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CHAPTER 1 

GENERALINTRODUCTION 



Genera/ Introduction 

1.1 ATP-BINDING CASSETTE PROTEINS 

The ATP-binding cassette transporter genes (ABC-transporter genes) are a 

family of genes which encode the ABC-transporter proteins. It is one of the largest 

and most ancient family with representatives in ali phyla from prokaryotes to 

humans [1]. ABC transporters utilize the energy of ATP hydrolysis to transport 

various substrates (including metabolic products, lipids and sterols, and drugs) 

across extra- and intracellular membranes, often against a concentration gradient. 

The name ABC transporters was introduced in 1992 by Chris Higgins [2]. 

The designation ABC was based on the highly conserved ATP-binding cassette, the 

most characteristic feature of the superfamily [3]. Traffic ATPases is another 

name used for this family. 

ABC transporters share a common structural organisation (Fig. 1.1): 

two transmembrane domains (TMD), each of which consists of a-helices 

that cross the phospholipid bilayer multiple times. These transmembrane 

domains previde the specificity for the substrate and prevent unwanted 

molecules from using the transporter. Between the TMDs there is a ligand 

binding-domain. It is on the extracellular side of proteins involved in the import 

of substrates (importers) and on the cytoplasmic side of proteins involved in 

the export (exporters). 

two ATP-binding domains (called ATP-binding cassette, ABC or also called 

nucleotide binding domains, NBD), that are located on the cytoplasm side of 

the membrane. These domains are divided into parts of motifs, called Walker A 

and Walker B, which are separated by approximately 90-120 amino acids. In 

addition, there is a third short and highly conserved motif (called signature 

motif) located after the Walker motif B. Unlike the Walker A and Walker B 

motifs, which are found in other proteins which hydrolyze ATP, the signature 

motif is unique to ABC transporters. These domains, called also folds, form the 

"cassettes" which the protein family is named after. 

ABC transporters may be divided into half transporters or full transporters. 

Full transporters consist of typical two TMDs and NBDs. Half transporters consist of 

only one TMD and one NBD and must combine with another half transporter to 

gain function ability. Half transporters can thus form homodimers if two identica! 

ABC transporters join, and heterodimers if two unlike ABC transporters join. 
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Generai Introduction 

ABC proteins are mostly unidirectional. In bacteria, they are predominantly 

involved in the import of essential compounds that cannot be achieved by diffusion 

(e.g., sugars, vitamins, metal ions, etc.) into the celi. In eukaryotes, most ABC 

genes move compounds from the cytoplasm to the outside of the celi or into an 

extracellular compartment (endoplasmic reticulum, mithocondria, peroxisome)[4]. 

More recently, ABC-transporters have been shown to exist in the placenta, 

indicating they could play a protective role for the developing fetus against 

xenobiotics [5-9]. 

Most of the known functions of eukaryotic ABC transporters involve the 

shuttling of hydrophobic compounds either within the celi as part of a metabolic 

process or outside the celi for transport to other organs, or secretion from the 

body [4]. 

Physiologically, mammalian ABC proteins transport lipids, bile salts, toxic 

compounds and peptides for antigen presentation or other purposes [3]. Each 

protein is specific fora substrate or a group of related substrates. 

There are 49 ( +1 ?) known ABC transporters genes present in humans. The 

ABC proteins are grouped into seven subfamilies, ranging from ABCA to ABCG 

[updated information is on line available at this website: 

http://nutrigene.4t.com/humanabc.htm] based on genomic organization, order of 

domains and sequence homology. 

In generai, the ABC transporters are important in human physiology, 

toxicology, pharmacology and disease. 

It has been found that: 

1. ABC proteins transport drugs (xenotoxins) and drug conjugates. 

2. Mammalian secretory epithelia use ABC transporters to excrete a large 

number of substances, sometimes against a steep concentration gradient. 

Several inborn errors in liver metabolism are due to mutations in one of the genes 

for these pumps. A rapidly increasing number of ABC transporters plays a role in 

lipid transporter. In addition, there are evidence that a subfamily of human ABC 

proteins is an excellent transporter of hydrophobic peptides [10] [11]; a 

heterodimeric ABC protein transports peptides for antigen presentation [12] and 

an ABC transporter related to it exports peptides from mitochondria [13]. Defects 

in each of these transporters are involved in human inborn or acquired diseases 

[3]. 

The main characteristics and the role in the organic anion transport of 2 

human ABC proteins, MRPl and MDRl (P-gp), will be explained in this work. 
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Genera/ Introduction 

1.2 MDRl AND MRPl DIFFERENCES AND ANALOGIES 

1.2.1 SUBSTRATE SPECIFICITY 

MDR1 transports large hydrophobic, either uncharged or slightly 

positively charged compounds in their unmodified forms, while MRP1 primarily 

transports hydrophobic anionic conjugates, but also unconjugated 

xenobiotics and uncharged drugs. The MRP1-related uncharged drug transport is 

quite an enigma, and is somehow linked to the transport or allosteric effect of 

cellular free reduced gluthatione [14] . 

1.2.2 CELLULAR ANO TISSUE DISTRIBUTION 

MRP1 is almost ubiquitously expressed, while the expression of MDR1 is 

more restricted to tissues involved in absorption and secretion [15] [16]. High 

level MDR1 expression has also been shown in certain pharmacological barriers of 

the body, such as the blood-brain barrier and the choroid plexus [17] [18]. Multi-

drug transporters are localized predominantly in the plasma membrane. In 

polarized cells, MDR1 is localized in the apical (luminal) membrane surface (e.g. in 

the epithelial cells of the intestine and the proximal tubules of kidney, or in the 

biliary canalicular membrane of hepatocytes) [19] [20]. In contrast, MRP1 

expression in polarized cells is restricted to the basolateral membrane. 

1.2.3 MOLECULAR MECHANISM 

There are strong indications that the hydrophobic substrates of MDR1 are 

recognized within the membrane bilayer or in its vicinity, and this type of 

recognition makes the MDR1 protein a highly effective pump, preventing the 

cellular entry of toxic compounds [21]. In the case of MRP1 a similar picture has 

emerged. 

On the basis of the three-dimensional structures of bacterial NBD-units, it 

has been shown that the close interaction of the two NBD units results in the 

formation of a fully competent catalytic site. The regions connecting the NBD units 

to the transmembrane domains have a key role in the transfer of conformational 

information within the protein, and the signature region may have a special 

function in this regard [22]. 

The ATP-hydrolytic cycle of both MDR1 and MRP1 have been investigated in 

detail. Interaction with the transported drugs enhances the catalytic ATPase 

activity of MDRl. In ali ABC transporters, ATP binding and hydrolysis occurs at the 
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Genera/ Introduction 

sites localized in the NBD domains. Thus, an allosteric control of the drugs on the 

ATPase activity requires intramolecular interaction between the drug binding and 

the catalytic regions of the protein, but the mechanism by which the transported 

drugs accelerate ATP-hydrolysis is presently unknown. It has been documented in 

detail that the interaction of the two NBD units is an essential requirement for the 

catalytic reaction [23] [24]. Several lines of evidence indicate that both NBDs can 

bind ATP, and both catalytic sites are active and, in the case of MDRl but not of 

MRP1 [3], the two ABC domains enter alternately into the catalytic cycle [25-27]. 

1.2.4 MRPl 

The human multidrug resistance-associated protein MRPl, also 

called ABCCl, is one of the 13 members of the ABCC subfamily. It is a 190 kDa 

ATP-dependent membrane-bound transporter. Regarding the membrane topology, 

the MRP1 structure is different compared to the basic structure of ABC proteins 

because it contains an additional N-terminai segment of about 280 amino acids. A 

major part of this region is membrane-embedded with five transmembrane helices 

(TMD0), while a small cytoplasmic loop of about 80 amino acids (lo) connects this 

area to the core region [28-31]. Recent studies revealed that the TMD0 domain of 

MRPl does not play a crucial role in either the transport activity or the proper 

routing of the protein. However, the presence of the membrane-associated 

cytoplasmic L0 region (together with the core region) is necessary for both the 

transport activity and the proper intracellular routing of the protein. These studies 

indicate that the L0 region forms a distinct structural and functional domain, which 

interacts with the membrane and the core region of the MRP1 transporter [32] 

(Fig. 1.2). 

Physioloqical function of MRPl 

Former transport studies on intact cells and isolated membrane vesicles 

suggested that MRP1 transports conjugated xenobiotics, particularly organic 

anions and dyes, preferentially glutathione 5-conjugates (GS 5-conjugates), but 

also glucuronides and sulphate conjugates. Reduced glutathione (GSH) is 

ubiquitously present in ali cells of the human body and plays an important role in 

detoxification of ROS, electrophiles and oxyanions either by reduction or 

conjugation [33]. GS 5-conjugates are substrates with high affinity for MRP1 and 

the affinity increases with the length of the alkyl chain [34] [35]. Based on its 

ubiquitous expression [36] and its substrate specificity, it was proposed that 

extrusion of endogenously formed GSH-dependent detoxification products is the 

physiological function of MRP1 [37]. Indeed, endogenous organic anions known 
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to be natura! occurring substrates of MRP1 include the cysteinyl leukotriene LTC4 

[35] [38], the glutathione conjugate of prostaglandin A2 (GS-PGAù. [39] [40], 

oxidized gluthatione (GSSG) [41] and GS-4HNE [(4-hydroxynonenal, that is a a,~­

unsaturated aldehyde (the most prevalent toxic lipid peroxidation product formed 

during oxidative stress)] [42]. LTC4 and PGA2 are involved in the inflammation 

process and celi cycle arrest [43] [44], while GSSG and GS-4HNE are 

detoxification products generated under conditions of a changed redox state [33] 

[45]. A role of MRP1 in immune responses was recently proposed based on the 

induction of its murine orthologue upon activation of T-helper 1 cells [46]. MRP1 

mediated transport of GSSG and GS-4HNE suggests that MRP1 functions as part of 

the cellular defence system against oxidative stress [ 41] [ 42]. Thus, extrusion of 

the metabolites by MRP1 may be required to retain the response against 

inflammatory stimuli and to prevent cellular damage. 

The generation of Mrp1 -/- knockout mice has significantly contributed to 

the understanding of the physiological role of MRPL Mice lacking Mrp1 show a 

poor response to inflammation induced by arachidonic acid, probably due to 

impaired export of LTC4 from LTC4-secreting cells [47]. In addition, Mrp1 plays a 

role in the protection of testicular tubules, tongue, cheek, and the urinary 

collecting duct against etoposide-induced damage [48]. Recently, the presence of 

Mrp1 in mouse and rat choroid plexus (CP) was shown [17] [49] [SO]. It is located 

on the basolateral site of CP epithelial cells [17]. Mrp1 expression in rat CP was 

higher than in the lung, a tissue with a relative high basai Mrp1 expression [49]. 

Functionality of Mrp1 was strongly suggested by a rapid elimination of the 

conjugated organic anion Mrp1 substrate, estradiol 17-B-D-glucuronide (E2 17BG), 

from the CP [49] and by the MK571 (MRP1 inhibitor)-mediated inhibition of 

translocation of 99mTc-sestamibi (99mTc-labeled methoxyisobutil isonitrile, a 

myocardial perfusion agent) through CP epithelial cells [17]. Comparison of double 

(Mdr1a/Mdr1b) and triple (Mdr1a/Mdr1b/Mrp1) knockout mice clearly 

demonstrated that Mrp1 eliminates the anticancer drug etoposide from the CP 

[SO]. Thus Mrp1 appears to function also as part of the blood-cerebrospinal fluid 

barrier by preventing drug entry into the brain. Some studies showed that Mrp1 

was highly expressed in rat brain parenchyma [51]. More recently, Mrp1 was 

found in rat astrocytes cultures where a high functional activity was detected. In 

addition, it was observed a higher expression of Mrp1 in primary astrocytes, 

compared with primary brain endhotelial cells [52]; finally, Mrp1 was found in rat 

primary microqlia [53] and very recently its expression was demonstrated also in 

rat neurons [54]. 
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Experiments with membrane vesicles from MRP1-overexpressing cells 

demonstrated that MRP1 is a transporter for the unconjuqated xenobiotics such 

as aflatoxin 81, vincristine and daunorubicin, but only in the presence of 

physiological amounts of GSH [35] [55]. In addition, it transports also 

neutral/basic amphipathic drugs and even oxyanions, cotransported by GSH 

[3]. These results extend the earlier observations that GSH is a criticai factor in 

MRP1-mediated drug resistance [56] [57] (Fig. 1.3b). 

Conclusions: MRPl acts as a multispecific conjugated organic anion transporter, 

with (oxidized) glutathione, cysteinyl leukotrienes and activated aflatoxin 81 as 

substrates. This protein also transports glucuronides and sulphate conjugates of 

steroid hormones and bile salts. In addition, it transports unconjugated druqs and 

other hydrophobic compounds in presence of glutathione 

[see:http://nutrigene.4t.com/humanabc.htm]. In fact it confers resistance to 

doxorubicin, daunorubicin, vincristine, colchicines, and several other xenobiotic 

compounds [58]. MRP1 is expressed in many tissues and its expression is 

restricted to the basolateral membranes. 

1.2.5 MDRl 

The human multidrug resistance P-glycoprotein MDRl, also called P-
gp (P-glycoprotein) or ABCBl, is one of the 11 members of the ABCB 

subfamily. It is a 170 kDa transmembrane glycoprotein which includes 10-15 kDa 

of N-terminai glycosylation. The N-term half of the molecule contains 6 

transmembrane domains, followed by a large cytoplasmic domain with an ATP 

binding site, and then a second section with 6 transmembrane domains and an 

ATP binding site which shows over 65% of amino acid similarity with the first half 

of the polypeptide (Fig.1.2). 

The gene coding for MDR1 was the first identified human ABC transporter gene 

[59]. 

MDR1 is a key player in the defense of the body against amphipatic xenotoxins. It 

transports a vast range of drugs in their unmodified form. The preference of 

MDR1 is for large amphipathic molecules that are neutral or weakly basic, but if 

pushed, MDR1 can also inefficiently handle an anionic highly charged compound, 

such as methotrexate (MTX). It is therefore difficult to define the elements 

common to ali MDR1 substrates [3]. 

Juliano and Ling [60] were the first to describe MDR1 in drug-resistant cells 

with a defined pattern of "multidrug resistance" including anthracyclines, 

anthracendiones, vinca-alkaloids, taxanes, and epipodophyllotoxins. MDR1 confers 
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drug resistance by lowering the intracellular drug concentrations to sub-lethal 

levels. Since the initial drug export model [59], severa! modified models have 

been proposed. Roepe [61] suggested that MDRl channels ions alters pH values 

and drugs follow the pH gradient out of the cells. This model, however, is not 

generally accepted [62] [63]. There is considerable evidence that MDRl extracts 

its substrates directly out of the plasma membrane before they get into the celi. 

Concerning this, Raviv et al. (64] suggested a "vacuum cleaner" model. Intra-

membranous molecules, which do not belong to the membrane, are recognized by 

MDRl, enter MDRl from the membranous site, and then leave the celi (Fig. 1.3 a). 

On the contrary, Higgins and Gottesman [21] suggested a flippase hypothesis: P-

glycoprotein acts as a drug exporter by flipping drugs from the inner leaflet of the 

plasma membrane to the outer leaflet against a concentration gradient. The 

flippase model for MDRl was substantiated by other human ABC transporters 

(MDR2, MRPl) as well as LmrA, an ABC drug transporter from Lactococcus lactus 

[65-68]. 

The broad spectrum specificity of MDRl for that many chemically and 

functionally different compounds h ave been ascribed to two features (69]: 

1. MDRl has at least two different drug binding sites with different preferences 

for allocrites. Both sides reveal cooperative interaction. Though a compound 

binds to one binding site, stimulation of the other binding site is required for 

tra n si oca ti o n. 

2. Lipophilic compounds concentrate in the membrane bilayer. High local 

concentrations facilitate translocation by MDRl without the need for high 

affinity binding sites. 

The MDR1 gene is expressed at high levels in various norma! organs such 

as brain vessels, adrenal gland, kidney, liver, and gastrointesinal tract (70](71]. In 

placenta! trophoblasts, testis and bene marrow it provides protection of vital body 

parts; in the gut mucosa it prevents entry of toxins into the body; in the blood 

brain barrier transports a number of lipophilic molecules that enter the endothelial 

cells back to the blood [72]; in the gut, liver and kidney, MDRl helps to eliminate 

toxins from the body [3]. In addition, MDRl translocates hormones, and detoxifies 

xenobiotics taken up along with nutrients. Studies on knock-out mice 

demonstrated that P-glycoprotein is not a housekeeping gene. The animals are 

vital, fertile, and do not show phenotypic abnormalities. They are hypersensitive to 

cytotoxic agents, especially in the brain [73] [74] [52]. In fact, recent studies 

demonstrated that Mdrl in the rat brain was localized predominantly in 

microvessel endothelial cells (as also observed in humans) [75] [76] and weak 
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expression was seen in brain parenchyma [51]. In brain parenchyma, Mdrl was 

identified in astrocytes [51][77][78]. More recently, it was found that Mdrl is also 

expressed and functional in brain microglia [53]. 

The exploitation of the clinica! relevance of MDRl has been a matter of 

intense research and has been evaluated in meta-analyses [79] [80]. Although 

clinica! drug resistance is frequently multifaceted [81] [82], P-glycoprotein's role 

far drug resistance is evident. 

Apart from multidrug resistance in cancer cells, MDRl also may contribute 

to resistance of AIDS patients towards protease inhibitors like indinavir, nelfinavir, 

or saquinavir [83] [84]. MDRl expression in the normal gastrointestinal tract 

prevents drug absorption after oral administration. Likewise, MDRl expression in 

the brain prevents penetration of antiviral drugs across the blood-brain barrier. 

Conclusions: MDRl is an ATP-dependent drug efflux pump for xenobiotic 

compounds with broad substrate specificity. It is responsible for decreased drug 

accumulation in multidrug-resistant cells and often mediates the development of 

resistance to anticancer drugs. 

MDRl is expressed in many tissues (especially those with barrier functions such as 

liver, BBB, kidney, intestine, placenta) and its expression is restricted to the apical 

membranes [see:http://nutrigene.4t.com/humanabc.htm]. 

1.3 CELL LINE ANALYSED 

In arder to investigate the role of MRPl and MDRl in the organic anion 

transport, we performed our studies in SH-SYSY cells, a human 

neuroblastoma celi line. Neuroblastoma is thought to arise from the anomalous 

arrest of multipotential embryonal cells of neuronal crest during differentiation. It 

is this disordered differentiation that contributes to the pathogenesis of the 

disease [85]. Both MRPl and MDRl are expressed in this celi line, as reported in 

literature [86][87]. 

The choice of a neuronal celi line was based on the aim to investigate the 

MRPl and MDRl involvement in the transport of an unconjugated organic anion 

that could cause encephalopathy in infants. 
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1.4 ORGANIC COMPOUNDS EXAMINED 

Two different categories of organic anions were considered: xenobiotic 

drugs and endogenous metabolites. 

Xenobiotic drugs, substrates of MRP1 or MDR1, were used in order to assay the 

knockdown (triggered by small interference RNA, siRNA) level of MRP1 or MDR1 in 

SH-SYSY neuroblastoma clones, compared to their respective contro!. 

If we should establish the MRP1 transport activity, we used: 

Indomethacin, a non-steroidal anti-inflammatory drug, transported by MRP1, 

but not by MDR1 [88-91]. 

If we should establish the MDR1 transport activity, we used: 

Ceftriaxone, a cephalosporin antibiotic, transported by MDRl, but not MRPl. 

[92-98]. 

Moreover, if we should establish the MRP1 and MDR1 transport activity, we used: 

Doxycycline, member of the tetracycline antibiotics group, transported by 

both MRPl and MDR1 [99][100]. 

As regards the endogenous metabolites, we focused our attention on the 

unconjugated bilirubin (UCB), to investigate the involvement of MRPl and 

MDR1 in its transport out of the cells. 

1.5 BILIRUBIN 

1.5.1 OVERVIEW 

The chemistry, metabolism and disposal of bilirubin have been studied 

systematically during the last two centuries as a model for hepatic disposal of 

biologically important organic anions of limited aqueous solubility. 

The discovery of several inherited disorders of bilirubin metabolism and 

excretion during the twentieth century has, led to renewed interest in inherited 

diseases associated with jaundice, some of which continue to pose a therapeutic 

challenge, providing stimulus for further research. 

Severa! studies are mainly concerned with the toxic effect of bilirubin and 

its importance as a liver function test, however the antioxidant property of 

bilirubin may previde a physiological defence against oxidative injury [101]. 
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1.5.2 FORMATION OF BILIRUBIN 

Sources of bilirubin 

Bilirubin is the breakdown product of the haem moiety of haemoglobin, 

other haemoproteins, such as cytochromes, catalase, peroxidase and tryptophan 

pyrrolase, and a small pool of free heme. 

In humans, 250-400 mg of bilirubin is produced daily, of which 

approximately 20% is produced from non-haemoglobin sources [102]. 

Enzymatic mechanism of bilirubin formation 

The microsomal heme oxygenase (HO) enzymes catalyse the oxidation of 

heme (Fig. 1.4). Three molecules of 02 are consumed in this reaction and a 

reducing agent, such as nicotinamide adenine dinucleotide phosphate hydrogenase 

(NADPH), is needed. The a-methene bridge carbon is eliminated as CO and the 

iron molecule is released [103]. Of the three forms of HO, H0-1 is ubiquitous and 

inducible by heme [104] and stress [105]; H0-2 is a constitutive protein, 

expressed mainly in the brain and the testis. The catalytic activity of H0-3 is low, 

and this protein may function mainly as a heme binding protein. CO produced by 

HO activity has a vasodilatory effect and regulates the vascular tone in the liver, 

heart and other organs during stress. Similarly, biliverdin and its product bilirubin 

are potent antioxidants, which may protect tissues under oxidative stress [105] 

[106]. 

Biliverdin is reduced to bilirubin by the action of cytosolic biliverdin 

reductases, which require NADH or NADPH for activity [107]. As discussed later, 

bilirubin requires energy-consuming metabolic steps for excretion in bile. Thus, the 

physiological advantage of its formation is not clear. The strong antioxidant 

activity of bilirubin may be particularly important during the neonatal period, when 

other antioxidants are scarce in body fluids. 

1.5.3 CHEMICAL CHARACTERISTICS OF BILIRUBIN 

The tetrapyrrole structure of bilirubin IXa (1,8-dioxo-1,3,6,7tetramethyl-

2,8-divinylbiladiene-a,c-dipropionic acid [108]) was solved by Fischer and 

Plieninger [ 109]. X-ray crystallography has revealed that the propionic aci d side-

chains of bilirubin form hydrogen bonds with the pyrrolic and lactam sites on the 

opposite half of the molecule, giving rise to a distorted 'ridge tile' structure [110] 

(Fig. 1.5). Engagement of ali polar groups (two propionic acid carboxyls, four NH 

groups and two lactam oxygens) of bilirubin by the hydrogen bonds makes the 

molecule insoluble in water, necessitating chemical modification of excretion in 
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bile. Disruption of the hydrogen bonds is accomplished in vivo by enzyme-

catalysed esterification of the propionic acid carboxyl groups with a glycosyl 

moiety, mainly glucuronic acid. 

The hydrogen bonds 'bury' the centrai methane bridge, so that the 

unconjugated bilirubin (see further) reacts very slowly with diazo reagents, 

whereas bilirubin glucuronides, which lack hydrogen bonds, react rapidly ('direct' 

van den Bergh reaction). The addition of 'accelerators' such as methanol, ethanol, 

6 M urea or dimethyl sulphoxide to plasma disrupts the hydrogen bonds of 

bilirubin, so that both conjugated and unconjugated bilirubin (see further) react 

rapidly with diazo reagents ('total' van den Bergh reaction). 

In cases of prolonged accumulation of conjugated bilirubin in plasma, as in 

cases of cholestasis or Dubin-Johnson syndrome, the pigment may become 

covalently bound to albumin [111]. This irreversibly protein-bound form, often 

termed delta-bilirubin, is included in the 'direct' fraction of bilirubin and is not 

eliminated in the bile or urine, which results in delayed clearance even after biliary 

obstruction or cholestasis is resolved. 

1.5.4 BILIRUBIN TOXICITY 

Unconjugated bilirubin is toxic to many celi types, intracellular organelles 

and physiological processes. Bilirubin inhibits DNA synthesis [112] and ATPase 

activity of brain mitochondria [113], and uncouples oxidative phosphorylation. It 

has been reported to inhibit Ca2+-activated, phospholipid-dependent protein 

kinase C activity and cAMP-dependent protein kinase activity [114]. Which of 

these toxic effects is the predominant cause of bilirubin encephalopathy remains 

unclear at this time. 

Clinically, toxic effects of bilirubin, particularly to the brain, are seen in 

neonates and patients with severe inherited deficiency of bilirubin conjugation. 

Yellow discoloration of the hippocampus, basai ganglia and nuclei of the 

cerebellum and brain stem, found in infants with acute bilirubin encephalopathy, is 

termed kernicterus. Such discoloration is not found in patients with chronic 

encephalopathy, in whom focal necrosis of neurons and glia is seen [115]. 

As ali toxic effects of bilirubin are abrogated by tight binding to albumin, 

cerebral toxicity is usually seen when there is a molar excess of bilirubin in plasma 

over albumin. At serum unconjugated bilirubin concentrations over 20 mg/dL, 

newborn babies are at risk of kernicterus. However, kernicterus can occur at lower 

concentrations in the presence of substances, such as sulphonamides, radiographic 

contrast dyes and coumarin, that inhibit albumin-bilirubin binding by competitive 
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or allosteric displacement [116]. Although immaturity of the blood-brain barrier in 

neonates has been implicated in the increased susceptibility of neonates to 

kernicterus, evidence to support the concept is insufficient. Normally, bilirubin 

entering the brain is cleared rapidly, but the pigment may bind to damaged and 

oedematous brain inhibiting its clearance, thereby increasing the susceptibility to 

bilirubin encephalopathy [117]. 

1.5.5 POTENTIAL BENEFICIAL EFFECTS OF PRODUCTS OF HEME 

BREAKDOWN 

Although clinicians are mainly concerned with the importance of bilirubin 

levels as a marker of liver disease and with the toxic effects of the pigment, 

biliverdin and bilirubin may exert some beneficiai effects by virtue of their strong 

antioxidant property. 

This may be relevant during the newborn period, when the level of other natura! 

antioxidants is low. Bilirubin, which is toxic to neuronal cells at high 

concentrations, has been reported to have cytoprotective activity at lower 

concentrations [118]. An inverse relationship between serum bilirubin levels and 

risk of ischaemic coronary artery disease has been observed [119], although 

whether such a protective effect extends to subjects with Gilbert syndrome is 

questionable [120]. Study of a large number of subjects in the United States has 

shown that the odds ratio for colorectal cancer is reduced to 0.295 in men and 

0.186 in women per 1 mg/dl increment in serum bilirubin levels [121]. 

Similarly, a previous large study showed an inverse relationship between serum 

bilirubin levels and cancer mortality in a Belgian population [122]. However, such 

associations do not conclusively prove a causative role for bilirubin, because 

possible confounding variables may exist. 

1.5.6 DISPOSITION OF BILIRUBIN 

Disposition of bilirubin by hepatocytes comprises severa! specific steps, 

including transport of bilirubin to hepatocytes from sites of production, uptake by 

and storage within hepatocytes, enzyme-catalysed conjugation with glucuronic 

acid, ~ctive transport into the bile canaliculus and degradation in the intestina! 

tra et. 

Transoort in plasma 

Unconjugated bilirubin circulates in plasma bound tightly but reversibly to 

albumin, which prevents its excretion in urine, except during albuminuria. Albumin 
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binding keeps bilirubin in solution and abrogates its toxic effects. Conjugated 

bilirubin is bound less tightly to albumin, and the unbound fraction is excreted in 

the urine. As mentioned above, during prolonged conjugated hyperbilirubinaemia, 

a fraction of conjugated bilirubin becomes irreversibly bound to albumin. This 

fraction, termed delta-bilirubin, is not excreted in the bile or urine and disappears 

slowly, reflecting the long half-life of albumin [111]. 

A small unbound fraction of unconjugated bilirubin is thought to be 

responsible for its toxicity [123]. Albumin has one high-affinity primary binding 

site for bilirubin. Additional sites are occupied when bilirubin is in molar excess. 

Norma! plasma concentration of albumin (500-700 !Jmoi/L) exceeds that of 

bilirubin (3-17 !Jmoi/L). However, during exaggerated neonata! jaundice and in 

patients with Crigler-Najjar syndrome, the molar concentration of unconjugated 

bilirubin may exceed that of albumin. Hypoalbuminaemia resulting from 

inflammatory states, chronic malnutrition or liver disease may precipitate bilirubin 

toxicity. Sulphonamides, anti-inflammatory drugs, cholecystographic contrast 

media, fusidic acid, azapropazone, sodium caprylate and N-acetyl tryptophan 

dispiace bilirubin from albumin and increase the risk of kernicterus in jaundiced 

infants [124]. Binding of short-chain fatty acids to albumin causes conformational 

changes, decreasing bilirubin binding. 

Uptake by hepatocytes 

At the sinusoidal surface of the hepatocyte (Fig. 1.6), bilirubin dissociates 

from albumin and is taken up by the hepatocyte by facilitated diffusion that 

requires inorganic anions, such as cr. 

Storage within the liver celi 

After entering the hepatocyte, bilirubin binds to the major cytosolic 

proteins, glutathione-5-transferases (GSTs, formerly designated ligandin or Y-

protein). Bilirubin is a ligand for GSTs, but nota substrate for glutathione transfer. 

Binding to GSTs reduces the efflux of bilirubin from hepatocytes, thereby 

increasing its net uptake (Fig. 1.6). GST binding inhibits non-specific diffusion of 

bilirubin into various subcellular compartments, thereby preventing specific 

organellar toxicity, such as inhibition of mitochondrial respiration by bilirubin in 

vitro [127]. 
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Conjuqation of bilirubin 

Conversion of unconjugated bilirubin to bilirubin diglucuronide or 

monoglucuronide by esterification of both or one of the propionic acid carboxyl 

groups is criticai for efficient biliary excretion of bilirubin (Fig. 1.6). 

1.5.7 Bilirubin-uridine diphosphoglucuronate glucuronosyltransferase 

Bilirubin is one of the many endogenous and exogenous substrates, whose 

conjugation with glucuronic acid is mediated by one or more isoform of uridine 

diphosphoglucuronate glucuronosyltransferase (UGTs). UGTs are enzymes 

concentrated in the endoplasmic reticulum and nuclear envelope of many celi 

types [128]. They catalyse the transfer of the glucuronic acid moiety of UDP-

glucuronic acid to the aglycone substrates, forming polar and usually less 

bioreactive products. Bilirubin glucuronidation is catalysed predominantly by a 

single UGT isoform, UGT1A1 [129]. The UGT superfamily of genes comprises two 

major families, UGT1 and UGT2. Four consecutive exons (exons 2-5) located at 

the 3' end of the UGT1A locus are used in nine different mRNAs. These encode the 

identica! carboxy-terminal domains of these UGT isoforms, which contain the UDP-

glucuronic acid binding site. Upstream of these four common region exons is a 

series of unique exons, each preceded by a separate promoter. Only one of these 

exons is utilized in a specific UGT mRNA. The presence of a separate promoter 

upstream from each unique region exon permits differential regulation of individuai 

UGT isoforms during development and in response to inducing agents. UGT1A1 

develops after birth [130] and is induced by phenobarbital and clofibrate [131]. 

Delayed development of UGT1A1 is a major cause of neonata! hyperbilirubinaemia 

in primates. Treatment of rats with triiodothyronine markedly reduces UGT activity 

towards bilirubin, whereas the activity towards 4-nitrophenol is increased [132]. 

In humans, the expression of UGT1A1 is limited to hepato-cytes and, to a 

lesser extent, in the proximal small intestine. UGTs are integrai to endoplasmic 

reticulum (ER) membranes. 

Canalicular excretion of conjugated bilirubin 

Conjugated bilirubin undergoes unidirectional transport into the bile against 

a concentration gradient, so that bilirubin concentration in the bile can be as high 

as 150-fold that in the hepatocyte. The electrochemical gradient of -35 mV, 

generated by the sodium pump, may help in the canalicular transport but, by 

itself, is too small to account for this large concentration gradient. The energy for 

the uphill transport of bilirubin and many other non-bile salt organic anions is 

derived from adenosine triphosphate (ATP) hydrolysis by the canalicular ATP-
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binding cassette protein, ABCC2 [also termed the MDR-related protein 2 (MRP2) or 

the multispecific organic anion transporter, MOAT]. ABCC2 pumps glutathione-, 

glucuronic acid- or sulphate-conjugated compounds across the canalicular 

membrane [133] [134]. Canalicular transport of organic anions is unidirectional 

from the cytoplasm of the hepatocyte into the bile. 

Canalicular transport may be assisted by the membrane potential, but the 

contribution of membrane potential in organic anion transport has not been 

quantified. The ATP-dependent canalicular organic anion transport is mediated by 

a canalicular membrane protein, termed canalicular multispecific organic anion 

transporter (cMOAT) or MRP2 [135]. 

1.5.8 FATE OF BILIRUBIN IN THE GASTROINTESTINAL TRACT 

Although conjugated bilirubin is not substantially absorbed from the 

intestines, a fraction of the small amount of unconjugated bilirubin that is excreted 

in bile is absorbed and undergoes enterohepatic circulation. 

Degradation of bilirubin by intestina! bacteria generates urobilinogen and 

related products [136]. A major portion of the urobilinogen reabsorbed from the 

intestine is excreted in bile, but a small fraction is excreted in urine. Urobilinogen 

is colourless~ its oxidation product, urobilin, contributes to the colour of normal 

urine and stool. 

1.5.9 NEUROTOXICITY OF BILIRUBIN IN VITRO. 

Neurotoxicity is determined mostly by the Br, the concentration of the 

unbound (free) fraction of UCB in plasma [137]. In physiological condition, over 

99,9% of UCB is tightly bound to album in, then the Bt is 0,1% of total UCB, only. 

The major unbound UCB species is an electrically neutra! diacid [138], which, 

because of extensive internai hydrogen bonding [139], can diffuse passively 

across any celi membrane [140]. In vitro exposure of neurons and astrocytes to 

UCB has revealed neuroprotection at Bf below aqueous saturation with UCB (70 

nM) [141], but neurotoxicity at Bt modestly above aqueous saturation with UCB 

[141] [142]. Accumulation of UCB might be limited by its conjugation and 

oxidation, binding to cytosolic glutathione-5-transferases and export by membrane 

transporters that are known to extrude other compounds from the CNS [138]. 
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1.6 SH-SYSV CELLS and UNCONJUGATED BILIRUBIN 

Some studies have been performed in order to investigate different aspects 

of bilirubin toxicity in SH-SY5Y cells and in other sublines of neuroblastoma celi 

line. They shown that: 

After UCB exposure of 1 hour or longer, the neuroblastoma celi line N-115 

develops evidence of toxicity which is progressive and irreversibile [143]. 

In human SH-SY5Y cells, clinically relevant UCB concentration caused early 

disruption of the mitochondrial membrane potential (MMP) and following 

induced apoptosis [144]. 

1.7 MRP1 and UNCONJUGATED BILIRUBIN 

In 1997, it was demonstrated that: 

in membrane vesicles from MRP1-transfected Hela (human cervical cancer) 

cells, ATP-dependent transport of both monoglucuronosylbilirubin and 

bisglucuronosyl bilirubin is mediated by the multidrug resistance protein 

(MRPl) [145]. 

Further studies conducted in our laboratory, demonstrated that MRPl is involved 

also in the transport of UNCONJUGATED BILIRUBIN (UCB) and supported its 

role in protecting cells from bilirubin toxicity. 

It was found that: 

UCB is a substrate for both YCF1 and YLL015 gene products in Saccaromhyces 

cerevisiae. Of the six multi drug resistance genes expressed, YCF1 and YLL015 

show a high homology for human MRP1 [146]. 

In BeWo (human trophoblastic) cells, grown in polarized manner, 

concomitantly increased the export of UCB and the expression of MRPl; 

morever, the efflux of UCB was almost abolished by MK571 [147], a generai 

inhibitor of MRPs [148]. 

In cultured astrocytes exposed to clinically relevant concentrations of UCB in 

vitro, MK571 increased apoptosis and impairment of mitochondrial function 

[(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyi-2H-tetrazolium bromide (MTT) 

test] and decreased Trypan Blue exclusion. In addition, it was shown that UCB 

upregulated the expressiÒn of MRPl and engendered its translocation from the 

Golgi to the plasma membrane [149]. 

In rats, the upregulation of Mrpl in hemolysis is mediated by UCB and/or other 

products of heme oxygenase [150]. 

Plasma-membrane vesicles from MDCKII cells (Madin-Darby canine kidney II 

cells) transfected stably with human MRPl showed a transport activity of UCB 
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three and five times higher respectively compared with the same vesicles 

transfected stably with MRP2 or wild type vesicles. In addition, UCB inhibited 

the transport of LTC4 [151]. 

In mouse embryo fibroblasts (MEF), isolated from Mrp1 knockout ( -/-) mice, 

the UCB accumulation was twice higher compared to wild type cells. This was 

associated with greater, dose-related cytotoxicity, assessed by the MTT test, 

lactate dehydrogenase release and cellular ATP content [152]. 

In primary cultures of rat neurons and astrocytes, the inhibition of Mrp1 with 

MK571 was associated with an increase in UCB-induced toxicity, demonstrated 

by the higher levels of celi death, celi dysfunction, cytokines secretion and 

glutamate release [54]. 

These findings show that MRP1 is involved in the transport of unconjugated 

bilirubin and that the affinity of this transporter for UCB is high (Km=10 nM) 

[151]. 

1.8 MDRl and UNCONJUGATED BILIRUBIN 

In 1991 it was reported that: 

UCB may be a weak substrate for Mdr1a [153]. 

Further studies showed that: 

UCB competitively inhibits the labelling of brain capillary MDR1 with a 

photoaffinity substrate [154]. 

A greater proportion of UCB is taken up by the brains of Mdr1a( -/-) 

knockout mice compared with their Mdr1a( +l+) controls [155]. 

Drugs known to inhibit MDR1 function · may increase the risk of bilirubin 

encephalopathy in the hyperbilirubinemic infant [99]. 

Inhibition of human MDR1 is associated with increased level of UCB-induced 

celi apoptosis in vitro [156]. 

From these findings, it seems that MDRl may be somehow iinvolved in the 

transport of UCB. However, these studies were performed with doses of UCB that 

yielded Bt much higher than clinically relevant concentrations [138] [142]. 

As mentioned above, we have attempted to reduce the MRP1 and MDR1 

expression by small interfering RNAs (siRNAs). Their introduction in the celi causes 

the RNA interference (RNAi) phenomenon, a biologica! response to double-

stranded RNA, that has proved to be an efficient means to manipulate the gene 

expression experimentally and to probe rapidly the gene function on a whole-

genome scale. 
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1.9 RNA INTERFERENCE 

1.9.1 OVERVIEW 

RNA interference {also called "RNA-mediated interference", but abbreviated 

RNAi) is a cellular mechanism far the targeted destruction of RNA molecules. RNAi 

involves double-stranded ribonucleic acid (dsRNA) that can specifically interfere 

with the expression of genes with sequences that are complementary to the 

dsRNA. RNAi is a form of post-transcriptional gene silencing (PTGS) in which an 

antisense RNA strand targets a complementary gene transcript such as a 

messenger RNA far cleavage by a ribonuclease. RNAi has been shown to be a 

common cellular process in many eukaryotes. 

The ability of RNAi to selectively reduce the expression of an individuai 

protein in a celi makes RNAi a valuable laboratory research tool, both in celi 

culture and in vivo in living organisms. Synthetic dsRNA can be added to cells in 

arder to artificially induce RNAi. RNAi can be used far large-scale screens that 

systematically shut down each protein in the celi in an attempt to identifying the 

necessary components far a particular cellular process or event such as celi 

survival or replication. RNAi also holds promise as a therapeutic technique in 

human disease. RNAi has been particularly well-studied in certain organisms such 

as the fruit fly Drosophila melanogaster, in plants where the effect can spread 

from celi to celi within the organism and in the nematode worm Caenorhabditis 

elegans, in which the gene silencing phenotype is heritable. In addition, in C. 

elegans the delivery of the dsRNA is exceptionally easy. Via a mechanism whose 

details are poorly understood, bacteria such as Escherichia coli that carry the 

desired dsRNA can be fed to the worms and will transfer their RNA payload to the 

worm via the intestina! tract. This "delivery by feeding" yields essentially the same 

magnitude of gene silencing as do more costly and time-consuming traditional 

delivery methods, such as soaking the worms in dsRNA solution and injecting 

dsRNA into the gonads [157]. 

Before RNA interference was well characterized, the phenomenon was 

known by other names, including post transcriptional gene silencing, transgene 

silencing, and quelling. Only after these were also characterized at the molecular 

level did it become clear that they described the RNAi phenomenon. Before RNAi 

was discovered, RNA was used to reduce gene expression in plant genetics. 

Single-stranded antisense RNA was introduced into plant cells and hybridized to 

the homologous single-stranded "sense" messenger RNA. It is now clear that the 

resulting dsRNA was responsible for reducing gene expression. 
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1.9.2 HISTORY 

The revolutionary finding of RNAi was proceeded by reports of unexpected 

outcomes in experiments performed by plant scientists in the USA and The 

Netherlands [158]. The goal was to produce petunia plants with improved flower 

colors. To achieve this goal, they introduced additional copies of a gene encoding a 

key enzyme far flower pigmentation into petunia plants. Surprisingly, many of the 

petunia plants carrying additional copies of this gene did not show the expected 

deep purple or deep red flowers but carried fully white or partially white flowers. 

When the scientists had a closer look they discovered that both types of genes, 

the endogenous and the newly introduced transgenes, had been turned aff. 

Evidence was obtained far posttranscriptional inhibition of gene expression that 

involved an increased rate of mRNA degradation [159]. This phenamenon was 

called "ca-suppressian of gene expression", but the molecular mechanism 

remained unknown. 

A few years later plant viralogists made a similar abservation. In their 

research they aimed towards improvement of resistance af plants against plant 

viruses. At that time it was known that plants expressing virus-specific proteins 

showed enhanced talerance or even resistance against virus infection. Hawever, 

they also made the surprising observation that plants carrying only short regians 

af virai RNA sequences not coding far any virai protein showed the same effect. 

They concluded that virai RNA praduced by transgenes can alsa attack incoming 

viruses and stop them fram multiplying and spreading thraughout the plant [160]. 

They did the reverse experiment and put short pieces of plant gene sequences into 

plant viruses. Indeed, after infection of plants with these modified viruses the 

expression af the targeted plant gene was suppressed. They called this 

phenamenan "virus-induced gene silencing" or simply "VIGS". These phenamena 

are collectively called post transcriptional gene silencing [161]. 

After these initial observatians in plants many laborataries around the world 

searched far the occurrence af this phenomenon in ather organisms. Mello and 

Fire's 1998 Nature paper based an research canducted with their colleagues 

(SiQun Xu, Mary Mantgomery, Stephen Kostas, Sam Driver) at the Carnegie 

Institution of Washington and the University of Massachusetts reported a patent 

gene silencing effect after injecting dauble stranded RNA into C. elegans [162]. In 

investigating the regulatian of muscle pratein praductian, they observed that 

neither mRNA and antisense RNA injections had an effect an protein production, 

but dauble-stranded RNA successfully silenced the targeted gene. As a result of 

this work, they coined the term RNAi. The discovery af RNAi in C. e/egans is 

particularly natable, as it represented the first identification of the causative agent 
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(double stranded RNA) of this not yet explained phenomenon. Fire and Mello were 

awarded the Nobel Prize in Physiology or Medicine in 2006 for their work [163]. 

1.9.2 CELLULAR MECHANISM 

RNAi is an RNA-dependent gene silencing process that is mediated by the 

same cellular machinery that processes microRNA, known as the RNA-induced 

silencing complex (RISC). The process is initiated by the ribonuclease protein Dicer 

[164], which binds and cleaves exogenous double-stranded RNA molecules to 

produce double-stranded fragments of 20-25 base pairs with a few unpaired 

overhang bases on each end [165] (Fig. 1.7a). The short double-stranded 

fragments produced by Dicer, called small interfering RNAs (siRNAs), are 

separated and integrated into the active RISC complex. Although it was first 

believed that an ATP-dependent helicase separated the two strands [166], it has 

since been shown that the process is ATP-independent and effected directly by the 

protein components of RISC [167][168]. 

The catalytically active components of the RISC complex are known in 

animals as argonaute proteins, endonucleases which mediate the siRNA-induced 

cleavage of the target mRNA strand. Because the fragments produced by Dicer are 

double-stranded, they could each in theory produce a functional siRNA; however, 

only one of the two strands - known as the guide strand - binds the argonaute 

protein and leads to gene silencing (Fig. 1.7b). The other anti-guide strand or 

passenger strand is degraded as a RISC substrate during the process of RISC 

activation [169]. The strand selected as the guide tends to be the strand whose 5' 

end is more stable, but strand selection is not dependent on the direction in which 

Dicer cleaves the dsRNA before RISC incorporation [170]. 

lt is not yet well understood how the activated RISC complex locates 

complementary mRNA molecules within the celi. Although the cleavage process 

has been proposed to be linked to translation, it has been shown that translation 

of the mRNA target is nota prerequisite for RNAi-mediated degradation [171]. In 

fact, one study found an increase in RNAi activity against mRNA targets that were 

not translated [172]. Argonaute proteins, the catalytic components of RISC, have 

been identified as localized to specific regions in the cytoplasm called cytoplasmic 

bodies, which are also local regions of high mRNA decay rates [173]. 

The native cellular purpose of the RNA interference machinery is not well 

characterized, but it is known to be involved in microRNA (miRNAs) processing and 

the resulting translational repression. MicroRNAs, which are encoded in the 

genome and have a role in gene regulation, typically have incomplete base pairing 

and only inhibit the translation of the target mRNA; by contrast, RNA interference 

as used in the laboratory typically involves perfectly base-paired dsRNA molecules 
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that induce mRNA cleavage [174]. After integration into the RISC, siRNAs base 

pair to their target mRNA and induce the RISC component protein argonaute to 

cleave the mRNA, thereby preventing it from being used as a translation template 

(Fig. 1.8). 
Organisms vary in their celi ability to take up foreign dsRNA and use it in 

the RNAi pathway. The effects of RNA interference are both systemic and heritable 

in plants and in C. elegans, although not in Drosophila or mammals due to the 

absence of RNA replicase in these organisms. In plants, RNAi is thought to 

propagate through cells via the transfer of siRNAs through plasmodesmata [166]. 

1.9.4 BIOLOGICAL SIGNIFICANCE OF RNAi DISCOVERY 

The far-reaching consequences of the discovery can be summed up as 

follows (Fig. 1.9): 

1. RNAi protects against virai infections: what Fire and Mello found in the 1998 

[162] that is cells can process injected dsRNA and eliminate homologous single-

stranded RNA suggested that RNAi could constitute a defence mechanism against 

virai attacks. 1t had earlier been shown that plant cells have an efficient defence 

against viruses based on the PTGS phenomenon [160] [161]. When it became 

apparent that PTGS is the plant equivalent to RNAi, this early work in plants 

supported the proposition that RNAi is involved in protecting cells from virai 

attacks. Today, we know that this anti-viral mechanism is at work in plants, 

worms and flies, whereas it is stili unclear how relevant it is for vertebrates, 

including man. 

2. RNAi secures genome stability by keeping mobile elements silent: it was 

proposed early on that RNAi/PTGS in C. elegans and plants could block the action 

of transposons (mobile elements in the genome). Subsequently, it could be shown 

that when components of the RNAi machinery are mutated in C. e/egans, 

transposons are activated and the mobile elements cause disturbances in the 

function of the genome [175] [176]. 1t has been proposed that in transposon-

containing regions of the genome both DNA strands are transcribed, dsRNA is 

formed, and the RNAi process eliminates these undesirable products. As short 

dsRNAs can also operate directly on chromatin and suppress transcription, this 

would be another mode to keep transposons inactive (see · n.4). Even if the 

mechanisms are not yet fully revealed, it is clear that if the RNAi machinery is not 

efficient, the transposons are not kept under control and can start to jump and 

cause deleterious effects in the genome. 
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It has been argued that RNA silencing could represent an "immune defence" of the 
genome [177]. Close to 50% of our genome consists of virai and transposon 
elements that have invaded the genome in the course of evolution. The RNAi 
machinery can recognize invading double-stranded virai RNA (or the double-
stranded replicative form of the virai RNA) and suppress the infection by 
degradation of the RNA. The RNAi system thus shares important features with the 
vertebrate immune system: it recognizes the invading parasite (dsRNA), raises an 
initial response and subsequently amplifies the response to eliminate the foreign 
element. 

3. RNAi-like mechanisms repress protein synthesis and regulate the development 
of organisms: soon after the discovery that short RNA is the effector of RNAi, it 
was shown that there is a class of endogenous RNA molecules of the same size in 
worms, flies, mice and humans; this small RNA was called microRNA (miRNA) 
[178-180]. Plants also contain this class of endogenous RNA [181] . The small 
miRNAs are processed from larger hairpin-like precursors by an RNAi-like 
machinery [182] [183]. The miRNAs can regulate gene expression by base-pairing 
to mRNA, which results in either degradation of the mRNA or suppression of 
translation. Consequently, the RNAi machinery is important to regulate 
endogenous gene activity. This effect was first described for the worm 
Caenorhabditis e/egans in 1993 by R. C. Lee et al. of Harvard University [184]. In 
plants, this mechanism was first shown in the "JAW microRNA" of Arabidopsis 
thaliana; it is involved in the regulation of severa! genes that contro! the plant 
shape [185]. Genes have been found in bacteria that are similar in the sense that 
they contro! mRNA abundance or translation by binding an mRNA by base pairing, 
however they are not generally considered to be miRNAs because the Dicer 
enzyme is not involved [186]. It has been suggested that CRISPR systems in 
prokaryotes are analogous to eukaryotic RNA interference systems, although none 
of the protein components is orthologous [187]. Today, it is estimated that there 
are about 500 miRNAs in mammalian cells, and that about 30% of ali genes are 
regulated by miRNAs. It is known that miRNAs play an important role during 
development in plants, C. elegans and mammals. Thus, the miRNA-dependent 
contro! of gene expression represents a new major principle of gene regulation. 
However, the full significance of small regulatory RNAs is probably stili not 
apparent. 

4. RNAi-like mechanisms keep chromatin condensed and suppress transcription: it 
was known from work in plants that gene silencing could take piace at the 
transcriptional level (TGS). After the discovery of RNAi, it was soon shown that 
TGS in plants operates via RNAi-like mechanisms [188] [189]. In the fission yeast 
Schizosaccharomyces pombe [190] [191], and later on in Drosophila and 
vertebrates, it was found that similar processes keep heterochromatic regions 
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condensed and transcriptionally suppressed. In addition, the RNAi-like machinery 
regulates the activity of genes in the immediate vicinity of the condensed blocks of 
chromatin. The phenomenon is stili not understood at the molecular level although 
histone modifications, binding of specific chromatin condensing proteins (HP1), 
and DNA methylation ali play important roles [192]. It is, however, evident that 
this action on chromatin is most important for proper functioning of the genome 
and for maintenance of genome integrity. 

1.9.5 GENE KNOCKDOWN 

RNAi has recently been applied as an experimental technique to study the 

function of genes in severa! organisms. Studying the effects of the decrease in 

production of the protein of interest caused by the introduction of dsRNA targeting 

that specific gene, insights into the protein role and function can be found. Since 

RNAi may not totally abolish expression of the gene, this technique is sometimes 

referred as a "knockdown", to distinguish it from "knockout" procedures in which 

expression of a gene is entirely eliminated by removing or destroying its DNA 

sequence. 

1.9.6 CROSSTALK BETWEEN RNA EDITING AND RNA INTERFERENCE 

The type of RNA editing that is most prevalent in higher eukaryotes 

converts adenosine (A) residues into inasine (l) in double-stranded (ds)RNAs 

through the action of ADAR (adenosine deaminase acting on RNA) enzymes [193]. 

The idea that the RNAi and A- I RNA editing pathways might compete for a 

common substrate dsRNA was originally proposed in 2000 [194]. Recent studies 

showed that precursor RNAs of certain miRNAs indeed undergo A- I RNA editing 

[195] and editing seems to regulate the processing and expression of mature 

miRNAs [196]. Furthermore, one of the mammalian ADAR-family members 

sequesters siRNAs, thereby reducing RNAi efficacy [197]. Last, analysis of ADAR-

null C. elegans strains indicates that A- I RNA editing might counteract RNAi 

silencing of endogenous genes and transgenes [198]. 
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1.9.7 RNAi IN MAMMALIAN CELLS 

1.9.7.1 Non-specific Gene Silencing by Long dsRNAs 

While the natural presence of RNAi had been observed in a variety of 

organisms (plants, protozoa, insects, and nematodes), evidence for the existence 

of RNAi in mammalian cells took longer to establish. Transfection of long dsRNA 

molecules (>30 nt) into most mammalian cells causes nonspecific suppression of 

gene expression, as opposed to the gene-specific suppression seen in other 

organisms. This suppression has been attributed to an antiviral response, which 

takes piace through one of two pathways. 

In one pathway, long dsRNAs activate a protein kinase, PKR. Activated PKR, in 

turn phoshorylates and inactivates the translation initiation factor, eiF2a, leading 

to repression of translation [199]. In the other pathway, long dsRNAs activate 

RNase L, which leads to nonspecific RNA degradation [200]. 

A number of groups have shown that the dsRNA-induced antiviral response is 

absent from mouse embryonic stem (ES) cells and at least one celi line of 

embryonic origin [201] [202]. It is therefore possible to use long dsRNAs to 

silence specific genes in these specific mammalian cells. However, the antiviral 

response precludes the use of long dsRNAs to induce RNAi in most other 

mammalian celi types. 

1.9.7.2 Antiviral Response Bypass by siRNAs 

Interestingly, dsRNAs less than 30 nt in length do not activate the PKR 

kinase pathway. This observation, as well as knowledge that long dsRNAs are 

cleaved to form siRNAs in worms and flies and that siRNAs can induce RNAi in 

Drosophila embryo lysates, prompted researchers to test whether introduction of 

siRNAs could induce gene-specific silencing in mammalian cells [203]. Indeed, 

siRNAs introduced by transient transfection were found to effectively induce RNAi 

in mammalian cultured cells in a sequence-specific manner. The effectiveness of 

siRNAs varies - the most potent siRNAs result in >90% reduction in target RNA 

and protein levels [204-206]. The most effective siRNAs turn out to be 21 nt 

dsRNAs with 2 nt 3' overhangs. Sequence specificity of siRNA is very stringent, as 

single base pair mismatches between the siRNA and its target mRNA dramatically 

reduce silencing [204] [207]. Unfortunately, not ali siRNAs with these 

characteristics are effective. The reasons for this are unclear but may be a result 

of positional effects [206] [208] [209]. 
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1.9.7.3 RNAi as a Tool for Functional Genomics 

With the knowledge that RNAi can be induced in mammalian cells by the 

transfection of siRNAs, many more researchers are beginning to use RNAi as a tool 

in human, mouse and other mammalian celi culture systems. 

In early experiments with mammalian cells, the siRNAs were synthesized 

chemically and transfected transiently into cells. Shortly afterwards, companies 

introduced kits to produce siRNAs by in vitro transcription, which is a less 

expensive alternative to chemical synthesis, particularly when multiple different 

siRNAs need to be synthesized. 

Recently, a number of groups have developed expression vectors to 

continually express siRNAs in transiently and stably transfected mammalian cells 

[210-216]. Some of these vectors have been engineered to express small hairpin 

RNAs (shRNAs), which get processed in vivo into siRNAs-like molecules capable of 

carrying out gene-specific silencing [210] [213] [214] [216]. The vectors contain 

the shRNA sequence between a polymerase III (poi III) promoter and a 4-5 

thymidine transcription termination site. The transcript is terminated at position 2 

of the termination site (poi III transcripts naturally lack poly(A) tails) and then 

folds into a stem-loop structure with 3' UU-overhangs. The ends of the shRNAs are 

processed in vivo, converting the shRNAs into rv21 nt siRNA-Iike molecules, which 

in turn initiate RNAi [210]. This latter finding correlates with experiments in C. 

elegans, Drosophila, plants and Trypanosomes, where RNAi has been induced by 

an RNA molecule that folds into a stem-loop structure [217]. 

Another siRNA expression vector developed by a different research group 

encodes the sense and antisense siRNA strands under control of separate poi III 

promoters [212]. The siRNA strands from this vector, like the shRNAs of the other 

vectors, have 5 thymidine termination signals. Comparing to chemically 

synthesized siRNA, DNA vector-based siRNA technology has several advantages. 

Some of them are listed here below: 

unlike synthetic siRNA, vector based siRNA is the same as DNA, it is very 

stable and can be easily transfected into celi using routine DNA transfection 

reagents, such as Lipofectamine; 

stable celi line can be established and observe long-term effects of RNAi; 

inducible system can be estabilished by using a vector with an inducible 

promoter; 

once a DNA construct is made, an unlimited supply of siRNA is available. 
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1.9.7.4 Role in medicine 

It may be possible to exploit the RNA interference process for therapeutic 

purposes. Although it is difficult to introduce long dsRNA strands into mammalian 

cells due to the interferon response, the use of short interfering RNA mimics has 

been more successful [202]. The first applications to reach clinica! trials are in the 

treatment of macular degeneration and respiratory syncytial virus [218]. RNAi has 

also been shown effective in the complete reversal of induced liver failure in 

mouse models [219]. 

Other proposed clinica! uses explored in celi culture center on antiviral 

therapies, including the inhibition of virai gene expression in cancerous cells [220], 

the silencing of hepatitis A [221] and hepatitis B [222] genes, silencing of 

influenza gene expression [223], and inhibition of measles virai replication [224]. 

Potential treatments for neurodegenerative diseases have also been proposed, 

with particular attention to the polyglutamine diseases such as Huntington's 

disease [225]. 

Despite the proliferation of promising celi culture studies for RNAi-based 

drugs, some concern has been raised regarding the safety of RNA interference, 

especially the potential for "off-target" effects in which a gene with a coincidentally 

similar sequence to the targeted gene is also repressed [226]. A computational 

genomics study estimated that the error rate of off-target interactions is about 

10% [227]. One major study of liver disease in mice led to high death rates in the 

experimental animals, suggested by researchers to be the result of 

"oversaturation" of the dsRNA pathway [228]. 
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Fig. 1.1 Functional unit of an 
ABC transporter. 

Fig. 1 .2 Membrane topology 

models for MDR1 and 
MRP1 proteins. 

Fig. 1.3 a MDR1-P- glycoprotein. 

Substrates are ricognized in, or near 

to the membrane lipid phase. 

hD, Hydrophobic drugs 

PL,phospholipid. 

Fig. 1.3 b MRP1. 
Both hydrophobic drugs and anionic 

conjugates, such as glutathione 

conjugates, are transported. The 

transport of some hydrophobic 

drugs may be coupled to reduced 

glutathione (GSH) as GS-X 

molecules. 
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Fig. 1.4 Enzyme-catalysed degradation of haem. Haem degradation begins by haem oxygenase-

catalysed oxidation of the a-bridge carbon of haem, which is converted to CO, NADPH leading 

to opening of the tetrapyrrole ring and release of the iron molecule. The resulting biliverdin 

molecule is subsequently reduced to bilirubin by cytosolic biliverdin reductase. 
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Fig. 1.5 Internai hydrogen bonding. The carboxylic acid moiety of the propionic acid side-chains of 

bilirubin form internai hydrogen bonds with contralateral NH groups and the lactam oxygen, 

thereby engaging ali pelar groups of the molecule and making it insoluble in water. 
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Fig. 1.6 Bilirubin throughput by hepatocytes. Bilirubin is transported from sites of production to 
hepatic sinusoids bound to albumin. At the sinusoidal surface of hepatocytes, bilirubin 

dissociates from albumin and enters hepatocytes by facilitated diffusion. Binding to cytosolic 

glutathione-5-transferases (GSTs) increases net uptake of bilirubin by inhibiting its efflux. 

Bilirubin is converted to mono- and diglucuronide by the action of UGTlAl, which catalyses the 

transfer of the glucuronic acid moiety from UDP-glucuronic acid to bilirubin. 

Bilirubin glucuronides are actively transported into bile against a concentration gradient by the 

ATP-utilizing pump ABCC2 (also termed MRP2). 
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Fig. 1.7 A. The RNAi process is initiated by the ribonuclease protein Dicer, which binds and 

cleaves exogenous double-stranded RNA molecules to produce double-stranded 

fragments of 20-25 base pairs with a few unpaired overhang bases on each end. 

B. Cells can use Dicer to trim double stranded RNA and form small inhibitory RNA 

(siRNA). An siRNA can be processed by to the single strand anti-sense RNA and 

used to target mRNAs for destruction. Several proteins (ovals) are required for 

efficient RNA interference. The protein-containing complex was named RNA-

induced silencing complex (RISC). 
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HOW RNAl SUPPRESSES GENES 

Fig. 1.8 The short siRNA duplexes are unwinded into single strand RNAs and integrated 

into the RNA-Induced Silencing Complex (RISC). The RISC then captures a 

native mRNA molecule that complements the short siRNA sequence. If the 

pairing is essentially perfect, the native mRNA is ' cut into 

useless RNA fragments that aren't translated. If however, the pairing is less 

than perfect then the RISC complex binds to the 

mRNA and blocks ribosome movement along the native mRNA also halting 

translation. The net effect is NO PROTEIN IS MADE. 

Fig. 1.9 Cellular processes dependent on the RNAi machinery. The Dicer 

and RISC complexes play a centrai role in the destruction of 

invading virai RNA {1), the elimination of transcripts from 

mobile elements (transposons) and repetitive DNA (2), the block 

of protein synthesis brought about by small RNAs generated 

within the celi (3), and the RNAi-mediated suppression of 

transcription (4). The machinery is also utilized when siRNA is 

introduced into the celi experimentally to inhibit the activity of 

specific genes (5). The figure is schematic, and the Dicer and 

RISC complexes can vary dependent on cellular process. 
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Materials and Methods 

2.1 siRNA SVNTHESIS BY IN VITRO TRANSCRIPTION 

In order to produce 21-nt siRNAs (small interfering RNAs, that are 21-nt 

double strand RNAs) to transfect them transiently into the cells, the Si/encer siRNA 

Construction kit (Ambion, 1620) was used. 

2.1.1 Silencer siRNA CONSTRUCTION KIT PROCEDURE 

The Silencer siRNA Construction Kit (US patent pending) overcomes the 

sequence requirements of traditional in vitro transcription strategies by using 

siRNA template oligonucleotides containing a "leader" sequence that is 

complementary to the T7 Promoter Primer included in the kit. Inclusion of 

leader sequences provides two benefits: 

• the 8 nt leader sequence is optimized for maximal RNA yield; 

• after transcription and hybridization of the sense and antisense strands of the 

siRNA, the leader sequences are efficiently removed from the dsRNA preparation, 

eliminating the need to select target mRNA sequences that are compatible with 

T7 transcription. 

The steps described here below, are shown in Fig. 2.1. 

a. Two 29-mer DNA oligonucleotides (template oligonucleotides) with 21 nt 

encoding the siRNA and 8 nt complementary to the T7 Promoter Primer are 

synthesized and desalted. 

b. In separate reactions, the 2 template oligonucleotides are hybridized to a T7 

Promoter Primer (an oligonucleotide provided with the kit that contains a T7 

promoter sequence and 8 nt complementary to the template oligonucleotides). 

c. The 3' ends of the hybridized DNA oligonucleotides are extended by the Klenow 

fragment of DNA polymerase to create double-stranded siRNA transcription 

templates. 

d. The sense and antisense siRNA templates are transcribed by T7 RNA 

polymerase and the resulting RNA transcripts are hybridized to create dsRNA. 

The dsRNA consists of 5' terminai single-stranded leader sequences, a 19 nt 

target specific dsRNA, and 3' terminai UUs. 

e. The leader sequences are removed by digesting the dsRNA with a single strand 

specific ribonuclease. Overhanging UU dinucleotides will remain on the siRNA 

because the RNase does not cleave U residues. The DNA template is removed 

at the same time by a deoxyribonuclease. 
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f. The resulting siRNA is purified by glass fiber filter binding and elution which 

removes excess nucleotides, short oligomers, proteins, and salts in the 
reaction. 

The end product is a double-stranded 21-mer siRNA with 3' terminai uridine 
dimers that can effectively reduce the expression of target mRNA when 

transfected into mammalian cells. 
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Fig. 2.1 Silencer siRNA Construction Kit procedure. 
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2.1.2 Silencer siRNA CONSTRUCTION KIT: INSTRUCTIONS 

A. siRNA Design 
Far siRNA design, instructions based on both the current literature, and on 

empirica! observations by scientists at Ambion 

(www.ambion.com/techlib/misc/siRNA design.html), were followed. 

1. Finding of 21 nt sequences in the target mRNA that begin with an 

AA dinucleotide. 
Beginning with the AUG start codon, the transcript was scanned for AA 

dinucleotide sequences. Each AA and the 3' adjacent 19 nucleotides were 

recorded as potential siRNA target sites. 

This strategy far choosing siRNA target sites is based on the observation by 

Elbashir et al. [1] that siRNA with 3' overhanging UU dinucleotides are the 

most effective. Since then, however, siRNA with other 3' terminai dinucleotide 

overhangs have been transfected into cells and shown to induce RNAi, but it is 

essential to avoid G residues in the overhang because the siRNA is cleaved by 

RNase at single-stranded G residues. 

2. Selecting of 2-4 target sequences 
Among the sequences identified in step 1, target sites were chosen, based on 

the following guidelines: 

- since some regions of mRNA may be either highly structured or bound by 

regulatory proteins, generally siRNA target sites at different positions along the 

length of the gene sequence were selected. 

Generally there aren't any correlation between the position of target sites on 

the mRNA and siRNA potency. However, the potential target sites were 

compared to the appropriate genome database (NM_004996 and NM_000927) 

and any target sequences with more than 16-17 contiguous base pairs of 

homology to other coding sequences have been eliminated from consideration. 

For finding out these sequences, BLAST (Basic Local Alignment Search Tool) 

(www.ncbi.nlm.nih.gov/BLAST,www.ambion.eom/techlib/misc/siRNAdesign.html) was 

used. 

siRNAs with 30-50% GC content were preferred to those with a higher G/C 

content, because considered more active. 

3. Design of template oligonucleotides (DNA) 
According to the guidelines, the antisense template oligonucleotide should . 

have 21 nt at the S' end that is the DNA counterpart of the target mRNA 
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sequence chosen, i.e. the same sequence as the target RNA except that U 

residues are replaced with T's. 

The sense template oligonucleotide should start with an AA dinucleotide at the 

5' end followed by 19 nt that are complementary to the target sequence 

identified in step 2. 

The 8 nt at the 3' end of both oligonucleotides should be the following 

sequence: 5'-CCTGTCTC-3'. 

This 8 nt sequence is complementary to the T7 Promoter Primer provided with 

the Silencer siRNA Construction Kit. 

Hybridization of the template oligonucleotides to the T7 Promoter Primer adds 

the T7 promoter sequence to the 5' ends of the template oligonucleotide so 

that after the fili-in reaction, they can be efficiently transcribed. 

In order to attempt the silencing of MRP1, 5 target sequences were identified 

by scanning the gene sequence (NM_004996), following the instructions listed 

above. 

• The first siRNA molecule targeting MRP1 corresponded to the coding region 

299-319 (5'-AACACGGTCCTCGTGTGGGTG-3') relative to the start codon. 

The sense template oligonucleotide (DNA) for the first siRNA was the 

following : 5'-AACACCCACACGAGGACCGTG -3' 

The antisense template oligonucleotide (DNA) for the first siRNA was the 

following : 5'-AACACGGTCCTCGTGTGGGTG~ -3' 

• The second siRNA molecule targeting MRP1 corresponded to the coding 

region 1469-1489 (5'-AACCTCATGTCTGTGGACGCT-3') relative to the start 

codon. 

The sense template oligonucleotide (DNA) for the second siRNA was the 

following : 5'-AAAGCGTCCACAGACATGAGG CTGT 0-3' 

The antisense template oligonucleotide (DNA) for the second siRNA was 

the following: 5'-AACCTCATGTCTGTGGACG11 CTGTCT -3' 

• The third siRNA molecule targeting MRP1 corresponded to the coding region 

1682-1702 (5'-AAGAGCAAAGACAATCGGATC-3') relative to the start codon. 

The sense template oligonucleotide (DNA) for the third siRNA was the 

following : 5'-AAGATCCGATTGTCTTTGCTCC G -3' 

The antisense template oligonucleotide (DNA) for the third siRNA was the 

following : 5'-AAGAGCAAAGACAATCGGATCCCIGTCT0-3' 
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• The fourth siRNA molecule targeting MRP1 corresponded to the coding region 

2867-2887 (5'-AAGGAAGCAAAGCAAATGGAG-3') relative to the start codon. 

The sense template oligonucleotide (DNA) for the fourth siRNA was the 

following : 5'-AACTCCATTTGCTTTGCTTCCCCTGT -3' 

The antisense template oligonucleotide (DNA) for the fourth siRNA was 

the following : 5'-AAGGAAGCAAAGCAAATGGAG CTGTCTQ-3' 

• The fifth siRNA molecule targeting MRP1 corresponded to the coding region 

4535-4555 (5'-AAGACGAAGATCCTTGTGTTG-3') relative to the start codon. 

The sense template oligonucleotide (DNA) for the fifth siRNA was the 

following : 5'-AACAACACAAGGATCTTCGTC TC"[:Q-3' 

The antisense template oligonucleotide (DNA) for the fifth siRNA was the 

following : 5'-AAGACGAAGATCCTTGTGTTG CTGT0r •-3' 

The sequence chosen to attempt the silencing of MDR1. was that published by 

Wu et al. [2]. 

• The siRNA molecule targeting MDR1 corresponded to the coding region 79-99 

(5'-AAGGAAAGAAACCAACTGTC-3') relative to the start codon of the gene 

sequence (NM_000927). 

The sense template oligonucleotide (DNA) for the siRNA was the following 

: 5'-AAGACAGTTGGTTTCTTTTCCCCT T -3' 

The antisense template oligonucleotide (DNA) for the siRNA was the 

following: 5'-AAGGAAAAGAAACCAACTGTC= . .::::..::..;~= 

Both oligonucleotides (DNA) for each siRNA were synthesised by Sigma-

Genosis. The smallest scale synthesis ( 40 nmol or less) was chosen, because it 

is sufficient for hundreds of transcription reactions. Desalting was selected as 

purification. 

B. Transcription Template Preparation 

The siRNA duplexes were synthesised by using Silencer siRNA Construction 

Kit (Ambion, In c.) 

The transcription of the antisense oligonucleotide generates RNA that is 

complementary to the target mRNA. 

The transcription of the sense template generates a 3' terminai UU that is not 

complementary to the antisense strand of the siRNA. This UU sequence does not 

need to be part of the mRNA sequence because the sense strand of the siRNA 

appears to have no function in targeting mRNAs for degradation. 
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To make an efficient transcription template, the sense and antisense template 

oligonucleotides (DNA) for each siRNA must be converted to dsDNA with a T7 

promoter at the S' end. This is accomplished by hybridizing the 2 oligonucleotides 

to the T7 Promoter Primer provided with the Silencer siRNA Construction Kit and 

extending the T7 Promoter Primer and template oligonucleotides using a DNA 

polymerization reaction. 

1. Resuspending of the template Oligonucleotides to 200 pM in 

nuclease-free water. 
Oligonucleotides were supplied dry; so the tubes containing the 

oligonucleotides were tapped on the bench to force the powder to the bottom 

of the tubes. The sense and antisense template oligonucleotides were dissolved 

in nuclease-free water to approximately 200 IJM. 

2. Determination of the template oligonucleotide concentration by 
A260. 

A small sample of the sense and antisense template oligonucleotides was 

diluted 1:250 into TE (10 mM Tris-HCI pH 8, 1 mM EDTA) and read the 

absorbance at 260 n m in the spectrophotometer (UV /Vis Scanning 

Spectrophotometer (DU Series 700, BECKMAN COULTER). The 

spectrophotometer was blanked with the same TE that was used for sample 

dilution. 

The absorbance was multiplied by 5000 to determine the concentration of the 

oligonucleotides in IJQ/ml. (See the explanation below.) 

5000 = 250-fold dilution X 20 pg oligo/ml per absorbance unit* 

* 20 1-19/ml is used to compensate for the non-full length oligonucleotide that is 

typically present in chemically synthesized oligonucleotide preps. 

The molar concentration of the oligonucleotides in IJM was determined by 

dividing the IJQ/ml concentration by 9.7. (See the explanation below.) 

• There are 9. 7 1-19 of DNA in 1 n mole of an average 29-mer: 

29 nt X 0.333 pg/nmol for each nt = 9.7 pg/nmol 
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• Dividing the J.JQ/ml concentration by 9. 7 yields the J.JM concentration as 

shown below: 

XJ.!.g 

mi = _K_yg_ nmol =X nmol =X bJmol =X bJM 

9.7 bl9 mi 9.7J.Jg ml(9.7) L(9.7) 9.7 

nmol 

Therefore J.JM = X + 9. 7 

3. Preparation of a 100 IJM solution of each oligonucleotide 
An aliquot of each template oligonucleotide was diluted to 100 J.JM using 

nuclease-free water or TE (10 mM Tris-HCI pH 8, l mM EDTA). rv20 J.JI of 100 

J.JM oligonucleotide solutions were prepared. 

4. Thawing the frozen template preparation reagents 
The following kit components were thawed at room temperature, then briefly 

vortexed each before use. 

• T7 Promoter Primer 

•lOX Klenow Reaction Buffer 

•lOX dNTP Mix 

•Nuclease-free Water 

The tube of Exo- Klenow was kept at -20°C and not vortexed. 

5. Hybridizing of each template to the T7 Promoter Primer 
In separate tubes were mixed the following: 

2 J.JI T7 Promoter Primer 

6 J.JI DNA Hyb Buffer 

2 J.JI either sense or antisense template oligonucleotide 

The mixture was heated to 70°C for 5 min, then left at room temp for 5 min. 

6. Filling in with Klenow DNA polymerase 
The following components were added to the hybridized oligonucleotides: 

2 J.JI lOX Klenow Reaction Buffer 

2 J.JI lOX dNTP Mix 

4 J.JI Nuclease-free Water 

2 J.JI Exo- Klenow 
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The components were gently mixed by pipetting or slow vortexing and then 

centrifuged briefly to collect the mixture at the bottom of the tube. 

The mixtures were transfered into 37°C incubator and incubated for 30 min. 

After this step, the siRNA templates can be used directly in a transcription 

reaction or stored at -20°C until they are needed for transcription. 

C. dsRNA Synthesis 

The sense and antisense siRNA templates were transcribed for 2 hours in 

separate reactions. The reactions were then mixed, and the combined reaction 

was incubated overnight. 

Transcribing the templates separately eliminates potential competition between 

templates for transcription reagents that might limit the synthesis of l of the 2 

strands of the siRNA duplex. Mixing the transcription reactions facilitates 

hybridization of the 2 siRNA strands and enables continued RNA synthesis to 

maximize the dsRNA yield. 

1. Thawing the 2X NTP Mix and 10XT7 Reaction Buffer 
The 2X NTP Mix and lOX T7 Reaction Buffer were thawed at room temperature. 

After that, each tube was vortexed. The 10XT7 Reaction Buffer was checked to 

see if a precipitate was visible, and if so, the tube was vortexed until the 

solution was completely resuspended. Briefly both tubes were span prior to 

using to ensure that no solution was lost when the tubes were opened. 

The tube of T7 Enzyme M ix were kept at -20°C and do not vortexed. 

2. Assembling of the transcription reactions 
For each siRNA, 2 transcription reactions were assembled at room temperature 

to synthesize the sense and antisense RNA strands of the siRNA. For each 

transcription reaction, the following components were mixed in the order 

shown: 

2 JJI sense or antisense siRNA template (from step 6. section B) 

4 JJI Nuclease-free Water 

10 JJI 2X NTP Mix 

2 JJI lOX T7 Reaction Buffer 

2 JJI T7 Enzyme Mix 

The mix contents were gently thoroughly by flicking or brief vortexing and then 

microfuged briefly to collect the reaction mixture at the bottom of the tube. 
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3. Incubation of reactions 
The transcription reactions were incubated for 2 hr at 37°C, preferably in a 

cabinet incubator. (This prevents condensation, which may occur if the tube is 

incubated in a heat block.) 

4. Combination of the sense and antisense transcription reactions and 
incubation 
The sense and antisense transcription reactions were combinated into a single 

tube and continue incubation at 37°C overnight. 

The overnight incubation maximizes the yield of RNA and facilitates 

hybridization of the sense and antisense strands of the siRNA. 

D. siRNA Preparation/Purification 
The dsRNA made by in vitro transcription has 5' overhanging leader 

sequences that must be removed prior to transfection. The leader sequence is 

digested by a single-strand specific ribonuclease. In the same digestion reaction, 

the DNA template is eliminated by DNase digestion. 

The resulting siRNA is recovered from the mixture of nucleotides, enzymes, short 

oligomers, and salts in the reaction by column purification. The purified siRNA is 

eluted from the column into Nuclease-free Water, providing siRNA that is ready for 

transfection. 

1. Digestion of the siRNA with RNase and DNase 
The Digestion Buffer was thawed at room temperature and the tube was 

vortexed to mix the contents thoroughly. 

To the tube of dsRNA (step C.4), the following reagents were added in the 

indicated order: 

6 1-11 Digestion Buffer 

48.5 IJI Nuclease-free Water 

3 IJI RNase 

2.5 1-11 DNase 

The reagents were mixed gently, and incubated for 2 hr at 37°C. 

Before using the siRNA Binding and Wash Buffers for the first time, 100% 

ethanol was added as shown here below: 

5.3 mi of 100% ethanol to siRNA Binding Buffer 

11 mi of 100% ethanol to siRNA Wash Buffer 
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400 1-11 of siRNA Binding Buffer were added to the nuclease digestion reaction 

and incubated 2-5 min at room temperature. 

For each siRNA preparation, a Filter Cartridge was placed in a 2 mi Tube 

(provided with the kit). 

100 1-11 of siRNA Wash Buffer was applied to the filter of the Filter Cartridge. 

The siRNA was added in the siRNA Binding Buffer to a prewet Filter Cartridge 

and spinned at "'10,000 rpm in a microcentrifuge for l min. 

The flow-through was discarded from the Collection Tube, and replaced the 

Filter Cartridge in the 2 mi Tube. 

500 1-11 of siRNA Wash Buffer was applied to the filter of the Filter Cartridge and 

span at 10,000 rpm for l min. The flow-through was discarded from the 

Collection Tube, and the Filter Cartridge was replaced in the 2 mi Tube. 

The wash was repeated with a second 500 1-11 of siRNA Wash Buffer. 

The Filter Cartridge was transfered to a new 2 mi Tube. 

Nuclease-free Water was heated to 75°C. 

100 IJI of the preheated Nuclease-free Water were added to the filter of the 

Filter Cartridge and incubate at room temperature for 2 min. 

The Filter Cartridge was spinned at 12,000 rpm for 2 min. The purified siRNA 

was in the eluate (in the 2 mi Tube). 

siRNAs were stored at or -80°C until they are prepared for transfection. 

E. siRNA Quantification 
The siRNA concentration used for transfection is criticai to the success of 

gene silencing experiments. Transfecting too much siRNA causes nonspecific 

reductions in gene expression and toxicity to the transfected cells. Transfecting too 

little siRNA does not change the expression of 

the target gene. Assuming that the UV spectrophotometer is accurate, measuring 

the absorbance of the siRNA sample at 260 nm is the simplest method to assess 

the concentration of the siRNA preparation. 
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1. Measurement of the A260 of the siRNA 
A small sample of the siRNA was diluted 1:25 into TE (10 mM Tris-HCI dilution 

of the siRNA pH 8.1 mM EDTA) and read the absorbance at 260 nm in the 

spectrophotometer (DU Series 700, BECKMAN COULTER). The 

spectrophotometer was blanked with the same TE that was used for sample 

dilution. 

2. Determination of siRNA concentration in IJQ/ml 
The absorbance was multiplied by 1,000 to determine the concentration of the 

purified siRNA in !Jg/ml (explanation below). 

1,000 = 25-fold dilution x 40 IJQ siRNA/ml per absorbance unit 

3. Determination of the siRNA molar concentration 
The molar concentration of the siRNA in 1-1M was determined by dividing the 

!Jg/ml concentration of the siRNA by 14 (explanation below). 

• There are 14 1-1g of RNA in 1 nmole of an average 21-mer dsRNA: 

21 nt x 2 strands = 42 nt x 0.333 IJQ/nmol for each nt = 14 IJQ/nmol 
• Dividing the !Jg/ml concentration by 14 yields the !JM concentration as shown 

below: 

2U!9. 
mi = K..JJg * nmol = X nmol = X bJmol = X bJM 

1.4__yg mi 141Jg mi (14) L (14) 14 

nmol 

Therefore 1-1M = X + 14 

Ali the steps described above were followed also to generate an siRNA 

specific to GAPDH siRNA from the Sense and Antisense Contro! DNA templates 

supplied with the siRNA Construction Kit. This GAPDH siRNA can be used both as a 

contro! to confirm that the kit is working properly and as a positive contro! for 

many siRNA experiments. 

The outcome of this reaction was analyzed by measuring the A260 of the 

purified siRNA, and determining the yield in IJg as described in step E 2. The size 

of the siRNA was checked by running 10 1-11 of the purified siRNA on a 2% agarose 
gel. 
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G. Gel Analysis of siRNA 
siRNA was assessed by gel electrophoreisis on 2% agarose in TBE, following these 

instructions: 

l. 10 1-11 of siRNA sample was mixed with 2 1-11 of a native gel loading buffer. 

2. The sample was loaded on a 2% agarose gel and electrophoresed at about 5-10 

mAmps/cm. 

3. The electrophoresis was stopped when the bromophenol blue dye front had 

migrated two-thirds of the way down the gel. 

4. The gel was stained for ""10 min in a 1 1-Jg/ml solution of ethidium bromide. 

S. The siRNA was visualized by Kodak EDAS 260 (Kodak Instruments, New Haven, 

CT, USA) using Kodak 10 image software. 
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2.2 CELL CULTURE 

The cells were grown at 37°C in a 5% C02 incubator. 

Media: 
Growth medium of HeLa cells (human cervical cancer celi line) and HepG2 
cells (human hepatocellular liver carcinoma celi line): DMEM (Dulbecco's 

Modified Eagle's Medium) with high glucose (Euroclone), supplemented with l% L-

Giutamine lOOX (Euroclone), 10% Fetal Bovine Serum (FBS) (SIGMA), l% 

Penicillin Streptomycin lOOX (Euroclone). 

Growth medium of SH-SYSY cells (human neuroblastoma celi line): DMEM 

(Dulbecco's Modified Eagle's Medium) with high glucose (Euroclone), 

supplemented with l% L-Giutamine lOOX (Euroclone), 10% FBS Tetracycline-free 

(T et System Approved FBS, US-Sourced)* (BD Biosciences Clontech), l% MEM 

Non Essential Amino Acids (lOOX) (GIBCO), l% MEM Vitamin Solution (lOOX) 

(GIBCO), l% Penicillin Streptomycin lOOX (Euroclone). 

* SH-SYSY cells have been used in pSUPERIOR RNA interference system. As it is 

a vector system for inducible expression of short interfering RNA, that uses 

tetracycline as inducing agent, FBS Tetracycline-free has been used. That's why 

many lots of FBS contain tetracycline, as FBS is generally isolated from cows 

that have been fed a diet containing tetracycline. If the growth medium contains 

FBS that is not reduced in tetracycline, it's possible to observe low basai 

expression of the gene of interest even if tetracycline has not been added into 

the medium. 

Celi passage 

Reagents used: 

• Media- pre-warmed to 37oc 

• PBS (Dulbecco's Phosphate Buffered Saline) without Ca2+/Mg2+ (SIGMA-

ALDRICH) 

• Trypsin 0.05%/EDTA 0.02% in PBS, without Phenol Red, Ca2+/Mg2+ 

(EuroCione) 

Main eguipment: 

• 5% C02 Incubator (Thermo Forma) 

• Waterbath (Stuart Scientific) set to 37°C 
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• Class II Microbiological safety cabinet (Sterii-VBH) 

• Centrifuge SIGMA 2-5 (Laborzentrifugen GmbH) 

• BOrker camera (Precicolor HBG) 

• Pre-labeled flasks 

• Sterile pipettes 

• Inverted microscope (Nikon) 

Procedure 

1. Before passaging the cells, the culture was viewed using an inverted 

microscope to assess the degree of confluency and confirm the absence of 

bacterial and fungal contaminants. 

2. The medium was removed. 

3. The celi monolayer was washed with pre-warmed PBS without Ca2+/Mg2+ 

using a volume equivalent to half volume of culture medium. 

4. Pre-warmed Trypsin/EDTA was added onto the washed celi monolayer 

using l mi per 25 cm2 of surface area. The flask was rotated to cover the 

monolayer with trypsin. 

S. The flask was returned to the incubator and left for about 2 minutes. 

6. The cells were examined using an inverted microscope to ensure that ali 

the cells were detached and floating. The side of the flask was gently 

tapped to release any remaining attached cells. 

7. The cells were resuspended in a small volume of pre-warmed fresh serum-

containing medium to inactivate the trypsin and transferred in a 15 mi 

tube. 

8. Cells were centrifuged at 1000 rpm far 5 minutes. 

9. The supernatant was removed and the pellet was gently tapped for 

dissociate the cells and then immediately resuspended in the appropriate 

amount of pre-warmed medium. 

lO. If necessary, 100-200 ul of celi culture were removed in arder to perform a 

celi count using a BOrker camera. 

11. The required number of cells was transferred to a new labeled flask 

containing pre-warmed medium according to the required seeding density. 

12. The cells were incubated at 37°C in a 5% C02 incubator. 

13. This process was repeated as demanded by the growth characteristics of 
the celi line. 
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2.3 siRNA TRANSFECTING INTO MAMMALIAN CELLS 

The transient transfection of siRNA (small interference RNAs) targeting 

MRP1 and MDR1 was performed by Lipofectamine2000 (Invitrogen.11668-027). 

The siRNA sequence targeting MDR1 was synthesized by in vitro transcription 

using Silencer siRNA Construction kit (see paragraph 2.1). The sequence chosen to 

attempt the silencing of MDR1 had already been published, as reported in the 

mentioned paragraph. The 5 siRNA sequences targeting MRP1, designed by 

ourselves, were also synthesised by using Si/encer siRNA Construction kit, while 

the Silencer Validated siRNA was designed and chemically synthesized by Ambion. 

Procedure 
l. One day before transfection, cells were plated in wells of 6-well plate 

containing 2 mi of growth medium without antibiotics so that they will be 60-

70% confluent at the time of transfection. 

2. For each transfection sample, siRNA: Lipofectamine2000 complexes were 

prepared as follows: 

a. 100 nM siRNA (for siRNA targeting MRP1) or 200 nM siRNA (for siRNA 

targeting MDR1), chosen on the basis of dose-response studies, were 

diluted in 250 1-11 of Opti-MEM I Reduced Serum Medium (Invitrogen, 

31985-062) without serum and mixed gently. 

b. The appropriate amount of Lipofectamine 2000 (Invitrogen, 1168-027) was 

diluted in 250 !JI of Opti-MEM I Medium (according to the manufacturer's 

protocol). The dilution was mixed gently and incubated for 5 minutes at 

room temperature. 

c. After the 5 minute incubation, the diluted siRNA was combined with the 

diluted Lipofectamine 2000 (total volume was 500 !JI), mixed gently and 

incubated for 20 minutes at room temperature to allow the 

siRNA:Lipofectamine 2000 complexes to form. 

3. 500 1-11 of siRNA:Lipofectamine 2000 complexes were added to each well and 

mixed gently by rocking the plate back and forth. 

4. The cells were incubated at 37°C in a C02 incubator for 24-72 hours unti! they 

were ready to assay for gene knockdown. 

In order to investigate the gene knockdown, the incubation of cells transfected 

by siRNA targeting MRP1, was 2 days long, while the incubation of cells 

transfected by siRNA targeting MDR1, was l day long. l and 2 days were 

suggested as the best assay time for observing the silencing of MRPl and MDRl, 

in a transient silencing experiments respectively (see Resu/ts). 
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2.4 RNA ISOLATION 

The RNA was isolated by TRI REAGENT (SIGMA. T9424). This product, a 

mixture of guanidine thiocyanate and phenol in a mono-phase solution, dissolves 

DNA, RNA and protein an homogenization or lysis of tissue or celi samples. After 

adding chloroform and centrifuging, the mixture separates into 3 phases: an 

aqueous phase containing the RNA, the interphase containing DNA and an organic 

phase containing proteins. Each component can then be isolated. 

Sample Preparation 
Monolayer cells, grown in 6-well plate, were lysed directly an the culture dish. 

l. After washing cells by PBS without Ca2+/Mg2+, 0,5 mi of TRI REAGENT were 

added in each well. The celi lysate was passed several times through a pipette 

to form a homogenous lysate and transferred in a microtube. 

2. To ensure complete dissociation of nucleoprotein complexes, the samples 

should stand far 5 minutes at room temperature. 0,1 mi of chloroform was 

added and the sample was covered tightly, shacken vigorously far 15 seconds 

and let stand far 2-15 minutes at room temperature. The resulting mixture was 

centrifuged at 12,000 x g far 15 minutes at 4 °C. 

Centrifugation separates the mixture into 3 phases: a red organic phase 

(containing protein), an interphase (containing DNA), and a colorless upper 

aqueous phase (containing RNA). 

RNA Isolation 
1. The aqueous phase was transferred to a fresh tube and 0.25 mi of isopropanol 

were added and mixed. The sample stood far 5-10 minutes at room 

temperature and then centrifuged at 12,000 g far 10 minutes at 4 °C. The RNA 

precipitate formed a pellet an the side and bottom of the tube. 

2. The supernatant was removed and the RNA pellet was washed by adding 0,5 mi 

(minimum) of 75% ethanol. The sample was vortexed and then centrifuged at 

12,000 x g far 5 minutes at 4 °C. 

3. The RNA pellet was briefly dried far 5-10 minutes by air drying, making sure the 

RNA pellet didn't dry completely, because this decreases greatly its solubility. 

About 30 J,JI of sterile water were added to the RNA pellet and the sample was 

mixed by repeated pipetting. 

4. Final preparation of RNA was stored at - 80°C. 

The RNA absorbances at 230 nm, 260 nm and 280 nm, including the calculation of 

absorbance ratios (260/280) and concentrations, were assessed by UV/Vis 

Scanning Spectrophotometer (DU Series 700, BECKMAN COULTER). 
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2.5 RNA REVERSE TRANSCRIPTION ANO REAL TIME 

QUANTITATIVE PCR 

RNA integrity was checked on agarose-formaldehyde gel. The ratio 

OD260nm/OD28onm was always between 1.6 and 1.8. 

Single-strand cDNA was obtained from 1 1-1g of total RNA from celi culture, 

using the iScript cONA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA) 

according to manufacturer's instructions. RT was performed in a thermal cycler 

(Gene Amp PCR System 2400, Perkin-Eimer, Boston, MA, USA) at 25°C for 5 min, 

42°C for 30 min, 85°C for 5 min, and 4°C for 5 min. cDNA was stored at - 20°C. 

Real Time quantitative PCR was performed with an iCycler IQ (Bio-Rad 

Laboratories, Hercules, CA, USA); {3-ACTIN and/or GAPDH were used as an 

endogenous control to normalize the expression level of target genes. 

Primers used were: 

MRP1- GCCAAGAAGGAGGAGACC (sense) 

MRP1- AGGAAGATGCTGAGGAAGG (anti-sense) 

MDR1-TGCTCAGACAGGATGTGAGTTG (sense) 

MDR1-AA TT ACAGCAAGCCTGGAACC (a nti-sense) 

{3-ACTIN- CGCCGCCAGCTCACCATG (sense) 

{3-ACTIN- CACGATGGAGGGGAAGACGG (anti-sense) 

GAPDH- CCCATGTTCGTCATGGGTGT (sense) 

GAPDH- TGGTCATGAGTCCTTCCACGATA (anti-sense) 

The PCR was performed in 96-well plates. In each well, a final volume of 25 

1-11 was loaded. It contained: lX iQ SYBR Green Supermix [lOOmM KCI; 40mM 

Tris-HCI, pH 8.4; 0.4mM each dNTP; 50 U/ml iTaq DNA polymerase; 6mM MgCI2; 

SYBR Green I; 20nM fluorescein; and stabilizers], 250 nM gene specific sense and 

anti-sense primers and 25 ng of cDNA. Primers for gene of interest and for 

housekeeping gene/s were added in separate wells. 

Each sample was performed in triplicate. For each amplificate, a blank 

(nuclease free water was added in piace of cONA). 

The thermal cycler conditions were: 3 min at 95°C; 40 cycles at 95°C for 

20 minutes, 60°C for 20 minutes and 72°C for 30 minutes. 

In order to verify the specificity of the amplification, a melt-curve analysis 

was performed, immediately after the amplification protocol, under the following 

conditions: 1 min denaturation at 95 °C, 1 min annealing at 55°C, and 80 cycles of 
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0.5°C increments (10 seconds each) beginning at 55°C. Non-specific products of 

PCR were not found in any case. 

A standard curve was generated using a "calibrator" cDNA (chosen among 

the cDNA samples), which was serially diluted. In a relative quantification, a 

standard curve allows to calculate the correlation coefficient and determine the 

efficiency of the Rea l Ti me reaction for each gene. 

The iCycle iQ Real Time PCR Detection System Software generated the 

equation describing the plots of the log10 of the starting quantity (micromoles) of 

5 dilutions (200, 100, 50, 25, and 12.5 ng) of the calibrator cDNA versus the 

corresponding threshold cycle (Ct). Only the reactions that shown a correlation 

coefficient of the ~ O. 99, w ere accepted. 

The results were normalized to each housekeeping gene/s and the initial 

amount of the template of each sample was determined as relative expression 

versus one of the samples chosen as reference (in this case the contro( sample) 

which is considered the 1. The relative expression of each sample was calculated 

by the formula 2-Mct . b.Ct is a value obtained, for each sample, by the difference 

between the mean Ct value of the interested gene and the mean Ct value of the 

housekeeping gene/s. b.b.Ct of one sample is the difference between its b.Ct value 

and Ct value of the sample chosen as reference (User Bulletin 2 of the ABI Prism 

7700 Sequence Detection System). 
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2.6 CELL LYSIS AND PROTEIN EXTRACTION 

The following protocol was used to prepare total protein extracts from cells. 

This protocol precedes the analysis of protein levels by Western blot. 

In order to lyse cells under nondenaturing conditions, Celi Lysis Buffer 

(Celi Signaling, 9803) was used. 

Ali reagents and lysates were kept on ice. 

Procedure 

1. Cells were plated in 12-well or 6-well plates. 

2. Medium was removed from the celi plate. 

3. Cells were washed with cold Dulbecco's phosphate buffered saline without 

calcium and magnesium, lX (lX PBS). 

4. The wash buffer was removed. 

S. 30 J.JI of Lysis Buffer (lX) were added into each well of the 12-well plate or 60 

!JI into each well of the 6-well plate. 

6. The plate was incubated on ice for 5 minutes. 

7. After incubation, cells were scraped, lysed thoroughly and dissociated from 

plate by repetitive pipetting. 

6. Celi lysate was plated into a sterile eppendorf tube and centrifuged at 14000 

rpm for 10 minutes at 4°C in a Microfuge 18 Centrifuge (BECKMAN COULTER). 

8. Supernatant was transferred to a new sterile eppendorf tube and kept on ice. 

The required amount of protein extracts was used for assessing the protein 

concentration, performed by bicinchininc acid protein assay kit (SIGMA,BCA-1). 

The remaining amount was stored at -80°C. 
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2.7 PROTEIN DETERMINATION 

The protein determination was performed by bicinchininc acid protein assay 

kit (SIGMA. BCA-1). 

The principle of the bicinchoninic acid (BCA) assay is based on the formation of a 

Cu2+ - protein complex under alkaline conditions, followed by reduction of the 

Cu2+ to Cul +. The amount of reduction is proportional to the protein present. It 

has been shown that cysteine, cystine, tryptophan, tyrosine, and the peptide bond 

are able to reduce Cu2+ to Cul +. BCA forms a purple-blue complex with Cul +in 

alkaline environments, thus providing a basis to monitor the reduction of alkaline 

Cu2+ by proteins. 

The BCA assay has a linear concentration range between 200-1000 IJQ/ml of 

protein. 

Reagents required and provided by kit 
Bicinchoninic Acid Solution (69643): contains bicinchoninic aci d, sodium 

carbonate, sodium tartrate, and sodium bicarbonate in 0.1 N NaOH (final pH 

11.25). 

Copper(II) Sulfate Pentahydrate 4% Solution (C2284): contains 4% (w/v) 

copper(II) sulfate pentahydrate. 

Protein Standard (Bovine Serum Albumin - BSA) Solution (P0914): contains 1.0 

mg/ml bovine serum albumin in 0.15 M NaCI with 0.05% sodium azide as a 

preservative. 

Procedure 
l. Sample preparation: 

Standards were prepared dissolving different volumes of BSA protein 

standards (l mg/ml) in deionized water: 

• 2.5 IJI of BSA protein standard in 47.5 IJI of deionized water. 

• 5 IJI of BSA protein standard in 45 IJI of deionized water. 

• lO IJI of BSA protein standard in 40 IJI of deionized water. 

• 20 IJI of BSA protein standard in 30 IJI of deionized water. 

Each unknown protein sample was prepared diluting 5 IJI of celi lysate in 45 

IJI of deionized water. 

Blank (consisting of 50 IJI of deionized water without protein) was included. 
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Blank, BSA standard protein and unkown samples as well were triple 

assayed. 

The BCA Working Reagent was prepared by mixing 50 parts of Bicinchoninic 

Acid Solution with l part of Copper(II) Sulfate Pentahydrate 4% Solution. 

The BCA Working Reagent was mixed until it was light green in color. 

2. 50 IJI of standard, blank and unknown sample were loaded in a 96-well plate. 

3. 100 IJI of BCA Working Reagent were added into each well. 

4. The 96-well plate was sealed with film and covered with a lid. 

5. Samples were incubated at 37°C for 30 minutes. 

6. After incubation, the absorbance of the samples was measured at 562 nm by a 

microtiter plate reader (BECKMAN COULTER). 

7. The protein concentration was determined by comparison of the absorbance of 

the unknown samples to the standard curve prepared using the BSA protein 

standards. 

The absorbance of each sample was calculated subtracting the absorbance of 

the blank. 

The total amount of protein in the unknown sample (IJg) was calculated 

dividing the average absorbance, measured in the 3 wells in which the same 

unknown sample was loaded, by the angular coefficient of the standard curve. 

The concentration of the unknown protein sample (119/IJI) was calculated 

dividing the total amount of protein of the sample by the volume of the sample 

loaded in the well. 
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2.8 WESTERN BLOTTING 

Proteins, extracted from cells by lysis buffer and assessed by bicinchininic 

acid reaction, were separated by SDS-PAGE in 7% acrylamide and blotted onte a 

nitrocellulose membrane (0.2 lm Protran BA 83, Schleicher and Schuell, Dassel, 

Germany) with a semi-dry blotting system (Sigma, St. Louis, MO, USA). Molecular 

weight standards (212-53 kDa, Amersham-Pharmacia, Buckinghamshire, UK) 

were used as marker proteins. The blots were stained with Ponceau S-solution 

(0.1% wtjvol) in 5% aceti c acid (voi/voi) (Sigma Chemical, St. Louis, MO), and 

after blocking for 60 min with 4% milk- TTBS (0.2% Tween 20; 20mM Tris; and 

SOOmM NaCI; pH 7.5), the membrane was incubated overnight with a appropriate 

dilution of the specific antibody (primary antibody) against both the gene of 

interest and the housekeeping gene. After washing three times with 4% milk-

TTBS, the membrane was incubated for 60 minutes with a antibody conjugated 

with peroxidase (secondary antibody). The peroxidase reaction was obtained by 

exposure of the membrane in the ECL-Pius Western Blotting detection system 

solutions (Amersham-Pharmacia Biotech, Buckinghamshire, UK). After transfer to 

Kodak film, the bands were visualized by Kodak EDAS 260 (Kodak Instruments, 

New Haven, CT, USA) using Kodak 10 image software. Protein expression was 

quantified by both Scion Image and Curver Expert 1.3 softwares. 

GENES OF INTEREST: 

Primary antibody against MRPl: MRP1-A23 rabbit antibody [3]. Dilution 1:600. 

Secondary antibody against A23: peroxidase conjugate-goat anti-rabbit IgG-

whole molecule affinity isolated antigen specific antibody (SIGMA, A6154). Dilution 

1:6000. 

Primary antibody against MDRl: anti-C219 (MDR1) Monoclonal Antibody 

(Signet, 8710). Dilution 1:50. 

Secondary antibody against C219: anti-Mouse IgG (Fc specific)-Peroxidase 

antibody produced in goat affinity isolated antibody (SIGMA, A2554 ). Dilution 
1:2000. 

HOUSEKEEPING GENE: 

Primary antibody against ACTIN: rabbit anti-actin affinity isolated antibody 

(SIGMA, A2066). Dilution 1:1500. 

Secondary antibody against ACTIN: peroxidase conjugate-goat anti-rabbit 

IgG-whole molecule affinity isolated antigen specific antibody (SIGMA, A6154). 

Dilution 1:8000. 
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2.9 A VECTOR SVSTEM FOR INDUCIBLE EXPRESSION OF 

siRNA 

A vector system had been used in arder to obtain an inducible expression of 

the siRNAs targeting the interested gene. I start describing one of these vectors: 

the pSUPERIOR.puro vector COiigoEngine, VEC-IND-0006). 

2.9.1 pSUPERIOR VECTOR: OVERVIEW 

The pSUPERIOR vectors are inducible versions of the widely-used pSUPER 

suite of vectors for siRNA expression in mammalian cells. pSUPERIOR vectors are 

tetracycline-regulated expression vectors that utilize regulatory elements from the 

E. Coli TnlO-encoded tetracycline (Tet) resistance operon [4][5]. Tetracycline 

regulation in pSUPERIOR vectors is based on the binding of tetracycline to the Tet 

repressor and derepression of the promoter controlling expression of the gene of 

interest [6]. 

2.9.2 REQUIRED COMPONENTS FOR REGULATION OF TRANSCRIPTION 

In addition to the pSUPERIOR vector, the two criticai items required for 

controlled regulation of transcription are: 

l) a TetR expressing vector (or a celi line that stably expresses the TetR 

protein); 

2) tetracycline. 

Doxycycline may be used as an alternative inducing agent with pSUPERIOR; 

Doxycycline is similar to Tetracycline in its mechanism of action, and exhibits 

similar dose response and induction characteristics as tetracycline when used with 

pSUPER. Doxycycline has been shown to have a longer half-life than tetracycline 

(48 hours vs. 24 hours, respectively). 

2.9.3 THE pSUPER RNAi SYSTEM 

The pSUPER RNAi system provides a mammalian expression vector that 

directs intracellular synthesis of siRNA-Iike transcripts. The vector uses the 

polymerase-III Hl-RNA gene promoter, as it produces a small RNA transcript 

lacking a polyadenosine tail and has a well-defined start of transcription and a 

termination signal consisting of five thymidines in a row (TS). Most important, the 
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cleavage of the transcript at the termination site is after the second uridine, 

yielding a transcript resembling the ends of synthetic siRNAs, which also contain 

two 3' overhanging T or U nucleotides (nt). 

2.9.3.1 pSUPERIOR INDUCIBLE SYSTEM 

With pSUPERIOR vectors, expression of siRNA is repressed in the absence 

of tetracycline and induced in the presence of tetracycline. When induced, 

transcription of the siRNA-precursor RNA hairpin occurs in the same manner as in 

the "standard" pSUPER vectors. 

In fact, the siRNA expression cassettes in ali pSUPER and pSUPERIOR vectors are 

completely identica!, except for one key feature: a sequence modification of the 

Hl promoter between the TATA box and the RNA hairpin transcription start site. 

The following two sequences illustrate the difference: 

• Hl promoter (from 35nt upstream of Bgiii l Hindlll cloning site AGATCTaagctt): 

S' ... GAATCTTATAAGTTCTGTATGAGACCACAGATCTaagctt. .. 3' 

• Inducible Hl promoter (from 35nt upstream of Bglll l Hindiii cloning site 

AGATCTaagctt): 

S' ... GAATCTTATAAGTTCCCTATCAGTGATAGAGATCTaagctt...3' 

The underlined 19-nt region of the second sequence indicates the 

modification, which corresponds to the tetracycline operator 2 (Tet02) site. The 

Tet02 sequence serves as the binding site for 2 molecules of the Tet repressor, 

and the change of the Hl promoter sequence in this manner does not in itself 

affect the transcription activity of the vector. 

Unlike other tetracycline-regulated systems that use hybrid regulatory 

molecules and virai transactivation domains [7], pSUPERIOR vectors use only 

regulatory elements from the native Tet operon [6]. This method more closely 

resembles the regulation of the native bacterial tet operon [4][5] and -

importantly for RNAi research - avoids the potentially toxic effects of virai 

transactivation domains observed in some mammalian celi lines. 

The map of pSUPERIOR.puro vector is shown here below (Fig. 2.2). 
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2.9.4 OLIGO INSERT DESIGN 
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To effect the silencing of a specific gene, the pSUPERIOR vector is used in 

concert with a pair of oligonucleotides that contain, among other features, a 

unique 19-nt sequence derived from the mRNA transcript of the gene targeted far 

suppression (the "N-19 target sequence"). 

The N-19 target sequence corresponds to the sense strand of the pSUPER-

generated siRNA, which in turn corresponds to a 19-nt sequence within the mRNA. 

In the mechanism of RNAi, the antisense strand of the siRNA duplex hybridizes to 

this region of the mRNA to mediate cleavage of the molecule. 
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These forward and reverse oligos are annealed and cloned into the vector, 

between the unique Bgiii and Hindiii enzyme sites. This positions the forward 

oligo at the correct position downstream from the Hl promoter's TATA box to 

generate the desired siRNA duplex. 

The sequence of this forward oligo includes the unique N-19 target in both 

sense and antisense orientation, separated by a 9-nt spacer sequence. The 5' end 

corresponds to the Bgiii site, while the 3' end contains the T5 sequence and any 

Hindiii- corresponding nucleotides. While the 5' overhang of the oligo corresponds 

to the 3' Bgiii overhang of the plasmid, the overhang sequence of the oligo 

actually corresponds to the BamHl, and thus destroys the Bgiii site upon ligation 

to enable more efficient screening of positive clones. 

The resulting transcript of the recombinant vector is predicted to fold back 

on itself to form a 19-base pair stem-loop structure. 

Analysis indicates that the stem-loop precursor transcript is quickly cleaved in the 

celi to produce a functional siRNA. Fig.2.3 provides an overview of the insert 

design, and how the oligos are transcribed and processed to functional siRNA. 

A. GACUCCAGUGGUAAUCUACUU 
UUCUGAGGUCACCAUUAGAUG 

GACUCCAGUGt UAAUCUAC0 °CA 
UUCUGAGGUCAC+ AUUAGAUG AG AGA 

( Bglll~ Target Sequence: sanse (Hairpin) Target Sequence: antisense 
C. 5 ' -GATCCCCGACTCCAGTGGTAATCTACT~CAAGAGAGTAGATTACCACTGGAGTCTTTTTA-3 ' 

3' -GGGCTGAGGTCACCATTAGATG~\AGTT CTCTCA TCTAATGGTGACCTCAGAAAAATTCGJI. - 5 ' 
(Hìndlll) l <--.----------- Custom Oiigos -~~~~-----~---' 

T 

Fig. 2.3 Transcription of 60-nt oligo to hairpin RNA, processed to functional siRNA. 

As mentioned in paragraph 2.1.2, the sequence chosen to attempt the 

silencing of MDR1 was published by Wu et al. [2]. 

The siRNA molecule targeting MDR1 corresponded to the coding region 79-99 (5'-

AAGGAAAGAAACCAACTGTC-3') relative to the start codon of the gene sequence 

(NM_000927). 
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The se n se template oligonucleotide (DNA) for the siRNA was the following: 

5'-AAGACAGTTGGTTTCTTTTCC-3' 

The antisense template oligonucleotide (DNA) for the siRNA was the 

followi ng: 5' -AAGGAAAAGAAACCAACTGTC 

The target sequences to insert in the pSUPERIOR vector had 19 nt, as 

described by the vector manufacturer and they were the following: 

Sense sequence: (S'--. 3') GACAGTTGGTTTCTTTTCC 

Antisense sequence: (S'--. 3') GGAAAAGAAACCAACTGTC 

The whole insert of 60 nt, containing the MDR1 target sequence, reads as follows: 

Forward Primer 
{Bgiii) Se n se Anti-sense 

5'-GATCCCCAAAGGTCTTGTATAACACCttcaagagaGGTGTTATACAAGACCTTTIIIIIA-3' 

Reverse Primer 

{Hindiii) Se n se Anti-sense 

5'-AGCTTAAAAAGACAGTTGGTTTCTTTTCCtctcttgaaGGAAAAGAAACCAACTGTCGGG-3' 

The sequence chosen to attempt the silencing of MRP1. was bought from Ambion, 

Inc. (Silencer Validated MRP1.-siRNA, Ambion 51321). As the composition of 

the sequence was also required to the manufacturer, the oligo insert could be 

designed following the same rules described above. 

Both oligonucleotides (DNA) were synthesised by Sigma-Genosis. 

2.9.S PROCEDURE 

The following steps have been carried out by me at the Pharmacological 

Research Institute "Mario Negri" (Laboratory of Molecular Pharmacology) 

in Milan. 

Here are the generai steps performed for the experiment utilizing the pSUPERIOR 

vector: 

l. The forward and reverse strands of the oligos containing the siRNA-expressing 

sequence targeting the gene of interest (MRPl-siRNA and MDRl-siRNA, 

respectively), were annealed. 
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2. The circular pSUPERIOR,puro vector was linearized with Bgiii and Hindiii. 

3. The annealed oligos were cloned into the vectors. 

4. The vectors were transformed in bacteria. 

5. pcDNA6/TR vector (Invitrogen, V1025-20) was transfected into SH-SYSY cells 

and a stable celi line that constitutively expressed the Tet repressor was 

established by blasticidin (SIGMA, 15205) and the celi line which expressed the 

highest Tet repressor level was determined by pcDNA4/TO/LacZ vector 

(Invitrogen, V1020-20) transfection and ~-galactosydase assay. 

6. pSUPERIOR vectors were tranfected into SH-SYSY cells TetR expressing vector, 

selected in step 5. 

7. A selection with puromycin (SIGMA, P8833) was carried out to find a stable celi 

line for siRNA expression. 

8. The cells were treated with doxycycline (SIGMA, 09891) to induce transcription 

of the siRNA. 

8. The effects on protein expression and/or mRNA levels were assayed. 

2.9.5.1 Step One: Oligo Annealing 

The oligos targeting MRP1 and MDR1 were dissolved in sterile, nuclease-free water 

to a concentration of 3 mg/ml. 

Each of the two annealing reactions was assembled by mixing l iJI of each oligo 

(forward + reverse) with 48 iJI annealing buffer (100 mM NaCI and 50 mM HEPES 

pH 7,4). 

The mixture was incubated at 90°C for 4 min, and then at 70°C for 10 minutes. 

The annealed oligos were slowly cooled down to 37°C for 20 minutes, next at 

room temperature for some hours and then down to 4°C. For longer storage, the 

annealed oligos were kept at -20°C. 

2.9.5.2 Step Two: Vector Linearization 

In order to linearize the pSUPERIOR.puro vector (OiigoEngine, VEC-IND-

0006) supplied by "Mario Negri" Lab, the restriction enzymes used were Hindiii 

and Bgiii. 

Three different digestion reactions have been performed: 

l. pSUPERIOR with Hindiii and Bgiii; 

2. pSUPERIOR with Hindiii; 

3. pSUPERIOR with Bgiii. 
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The digestion reaction of pSUPERIOR with Hindlll and Bglll was prepared mixing 

the components in the following arder: 15 1-11 of water, 2 1-11 of Buffer (10X), 1 IJI of 

pSUPERIOR vector (800 ng/IJI), 1 IJI of Hindlll, 1 IJI of Bglll and (final volume 20 

IJI). 

The digestion reaction of pSUPERIOR with Hindiii was prepared mixing the 

components in the following arder: 16 IJI of water, 2 IJI of Buffer (10X), 1 IJI of 

pSUPERIOR vector (800 ng/IJI) and 1 1-11 of Hindlll (final volume 20 IJI). 

The digestion reaction of pSUPERIOR with Bglll was prepared mixing the 

components in the following arder: 16 1-11 of water, 2 IJI of Buffer (10X), 1 1-11 of 

pSuperior vector (800 ng/IJI) and l IJI of Bglll (final volume 20 IJI). 

The 3 digestion reactions were kept at 37°C for about l hour. 

In arder to assay the digestion reaction results, the samples were loaded on a l% 

agarose gel. This step was also helpful to perform the gel purification of the 

linearized vector to remove the fragment between Bglll and Hindlll, to help 

separate the prep from any undigested circular plasmid and to decrease the 

background in ligation and transformation. 

1 °/o aga rose gel 

0.5 g of agarose were weighed out into a 250ml conical flask and 50 ml of lX 

TAE (Tris Acetate EDTA) were added. 

The mix was swirled and then heated in a microwave for about l minute to 

dissolve the agarose. 

The agarose was left to cool on the bench down to about 60°C for 5 minutes. 

4 IJL of ethidium bromide (2.5 mg/mL) were added, then the mix was swirled. 

The gel was slowly poured into the tank and the comb was inserted. 

The gel was left to set for l hour. 

The lX TAE buffer was poured into the gel tank to submerge the gel to 2-5 

mm depth. 
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Sample Preparation 

The samples obtained by digestion reactions and the undigested circular 

pSuperior vector were prepared to be loaded into the gel: 

4 1-11 of loading buffer (6X) (25 mg bromophenol blue, 4 g sucrose and distilled 

water to 10 mi) were added into 20 IJI of each samples. 

The samples were loaded into the gel 

l kb marker and 100 pb marker were loaded into the gel too. 

The gel was let run at 70 V. 

The gel was let stop when the bromophenol blue had run 3/4 the length of the 

gel. 

The gel was looked at on the UV light-box to view the DNA bands and a photo 

was taken. 

The DNA band of the pSuperior vector digested by both Hindiii and Bglll was 

cut out of the gel, and then was dissolved to extract and purify the DNA by 

MinEiute Gel Extraction Kit (QIAGEN, 28604). 

DNA extraction and purification by MinEiute Gel Extraction Kit 
(QIAGEN. 28604) 

l. The gel slice was weighed in a micro tube. 

2. Three volumes of Buffer QG (provided by the kit) were added to l volume 

of gel (as the band weighed 110 mg, 330 1-11 of Buffer QG were added). 

3. The gel was incubated at 50°C for about 10 min, until the gel slice has 

completely dissolved. To help dissolve the gel, the tube was vortexed every 

2-3 min during the incubation. 

4. l gel volume of isopropanol (110 IJI) was added to the sample and mixed 

by inverting the tube severa! times. 

S. A MinEiute column was placed in a provided 2 mi collection tube in a 

suitable rack. 

6. To bind DNA, the sample was applied to the MinEiute column, and 

centrifuged at 12000 rpm for l min. 
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7. The flow-through was discarded and the MinEiute column was placed back 

in the same collection tube. 

8. 500 1-11 of Buffer QG were added to the spin column and centrifuged at 

12000 rpm for 1 min. 

9. The flow-through was discarded and the MinEiute column was placed back 

in the same collection tube. 

10. To wash, 750 1-11 of Buffer PE (provided by the kit, ethanol (96%) were 

added to it, before using) were added to the MinEiute column and 

centrifuged for 1 min at 12000 rpm. 

11. The flow-through was discarded and the MinEiute column was centrifuged 

for an additional 1 min at 12000 rpm. 

12. The MinEiute column was placed into a clean 1.5 mi microcentrifuge tube. 

13. To elute DNA, 10 1-11 of sterile water were added to the center of the 

membrane, let the column stand stili for 1 min, and then centrifuged for 1 

min at 12000 rpm. 

14. The elution contained the purified DNA and it was stored at - 20°C. 

2.9.5.3 Step Three: Ligation into pSUPERIOR.puro Vector 

Two distinct reactions were assembled for ligation of annealed oligos 

targeting MRPl and MDRl. 

Each of the two cloning reaction was assembled by adding 5 1-11 of T4 DNA ligase 

buffer, 2 1-11 of the annealed oligos, 1 1-11 pSUPERIOR.puro vector (800 ng/1-11), 1 1-11 

nuclease-free water, and 1 1-11 T4 DNA ligase. 

A negative contro! cloning reaction was performed with the linearized vector alone 

and no insert. This reaction was assembled by adding 5 1-11 of T4 DNA ligase buffer, 

1 !JI pSUPERIOR.puro vector, 3 J.JI nuclease-free water, and 1 !JI T4 DNA ligase. 

The mix was incubated at room temperature for about 4 hours. 

2.9.5.4 Step Four: Transformation of Bacteria 

The purpose of this technique is to introduce a foreign plasmid into a 

bacteria and to use that bacteria to amplify the plasmid in order to make large 

quantities of it. 

Since DNA is a very hydrophilic molecule, it won't normally pass through a 

bacterial celi membrane. In order to make bacteria take the plasmid, they must 

first be made "competent" to take up DNA. This is done by creating small holes in 
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the bacterial cells by suspending them in a solution with a high concentration of 

calcium. DNA can then be forced into the cells by incubating the cells and the DNA 

together on ice, placing them briefly at 42°C (heat shock), and then putting them 

back on ice. This causes the bacteria to take in the DNA. The cells are then plated 

out on antibiotic containing media. 

Makinq competent cells 

To carry out every experiment with bacteria, E.coli XL1 (supplied by "M. 

Negri" Lab) was used. 

Procedure: 

l. A single colony was picked from a freshly grown plate of E. coli XL1 by 

sterile loop and it was inoculated in 10 mi of sterile LB broth in a SO mi 

sterile tube. 

2. The culture was incubated at 37°C with vigorous shaking overnight. 

3. The day after, 1 mi of bacterial culture was taken from the SO mi tube 

and it was added to 100 mi of LB broth in a SOO mi sterile flask. 

4. The culture was incubated at 37°C with vigorous shaking for 

approximately 2 hours. 

S. Celi density was monitored by determining optical density (OD) at 600 

nm (OD600 ) until it was between 0,2 and 0,3. 

6. SO mi of this culture were transferred to a SO mi conical tube and 

placed on ice for about 10 minutes. 

7. The culture was centrifuged at 3000 rpm for 10 minutes. 

8. The supernatant was gently removed by pipette. The pellet was 

resuspended in SO mi (1/2 of initial culture volume) of ice cold SO mM CaCI2 

(it was diluted in Ultrapure water) and placed on ice for 1 hour. 

9. After the ice incubation, the culture was centrifuged at 3000 rpm for S 

minutes at 4°C. 

10. The supernatant was gently removed by pipette. The pellet was 

resuspended in 10 mi (1/10 of initial culture volume) of a solution 

consisting of ice cold SO mM CaCI2 and sterile glycerol (20%). 

11. The suspension was shared into eppendorf tubes (0,4 mi-O,S mi each 

tube) and placed into an ice bucket in the fridge ( 4°C) overnight. 

12. The day after, the competent bacteria were freezed in dry ice and 

ethanol and then stored at - 80°C. 
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The TRANSFORMATION was performed by the following protocol: 

1. 300 1-11 of competent bacteria (previously prepared and stored at -

80°C) were removed from - 80°C and placed directly into a ice bucket. 

They were let thaw on ice for about 15 minutes. 

2. After thawing, three tubes were placed on ice and 100 1-11 of competent 

bacteria were put into each tube. 

3. 50 1-11 of 2X TCM (10 mM Tris-CI, pH 7,5; 10 mM CaCI2 and 10 mM 

MgCI 2) and 40 1-11 of nuclease-free water were added to 10 1-11 of each of 

three ligation reactions previously prepared (Step Three). 

4. The three previously reactions (100 1-11 each) were added to the each of 

the three tubes containing 100 1-11 of competent bacteria. 

S. The tubes were placed on ice for 45 minutes. 

6. After 45 minutes, the tubes were put at 42°C for 2 minutes and then 

returned to ice for 2 minutes. 

7. 1 mi of sterile LB (Luria-Bertani Broth) were added to three tubes and 

bacteria were let grow with shaking for 1 hour at 37°C. 

8. The tubes were centrifuged for 10 minutes at 2000 rpm. 

9. The most of supernatant was removed. 

10. The celi pellet of each tube was resuspended in the remaining 

supernatant and then plated onto a ampicilin-agarose plate and spread 

around using a sterilized, bent glass rod spreader. 

11. The three plates were placed upside down in the 37°C incubator 

overnight. 

12. The day after, the number of well-isolated colonies on the plates was 

counted. 

13. The colonies were picked using a sterile loop, inoculated in 3 mi of LB 

broth containing 3 1-11 of Ampicillin (1000X) and grown with shacking 

overnight at 37°C. 

14. The day after, plasmid extraction was performed by FastPiasmid Mini 

Kit (eppendorf,0032 007 653). 

Plasmid extraction by FastPiasmid Mini Kit Ceppendorf, 0032 007 
653) 

The following steps were carried out for each of the 14 bacterial cultures 

chosen: 
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a. 1,5 mi of bacterial culture were centrifuged at 12000 rpm far 1 minute in 

the provided 2 mi culture tube (the remaining bacterial culture of each 

colony was stored at 4°C). 

b. The medium was removed by decanting, taking care not to disturb 

bacterial pellet. 

c. 400 1-11 of ICE-COLD Complete Lysis Solution were added in the tube . 

d. The tube was mixed thoroughly by constant vortexing at the highest 

setting far a full 30 seconds. 

e. The lysate was incubated at room temperature far 3 minutes. 

f. The lysate was transferred to a Spin Column Assembly by decanting or 

pipetting. 

g. The Spin Column Assembly was centrifuged far 30-60 seconds at 

maximum speed. 

h. 400 1-11 of diluted Wash Buffer were added to the Spin Column Assembly. 

i. The Spin Column Assembly was centrifuged far 30-60 seconds at 

maximum speed. 

l. The Spin Column was removed from the centrifuge and the filtrate was 

decanted from the Waste Tube. The Spin Column was placed back into 

the Waste Tube and returned to the centrifuge. 

m. The Spin Column was centrifuged at maximum speed far 1 minute to 

dry it. 

n. The Spin Column was transferred to a Collection Tube. 

o. 50 IJI of nuclease-free water were added directly to the center of the 

Spin Column membrane and the Collection Tube was capped aver the 

Spin Column. 

p. The Spin Column was centrifuged at maximum speed far 30-60 

seconds. 

q. The Spin Column was removed and discarded. 

r. The Collection Tube contained the eluted DNA. Some was used to check 

the presence of positive clones (i.e. containing véctor with oligo insert) 

and some was stored at - 20°C. 

Checkinq the positive clones 

The colonies were checked far the presence of positive clones (i.e., 

containing vector with oligo insert) by digesting the vector with EcoRI and 

Xhol (the digestion by EcoRI and Hindiii was also possible): 

15 reactions were assembled to digest the 14 vectors extracted from the 

bacterial colonies transformed by pSUPERIOR ligated to the oligo insert 
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targeting MRP1 and MDR1 respectively, and l reaction for digesting 

pSUPERIOR without insert (negative control). 

a. Each of the 14 digestion reactions of vector ligated to the oligo insert 

was assembled by adding l 1-11 of EcoRI, l 1-11 of Xhol, 2 1-11 of BSA (lOX), 2 

1-11 of Buffer EcoRI (this Buffer provides reaction conditions that are 

amenable to both restriction enzymes) and 14 1-11 of plasmid (extracted by 

FastPiasmid Mini Kit, eppendorf). 

In the digestion reaction of pSUPERIOR without insert (extracted by 

Plasmid Midiprep Kit, GENOMED), 1 1-11 of plasmid only was added to 13 1-11 

of nuclease-free water. This was why the concentration of pSUPERIOR 

without insert after extraction by Plasmid Midiprep Kit (800 ng/ IJI) was 

much higher than the concentration that we could have obtained from 

extraction of the 14 plasmids by FastPiasmid Mini Kit. In fact, generally the 

maximum plasmid DNA yields obtained from FastPiasmid Mini Kit are much 

lower compared to the ones obtained from Plasmid Midiprep Kit. 

b. The 15 digestion reactions were kept at 37°C for about l hour. 

In order to assay the digestion reaction results, the samples were loaded 

on a l% aga rose gel (see Step Two for l% aga rose gel preparation). 

After digestion and loading of the samples on a l% aga rose gel, the results 

were determined as follows: 

Cut with Eco RI & Xhoi 

Positive clone: vector with insert 281 pb 

Negative clone*: no insert 248 pb 

* e.g. superco1l that was mcked and not fully lmeanzed w1th Bgiii and 

Hindiii, has a fragment of 248 pb. 

Among the positive clones, 2 bacterial colonies containing vector with oligo 

insert targeting MRP1 and 2 bacterial colonies containing vector with oligo 

insert targeting MDR were chosen. 

c. From each of 4 colonies chosen, 20 1-11 were taken, put into 3 mi of LB 

broth containing 3 1-11 of Ampicillin (lOOOX) and grown with shacking 

overnight at 37°C (the remaining bacterial culture of each colony was 

stored at 4°C). 

d. The day after, plasmid extraction was performed by QIAprep Miniprep 

(QIAGEN,27104). 
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Plasmid extraction by OIAprep Miniprep COIAGEN.27104l 

The following steps were performed for each of the 4 bacterial cultures 

chosen: 

a. The pelleted bacterial cells were resuspended in 250 IJI Buffer P1 

(containing RNase A) and transfered to a micro-centrifuge tube. 

b. 250 1-11 Buffer P2 were added and the tube was gently inverted 4-6 

times to mix. The lysis reaction had not to proceed for more than 5 

minutes. 

c. 350 1-11 Buffer N3 were added and the tube was inverted immediately but 

gently 4-6 times, to avoid localized precipitation. 

d. The mix was centrifuged for 10 minutes at maximum speed in a 

microcentrifuge. A compact white pellet was formed. 

e. The supernatant from step d. was applied to the QIAprep spin column 

by pipetting. 

f. The QIAprep spin column was centrifuged for 30-60 seconds and the 

flow-through was discarded. 

g. The QIAprep spin column was washed by adding 0.75 mi Buffer PE and 

centrifuging for 30-60 seconds. 

h. The flow-through was discarded, and centrifuged for an additional l 

minute to remove residua! wash buffer. 

i. The QIAprep column was placed in a clean 1.5 mi microcentrifuge tube. 

To elute DNA, SO 1-11 nuclease-free water were added to the center of each 

QIAprep column, let stand for l min, and centrifuged for 1 min. 

j. The microcentrifuge tube contained the eluted DNA. Some was used to 

check the presence of positive clones (i.e. containing vector with oligo 

insert) and some was stored at - 20°C. 

Checkinq the positive clones 

The colonies were checked for the presence of positive clones (i.e., 
containing vector with oligo insert) by digesting the vector with EcoRI and 

Xhoi (the digestion by EcoRI and Hindiii was also possible). 

3 reactions were assembled for digestion: 

1 vector extracted from the bacterial colonies transformed by 

pSUPERIOR ligated to the oligo insert targeting MRP1. 

1 vector extracted from the bacterial colonies transformed by -
pSUPERIOR ligated to the oligo insert targeting MDR1. 
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- l reaction far digesting pSUPERIOR without insert (negative contrai). 

The digestion was performed as described at Step Four. 

In arder to assay the digestion reaction results, the samples were loaded 

on a 2% agarose gel (see Step Two far agarose gel). 

The presence of the correct insert within the recombinant pSUPERIOR 

vector was confirmed by sequencing prior to transfection in SH-SY5Y cells. 

Vector Sequencinq 

Far sequencing primer options, the sequence file, which is available far 

download from the pSUPER RNAi System section of the OligoEngine Web 

site (www.oliqoenqine.com) was consulted. It suggested to use primers T7 

and T3 [T7 primer binding site (AATACGACTCACTATAG): 627-643; T3 

primer binding site (CTTTAGTGAGGGTTAAT): 2167-2183]. 

As the laboratory "M. Negri" had designed 2 primers that had demonstrated 

to work even better, these primers were used. 

The DNA Sequencing was performed at the Europe and WorldWide Primm 

Lab, Milan and then tested by BLAST (Basic Local Alignment Search Tool). 

In the meantime, the 4 bacterial cultures chosen were frozen. 

Preservation of bacteria by freezinq 

a. The 4 bacterial cultures chosen were let grow to high density but stili in 

the logarithmic phase. 

b. 0.25 mi of sterile glycerol and 0.75 mi of bacterial culture [final glycerol 

concentration 25%] was added into each cryovial, mixed fast and freezed 

immediately in dry ice and ethanol). 

c. The bacterial frozen stocks were stored at - 80°C. 

After making sure by sequencing that the oligos targeting MRP1 and MDR1 

were inserted correctly in the two respective recombinant pSUPERIOR 

vectors, high copy of those plasmid DNAs from E.coli X/1 were extracted 

and purified by JETSTAR Plasmid Midiprep kit (GENOMED, 210025). 
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Plasmid extraction by JETSTAR Plasmid Midiprep kit {GENOMED, 

210025) 

The following steps were performed for both bacterial cultures where 

recombinant pSUPERIOR vector containing the siRNA-expressing sequence 

targeting MRPl and MDRl respectively, had been cloned. 

l. Columns (provided from kit) were equilibrated by applying 10 mi of 

solution E4 (600 mM NaCI, 100 mM Sodium Acetate, 0,15% Triton X-

100, acetic acid ad pH 5.0). 

2. The bacterial culture, growth overnight in 100 mi of LB Broth with 

Ampicillin, was shared in two 50 mi tubes. 

3. Each of the 50 mi bacterial culture was centrifuged at 3000 x g for 20 

minutes. 

4. The supernatant was removed carefully. 

S. 4 mi of solution El (50 mM Tris, 10 mM EDTA, HCI ad pH 8.0) were 

added to the pellet and the cells were resuspended until the suspension 

was homogeneous. 

6. 4 mi of solution E2 [200 mM NaOH, 1.0% SDS (w/v)] were added into 

the suspension and mixed gently, by inverting until the lysate appeared 

to be homogeneous. 

7. 4 mi of solution E3 (3.1 M potassium acectate, acetic acid ad pH 5.5) 

were added and mixed immediately by multiple inverting until a 

homogeneous suspension was obtained. 

8. The mixture was centrifuged at room temperature at 3000 x g for 20 

minutes. 

9. The supernatant was applied to the equilibrated column, a sterile gauze 

had been applied to before. The lysate was Jet drop by gravity flow. 

10. The gauze was removed from the column. 

11. The column was washed with 10 mi of solution ES (800 mM NaCI, 100 

mM sodium acetate, acetic acid ad pH 5.0) twice. The column was Jet 

empty after each wash by gravity flow. 

12. The column was placed on a 15 mi tube. 

13. The DNA was Jet elute with 5 mi of solution E6 (1250 mM NaCI, 100 mM 

Tris, HCI ad pH 8.5). 

14. The DNA was Jet precipitate with 3,5 mi of isopropanol. 

15. The solution was centrifuged at 13000 rpm for 30 minutes at 4°C. 
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16. The supernatant was removed and the plasmid DNA was washed with 

about 1,5 mi of 70% ethanol and recentrifuged at 13000 rpm for 5 

minutes at 4°C. 

17. The supernatant was removed and the pellet was let dry for about 15 

minutes by air drying. 

18. The DNA was dissolved in about 1,5 mi of sterile water. 

19. The DNA absorbances at 230 nm, 260 nm and 280 nm were read by 

UV/Vis Scanning Spectrophotometer (BECKMAN COULTER) 

2.9.5.5 Step Five: Transfection of SH-SY5Y Cells 

Before transfecting the pSUPERIOR.puro plasmid into the target cells (SH-

SY5Y), a stable line that constitutively expresses only the Tet repressor from 

pcDNA6/TR vector (Invitrogen, V1025-20) had to be created. Then that celi line 

had to be used to create a second celi line that expresses the siRNA from the 

pSUPERIOR.puro vector. In this way, a stable celi line that constitutively expresses 

the Tet repressor and inducibly expresses the siRNA was established. 

(Aiternatively, transfection with both plasmids (pcDNA6/TR and pSUPERIOR.puro) 

and dual-select with to isolate a single stable celi line expressing both the Tet 

repressor and the gene of interest could be possible). 

THE T-Rex System: OVERVIEW 

The T-REx™ System is a tetracycline-regulated mammalian expression 

system that uses regulatory elements from the E. coli Tn10-encoded 

tetracycline (Tet) resistance operon [4][5]. Tetracycline regulation in the T-

REx™ System is based on the binding of tetracycline to the Tet repressor 

and derepression of the promoter controlling expression of the gene of 

interest [6]. 

The major components of the T-REx™ System include: 

• An inducible expression plasmid for expression of the gene of interest 

under the contro! of the strong human cytomegalovirus immediate-early 

(CMV) promoter and two tetracycline operator 2 (Tet02) sites. 

• A regulatory plasmid, pcDNA6/TR, which encodes the Tet repressor (TetR) 

under the control of the human CMV promoter. 

• Tetracycline for inducing expression. 

• A contro! expression plasmid containing the lacZ gene, which when 

cotransfected with pcDNA6/TR, expresses B-galactosidase upon induction 

with tetracycline. 
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THE-TRex SYSTEM: DESCRIPTION 

In the T-REx System, expression of the gene of interest is repressed 

in the absence of tetracycline and induced in the presence of tetracycline. 

The T-REx System uses only regulatory elements from the native Tet 

operon [6]. Tetracycline-regulated gene expression in the T-REx System 

more closely resembles the regulation of the native bacterial tet operon 

[4][5] and avoids the potentially toxic effects of virai transactivation 

domains observed in some mammalian celi lines. 

Expression of the gene of interest from the inducible expression 

vector is controlled by the strong CMV promoter [8-10] into which 2 copies 

of the tet operator 2 (Tet02) sequence have been inserted in tandem. The 

Tet02 sequences consist of 2 copies of the 19 nucleotide sequence, 5 '-

TCCCTATCAGTGATAGAGA-3' separated by a 2 base pair spacer [4][5]. 

Each 19 nucleotide Tet02 sequence serves as the binding site for 2 

molecules of the Tet repressor. 

The second major component of the Vector System used in this work 

is the pcDNA6/TR regulatory vector which expresses high levels of the 

TetR gene [11] under the control of the human CMV promoter Both T-REx 

vectors can be introduced into mammalian host cells by standard 

transfection methods. 

THE TRex SYSTEM: MECHANISM OF REPRESSION 

In the absence of tetracycline, the Tet repressor forms a homodimer 

that binds with extremely high affinity to each Tet02 sequence in the 

promoter of the inducible expression vector [4]. The 2 Tet02 sites in the 

promoter of the inducible expression vector serve as binding sites for 4 

molecules (or 2 homodimers) of the Tet repressor. The affinity of the Tet 

repressor for the tet operator is KB = 2 x 1011 M-1 (as measured under 

physiological conditions), where KB is the binding constant [4]. Binding of 

the Tet repressor homodimers to the Tet02 sequences represses 

transcription of the gene of interest. Upon addition, tetracycline binds with 

high affinity to each T et repressor homodimer in a l: l stoichiometry and 

causes a conformational change in the repressor that renders it unable to 

bind to the Tet operator. The association constant, KA, of tetracycline for 
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the Tet repressor is 3 x 109 M-1 [4]. The Tet repressor:tetracycline 

complex then dissociates from the Tet operator and allows induction of 

transcription from the gene of interest (Fig 2.4). 

L T et reprcssor (tetR) protcìn 
ìs cxpress<.'d from pd)l\A6'TR" 
in çultur.:d cdi s. 

2. TctR homodimcrs bind to 
T et opcrator 2 (Tcl02) 
scqLICn,,t:, in thc imlucibk 
expression vcctor, rcpres~ing 
transcription of the gene 
of intt>rest. 

3. Upon additìon, 
tctracvcline ( tct) binds 
to tctit homodimers. 

4. llindinll. of tetto tctR 
homodimers causes 
a conlormational change 
in tctR. re l case from thc 
Tct opcrator scqucncc:s, 
and induction of transçrìption 
from th.: gene of intcrcsl. 

1 + tet (&) 

• A 4 
A 4 4 

Fig. 2.4 The components of T-Rex System 

THE T-Rex SYSTEM: EXPERIMENTAL OUTLINE 

The gene of interest is cloned into the multiple cloning site of the 

inducible expression vector, and the resulting construct cotransfected with 

the regulatory plasmid, pcDNA6/TR into mammalian cells. After 

transfection, cells are treated with tetracycline to derepress the hybrid 

CMV/ Tet02 promoter in the inducible expression vector and induce 

transcription of the gene of interest. 

The positive control vector containing the lacz gene can be transiently 

cotransfected into mammalian cells with pcDNA6/TR to demonstrate that 

the system is working properly in the celi line. Stable celi lines expressing 

Tet repressor from pcDNA6/TR can be established to serve as hosts for 

inducible expression vector-based constructs (Fig. 2.5). 
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1. Llgate gene or lnterest 
into the lnducible 
expre.ssion vector 

2. Cotransfect the inducible expression 
vector and pc0NA6FTR0 into 
mammalian cells 

+ Tetracycllne 

3. Add tetracycllne to derepress the hybrid 
CMVFTet02 promoter and induce 
expression of lhe desired gene 

Figure 2.5 Experimental outline in the T -Rex System 

pcDNA6/TR vector Clnvitrogen, V1025-20l 

4. Assay lor 
expressed protein 

The pcDNA6/TR vector was gently supplied by M. Negri Laboratory, Milan. 

pcDNA6/TR is a 6.7 kb vector designed to be used with the T-REx 

System. The vector expresses high levels of the tetracycline (Tet) repressor 

under the contrai of the human cytomegalovirus immediate-early (CMV) 

promoter. High-level stable and transient expression of the Tet repressor 

can be carried aut in most mammalian cells. Tetracycline-regulated 

expression of a gene of interest may then be tested by transfecting the 

inducible expression plasmid into host cells expressing the Tet repressor. 

The TetR gene used in pcDNA6/TR was originally isolated from the Tn10 

transposon which confers resistance to tetracycline in E. coli and other 

enteric bacteri a [ 11]. 

The TetR gene from Tn10 encodes a class B Tet repressor and is often 

referred to as TetR(B) in the literature [4]. 

The TetR gene encodes a repressor protein of 207 amino acids with a 

calculated molecular weight of 23 kDa. 

The pcDNA6/TR vector contains the ampicillin resistance gene and the 

blasticidin resistance gene, either of which allows selection of the plasmid 

in E. coli. 

The map of pcDNA6/TR vector is shown here below (Fig. 2.6). 
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pcDNA6/TR© 
6662 bp 

Rabbit ~-globin intron Il (IVS): bases 1028-1600 
TetRgene: bases 1684-2340 
SV40 early polyadenytation sequence: bases 2346-2477 
f1 origin: bases 2897-3325 
SV40 promoter and origin: bases 3335-3675 
EM-7 promoter: bases 3715-3781 
Blasticìdin resìstance gene: bases 3782-4180 
SV40 early polyadenylation sequence: bases 4338-4468 
pUC origin: bases 4851-5521 
bla promoter: bases 6521-6625 ( complementary strand) 
Ampicìllin (b/a) resistance gene: bases 5666-6526 (complementary strand) 

Fig. 2.6 Map of pcDNA6/TR vector 

The relevant features of pcDNA6/TR are described in table 2.1 . 

Feature Benefit 

Human cytomegalovirus (CMV) Permits high-level expression of the 
immediate early promoter TetR gene [8-10] 

Rabbit B-globin intron II (IVS) Enhances expression of the TetR 
gene [12] 

TetR gene Encodes the T et repressor that 
binds to tet operator sequences to 
repress transcription of the gene of 
interest in the a bse n ce of 
tetracycline [6] [11] 

SV40 early polyadenylation signal Permits efficient tra n seri ption 
termination and polyadenylation of 
mRNA 

f1 origin Allows rescue of single-stranded 
DNA 

SV40 early promoter and origin Allows efficient, high-level 
expression of the blasticidin 
resistance gene in mammalian cells 
an d episema l replication in cells 
expressing SV40 large T antigen 
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EM-7 promoter Synthetic prokaryotic promoter for 
expression of the blasticidin 
resistance gene in E. coli 

Blasticidin (bsd) resistance gene Allows selection of stable 
transfectants in mammalian cells 
[13] and transformants in E. coli 

SV40 early polyadenylation signal Allows efficient transcription 
termination and polyadenylation of 
mRNA 

pUC origin Permits high-copy number 
replication and growth in E. coli 

bla promoter Allows expression of the ampicillin 
(bla) resistance gene 

Ampicillin (bla) resistance gene Allows selection of transformants in 
(B-Iactamase) E. coli 

Table 2.1 Features of pcDNA6/TR 

To generate a celi line that stably expresses the Tet repressor, pcDNA6/TR 

has to be transfected into the mammalian host celi line and cells have to be 

selected with blasticidin. Cells expressing suitably high levels of the Tet 

repressor may then be used as hosts to stably or transiently express the 

gene of interest from the inducible expression vector. 

Before transfection, the sensitivity of SH-SYSY cells to blasticidin (as the 

pcDNA6/TR vector contains the blasticidin resistance gene) was tested. 

Determination of blasticidin sensitivity 

The determination of blasticidin sensitivity was performed estabilishing a 

kill curve for blasticidin to determine its optimal effective dose. It is the 

minimum concentration of blasticidin required to kill the untransfected host 

celi line. According to the blasticidin manufacturer's instructions, 

concentrations between 2 and 10 1-Jg/ml blasticidin are sufficient to kill the 
untransfected host celi line. 

A range of concentrations was tested as suggested by blasticidin 
manufacturer. 

As plating density can have a strong impact on antibiotic selection because 

cells at higher densities are less effectively killed off than cells at lower 
concentration, cells were plated at different density. 
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Procedure 

• One day before adding blasticidin, SH-SY5Y cells were plated in the 

following plates: 

24-well plate in growth medium (without blasticidin), so that 

cells were 35% confluent at the time of blasticidin addition; 

24-well plate in growth medium (without blasticidin), so that 

cells were 70% confluent at the time blasticidin addition; 

10 cm plate in growth medium (without blasticidin), at a 

concentration of 3000 cells/ml; 

10 cm plate in growth medium (without blasticidin), at a 

concentration of 1500 cells/ml; 

• The next day, the culture medium was substituted with medium 

containing these concentrations of blasticidin S hydrochloride (SIGMA, 

15205): O, 1, 3, 5, 7 .5, and 10 !Jg/ml. 

• The selective medium was replenished every 3-4 days. 

Cells sensitive to blasticidin appeared rounded up and detached from the 

p late. 

• The number of viable cells was counted at regular intervals to determine 

the appropriate concentration of blasticidin that prevents growth within 1-

2 weeks after addition of the antibiotic. 

Once the appropriate blasticidin concentration to use far selection was 

determined, a stable celi line expressing pcDNA6/TR vector could be 

generated. 

Transfection of pcDNA6/TR vector Cinvitroqen, V1025-20l 

The transfection of pcDNA6/TR vector (Invitrogen) was performed using 

Lipofectamine 2000 (Invitrogen) and according to the manufacturer's 

i nstructions. 

Procedure 

1. One day before transfection, SH-SY5Y cells were plated in a T25 flask in 

presence of 5 mi of growth medium without antibiotics so that cells 

were 90-95% confluent at the time of transfection. 

2. The DNA-Lipofectamine 2000 complexes were prepared as follows: 

94 



Materials and Methods 

a. 8 1J9 of pcDNA6/TR vector were diluted in 500 !JI of Opti-MEM I 

Reduced Serum Medium (GIBCO). The dilution was mixed gently .. 

b. 20 !JI of Lipofectamine 2000 were diluted in 500 !JI of Opti-MEM I 

Medium. The dilution was mixed gently and incubated for 5 minutes at 

room temperature. 

c. After the 5 minute incubation, the diluted DNA was combined with 

the diluted Lipofectamine 2000. The solution was mixed gently and 

incubated for 20 minutes at room temperature to allow the DNA-

Lipofectamine 2000 complexes to form. 

3. The complexes were added to the T25 flask containing cells and 

medium. The medium was mixed gently by rocking the flask back and 

forth. 

4. The cells were incubated at 37°C in a C02 incubator for 48 hours prior 

to testing for transgene expression. 

Selection of stable celi lines 

l. After a 48 hour incubation, cells were dissociated from the culture flask 

by trypsin (EuroCione) and plated in several 10 cm plates at a 

concentration of 3000 cells/ml. 

2. The following day, blasticidin (5 1-19/ml) was added into the medium. 

3. The selective medium was replenished every 3-4 days until blasticidin-

resistant colonies were detected. 

2 untransfected control cultures were included: 

- l untransfected contrai culture was subjected to blasticidin selection to 

check the cells that spontaneously became or were already antibiotic 

resistant; it was helpful to determine the effectiveness of the transfection 

and selection. Cells were plated at two different concentrations: 3000 

cells/ml (as the transfected cells) and 15000 cells/ml. This was to assay the 

blasticidin selection at different celi confluences. 

- l untransfected contrai culture was grown without blasticidin selection as 

a positive contrai for celi viability. Cells were plated at two different 

concentrations: 3000 cells/ml (as the transfected cells) and 15000 cells/ml. 

2 transfected control culture was included: 

- l transfected contrai culture was grown without blasticidin selection to 

check a possible toxicity of the transfection. Cells were plated at a 

concentration of 3000 cells/ml. 
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- l transfected control culture was grown with blasticidin selection. Cells 

were plated at a concentration of 15000 cells/ml. It was to check a possible 

toxicity of the blasticidin. 

4. The positive colonies were picked and expanded. 

In order to isolate single colonies, a sterile glass ring was put on the culture 

plate to surround each clone, before scraping the adherent cells. The ring 

could stick on the plate because sterile vaseline was put downside. The 

cells were dissociated from the culture plate by trypsin and every isolated 

clone was plated in a 2 cm2 well (24-wells plate). The clones were 

expanded in a growth medium that always contained blasticidin, even if ali 

of the cells in the untransfected control culture were killed. 

Among the clones that were blasticidin resistant and therefore should have 

stably expressed the Tet repressor, the ones that expressed the highest 

levels of Tet repressor to use as hosts for the inducible expression 

construct, had to be selected. These clones, as synthesised the highest 

levels of Tet repressor, should exhibit the most complete repression of 

basai transcription of the gene of interest. 

S. To screen the clones for those expressing the highest levels of Tet 

repressor from pcDNA6/TR, the pcDNA4/TO-based expression vector 
containing the lacZ gene (Invitrogen, V1020-20) was transfected 

transiently into the cells and assayed for B-galactosidase expression 
after induction with tetracycline. Those clones exhibiting the lowest basai 

levels and highest inducible levels of B-galactosidase expression, had to be 

selected. 

pcDNA4/TO vector Cinvitroqen, V1020-20l 

pcDNA4/TO is a 5.1 kb expression vector designed to use with the T-

REx. System. The vector allows tetracycline-regulated expression of the 

gene of interest in mammalian host cells cotransfected with the pcDNA6/TR 
vector. 

The vector contains: 

• Hybrid promoter consisting of the human cytomegalovirus immediate-

early (CMV) promoter and tetracycline operator 2 (Tet02) sites for high-

leve! tetracycline-regulated expression in a wide range of mammalian cells. 
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The pcDNA4/TO vector contains two tetracycline operator 2 (Tet02) sites 

within the human cytomegalovirus immediate-early (CMV) promoter for 

tetracycline-regulated expression of the gene of interest. The Tet02 

sequences serve as binding sites for 4 Tet repressor molecules (comprising 

two Tet repressor homodimers) and confer tetracycline-responsiveness to 

the gene of interest. 

Yao et al. [6] have recently demonstrated that the location of tet operator 

sequences in relation to the TATA box of a heterologous promoter is criticai 

to the function of the tet operator. Regulation by tetracycline is only 

conferred upon a heterologous promoter by proper spacing of the Tet02 

sequences from the TATA box. For this reason, the first nucleotide of the 

Tet02 operator sequence has been placed 10 nucleotides after the last 

nucleotide of the TATA element in the CMV promoter in pcDNA4/TO. 

In the absence of tetracycline, expression of the gene of interest is 

repressed by the binding of Tet repressor homodimers to the Tet02 

sequences. Addition of tetracycline to the cells derepresses the hybrid 

CMV/Tet02 promoter in pcDNA4/TO and allows expression of the gene of 

interest. 

The relevant features of pcDNA4/TO are described in table 2.9.2. 

Feature Benefit 

Human cytomegalovirus (CMV) Permits high-level expression of your 

immediate early promoter gene of interest [8-10] 

CMV Forward priming site Allows sequencing in the se n se 

orientation 

Tetracycline operator (02) Two tandem 19 nucleotide repeats 

sequences which serve as binding sites for Tet 

repressor ho m od i mers [ 4] 

Multiple cloning site Allows insertion of your gene of interest 

BGH Reverse priming site Permits sequencing of the non-coding 

strand 

Bovine growth hormone (BGH) Permits efficient tra nscri ption 

polyadenylation signal termination and polyadenylation of 

mRNA [14] 

f1 origin Allows rescue of single-stranded DNA 
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SV40 early promoter and origin Allows efficient, high-level expression of 

the Zeocin. resista n ce gene in 

mammalian cells and episomal 

replication in cells expressing SV40 

large T antigen 

EM-7 promoter gene in E. coli Synthetic prokaryotic promoter for 

expression of the Zeocin. resistance 

Zeocin resistance (Sh ble ) gene Permits selection of stable transfectants 

(expressed from the SV40 early in ma m malia n cells [15] [16] an d 

promoter or the EM-7 promoter) transformants in E. coli 

SV40 early polyadenylation Allows efficient transcription 

signa l termination and polyadenylation of 

mRNA 

pUC origin Allows high-copy number replication 

and growth in E. coli 

bla promoter Allows expression of the ampicillin (bla) 

resistance gene 

Ampicillin (bi a) resistance gene Permits selection of transformants in E. 

(B-Iactamase) coli 

Table 2.2 Features of pcDNA4/TO 

The pcDNA4/TO//acZ vector, that was transfected transiently into the 

SH-SYSY cells, in order to assay the clones expressing stably the Tet 

repressor from pcDNA6/TR, is a 8224 bp control vector containing the gene 

for B-galactosidase. 

This vector was constructed by ligating a 3.1 kb Hind III-EcoR I fragment 

containing the lacZ gene from pcDNA.3/His/lacZ into the Hind III-EcoR I 

site of pcDNA4/TO. 

The lacZ gene is fused to an N-terminai peptide containing an ATG initiation 

codon, a polyhistidine (6xHis) tag, and the Xpress. epitope. The size of the 

B-galactosidase fusion protein is approximately 120 kDa in size. 
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The map of pcDNA4/TO/lacZ vector is shown here below (Fig. 2.7). 

Comments for p cONA N4/TO//acZ 
8224 nucleotides 

CMV promoter. bases 232-958 
TATA box: bases 804-81 O 

= 

Tetracycline operator (2X Tet02) sequences: bases 820-859 
CMV forward priming site: bases 769-789 
LacZ fusion protein: bases 987-4157 

6xHis tag: bases 999-1016 
Xpress~ epitope: bases 1056-1079 
LacZ ORF: bases 1104-4154 

BGH reverse priming sile: bases 4235-4252 
BGH polyadenylation sequence: bases 4241-4465 
f1 origin: bases 4511-4939 
SV40 promoter and origin: bases 4949-5289 
EM-7 promoter: bases 5329-5395 
Zeodn"' resistance gene: bases 5396-5770 
SV40 early polyadenylation sequence: bases 5900-6030 
pUC orig ìn: bases 6413-7083 
bla promoter: bases 8083-8187 (complementary strand) 

lacZ 

pc0NATM4/T0/ 
/acZ 

8224 bp 

Ampicillin (bla) resistance gene: bases 7228-8088 (complementary strand) 

Fig. 2.7 Map of pcDNA4/TO//acZ vector 

The transfection of pcDNA4/TO/lacZ vector in clones that stably express 

the Tet repressor from pcDNA6/TR, results in the induction of B-
galactosidase expression upon addition of tetracycline. 

The pcDNA4/TO//acZ vector was gently supplied by M. Negri Laboratory, 

Milan. 

Transfection of pcDNA4/TO/IacZ vector 

Each SH-SYSY clone, selected by blasticidin after a transfection of 

pcDNA6/TR vector, was made grow and then plated in three 4-cm2 wells 

(12-well plate). 

The cells plated in l of the 3 wells were used to expand the clone. 
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The cells plated in the remaining 2 wells were transfected by 

pcDNA4/TO//acZ vector using Lipofectamine 2000 Reagent (Invitrogen). 

Procedure 

The following steps were performed far each selected clone. 

l. One day before transfection, SH-SY5Y cells were plated in two 4 cm2 

wells (12-well plate) in presence cf 1 mi cf growth medium without 

antibiotics so that cells were 90-95% confluent at the time cf transfection. 

2. The DNA-Lipofectamine 2000 complexes were prepared as follows: 

a. 1 IJg cf pcDNA4/TO//acZ vector were diluted in 100 iJI cf Opti-

MEM I Reduced Serum Medium (GIBCO). The dilution was mixed gently. 

b. 2,8 1-11 cf Lipofectamine 2000 were diluted in 100 1-11 cf Opti-MEM I 

Medium. The dilution was mixed gently and incubated far 5 minutes at 

room temperature. 

c. After the 5 minute incubation, the diluted DNA was combined with 

the diluted Lipofectamine 2000. The solution was mixed gently and 

incubated far 20 minutes at room temperature te allow the DNA-

Lipofectamine 2000 complexes te form. 

3. The complexes were added te each cf the two 4 cm2 wells containing 

cells and medium. The medium was mixed gently by rocking the flask 

back and forth. 

4. The cells were incubated at 37°C in a C02 incubator far 24 hours. 

5. After a 24 hour incubation, doxycycline hyclate (2 iJg/ml or 3.9 iJM) 

(SIGMA, 09891) was added into 1 cf the 2 wells and cells were 

incubated at 37°C in a C02 incubator far 24 hours more. 

Note: Instead cf tetracycline, doxycycline has been used as inducing agent 

in ali cf gene expression experiments. Doxycycline is similar te 

tetracycline in its mechanism cf action, as suggested from pSUPER 

manufacturer. 

6. The following day, the B-galactosidase assay was performed. 

B-qalactosidase assay 

B-galactosidase, encoded by LacZ gene cf E.coli (contained in the 

pcDNA4/TO//acZ vector), is an enzyme that catalyzes the hydrolysis cf B-

galactosides, including lactose and the galatoside analog chlorophenol red-

B-D-galactopyranoside (CPRG). The B-galactosidase gene functions well as 

a reporter gene because the protein product is extremely stable, resistant 

te proteolytic degradation in cellular lysates, and easily assayed. When 
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cleaved by 6-galactosidase, catalytic hydrolysis of the colorless CPRG 

substrate, yields a dark red water-soluble product (Fig. 2.8). The levels of 

active 6-galactosidase can then be measured by a microtiter plate reader or 

spectrophotometer (absorbance at À= 560-595 nm). 

Chlorophenol red B-0 galactopyraooside (CPRG) 

CH20f-l 

o~OO OH 
H H 

H OH 

~
CH~~ OH 

OH 
H H 

H OH 

+ 

Galactose 

o 
a c1 

li!-Galadosidase 

a a 
Chloropheool red 
red color (562nm) 

o 

Fig. 2.8: cleavage of clorophenol red B-D-galactopyranoside (CPRG) by 

B-galactosidase: a dark red water soluble product is yielded. 

Procedure: 

The following steps were performed for the cells contained in each of two 4-

cm2 wells (both induced and uninduced cells by doxycycline), in which 

every clone was plated. 

l. Tranfected cells were washed with 300 IJI of 1 x PBS. 

2. The PBS was aspirate from the dish. 

3. 500 1-11 of PBS was added into the well. 

4. Cells were gently scraped down and then put in a eppendorf tube. 

5. The tube was centrifuged at 12000 rpm far 1 minute. 

6. The supernatant was removed and the pellet was resuspended with PBS 

(the PBS volume depends an the amount of the pellet). 
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7. The tube (containing pellet with PBS) was incubated on dry ice for 5 

minutes and then directly in a water bath at 37°C for 5 minutes. This 

step was repeated 3 consecutive times. 

8. The tube was centrifuged at 12000 rpm for 20 minutes at 4°C. 

9. The supernatant was collected and 5 IJI were used for protein 

concentration determination by Bicinconinc Acid Method (see paragraph 

2.8). The remaining celi lysate was used in the B-galactosidase 
assay. 

Reagents required by B-galactosidase assay: 
The Reaction Buffer was prepared by mixing the following components: 

- 80 mM NaH2P04/ Na2HP04, pH=7.3 

- 9 mM MgCI2 

- 104 mM 13-Mercaptoethanol 

The chlorophenol red-13-D-galactopyranoside (CPRG) (Boehringer 

Mannheim/ROCHE, 10884308001) was used at a concentration of 80 mM. 

10. Blank and samples were loaded in a 96-well plate: 

- the blank consisted of 100 IJI of Reaction Buffer and 80 IJI of PBS; 

- the samples were consisted of 100 IJI of Reaction Buffer, 60 IJI of PBS 

and 20 111 of celi lysate. 

11. 20 IJI of CPRG (80 mM) were added into blank and sample wells. 

12. The reaction mixture was let incubate at room temperature until the 

color changed from yellow to red. 

13. The blank and sample absorbance was read by a microtiter plate 

reader (BECKMAN COULTER) at 562 nm, every 5 minutes, starting from 

O minutes to 30 minutes after the beginning of the reaction. 

14. The absorbance values showed the 13-galactosidase activity of each 

sample. They were normalized for the absorbance at 562 nm relative to 

the amount of total protein of the sample (obtained by bicinconinic acid 

method). 

15. The ratio between induced and uninduced sample was calculated. This 

value met the 13-galactosidase activity increase of induced clone 

compared to uninduced one. 

16. The clone which shown the highest ratio between induced and 

uninduced sample, was chosen. In fact, this clone should express the 

highest levels of Tet repressor in absence of doxycycline. 
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17. The clone chosen was used far transfecting the pSUPERIOR vector 

containing the siRNA-expressing sequence targeting MRP1 and the 

pSUPERIOR vector containing the siRNA-expressing sequence targeting 

MDR1, in arder to obtain clones showing a high level of MRPl/MRPl 

suppression and clones showing a high level of 

MDRl/MDRlsuppression. 

Before transfection, the sensitivity of SH-SY5Y cells to puromycin (as the 

pSUPERIOR vector contains the puromycin resistance gene) was tested. 

Determination of puromycin sensitivity 
As far the blasticidin, the determination of puromycin sensitivity was 

performed estabilishing a kill curve far puromycin to identify its optimal 

effective dose. It is the lowest level of antibiotic that kills untransfected 

celi s. 

Procedure: 

• One day before adding puromycin, SH-SY5Y cells were plated in the 

following plates: 

24-well plate in growth medium (without puromycin), so that 

cells were 35% confluent at the time of puromycin addition; 

24-well plate in growth medium (without puromycin), so that 

cells were 70% confluent at the time puromycin addition; 

10 cm plate in growth medium (without puromycin), at a 

concentration of 3000 cells/ml; 

10 cm plate in growth medium (without puromycin), at a 

concentration of 1500 cells/ml; 

• The next day, the culture medium was substituted with medium 

containing the following concentrations of puromycin dihydrochloride 

(SIGMA, P8833): O, 0.1, 0.2, 0.4, 0.8, l, 2, 4, 6, 8 and 10 1-Jg/ml. 

• The selective medium was replenished every 3-4 days. 

Cells sensitive to puromycin appeared rounded up and detached from the 
p late. 

• 5 days after the addition of puromycin: 

- the medium was removed; 

- the cells were washed by PBS; 
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- 250 !JI of methylene blue hydrate (SIGMA, MB1) dissolved in 

methanol (C. Erba, 414816) (w/v = 0.5%) were added into the 

wells; 

- cells were incubated for 20 minutes at room temperature; 

- the methylene blue was removed; 

- cells were washed by PBS; 

- the number of viable cells was counted by BOrker camera under 

an inverted microscope (Nikon) to determine the appropriate 

concentration of puromycin that prevents growth within 5 days 

after addition of the antibiotic. 

Once the appropriate puromycin concentration to use for selection was 

determined, a stable celi line expressing costitutively the Tet repressor 

from pcDNA6/TR vector and inducibly the siRNA from pSUPERIOR vector, 

could be generated. 

2.9.6 Step Six: Transfection of recombinant pSUPERIOR vector 

The transfections of pSUPERIOR vector containing the siRNA-expressing sequence 

targeting MRP1 and pSUPERIOR vector containing the siRNA-expressing sequence 

targeting MDR1 [both vectors were sequenced and then extracted from E.coli XL1 

by JETSTAR Plasmid Midiprep kit (GENOMED)] were performed utilizing 

Lipofectamine 2000 (lnvitrogen) and according to the manufacturer's instructions. 

Procedure 
The following steps were carried out for the transfection of both pSUPERIOR vector 

containing the siRNA-expressing sequence targeting MRP1 and pSUPERIOR vector 

containing the siRNA-expressing sequence targeting, transfected in cells deriving 
from the same clone. 

l. One day before transfection, the clone of SH-SY5Y cells, transfected by 

pcDNA6/TR vector and selected to express costitutively the highest Tet repressor 

level, was plated in a T25 flask in presence of 5 mi of growth medium without 
antibiotics so that cells were 90-95% confluent at the time of transfection. 

2. The DNA-Lipofectamine 2000 complexes were prepared as follows: 

a. 8 1-19 of recombinant pSUPERIOR vector were diluted in 500 1-11 of Opti-MEM I 

Reduced Serum Medium (GIBCO). The dilution was mixed gently. 

b. 20 !JI of Lipofectamine 2000 were diluted in 500 1-11 of Opti-MEM I Medium. 

The dilution was mixed gently and incubated for 5 minutes at room 

temperature. 
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c. After a 5 minute incubation, the diluted DNA was combined with the diluted 

Lipofectamine 2000. The solution was mixed gently and incubated for 20 

minutes at room temperature to allow the DNA-Lipofectamine 2000 

complexes t o form. 

3. The complexes were added to the T25 flask containing cells and medium. The 

medium was mixed gently by rocking the flask back and forth. 

4. The cells were incubated at 37°C in a C02 incubator for 48 hours prior to testing 

for transgene expression. 

2.9.5.7 Step Seven: Selection of stable transfectants 

1. After a 48 hour incubation, cells were dissociated from the culture flask by 

trypsin and plated in several 10 cm plates at a concentration of 3000 cells/ml. 

2. The following day, puromycin dihydrochloride (SIGMA) (0,8 IJQ/ml) was 

added into the medium. 

3. The selective medium was replenished every 3-4 days until puromycin-

resistant colonies were detected. 

2 untransfected contro l cultures were included: 

1 untransfected contrai culture was subjected to puromycin selection to 

check for cells that spontaneously became or were already antibiotic 

resistant; it was helpful to determine the effectiveness of the transfection 

and selection. Cells were plated at two different concentrations: 3000 

cells/ml (as the transfected cells) and 15000 cells/ml. This was useful to 

assay the puromycin selection at different celi confluences. 

l untransfected control culture was grown without puromycin selection as a 

positive contrai for celi viability. Cells were plated at two different 

concentrations: 3000 cells/ml (as the transfected cells) and 15000 cells/ml. 

2 transfected control culture was included: 

1 transfected control culture was grown without puromycin selection to 

check a possible toxicity of the transfection. Cells were plated at a 

concentration of 3000 cells/ml. 

- l transfected control culture was grown with puromycin selection. Cells 

were plated at a concentration of 15000 cells/ml. It was to check a possible 

toxicity of the puromycin. 

4. The positive colonies were picked and expanded. 

In arder to isolate single colonies, a sterile glass ring was put on the culture 

plate to surround each clone, before scraping the adherent cells. The ring could 

stick on the plate because sterile vaseline was put downside. The cells were 
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dissociated from the culture plate by trypsin (EuroCione) and every isolated 

clone was plated in a 2 cm2 well (24-wells plate). The clones were expanded in 

a growth medium that always contained blasticidin and puromycin, even if ali 

of the cells in the untransfected contro! culture were killed. 

pSUPERIOR-transfected cells that survive antibiotic selection may not have a 

significant reduction in expression of the target gene. Instead, they may have 

found a way to mitigate the effects of a reduction in the target gene expression by 

compensating in another fashion or by shutting down expression of the siRNA. 

Therefore, isolated clones can be screened to identify the cells that cause the 

desired reduction in target gene expression. 

In order to induce the derepression mechanism that causes a conformational 

change in the Tet repressor and renders it unable to bind to the Tet operator in 

the promoter of the inducible expression vector, the inducing agent doxycycline 

was added into the growth medium of the SH-SYSY clones. This allowed the 

transcription of siRNA-expressing sequence. 

2.9.5.8 Step Eight: Induction with doxycycline 

l. Cells were plated in growth medium without antibiotics. 

2. Before induction, the medium was removed and fresh medium containing 

doxycycline (2 IJg/ml) was added to the cells. A sample of cells, grown in a 

medium without doxycycline, was included in order to compare the 

differences between induced and uninduced samples. 

3. Cells were incubated at 37°C in a C02 incubator for at least 24 hours. 

As doxycycline has a 48 hour half-life, a second addition of the same 

doxycycline amount was carried out, if the incubation time was longer than 

2 days. 

4. Both induced and uninduced cells were harvested to assay for expression 

of the gene and protein or used for specific treatment. 

Measurement of siRNA-induced silencing 

The level of suppression of the target gene was measured by using 

different techniques: 

• To determine the amount of protein expressed by the gene, a Western 
Blot analysis was performed. 
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• For a measurement of the mRNA transcript of the target gene, 

quantitative RT-PCR was used. 

• To investigate the efficiency of the target proteins in the transport of 

different compounds, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] assay was performed. 
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2.10 MTT ASSAY 

MlT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is 

based on the ability of a mitochondrial dehydrogenase enzyme from viable cells to 

cleave the tetrazolium rings of the pale yellow MlT and form a dark blue formazan 

crystals which is largely impermeable to celi membranes, thus resulting in its 

accumulation within healthy cells (Fig. 2.9). Solubilisation of the cells by the 

addition of a detergent results in the liberation of the crystals which are 

solubilized. The number of surviving cells is directly proportional to the level of the 

formazan product created. The color can then be quantified using a colorimetric 

assay based on the ability of the viable cells to reduce a soluble yellow tetrazolium 

salt to blue formazan crystals. The results can be read on a multiwell scanning 

spectrophotometer [17-20]. 

NADH --/-=--~=-----• N.AD'" 

l \ 

Formazan 

Electron metlìacr Elecucn medl:lor 
<reck.u:ed form> 

TetrazoliiJm salt 

Fig 2.9 MTT reduction 

The MlT assay was performed on the stable SH-SY5Y cells expressing 

costitutively the Tet repressor from pcDNA6/TR vector and inducibly the siRNA 

from pSUPERIOR vector containing the siRNA-expressing sequence targeting MRP1 

and pSUPERIOR vector containing the siRNA-expressing sequence targeting MDR1. 

The 2 recombinant pSUPERIOR vectors were transfected in different cells of the 

same clone (see paragraph 2.9) 

In order to investigate the drug citotoxicity in SH-SY5Y cells siRNA-expressing 

sequence targeting MRP1, drug treatment was performed 3 days after induction 

(by doxycycline) of siRNA-expressing sequence transcription. 

In order to investigate the drug citotoxicity in SH-SY5Y cells siRNA-expressing 

sequence targeting MDR1, drug treatment was performed 2 days after induction 

(by doxycycline) of siRNA-expressing sequence transcription. 
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3 days and 2 days were suggested as the best assay time for observing the 

silencing of MRP1 and MOR1, respectively (see Results). 

Procedure: 

SH-SYSY cells were seeded onta 96-well plates in 100 ,.d of complete medium 

in presence of the antibiotics causing selection: 5 J,Jg/ml Blasticidine S 

hydrochloride (SIGMA, 15205) and 0,8 J.Jg/ml Puromycin dihydrochloride 

(SIGMA, P8833). 

24 hours after the sowing, doxycycline hyclate (SIGMA, 09891) was added into 

the wells of the induced samples. For each induced sample, an uninduced 

sample was loaded. Each treatment was performed on four samples. 

2 days (for SH-SYSY cells siRNA-expressing sequence targeting MDR1) or 3 

days (SH-SYSY cells siRNA-expressing sequence targeting MRP1) after 

induction by doxycycline, cells were treated by adding 100 f.ll of complete 

medium containing the test compound at the appropriate concentrations*. 

4 well of induced samples and 4 wells of uninduced samples that weren't 

treated with drug, were included as contrai. 

- After 24 hrs of treatment, the compound was removed and the MTT dye, 20 f.ll 

per 200 f.ll of medium of a 5 mg/ml solution, was added and plates were 

incubated for 2 hrs at 37 °C in the dark. 

- Absorbance was measured, after removing MTT solution and dissolving the blue 

formazan crystals with OMSO (200 J.JM) (Sigma 05879), at 562 nm using a 

microtiter plate reader (BECKMAN COULTER). 

* The cells were treated with the following drugs: 

• Indomethacin (Liomtacen, Promedica) 

• Doxycycline hyclate (SIGMA, 09891) 

• Ceftriaxone {FIDATO, Fidia) 

These compounds were chosen among the substrates of MRP1 and/or 

MORl. Particularly, Indometacin is substrate of MRP1, but not of MDR1, Cefriaxone 

is substrate of MOR1, but not of MRP1 and Ooxycycline is substrate of both MRP1 

and MOR1 (see Results). 

The starting solution of the compound Indomethacin was prepared dissolving 

50 mg of lyophilised powder into 1.4 mi of sterile physiological solution, obtaining 

a 100 mM concentration. Final tested concentrations were: 0.5 mM; 1 mM; 2 mM 

and 3 mM. 
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The starting solution of the compound Ceftriaxone was prepared dissolving 

100 mg of lyophilised powder into 5 mi of sterile physiological solution, obtaining a 

20 mg/ml concentration. Final tested concentrations were: 0.1 mg/ml; 1 mg/ml; 5 

mg/ml; 8 mg/ml and 15 mg/ml. 

The starting solution of the compound Doxycycline was prepared dissolving 

12 mg of lyophilised powder into 6 mi of sterile physiological solution, obtaining a 

100 mM solution. Final tested concentrations were: 0.8 mg/ml; 1.2 mg/ml; 1.6 

mg/ml. 

The final tested concentrations were chosen after assaying a large range of 

drug concentrations and they were the more significance ones to observe the 

decreasing of the celi viability due to the increasing of the drug amount. 

The drug citotoxicity effect was correlated to the functional activity of MRP1 

and MDRl transporters to extrude the drugs out of the cells. 

Data are expressed as mean ± SD. Statistica! analysis was performed by 

Student "t" test and a p value less than 0.05 was considered statistically 

significant. 
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2.11 [ 3 H] BILIRUBIN UPTAKE IN CULTURED CELLS 

[ 3H] Bilirubin uptake was performed on the stable SH-SY5Y cells expressing 

costitutively the Tet repressor from pcDNA6/TR vector and inducibly the siRNA 

from pSUPERIOR vector containing the siRNA-expressing sequence targeting MRPl 

and pSUPERIOR vector containing the siRNA-expressing sequence targeting MDRl. 

The 2 recombinant pSUPERIOR vectors were transfected in different cells of the 

same clone. (see paragraph 2.9) 

In order to investigate the [ 3H]Bilirubin uptake in SH-SYSY cells siRNA-

expressing sequence targeting MRPl, the uptake experiment was performed 3 

days after induction (by doxycycline) of siRNA-expressing sequence transcription. 

In order to investigate the [3H]Bilirubin uptake in SH-SYSY cells siRNA-

expressing sequence targeting MDRl, an experiment was performed after the 

following treatment: after a 48 hour induction (by 3.9 IJM doxycycline,) of siRNA-

expressing sequence transcription, the medium containing doxycycline was 

removed, washed by PBS, and incubated in fresh medium without doxycycline, for 

48 hours more (see Results). 

Loading and Washing out Procedure: 

l. One day before performing the uptake experiment, SH-SY5Y cells were 

plated at a suitable concentration to obtain 70% surface confluence in a 4 

cm2 well (12-well plate). Cells were grown in complete medium together 

with antibiotics causing: 5 pg/ml Blasticidine 5 hydrochloride (SIGMA, 

15205) and 0,8 IJQ/ml Puromycin dihydrochloride (SIGMA, P8833), under 

5% C02. Each sample was performed in quadruplicate-3 for radiolabel 

counts, 1 for protein content (without radiolabel). 

2. 125 IJg of [3H]-UCB [previously dissolved in 40 IJL of Dimethyl sulfoxide 

(DMSO, Sigma 02438)] were diluted in culture medium supplemented with 

15% Fetal Bovine Serum (FBS) (SIGMA, F7524) containing an albumin 

concentration of 54 IJM. The unbound "free" bilirubin concentration (Br) was 

40 nM and it was determined as previously described by Roca et al. [21]. 

3. A sample of 10 IJL was taken from culture medium containing [3H]UCB-

Aibumin to measure the final bilirubin concentration. 

(Dpm/1JL)*106 
/ (MWucs x Specific Act.) = IJM UCB 

d.p.m.: disintegrations per minute 

Specific Activity units: Dpm/1Jg 
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4. After removing medium, cells were washed with PBS. 

S. Loading: A medium containing [3H]-bilirubin 10 IJMIBSA 10 IJM (BSA 

concentration contained in the serum was assessed) was added to each 

well and cells were incubated for 30 minutes. 

6. After bilirubin exposure, the cells were carefully washed with PBS to stop 

the bilirubin uptake. 

7. Export phase: cells were incubated for washout in medium without serum, 

containing l% BSA (l sample (in triplicate) wasn't treated with washout 

solution). 

8. The samples were collected immediately after uptake and after 30 min and 

60 min in washout conditions. 

9. To measure cellular radioactivity, cells cf each samples were washed 

with PBS, detached from plated with 0.1 M NaOH, plated in a vial, mixed 

with 8 mi cf liquid scintillation cocktail (Filter counter NO 6013149, Packard 

Bioscience, Groningen, The Netherlands) and placed into liquid scintillation 

counter BetaCounter (Betamatic V, Kontron, Milan, Italy) for d.p.m. 

(disintegrations per minute) reading. The software program "BILI" was 

used with the batch n°5. The celi counts were normalized by total celi 

protein content. 

Uptake calculation: 

Dpm l [((Specific Act.ucs x MWucs) l 106 ) x ((mg of celi proteinlmL) x X ml cf 

lysed cells)] = pmol/mg prot 

[
3H]-UCB Specific Activity: 29300 d.p.m. 

[
3 H]-UCB concentration: 10,9 IJM 
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Results 

3.1 RNA INTERFERENCE BY SYNTHETIC siRNA 

siRNAs (small interference RNAs) can be synthesized by in vitro 

transcription with T7 RNA polymerase, providing an economica! alternative to 

chemical synthesis of siRNAs. 

In order to find out the sequences silencing MRP1 and MDR1, some 21-nt RNAs 

were produced by in vitro transcription using siRNA Construction kit (Ambion, cat. 

1620). The sense and antisense siRNA templates were transcribed by T7 RNA 

polymerase and the resulting RNA transcripts were hybridized to create dsRNA 

with 3' terminai uridine dimers (see Materials and Methods for details of synthesis, 

purifrcation and quantitation). 

Attempting the MDR1 silencing, the in vitro transcription of a sequence 

published in 2003 [l] was performed and the siRNAs were introduced into cells via 

transient transfection. Attempting the MRP1 silencing, 5 siRNAs were designed and 

synthesized, and pilot experiments were performed to determine the most 

effective one. 

The post-transfection incubation time chosen to assess the silencing effect 

of the siRNAs targeting MDR1 and MRP1 was already used in some experiments 

described in literature [1-3] . 

Fig. 3.1a shows a 30% reduction of MDR1 expression detected by RT-Real 

Time PCR in HepG2 cells 24 hours after the transient transfection with siRNAs 

compared to controls (untransfected cells) (p<O.OS). In Hela cells (Fig. 3.1b) the 

reduction was higher (about 50%, p<O.OS). The ability of the 5 double strand 

RNAs targeting MRP1 to function as siRNAs was tested by 5 separate transient 

transfections into HepG2 cells. As it is represented in Fig. 3.2, the RT-Real Time 

PCR analysis, performed 48 hours after siRNA transfection, showed that none of 

the 5 sequences were able to modulate the MRP1 expression (p>0.2), just a small 

reduction was detectable by the siRNAl transfection. 

These first results confirmed that the siRNA targeting MDR1 could modulate 

the endogenous MDR1 mRNA of HepG2 and Hela cells 24 hours after transfection, 

while a siRNA sequence able to reduce the MRP1 expression had stili to be found. 

In the meantime, Ambion Company validated some MRP1 silencing siRNAs 

and one of them (Silencer Validated MRP1-siRNA, 5132-1651) was bought and 

tested by us in Hela cells. 

The quantitative evaluation of gene expression, performed 48 hours after 

siRNA transfection, showed a 50% reduction of the MRPl level in siRNA-

transfected cells compared to controls (Fig. 3.3). 
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The MRP1-siRNA effect on the protein expression, 72 hours after siRNA 

transfection, was also assayed. Western Blot analysis permitted to detect an 

evident reduction of MRPl expression in siRNA-transfected cells in respect of 

control, in every considered celi lines (Hela, MDCK, HCT116 and SH-SYSY) (figg. 4 

and 5). 

As for MRP1 gene, the post-transfection incubation time chosen to assess the 

silencing effect of siRNAs on the MRPl protein was already used in silencing 

studies described in literature [3]. 

3.2 VECTOR SYSTEM FOR INDUCIBLE EXPRESSION OF siRNA 

From these preliminary experiments, the sequences able to modulate the 

MRP1 and MDR1 expression were selected. 

Our aim was to apply the siRNA technology to create a model allowing us to 

perform protein function studies, by exposing cells showing a knockdown of MRPl 

or MDRl expression, to toxic compounds and comparing the effects caused in this 

cells with the ones caused in the same cells expressing endogenous MRPl or MDRl 

levels. 

For this purpose, the sequences coding the selected siRNAs were put into a 

vector with an inducible promoter (the circular pSUPERIOR.puro vector 

OligoEngine, VEC-IND-0006). It should allow us to observe long-term effects of 

siRNA and to follow the celi behaviour after removing the agent able to trigger the 

siRNA transcription. 

Fig. 3.6 shows the electrophoresis result of the pSUPERIOR.puro vector 

linearization products. They were obtained by the vector incubation with the 

restriction enzymes Bgi!I and Hindiii contemporaneously and separately. In order 

to check whether the digestion was complete or not, undigested pSUPERIOR.puro 

vector was also loaded into the gel. 

Generally, if the digestion is complete, in the lane of the digested vector should be 

visualized a unique band running more slowly than undigested vector. Any other 

band detectable in that lane represent different supercoil forms. 

Fig 6 shows that in every digested vector lanes, an unique band is present. In the 

gel it is located at a lower position than undigested vector. That demonstrated that 

the restriction enzymes Bgi!I and Hindlll digested the vector completely. 

The ligation in pSUPERIOR.puro of the inserts coding the siRNA targeting 

MRP1 and MDR1 respectively was performed. 

The ligation products were cloned in E.coli X/1. 

10 colonies were isolated on the plate of bacteria transformed by pSUPERIOR 

containing oligos targeting MRP1 and 4 colonies were isolated on the plate of 
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bacteria transformed by pSUPERIOR, containing oligos targeting MDR1. No 

colonies were grown on the control plate. 

The recombinant vectors were extracted from the colonies and linearized by EcoRI 

and Xhol. 

Fig. 3.7 shows the electrophoresis of the products obtained by the ligation 

in pSUPERIOR.puro of the inserts coding the siRNA targeting MRP1 and MDR1 

respectively, and linearized by EcoRI and Xhol. 

The pSUPERIOR.puro vector without insert linearized by EcoRI and Xhol should 

have 248 pb, while the pSUPERIOR.puro vector with insert linearized by EcoRI and 

Xhol should have 281 pb (see Materials and Methods). 

Consequently, the electrophoresis results made possible to recognize 5 vectors 

containing the insert targeting MRP1 (vectors loaded in the lanes: 6, 7, 8, 11 and 

12 of the agarose gel) (Fig. 3.7) and 2 vectors containing the insert targeting 

MDR1 (vectors loaded in the lanes: 14 and 16 of the agarose gel) (Fig. 3.7). 

Among these vectors, 2 were chosen (vector loaded in the lanes 11 and 16 

of the gel represented in Fig. 3. 7) and extracted from bacteria using a system that 

permitted to isolate high quality DNA. They were loaded into an agarose gel. The 

eletrophoresis results are shown in Fig. 3.8. 

To be sure that the oligos coding the siRNAs targeting MRP1 or MDR1 were 

inserted correctly, the sequencing of the 2 recombinant vector was performed (see 

Materia fs and Methods). 

The sequencing results analysed by BLAST (Basic Local Alignment Search 

Tool) showed a correct insertion of the oligos targeting MDR1, but not the ones 

targeting MRP1. Another recombinant vector containing oligos targeting MRP1 

(vector loaded in the lane 6 of the agarose gel, Fig. 3. 7) was sequenced. The 

BLAST analysis confirmed that the oligos of interest were inserted correctly. 

Extractions of the selected recombinant vectors were performed on large scale. 

3.3(3-GALACTOSIDASE ASSAY 

In such a vector system for the inducible expression of small interfering 

RNA, in addition to pSUPERIOR, pcDNA6/TR vector (a Tet repressor expressing 

vector) was required. It had to be transfected into cells of interest and the clone 

that expressed the highest level of repressor had to be selected by a transient 

tranfection of the pcDNA4/TO//acZ vector. Lac z gene encodes B-galactosidase, an 

enzyme that catalyzes the hydrolysis of B-galactosides, including the galatoside 

analog chlorophenol red-B-D-galactopyranoside (CPRG). When cleaved by B-

galactosidase, catalytic hydrolysis of the colorless CPRG substrate yields a dark red 

water-soluble product. The levels of active B-galactosidase in each clone could be 
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measured by a microtiter plate reader at À=562 nm (~-galactosidase assay). The 

synthesis of B-galactosidase was induced by adding doxycycline (3.9 IJM) into the 

celi culture medium (see Materials and Methods). 

In particular, our studies have been performed in SH-SY5Y neuroblastoma cells. 

Tables 1, 2 and 3 report the ~-galactosidase activity values of 17 SH-SY5Y 

clones, which proved to be positive after the transfection of the pcDNA6/TR vector 

and selection by blasticidin (a kill curve was established in arder to determine the 

optimal blasticidin dose for selecting positive clones: it was 0.5 IJQ/ml) (see 

Materials and Methods). The ~-galactosidase activity was assessed for both 

induced (siRNA synthesis induced by adding doxycycline) and uninduced (without 

adding doxycycline) sample of each clone. Blank absorbance was also assessed. 

The absorbance was measured every 5 minutes far 30 minutes to avoid the values 

of a reaction not occurred yet or already at plateau. The blank absorbance was 

subtracted from the each sample and the resulting absorbance was normalized by 

its protein concentration (table 4). The ratio of the induced sample absorbance to 

the uninduced sample absorbance was calculated (table 5 a, b). It shows how 

many times the clone ~-galactosidase activity increases thanks to the induction by 

doxycycline. The clone showing the maximum increase was chosen. It proved to 

be able to synthesize the highest level of Tet repressor, in absence of doxycycline. 

Among the 17 clones tested, clone 81 was chosen and the transfections of the 

pSUPERIOR vector containing the siRNA-expressing sequence targeting MRP1 and 

pSUPERIOR vector containing the siRNA-expressing sequence targeting MDR1 

were performed. As the pSUPERIOR.puro vector contains the gene coding the 

puromycin resistance, before performing the transfections a kill curve was 

estabilished to identify the lowest puromycin dose that killed non-transfected cells 

within approximately 5 days: it was 0.8 1-19/ml. 

Several positive stable SH-SY5Y clones expressing costitutively the Tet 

repressor from pcDNA6/TR vector and inducibly the siRNA targeting MRP1 or 

MDR1 from pSUPERIOR vector, were isolated. However, five clones containing the 

sequences coding the siRNA targeting MRP1 (MRP1-pSUPERIOR) (clones 4, 5, 9, 

10, 14) and three clones containing the sequences coding the siRNA targeting 

MDR1 (MDR1-pSUPERIOR) (clones 2, 33, 34) were considered. 

Among these clones, the one showing the highest level of the target 

gene/protein suppression (induced clone compared to uninduced clone) had to be 

found aut. 
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Initial attempts to detect an evident reduction of MRP1/MRP1 and MDR1/ 

MDR1 in the mentioned clones by RT-Real time PCR and Western Blot failed. The 

reason was discovered later. 

3.4 FUNCTIONAL ANAL YSIS 

In the meantime, another method for screening the clones had to be found 

out. As MRP1 and MDR1 are transporters able to take a variety of compounds out 

of the cells, we focused our attention on performing citotoxicity assays in the 

presence of drugs, MRP1 or MDR1 substrates. This should give us information 

about the functional activity level of the target proteins. In fact we expected that, 

after exposing to the toxic substrates of MRP1 or MDR1, the viability of the 

induced sample of a clone had to be lower than the uninduced sample. This is why 

cells expressing lower levels of MRP1 or MDR1 should have a reduced ability to 

extrude the substrates of these proteins and were, therefore, more susceptible to 

the citotoxicity effect of those compounds. 

Fig. 3.9 shows the results of MTT assay performed in MRP1-pSUPERIOR 

clones. After a 72 hour incubation of the doxycycline-induced sample of each 

clone, the induced and uninduced samples were incubated with different amount 

of doxycycline (MRP1 and MDR1 substrate) and, separately, indomethacin (MRP1 

substrate) for 24 hours. MTT reduction was assessed. 

Making a comparison between the MTT metabolism of the induced sample and 

uninduced sample of a same clone, the results showed that: 

MTT metabolism of clones 4, 9 and especially 10 was significantly (p values are in 

Fig. 3.9) affected by the induction of siRNA synthesis targeting MRP1 (fig. 9 a, b, 

e, f, g, h), while MTT metabolism in the induced and uninduced samples of the 

clones 5 and 14 were comparable (Fig. 3.9 c, d, i, l) 

Fig. 3.10 shows the results of MTT assay performed in MDR1-pSUPERIOR 

clones. After a 48 hour incubation of the doxycycline-induced sample of each 

clone, induced and uninduced samples were incubated with different amount of 

doxycycline (MRP1 and MDR1 substrate) and, separately, ceftriaxone (MDR1 

substrate) for 24 hours. MTT reduction was assessed. 

As regards as the MTT metabolism of the induced sample compared to uninduced 

sample of a same clone, the results showed that: 

MTT metabolism of clones 2 and 33 was significantly (p values are in Fig. 3.10) 

affected by the induction of siRNA synthesis targeting MDR1 (Fig. 3.10 a, b, c, d), 

while MTT metabolism in the induced and uninduced samples of the clones 34 was 

comparable (Fig. 3.10 e, f). 
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From the MTT assay results, clones 4, 9 and 10 (MRP1/MRP1-pSUPERIOR), 

and clone 2 and 33 (MDR1/MDR1-pSUPERIOR) showed the highest suppression of 

MRP1 and MDR1 level respectively. 

3.5 GENE ANO PROTEIN EXPRESSION ANALYSIS 

Starting from these findings and focusing our attention on MRP1-

pSUPERIOR clones, a quantitative evaluation of the MRP1 expression in induced 

and uninduced samples of the clones 4, 5, 9, 10 and 14, was carried out. The 

results of the analysis by RT-Real Time PCR are represented in Fig. 3.11: after a 

48 hour incubation with doxycycline, no significant differences in the MRP1 

expression between induced and uninduced samples of a same clone were 

detected, even in the clones 4, 9 and 10. 

This observation suggested we should examine carefully the MRP1/MRP1 

expression of the cells at different doxycycline incubation time. 

Clone 10 was chosen to perform the next investigation. In order to assess the 

MRP1 expression, the induced samples were incubated with doxycycline (3.9 !JM) 

for 24, 48 and 72 hours. In addition, an induced sample was analysed 48 hours 

after doxycycline removing from cells previously incubated with doxycycline for 48 

hours. Fig. 3.12 shows the MRP1 expression level of the induced and uninduced 

sample detected by RT-Real Time PCR at every incubation time. In contrast with 

the results of the silencing experiments performed by synthetic siRNA in Hela cells 

(Fig. 3.3), no reduction of MRP1 expression was observed in the induced compared 

to uninduced sample after a 24 and 48 hour incubation with the inducing agent. 

Just after a 72 hour incubation with doxycycline, an evident reduction (about 

45%) of the MRP1 expression in the induced sample compared to the uninduced 

sample was detectable. The sample incubated with doxycycline for 48 hours and 

then without doxycycline for other 48 hours showed also an evident reduction 

(about 40%) compared to the uninduced sample. These results were confirmed by 

protein expression analysis performed by Western Blot (Fig. 3.13). Doxycycline 

(3.9 !JM) was present in the medium of the induced samples for 24, 48 and 72 

hours. In addition, an induced sample was analysed 72 hours after doxycycline 

removing from cells previously incubated with doxycycline for 72 hours. The 

protein analysis performed after a 24 or 48 hour incubation with doxycycline, 

showed a MRP1 expression of induced sample even higher than uninduced one, 

while the result obtained analysing the MRPl expression after a 72 hour incubation 

showed an substantial change: the induced sample expressed a MRPl level really 

lower than uninduced one, as visible by observing the bands and their 

quantification performed by Scion Image and Curver Expert softwares (Fig. 3.13). 
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The sample incubated in the presence of doxycycline for 72 hours and then in the 

absence of doxycycline for other 72 hours showed also a reduction compared to 

uninduced sample. In addition, a small MRP1/MRP1 up-regulation seemed 

occurred in the induced sample of the contrai (clone stably transfected by 

pcDNA6/TR vector, but not by pSUPERIOR vector, see Materials and Methods) 

compared to uninduced sample. 

Fig. 3.14 shows the quantitative evaluation of MDR1 expression in induced 

and uninduced samples of the clones 2, 33 and 34 (MDR1-pSUPERIOR). The 

analysis performed by RT-Real Time PCR after a 24 hour incubation of induced 

samples with doxycycline (3.9 IJM), showed a 30% reduction of the MDR1 

expression in induced sample of clone 2 compared to uninduced sample. The clone 

33 showed a 15% reduction of MDR1 expression between induced and uninduced 

sample, and as regard to clone 34 even a small increment of MDR1 expression was 

detectable in induced with respect of uninduced sample. The MDR1 expression 

level of the contrai was clearly (25%) higher in the induced sample compared to 

the uninduced one. 

In Fig. 3.15 the result of the protein expression analysis is shown. Induced 

samples of the clones 2, 33 and 34 were incubated with doxycycline for 48 hours 

before assessing the MDR1 expression. The band quantification performed by 

Scion Image and Curver Expert softwares showed an evident reduction of the 

MDR1 expression between induced and uninduced sample of the clone 33. This 

reduction was small in clone 2, while the clone 34 showed a MDR1 expression of 

the induced sample higher than the uninduced one. These results confirmed what 

came out from the MTT assay and RT-Real Time PCR for clone 34, while data 

obtained for clones 2 and 33 had to be clarified. 

Clone 2 was chosen to make further investigations. 

RT-Real Time PCR was used to measure the MDR1 expression of clone 2 when the 

induced sample was incubated with doxycycline (3.9 !JM) for 24 and 48 hours. In 

addition, MDR1 expression level was assessed also when the induced sample was 

incubated with doxycycline (3.9 !JM) for 24 hours and then without doxycycline for 

other 24 hours. The uninduced samples were analysed every time. In Fig. 3.16 the 

quantitative evaluation is represented. After a 24 hour incubation with 

doxycycline, induced sample showed a 30% MDR1 level reduction compared to 

uninduced one. This difference halved in the analysis performed 48 hours after 

incubation with doxycycline, while it became higher than 50% when the induced 

sample, incubated with doxycycline for 24 hours and then without doxycycline for 

other 24 hours, was assessed. 

The protein analysis (Fig. 3.17) confirmed the observation done in the gene 

analysis. The reduction of MDR1 expression of the induced sample compared to 
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the uninduced one was not significant after a 24 or 48 hour incubation with 

doxycycline {3.9 IJM), but it became considerable if the induced sample was 

compared to the uninduced one after a 48 hour incubation with doxycycline 

followed by a 48 hour incubation without doxycycline. 

3.6 [ 3H]UCB-UPTAKE ASSAY 

The confirmation that clone 10 (MRP1-pSUPERIOR) and 2 (MDR1-

pSUPERIOR), induced by doxycycline, expressed a reduced level of MRP1 and 

MDR1 respectively, and the identification of the optimal time to observe the 

silencing, allowed us to perform an uptake assay to investigate the role of the 

MRP1 and MDR1 in the transport of unconjugated bilirubin (UCB). As shown in the 

Fig. 3.18, after an exposure to [ 3H] UCB (Bf AO nM) for 3D minutes, a clearly 

higher UCB amount was detected in the induced cells (after a 72 hour incubation 

with doxycycline) of clone 10 compared to the uninduced one (p<0.0006). On the 

contrary, after an exposure to [ 3H] UCB (Bf AO n M) for 30 minutes, the UCB level 

found out in the induced sample of clone 2 after a 48 hours incubation with 

doxycycline followed by a 48 hours incubation without doxycycline, was 

comparable to the one found out into the uninduced sample (p>0.3). It showed 

that MRP1, but not MDR1 could transport UCB having Bf AO nM. 
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QUANTITATIVE GENE EXPRESSION ANALYSIS BY RT-REAL TIME PCR 

Target gene: MDR1. 
Target region: 79-99 

(Wu H, Hait WN, Yang JM (2003) Cancer Res 63(7), 1515-1519) 

siRNA TRANSIENT TRANSFECTION 

1,2 

HepG2 

0,8 

MDR1/ {J-ACTIN 0,6 

0,4 

0,2 

o 

CTRL Lipofec siRNA 
Fig. 3.1 a 

0,8 

MDR1/{J-ACTIN 0,6 

0,4 

0,2 

CTRL Lipofec siRNA 

Fig. 3.1 b 

Fig. 1.1 a, b Quantitative evaluation of MDRl expression in HepG2 cells (fig. la) and 

Hela cells (fig. lb) transiently tranfected by siRNA targeting MDRl 

(published sequence). RT-Real Time PCR was performed normal izing MDRl 

expression values to housekeeping gene {3-ACTIN. MDRl expression of transfected 

cells (siRNA) was analysed 24 hours after transfection and compared with its 

controls (not transfected cells): CTRL (non treated cells) and Lipofec (cells treated 

with Lipofectamine 2000). MDRl expression was calculated relatively to MDRl 

leve l of CTRL, considered = 1. Data are given as mean ± SD (bars) . #p < 0.05 

from CTRL; *p < 0.05 from Lipofec; §P > 0.4 from CTRL. 
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Target gene: MRP1 

Target regions: 299-319 (Sequence 1) 
1469-1489 (Sequence 2) 
1682-1702 (Sequence 3) 
2867-2887 (Sequence 4) 
4535-4555 (Sequence 5) 

Results 

1,4,------------------------------------------------------, 
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siRNAl siRNA2 siRNA3 siRNA4 siRNAS 

=ig. 3.2 Quantitative evaluation of MRP1 expression in HepG2 cells transiently 
tranfected by siRNA targeting MRP1 (sequences 1, 2, 3, 4, 5, designed 
and synthesized by myself). RT-Real Time PCR experiments were performed 

normalizing MRP1 expression values to housekeeping gene {3-ACTIN. MRP1 

expression of transfected cells (siRNA) was analysed 48 hours after 

transfection and compared with its controls (not transfected cells): CTRL (not 

treated cells) and Lipofec (cells treated by Lipofectamine 2000). MRP1 
expression was calculated relatively to MRP1 level of CTRL, considered=l. Data 

are given as means ± SO (bars). Ali p values > 0.2 from controls. 

Silencer Validated MRP1.- siRNA (Ambion 51321) 
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=ig. 3.3 Quantitative evaluation of MRP1 expression in ~ cells transiently tranfected by 
siRNA targeting MRP1 (sequence designed, synthesized and validated by Ambion). 
RT-Real Time PCR experiments were performed normalizing MRP1 expression values to 

housekeeping gene /3-ACTIN. MRP1 expression of transfected cells (siRNA) was analysed 48 
hours after transfection and compared with its controls (not transfected cells): CTRL (not 

treated cells) and Lipofec (cells treated by Lipofectamine 2000). MRP1 expression was 

calculated relatively to MRP1 level of CTRL, considered=l. Data are given as mean ± SO 

(bars). #p < 0.02 from CTRL; *p < 0.03 from Lipofec; §P > 0.5 from CTRL. 
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P ROTEI N EXPRESSION ANAL YSIS BY WESTERN BLOT 

Target protein: MRPl 
Silencer Validated siRNA (Ambion, 51321} 

siRNA TRANSIENT TRANSFECTION 

Results 

Hela cells 

20 20 20 20 (IJg) 

MRPl 190 kDa 

siRNA siRNA CTRL CTRL 

ACTIN 

MDCK cells 

15 15 15 15 (IJg) 

MRPl 190 kDa 

siRNA siRNA CTRL CTRL 

ACTIN 

Fig. 3.4 Western Blot analysis of MRPl protein in ~ cells and MDCK108 cells transiently 
transfected by siRNA targeting MRPl (sequence designed, synthesized and validated 
by Ambion). The MRPl expression of transfected cells (siRNA) was analysed 72 hours after 
transfection and compared to its control (not transfected cells) (CTRL). MRPl was detected by 
a specific antibody (see Materia/s and Methods) and showed an apparent molecular weight 
around 190 kDa. The expression of the housekeeping protein (ACTIN) was also detected. 
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Results 

HCT116 cells 

20 20 (J,Ig) 

MRPl 

CTRL siRNA 

ACTIN 

SH-SYSY cells 

20 20 (J,Ig) 

MRPl 190 kDa 

siRNA CTRL 

ACTIN 

Fig. 3.5 Western Blot analysis of MRP1 protein in HCT116 cells and SH-SYSY cells transiently 
transfected by siRNA targeting MRP1 (sequence designed, synthesized and validated 
by Ambion}. The MRPl expression of transfected cells (siRNA) was analysed 72 hours after 
transfection and compared to its contrai (not transfected cells) (CTRL). MRPl was detected by 
a specific antibody (see Materials and Methods) and showed an apparent molecular weight 
around 190 kDa. The expression of the housekeeping protein (ACTIN) was a Iso detected. 
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Results 

QUALITATIVE ANALYSIS OF THE PLASMID oSUPERIOR.ouro 
LINEARIZED BY Bgl II AND Hind III 

12 34 56 7 

Fig. 3.6 Gelloaded with pSUPERIOR.puro undigested and digested by Bglll and/or Hindlll. 

The samples were loaded in the following order: 
1. pSUPERIOR.puro UNDIGESTED 
2. MARKER l Kb 
3. MARKER l Kb 
4. MARKER 100 pb 
5. pSUPERIOR.puro digested by Bglll 
6. pSUPERIOR.puro digested by Hindiii 
7. pSUPERIOR.puro digested by Bglll e Hindiii 
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Results 

QUALITATIVE ANALYSIS OF THE LIGATION IN oSUPERIOR.ouro OF 
THE INSERTS CODING THE shRNAs TARGETING MRP1 ANO MDR1, 

LINEARIZED BY EcoRI e Xhoi 

l 2 3 4 5 () 7 8 9 10 1112 13 1415161718 

Fig. 3.7 Gelloaded with the samples obtained by the ligation into pSUPERIOR.puro of the 
sequences coding the shRNAs targeting MRPl and MDRl and digested by EcoRI and Xhoi. 
The samples were loaded in the following order: 

l . MARKER l Kb 

2. MARKER 100 pb 

3. pSUPERIOR.puro without insert, digested by EcoRI e Xhol 

4-12. pSUPERIOR.puro that should contain the insert coding the shRNAs targeting MRP1, digested 

by EcoRI e Xhol. 

13-16. pSuperior.puro that could contain the insert coding the shRNAs targeting MDR1, digested by 
EcoRI e Xhol. 

17. Marker lKb 

18. Marker 100 pb 

l 2 3 4 5 

Fig. 3.8 Gel loaded with the samples selected among the plasmids that from a first analysis 
(fig. 1.7) proved to contain the insert of interest. 
The samples were loaded in the following order: 
l. MARKER 100 pb 

2. pSUPERIOR.puro without insert and digested by EcoRI e Xhol. 

3. pSUPERIOR.puro containing the insert coding the shRNAs targeting MRP1, digested by 

EcoRI and Xhol (plasmid loaded into the lane 11, fig.?). 

4. pSuperior.puro containing the insert coding the shRNAs targeting MDR1, digested by EcoRI 

and Xhol (plasmid loaded into the lane 16, fig. 7). 
5. MARKER 100 pb. 
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Results 

P-GALACTOSIDASE ASSAY 

A8S 81ank CLONES 
assay (A8S 
time at at>.= 

1 2 8 À=562 562 
n m nm) 

Induced Non-induced Induced Non-induced Induced Non-induced 

Abs Abs-8 Abs Abs -8 Abs Abs-8 Abs Abs-8 Abs Abs-8 Abs Abs-8 
t=O 0,214 0,320 0,106 0,220 0,006 0,603 0,389 0,257 0,043 0,650 0,436 0,220 0,006 
t=5' 0,215 0,374 0,159 0,226 0,011 0,806 0,591 0,281 0,066 0,883 0,668 0,226 0,011 

t= lO' 0,218 0,417 0,199 0,230 0,012 0,950 0,732 0,301 0,083 1,058 0,840 0,229 0,011 
t=l5' 0,218 0,456 0,238 0,232 0,014 1,080 0,862 0,319 0,101 1,211 0,993 0,234 0,016 
t=20' 0,218 0,488 0,270 0,237 0,019 1,183 0,965 0,333 0,115 1,327 1,109 0,237 0,019 
t=25' 0,218 0,522 0,304 0,238 0,020 1,289 1,071 0,348 0,130 1,445 1,227 0,242 0,024 
t=30' 0,220 0,548 0,328 0,242 0,022 1,374 1,154 0,361 0,141 1,549 1,329 0,244 0,024 

A8S 81ank CLONES 
assay (A8S 
ti me at a t>.= 

81 19 }.=562 562 
n m nm) 

lnduced Non-induced lnduced Non-induced 
TA8LE3.1 

Abs Abs-8 Abs Abs Abs Abs-8 Abs Abs-8 A8S= Absorbance 

t=O 0,214 0,494 0,280 0,214 o 0,608 0,394 0,775 0,561 
A8S-8= Absorbance - 81ank 

t=5' 0,215 0,670 0,455 0,220 0,005 0,876 0,661 1,102 0,887 
t= IO' 0,218 0,808 0,59 0,226 0,008 1,059 0,841 1,358 1,140 
t=l5' 0,218 0,918 0,70 0,232 0,014 l ,210 0,992 1,568 1,350 
t=20' 0,218 1,005 0,787 0,236 0,018 1,345 1,127 1,752 1,534 
t=25' 0,218 l ,Q91 0,873 0,240 0,022 1,470 1,252 l ,913 1,695 
t=30' 0,220 1,167 0,947 0,243 0,023 1,578 1,358 2,079 1,859 

A8S 8lank CLONES 
assay (A8S ti me 
at>.= at>.= 

39 562 562 nm) n m 

lnduced Non-induced 

Abs Abs-8 Abs Abs- 8 
t=O 0,268 0,914 0,646 0,519 0,251 
t=5' 0,267 1,793 1,526 1,116 0,849 

t= lO' 0,267 2,521 2,254 1,602 1,335 
t=l5' 0,268 3,042 2,774 1,959 1,691 
t=20' 0,270 3,468 3,198 2,253 1,983 
t=25' 0,271 3,823 3,552 2,524 2,253 
t=30' 0,271 4,265 3,994 2,745 2,474 
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Results 

p-GALACTOSIDASE ASSAY 

A8S 81ank SH.SY5Y CLONES 
assay (A8S 
timeat atÀ= 

5 14 80 >.=562 562 
n m nm) 

lndnced Non-induced Induced Non-induced Induced Non-induced 

Abs Abs-8 Abs Abs -B Abs Abs-8 Abs Abs-8 Abs Abs-8 Abs Abs- 8 
t= O 0,291 0,327 0,036 0,205 l 1,098 0,807 0,383 0,092 0,328 0,037 0,205 l 
t=5' 0,295 0,464 0,169 0,206 l 2,269 1,974 0,634 0,339 0,536 0,241 0,211 l 

t=10' 0,293 0,578 0,285 0,204 l 3,112 2,819 0,840 0,547 0,712 0,419 0,220 l 
t=15' 0,296 0,688 0,392 0,206 l 3,769 3,473 1,008 0,712 0,853 0,557 0,226 l 
t=20' 0,297 0,777 0,48 0,207 l 4,270 3,973 1,147 0,85 0,989 0,692 0,232 l 
t=25' 0,297 0,863 0,566 0,209 l 4,500 4 203 1,269 0,972 1,099 0,802 0,239 l 
t=30' 0,300 0,942 0,642 0,209 l 4,500 4,2 1,382 1,082 1,204 0,904 0,244 l 

ABS 81ank SH-SY5Y CLONES 
assay (ABS 
timeat at >.= 
),=562 562 89 
n m nm) 

Induced Non-induced TABLE 3.2 

ABS= Absorbance 
Abs Abs-8 Abs Abs-B ABS- B= Absorbance- Blank 

t=O 0,291 0,322 0,031 0,305 0,014 /: the absorbance of the induced and/or uninduced 
t=5' 0,295 0,558 0,263 0,554 0,259 sample is = or lower than the blank absorbance. 

t=10' 0,293 0,783 0,49 0,765 0,472 
t=15' 0,296 0,971 0,675 0,939 0,643 
t=20' 0,297 1,152 0,855 1,098 0,801 
t=25' 0,297 1,308 1,011 1,231 0,934 
t=30' 0,300 1,471 1,171 1,336 1,036 

A8S Blank SH-SY5Y CLONES 
assay (ABS ti me atÀ= atÀ= 562 20 28 73 
562 nm) n m 

Induced Non-indnced lnduced Non-induced lnduced Non-induced 

Abs Abs-8 Abs Abs-B Abs Abs-8 Abs Abs-8 Abs Abs-8 Abs Abs-B 
t=O 0,255 1,039 0,784 1,343 1,088 0,795 0,54 0,388 0,133 1,073 0,818 0,947 0,692 
t=5' 0,254 1,644 1,39 2,347 2,093 1,397 1,143 0,407 0,153 2,187 1,933 2,142 1,888 
t=10' 0,254 2,190 1,936 3,161 2,907 1,883 1,629 0,425 0,171 3,080 2,826 3,080 2,826 
t=l5' 0,255 2,658 2,403 3,731 3,476 2,277 2,022 0,442 0,187 3,766 3,511 3,799 3,544 
t=20' 0,255 2,998 2,743 4,204 3,949 2,578 2,323 0,456 0,201 4,275 4,02 4,316 4,061 
t=25' 0,256 3,266 3,01 4,467 4,211 2,847 2,591 0,466 0,21 4,348 4,092 4,500 4,244 
t=30' 0,256 3,479 3,223 4,500 4,244 3,106 2,85 0,478 0,222 4,500 4,244 4,500 4,244 
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Resu/ts 

B-GALACTOSIDASE ASSAY 

ABS Blank SH-SY5Y CLONES 
assay (ABS ti me 
at>.= at À= 

6 9 32 562 562 nm) n m 

Induced Non-induced lnduced Non-induced Induced Non-induced 

Abs Abs-B Abs Abs-B Abs Abs-B Abs Abs-B Abs Abs-B Abs Abs-B 
t=O 0,470 0,393 l 0,365 l 0,464 l 0,335 l 1,416 l 0,885 l 
t=5' 0,452 0,430 l 0,384 l 0,538 l 0,349 l 2,110 l 1,285 l 
t=10' 0,443 0,461 l 0,401 l 0,602 l 0,360 l 2,625 l 1,592 l 
t-15' 0,435 0,488 l 0,415 l 0,656 l 0,370 l 3,086 l 1,844 l 
t=20' 0,433 0,511 l 0,429 l 0,707 l 0,378 l 3,381 l 2,049 l 
t=25' 0,435 0,538 0,103 0,443 0,008 0,754 0,319 0,388 o 3,656 3,221 2,241 1,806 
t=30' 0,434 0,558 0,124 0,455 0,021 0,797 0,363 0,394 o 3,976 3,542 2,434 2 

ABS Blank SH-SY5Y CLONES 
assay (ABS ti me at À= at>.= 562 87 
562 nm) n m 

Induced Non-induced TABLE 3.3 

ABS= Absorbance 
ABS - B= Absorbance - Blank Abs Abs-B Abs Abs- B /: the Absorbance of the induced and/or uninduced 

t=O 0,470 0,683 l 0,418 l sample is = or lower than the blank absorbance. 
t=5' 0,452 0,984 l 0.544 l 
t=10' 0,443 1,217 l 0,644 l 
t=15' 0,435 1,398 l 0,723 l 
t=20' 0,433 1,560 l 0,794 l 
t=25' 0,435 1,703 1,268 0,863 0,428 
t=30' 0,434 1,83 1,398 0,924 0,49 

TABLES 1, 2 and 3 show the absorbance values at A= 562 nm of the SH-SYSY clones transfected 

stably with the pcDNA6/TR vector and transiently with pcDNA4/TO//acZ vector, and treated with 
chlorophenol red-B-D-galactopyranoside, CPRG (see Materia/s and Methods). For each clone, an 

induced (by 3.9 IJM doxycicline) and an uninduced sample was considered. Clones were tested 24 
hours after the induction. 
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Resu/ts 

B-GALACTOSIDASE ASSAY 

PROTEIN SH-SY5Y CLONES 
EXTRACT l 2 8 VOLUME 

lnduced Non-induced Induced Non-induced lnduced Non-induced 

Abs (>.=562) 20 j.tl 0,140 0,160 0,463 0,584 0,323 0,111 
Concentration 0,1441lg/JJJ 0,165 llgllll 0,477 llgllll 0,602 llgl Ili 0,33 llgllll O,llllWill 

PROTEIN SH-SY5Y CLONES 
EXTRACT 
VOLUME 19 81 39 

Induced Non-induced Induced Non-induced Induced Non-induced 

Abs (À-562) 
20 j.tl 

0,129 0,078 0,479 0,410 0,479 0,410 
Concentration 0,13 llg/111 0,081lg/lll 0,494 llgl Ili 0,423 llgllll 0,4941lg/lll 0,423 llgllll 

PROTEIN SH-SY5Y CLONES 
EXTRACT 

5 14 80 VOLUME 

lnduced Non-induced Induced Non-induced Induced Non-induced 

Abs (>.~562) 20 j.tl 0,037 0,004 0,919 1,098 0,076 0,489 
Concentration 0,04l!lg/lll 0,005j.tg/j.tl l ,008j.tg/j.tl l ,204!lg/Jll 0,084j.tg/J!I 0,5361lg/lll 

PROTEIN SH-8Y5Y CLONES 
EXTRACT 

89 VOLUME 20 28 

lnduced Non-induced Induced Non-induced Induced Non-induced 

Abs (À-562) 
20 j.tl 0,042 0,273 0,122 0,224 0,309 0,368 

Concentration 0,046j.tg/lll 0,299j.tg/j.tl 0,137j.tg/j.tl 0,25lj.tg/j.tl 0,346j.tg/j.tl 0,413j.tg/j.tl 

PROTEIN SH-SY5Y CLONES 
EXTRACT 
VOLUME 73 6 9 

lnduced Non-induced Induced Non-induced Induced Non-induced 
Abs (>.~ 562) 

20 j.tl 0,534 0,084 0,084 0,213 0,07 0,225 
Concentration 0,598j.tg/j.tl 0,094j.tg/lll 0,0941lg/lll 0,2391lg/lll 0,08j.tg/j.tl 0,25j.tg/j.tl 

PROTEIN SH-SY5Y CLONES 
EXTRACT 
VOLUME 32 87 TABLE3.4 

Induced Non-induced Induced 
The protein concentrations 

Non-induced of induced (by doxycycline) 
Abs (À 562) 20 j.tl 0,278 0,486 0,228 0,308 and uninduced samples are 

Concentration 0,3lj.tg/j.t] 0,54j.tg/j.tl 0,26j.tg/j.tl 0,35j.tg/j.tl shown. 
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Results 

B-GALACTOSIDASE ASSAY 

Assay time SH-SY5Y CLONES 

l 2 6 8 9(+B)* 19 20 28 32 

t=O 20,19 11,35 l 27 l 0,42 1,32 4,86 4 
t=5' 16,46 11,29 l 21,21 4,96 0,45 1,33 8,81 3,48 

t=10' 18,93 11,29 l 28,88 5,37 0,45 1,22 11,46 3,33 
t=15' 19,43 10,94 l 21,32 5,86 0,44 1,27 12,82 3,28 
t=20' 16,08 10,56 l 20,06 6,01 0,44 1,27 13,67 3,19 
t=25' 17,36 10,5 45,625 17,23 6,26 0,40 1,31 14,7 1,95 
t=30' 17,08 10,37 20,95 18,68 6,5 0,44 1,39 15,37 1,94 

a. 

Assaytime SH-SY5Y CLONES 

39 73 81 87 5(+B)* 14 80(+B)* 89 

t=O 2,21 0,74 l l 0,172 10,45 10,31 14,8 
t=5' 1,54 0,64 144 8 0,24 6,96 16,39 6,59 
t=10' 1,44 0,62 12Q 5,21 0,31 6,16 20,82 6,75 
t=15' 1,4 0,62 11,,21 3,29 0,37 5,81 24,93 6,84 
t=20' 1,38 0,62 68;57 3,12 0,41 5,61 28,26 6,95 
t=25' 1,35 0,60 62,64 2,66 0,45 5,19 29,57 7,04 
t=30' 1,38 0,62 64,16 2,565 0,49 4,66 31,74 7,36 

b. 

TABLE 3.5 (a, b) p-galactosidase activity of the selected SH-SYSY clones 24 hours after 
induction by doxycycline (3.9 IJM). The absorbance values were normalized by 

the protein concentration of each sample and the ratio of induced sample to 

uninduced sample was calculated. The clones showing the highest ratio are 
marked. 

* For clones S, 9 and 80 the normalization and the ratio of the induced to the uninduced clone was 

performed without subtracting the blank, because the absorbance of the uninduced clone was lower 
than blank absorbance. 
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Results 

CITOTOXICITY EFFECT OF ORUGS (MRP1 ANO/OR MOR1 

SUBSTRATES) ON SH-SYSY CLONES 

(p5UPERIOR-MRP1 ANO pSUPERIOR-MOR1) 

SH-SYSY cells, CLONE 4 (pSUPERIOR-MRP1) 

OOXYCYCLINE 

140,0 
l:: 120,0 o # * :;::; 100,0 (,) 
::::s 80,0 

"O e 60,0 

1- 40,0 
1- 20,0 
:E 0,0 

CTRL 1.56 mM 2.34 mM 

a. # * ** p < 0.003; p < 0.02; p < 0.002 

INDOMETHACIN 

120,0 

100,0 
l:: 
.2 80,0 -(,) 
::::s 

"O 60,0 e 
1- 40,0 1-
:E 

20,0 

0,0 

CTRL O.SmM 1 mM 2mM 

b # * ** § • p > 0.2; p < 0.0001; p < 0.05; p > 0.05 
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SH-SY5Y cells, CLONE 5 (pSUPERIOR-MRP1) 

DOXYCYCLINE 

1: 120,0 
o 100,0 .. 
u 80,0 
:l 
"C 60,0 * e 40,0 .... 20,0 1-
:E 0,0 

CTRL 1.56 mM 2.34mM 

c. # * ** p > 0.4; p > 0.3; p < 0 .02 

INDOMETHACIN 

120,0 
1: 100,0 o - 80,0 u 
:l 
"C 60,0 e 40,0 .... .... 20,0 :E 

0,0 

CTRL O.SmM 1 mM 2mM 

d # * ** § • p > 0.05; p > 0 .05; p > 0.6; p > 0.2 
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SH-SY5Y cells, CLONE 9 (pSUPERIOR-MRP1) 

DOXYCYCLINE 

120,0 # 
r:::: 100,0 o ;; 80,0 CJ 
:l 
'O 60,0 Q) ... 
l= 40,0 

:E 20,0 

0,0 

CTRL 1.56 mM 2.34 mM 

e. # * ** p < 0.05; p < 0.003; p > 0.2 

INDOMETHACIN 

120,0 
r:::: .!2 100,0 
u 80,0 
:l 
"C 60,0 e 
1- 40,0 

~ 20,0 
0,0 

CTRL 0.5 mM 1 mM 

f # * ** § • p< 0.02; p< 0.002; p < 0.03; p> 0.1 
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SH-SYSY cells, CLONE 10 (pSUPERIOR-MRP1) 

g. 

DOXYCYCLINE 

c 120,0 # 
o 100,0 
~ 
CJ 80,0 
:l 
"C 60,0 
~ 40,0 
~ 20,0 
:::! 0,0 

CTRL 1.56 mM 2.34 mM 

# * ** p < 0.000002; p < 0.0003; p < 0.04 

120,0 

~ 100,0 
:;::; 

80,0 u 
::::s 

"C 60,0 
! t- 40,0 
t-
:!: 20,0 

0,0 

CTRL 

INDOMETHACIN 

# 

O.SmM 1 mM 2mM 

h # * ** § . p < 0.0002; p < 0.002; p < 0.004; p < 0.008 
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SH-SYSY cells, CLONE 14 (pSUPERIOR-MRP1) 

DOXYCYCLINE 

i. 

r:::: 120,0 
.2 100,0 -g 80,0 
"C 60,0 e • 40,0 
l-l- 20,0 
:!E 0,0 

CTRL 1.56 mM 

# * ** p> 0.1; p> 0.2; p< 0.008 

2.34 mM 

INDOMETHACIN 

120,0 
c: 100,0 o :;:; 

80,0 u 
::;, 

"C 60,0 e 40,0 
1-
1- 20,0 
:lE 0,0 

** ** 

CTRL 0.5mM 1 mM 2mM 

l # * ** § • p> 0.3; p> 0.4; p> 0.1; p< 0.02 

3.12 mM 

§ 
§ 

3mM 

Results 

l-14l 
~ 

l-14l 
~ 

Fig. 3.9 (a, b, c, d, e, f, g, h, i, l) MTT reduction in SH-SY5Y clones exposed to different 

concentrations of DOXYCYCUNE and, separately, INDOMETHACIN (both MRP1 substrates) for 24 

hours. Clones expressed costitutively the Tet repressor from pcDNA6/TR vector and inducibly the 

siRNA targeting MRP1 from pSUPERIOR vector. Before exposing them to these drugs, the induced 

samples (4 i, 5 i, 9 i, 10 i, 14 i) were incubated with DOXYCYCLINE (3.9 iJM) for 72 hours (see 

Materia/s and Methods). DOXYCYCLINE (3.9 1-1M) was also present in the induced sample medium 

during the exposure to the drugs. The uninduced samples (4, 5, 9, 10, 14) were incubated without 

DOXYCYCLINE. Controls (CTRL) represent the induced (by 3.9 iJM DOXYCYCLINE for 72 hours) and 

uninduced clone, not treated with drugs. The MTI reduction of induced and uninduced clones, 

expressed as a percentage of the respective controls, is given as means ± SD (bars) of 4 separate 

experiments. p value is reported under each graph. 

139 



Results 

SH-SYSY cells, CLONE 2 (pSUPERIOR-MDR1) 

DOXYCYCLINE 

140,0 # c 120,0 o 
:;; 100,0 

~ 
u 
:l 80,0 
"C e 60,0 

40,0 l .... .... 20,0 :E 
0,0 

CTRL 0.78 1.17 1.56 1.95 2.34 2.73 3.12 3.5 3.9 
m M m M m M m M m M m M m M m M m M 

a. #p < 0.01; *p < 0.02; ~p < 0.006; §p < 0.02; •p < 0.02; Ap < 0.04; Np < 0.04; 'p > 0.05/p > 0.07 

120,0 
c 100,0 o - 80,0 u 
:l 
"C 60,0 e 40,0 .... .... 20,0 :E 

0,0 

CTRL 

b. # * p< 0 .03; p< 0.003; 

CEFTRIAXONE 

* ** 

1.8 mM 9.0mM 14.4 mM 

** §p< 0.02 p< 0.002; 

140 

27.0 mM 

li2l 
~ 



SH-SY5Y cells, CLONE 33 (pSUPERIOR-MDR1) 

c. 

d. 

120,0 
c o 100,0 .. 
CJ 80,0 
~ 

"C e 
l-
l-
:E 

60,0 
40,0 
20,0 
0,0 

DOXYCYCLINE 

# 

CTRL 0.195 mM 1.56 mM 

# * ** p < 0.004; p < 0.006; p < 0 .002 

CEFTRIAXONE 

120,0 # 
* ** c 100,0 o .. 80,0 CJ 

~ 
"C 60,0 e 40,0 1-
1- 20,0 :E 

0,0 

CTRL 0.18 mM 1.8 mM 9.0mM 

# * ** p < 0.005; §p < 0.002 p < 0.003; p < 0.006; 
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SH-SYSY cells, CLONE 34 (pSUPERIOR-MDR1) 

DOXYCYCLINE 

140,0 
120,0 * * c o 100,0 .. 

(.) 
80,0 :l 

"C 
Cl) 60,0 ... 
l= 40,0 
:E 20,0 

0,0 

CTRL 0.195 mM 1.65 mM 3.12 mM 

e. # * ** p > 0.4; p > 0.8; p > 0.2 

CEFTRIAXONE 

120,0 # * 
s:::: 

100,0 o 
~ 

80,0 CJ 
:l 

"C 60,0 
~ 40,0 .... .... 20,0 

:::!5 
0,0 

CTRL 1.8 mM 9.0mM 18 mM 

f. # * ** p > 0.3; p > 0.2; p > 0.4 

Results 

~ l 

ì-34l 
~ 

Fig. 3.10 (a, b, c, d, e, f) MTT reduction in SH-SYSY clones exposed to different concentrations of 

DOXYCYCLINE and, separately, CEFTRIAXONE (both MDRl substrates) for 24 hours. Clones expressed 

costitutively the Tet repressor from pcDNA6/TR vector and inducibly the siRNA targeting MDR1 from 

pSUPERIOR vector. Before exposing them to these drugs, the induced samples (2 i, 33 i, 34 i) were 

incubated with DOXYCYCLINE (3.9 IJM) for 48 hours (see Materia/sand Methods). DOXYCYCLINE (3.9 

IJM) was also present in the induced sample medium during the exposure to the drugs. The uninduced 

samples (2, 33, 34) were incubated without DOXYCYCLINE. Controls (CTRL) represent the induced (by 

3.9 IJM DOXYCYCLINE for 48 hours) and uninduced clone, not treated with drugs. The MTT reduction of 

induced and uninduced clones, expressed as a percentage of the respective controls, is given as 

means ± SD (bars) of 4 separate experiments. p value is reported under each graph. 
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MRP1 EXPRESSION: 48 h AFTER INDUCTION 
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Fig. 3.11 a, b Quantitative evaluation of MRPl expression in SH-SYSY cells (clones 4, 9, 

14, fig. 11 a) and (CLONES 5, 10, fig. 11 b) stably tranfected by the pcDNA6/TR vector, 
coding the Tet repressor, and by the pSUPERIOR inducible vector, coding the siRNAs 

targeting MRPl. Before assessing MRP1 expression, induced samples (4 i, 5 i, 9 i, 10 i, 14 i) 

were incubated with DOXYCYCLINE (3 .9 1-JM) for 48 hours (see Materia/ and Methods) . The 

uninduced samples were incubated without DOXYCYCLINE. Controls (CTRL) represent the SH-

SY5Y clone stably transfected only by the pcDNA6/TR vector, from which the mentioned clones (4, 

5, 9, 10 and 14) have origin (see Materials and Methods). The pSUPERIOR vector coding the 

siRNAs targeting MRP1. Induced (by 3.9 1-1M DOXYCYCLINE for 48 hours) and uninduced controls 

were compared. RT-Real Time PCR was performed normalizing MRP1 expression values to 

housekeeping genes GAPDH and {3-ACTIN. MRP1 expression was calculated relatively to MRP1 

level of the uninduced contro l, considered =l. Clones with similar MRP1 expression level put in the 
same graph. 
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Resu/ts 

MRP1 EXPRESSION IN CLONE 10: TIME COURSE 
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Fig. 3.12 Quantitative evaluation of MRPl expression in SH-SYSY clone 10 (see above) at 24, 
48, 72 hours after induction by DOXYCYCLINE (3.9 IJM) and 48 hours after the DOXYCYCLINE 
removing from cells previously incubated with DOXYCYCLINE for 48 hours (48/48h). The 

MRP1 expression of uninduced clone (10) and induced clone (10 i) was compared every time. RT-Real 

Time PCR was performed normalizing MRP1 expression values to housekeeping genes GAPDH and {3-

ACTIN. MRP1 expression was calculated relatively to MRP1 level of the uninduced control, 

considered = 1. 
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MRP1 EXPRESSION ANAL YSIS BY WESTERN BLOT: TIME COURSE 
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Fig. 3.13 Western Blot analysis of MRP1 in SH-SYSY CLONE 10 (see above) 24, 48, 72 hours after 
induction by DOXYCYCLINE (3.9 JJM) and 72 hours after the DOXYCYCLINE removing from cells 
previously incubated with DOXYCYCLINE for 72 hours (72/72). The MRPl expression of uninduced 
clone(-) and induced clone(+) was compared every time. Bands were visualized by Kodak 10 image software 
and quantified by Scion Image software. The quantification values were analysed by the Curver Expert 
software and the MRPl expression in the induced and uninduced samples were calculated as percentage of 
control (CTRL-) (clone stably transfected by pcDNA6/TR vector, but not by pSUPERIOR vector, see Materia/ 
and Methods). DOX, doxycycline. 
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GENE ANO PROTEIN EXPRESSION IN 

SH-SY5Y CLONES (pSUPERIOR-MDR1) 

Results 

QUANTITATIVE GENE EXPRESSION ANALYSIS BY RT- REAL TIME PCR 
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Fig. 3.14 Quantitative evaluation of MDR1 expression in SH-SYSY cells (clones 2, 33, 

34, fig. 11 a) stably tranfected by the pcDNA6/TR vector, coding the Tet repressor, and 
by the pSUPERIOR inducible vector, coding the siRNAs targeting MDR1. Before assessing 

MDRl expression, induced samples (2 i, 33 i, 34 i) were incubated with DOXYCYCLINE (3.9 1-1M) 

for 24 hours (see Materials and Methods). The uninduced samples were incubated without 

DOXYCYCLINE. Controls (CTRL) represent the SH-SYSY clone stably transfected only by the 

pcDNA6/TR vector, from which the mentioned clones (4, 5, 9, 10 and 14) have origin (see 

Materia! and Methods). Induced (by 3.9 iJM DOXYCYCLINE for 48 hours) and uninduced controls 

were compared. RT-Real Time PCR was performed normalizing MDRl expression values to 

housekeeping genes GAPDH and {3-ACTIN. MDRl expression was calculated relatively to MDRl 

leve! of the uninduced contro!, considered =1. Clones with similar MDRl expression leve! put in 
the same graph. 
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MDR1 EXPRESSION ANAL YSIS BY WESTERN BLOT: 

48 HOURS AFTER INDUCTION 
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Fig. 3.15 Western Blot analysis of MDRl in SH-SYSY CLONES 2, 33, 34 (see above) 48 hours 
after induction by DOXYCYCLINE (3.9 IJM). The MDRl expression of uninduced clone (-) and induced 
clone ( +) was compared. Bands were visualized by Kodak 10 image software and quantified by Scion 

Image software. The quantification values were analysed by the Curver Expert software and the MDRl 

expression in the induced and uninduced samples were calculated as percentage of contro! (CTRL-) 

(clone stably transfected by pcDNA6/TR vector, but not by pSUPERIOR vector, see Materia! and 
Methods). DOX, doxycycline. 

147 



Results 

MDR1-EXPRESSION IN CLONE 2: TIME COURSE 
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Fig. 3.16 Quantitative evaluation of MDR1. expression in SH-SYSY clone 2 (see above) 24, 48 
hours after induction by DOXYCYCLINE (3.9 JJM) and 24 hours after the DOXYCYCLINE 
removing from cells previously incubated with DOXYCYCLINE for 24 hours (24/24h). The 

MDR1 expression of uninduced clone (2) and induced clone (2 i) was compared every time. RT-Real 

Time PCR was performed normalizing MDR1 expression values to housekeeping genes GAPDH and /3-
ACTIN. MDR1 expressìon was calculated relatìvely to MDR1 leve/ of the uninduced control, 
consìdered =l. 
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MDR1 EXPRESSION ANAL YSIS BY WESTERN BLOT: TIME COURSE 
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Fig. 3.17 Western Blot analysis of MDRl in SH-SYSY CLONE 2 (see above} 24, 48 hours after 
induction by DOXYCYCLINE (3.9 pM} and 48 hours after the DOXYCYCLINE removing from 

cells previously incubated with DOXYCYCLINE for 48 hours (48/48}. The MDRl expression of 

uninduced clone (-) an d induced clone ( +) was compared every ti me. Bands were visualized by Kodak 

lD image software and quantified by Scion Image software. The quantification values were analysed by 

the Curver Expert software and the MDRl expression in the induced and uninduced samples were 

calculated as percentage of control (CTRL-) (clone stably transfected by pcDNA6/TR vector, but not by 

pSUPERIOR vector, see Materia/ and Methods). DOX, doxycycline. 
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Fig. 3.18 3 [H]-UCB uptake of SH-SYSY cells: CLONE 10 (pSUPERIOR-MRP1) (a) and 

CLONE 2 (pSUPERIOR-MDR1) (b) after a 30 minute incubation in 3 [H]-UCB 

(8,= 40 nM). Data are reported as mean ± SD (bars). p value is reported under 
each graph. 
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Discussion 

RNA interference (RNAi), triggered by double stranded RNA (dsRNA), 

mediates gene silencing in a sequence specific manner. 

For several years RNAi approches were not applicable to mammalian cells 

because the introduction of dsRNA longer than 30 nucleotides triggered a very 

strong interferon response that resulted in non-specific gene silencing due to an 

overall shutdown of protein synthesis [1]. Since Elbashir et al. [2] and Caplen et 

al. [3] had reported that introduction of 21-23 nucleotide double stranded siRNAs 

can efficiently and specifically silence gene expression from the complementary 

gene, RNAi has evolved into a powerful tool to study mammalian gene functions, 

ranging from chemically synthesized siRNA to DNA-vector-based siRNA. 

In our former studies, 21-nt RNA sequences were produced by in vitro 

transcription and introduced into cells by transient transfection. Most of them were 

designed by ourselves, following a set of guidelines for effective selection of target 

sites on mRNA (see Materials and Methods). Although widely used, these 

approaches are not always successful. The MRP1 silencing attempts performed 

transfecting 5 siRNA sequences designed by ourselves, failed (Fig. 3.2). The 

comparison between these findings and the promising result obtained by the 

transfection of another sequence targeting MRP1 (Fig. 3.3) confirms that the issue 

of the siRNA-mediated gene knockdown is determined in large part by the ability 

of that particular siRNA sequence to trigger the gene silencing [4]. 

Besides, the gene silencing efficacy is determined also by the copy number 

of siRNAs present in the celi. In Caenorhabditis e/egans, only a few molecules of 

siRNA per celi are required for the silencing and the effect goes through a broad 

part of the organism [5]; a greater number of molecules per celi may be required 

to obtain the desired result in mammalian cells [6]. That is due to a RNAi 

amplification phenomenon that appears to be restricted to worms and plants and 

is not observed in mammalian cells [ 4]. 

Using the optimal concentration of siRNA targeting MRP1 or MDR1 (see 

Materials and Methods), the inhibition of the both genes, 24 hours (MDR1) and 48 

hours (MRP1) after siRNA transfection in Hela cells, reached 50% (figg. 1b and 3). 

The lack of a higher gene inhibition is likely due to the limitations inside a 

transient application of the siRNA molecules. This approach is restricted by a 

possible low transfection efficiency (that could explain the reason why a greater 

silencing effect was observed in Hela than HepG2 cells, Fig. 3.1 a,b) and short-

term cellular persistence of the siRNA molecules. Further problems are the 

biologica! half-life times of the target transcript and its encoding protein. In the 

case of MDR1, a study published in 2003 using a human carcinoma celi line 

showed that the MDR1 mRNA had a half-life of approximately 4 hours and the 
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corresponding transporter protein exhibited a half-life of approximately 16 hours 

[7]. Accordingly, Nieth et al. showed that, 24 hours after transient siRNA 

transfection, a reduction of MDR1-mRNA signal started being detectable; this 

inhibition increased in the following 48 hours, after which the MDR1 mRNA 

expression level tardively increased, reaching the originai mRNA expression value 

after 7 days [8] . 

With regard to the results found by the gene and protein analysis of MRP1 

expression, carried out 72 hours after the transfection of the synthetic siRNA in 

some celi lines, included SH-SY5Y cells (figg. 4 and 5), data in literature suggest 

that MRP1 protein levels were diminished over 72 hours in PC3 cells with patterns 

corresponding to mRNA levels [9]. Besides, in neuroblastoma cells the MRP1 

expression was reduced of about 60-65% of the untreated controls, if the 

transfection of antisense oligonucleotides targeting MRP1 was repeated at 48 

hours and the cells were harvested 72 hours after the first transfection [10]. 

These observations are in agreement with the results found by the analysis 

of MRP1 expression carried out 72 hours after the transfection of the synthetic 

siRNA in some celi lines, included SH-SY5Y cells, that showed a reduction higher 

than 50% (figg. 4 and 5). 

Thus, because of the relatively long half-life of both MRP1 (20-24 hours) 

[11] and MDR1 (16 hours) [7], it is evident that the use of a silencing system 

having a short-lived effect is restrictive. This approach permits to produce easily 

many siRNAs, but is limited by the transient nature of the silencing procedure. As 

the synthetic siRNAs are turned over by the celi, the silenced genes can recover in 

ti me, limiting this approach to analysis for short periods [ 4]. 

The application of a vector system for inducible expression of siRNA was 

suitable to carry out gene and protein analysis over an extended period of time 

[12-14], allowing us to overcome the initial obstacles and revealing some more 

information about the peculiarities of the proteins studied. 

At the beginning, however, the quantitative evaluation of the MRP1 

expression in stable SH-SY5Y clones expressing costitutively the Tet repressor 

from pcDNA6/TR vector and inducibly the siRNA targeting MRP1, performed after a 

48 hour incubation of the induced sample with doxycycline, showed that no 

significance differences occurred between induced and uninduced samples (Fig. 

3.11 a,b). This result was in contrast with the one obtained 48 hours after the 

transfection of synthetic siRNAs in Hela cells (Fig. 3.3). In fact, it showed at least 

a 50% reduction of MRP1 expression. This discordance could be explained by the 

different system used to inhibit the target gene. In fact, results from synthetic 

siRNA cannot be completely transferred to vector-based siRNA construct for 
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unknown reason [5]. In addition, uninduced clones expressed a different MRP1 

level (Fig. 3.11 a,b). That could be caused by peculiar characteristics of each clone 

or by different celi confluence percentages reached by each clone. In fact, it has 

been observed that MRP1/MRP1 expression is affected by celi density [15][16]. 

The experiment performed to investigate the MRP1 expression at different 

incubation time of the induced sample with doxycycline revealed some interesting 

information. A reduction in the MRP1 expression of the induced sample compared 

to the uninduced one, occurred just 72 hours after the silencing induction and 48 

hours after the inducing agent removing were not enough to restore the originai 

mRNA expression leve! (Fig. 3.12). In fact, an evident reduction in the MRP1 

expression was stili detectable 96 hours after the silencing induction even if, after 

48 hours, the inducing agent was removed. These results were confirmed by the 

protein analysis: 72 hours after silencing induction were the best time to observe a 

consistent reduction of the MRP1 expression between the induced and uninduced 

sample (Fig. 3.13). This agreed with the results of the silencing experiments 

performed by synthetic siRNA in Hela, MDCK, HCT116 and SH-SY5Y cells (figg. 4 

and 5) and with the MRP1 functional analysis, performed by MTT assay in clone 10 

which, after a 72 hour incubation with doxycycline, had been exposed to drugs. As 

an analogue phenomenon observed in the gene expression analysis, 72 hours after 

the inducing agent removing were not enough to restore the originai protein 

expression leve!. On the contrary, 144 hours after the silencing induction stili a 

significant reduction in the MRP1 expression was detectable even if, after 72 

hours, the inducing agent was removed. In addition, it has to be considered a 

possible inducing effect of doxycycline on the MRP1/MRP1 expression. That could 

explain the slightly higher MRP1/MRP1 expression leve! found in the induced 

contro! compared to the uninduced one (Fig. 3.14). This phenomenon was really 

more evident if MDR1 expression was analysed after a 24 hour incubation of the 

induced contro! with doxycycline (Fig. 3.16). This observation showed that 

doxycycline induced an overexpression of MDR1, as actually reported in literature 
[17]. 

The findings observed in the MDR1 expression analysis (Fig. 3.16), were in 

agreement with the MDR1 up-regulation phenomenon induced by doxycycline, 

mentioned above. In fact, siRNA silencing effect should be contrasted by the MDR1 
gene stimulation caused by doxycycline. Thus, after a 24 hour incubation, the 

MDR1 overexpression effect should be not so strong as after a 48 hour one and 

the silencing was more detectable. On the other hand, the very removing of 

doxycycline allowed to observe the real effect of the silencing. So, the MDR1 leve! 

reduction of the induced sample compared to the uninduced one was much higher 

after a 24 hour incubation with doxycycline, followed by a 24 hour incubation 
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without doxycycline, especially if compared with a 48 hour incubation in the 

presence of doxycycline. This demonstrated clearly that doxycyline made the 

difference. 
Supporting this result, but not confirming it due to the different silencing 

system used, there is the finding (mentionated above) that in a silencing 

experiment carried out by synthetic siRNAs, a weack MDR1 mRNA signal could be 

detected already after 1 day of siRNA transfection and this reduction was 

detectable up to 3 days after the transfection [8]. 

The protein analysis (Fig. 3.17) points out that also the protein silencing, as the 

gene one, was hidden by the MDRl up-regulation due to the doxycycline presence. 

In fact, as the same phenomenon observed in the gene analysis, after 96 hours 

from the silencing induction by the addition of doxycycline, previous removal of 

the inducing agent after 48 hours, not only the MDRl expression reduction 

between induced and uninduced sample was stili evident, but it also reached the 

highest level. This finding suggests that a functional assay performed in this 

condition, should even enhance the difference of viability between the induced and 

the uninduced sample found after a 48 hour incubation of the induced sample with 

doxycycline (Fig. 3.10). The best time to observe the maximum silencing of the 

protein was slightly different probably due to the different half life of the gene 

compared to the protein one [7]. 

Results of a silencing experiment obtained by using synthetic siRNAs which, 

as previously observed, can support the results found by vector-based siRNA 

construct but cannot be completely transferred to, showed that the peack of MDR1 

protein reduction was reached after 3-5 days after siRNA transfection [8]. 

Ali these findings, taken together, explained the initial difficulty to detect 

the silencing effect by analysing the gene/protein expression for many attendant 

circumstances. For example, this work demonstrates that the incubation time is a 

criticai condition for observing the silencing effect and that, as mentioned above, 

results from synthetic siRNA cannot be completely transferred to vector-based 
siRNA construct. 

In its review artide [5], Medema asserts that the most important criterion 

distinguishing a successful RNAi experiment form a failure is the time required to 

reduce protein expression below the thresold level that is criticai to sustain normal 

protein function. This is in large part determined by the efficacy of the siRNA to 

target the mRNA of choice. But in addition, protein stability is a criticai factor. The 

time required to reduce protein expression below the criticai level, once the mRNA 

is degraded or translation is shut off, is primarily determined by the half-life of 

that protein. Silencing expression of stable proteins may require very long 

156 



Discussion 

incubation periods with siRNA that can only be accomplished by stable expression 

of the siRNA. 

Further, Medema goes on considering that tipically, RNAi experiments are carried 

out by transfecting siRNAs into an asynchronous celi population and therefore this 

can be expected to introduce a major variation in timing required to impair gene 

function from celi to celi in that population. Moreover, the expression of the gene 

under investigation may vary significantly over the different cells in that 

population to begin with, making RNAi effects occur asynchronously. As a 

consequence, secondary effects, adaptation and toxicity will also occur 

asynchronously, making it difficult to identify the proper window of opportunity to 

perform an interpretable RNAi experiment. This becomes increasingly difficult if 

the time required to reach that criticai threshold for protein function increases 

because of an inefficient targeting strategy or when a particularly stable protein is 

studied. 

Another consideration coming out is that the inducible system used for the 

gene target silencing needs doxycycline to cause the transcription of siRNA. 

Doxycycline is a substrate of both MRP1 and MDR1 protein and, as mentioned 

above, it was proved that doxycycline induces the expression of MDR1 [17]. We 

found that also MRP1 expression is upregulated by doxycycline, even if the 

increase is less evident in MRP1 than MDRl. 

These observations suggest that many phenomena have to be considered in 

a silencing attempt, especially if the gene target codes for transporters with 

affinity fora wide variety of substrates, such as MRPl and MDRl. 

This intrinsic ability of the proteins examined to confer cellular resistance to 

several compounds, revealed to be really helpful to investigate the reversal of 

MRPl or MDR1 gene-depending multidrug resistance in clones stably transfected 

by a vector containing the sequences coding the siRNA targeting MRP1 or MDR1. 

The MTT reduction was really affected by the citotoxic substrates in clones 

expressing an evident reduction of the MRPl or MDR1 expression (figg. 9 and 10), 

as detected by gene and protein expression analyses (figg. 12-17). Then, this 

approach can be really effective in RNA interference experiments targeting 

multidrug resistance proteins to screen clones on the basis of their functional 
activity. 

The result of [3H]UCB-uptake assay confirms the involvement of MRP1 in 

the transport of bilirubin already described in literature as amply reported in the 

Generai Introduction of this work, while excludes even a minimum role of MDR1 in 

the transport of this organic anion at least at a bilirubin free (Bf) value = 40 (Bf 

=40). Actually, this is in agreement with the nature of the two proteins. In fact, 

MDR1 "prefers" uncharged or slightly positively charged compounds, while MRP1 
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primarily transports hydrophobic anionic conjugates, but also unconjugated 

xenobiotics and uncharged drugs. Another aspect that comes out observing the 

[ 3H]UCB-uptake assay result, is a possible high permeability of the SH-SYSY cells 

to the unconjugated bilirubin (UCB). This could explain the great susceptibility of 

neuronal cells to the unconjugated bilirubin damages, as widely described in 

literature and reported in Genera/ Introduction of this work. 
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CHAPTER 5 

CONCLUSIONS ANO PROSPECTIVES 



Conclusions and prospectives 

The creation of stable clones that inducibly express the siRNAs targeting 

MRP1 and MDR1 and the identification of the optimal conditions to obtain the 

highest silencing effect provide a startup point for severa! in vitro applications. 

Some of them have already been carried out, but many attempts have stili to be 

do ne. 

The aim of this work was to find out a model to investigate the role of MRPl and 

MDRl in the transport of organic anions in neuronal cells. For this purpose an 

inducible silencing system was chosen. This approach revealed itself effective, 

even if some complications carne out during the work. They are now specific 

recommendations and technical notes to consider in this kind of applications. 

The viability decrease of SH-SYSY neuroblastoma cells induced to express the 

siRNA targeting MRP1 or MDR1 compared to the respective uninduced cells, both 

exposed to citotoxic substrates, was an clear proof of a reduced functional activity 

of the two proteins examined, well known to protect the celi by extruding these 

compounds. 

Further applications could be performed on these clones to test the reduced 

cellular resistance against other substrates of MRPl and MDRl, such as 

chemotherapeutic agents. 

The really higher amount of unconjugated bilirubin (UCB) found in SH-SYSY 

cells induced to express the siRNA targeting MRP1 compared to the uninduced 

ones, both exposed to [3H]UCB, shows an evident involvement of MRPl in the 

transport of this organic anion. On the contrary, the comparable amount of UCB 

present in the induced and uninduced state of the SH-SYSY cells containing the 

siRNA targeting MDR1, points out that MDRl does not transport this organic anion 

at least at the Bf used (Bf=40 nM). This finding suggests to perform further 

research to check if higher concentrations of this organic anion can induce MDRl 

to take part to the transport of UCB and eventually which is the threshold UCB 

amount able to trigger its participation. 

Observing SH-SYSY cells which could be particularly permeable to UCB, 

makes us pay attention to the neuronal damages caused by bilirubin and suggests 

to carry out neurocitotoxicity studies on our SH-SYSY clones (MRPl-siRNA and 

MDRl-siRNA). This could help clarify the importance of MRPl and/or MDRl in the 

transport of UCB, evaluating the UCB-induced effects (e.g. induction of apoptosis 

or necrosis) in neuronal cells subject to a modulation of MRPl or MDRl expression. 
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