014/3/21 — 14:32 — page 80 — #86

6. Schema generation 80

Table 6.4: Performances in presence of corrupted documents.

DTD Ddi Elements in di FPR (%) FNR (%)

Dd1 4 29.3 28.3
Dd2 8 25.6 16.7
Dd3 16 12.7 20.2
Dd4 38 16.5 15.3
Dd5 74 12.8 18.1
Dd6 143 12.7 17.5
Dd7 548 20.8 19.7
Dd8 640 17.1 18.6
Dd9 645 9.8 18.0
Dd10 864 13.7 16.1

Average 17.1 18.8

Table 6.5: Comparison between a portion of DRSS and one DTD generated by GP-DEI.

Original Generated
<!ELEMENT rss (channel)> <!ELEMENT rss (channel)+>
<!ATTLIST rss version CDATA #FIXED "2.0"> <!ATTLIST rss version CDATA #REQUIRED>
<!ELEMENT channel (title | description | link <!ELEMENT channel ((title,link)|
| language | item+ | rating? | image? (((day,item+)|(month|year))
| textinput? | copyright? | pubDate? | lastBuildDate? |(year|description)))+
| docs? | managingEditor? | webMaster? | skipHours?
| skipDays?)*>
<!ELEMENT title (#PCDATA)> <!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA) > <!ELEMENT description (#PCDATA) >
<!ELEMENT link (#PCDATA) > <!ELEMENT link (#PCDATA) >

and the number of elements in d′i. The average corruption rate over all the 10 corrupted
documents is 64.4%.

We assess GP-DEI performances on corrupted documents using false positive rate
(FPR) and false negative rate (FNR), where a positive is a validated element. The former
(FPR) is the ratio between the number of elements which are validated by Di and are
not validated by DSVG and the number of elements which are not validated by DSVG.
The latter (FNR) is the ratio between the number of elements which are not validated
by Di and are validated by DSVG and the number of elements which are validated by
DSVG. Table 6.4 shows the results obtained for each document used as input: each row
corresponds to a DTD Ddi and reports the number of element in di and the FPR and
FNR averaged over d′1, . . . , d

′
10.

Finally, in Table 6.5 we report a comparison between the DTD generated by GP-DEI
for the first document in the RSS group and the Netscape DTD for RSS DRSS found in
the wild7. It is interesting to note that, as pointed out in Section 6.1, (i) DRSS is no more
available at the original URL (we refer to a copy) and (ii) our RSS documents (which we
found in the wild) are not validated by DRSS.

7http://web.archive.org/web/200012040847/http://my.netscape.com/publish/formats/rss-0.91.dtd

“tesi” — 2014/3/21 — 14:32 — page 81 — #87

81 Remarks

6.6 Remarks

We have proposed an approach for the automatic inference of DTDs with Genetic
Programming. The approach requires only a set of XML documents to generate a DTD
able to validate these documents. No specific knowledge about the DTD and XML
syntaxes nor any kind of supervision are required.

We assessed our proposal on 5 different dataset collected from different application
domains. We verified that our tool generates DTD schemas which always correctly
describe the input documents. We investigated the ability of our approach to generate
schemas which may validate also similar documents and the robustness of our algorithm
when a generated DTD has to validate a corrupted XML. Although our approach has to
be investigated on other datasets, the results are highly promising and GP-DEI offers a
practical solution to the problem of synthesizing a schema for a set of XML documents.

“tesi” — 2014/3/21 — 14:32 — page 82 — #88

“tesi” — 2014/3/21 — 14:32 — page 83 — #89

Chapter 7
Hybrd approach for electricity prices
forecasting

7.1 Overview

The electric power industry has shifted from a centralized structure to a distributed and
competitive one. In many countries of the world, electricity markets of several forms
have been established that allow consumers to select among different providers according
to reliability and cost metrics. Although the legal and technical features of such markets
are regulated differently in each country, the presence of auctions in which buyers and
sellers submit their bids in terms of prices and quantities is commonplace [89].

An important form of such auctions can be found in the day-ahead market, in which
producers and consumers present price-sensitive supply offers and demands for each
hour of the next day. Each day a coordinating authority determines the outcome of
the auction in terms of electricity flows and final prices. The economic relevance of
these auctions makes the ability to accurately predict next-day electricity prices very
important in practice, for both producers and consumers: bidding strategies are based
on price forecast information hence the actual benefit obviously depends heavily on the
accuracy of such information. Not surprisingly, thus, many approaches to electricity price
forecasting have been explored in the recent years [105, 21, 4, 3, 79, 75, 47, 28].

In this work we examine the usefulness of Genetic Programming (GP) in the context
of day-ahead electricity price forecasting. We propose two GP approaches that differ
in the choice of the variables used as input of the evolutionary search and two hybrid
approaches. The hybrid approaches augment the GP-built predictor with a classifier
that predicts the interval to which the next prices will belong. When the predicted
interval was rare in the learning set, the output of the GP-based predictor is replaced
by the mean value that was observed, in the learning set, for the predicted interval.
The rationale for this design is that the GP-generated predictor can hardly provide
acceptable performance in regions of the input space that have been rarely seen during
the learning. The classifier attempts to determine whether the system is shifting toward

83

“tesi” — 2014/3/21 — 14:32 — page 84 — #90

7. Electricity prices forecasting 84

the difficult-to-learn region, in which case we simply predict a constant value tailored to
the specific subregion expected.

We assess our results by comparing them to a very challenging baseline that, in our
opinion, may be considered as representative of the state-of-the-art for the problem. The
dataset consists of hourly market clearing prices set by the California Power Exchange
(CalPX) from July 5, 1999 to June 11, 2000. This period includes an important market
crisis, which started on May 1, 2000, that provoked significant volatility and large
variations in prices, due to bankruptcy and strong financial problems of major players in
the market [65]. The forecasting methods used as baseline are those discussed in [102],
which evaluates the performance of 12 widely different approaches proposed in the
literature. For each approach, 24 different models are constructed and carefully tuned,
one for each hour of the next day. Each model is recalibrated every day, by shifting the
end of the learning set to the current day—thereby growing the learning set every day.
We also include in the comparison the results from [65], which apply 4 AI-based methods
to the same dataset. Even in this case, each method is calibrated differently for each
hour of the day and is recalibrated every day.

We evaluate the performance of our predictors with the same error index used in
these works and obtain very interesting results. The GP-based approaches exhibit slightly
worse performance than those of the traditional methods. The hybrid approaches, on the
other hand, provide better performance. In fact, they even provide a performance better
than a conceptual (not implementable) forecasting method obtained by selecting in each
week of the testing set the best of all the other predictors for that week.

We remark that our results have been obtained in a scenario more challenging than
the baseline: (i) we construct one single predictor, valid for every hour of each day;
and (ii) we never recalibrate our predictor, i.e., we use the very same learning set used
in [102, 65] at the beginning of the simulation and then we leave the predictor unmodified
across the entire testing set.

We believe our contribution is relevant for several reasons. First, we provide a novel
solution to a problem highly relevant in practice that compares favorably to the current
state-of-the-art. Second, we extend the set of application domains in which GP may
outperform, or at least compete with, traditional approaches. Third, we show a simple
yet effective way to cope with a dataset that do not cover the output space uniformly.

7.2 Our approach

7.2.1 Overview

We propose two techniques for day-ahead electricity price forecasting. The first technique
is entirely GP-based (Section 7.2.2), while the second one is a hybrid technique that
combines the output of the GP-generated predictor with the output of a second simple
predictor, to be used when the system is shifting toward regions that have been rarely
seen during learning (Section 7.2.3).

We denote by Ph the observed price for hour h and by P̂h the predicted price for that

“tesi” — 2014/3/21 — 14:32 — page 85 — #91

85 Our approach

hour.
Every day at midnight the prediction machinery generates a forecast P̂h for the

following 24 hours, i.e., for each h ∈ {1, . . . , 24}. The variables potentially available for
generating P̂h are:

• Ph−24, . . . , Ph−168, that represent the previously observed values for the price (e.g.,
Ph−168 indicates the observed price one week before the generation of the prediction).

• Hh−24, Hh−48, Hh−72, Hh−96, Hh−120, Hh−144 and Hh−168, that represent the maxi-
mum value observed for the price in the corresponding day (e.g., Hh−48 indicates
the maximum price in the day that precedes the generation of the prediction).

• Ih−24, Ih−48, Ih−72, Ih−96, Ih−120, Ih−144 and Ih−168, that represent the minimum
value observed for the price in the corresponding day.

• Nh, Nh−1, . . . , Nh−168, a set of binary values that represent whether an hour corre-
sponds to night-time, i.e., Nk = 1 if 1 ≤ k ≤ 5 and Nk = 0 otherwise.

• Ih, Ih−1, . . . , Ih−168, a set of binary values that represent whether an hour corre-
sponds to holidays.

• An enumerated variable h ∈ {1, 2, . . . , 24} that represents the hour of the day for
P̂h.

• An enumerated variable d ∈ {1, 2, . . . , 7} that represents the day of the week for
P̂h (from Sunday to Saturday).

We remark that we rely only on measured values for the variable to be predicted, i.e.,
we do not require any exogenous variable. Existing literature, in contrast, often assumes
that the prediction machinery has some exogenous variables available, e.g., temperature,
actual or forecasted load and alike. Indeed, 6 of the 12 models in [102] use load forecast
as exogenous variable. We believe that our approach may be more practical, simpler to
implement and less dependent on “magic” tuning numbers—e.g., if temperature were to
be used, where and at which hour of the day it should be taken?

Please note that the usual pattern used in literature is to predict P̂1, . . . , P̂24 at the
same time using observed values P0, . . . , P−168; that is, more recent observed values are
used compared to our proposed methods.

We partition the dataset in three consecutive time intervals, as follows: the training
set, for performing the GP-based evolutionary search; the validation set, for selecting the
best solution amongst those found by GP; the testing set, for assessing the performance
of the generated solution.

7.2.2 GP approach

The set of variables potentially available to the prediction system is clearly too large to
be handled by the GP search efficiently. We consider two configurations: one, that we

“tesi” — 2014/3/21 — 14:32 — page 86 — #92

7. Electricity prices forecasting 86

call GP-baseline, in which the terminal set consists of the same variables used in the
best-performing method of the baseline work (except for any exogenous variable, such as
the load) [102]. The resulting terminal set is:

{Ph−24, Ph−48, Ph−168, Ih, Nh, Lh−24}

The other configuration, that we call GP-mutualInfo, uses a terminal set that consists of
variables selected by a feature selection procedure that we describe below.

The procedure is based on the notion of mutual information between pairs of random
variables, which is a measure of how much knowing one of these variables reduces the
uncertainty about the other [80]. The procedure consists of an iterative algorithm based
on the training and validation portions of the dataset, as follows. Set S initially contains
all the 498 variables potentially available to the prediction system. Set Sout is initially
empty and contains the selected variables to be used for the GP search.

1. Compute the mutual information mi between each variable Xi ∈ S and the price
variable Y .

2. For each pair of variables Xi ∈ S,Xj ∈ S, compute their mutual information mij .

3. LetXi ∈ S be the variable with highestmi. Assign S := S−Xi and Sout := Sout+Xi.
For each variable Xj ∈ S, modify the corresponding mutual information mj as
mj := mj −mij .

4. Repeat the previous step until Sout contains a predefined number of elements.

We chose to execute this feature selection procedure for selecting 8 variables. The
resulting terminal set to be submitted to GP is:

{Ph−24, Ph−168, Ih, Ih−24, Ih−168, Nh, Hh−24, Lh−24, h, d}

At this point we run the GP search on the training set, with parameters set as
described in Section 7.3.2. Next, we compute the fitness of all individuals on the
validation set. Finally, we select the individual that exhibits best performance on this set
as predictor. This individual will be used along the entire testing set.

7.2.3 Hybrid approach

Our hybrid approach generates a GP-based predictor exactly as described in the previous
section, but introduces an additional component to be used in the testing phase. This
component is synthesized using the training and validation portions of the dataset, as
follows.

1. We define 10 equally-sized intervals for the observed price values in the training
and validation set and define each such interval to be a class.

2. We compute the mean value for each class.

“tesi” — 2014/3/21 — 14:32 — page 87 — #93

87 Experimental evaluation

0
600

1200
1800
2400
3000

1 2 3 4 5 6 7 8 9 10

E
le

m
en

ts

Classes

(a) Training Set

200
400
600
800

1000

1 2 3 4 5 6 7 8 9 10

E
le

m
en

ts

Classes

(b) Testing Set

Figure 7.1: Distribution of price values in classes.

3. We execute a feature selection procedure [42] consisting of a genetic search algo-
rithm [38] and select 95 of the 498 variables potentially available.

4. We train a classifier for the above classes based on the variables selected at the
previous step. In other words, this classifier predicts the class to which the next
price value will belong. In our experiments we have used a multilayer perceptron.

The choice of the specific algorithms used at step 3 and 4 has been influenced by the
software tool used for this purpose (Weka [41]).

In the testing phase, the prediction is generated as follows. We denote by CA the set
of the 2 classes with more elements and by CB the set of the other classes. Let ĉ be the
predicted class for Pi. If ĉ ∈ CA then the predicted value P̂i is the value generated by
the GP predictor, otherwise P̂i is the mean value computed for ĉ (step 2 above).

The rationale of this design is that the GP-generated predictor cannot be expected
to perform well in regions of the input space that have been rarely seen during the
learning. The classifier attempts to determine whether the system is shifting toward the
difficult-to-learn region, in which case we simply predict a constant value determined
during training and tailored to the specific subregion expected.

Figures 7.1(a) and 7.1(b) show the distributions of price values in the training set
and in the testing set, respectively (in the validation set all values happen to belong to
the first 2 classes). The percentage of elements in the 2 classes with more elements is
92% in the learning set (training and validation) and 82% in the testing set.

7.3 Experimental evaluation

7.3.1 Dataset and Baseline

As clarified in the introduction, we believe the dataset and baseline that we have used are
highly challenging and may be considered as representative of the state-of-the-art. The
dataset consists of hourly market clearing prices set by the California Power Exchange
(CalPX) from July 5, 1999 to June 11, 2000 (Figure 7.2). This period includes a market
crisis period characterized by large price volatility, that started on May 1, 2000 and
lasted beyond our dataset [65].

“tesi” — 2014/3/21 — 14:32 — page 88 — #94

7. Electricity prices forecasting 88

Figure 7.2: Dataset used for evaluating the proposed methods. The vertical line at the right
indicates the division between learning set and testing set. The vertical line at the left indicates
the division between training set and validation set (used only in our approaches, see Section 7.3.2)

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45

P
ri

ce

Weeks

We use the results from [102] as main baseline. This work examines a set of widely
differing approaches proposed earlier in the literature: basic autoregressive (AR), spike
preprocessed (p-AR), regime switching (TAR), mean-reverting jump diffusion (MRJD),
iterated Hsien-Manski estimator (IHMAR), smoothed non-parametric maximum likeli-
hood (or SNAR) (please refer to the cited work for full details). Each approach is applied
with and without load forecast as exogenous variable. For each approach, 24 different
models are constructed and carefully tuned, one for each hour of the next day. In the
testing phase each model is recalibrated every day, by shifting the end of the learning
set to the current day—thereby growing the learning set every day. The initial learning
set contains the first 9 months, from July 5, 1999, to April 2, 2000. The next 10 weeks
constitute the testing set, which thus includes the market crisis mentioned above1.

We include in the comparison also the results from [65], which applies several AI-based
approaches to the same dataset2: autoregressive neural network (ANN), local regression
(LOCAL), linear regression tree (TREE), generalized additive model (GAM) (again,
please refer to the cited work for full details). This work follows the same structuring as
the previous one: it uses the same learning set, it models each hour of the day separately
and recalibrates each model every day.

The performance index is the Weekly-weighted Mean Absolute Error (WMAE),

1The cited work analyzes also another dataset from the Nordic Power Exchange
(http://www.nordpoolspot.com/) augmented with hourly temperatures in Sweden. We have
not yet applied our approach to this dataset.

2This work actually considers a longer testing set. We include here the results for the same testing set
used in [102].

“tesi” — 2014/3/21 — 14:32 — page 89 — #95

89 Experimental evaluation

defined as:

WMAE =

∑168
h=1 |Ph − P̂h|∑168

h=1 Ph

where Ph is the actual price for h and P̂h is the predicted price for that hour.

7.3.2 Settings

We split the dataset as in [102, 65]: the learning set contains the first 9 months, whereas
the next 10 weeks constitute the testing set. We further split the learning data in two
consecutive intervals used as described in Section 7.2.2: a training set from July 5, 1999,
to January 30, 2000, is used for the GP search; a validation set from January 31, 2000 to
April 2, 2000, is used for selecting the best individual produced by the GP search.

We used WMAE as fitness function. We could have used other fitness functions
(e.g., squared error distances) and then assess the resulting performance on the testing
set based on the performance index of interest in this work, i.e., WMAE. We have not
explored this possibility in depth, but preliminary results suggest that there are no
substantial differences between these two approaches. Indeed, this finding is in line with
a similar assessment made in [102].

We experimented with four configurations: GP-baseline, GP-mutual Info, Hybrid-
baseline (i.e., coupled with GP-baseline), Hybrid-mutual Info. The GP searches have
been made with the same set of parameters, except for the composition of the terminal
set, that is different for the cases GP/Hybrid-baseline and GP/Hybrid-mutualInfo (see
Section 7.2.2). The functions set includes only the four basic arithmetic operators and the
terminal set always includes a few basic constants: 0.1, 1, 10. During our early tests we
experimented with different combinations of population size and number of generations.
Concerning the former, we swept the range between 500 and 1000 individuals and found
no significant differences in WMAE performance. However, we also found that the a
population with 1000 individuals triplicates the computation time required by one with
500 individuals, thus we decided to select 500 as population size. Concerning the number
of generations, we decided to use 1200 generations. The full set of GP-related parameters
is summarized in Table 7.1.

Each GP execution consisted of 4 independent runs, executed in parallel on 4 different
machines (with 500 individuals and 1200 generations each). At the end of each execution
we selected the 32 individuals with best fitness on the training set, thereby obtaining a
final population of 128 individuals. We evaluated the fitness of these individuals on the
validation set and selected the one with best fitness as predictor to be used in the testing
set.

Concerning the hybrid approach, we used the Weka tool in the standard configura-
tion [41] and experimented with several forms of classifier: Random Tree, Random Forest
Tree, SVM, Multilayer Perceptron. The latter is the one that exhibited best performance
and has been used for deriving the results presented here.

Finally, a few notes about execution time: each GP search took about 34 hours on 4
identical machines running in parallel, each machine being a quad-core Intel Xeon X3323

“tesi” — 2014/3/21 — 14:32 — page 90 — #96

7. Electricity prices forecasting 90

Table 7.1: GP parameters

Parameter Settings

Populations size 500
Selection Tournament of size 7
Initialization method Ramped half-and-half
Initialization depths 1
Maximum depth 5
Elitism 1
Crossover rate 80%
Mutation rate 15%
Number of generations 1200

(2.53 GHz) with 2GB RAM; the training of the classifier took about 1 hour on a single
core notebook (2 GHz), with 2GB RAM; the variable selection procedure (Section 7.2.2)
took a few minutes on the same notebook.

7.3.3 Results

Table 7.2 presents the salient results. The first four rows contain the average WMAE
along the testing set for each of the approaches that we have developed. To place these
results in perspective, the next set of rows provides the same index, extracted from [102].
In particular, the first 12 rows correspond to the 6 approaches, each tested with and
without predicted load as exogenous variable (models with the exogenous variable are
denoted by the X suffix). Then, we provide the mean for the full set of 12 models, the
mean for the 6 pure-price models only and the mean for the 6 models with exogenous
variable. Finally, the row labeled Ideal gives the mean WMAE of an optimal (merely
conceptual) model, constructed by selecting the best performing model in each week
of the testing phase (the cited work provides the WMAE of each model in each week).
The final set of rows provides the corresponding WMAE values from [65]. We excluded
method LOCAL from the evaluation of mean values, as it is clearly an outlier. The row
labeled Ideal has the same meaning as above whereas the row IdealBoth corresponds to
selecting the best model in each week from the full set of 16 predictors provided by the
cited works.

The key result is that both the hybrid methods perform better than all the other
methods, including the “optimal” (and merely conceptual) predictors constructed by
selecting the best predictor in each week. We believe this is a very promising result. The
fact that our approaches construct one single model valid for every hour of the day and
that we never recalibrate our models along the entire testing set, may only corroborate
this claim.

In order to gain further insights into the ability of our hybrid methods to effectively
generate accurate predictors, we evaluated WMAE across the entire testing set for all the
individuals of the final population. That is, rather than selecting one single individual

“tesi” — 2014/3/21 — 14:32 — page 91 — #97

91 Experimental evaluation

Table 7.2: Mean WMAE results in the testing set. The first set of rows correspond to our
approaches, the second set to [102], the third set to [65].

Method Mean WMAE (%)

GP-mutualInfo 20.70
GP-baseline 16.17
Hybrid-mutualInfo 11.84
Hybrid-baseline 12.32

AR 13.96
ARX 13.36
p-AR 13.44
p-ARX 12.96
TAR 13.99
TARX 13.31
MRJD 15.39
MRJDX 14.67
IHMAR 14.01
IHMARX 13.37
SNAR 13.87
SNARX 13.17
Mean 13.79
Mean pure-price only 14.11
Mean with load only 13.47
Ideal 12.64

ANN 13.11
LOCAL 154499.01
TREE 14.02
GAM 13.29
Mean 13.47
Ideal 12.83
Ideal both 12.42

“tesi” — 2014/3/21 — 14:32 — page 92 — #98

7. Electricity prices forecasting 92

Figure 7.3: Distribution of mean WMAE performance for the final populations, with hybrid
methods.

0

10

20

30

40

50

60

70

80

90

100

10 15 20 25 30 35 40 45 50

%
of

in
d

iv
id

u
al

s

WMAE

Hybrid-baseline
Hybrid-mutualinfo

based on its WMAE performance in the validation set, we take all the individuals. The
distribution of the respective WMAE performance is shown in Figure 7.3. Vertical lines
indicate the WMAE for the three Ideal methods shown in Table 7.2.

It can be seen that the better performance exhibited by the hybrid methods is not
an occasional result provoked by a single “lucky” individual: these methods consistently
tend to generate individuals whose performance is better than any of the baseline
methods. Indeed, the baseline performance is improved by more than half of the final
population (Hybrid-baseline) and by approximately three-quarters of the final population
(Hybrid-mutualInfo).

For completeness of analysis, we assessed the impact of the classifier from several
points of view. Concerning the prediction mistakes performed by the classifier in the
testing set, it provoked a wrong replacement of the prediction by GP 2,5% of the
times, and it provoked a wrong use of the prediction by GP 10.11% of the times. The
performance (mean WMAE in the testing set) that one could obtain by our Hybrid
approach implemented by a perfect classifier—i.e., one that never makes any prediction
mistake in the testing set—is 10.50% (mutualInfo) and 10.96% (baseline). Finally, the
performance that one could obtain by always using the mean value for the class predicted
by a perfect classifier is 15.49%.

From these data we observe what follows. First, attempting to improve the prediction
accuracy of the classifier further is probably not worthwhile (a perfect classifier does
not deliver a substantial improvement over Hybrid-mutualInfo). Second, our hybrid
approach indeed boosts performance of its building blocks—classifier-based prediction and
GP-based prediction: the former is slightly better than the latter, but their combination
is substantially better than either of them. Third, the simple classifier-based prediction
exhibits performance that is better than GP-only methods and is only slightly worse

“tesi” — 2014/3/21 — 14:32 — page 93 — #99

93 Remarks

than the 16 baseline methods.

7.4 Remarks

We have proposed novel GP-based methods for electricity price forecasting that are
suitable for day-ahead auctions. We designed simple yet effective mechanisms for enabling
GP to cope with the strong volatility that may be typical of this difficult application
domain.

We assessed our proposal on a challenging real-world dataset including a period of
market crisis, and compared our results against a baseline that is representative of the
current state-of-the-art. Our hybrid methods performed better than all the 16 methods
considered, and better than ideal (not implementable) predictors constructed by taking
the best of those predictors in each week. We also showed that our methods tend to
systematically generate predictors with good performance: we actually generated tens of
predictors that exhibit better performance than those used as baseline.

Although our approach has certainly to be investigated further, in particular on other
datasets, we believe that our results are significant and highly promising.

“tesi” — 2014/3/21 — 14:32 — page 94 — #100

“tesi” — 2014/3/21 — 14:32 — page 95 — #101

Chapter 8
Estimation of tracheal pressure in
mechanical ventilation control

8.1 Overview

High-frequency percussive ventilation (HFPV) is a non-conventional ventilatory strategy
which associates the beneficial aspects of conventional mechanical ventilation (CMV)
with those of high-frequency ventilation HFV [58]. HFPV acts as a rhythmic cyclic
ventilation with physically servoed flow regulation, which produces a controlled staking
tidal volume by pulsatile flow [58, 56]. Over the years, HFPV has proven highly useful in
the treatment of several widely differing pathological conditions: closed head injury [45],
patients with acute respiratory distress syndrome (ARDS) caused by burns and smoke
inhalation [52, 2], newborns with hyaline membrane disease and/or ARDS [97], patients
with severe gas exchange impairment [78]. The efficacy of HFPV has been demonstrated
also in removing bronchial secretions under diverse conditions [30, 59].

Usage of HFPV in clinical practice involves endotracheal tubes (EET) for connecting
the ventilator circuit to the airway of the patient. The pressure measured by the ventilator
consists of the sum of the EET pressure drop and of the tracheal pressure dissipated
to inflate lung. In order to evaluate correctly the respiratory function, in particular, to
avoid barotrauma and volutrauma [85], it is mandatory to take into account precisely
the real amount of pressure dissipated by these components [13, 17]. While the pressure
at the ventilator end of the EET can be measured easily, measuring the tracheal pressure
of a patient is more difficult and, in every day clinical practice, such a measure cannot
be done invasively. For this reason, HFPV requires a model for accurately estimating the
tracheal pressure value based solely on non-invasive pressure and flow measurements.

In this thesis, we describe the synthesis of such model by means of Genetic Program-
ming (GP). We experimentally evaluated our approach by comparing our GP-generated
model against two different models largely used in previous works [88, 92] on a dataset of
in vitro measures. The outcomes are very important: the GP-generated models exhibit

95

“tesi” — 2014/3/21 — 14:32 — page 96 — #102

8. Estimation of tracheal pressure 96

an estimation accuracy which is sensibly higher than those of the existing models which
has been crafted by human experts and have been largely used in previous works.

8.2 Related work

The pressure drop during mechanical ventilation ∆PEET(t) = Paw(t)–Ptr(t)—where
Paw(t) is the airway pressure measured by ventilator and Ptr(t) is the unknown tracheal
pressure—has been widely studied both in adult and pediatric endotracheal tubes [13, 17,
85, 107, 27, 12, 83, 92, 88, 55]. In general, ∆PEET depends on flow regime, on geometric
characteristics of the tube and on physical properties of the gas. The flow regime can be
either laminar or turbulent with a small transitional region between these two regimes.
In order to estimate ∆PEET and derive tracheal pressure accordingly, a model for the
pressure-flow relationship characterizing EET is necessary. This model may be considered
linear in the presence of laminar flow [107, 27]:

∆PEET(t) = RtubeV̇ (t) (8.1)

where V̇ (t) is the flow and Rtube is the flow resistance coefficient. In most cases, though,
a nonlinear pressure-flow model turns out to be more appropriate due to the presence of
turbulent flow [85, 12, 83, 92, 55]:

∆PEET(t) = K1V̇ (t) +K2V̇ (t)|V̇ (t)| (8.2)

where and K1 and K2 are the Rohrer’s constants [86].

The above approaches may not be sufficiently accurate during high frequency oscilla-
tory ventilation. Further models have been developed for such scenarios by taking into
account an additional pressure drop ∆PI(t) due to mechanical inertance I and depending
on the volume acceleration V̈ (t) [88, 92]:

∆PI(t) = IV̈ (t) (8.3)

8.3 Our approach

Our approach is based on Genetic Programming (GP). In this work, we aim at estimating
the tracheal pressure Ptr(t). To this end, we use a terminal set which consists of:

• the pressure measured by ventilator Paw(t),

• the flow V̇ (t),

• the volume acceleration V̈ (t),

• the percussive frequency fp,

• the work pressure Pwork,

“tesi” — 2014/3/21 — 14:32 — page 97 — #103

97 Experiments

• random constants uniformly distributed in [0.01, 10].

Note that we do not include the parameters of the lung simulator (Rsim and Csim, see
Section 8.4.1) because their values are hardly estimable with precision during the clinical
practice.

The function set is composed by the mathematical binary operators +, −, ×, ÷, exp
and the exponentiation pow.

We used two fitness function to be minimized: (i) the Mean Square Error (MSE) and
(ii) the individual size, i.e., the total number of nodes of the individual in its tree form:

fMSE(T) =
1

n

n∑
i=1

(P̂T (tn)− Ptr(tn))2 (8.4)

fS(T) = S(T) (8.5)

where T indicates a GP individual, P̂T (tn) is the value assumed by the individual T at
time tn and S(T) is the number of nodes in the individual T .

The choice to minimize the number of nodes is important in order to enforce a
principle of parsimony, i.e., to reduce the possible proliferation of unnecessary sub-trees
in individuals (also known as bloat [103]). We minimize the resulting multi-objective
fitness by means of NSGA-II [31]. We performed our GP searches using a tool that we
have developed in our lab [64, 9, 8]. This tool is written in Java and can run different
GP searches in parallel on different machines.

8.4 Experiments

8.4.1 Experimental setup

Figure 8.1 shows the experimental setup to collect in vitro measures for this study. HFPV
was provided by a volumetric diffusive respirator (VDR-4 R©1) which delivers mini-bursts
of respiratory gas mixtures in the proximal airways by the Phasitron R©, which is the heart
of this kind of ventilation [58, 57]. In this experimental setup, pulsatile flow was delivered
during inspiratory phase (In) while expiratory phase (Ex) was completely passive. The
VDR-4 R© ventilator was set to deliver a inspiratory/expiratory (In/Ex) duration ratio of
1:1, both for the pulse and the overall respiratory cycle [58, 57].

The examined EET was connected2 to the ventilator circuit and to a single-compartment
lung simulator (ACCU LUNG)3 that provides a physical model of the respiratory system.

Flow and pressures were acquired by a dedicated acquisition system [84]. The measure-
ment of the flow signal V̇ (t) was performed using Fleisch pneumotachograph4 connected

1Percussionaire Corporation, USA.
2With a dedicated EET connector with inner diameter of 11 mm.
3Fluke Biomedical, USA.
4Type 2, Switzerland.

“tesi” — 2014/3/21 — 14:32 — page 98 — #104

8. Estimation of tracheal pressure 98

Ventilator VDR-4R©

(Pwork, fp)

PhasitronR©

Pressure transducer paw

Endotracheal tube
(DEET)

Pressure transducer

Flow transducer

Lung sim. ACCU LUNG
(Rsim, Csim)

Acquisition device

V̇ (t)

Ptr(t)

Paw(t)

Figure 8.1: Diagram of the experimental setup: measurement equipment is denoted by blocks
with rounded corners. Equipment parameters are shown inside corresponding blocks.

to a differential pressure transducer (0.25 INCH-D-4V5). The pressure signals Paw(t) and
Ptr(t) were measured with pressure transducers (ASCX01DN6) placed respectively before
the EET connector and at the end of the EET, respectively. V̇ (t), Paw(t) and Ptr(t)
signals were acquired at a sampling frequency of fs = 2000 Hz with 12 bit resolution
(PCI-6023E7). The volume acceleration V̈ (t) has been computed off-line as:

V̈ (tn) =
V̇ (tn+1)− V̇ (tn−1)

2Ts
(8.6)

where Ts = 1
fs

= 0.5 ms and V̇ (tn) is the n-th measured sample of V̇ (t).

We experimented with two different EET8 with inner diameter of DEET = 6.5 mm
and DEET = 7.5 mm. For each EET, we considered all the 108 combinations of the
following parameters:

• ventilator work pressure Pwork, from 20 cmH2O to 45 cmH2O with increasing steps
of 5 cmH2O;

• ventilator percussive frequency fp, set to 300 cycle/min, 500 cycle/min and 700 cycle/min;

• lung simulator resistive load Rsim, set to 5 cmH2O/(L s) and 20 cmH2O/(L s);

• lung simulator compliance load Csim, set to 10 mL/cmH2O, 20 mL/cmH2O and
50 mL/cmH2O.

5All Sensors, USA.
6Honeywell, USA, with identical connectors with diameter of 20 mm.
7National Instruments, USA.
8I.D. 6.5, Rusch, Gremany and I.D. 7.5, Rusch, Gremany.

“tesi” — 2014/3/21 — 14:32 — page 99 — #105

99 Experiments

Figure 8.2: Measurements Ptr(t) and Paw(t) for the EET with DEET = 6.5 mm and the
parameters combination Rsim = 20 cmH2O/(L s), Csim = 10 mL/cmH2O, fp = 300 cycle/min and
Pwork = 40 cmH2O.

Table 8.1: Summary of notation

Symbol Type Description Unit

DEET parameter EET diameter mm
Rsim parameter lung sim. resistive load cmH2O/(L s)
Csim parameter lung sim. compliance load mL/cmH2O

fp parameter HFPV percussive frequency cycle/min
Pwork parameter HFPV work pressure cmH2O

Paw(t) sampled signal ventilator pressure cmH2O

Ptr(t) sampled signal tracheal pressure cmH2O

V̇ (t) sampled signal flow L/s

V̈ (t) computed signal volume acceleration L/s2

In each experiment we collected the values for V̇ (t), Paw(t), Ptr(t) and V̈ (t) during a
single inspiratory phase of a single respiratory cycle, for a duration of 4 s. Hence, for
each EET and for each parameter combination, we collected a respiratory signals set
composed of 8000× 4 samples. Figure 8.2 plots Ptr(t) and Paw(t) of a single respiratory
signal set, i.e., only two of the four components of that signal set. Table 8.1 summarizes
the symbols used in this work.

8.4.2 Methodology

In order to generate a model for the unknown tracheal pressure Ptr(t) for a given EET,
we proceeded as follows.

1. We randomly selected 7 respiratory signals sets and used them as training set. We
randomly selected 3 other respiratory signals sets and used them as validation set.
We used the remaining respiratory signal sets as testing set.

2. We executed a GP search as follows: (i) we ran 32 different and independent GP
evolutions (jobs), each on the training set (without the examples in the validation
set) and with the GP-related parameters set as in Table 8.2; (ii) for each job
and for each generation, we selected the individual with the best multi-objective
fitness (according to NSGA-II) on the training set; (iii) among the resulting set of
32× 500 = 16000 individuals, we selected the individual T ∗ with the lowest fMSE

on the validation set; (iv) we used the formula P̂T ∗(t) represented by T ∗ as a model
for Ptr(t).

3. We repeated steps 1 and 2 five times.

“tesi” — 2014/3/21 — 14:32 — page 100 — #106

8. Estimation of tracheal pressure 100

Table 8.2: GP parameters

Parameter Settings

Population size 500
Number of generations 500
Selection Tournament of size 7
Initialization depths 1–5
Max. depth after crossover 15
Reproduction rate 10%
Crossover rate 80%
Mutation rate 10%

In other words, for each EET, we constructed five models for Ptr(t) using five different
learning sets.

Each GP search has been executed in parallel on 4 identical machines powered with
a quad-core Intel Xeon X3323 (2.53 GHz) and 2GB of RAM.

In order to assess our results, we considered two baseline models widely used in the
literature and crafted by human experts [88, 92]. The models are defined in accordance
with Eq. 8.1 and Eq. 8.2 and with the addition of the volume acceleration V̈ (t) (Eq. 8.3),
as follows:

LM: Ptr(t) = Paw(t)−RtubeV̇ (t)− IV̈ (t)

NM: Ptr(t) = Paw(t)−K1V̇ (t)−K2V̇ (t)|V̇ (t)| − IV̈ (t)

We selected the parameter values for these baseline models by means of Least Squares
method applied on the same learning data available to each GP search. That is, we used
a different parameter calibration for each GP search, based on the union of the training
and validation sets randomly selected for that search.

The accuracy of the GP-generated models and the baseline models LM and NM was
quantified by the respective mean square error MSE exhibited on the testing set.

8.4.3 Results

The salient results are summarized in Table 8.3. The execution time indicates the average
time required for generating one of the GP-based models.

The key result is that the GP-generated model performs significantly better than
the baseline in all the experiments, with the only exception of the fourth repetition for
DEET = 7.5 mm in which the GP-generated model performs slightly better than LM but
worse than NM.

In order to gain further insights into the ability of GP to generate accurate models,
we report in Figure 8.3 the cumulative distribution of the MSE on the testing set of
all the best individuals selected on the validation set—i.e., at the end of each job. The
baseline models are reported as vertical lines. It can be seen that the good performances

“tesi” — 2014/3/21 — 14:32 — page 101 — #107

101 Remarks

Table 8.3: Experiment results

DEET
Repetitions (MSE %) Average (MSE %) Time
GP LM NM GP LM NM (min)

6.5

1.01 3.44 1.94

0.84 3.45 1.96 263
0.78 3.47 1.92
0.76 3.57 1.98
0.82 3.48 1.89
0.84 3.29 2.06

7.5

0.90 3.33 1.94

1.44 3.29 1.91 257
1.06 3.35 1.95
1.03 3.24 1.90
3.21 3.27 1.89
1.03 3.25 1.94

exhibited by our approach are not caused by a single lucky individual: GP is instead able
to systematically produce a large set of models which perform better than the baseline
models.

Figure 8.4 plots, for each of the 5 × 32 = 160 best individuals found at the end of
each job and each repetition, the MSE on the validation vs. the MSE on the testing set.
The figure shows how the performance of an individual on the validation set is a good
predictor of the performance on the testing set, which hence suggests that the proposed
method could be applied successfully also for different EET and parameter combinations.

8.5 Remarks

We proposed a novel approach for estimating the tracheal pressure during High-frequency
percussive ventilation (HFPV), a problem of uttermost importance in clinical pratice.
Our approach is based on genetic programming (GP) which synthesizes a model for the
tracheal pressure automatically, based on a collection of respiratory signals.

We assessed our proposal on a dataset consisting of in vitro measured respiratory
signals. The results in terms of Mean Square Error are very good: the GP-generated
models for the tracheal pressure perform significantly better than two other existing
models—generated by human experts—largely used in earlier proposals.

“tesi” — 2014/3/21 — 14:32 — page 102 — #108

8. Estimation of tracheal pressure 102

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4

%
of

in
d

iv
id

u
al

s

Testing MSE

(a) DEET = 6.5 mm

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4

%
of

in
d

iv
id

u
al

s

Testing MSE

(b) DEET = 7.5 mm

Figure 8.3: Cumulative distribution of the MSE on the testing set for the final individual of
each job. Vertical lines indicate the MSE for the two baseline models NM and LM.

0

2

4

6

8

10

0 2 4 6 8 10

T
es

ti
n

g
M

S
E

Validation MSE

++

++

+

+
+

+

+

+

+++++

+
++

+

++

+

+++

+

+
+
+++

+

+
++
+
++++
+
+++
++
++
++
+

+++

+++
+

+
+

++

++

+
+

+
+++
+

++

+

+

++
+
++

+

+
+
++++
++
++
+++
+

+
+++++++

(a) DEET = 6.5 mm

0

2

4

6

8

10

0 2 4 6 8 10

T
es

ti
n

g
M

S
E

Validation MSE

+

+
+

+

+

+
++

+
++

+
+

+

+++ +++

+

++++
+

+
+
+
+
++

+
+

+

++

+
+

++++++

+

+
+
+++ +
+

+

+

+

+

++

+

+
+

+
+

+

+

+

+
+

+

+
++++

+
+

+
+
+

+++
+
+

+

+

+
++
+++
++

(b) DEET = 7.5 mm

Figure 8.4: Validation MSE vs. testing MSE.

“tesi” — 2014/3/21 — 14:32 — page 103 — #109

Bibliography

[1] M. Ajcevic, A. De Lorenzo, A. Accardo, A. Bartoli, and E. Medvet. A novel
estimation methodology for tracheal pressure in mechanical ventilation control.
In Image and Signal Processing and Analysis (ISPA), 2013 8th International
Symposium on, pages 695–699. IEEE, 2013. [cited at p. 8, 9]

[2] S. K. Alpard, J. B. Zwischenberger, W. Tao, D. J. Deyo, D. L. Traber, and A. Bidani.
New clinically relevant sheep model of severe respiratory failure secondary to
combined smoke inhalation/cutaneous flame burn injury. Critical care medicine,
28(5):1469–1476, 2000. [cited at p. 95]

[3] N. Amjady and F. Keynia. Day ahead price forecasting of electricity markets by a
mixed data model and hybrid forecast method. International Journal of Electrical
Power and Energy Systems, 30(9):533–546, 2008. [cited at p. 83]

[4] P. Areekul, T. Senjyu, H. Toyama, and A. Yona. A hybrid ARIMA and neural
network model for Short-Term price forecasting in deregulated market. Power
Systems, IEEE Transactions on, 25(1):524–530, 2010. [cited at p. 83]

[5] R. Babbar. Clustering Based Approach to Learning Regular Expressions over Large
Alphabet for Noisy Unstructured. ACM Conference on information and knowledge
management CIKM 10, pages 43–50, 2010. [cited at p. 14, 47, 58]

[6] D. Barbosa, L. Mignet, and P. Veltri. Studying the xml web: Gathering statistics
from an xml sample. World Wide Web, 9:187–212, 2006. 10.1007/s11280-006-8437-6.
[cited at p. 71]

[7] D. Barrero, D. Camacho, and M. R-Moreno. Automatic Web Data Extraction Based
on Genetic Algorithms and Regular Expressions. Data Mining and Multi-agent
Integration, pages 143–154, 2009. [cited at p. 13, 18, 32, 47, 57]

[8] A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri, E. Medvet, and E. Sorio. Auto-
matic generation of regular expressions from examples with genetic programming.

103

“tesi” — 2014/3/21 — 14:32 — page 104 — #110

BIBLIOGRAPHY 104

In Proceedings of the fourteenth international conference on Genetic and evolution-
ary computation conference companion, pages 1477–1478. ACM, 2012. [cited at p. 6,

9, 32, 47, 57, 73, 75, 97]

[9] A. Bartoli, G. Davanzo, A. De Lorenzo, and E. Medvet. Gp-based electricity price
forecasting. In Genetic Programming, pages 37–48. Springer Berlin Heidelberg,
2011. [cited at p. 8, 9, 97]

[10] A. Bartoli, G. Davanzo, A. De Lorenzo, E. Medvet, and E. Sorio. Automatic
synthesis of regular expressions from examples. 2013. [cited at p. 6, 9, 32, 34, 37, 38, 47,

48, 50, 51, 54]

[11] M. Becchi, C. Wiseman, and P. Crowley. Evaluating regular expression matching
engines on network and general purpose processors. In ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, pages 30–39. ACM,
2009. [cited at p. 11]

[12] P. Behrakis, B. Higgs, A. Baydur, W. Zin, and J. Milic-Emili. Respiratory mechanics
during halothane anesthesia and anesthesia-paralysis in humans. Journal of Applied
Physiology, 55(4):1085–1092, 1983. [cited at p. 96]

[13] A. D. Bersten, A. J. Rutten, A. E. Vedig, G. A. Skowronski, et al. Additional work
of breathing imposed by endotracheal tubes, breathing circuits, and intensive care
ventilators. Critical care medicine, 17(7):671, 1989. [cited at p. 95, 96]

[14] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning Deterministic Reg-
ular Expressions for the Inference of Schemas from XML Data. ACM Transactions
on the Web, 4(4):1–32, Sept. 2010. [cited at p. 11, 14]

[15] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of concise
regular expressions and DTDs. ACM Transactions on Database Systems, 35(2):1–47,
Apr. 2010. [cited at p. 11, 14, 72, 77]

[16] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML schema definitions from
XML data, volume 29, pages 998–1009. VLDB Endowment, 2007. [cited at p. 73]

[17] P. Bolder, T. Healy, A. Bolder, P. Beatty, and B. Kay. The extra work of breathing
through adult endotracheal tubes. Anesthesia & Analgesia, 65(8):853–859, 1986.
[cited at p. 95, 96]

[18] J. Bongard and H. Lipson. Active coevolutionary learning of deterministic finite au-
tomata. The Journal of Machine Learning Research, 6:1651–1678, 2005. [cited at p. 33,

47, 54]

[19] F. Brauer, R. Rieger, A. Mocan, and W. Barczynski. Enabling information
extraction by inference of regular expressions from sample entities. In ACM
International Conference on Information and knowledge management, pages 1285–
1294. ACM, 2011. [cited at p. 11, 14, 19, 21, 23, 32, 47, 51, 58, 64, 65]

“tesi” — 2014/3/21 — 14:32 — page 105 — #111

105 BIBLIOGRAPHY

[20] A. Bràzma. Efficient identification of regular expressions from representative
examples. In Conference on Computational learning theory, volume 1, pages
236–242. ACM, 1993. [cited at p. 12, 73]

[21] J. P. S. Catalao, H. M. I. Pousinho, and V. M. F. Mendes. Hybrid Wavelet-PSO-
ANFIS approach for Short-Term electricity prices forecasting. Power Systems,
IEEE Transactions on, PP(99):1–8, 2010. [cited at p. 83]

[22] A. Cetinkaya. Regular expression generation through grammatical evolution. In
International Conference on Genetic and evolutionary computation, GECCO, pages
2643–2646, New York, NY, USA, 2007. ACM. [cited at p. 12, 13, 18, 19, 27, 28, 33, 47, 51,

57]

[23] C.-C. Chen, K.-H. Yang, C.-L. Chen, and J.-M. Ho. BibPro: A Citation Parser
Based on Sequence Alignment. IEEE Transactions on Knowledge and Data Engi-
neering, 24(2):236–250, Feb. 2012. [cited at p. 11]

[24] K. Chen, G. Gu, J. Zhuge, J. Nazario, and X. Han. Webpatrol: automated collection
and replay of web-based malware scenarios. In ACM Symposium on Information,
Computer and Communications Security, pages 186–195. ACM, 2011. [cited at p. 11]

[25] B. Chidlovskii. Schema extraction from xml data: A grammatical inference ap-
proach. In KRDB’01 Workshop (Knowledge Representation and Databases, 2001.
[cited at p. 73]

[26] O. Cicchello and S. C. Kremer. Inducing grammars from sparse data sets: a survey
of algorithms and results. The Journal of Machine Learning Research, 4:603–632,
2003. [cited at p. 33, 47]

[27] G. Conti, R. De Blasi, A. Lappa, A. Ferretti, M. Antonelli, M. Bufi, and A. Gas-
paretto. Evaluation of respiratory system resistance in mechanically ventilated
patients: the role of the endotracheal tube. Intensive care medicine, 20(6):421–424,
1994. [cited at p. 96]

[28] J. C. Cuaresma, J. Hlouskova, S. Kossmeier, and M. Obersteiner. Forecasting
electricity spot-prices using linear univariate time-series models. Applied Energy,
77(1):87–106, 2004. [cited at p. 83]

[29] A. De Lorenzo, E. Medvet, and A. Bartoli. Automatic string replace by exam-
ples. In Proceeding of the fifteenth annual conference on Genetic and evolutionary
computation conference, pages 1253–1260. ACM, 2013. [cited at p. 7, 9]

[30] K. Deakins and R. L. Chatburn. A comparison of intrapulmonary percussive
ventilation and conventional chest physiotherapy for the treatment of atelectasis in
the pediatric patient. Respiratory care, 47(10):1162–1167, 2002. [cited at p. 95]

“tesi” — 2014/3/21 — 14:32 — page 106 — #112

BIBLIOGRAPHY 106

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,
6(2):182 –197, apr 2002. [cited at p. 18, 36, 50, 63, 97]

[32] B. Dunay, F. Petry, and B. Buckles. Regular language induction with genetic
programming. In Evolutionary Computation. IEEE World Congress on Computa-
tional Intelligence., IEEE Conference on, volume 1, pages 396–400. IEEE, 1994.
[cited at p. 13, 57]

[33] H. Fernau. Algorithms for learning regular expressions from positive data. Infor-
mation and Computation, 207(4):521–541, Apr. 2009. [cited at p. 13, 73]

[34] D. Florescu. Managing semi-structured data. Queue, 3(8):18–24, Oct. 2005.
[cited at p. 72]

[35] J. Friedl. Mastering Regular Expressions. O’Reilly Media, Inc., 2006. [cited at p. 15,

34, 36, 61]

[36] P. Garćıa, M. V. d. Parga, G. I. Álvarez, and J. Ruiz. Universal automata and {nfa}
learning. Theoretical Computer Science, 407(1–3):192 – 202, 2008. [cited at p. 33]

[37] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: A
System for Extracting Document Type Descriptors from XML Documents. pages
165–176, 2000. [cited at p. 72]

[38] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning,
1989. [cited at p. 87]

[39] A. González-Pardo, D. Barrero, D. Camacho, and M. R-Moreno. A case study on
grammatical-based representation for regular expression evolution. In Trends in
Practical Applications of Agents and Multiagent Systems, volume 71, pages 379–386.
Springer Berlin / Heidelberg, 2010. [cited at p. 13, 18, 47, 57]

[40] S. Gulwani. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages 317–330, New York,
NY, USA, 2011. ACM. [cited at p. 33]

[41] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: An update. SIGKDD Explorations, 11(1), 2009.
[cited at p. 87, 89]

[42] M. A. Hall. Correlation-based feature selection for discrete and numeric class
machine learning. Proc. 17th Intern. Conf. Machine Learning, pages 359–366, 2000.
[cited at p. 87]

[43] J. Hegewald, F. Naumann, and M. Weis. Xstruct: Efficient schema extraction
from multiple and large xml documents. 22nd International Conference on Data
Engineering Workshops ICDEW06, pages 81–81, 2006. [cited at p. 73]

“tesi” — 2014/3/21 — 14:32 — page 107 — #113

107 BIBLIOGRAPHY

[44] T. Hruby, K. van Reeuwijk, and H. Bos. Ruler: high-speed packet matching and
rewriting on npus. In ACM/IEEE Symposium on Architecture for networking and
communications systems, pages 1–10. ACM, 2007. [cited at p. 11]

[45] J. M. HURST, R. D. BRANSON, and C. B. DEHAVEN. The role of high-frequency
ventilation in post-traumatic respiratory insufficiency. The Journal of Trauma and
Acute Care Surgery, 27(3):236–242, 1987. [cited at p. 95]

[46] E. Kinber. Learning regular expressions from representative examples and member-
ship queries. Grammatical Inference: Theoretical Results and Applications, pages
94–108, 2010. [cited at p. 13, 32, 47, 57]

[47] S. J. Koopman and M. Ooms. Forecasting daily time series using periodic unob-
served components time series models. Computational Statistics & Data Analysis,
51(2):885–903, 2006. [cited at p. 83]

[48] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). 1992. [cited at p. 5]

[49] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the abbadingo one
DFA learning competition and a new evidence-driven state merging algorithm. In
Grammatical Inference, page 1–12. Springer, 1998. [cited at p. 47, 49, 50]

[50] W. B. Langdon, J. Rowsell, and A. P. Harrison. Creating regular expressions as
mrna motifs with gp to predict human exon splitting. In International Conference
on Genetic and evolutionary computation, GECCO, pages 1789–1790, New York,
NY, USA, 2009. ACM. [cited at p. 14, 18]

[51] E. Lee and T.-h. Kim. Automatic generation of XForms code using DTD. Fourth
Annual ACIS International Conference on Computer and Information Science
(ICIS’05), pages 210–214, 2005. [cited at p. 73]

[52] C. W. Lentz and H. Peterson. Smoke inhalation is a multilevel insult to the
pulmonary system. Current Opinion in Pulmonary Medicine, 3(3):221–226, 1997.
[cited at p. 95]

[53] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and A. Arbor. Regu-
lar Expression Learning for Information Extraction. Computational Linguistics,
(October):21–30, 2008. [cited at p. 13, 14, 19, 21, 23, 32, 47, 51, 58, 64, 65]

[54] Y. Li, R. Krishnamurthy, S. Vaithyanathan, and H. V. Jagadish. H.v.jagadish.
getting work done on the web: Supporting transactional queries. In In SIGIR,
2006. [cited at p. 19]

[55] A. Lorino, L. Beydon, C. Mariette, E. Dahan, and H. Lorino. A new correction
technique for measuring respiratory impedance through an endotracheal tube.
European Respiratory Journal, 9(5):1079–1086, 1996. [cited at p. 96]

“tesi” — 2014/3/21 — 14:32 — page 108 — #114

BIBLIOGRAPHY 108

[56] U. Lucangelo, A. Accardo, A. Bernardi, M. Ferluga, M. Borelli, V. Antonaglia,
F. Riscica, and W. A. Zin. Gas distribution in a two-compartment model ventilated
in high-frequency percussive and pressure-controlled modes. Intensive care medicine,
36(12):2125–2131, 2010. [cited at p. 95]

[57] U. Lucangelo, V. Antonaglia, W. Zin, G. Berlot, L. Fontanesi, A. Peratoner,
F. Bernabè, and A. Gullo. Mechanical loads modulate tidal volume and lung
washout during high-frequency percussive ventilation. Respiratory physiology &
neurobiology, 150(1):44–51, 2006. [cited at p. 97]

[58] U. Lucangelo, V. Antonaglia, W. Zin, L. Fontanesi, A. Peratoner, F. Bird, and
A. Gullo. Effects of mechanical load on flow, volume and pressure delivered
by high-frequency percussive ventilation. Respiratory physiology & neurobiology,
142(1):81–91, 2004. [cited at p. 95, 97]

[59] U. Lucangelo, V. Antonaglia, W. A. Zin, M. Confalonieri, M. Borelli, M. Columban,
S. Cassio, I. Batticci, M. Ferluga, M. Cortale, et al. High-frequency percussive
ventilation improves perioperatively clinical evolution in pulmonary resection*.
Critical care medicine, 37(5):1663–1669, 2009. [cited at p. 95]

[60] S. M. Lucas and T. J. Reynolds. Learning deterministic finite automata with
a smart state labeling evolutionary algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7):1063–1074, 2005. [cited at p. 12, 33, 48, 49, 51,

52, 54]

[61] E. Medvet and A. Bartoli. Brand-related events detection, classification and
summarization on twitter. In Web Intelligence and Intelligent Agent Technology
(WI-IAT), 2012 IEEE/WIC/ACM International Conferences on, volume 1, pages
297–302. IEEE, 2012. [cited at p. 20, 52, 64]

[62] E. Medvet, A. Bartoli, and G. Davanzo. A probabilistic approach to printed docu-
ment understanding. International Journal on Document Analysis and Recognition
IJDAR, pages 1–13–13, 2010. [cited at p. 20]

[63] E. Medvet, A. Bartoli, G. Davanzo, and A. De Lorenzo. Automatic face annotation
in news images by mining the web. In Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology-
Volume 01, pages 47–54. IEEE Computer Society, 2011. [cited at p. 9]

[64] E. Medvet, C. Fillon, and A. Bartoli. Detection of web defacements by means of
genetic programming. In Information Assurance and Security, 2007. IAS 2007.
Third International Symposium on, pages 227–234. IEEE, 2007. [cited at p. 97]

[65] E. F. Mendes, L. Oxley, and M. Reale. Some new approaches
to forecasting the price of electricity: a study of californian market.
http://ir.canterbury.ac.nz/handle/10092/2069. RePEc Working Paper Series: No.
05/2008. [cited at p. 84, 87, 88, 89, 90, 91]

“tesi” — 2014/3/21 — 14:32 — page 109 — #115

109 BIBLIOGRAPHY

[66] A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai. A machine learning
framework for programming by example. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages 187–95, 2013. [cited at p. 33]

[67] L. Mignet, D. Barbosa, and P. Veltri. The xml web: a first study. In Proceedings of
the 12th international conference on World Wide Web, WWW ’03, pages 500–510,
New York, NY, USA, 2003. ACM. [cited at p. 71]

[68] R. Miller and A. Marshall. Cluster-based find and replace. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 57–64. ACM,
2004. [cited at p. 58]

[69] R. Miller and B. Myers. Lapis: Smart editing with text structure. In CHI’02
extended abstracts on Human factors in computing systems, pages 496–497. ACM,
2002. [cited at p. 58]

[70] R. Miller and B. Myers. Multiple selections in smart text editing. In Proceedings
of the 7th international conference on Intelligent user interfaces, pages 103–110.
ACM, 2002. [cited at p. 58]

[71] R. Miller, B. Myers, et al. Lightweight structured text processing. In Proceedings
of 1999 USENIX Annual Technical Conference, pages 131–144, 1999. [cited at p. 58]

[72] J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient extraction of schemas for XML
documents. Information Processing Letters, 85(1):7–12, 2003. [cited at p. 72, 73]

[73] E. Minkov, R. C. Wang, and W. W. Cohen. Extracting personal names from email:
applying named entity recognition to informal text. In Conference on Human
Language Technology and Empirical Methods in Natural Language Processing, HLT
’05, pages 443–450, Stroudsburg, PA, USA, 2005. Association for Computational
Linguistics. [cited at p. 19, 64]

[74] C.-h. Moh, E.-p. Lim, and W.-k. Ng. DTD-Miner: a tool for mining DTD from
XML documents. Proceedings Second International Workshop on Advanced Issues of
E-Commerce and Web-Based Information Systems. WECWIS 2000, (Xml):144–151,
2000. [cited at p. 72]

[75] T. D. Mount, Y. Ning, and X. Cai. Predicting price spikes in electricity markets
using a regime-switching model with time-varying parameters. Energy Economics,
28(1):62–80, 2006. [cited at p. 83]

[76] P. Norvig. xkcd 1313: Regex golf. http://nbviewer.ipython.org/url/norvig.com/
ipython/xkcd1313.ipynb, Jan. 2014. [cited at p. 31, 32, 38, 39]

[77] R. Paleari, L. Martignoni, E. Passerini, D. Davidson, M. Fredrikson, J. Giffin, and
S. Jha. Automatic generation of remediation procedures for malware infections. In
Usenix Security Symposium, 2010. [cited at p. 11]

“tesi” — 2014/3/21 — 14:32 — page 110 — #116

BIBLIOGRAPHY 110

[78] S. M. Paulsen, G. W. Killyon, D. J. Barillo, M. A. CROCE, and S. PAULSEN. High-
frequency percussive ventilation as a salvage modality in adult respiratory distress
syndrome: A preliminary study. discussion. The American surgeon, 68(10):852–856,
2002. [cited at p. 95]

[79] D. J. Pedregal and J. R. Trapero. Electricity prices forecasting by automatic dy-
namic harmonic regression models. Energy Conversion and Management, 48(5):1710–
1719, 2007. [cited at p. 83]

[80] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information crite-
ria of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 27(8):1226–1238, 2005. [cited at p. 86]

[81] P. Prakash, M. Kumar, R. Kompella, and M. Gupta. Phishnet: Predictive black-
listing to detect phishing attacks. In INFOCOM, 2010 Proceedings IEEE, pages 1
–5, march 2010. [cited at p. 11]

[82] P. Prasse, C. Sawade, N. Landwehr, and T. Scheffer. Learning to Identify Regular
Expressions that Describe Email Campaigns. In International Conference on
Machine Learning (ICML), 2012. [cited at p. 14]

[83] D. J. Prezant, T. K. Aldrich, J. P. Karpel, and S. S. Park. Inspiratory flow dynamics
during mechanical ventilation in patients with respiratory failure. American Journal
of Respiratory and Critical Care Medicine, 142(6 Pt 1):1284–1287, 1990. [cited at p. 96]

[84] F. Riscica, U. Lucangelo, M. Ferluga, and A. Accardo. In vitro measurements of
respiratory mechanics during hfpv using a mechanical lung model. Physiological
Measurement, 32(6):637, 2011. [cited at p. 97]

[85] P. Rocco and W. Zin. Modelling the mechanical effects of tracheal tubes in normal
subjects. European Respiratory Journal, 8(1):121–126, 1995. [cited at p. 95, 96]

[86] F. Rohrer. Der strömungswiderstand in den menschlichen atemwegen und der ein-
fluss der unregelmässigen verzweigung des bronchialsystems auf den atmungsverlauf
in verschiedenen lungenbezirken. Pflügers Archiv European Journal of Physiology,
162(5):225–299, 1915. [cited at p. 96]

[87] B. Ross. Probabilistic pattern matching and the evolution of stochastic regular
expressions. Applied Intelligence, pages 285–300, 2000. [cited at p. 13]

[88] S. Schumann, M. Krappitz, K. Möller, R. Hentschel, G. Braun, and J. Guttmann.
Pressure loss caused by pediatric endotracheal tubes during high-frequency-
oscillation-ventilation. Respiratory physiology & neurobiology, 162(2):132–137,
2008. [cited at p. 95, 96, 100]

[89] G. B. Sheblé. Computational auction mechanisms for restructured power industry
operation. Springer Netherlands, 1999. [cited at p. 83]

“tesi” — 2014/3/21 — 14:32 — page 111 — #117

111 BIBLIOGRAPHY

[90] H. Shiu, J. Fong, and R. Biuk-Aghai. Recovering data semantics from XML
documents into DTD graph with SAX. In Proceedings of the 5th WSEAS . . . ,
volume 2006, pages 491–496, 2006. [cited at p. 72]

[91] I. Sourdis, J. a. Bispo, J. a. M. P. Cardoso, and S. Vassiliadis. Regular Expression
Matching in Reconfigurable Hardware. Journal of Signal Processing Systems,
51(1):99–121, 2007. [cited at p. 11]

[92] M. Sullivan, J. Paliotta, and M. Saklad. Endotracheal tube as a factor in measure-
ment of respiratory mechanics. Journal of applied physiology, 41(4):590–592, 1976.
[cited at p. 95, 96, 100]

[93] B. Svingen. Learning Regular Languages Using Genetic Programming. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming 1998 Conference,
pages 374–376. Morgan Kaufmann, 1998. [cited at p. 13, 57, 73]

[94] K. Thompson. Programming techniques: Regular expression search algorithm.
Commun. ACM, 11:419–422, June 1968. [cited at p. 11]

[95] M. Tomita. Dynamic construction of finite automata from examples using hill-
climbing. Cognitive Science Conference, pages 105–108, 1982. [cited at p. 13, 57]

[96] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. Markatos, and S. Ioannidis.
Regular expression matching on graphics hardware for intrusion detection. In
E. Kirda, S. Jha, and D. Balzarotti, editors, Recent Advances in Intrusion Detection,
volume 5758 of Lecture Notes in Computer Science, pages 265–283. Springer Berlin
/ Heidelberg, 2009. 10.1007/978-3-642-04342-0 14. [cited at p. 11]

[97] G. C. Velmahos, L. S. Chan, R. Tatevossian, E. E. Cornwell, W. R. Dougherty, J. Es-
cudero, and D. Demetriades. High-frequency percussive ventilation improves oxy-
genation in patients with ards. CHEST Journal, 116(2):440–446, 1999. [cited at p. 95]

[98] M. Villegas and N. Bel. From DTD to relational dB. An automatic generation
of a lexicographical station out off ISLE guidelines. In Language Resources and
Evaluation 2002, pages 694–700, 2002. [cited at p. 72]

[99] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). [cited at p. 71]

[100] W3C. W3C XML Schema Definition Language (XSD) 1.1. [cited at p. 71]

[101] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and P. Dupont. STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empirical Software Engineering, 18(4):791–824, Aug. 2013.
[cited at p. 48, 54]

[102] R. Weron and Misiorek. Forecasting spot electricity prices: A comparison of para-
metric and semiparametric time series models. International Journal of Forecasting,
pages 744–763, 2008. [cited at p. 84, 85, 86, 88, 89, 90, 91]

“tesi” — 2014/3/21 — 14:32 — page 112 — #118

BIBLIOGRAPHY 112

[103] P. A. Whigham and G. Dick. Implicitly controlling bloat in genetic programming.
Evolutionary Computation, IEEE Transactions on, 14(2):173–190, 2010. [cited at p. 97]

[104] W. Wieczorek. Induction of non-deterministic finite automata on supercomput-
ers. Journal of Machine Learning Research-Proceedings Track, 21:237–242, 2012.
[cited at p. 33]

[105] L. Wu and M. Shahidehpour. A hybrid model for Day-Ahead price forecasting.
Power Systems, IEEE Transactions on, 25(3):1519–1530, 2010. [cited at p. 83]

[106] T. Wu and W. Pottenger. A semi-supervised active learning algorithm for informa-
tion extraction from textual data. Journal of the American Society for Information
Science and Technology, 56(3):258–271, 2005. [cited at p. 13, 32, 47, 57]

[107] W. Zin, L. Pengelly, and J. Milic-Emili. Active impedance of respiratory system in
anesthetized cats. Journal of Applied Physiology, 53(1):149–157, 1982. [cited at p. 96]

