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To thee, old Cause!
(Walt Whitman, Leaves of Grass)



Riassunto

Questa tesi raccoglie i risultati dell’attività di ricerca del mio dottorato che ha
riguardato lo studio di molecole sottoposte a fotoionizzazione e il calcolo delle
grandezze dinamiche coinvolte in questo tipo di processo. Una prima linea di
ricerca ha seguito la descrizione degli effetti di interferenza e diffrazione nei pro-
fili di fotoionizzazione ad alte energie, attraverso un approccio basato sul metodo
Density Functional Theory (DFT) accoppiato all’uso di una base di B-spline. Le
oscillazioni derivanti da questi effetti di interferenza e diffrazione rappresentano
un fenomeno universale, presente in tutte le molecole poliatomiche in esame, dalle
biatomiche a quelle più complesse non simmetriche, dalla shell di core a quella
di valenza più esterna. Nella regione di core abbiamo analizzato le oscillazioni
presenti nel rapporto di intensità C2,3/C1,4 nello spettro di fotoelettone C 1s del
2-butino. Nella regione di valenza più interna abbiamo invece preso in esame gli
spettri di fotoionizzazione di semplici molecole poliatomiche (propano, butano,
isobutano e cis/trans-2-butene) e i risultati ottenuti sono stati confrontati con
quelli sperimentali raccolti presso il sincrotrone Soleil di Parigi. Abbiamo poi
analizzato l’effetto dovuto all’emissione coerente da centri equivalenti e quello
dovuto alla diffrazione da atomi vicini non equivalenti negli spettri di core e di
valenza. Nell’ambito di questa analisi, abbiamo preso in esame acetileni mono e
disostituti con fluoro e iodio, comparando i risultati con quelli ottenuti nel caso
del più semplice sistema acetilenico. Ci siamo inoltre occupati dello studio di ef-
fetti di intereferenza nella ionizzazione di valenza esterna di semplici idrocarburi
e, nella stessa regione, abbiamo analizzato come la struttura geometrica di com-
posti permetilati, in particolare la distanza metallo-anello, influenzi i loro profili
di fotoionizzazione. Infine, nella regione di valenza interna, sono stati considerati i
profili di ionizzazione per il caso di Ar@C60. I risultati sono stati messi a confronto
con quelli ottenuti da uno studio precedente sulla molecola di C60.
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Riassunto iii

Una seconda linea di ricerca ha invece seguito la descrizione delle osserv-
abili di fotoionizzaione considerando il contributo della correlazione elettronica.
Questo può essere fatto attraverso l’implementazione di un formalismo close-
coupling dove la funzione del continuo finale è espressa secondo un’espansione
analoga a quella Configuration Interaction (CI) per gli stati legati. Il primo livello
dell’implementazione ab initio è stato quello di descrivere accuratamente solo la
correlazione negli stati legati. A questo scopo, sono stati utilizzati gli orbitali di
Dyson. L’uso di questi orbitali è stato applicato alla descrizione delle osservabili
di fotoionizzazione nel caso della molecola biatomica CS. Nello spettro di questa
molecola è infatti presente un satellite ben risolto dovuto a effetti di correlazione
elettronica che non possono essere descritti a livello DFT.



Abstract

The thesis is focused on the study of the dynamics of photoemission processes
for atoms and molecules. A first line of research has followed the description of
diffraction and interference effects in the photoionization profiles at high energy
for several systems, through an approach based on the DFT method combined
with the use of a B-spline basis. These diffraction and interference effects ap-
pear in the spectra as a result of wave propagation. The resulting oscillations
represent a general phenomenon, present in polyatomic targets, from diatomics to
complex non-symmetrical molecules, and from the deep core to the outer-valence
shell. Firstly, in the core region, we analysed the oscillations in the intensity ratio
C2,3/C1,4 in the carbon 1s photoelectron spectrum for 2-butyne. Then in the
inner-valence shell region, the interference effects in the photoionization spectra of
simple polyatomic molecules (propane, butane, isobutane and cis/trans-2-butene)
were studied and the results have been compared with experimental data collected
at the SOLEIL Synchrotron in Paris.
Furthermore, we have analysed the effect due to coherent emission from equiva-
lent centers and diffraction from neighbouring non-equivalent atoms in core and
valence photoelectron spectra. For this, we investigated mono and disubstituted
fluoro- and iodo-acetylenes and compared them to the simple acetylene system.
We also focused on interference effects in the outer-valence ionization cross sec-
tions of simple hydrocarbons and, in the same shell, we also studied the influence
of geometrical structures on photoionization profiles of permethylated compounds.
Finally, in the inner-valence shell region, we considered the photoionization pro-
files for the case of Ar@C60. The results were compared with a previous study on
the C60 molecule.
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Abstract v

A second line of research has followed the correlated description of photoion-
ization observables. We developed a new method based on an ab initio close-
coupling formalism. The use of the Dyson orbitals allowed to study the photoe-
mission observables of highly correlated systems. As a first application of this
method, we performed highly correlated calculations on the primary ionic states
and the prominent satellite present in the outer-valence photoelectron spectrum
of CS. Dyson orbitals are coupled to accurate one-particle continuum orbitals to
provide a correlated description of energy-dependent cross sections, asymmetry
parameters, branching ratios and Molecular Frame Photoelectron Angular Distri-
butions (MFPADs).
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Chapter 1

Introduction

1.1 Photoionization and historical background

One of the most common processes that may occur when incident light interacts
with matter is photoionization. This is specifically defined as a physical process
of interaction between electromagnetic radiation and atoms or molecules which
causes the ejection of one or more electrons. Photoionization, in general, comes
from excitation of valence electrons to the continuum, but it is also possible that
the photon energy is high enough to ionize inner-shell electrons.

The technique called Photoelectron spectroscopy (PES) utilizes photoioniza-
tion and through the analysis of the spectra corresponding to the emitted electrons
(photoelectrons), one can obtain rich and detailed information on the processes in-
volved and the examined targets [1, 2]. PE spectroscopy is distinguished from
conventional forms of spectroscopy because it uses electrons instead of photons as
its primary source of information. This technique measures the kinetic energies of
ejected electrons rather than the absorbance or transmittance of photons [3].

The application of PE spectroscopy to molecules in gas phase has contributed
significantly to our understanding of chemical bonding in molecules of different
sizes, as well the understanding of electronic configuration and mechanisms of
chemical reactions. This technique, from a theoretical perspective, has justified
the use of the molecular orbitals in the discussion of chemical processes and has
rendered these orbitals, for a long time considered as abstract entities, accessible
to experimental studies [4]. The result of a PE experiment is a PE spectrum and
molecular orbitals provide a simple basis for its interpretation. The analysis of

1



Chapter 1. Introduction 2

a spectrum consists of assigning each spectral band to an electronic state of the
molecular ion and identifying the orbitals from which electrons are ejected. As a
consequence, a PE spectrum represents a unique signature of a molecule and PE
spectroscopy is a powerful method for chemical analysis. In particular, since the
positions of lines in a PE spectrum correspond to energy differences between the
levels of a neutral and ionic species, this technique also permits one to derive spec-
troscopic information on molecular ions. This is typically very difficult to study
at high resolution because of their high reactivity.

Furthermore, employing PE spectroscopy allows one to obtain the direct mea-
sures of the ionization potentials. These potentials can be related to other prop-
erties such as electron affinities and dissociation energies. In the beginning of the
development of this spectroscopic technique, the studies focused on simple sys-
tems, such as rare-gas atoms or small closed-shell molecules and strong transitions
(photolectron main lines) in a very limited energy range. Whereas, today a wide
variety of systems, including open-shell molecules, ions and clusters are object of
study. In addition, not only main lines, but also satellite transitions, multiple-
electron ejections and ionization of excited states can be observed and described
in detail [5].

Thus far we have illustrated the reasons that make PE spectroscopy a fun-
damental technique in chemistry and physical chemistry. In the present work we
study, from a theoretical perspective, the photoionization process applied to sam-
ples in gas phase and the specific effects connected to that. Indeed it is worth
highlighting the importance of theoretical studies related to this technique and
the symbiosis constituted from the complementary nature of PE spectroscopic
measurements and quantum chemical predictions [6, 7]. The theory permits us to
understand and predict the results of experimental investigations and, at the same
time, electron spectra constitute ideal test cases for different theoretical methods.

Historically, theoretical studies for the interpretation of spectra from atoms
and molecules went hand in hand with experimental developments. The basic in-
terpretation of the various phenomena by means of one-electron concepts evolved
mainly during the 1960s and early 1970s until to inclusion of many-electron con-
tributions. This is due to the ability of the experimental techniques to consider
the many-electron features in the spectra and also to the development of com-
putational schemes for many-electron wave functions. In general, developments
in the theory permitted one to obtain a plethora of information that can be de-
rived by analysing different aspects of a PE spectrum. PE spectroscopy is based
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on the photoelectric effect. This effect, discovered by Heinrich Hertz in 1887 [8],
concerned the interaction between a solid and light, and refers to the emission
of charged particles by the surface of the solid when it absorbs electromagnetic
radiation. This is the first observation of the ionization of matter and represents
the precursor of the photoelectric effect in the gas targets.

Hertz’s discovery caught the attention of many scientists. From the experi-
mental point of view, several investigations were carried out by Wilhelm Hallwachs
[9], Julius Elster, Hans Geitel [10] and Philipp Lenard [11]. The latter concluded,
in 1900, that the charged particles emitted were the same as those found in cath-
ode rays.

It was necessary to wait until 1905 to have a theoretical interpretation of the
photoelectric effect. During his Annus Mirabilis, Albert Einstein published the
formulation of this effect in terms of photons [12]. He explained the ejection of
electrons from the surface of a metal, in response to incident light, on the basis of
Max Planck’s hypothesis [13], according to which light behaves like small particles
(light quanta or, indeed, photons). Einstein’s interpretation of the photoelectric
process is a statement of conservation of energy: the photon is absorbed if its
energy exceeds the binding energy of an electron in the bound state of the target
and any energy in excess of the ionization energy appears as the kinetic energy of
the ejected electron.

The ionization process, starting from the discovery and interpretation of the
photoelectric effect, has continued to be the object of many experimental and
theoretical studies. It permits one, indeed, to obtain important and detailed in-
formations about the chemical and physical properties of matter.

An extremely important contribution to the experimental developments in
high-precision spectroscopic techniques, based on the photoelectric effect, came
from the physicist Karl Siegbahn (Nobel prize 1924). He developed an appara-
tus to accurately measure the X-ray wavelengths produced by atoms of different
elements. This experimental technique represented, therefore, a powerful tool to
identify elements and to provide detailed information about their physical envi-
ronment.

The modern PES was chiefly developed during the 1950s and 1960s when the
physicist Kai Siegbahn (Nobel prize 1981) and coworkers built an instrument to
study high energy photoelectrons expelled by X-radiation at very high resolution
[14]. Until then, experimental difficulties related to high resolution electron de-
tection hindered the physical and chemical applications of electron spectroscopy.
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In the Siegbahn’s laboratory, the electron spectroscopy was originally used to
measure the electron binding energies in atomic and solid state physics and, in
the subsequent years, this spectroscopy began to have important applications in
chemistry. The research developed by Siegbahn resulted in the birth, in 1965, of
Electron Spectroscopy for Chemical Analysis (ESCA) [15, 16]. This spectroscopy
permits one to analyse solids, liquids and gaseous species as well. During the same
period, David Turner at Imperial College developed the Ultraviolet photoelectron
spectroscopy (UPS) on molecular species using helium lamps. In 1962 he published
his first paper on the determination of ionization potentials by photoelectron en-
ergy measurement [17].

It is clear from the historical development of PES that the most common
types of radiation used were vacuum UV radiation and X-rays [14–16, 18–20].
The first one permits us to examine valence levels with high resolution (∼0.01
eV), whereas the latter allows the ejection of electrons from both valence and
core orbitals, but with a low resolution (∼0.5 eV). Historically, most spectroscopic
studies examined the valence-shell excitation regions. For a considerable time, the
difficulty in investigating the inner-shell region was due to the lack of appropriate
light sources, characterized by low intensity and poor coherence. Furthermore,
since traditional sources furnish high intensities but only at certain characteris-
tic energies, they cannot be used to probe the photon energy dependence of PE
spectra. Development of Synchrotron radiation (SR) has filled the gap between
the low energy (VUV) and high-energy (X-ray) sources and has permitted one to
extend the knowledge of the electronic structure of atoms and molecules.

The observation of synchrotron radiation for the first time dates back to
1947, in the General Electric Research Laboratory in Schenectady, New York, and
it was used to study collisions between high energy particles [21]. The physicists
who conducted the experiment observed a brilliant beam of light emanating from
the machine. It was a result of the electrons moving with speeds close to the speed
of light in the accelerator track. This process has been exploited in many experi-
ments over the years after 1947, but all of them employed machines that had been
originally directed to study high-energy particle physics. One of the most signifi-
cant steps forward to use synchrotron radiation to study light-matter interaction
took place at the end of the 1970s, when a plan was approved to build the world’s
first dedicated synchrotron light source producing X-rays at Daresbury in the UK.
It started to carry out experiments in 1981. Today there are more than 50 syn-
chrotron light sources all over the world dedicated to generating synchrotron light
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and supporting a huge range of applications, from condensed matter physics to
structural biology, engineering, environmental science and medicine. The new gen-
eration of synchrotron radiation sources (such as ELETTRA in Italy and SOLEIL
in France) include ondulators that force the electrons (or positrons) to go through
sinusoidal or spiral trajectories. Monochromators and reflection mirrors are set up
in the beam line according to the purpose and characteristics of the radiation to
be used in an experiment. Synchrotron radiation, together with these additional
devices, constitutes a powerful research tool to investigate outer and inner-shell
excitations and ionization processes in the molecules.

Historical remarks

• 1887, Heinrich Hertz: photoelectric effect. "On an effect of UV light upon the

electrical discharge" [8].

• 1895, W. K. Röntgen: discovery of X-rays.

• 1897, J. J. Thomson: cathode ray tube experiments for measuring e/m of

electrons (a primitive electron spectrometer).

• 1905, A. Einstein equation for the photoelectric effect. "Heuristic viewpoint

on the production and conversion of light" [12].

• 1907: P. D. Innes "On the velocity of the cathode particles emitted by various

metals under the influence of Röntgen rays" [22].

• 1914, Robinson and Rawlinson: photoemission from X-ray irradiated Au.

• 1925, H. Robinson "An accurate knowledge of the energies associated with the

different electronic orbits within the atoms is essential to the further develop-

ment of the theory of atomic structure" [23].

• 1950, R. G. Steinhardt Jr. "An X-ray photoelectron spectrometer for chemical

analysis" (Leihigh University, Ph.D. thesis), "X-Ray Photoelectron Spectrom-

eter for Chemical Analysis" [24].

• 1954, Kai Siegbahn: high resolution photoelectron spectrometer.

Thus far we have illustrated the process for which absorption of radiation
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Figure 1.1: The cross sections σ for various processes undergone by a photon
of energy hν in passing through molybdenum (Z = 42), plotted on a log-log scale.
The curves labelled "phot", "scat" and "pair" are for photoelectric absorption,
photon scattering and pair creation, respectively. The dotted line labelled Zϕ0

is the Thomson cross-section from Z free electrons.

by an atom in a bound state causes the ejection of one of its electrons into a
continuum state, and how this process has been exploited, in the course of time,
in the development of PE spectroscopy. However, there are other effects which
also contribute to the attenuation of X-rays while passing through matter. One
of these is the scattering of a photon by an electron, called Compton scattering,
in which the photons change energy as well as the direction in contrast with the
case of elastic scattering. It is interesting to consider the existence of different
processes and at which energy they become dominant with respect to each other
by observing the cross-section profile for the case of molybdenum in Fig. 1.1 [25].
By considering the different cross-section profiles plotted on a logarithmic scale
we can observe that, at low energies, the atomic photoelectric effect predominates,
while at intermediate energies this effect is much less important than Compton
scattering. The effect of the relative motion of the electrons with respect to the
incident photon beam can be noted, instead, at extremely relativistic energies.
In this energy range, the photon attenuation by pair creation competes with the
photoelectric effect and scattering. This two-particles process is a specific effect
of the Dirac theory and consists of the creation of the electron-positron pair.
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Although, on the one hand, the photoelectric effect provides indisputable evi-
dence for a corpuscolar theory of light, the existence of diffraction and interference
phenomena demonstrate that light also exhibits a wave behaviour.

The dual aspect of electromagnetic radiation had animated the debate within
the scientific community, starting from the contrast between the positions of Isaac
Newton, in favour of a particle-like behaviour, and that of Christian Huygens, sup-
porter of the wave-like interpretation. The experiment carried out by Young in
1801, known as the Young’s double-slit experiment [26], proved the wave character
of light. He observed that the light, passing through two slits placed in a panel,
formed an interference pattern on a screen behind the panel. The contradictory
behaviours of the light were explained by its duality nature, which constitutes the
heart of Quantum Mechanics. An analogous situation is revealed in interference
and diffraction effects observed in photoionization. These processes are related
to the fact that, at high photon energy, the wavelength of the ejected electron is
comparable to or smaller than the size of the molecule, and, consequently, ejected
electrons are subjected to the same phenomena of normal waves. Wave-particle
duality is in fact a basic property of all quantum objects and the double-slit ex-
periment has been, in the course of scientific development, the precursor of similar
experiments performed on small molecules as well as on heavy species such as
fullerenes. H. Cohen and U. Fano were the first, in 1966, to theorize the possibil-
ity of realizing the double-slit experiment in the photoionization of homonuclear,
diatomic molecules [27]. Their research was directed towards the interpretation of
the oscillatory behaviour of the photoabsorption spectra of N2 and O2 molecules.
In this case, indeed, the electrons are emitted by two equivalent atomic centers,
constituting, therefore, a molecular equivalent of the Young’s double-slit experi-
ment. The absorption of a single photon by the homonuclear molecule generates
two coherent electron waves which give rise to interference oscillations. They pro-
posed a wavefunction to describe coherent emission from both atomic sites and to
predict oscillating partial cross-sections of photoelectron emission. J. L. Dehmer
and D. Dill, in 1975, published a paper on the study of the partial photoionization
cross sections of N2 [28]. The weak modulation in these profiles was interpreted
as a diffraction pattern. Their study, however, established the effect for the pho-
toionization of core electrons in N2 (K shell), rather than of valence electrons, as
Cohen and Fano had reported. S. E. Canton et al. [29], after the investigation on
valence photoionization for N2 and H2, obtained evidence that valence photoion-
ization could produce interference behaviour. They also observed the presence of
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Cohen-Fano oscillations also in heteronuclear diatomic molecules such as carbon
monoxide (CO). In these molecules, the inner-most electrons are almost completely
localized at either of the two atoms, so that Cohen-Fano oscillations cannot occur.
However, if the delocalization of the valence orbitals of CO is sufficiently large to
cover both atoms in the molecule, then the emission of electrons could become
coherent. These findings reveal that delocalized orbitals can represent a source of
two-centre interference, analogous to a Young’s double-slit experiment in which
the two slits have different widths.

In recent years the interference studies have been focused on larger systems,
such as C60 [30–42]. Fullerenes may be regarded as three-dimensional molecular
double-slits, exhibiting photoemission behaviour similar to that of one-dimensional
diatomic molecules. The new measurements of the partial cross section data over
a large energy range, related to the development of synchrotron radiation sources,
permitted one to analyse the observed oscillations in terms of the structural infor-
mation of fullerene. The interference and diffraction patterns constitute, finally, a
great potential for future applications and an interesting subject of research with
many unexpected results still to be revealed.

1.2 Fundamentals

1.2.1 Experimental setup

The fundamental experiment in PE spectroscopy consists in exposing the target
to an incident radiation with an sharply defined energy hν and then observing the
resultant emission of photoelectrons. From each emitted photoelectron, one can
evaluate ionization energy, intensity as a function of photon energy and angular
distribution. These properties permit one to have an insight about the electronic
structure of the target molecules.

The basic structure of a photoelectron spectrometer is constituted by: a
source of electromagnetic radiation, a sample chamber, an energy analyser, an
electron detector and, finally, a recorder [43]. The sources of radiation used in
a photoelectron experiment, as already mentioned, are: VUV, X-rays and syn-
chrotron radiation (SR). The VUV source is usually the He(I) resonance line [18]
at 21.2 eV or the He(II) line [44] at 40.8 eV. They are generated by the discharge
through helium gas. For the case of X-rays, indeed, the two most commonly used
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sources are Mg Kα radiation and Al Kα radiation generated in an X-ray anode
with energies of, respectively, 1253.6 eV and 1486.6 eV. The third source of radi-
ation, finally, is the SR source which is the most useful continuum source for PE
spectroscopy. In a synchrotron light source the electrons are forced, by means of
magnetic fields, to move over approximately circular orbits, with speed near to
the speed of the light. The centripetal force, acting on the relativistic electrons,
renders them sources of electromagnetic radiation, which is conveyed in suitable
ramifications on the outside of the ring (called beamlines). The result is light with
very peculiar characteristics that make it different from the conventional sources
of radiation and, consequently, a unique tool for PES experiments [45–47]. The
radiation emerging from storage ring has an intensity that can be of the order of a
billion times greater respect to that from a conventional X-ray source and, further-
more, is characterized by intense spectral brightness. The divergence of the beam
is very low, that is, the beam is highly collimated and SR is pulsed with pulses
typically 10 to 100 picoseconds in length separated by 10 to 100 nanoseconds. SR
is almost 100% polarized in the plane of the ring and extends from infrared light to
hard X-rays. This means that its spectrum is a smooth continuum. The SR is also
unique for its tunability that enables the user to select a wavelength appropriate
for the experiment.

The most important component in a PE spectrometer is the energy analyzer,
which receives the electrons emitted when photoionization occurs in the sample.
The analyser separates the photoelectrons with respect to their kinetic energy and,
finally, counts them furnishing an intensity distribution which represents the PE
spectrum. The aim of the electron analyser is to provide high resolution and high
sensitivity. The most common type of this instrument used in PES is the deflection
analyzer: it uses electric or magnetic fields to make electrons of different energies
follow different paths, in order to separate them.

After passing through the energy analyser, the photoelectrons reach the de-
tector. The type especially used to detect the electron flux is called the electron
multiplier. This operates on the basis of a cascade effect wherein secondary elec-
trons are produced by the primary ejected electrons which strike the walls of the
multiplier. At the end of this process, a current pulse, which can be detected and
recorded, is produced. On the one hand, a spectrometer in which electrons of only
one energy a time are able to reach the detector produces differential spectra. On
the other hand, spectrometers in which all electrons of more than a certain energy
can reach the detector simultaneously produce integral spectra.
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The performance of an instrument can be evaluated by considering the accu-
racy with which it can measure the energies and relative intensities of the pho-
toelectrons. Accurate energy measurements depend both on the resolution of the
spectrometer and on the proper calibration of the instrumental energy scale.

1.2.2 Photoelectron spectra and IP

The result of a photoelectron experiment, as already specified, is a spectrum, that
is a record of the number of ejected electrons detected at each energy. In a PE
spectrum, the information about the energy distribution of the emitted electrons
can be extracted from three principal sources: line energies, line intensities and line
shapes (in particular the widths). When the electrons are ejected from different
energy levels of a molecule, the molecular ions in different electronic states are
produced. The ionization energies, which are measured, are the energy differences
between the ground state of the molecule and the electronic states of the molecular
ion. The PE spectrum contains, indeed, many vibrational lines for each type
of electron ionized. The collection of lines that corresponds to ionization from
a molecular orbital constitutes a band. The energies associated to these bands
correspond to the energies of the ion states formed with respect to the ground
state of the system considered. The analysis of a PE spectrum consists, in part,
in assigning each spectral band to an electronic state of the molecular ion and
identifying the orbital from which the electron is ejected. The simplest way to
individuate the number and the type of ion states accessible on ionization is based
on the use of Molecular orbitals (MOs). In each orbital of an atom or molecule,
the electrons have a characteristic binding energy and, according to Koopmans’
theorem, the negative of the energy of an occupied orbital from a theoretical
calculation is equal to the vertical ionization energy due to the removal of an
electron from that orbital [48]. This theorem, which is a good and very useful
approximation, translates into the fact that the PE spectrum of a molecule is a
direct representation of the molecular orbital energy diagram. In order to find a
first and clear relationship between PE spectra and molecular electronic structure,
it is possible to use two approximate rules [2]. The first is that each band in the
spectrum corresponds to ionization from a single MO; the second is that each
occupied MO of binding energy less than hν gives rise to a single band in the
spectrum. These rules represent, however, a simplification because, in a spectrum,
one can observe more bands with respect to the number of valence orbitals in the
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molecule. This evidence is due to the fact that there are several mechanisms
that lead to additional bands. These can stem, firstly, from the ionization of one
electron with simultaneous excitation of a second electron to an unoccupied excited
orbital. This is referred to as a two-electron process. Furthermore, additional
bands can be generated by the ionization from a degenerate occupied orbital, as
well as from molecules which have unpaired electrons, such as O2 or NO. In these
illustrated cases, the inadequacy of the Koopmans’ theorem is evident.

Line intensities represent the second source of information in a PE spectrum.
Band intensities, contrary to ionization energies, vary with photon energy. The
use of the synchrotron radiation, characterized by continuous tunable radiation,
has permitted one to carry out more extensive studies of PE band intensities.
While the absolute intensities of different peaks in the spectrum are very difficult
to control because they depend on a number of experimental variables (such as
intensity of incident radiation, type of energy analyser, sensitivity of the electron
detector and so on), the relative intensities represents the relative probabilities
of photoionization to different states of the ion, called partial ionization cross-
sections. In addition to the wavelength of the light used, relative bands intensities
and their vibrational structures depend also on the nature of the molecular orbitals.
The changes in molecular geometry can occur when one electron is ejected from
an orbital and they can be analysed by observing the detailed form of the bands.
These changes furnish information about the character of the orbitals, namely
whether they are bonding, anti-bonding or non-bonding.

The quantity which is measured in a PE experiment is the ionization energy.
This is defined as the minimum energy required to move to infinity an electron
from the atom or molecule isolated in free space and in its ground electronic state.
This quantity is also called ionization potential (IP). The ionization energies ob-
served in PE spectroscopy are the energy differences between the ground state of
the molecule and the electronic states of the molecular ion. A prior knowledge of
the energies and the character of the occupied orbitals in the molecule, as well as
a theoretical determination of the IPs, are necessary in order to analyse correctly
a spectrum and exploit the information contained in it. The IPs can be calcu-
lated, at first approximation, using total energies calculated in the Hartree-Fock
(HF) scheme [49–51] or within more sophisticated methods, such as Configuration-
interaction (CI) [52]. In order to obtain reliable values for the IPs, the initial and
final state energies have to be calculated to a very high degree of accuracy. In
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particular, great care must be taken to ensure that the correlation in both the
initial and the final states is considered.

1.3 Basic observables

For each final ionic state, the basic measurable quantities which can be obtained
from a PE experiment, and, at the same time, which can be predicted theoreti-
cally, are cross sections, asymmetry parameters and Molecular Frame Photoelec-
tron Angular Distributions (MFPADs). In this section we highlight their meaning,
together with their main characteristics. A more exhaustive study of these observ-
ables will be done in Chapter 2.

1.3.1 Cross section

One of the main aims of photoionization is the determination of cross sections.
The cross section is proportional to the probability of photoionization to an ionic
state [53]. This observable permits us to have a clear knowledge about electronic
structure of atoms and molecules. In the course of time, the cross sections cal-
culations have become increasingly accurate. The first PE studies were restricted
to determine the line positions in the spectrum and in deriving electron binding
energies. Progressively the attention began to concentrate on line intensities as
well. The first measurements of partial photoionization cross sections were made
using discrete photon sources (VUV and X-ray), until the advent of monochro-
matized synchrotron radiation. The use of discrete photon sources prevented the
investigation of the photon-energy dependent partial cross section behaviour. At
the same time, the theory made several advances in the calculation of behaviour of
partial cross section, predicting characteristic features, such as shape resonances,
Cooper minima [54] and ’many-electron’ effects [55].

A more specific and informative quantity, rather than the total cross section
which corresponds to the sum of all emitted photoelectrons, is the partial cross
section [55], which is given by

σif (hν) =
4π2αa2

0

3
hν
∑
lm

|M̄iflm|2 (1.1)
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where α is the fine-structure constant, a0 the Bohr radius, and hν the photon
energy. The matrix element Miflm describes, in the dipole approximation [56], the
dipole transition between the initial state i and the final state f:

|M̄iflm|2 = | 〈flm|
∑
µ

r̄µ |i〉 |2 (1.2)

with
∑

µ r̄µ being the dipole operator of the n-electron system. The photoion-
ization is, then, a dipole transition between the initial and final states and the
transition probability is controlled by the above defined dipole transition moment.

1.3.2 Asymmetry Parameter

When the monochromatized photon beam of energy hν interacts with an atom
or a molecule, the detection of electrons emitted towards the entrance slit of the
electron spectrometer will give an angle-resolved signal and yield information on
the spatial distribution of the photoelectrons when the spectrometer is set at dif-
ferent positions in space. In general, the emission pattern of photoelectrons is
not isotropic in space, but possesses a characteristic angular distribution. The
angle-resolved measurements, through the study of the angular distribution of
photoelectrons, provide a further step towards a detailed understanding of the
photoionization process and the nature of the states involved in photoelectron
transitions. These measurements, over wide energy ranges, permit one to deter-
mine the so-called angular distribution asymmetry parameter β, which represents
the angular distribution of electrons emitted after photoionization. The asymme-
try parameter takes its name from the fact that, in the early days, the angular
distribution was studied at a high photon energy where the dipole approximation
breaks down and there is a forward/backward asymmetry with respect to the di-
rection of an unpolarized photon beam. The characterization of orbitals according
to their asymmetry parameters β and an understanding of the variation of β with
photon energy can yield useful information about ionic states.

This characteristic quantity is expressed in the expression of the differential
partial cross section, which for linearly polarized light is [57]

dσif (hν)

dΩ
(θ) =

σif (hν)

4π
[1 + βif (hν)P2(cosθ)] (1.3)
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Figure 1.2: Polar plots of the photoelectron differential cross section with four
different values of β. The polar angle β is the angle between the polarization
vector of light and the electron velocity vector (axis of the electron detector).
The arrow points to an angle of 54.7o, at which the cross sections are the same
independently of β (this angle is so important in electron spectroscopy that it

is called a magic angle).

with θ being the angle between the electric vector of the photon beam and the di-
rection of the outgoing electron, and P2(cosθ) the Legendre polynomial of second
degree. At the so-called ’magic angle’ θ = 54.7o (assuming 100% linear polar-
ization), this polynomial becomes zero and therefore the differential partial cross
section becomes proportional to the integral partial cross section. The shape of
the angular distribution pattern is determined from the numerical value of β. In
the particular case of photoionization of an s-electron and for negligible spin-orbit
effects, the β parameter has the energy-independent value β=2. This case ap-
plies, for example, to 1s photoionization in helium. In the general case, the β
parameter varies between 2 and -1 because different amplitudes contribute to the
photoionization process (Fig. 1.2).

1.3.3 MFPADs

Gas-phase free molecules are randomly oriented in space and then it needs in-
troduce an anisotropy parameter that describes the photoelectron angular dis-
tributions (PADs) in the laboratory frame. However, especially from a theoret-
ical perspective, is more natural to consider molecular photoionization by using
a molecular frame [58, 59]. The molecular frame PADs (MFPADs) may be used
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to extract further information about the target molecule. Measuring PADs from
fixed-in-space molecules has been a goal for researchers since the 1970s when it was
first proposed by Dill [60] to be a "much richer source of information on photoion-
ization dynamics, being able to probe details "washed out" by the freely tumbling
molecules of typical gas phase experiments". In the last decade, significant ex-
perimental efforts have been directed to MFPAD measurements. An important
progress in the MFPAD measurements has been brought by the use of the po-
sition sensitive detectors [61–64]. By employing these detectors, one can extract
three-dimensional momentum from the information about the detected position
and arrival time for each of the charged particles recorded in coincidence.

1.4 Outline

The first part of this manuscript is dedicated to the theory of photoionization
processes (Chapter 2), by illustrating the approximations and mathematical pro-
cedures used to express the differential cross sections and the boundary conditions
for ionization processes. The different approximations for the expression of the
final wavefunction will be detailed, with particular attention paid to the effects of
electronic correlation. In Chapter 3 an overview of the standard quantum meth-
ods used in our study is presented. This overview is followed by a discussion of
the multicenter B-spline static-exchange DFT method (Chapter 4), employed to
obtain the first part of the results. Then Chapter 5 is devoted to the treatment
of the correlated single channel approach, in particular to the exposition of Dyson
orbitals. The second part of the thesis is introduced by an overview (Chapter 6)
related to the results obtained studying the interference and diffraction patterns
for different systems (from Chapter 7 to Chapter 12). Finally, Chapter 13 will
present the results obtained with the correlated single channel approach.
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Theory
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Chapter 2

Theory

2.1 The photoionization processes

When an atomic or molecular system absorbs electromagnetic radiation of suffi-
ciently high frequency, the final state may lie in the continuum and one or more
electrons will be ejected from it. This process is known as photoionisation. The
electronic continuum of the system is defined as the collection of all states of the
system in which one electron is free and the residual system is in a state of definite
energy. The study of continuum states is generally more complex than that of
bound states. The analysis of the structure and properties of continuum states is
treated by scattering theory [65]. The results of scattering experiments are usually
expressed in terms of cross section, which is used to measure the probability of
a certain collision event. Both classical and quantum mechanical scattering are
characterized by this quantity. Before turning to quantum scattering, let us con-
sider the scattering process in a classical picture. This will allow us to obtain a
simple expression of cross section.

2.1.1 The classical cross section

Let us consider the scattering of a particle by a fixed target. We can measure
the momentum of the projectile before and after collision. From a single passage
of the projectile, we can know only if it hit the target or not. Repeating the
experiment many times with the same incident momentum, k0, but with random

17
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Figure 2.1: Schematic illustration of the scattering process. b is the impact
parameter, contained in the plane perpendicular to the particles flux. dσ is the

area crossed by the particles scattered into the solid angle dΩ.

impact parameters 1, we can consider the number ninc of projectiles incident per
unit area perpendicular to k0 (Fig. 2.1). Then the relation between the total
number of scattered particles Nscat and ninc is given by

Nscat = nincσ, (2.1)

where σ is the cross-sectional area of the target normal to k0. This quantity can
be, at this point, simply found by measuring Nscat and ninc, or equivalently the
fluxes jscat = Nscat

∆t
and jinc = ninc

∆t
, where the flux corresponds to the number of

particles crossing the unit area in the unit of time.
Considering scattering in any given direction, we can write an analogous rela-

tion by taking into account the number of particles scattered into the solid angle
∆Ω. Then we have the relation:

Nscat(∆Ω) = nincσ(∆Ω), (2.2)

where σ(∆Ω) represents the cross section of that part of the target which scatters
into ∆Ω. The cross section is proportional to dΩ in the limit of a small solid angle.
One can then write:

σ(dΩ) =
dσ(Ω)

dΩ
dΩ, (2.3)

where dσ/dΩ is called the differential cross section and represents the measurable
quantity in scattering experiments.

1the impact parameter is defined as the distance of the center of the target from the incident
trajectory
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2.1.2 Differential cross section

In Quantum Mechanics, the photoionization process is a transition from an initial
bound state, ΨN

0 , to a final state characterized by a well defined bound state of
the ion, ΨN−1

I , and a photoelectron with a well defined asymptotic momentum, k.
Hence the final state, Ψ

(−)
Ik , is characterized by the quantum numbers I and the

momentum k and by the boundary condition of incoming wave (indicated by the
symbol (−)) which describes the physical process and that will be discussed in the
following section 2.1.3. In the weak field limit, it corresponds to the absorption
of one photon caused by the dipole operator and leads to the expression for the
differential cross section

dσI
dk

= 4π2αω|〈Ψ(−)
Ik |D|Ψ0〉|2, (2.4)

where ω is the energy of the photon and α is the dimensionless fine-structure
constant, in atomic units (a.u.). This expression, derived by first order Time De-
pendent Perturbation Theory (TDPT), is analogous to a bound-bound transition
and we shall take it as a starting point. So, basically, the task amounts to the
calculation of the final wavefunction Ψ

(−)
Ik (the calculation of ΨN

0 is much easier)
and the evaluation of the dipole matrix elements:

D
(−)
Ik = 〈Ψ(−)

Ik |D|Ψ
N
0 〉, (2.5)

Note that in Eq. (2.4) the continuum wavefunction is assumed to be normalized
to a Dirac delta function with respect to the energy.

2.1.3 Boundary condition for ionization processes

Let us start by considering a one particle scattering by a fixed short range potential,
i.e. a potential V (r) that decays sufficiently fast at infinity. The exact condition
is

V (r) −−−→
r→∞

0, (2.6)

but, for simplicity, let us assume V (r) = 0 for r > R0.
If one considers the time evolution of a wavepacket, which itself can be repre-

sented as a linear combination of stationary states, we can describe an experiment
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where ionisation occurs. But, in the current case, we actually consider the math-
ematically simpler exact eigenstates ϕ(−)

k (r) rather than a mixed-state. These
states represent the final-state electron wavefunction in a photoionization process
and satisfy the incoming-wave boundary condition.

Let us consider first a spherically symmetric potential V (r). The positive
energy eigenstates of the Hamiltonian

H =
p2

2m
+ V (r), (2.7)

Hϕk = Ekϕk, (2.8)

characterized by a well defined asymptotic momentum k of the photoelectron
(Ek = k2/2) have the following asymptotic behaviour:

ϕ
(−)
k (r) −−−→

r→∞

1

(2π)
3
2

[eik·r + f (−)(k, k̂, r̂)
e−ikr

r
]. (2.9)

This expression is derived from scattering theory and indicates that, at large r,
the wavefunction has the form of a plane wave plus incoming spherical waves. The
quantity f (−)(k, k̂, r̂) is called the scattering amplitude and its dimensions are of
length (ref, indicate e guarda appunti foglio sulla normalizzazione). Like the plane
wave, ϕ(−)

k (r) is normalized in momentum

〈ϕ(−)
k (r)|ϕ(−)

k′ (r)〉 = δ(kk′). (2.10)

Computationally it is generally convenient to work in the basis of angular mo-
mentum states instead of linear momentum ϕk. In general, any function f(x, y, z)

can be represented, in polar coordinates, as an expansion over spherical harmonics
Ylm(ϑ, ϕ), as

Ψ(x, y, z) ≡ Ψ(r, ϑ, ϕ) =
∑
lm

Rlm(r)Ylm(ϑ, ϕ), (2.11)

which is called an expansion in partial waves. Each contribution Rlm(r)Ylm(ϑ, ϕ),
a product of a radial function times a spherical harmonic, is called a partial wave
(of angular momentum l,m). In particular, the plane wave eik·r admits a well
known partial wave representation:

eik·r =
∑
l

il(2l + 1)Pl(cosθ)jl(kr) = 4π
∑
lm

iljl(kr)Y
∗
lm(k̂)Ylm(r̂), (2.12)
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where θ is the angle between the vectors k and r. The spherical Bessel func-
tion, jl(kr), which appears in the above equation, is regular at the origin (i.e.,
rjl(kr) −−→

r→0
0) and has the asymptotic behaviour:

jl(kr) −−−→
r→∞

sin(kr − lπ/2)

kr
=
ei(kr−lπ/2) − e−i(kr−lπ/2)

2ikr
. (2.13)

If we now consider the left side of Eq. (2.9), the exact solution ϕ(−)
k (r) can also

be expanded in terms of partial waves:

ϕ
(−)
k (r) =

∑
lm

ClmREl(r)Ylm(ϑ, ϕ), (2.14)

where the function REl(r) is an eigenstate of definite angular momentum of the
radial Schrödinger equation relative to

HϕElm = EϕElm, E =
k2

2m
. (2.15)

The asymptotic behaviour of this function can be written as a linear combination
of regular and irregular spherical Bessel functions:

REl(r) −−−→
r→∞

Aljl(kr) +Blnl(kr) = Al(k) [jl(kr) +Klnl(kr)], (2.16)

which defines the K-matrix (which is diagonal for a spherical potential) and the
associated phase shift tan δl = Kl, where Al(k) is a normalization factor. This
wave-phase shift is a measure of the asymptotic amplitude of the spherical Bessel
function nl(kr). This function is irregular at the origin (i.e., nl(kr) −−→

r→0
∞) and

does not contribute to REl(r) when the central potential is absent. The asymptotic
behaviour of the irregular solution is given by

nl(kr) −−−→
r→∞

cos(kr − lπ/2)

kr
, (2.17)

so that asymptotically Rkl(r) has the form:

REl(r) ∝
sin(kr − lπ/2 + δl)

kr
. (2.18)

The set of expansion coefficients Clm in the expression (2.14) can be obtained by
comparing the asymptotic forms of the partial wave expansions of Eqs. (2.9) and
(2.14). To fix the normalization of the computed solutions let us define the energy
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normalized regular and irregular radial functions

fl(kr) −−−→
r→∞

√
2

πk

1

r
sin θl, gl(kr) −−−→

r→∞

√
2

πk

1

r
cos θl, (2.19)

with
θl(kr) = kr − lπ

2
. (2.20)

Then the unnormalized radial functions (2.16) obtained from the solution of the
Schrödinger equation (2.15) are fitted in the asymptotic region (for r = Rmax) to
the linear combination

REl(r) = Al fl(kr) +Bl gl(kr), (2.21)

and, dividing by Al, one gets the final K-matrix normalized solutions

REl(r) = fl(kr) +Kl gl(kr), (2.22)

with
Kl = BlA

−1
l . (2.23)

From Eq. (2.9), Eq. (2.12) and Eq. (2.13), expanding

f (−)(k, k̂, r̂) ≡ f (−) = 4π
∑
lm

flmY
∗
lm(k̂)Ylm(r̂), (2.24)

we have

ϕ−k (r) −−−→
r→∞

4π

(2π)
3
2

[
il
eiθl − e−iθl

2ikr
+ flm

e−iθle−il
π
2

r

]
Y ∗lm(k̂)Ylm(r̂) =

=

√
2

π

il

2ikr

∑
lm

[eiθl − (1− 2ikflmi
−2l)e−iθl ]Y ∗lm(k̂)Ylm(r̂).

(2.25)

Normalizing to a δ(E − E ′) and by multiplying by
√

k
m

we obtain:

ϕ−k (r) −−−→
r→∞

√
1

2πkm

il

ir

∑
lm

[eiθl − (1− 2ikflmi
−2l)e−iθl ]Y ∗lm(k̂)Ylm(r̂). (2.26)
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The K-normalized radial functions Rkl (2.21) have the asymptotic behaviour:

Rkl −−−→
r→∞

√
2

πk

1

r

[
eiθl − e−iθl

2i
+Kl

eiθl + e−iθl

2

]
=

=

√
2

πk

1

2ir

[
eiθl(1 + iKl)− e−iθl(1− iKl)

]
.

(2.27)

It can be brought to so called S+-matrix normalization by multiplying by (1 +

iKl)
−1

R
(−)
kl ⇒ Rkl(1 + iKl)

−1 −−−→
r→∞

√
1

2πk

1

ir

[
eiθl − S+

l e
−iθl
]
, (2.28)

with

Sl = (1 + iKl)(1− iKl)
−1, S+ = (1− iKl)(1 + iKl)

−1 = S−1. (2.29)

Then expressing

ϕ−k (r) =
∑
lm

ClmR
(−)
kl Ylm(r̂) −−−→

r→∞

∑
lm

Clm

√
2

πk

1

ir

[
eiθl − S+e−iθl

]
Ylm(r̂). (2.30)

Comparing with Eq. (2.26) one obtains

Clm =
1√
m
ilY ∗lm(k̂). (2.31)

So finally:
ϕ−k (r) =

1√
m

∑
lm

ilR
(−)
El (r)Y ∗lm(k̂)Ylm(r̂). (2.32)

This is the partial wave expansion for the continuum wavefunction which, in this
case, depends only on the angle θ between k and r. It can be also written as

ϕ−k (r) =
1

4πm1/2

∑
l

il(2l + 1)Pl(cosθ)R
(−)
El (r), (2.33)

employing the standard expansion for the Legendre polynomials

Pl(cosθ) =
4π

2l + 1

∑
m

Y ∗lm(k̂)Ylm(r̂). (2.34)

In the partial wave expansion each term R
(−)
El (r)Ylm(r̂) is the energy-normalized

single-electron wavefunction corresponding to the angular momentum state (l,m).
The spherical harmonic Y ∗lm(k̂) gives the probability amplitude for an electron in
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the angular momentum state (l,m) to have the direction k̂.

2.1.4 Coulomb asymptotic potential

We have thus far considered an electron moving in a short-range potential. This is
correct in the photoionization of anion systems (photodetachment) where the final
bound state is neutral. However, in the case of photoionization of a neutral molec-
ular system (or a positive ion), the photoelectron wave must be solution of the
scattering Schrödinger equation where the potential in the scattering Hamiltonian
is given by:

V (r) −−−→
r→∞

−Zion
r
. (2.35)

This is the long-range Coulomb potential, where Zion is the residual charge of the
ion. This potential modifies the single-channel final-state wavefunction ϕ

(−)
k (r).

Therefore, the partial wave expansion of Coulomb wave becomes:

ϕ
(−)
k (r) =

1

(2π)3/2

1

kr

∑
l

(2l + 1)ile−iσlFl(k, r)Pl(cosθ), (2.36)

where θ is the angle between r̂ and k, and Fl(k, r) is the spherical Coulomb function
which is regular at r = 0.

As before, it is useful to consider a second linear independent solution, the
irregular Coulomb function Gl(k, r). Their asymptotic forms are given by

Fl(k, r) −−−→
r→∞

sin θl(kr),

Gl(k, r) −−−→
r→∞

cos θl(kr),

fl =

√
2

πk

1

r
Fl, gl =

√
2

πk

1

r
Gl,

(2.37)

where
θ(kr) = kr − lπ

2
− ηlog2kr + σl, η = −Zion

k
, (2.38)

and
σl = argΓ(l + 1 + iη). (2.39)

The final-state wavefunction ϕ(−)
k (r), on the other hand, may always be expanded

as:
ϕ

(−)
k (r) =

∑
lm

ClmREl(r)Ylm(r̂)), (2.40)
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where REl(r) has the asymptotic form (K-matrix normalized)

REl(r) −−−→
r→∞

fl(kr) +Kl gl(kr). (2.41)

By the same substitutions, the final expression for the energy normalized contin-
uum wavefunction is

ϕ
(−)
k (r) =

1√
m

∑
l,m

ile−iσlR
(−)
El (r)Ylm(r̂)Y ∗lm(k̂). (2.42)

This function is thus of the same form as the corresponding wavefunction in the
absence of the Coulomb potential as given by Eq. (2.32). Furthermore, each term
in the partial wave expansion in Eq. (2.42) has the same interpretation as the
terms in Eq. (2.32). The two major differences between the two expressions are,
firstly, the different radial wave functions and, secondly, in Eq. (2.42) the Coulomb
phase-shift σl enters into the normalization factor.

So, in general, we define regular and irregular asymptotic radial solutions as
(fl, gl) in both cases, with appropriate definition of θl.

2.1.5 Non-spherically symmetric potential

If V (r) is not spherically symmetric, we can expand the solution in terms of partial
waves:

ϕElm =
∑
l′m′

REl′m′lmYl′m′ . (2.43)

The Hamiltonian is given by

h = h0 + V (r),

h0 =
p2

2m
= − 1

2m
(
1

r

∂

∂r
r
∂

∂r
) +

L2

2mr2
.

(2.44)

If one projects the Schrödinger equation

hϕElm = EϕElm,
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onto spherical harmonics Yl′′m′′ , we then obtain the coupled equations for the radial
functions:

〈Yl′′m′′ , H
∑
l′m′

REl′m′lmYl′m′〉 = E〈Yl′′m′′ ,
∑
l′m′

REl′m′lmYl′m′〉,

and

− 1

2m

1

r

∂

∂r
r
∂

∂r
REl′′m′′lm +

l′′(l′′ + 1)

2mr2
REl′′m′′lm+

+
∑
l′m′

Vl′′m′′l′m′(r)REl′m′lm(r) = EREl′′m′′lm,
(2.45)

where Vl′′m′′l′m′(r) = 〈Yl′′m′′ |V (r)|Yl′m′〉. The functions REl′m′lm are coupled by the
non-spherical components of the potential, Vl′′m′′l′m′ . At large distances, the radial
functions become a linear combination of the free-particle solutions

REl′m′lm(r) −−−→
r→∞

fl′(kr)Al′m′lm + gl′(kr)Bl′m′lm, (2.46)

which defines the matrices A and B. We then obtain a set of solutions, {REl′m′lm},
relative to the same energy E and whose number corresponds to that of the angular
momenta included in the expansion. Hence it is possible to linearly combine them
through an invertible transformation so as to obtain a set of equivalent solutions.

Defining REL′L ≡ REl′m′lm, where (l,m) ≡ L, we can write

REL′L −−−→
r→∞

fl′(kr)AL′L + gl′(kr)BL′L. (2.47)

We then obtain a set of solutions

ϕEL =
∑
L′

REL′LYL′ −−−→
r→∞

∑
L′

(fL′AL′L + gL′BL′L)YL′ . (2.48)

Transforming to K-matrix normalization

ϕEL −→ ϕ
(K)
EL =

∑
L′′

ϕEL′′A
−1
L′′L −−−→r→∞

∑
L′

(fL′δL′L + gL′KL′L)YL′ , (2.49)

where K = BA−1, it is easy to further transform to incoming wave (S-matrix)
normalization

ϕ
(−)
EL =

∑
L′′

ϕ
(K)
L′′ (1 + iK)−1

L′′L. (2.50)
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The corresponding S-matrix incoming wave solution is

R(−) = R(1 + iK)−1, (2.51)

with the asymptotic behaviour

R
(−)
EL′L −−−→r→∞

√
2

πk

1

r
(δL′Le

iθ′l + S+
L′Le

−iθ′l). (2.52)

A further transformation gives the linear momentum wavefunction

ϕ
(−)
k =

∑
L

CLϕ
(−)
EL , (2.53)

with
CL =

1√
m
ile−iσlY ∗L (k̂), (2.54)

as before (σl = 0 in the case of short range potential). The wavefunction ϕ
(−)
k

so obtained corresponds to the proper normalization and asymptotic boundary
condition for the calculation of the photoionization cross section.
Finally, if the molecular hamiltonian is invariant under a symmetry group G, its
matrix is diagonal over different symmetry irreducible representations (λ, µ). It is
then advantageous to work in a symmetry adapted angular basis, making a unitary
transformation from the spherical harmonic basis {Ylm} to the angular basis

Xlhλµ =
∑
m

Ylmbmlhλµ, (2.55)

with b+ = b−1 and
Ylm =

∑
hλµ

Xlhλµb
∗
mlhλµ. (2.56)

Here h counts the number of linearly independent functions Xlhλµ corresponding
to a given l. Then

ϕElm −−−→
r→∞

ϕElhλµ =
∑
l′h′

Rl′h′lhλXl′h′λµ, (2.57)

and the K, S matrices are diagonal on λ and independent on µ, i.e. Kλ
l′h′lh, S

(−)λ
l′h′lh.



Chapter 2. Theory 28

2.1.6 Convergence of the partial wave expansion

The expansion considered are formally exact in the limit of an infinite number of
partial waves. The convergence of partial waves is very fast at low energies, but
becomes slower at higher energies. A simple classical picture of scattering shows
that with momentum k and maximum impact parameter a, the corresponding
angular momentum is L = ak ∼ l, so that the maximum l required increases
linearly with electron momentum. In general, the expansion of the photoelectron
wavefunction over a large number of partial waves constitutes a computational
problem. For this reason, the partial waves development is a convenient method
at low energies, but very demanding at high energies.

2.1.7 The multichannel continuum wavefunction

Let us now suppose a number of final ionic states (channels) are open at a given
photon energy ω, with wavefunction ΨN−1

I , and corresponding energies

EN−1
I , IPI = EN−1

I − EN
0 < ~ω, E = EN

0 + ~ω, (2.58)

kI =

√
2(E − EN−1

I ) =
√

2(ω − IPI). (2.59)

Although their number may be infinite, in practical calculations only a finite num-
ber of the most interacting channels will be retained. Again scattering theory dic-
tates the form of asymptotic boundary conditions, which is a simple generalization
of that already considered in the single particle case, i.e. a plane wave associated
with the final channel considered plus incoming spherical waves in all channels:

Ψ
(−)
Ik (rN−1, r) −−−→

r→∞

1

(2π)
3
2

[
ΨN−1
I eikI·r +

nop∑
I′

ΨN−1
I′

e−ikI′r

r

]
, (2.60)

where nop is the number of open channels at ω and ΨN−1
I′ are the wavefunctions

that describe the ionic states I ′.
Employing a partial wave expansion for the continuum electron, the wavefunction
assumes the form

ΨEIL =
∑
I′L′

ΨN−1
I′ REI′L′IL(r)YL′(r̂), (2.61)
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with
REI′L′IL(r) −−−→

r→∞
fl′(kIr)AI′L′IL + gl′(kIr)BI′L′IL. (2.62)

Again, multiplying by A−1 leads to K-matrix normalization

Ψ
(K)
EIL =

∑
I′L′

ΨEI′L′A
−1
I′L′IL, K = BA−1, (2.63)

and further transformation to S+ boundary condition

Ψ
(−)
EIL =

∑
I′L′

Ψ
(K)
EI′L′(1 + iK)−1

I′L′IL. (2.64)

Finally, transformation from angular momentum to linear momentum conditions
gives

Ψ
(−)
Ik =

∑
L

CLkΨ
(−)
EIL, (2.65)

with
CLk =

1√
m
ile−iσlY ∗L (k̂). (2.66)

2.2 Photoionization cross section

Given the final state wavefunction, one can compute the differential cross section.
In the present treatment we work in the fixed nuclei representation and disregard
nuclear motion, by considering the molecule as a classical rigid body. We shall
discuss two limiting cases, corresponding to two different experimental situations.
The most common situation is a randomly oriented molecular sample, typical of
gas phase experiments. The cross section is then obtained by averaging over all
possible molecular orientations. The second situation corresponds to a completely
fixed orientation of the molecule in space. That can be achieved in a variety of
experimental settings and gives rise to a more complex angular distribution of
the photoelectrons, known as Molecular Frame Photoelectron Angular Distribu-
tion (MFPAD).
To treat this situation one needs two reference systems [66]. The first one is called
Laboratory Frame (LF, with axes X ′, Y ′, Z ′ and in general primed coordinate) and
is defined by the photon beam and the detection apparatus. The second one is
the Molecular Frame (MF, with axes X, Y, Z and unprimed coordinates), which
is fixed with respect to the molecule. Let us define Ω = (α, β, γ) the Euler angles
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relative to the rotation that carries MF into LF. Then β and α are the polar angles
which define photon orientation in MF.

Initially the wavefunctions are computed in the MF. So also the photon ori-
entation is converted in the MF and the electron momentum vector k is defined
in the MF. This gives directly the MFPAD cross section, for fixed orientation Ω.
To obtain the unoriented cross section in LF, one has to transform the electron
momentum vector k from the MF to k′ in the LF and then further average over
all molecular orientations (Ω).

We shall consider only electric dipole transitions and assume the LF Z ′ axis
defined by the electric vector E in the case of linearly polarized light (LP) or by
the photon propagation vector in the case of circularly polarization (Left or Right
circularly polarized, LCP and RCP, respectively). The corresponding one electron
dipole operator (in the length gauge) is then

d1mr =

√
4π

3
rY1mr , (2.67)

with mr = 0 for LP, and mr = +1, mr = −1 for LCP and RCP.
In general, the angular distribution of the cross section can be expanded in angu-
lar momentum components. In the case of one photon absorption in the dipole
approximation, if the molecule is unoriented, very general symmetry considera-
tions limit the angular momentum expansion of the differential cross section to a
maximum l value of 2 (given the absorption of a photon of spin = 1)

dσ

dk̂
=
σ0

4π
[1 + β2P2(cos θ)], mr = 0, (2.68)

dσ

dk̂
=
σ0

4π
[1± β1 cos θ +

1

2
β2P2(cos θ)], mr = ±1, (2.69)

where σ0(I, ω), β1(I, ω), β2(I, ω) completely characterize the photoionization pro-
cess. Actually, β1 6= 0 only for circularly polarized light and chiral molecules. For
linearly polarized light, β1 = 0 and θ is the angle between the electric field vec-
tor and the electron momentum, i.e. the cross section has cylindrical symmetry
around the electric vector. Instead, in the case of MFPAD, in the general case, all
angular momenta up to 2Lmax contribute to the cross section, where Lmax is the
maximum l value included in the continuum

dσ

dk̂
=
∑
LM

ALMYLM(k̂), (2.70)
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where the coefficients ALM(k,Ω) depend of the orientation of the photon beam in
the MF.

2.2.1 Cross section in the molecular frame

The dipole matrix elements computed from the continuum wavefunction ϕEL

(2.49) or, in general, ΨEIL (2.61), are given by

DEILγ = 〈ΨEIL|D1γ|Ψ0〉, (2.71)

and are transformed to the linear momentum asymptotic boundary conditions by
the same transformations of the wavefunction

ΨEIL −→ Ψ
(K)
EIL −→ Ψ

(−)
EIL −→ Ψ

(−)
Ik , (2.72)

So

D
(K)
EILγ =

∑
I′L′

DEI′L′γA
−1
I′L′IL, (2.73)

D
(−)
EILγ =

∑
I′L′

D
(K)
EI′L′γ(1− iK)−1

I′L′IL, (2.74)

D
(−)
Ikγ =

∑
L

C∗LkD
(−)
EILγ, with CLk =

1√
m
ile−iσlY ∗L (k̂). (2.75)

Actually, calculations are best performed employing full point group symmetry
and symmetry adapted angular functions Xlhλµ, so that in (2.73) L ≡ lhλµ, and
there is a further transformation to the angular momentum basis Ylm

D
(K)
EIlmγ =

∑
hλµ

D
(K)
EIlhλbmlhλµ. (2.76)

To simplify expressions, let us include the 1√
m
ile−iσl factors in the dipole matrix

elements, defining
D(−)
EILγ =

1√
m
ile−iσlD

(−)
EILγ, (2.77)

so that
D

(−)
Ikγ =

∑
lm

Ylm(k̂)D(−)
EIlmγ. (2.78)
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Finally, in the expression for the dipole matrix elements

D
(−)
Ikmr = 〈Ψ(−)

Ik |D1mr |Ψ0〉, (2.79)

the dipole operator in LF has to be expressed through its MF components D1γ,
by employing a rotation matrix R1

γmr(Ω)

D1mr =
∑
γ

D1γ R
1
γmr . (2.80)

One can now expand the differential cross section in the MF as:

dσI(ω)

dkdΩ
= 4π2αω|〈Ψ(−)

Ik |Dmr |Ψ0〉|2 =

= 4π2αω
∑

lmγl′m′γ′

Ylm(k̂)Y ∗l′m′(k̂)R(1)
γmr(Ω)R

(1)∗
γ′mr

(Ω)D(−)
lmγD

(−)∗
l′m′γ′ .

(2.81)

Recoupling

YlmY
∗
l′m′ = (−1)m

∑
L

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

(
l′ l L

m′ −m M

)(
l′ l L

0 0 0

)
YLM (k̂),

(2.82)
where M = m−m′, and

R(1)
γmr

R
(1)∗
γ′mr

= (−1)γ−mr

∑
J

(2J + 1)

(
1 1 J

γ′ −γ γ − γ′

)(
1 1 J

mr −mr 0

)
R

(J)
γ−γ′,0(Ω), (2.83)

and

RJ
M0(αβγ) = (−1)M

√
4π

2J + 1
YJ,−M(β, α), (2.84)

one obtains
dσI(ω)

dkdΩ
= 4π2αω(−1)mr

∑
LM

ALMYLM(k), (2.85)
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with ALM = ALM(k,mr,Ω), namely

ALM =
∑

lmγ,l′m′γ′

(−1)m
√

(2l + 1)(2l′ + 1)(2L+ 1)

4π

(
l′ l L

m′ −m M

)(
l′ l L

0 0 0

)
D(−)
lmγD

(−)∗
l′m′γ′

(−1)γ
∑
J

(2J + 1)

(
1 1 J

γ′ −γ γ − γ′

)(
1 1 J

mr −mr 0

)
(−1)γ−γ

′
√

4π

2J + 1
YJ,γ′−γ(β, α) =

=
∑

lmγ,l′m′γ′

(−1)m+γ′
l̂l̂′L̂Ĵ

(
l′ l L

m′ −m M

)(
l′ l L

0 0 0

)
D(−)
lmγD

(−)∗
l′m′γ′

∑
J

(
1 1 J

γ′ −γ γ − γ′

)(
1 1 J

mr −mr 0

)
YJγ′−γ(β, α),

(2.86)

where l̂ =
√

2l + 1.
One can note that the only "dynamical" part (that is, depending on ω) is in the
Dlmγ terms. These terms depend, in turn, on the initial and final states and on
the Coulombic phase shift σl. All the other terms consist of geometrical factors.
Since the calculation of dσ

dk̂
has been done in the MF, the propagation direction

k̂ of the photoelectron is defined with respect to the molecule. This situation
describes the experiments with oriented molecules where both the polarization of
the photoelectron and its emission direction are related to the frame of reference
of the molecule. For linear molecules, the angle β is that between the photon
polarization and the molecular axis. The two most common orientations are ‖
(parallel, β=0) and ⊥ (perpendicular, β=90o).

The integral cross section is obtained by integrating over all emission direc-
tions k̂. Recalling ∫

YLM(k̂)dk̂ = δL0δM0

√
4π, (2.87)

from which we can derive the total cross section

σ(Ω) =

∫
dσ

dk
dk̂ = 4π2αω(−1)mr

√
4πA00, (2.88)

then the total cross section for randomly oriented molecules is obtained by aver-
aging over Ω. We can see that the result is the same both in the LF and in the
MF. From

1

8π2

∫
Rj
m′m(Ω)dΩ = δj0δm′m, (2.89)

then averaging A00(Ω) gives a δJ0δλλ′ in the sum

1

8π

∫
A00(Ω)dΩ −→ δJ0δλλ′ , (2.90)
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and (
l l 0

m −m 0

)(
l l 0

0 0 0

)√
(2l + 1)2

4π
= (−1)l−m(−1)l

1√
4π

=
(−1)m√

4π
, (2.91)

(
1 1 0

λ −λ 0

)(
1 1 0

mr −mr 0

)
= (−1)1−λ(−1)1−mr

1

3
=

(−1)λ+mr

3
. (2.92)

From which
σ =

4

3
π2αω

∑
lmγ

|D(−)
lmγ|

2 =
4

3
π2αω

∑
lhλµγ

|D(−)
lhλµγ|

2. (2.93)

2.2.2 Cross section in the laboratory frame

Let us start from the formula of the differential cross section in the MF (2.85) in
order to express the differential cross section in the LF. Once the orientation of
the vector k̂ in the LF has been re-expressed through the rotation matrices, we
can average over all molecular orientations Ω. The YLM(k̂) in the MF is expressed
as

YLM ′(k̂) =
∑
M

YLM(k̂′)RL
MM ′(−Ω) =

∑
M

YLM(k̂′)RL∗
M ′M(Ω), (2.94)

and recoupling

RLM ′M (Ω)∗RJγ−γ′,0(Ω) = (−1)γ−γ
′ ∑
KQQ′

(2K + 1)

(
L J K

M ′ γ′ − γ Q′

)(
L J K

M 0 Q

)
DK
Q′Q(Ω),

(2.95)

with M ′ + γ′ − γ + Q′ = 0 and Q = −M . From expressions (2.85) and (2.86) we
can obtain:

(−1)mr
∑
LM ′

ALM ′(k,Ω)YLM ′(k̂) = (−1)mr
∑
LM

ĀLM(k,Ω)YLM(k̂′), (2.96)

with

ĀLM =
∑
M ′

ALM ′RL∗M ′M (Ω) =
∑
lmγ
l′m′γ′

(−1)m+γ
∑
M ′

(
l′ l L

m′ −m M ′

)(
l′ l L

0 0 0

)
√

(2l + 1)(2l′ + 1)(2L+ 1)

4π
D(−)
lmγD

(−)∗
l′m′γ′

∑
J

(2J + 1)

(
1 1 J

γ′ −γ γ − γ′

)(
1 1 J

mr −mr 0

)

(−1)γ−γ
′ ∑
K

(2K + 1)

(
L J K

M ′ γ′ − γ Q′

)(
L J K

M 0 −M

)
DK
Q′,−M (Ω),

(2.97)



Chapter 2. Theory 35

with M ′ = m−m′ and Q′ = γ − γ′ −M ′.
Then we can write

ĀLM (k,Ω) =
∑
lmγ
l′m′γ′

(−1)m+γ

(
l′ l L

m′ −m M

)(
l′ l L

0 0 0

)
√

(2l + 1)(2l′ + 1)(2L+ 1)

4π
D(−)
lmγD

(−)∗
l′m′γ′

∑
JK

(2J + 1)(2K + 1)

(
1 1 J

γ′ −γ γ − γ′

)
(

1 1 J

mr −mr 0

)(
L J K

m−m′ γ′ − γ Q

)(
L J K

M 0 −M

)
DK
Q,−M (Ω).

(2.98)

In order to obtain dσ
dk

for randomly oriented molecules, we have to average over all
the orientations Ω, then:

1

8π2

∫
ĀLM (k,Ω)dΩ = ĀL0(k) ≡ AL(k) =

=
∑
lmγ
l′m′γ′

(−1)m+γ′

(
l l′ L

−m m′ M

)
(
l l′ L

0 0 0

)√
(2l + 1)(2l′ + 1)(2L+ 1)

4π
D(−)
lmγD

(−)∗
l′m′γ′(2L+ 1)(

1 1 L

−γ γ′ γ − γ′

)(
1 1 L

−mr mr 0

)(
L L 0

m−m′ γ′ − γ 0

)(
L L 0

0 0 0

)
=

=

√
2L+ 1

4π

∑
lmγ
l′m′γ′

(−1)m+γ

(
l′ l L

−m m′ M

)
(
l l′ L

0 0 0

)√
(2l + 1)(2l′ + 1)D(−)

lmγD
(−)∗
l′m′γ′(

1 1 L

−γ γ′ γ − γ′

)(
1 1 L

−mr mr 0

)
,

(2.99)

with m−m′ = γ − γ′

AL(k)YL0 =

√
2L+ 1

4π
AL(k)PL(cosθ). (2.100)

Then finally we can obtain

dσ

dk
= παω(−1)mr

∑
L

ALPL(cosθ′), (2.101)
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where θ′ is referred to the laboratory system and with

AL(k) = (2L+ 1)

(
1 1 L

mr −mr 0

) ∑
lmγ
l′m′γ′

(−1)m+γ

√
(2l + 1)(2l′ + 1)

(
l l′ L

0 0 0

)(
l l′ L

−m m′ m−m′

)(
1 1 L

γ′ −γ γ − γ′

)(
1 1 L

−mr mr 0

)
D(−)
lmγD

(−)∗
l′m′γ′ .

(2.102)

From the term

(
1 1 L

mr −mr 0

)
we can see that 0 ≤ L ≤ 2, that is L can be

only L = 0, 1, 2. Furthermore, for linearly polarized light mr = 0 and the term(
1 1 L

0 0 0

)
is non-zero only for even values of L [67]. As a result, only the terms

A0 and A2 survive in the sum (2.101).
By integrating Eq. (2.101), the only non-zero term is for P0. For P0 = 1, we can
obtain [68]

σ =

∫
dσ

dk
sinθdθdϕ = παω(−1)mrA0

∫
1 · sinθdθdϕ =

= 4π2αω(−1)mrA0 =⇒ σ

4π
= παω(−1)mrA0,

(2.103)

dσ

dk
= παω(−1)mrA0

(
1 +

A1

A0

cosθ +
A2

A0

P2(cosθ)

)
, (2.104)

and by defining

β1 =
A1(mr = 1)

A0

β =
A2(mr = 0)

A0

, (2.105)

we can obtain

dσ

dk
=

σ

4π
[1 +mrβ1cosθ +

(
−1

2

)mr
βP2(cosθ)]. (2.106)

2.3 Expression of the wave function: different ap-

proximations

The problem of calculating photoionization cross-sections is related to the calcu-
lation of matrix elements in expression (2.4). Hence it is necessary to specify the
initial and final states of the system. The methods of calculation differ on the
choice of the bound and continuum states. While the calculation of the initial
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state wavefunction is straightforward, the accurate calculation of the final state
wavefunction is, on the contrary, extremely difficult and requires several approxi-
mations. In this section we want to illustrate the approximations that we used to
express the final wavefunction. Each of these methods considers correlation to a
greater or lesser degree and some methods do not consider it at all.

We will now start discussing the consequences of correlation.

2.3.1 Correlation effects

If we consider the Hamiltonian operator for a system, the problem for the corre-
sponding Schrödinger equation lies in the term which describes the coulombian
interaction between electrons. The Schrödinger equation is not analytically solv-
able because of this correlation term. As a consequence, the basic approximation
for many-electron systems is the mean-field approximation. This is based on the
independent particle model, in which each particle moves on the mean field created
from the other particles. In general, the term "electron correlation" is related to
all the effects not included in the mean field approximation.

The one-electron picture is the basic description of the ionic states created
in photoionization. For example, within this approximation, in the most simple
case of closed shell atoms, it is possible to associate each line, in a PE spectrum,
to an orbital. For the molecular case, the rotational and vibrational excitations
determine more complex bands but these broadened bands can be associated, in
any case, to an individual molecular orbital. The main photoelectron peaks or
bands observed in the spectrum are connected to those final electronic states of
the ion, which can be described as single hole configurations (1h) with respect to
the ground-state.

Although it represents a first level of PE spectrum interpretation, the one
particle approach is insufficient to provide a complete description in the general
case. This is a consequence of the many-electron nature of most targets. Then
it is necessary to take into account the interelectron interaction which leads to
dependent/correlated motion of electrons.

Electron correlation together with relaxation effects lead to additional bands
in a PE spectrum. Relaxation effects are connected to the orbital’s change in re-
sponse to the creation of a hole. These extra structures, called shake-up or satellite
bands, correspond to excitation processes occurring simultaneously with the ion-
ization processes. Indeed, if more than one electron participates in the transition,
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the PE spectrum will contain satellite lines in addition to the generally strong main
line which represents the direct single photoionization. The experimental evidence
of these structures has been named as the breakdown of the independent-particle
picture of electronic structure [5]. The simple theoretical interpretation is that the
extra features in the ionization spectra appear, in addition to those expected from
the one-electron picture, because of the strong interaction between single-hole con-
figurations and two-hole, one-particle configurations. The interaction between a
single-hole configuration and a multiply-excited configurations leads to a mixing
of the configurations that redistributes the intensity amongst many states of the
same symmetry. Experimentally this mixing redistributes the intensity between
main peaks associated with main states expected from the simple Koopmans’ the-
orem picture and satellite peaks associated with correlation states.

Correlation effects in photoionization can be usefully subdivided into two
classes [69]. The first one is correlation within the bound states relative to the
initial state (often called initial state configuration interaction, ISCI) and final
ionic state (FISCI). ISCI and FISCI refer to discrete bound electron systems, N-
electrons and N-1 electrons, respectively. The second one comprises interaction
between continuum channels (interchannel coupling, IC), or between a discrete
state (or closed channel) and the continuum (autoionization resonances, also reso-
nant Auger). Correlation effects in the bound states have been extensively inves-
tigated using several many-body approaches like Configuration Interaction (CI),
Perturbation Theory (PT), Green’s function (GF),[5, 70–73] and are the major
source of correlation effects in photoelectron spectra.
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2.3.2 General expression of the wavefunction

In photoionization, open channels are defined as target states accessible at the
given energy E and which satisfy the relation:

IPI = EN−1
I − EN

0 < hν. (2.107)

In the current case, eigenstates in the continuum of N -particles correspond to
bound states of N -1 particles (target states) plus one particle in the continuum.
The continuum wavefunctions satisfy the Schrödinger equation:

HNΨN
Eα = EΨN

Eα, (2.108)

where α ≡ I collectively indicates all additional quantum numbers necessary to
uniquely label the solution.

This solution, ΨN
Eα, can be formally expressed in the so called Close-Coupling

form:
ΨN
EIL =

∑
I′L′

ΨN−1
I′ φEI′LIL +

∑
K

ΦN
KCEαK . (2.109)

The first sum runs over all open channels and comprises antisymmetrized prod-
ucts of the bound state wavefunctions for the final ionic states ΨN−1

I and single
particle wavefunctions φEI′L′IL describing the continuum electrons (see Sec. 2.1.7)
and automatic satisfies the boundary conditions in the continuum. The reminder,
which is square integrable, can be represented by the second sum, involving only
bound state wavefunctions ΦN

K , which can be described with the typical methods
of Quantum Chemistry such as CI and takes also into account orthogonality con-
ditions. This is analogous to a CI expansion for the bound states. It is in principle
convergent, as the set of ΦN

K becomes complete. It may be a computationally con-
venient form to get approximate solutions, by selecting basis functions and then
truncating the sums to a finite number of terms. This can still satisfy any required
asymptotic form and boundary conditions.

At long range, this solution has to reduce asymptotically to a linear combina-
tion of products of target states multiplied by single particle continuum functions

ΨN
Eα −−−−→

rN→∞

∑
I′

ΨN−1
I′ φEαI′ , (2.110)
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relative to all open channels I’. The "channel function" index α = Ilm counts all
the possible products of target states I multiplied by all angular momenta lm of
the continuum particle which are degenerate.

2.3.2.1 First approximation

At the single channel level, the final continuum wavefunction is approximated as
an antisymmetrized product:

ΨN
EIL = AΨN−1

I ϕεIL, (2.111)

where ΨN−1
I is a final ionic state wavefunction and ϕε ≡ ϕεIL is a continuum

orbital describing the outgoing photoelectron. We also note that A is the anti-
symmetrizer, ε is the photoelectron kinetic energy (E = EN−1

I +ε). The continuum
orbitals satisfy the K-matrix boundary conditions which were defined in the pre-
vious section.

In our approach, in the independent particle approximation (IPA), the wave-
function associated to the ionic state is expressed as a product of single particle
functions

ΨN−1
i = |ϕ1, ..., ϕi−1, ϕi+1, ..., ϕN〉 . (2.112)

The wavefunction of the final state is a single determinant

ΨN
EiL = |ϕ1, ..., ϕε, ..., ϕN〉 , (2.113)

where the i-th function is substituted with the ϕε, the function related to the
photoelectron. This wavefunction corresponds to a single particle excitation, in
which the i-th orbital has been ionized and an electron excited to the continuum
state ϕε.

Once the initial and final wavefunctions are defined, we can concentrate on
the calculation of transition matrix elements to find the differential cross section.
At this level (frozen orbitals), in the N-particle transition matrix element there is
only the contribution from the wavefunction of the photoelectron. This is because
the contribution from the other electrons will integrate out to unity. Then the
calculation of the transition dipole moments reduces to:

〈ΨEI |D|Ψ0〉 = 〈ϕε|d|ϕi〉 . (2.114)
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Since the dipole transition operator is a one-particle operator, only single tran-
sitions ϕi −→ ϕε are permitted. Within this approximation, the Koopmans’
theorem is valid.

At this level, one can use two different approximations: Hartree-Fock (HF)
and Kohn-Sham Density Functional Theory (KS DFT). If the initial state is rep-
resented by a Hartree-Fock determinant, the residual ionic state can be taken as
the Koopmans’ frozen state, by removing the relevant one-electron orbital from
the determinant. Therefore, in the calculation of dipole transition moments, the
ϕi orbital will be represented by an HF orbital or, in the DFT case, by a DFT
orbital.

On the one hand, at this level of approximation, one can describe cross section
and asymmetry parameter oscillations, dichroism in chiral molecules, direct pho-
toionization from molecules fixed in space, non-dipolar effects and vibrationally
resolved cross-sections. Furthermore, one-electron theories include the effects of
shape resonances and Cooper minima [53]. But on the other hand, calculations
based on these approximations do not include autoionization [53]. So the one-
electron description represents only a first-level approximation to the photoioniza-
tion process. This approach is unable to describe processes where the remaining
electrons are simultaneously excited as the photoelectron leaves the ion. Multi-
electrons processes have to be described by means of other approximations.

2.3.2.2 Second approximation

The second approximation consists in coupling of single particle excitations, namely
in considering several single excited determinants. The continuum wavefunction
is expressed as:

ΨN
Ej =

∑
i

Cij |ϕ1, ..., ϕEi, ..., ϕN〉 =
∑
i

ΦN−1
i ϕEij. (2.115)

Hence, the final state wavefunction is a mixing of the previous independent particle
functions. The effects included, that is the effects that it can gain respect to those
described from first approximation, are:

• interchannel coupling effects (which transfers intensity fron one channel to
another)



Chapter 2. Theory 42

• singly excited autoionizations (and Super Coster Kronig (SCK) giant reso-
nances) [74] autoionization resonances due to discrete single excitations

• correlation effects due to the mixing of singly-excited configurations (channel
mixing)

At this level, it is possible to use the Time-dependent density functional theory
(TDDFT) within the linear response approximation. This method has been shown
to provide accurate results for large systems and permits to introduce couplings
between the treated photoionization channels and some single excitation transi-
tions. The interchannel mixing is visible in the cross section by the presence of
relatively sharp structures at photon energies corresponding to the coupled single-
excitations. TDDFT and, in general, this second type of approximation do not
consider:

• correlations due to multiple excitations

• autoionizations due to doubly excited states

• description of satellite states

These effects are partially considered in a third approach, explained in the next
session.

2.3.2.3 Third approximation

One can stay at the single channel level, but employ highly-correlated bound state
wavefunctions for the initial ΨN

I and final ionic states ΨN−1
F

ΨN
EIL = AΨN−1

I ϕεIL. (2.116)

At the HF or DFT level, the dipole matrix elements between the initial wavefunc-
tion, ΨN

0 , and the final one, ΨN
Ek, reduce to one particle matrix elements 〈ϕk | d |ϕi〉

between the initial orbital ϕi from which the electron is emitted, and the final or-
bital ϕk describing the electron in the continuum. This approach can be extended
to the use of fully correlated the bound states, ΨN

I and ΨN−1
F , by substituting to
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ϕi the orbital φdIF , called Dyson orbital.
The Dyson orbitals are defined as:

φdIF (1) =
√
N

∫
ΨN
I (1, ..., N)ΨN−1

F (2, ..., N)d2...dN. (2.117)

They represent the superposition between the initial neutral state wavefunction
(N-electron system), ΨN

I , and the final ionic state wavefunction (N-1 electrons
system), ΨN−1

F . A more extensive discussion of these orbitals will be in Chapter
5.
At this level, all correlation effects present in the bound states (ISCI and FISCI)
are completely described by the single Dyson orbital. The IP’s are not calculated
simply by Koopmans’ theorem but by using the relation IPI = EN−1

I − EN
0 (cor-

rection to KT). As a consequence, we can speak about breakdown of Koopmans’
theorem or, equivalently, breakdown of one-particle picture. In this way it is pos-
sible to consider the presence of satellite states.

More specifically, dipole matrix elements can be exactly reduced to one par-
ticle matrix elements, through the definition of direct and conjugate amplitudes,
χIk and ηIk respectively, defined as:

χIk =
〈
ΨN−1
I

∣∣ ak ∣∣ΨN
0

〉
, ηIk =

〈
ΨN−1
I

∣∣Dak ∣∣ΨN
0

〉
, (2.118)

where D is the many particle dipole operator (x, y, z component) and ak is the
annihilation operator relative to orbital ϕk. Then one can write:

〈
ΨN−1
F ϕεj

∣∣D ∣∣ΨN
I

〉
=

∑
k 〈ϕεj | d |ϕk〉χIk +

∑
k 〈ϕεj |ϕk〉 ηIk =

= 〈ϕεj | d |χI〉+ 〈ϕεj | ηI〉 ,
(2.119)

where it has defined Dyson orbitals χI and ηI as

χI =
∑
k

χIkϕk, ηI =
∑
k

ηIkϕk. (2.120)

The second term, which is called conjugate, is deemed of minor importance, espe-
cially far from threshold, and it is neglected in our study. It is associated with a
dipole transition within the bound states and can populate final ionic states which
are symmetry-forbidden by the first (direct) mechanism.
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Methods

3.1 Hartree-Fock Method

In the Hartree-Fock approach it is assumed, according to the independent-particle
approximation and the Pauli exclusion principle, that the N-electron wavefunction
is a Slater determinant, i.e. an antisymmetric product of individual electron spin-
orbitals [75, 76].
This wavefunction can be then expressed as:

Φ = Â[φ1(1)φ2(2) . . . φN(N)] = ÂΠ, (3.1)

where Â is the antisymmetrizing operator and Π is the diagonal product. The
operator Â can be expanded as a sum of permutations and is defined as:

Â =
1√
N !

∑
P

(−1)pP̂ , (3.2)

where Î is the identity operator, the sum over P̂ij generates all possible permuta-
tions of two electron coordinates, while the sum over P̂ijk generates all possible
permutations of three electron coordinates etc.

The Hamiltonian operator can be written as:

Ĥ =
N∑
i

ĥi +
N∑
j>i

ĝij + V̂nn, (3.3)

44
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where

ĥi =
1

2
∇2
i −

Nnuclei∑
a

Za
|Ra − ri|

, (3.4)

describes the motion of electron i in the field generated by the nuclei, while the
two-electron operator

ĝij =
1

|ri − ri|
, (3.5)

expresses the electron-electron repulsion. Finally, the term

Vnn =

Nnuclei∑
a

Nnuclei∑
b>a

ZaZb
|Ra −Rb|

, (3.6)

is the nuclear-nuclear repulsion which is a constant for a given nuclear geometry.
The expectation value of the energy can be written as:

E = 〈Φ|Ĥ|Φ〉 = 〈ÂΠ|Ĥ|ÂΠ〉 =
√
N ! 〈Π|Ĥ|ÂΠ〉 =

∑
p

(−1)p 〈Π|Ĥ|P̂Π〉 . (3.7)

While for the one-electron operator only the identity operator can give a non-zero
contribution, for the two-electron operator, non-zero contributions are given by
the identity and the P̂ij operators. The identity operator is responsible for the
term:

〈Π|ĝ12|Π〉 = 〈φ1(1)φ2(2)...φN(N)|ĝ12|φ1(1)φ2(2)...φN(N)〉

= 〈φ1(1)φ2(2)|ĝ12|φ1(1)φ2(2)〉 ... 〈φN(N)|φN(N)〉

= 〈φ1(1)φ2(2)|ĝ12|φ1(1)φ2(2)〉 = J12,

(3.8)

where the J12 matrix element is the Coulomb integral which represents the classical
repulsion between two charge distributions. The other term, which stems from the
P̂ij operator, is given by

〈Π|ĝ12|P̂12Π〉 = 〈φ1(1)φ2(2)...φN(N)|ĝ12|φ1(1)φ2(2)...φN(N)〉

= 〈φ1(1)φ2(2)|ĝ12|φ2(1)φ1(2)〉 ... 〈φN(N)|φN(N)〉

= 〈φ1(1)φ2(2)|ĝ12|φ2(1)φ1(2)〉 = K12,

(3.9)

where the K12 matrix element is the exchange integral and has no classical ana-
logue. As a result, the energy can be written in terms of Coulomb and exchange
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operators as

E =
N∑
i

〈φi|ĥi|φi〉+
1

2

N∑
ij

(〈φj|Ĵi|φj〉 − 〈φj|K̂i|φj〉) + Vnn. (3.10)

With this expression, the aim is to determine a set of orthogonal and normalized
MOs that minimize the energy.

The Lagrange function for the system is given by

L = E −
N∑
ij

λij(〈φi|φj〉 − δij),

The energy minimization can be done by using Lagrange multipliers with the
condition that a small change in the orbitals should not change the Lagrange
function:

δL = δE −
N∑
ij

λij(〈δφi|φj〉 − 〈φi|δφj〉) = 0. (3.11)

The variation of energy can be written as:

δE =
N∑
i

(〈δφi|ĥi|φi〉+ 〈φi|ĥi|δφi〉) +
N∑
ij

(〈δφi|Ĵj − K̂j|φi〉+ 〈φi|Ĵj − K̂j|δφi〉) =

=
N∑
i

(〈δφi|F̂i|φi〉+ 〈φi|F̂i|δφi〉),

(3.12)

where the Fock operator is defined as:

F̂i = ĥi +
N∑
j

(Ĵj − K̂j). (3.13)

This operator describes the kinetic energy of a specific electron and the nuclei-
electron attraction as well as the repulsion of all the other electrons (through the
Ĵ and K̂ operators). Thus, the variation of the Lagrange function becomes

δL =
N∑
i

(〈δφi|F̂i|φi〉+ 〈φi|F̂i|δφi〉)−
N∑
ij

λij(〈δφi|φj〉+ 〈φi|δφj〉). (3.14)
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According to the variational principle, the desired orbitals are those that make
δL = 0. Using the complex conjugate properties, we have that

δL =
N∑
i

〈δφi|F̂i|φi〉 −
N∑
ij

λij 〈δφi|φi〉+
N∑
i

〈δφi|F̂i|φi〉
∗
−

N∑
ij

λij 〈δφi|φi〉∗ = 0.

(3.15)
The variation of either 〈δφ| or 〈δφ∗| should make δL = 0, i.e. the first two terms
in the above equation must cancel, and the last two terms must cancel. Taking
the complex conjugate of the last two terms and subtracting them from the first
two, we obtain:

N∑
ij

(λij − λ∗ij) 〈δφi|φj〉 = 0. (3.16)

Hence the Lagrange multipliers are elements of a Hermitian matrix (λij = λ∗ji).
The final set of Hartree-Fock equations may be written as

F̂iφi =
N∑
j

λijφj. (3.17)

The equations may be simplified by choosing a unitary transformation that makes
the matrix of Lagrange multipliers diagonal. These particular molecular orbitals
(φ′) are called the canonical MOs and they transform Eq. (3.17) into a set of
pseudo-eigenvalue equations:

F̂iφ
′
i = εiφ

′
i. (3.18)

The complexity with solving Eq. (3.18) lies in the fact that the Fock operator
depends on the Fock orbitals. Hence, the system of Hartree-Fock equations are
solved by iteration. Starting from an initial guess set of orbitals, one can use these
orbitals to construct the Fock operator that is used, in turn, to solve for a new set
of orbitals. This procedure is repeated until no significant change in the orbital
energies occurs. As a consequence, the solution of Eq. (3.18) is self-consistent,
and the method is called the Self-Consistent Field (SCF) method.

3.1.1 Koopmans’ Theorem

Let us consider the energy of an N-electron system and the corresponding system
with one electron removed from orbital k. Furthermore, we assume that the MOs
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are the same for the two systems. The energy of the N-electron system is given by

EN =
N∑
i

hi +
1

2

N∑
i

N∑
j

(Jij −Kij) + Vnn, (3.19)

while that of the (N-1)-electron system is given by

EN−1 =
N−1∑
i

hi +
1

2

N−1∑
i

N−1∑
j

(Jij −Kij) + Vnn. (3.20)

Subtracting the two total energies gives

EN − EN−1 = hk +
N∑
i

(Jik −Kik) = εk, (3.21)

where εk is exactly the orbital energy. This quantity then represents approximately
the necessary energy to remove an electron from the orbital φk, or the ionization
energy of electron k. This result is known as Koopmans’ theorem [48].

3.2 Configuration Interaction

The HF energy of a given state and the corresponding HF wavefunction are only
approximations to the exact energy and the exact wavefunction. The HF wave-
function usually gives ∼ 99% of the correct energy and the difference between the
exact energy and HF energy is known as the correlation energy [76, 77]. Correla-
tion effects can be calculated by using the variational method with a wavefunction
that is a linear combination of Slater determinants. These determinants corre-
spond to electronic configurations in which electrons are promoted into virtual
orbitals. Hence, they represent excited states whose contribution to the total
wavefunction of the ground state generally decreases with the order of excitation.

This is the Configuration Interaction (CI) approach [52] and the correspond-
ing wavefunction can be written as

ΨCI = a0ΦHF +
∑
S

aSΦS +
∑
D

aDΦD +
∑
T

aTΦT + ... =
∑
i

aiΦi, (3.22)

where subscripts S, D, T, etc. indicate determinants that are singly, doubly, triply,
etc., excited relative to the HF configuration.
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Exploiting the symmetry properties of the system, the linear combination in
Eq. (3.22) can be reduced to a basis of states with the same spatial and spin
symmetry. Such linear combinations of determinants are called Configurational
State Functions (CSFs). If the expansion Eq. (3.22) includes all possible CSFs of
the appropriate symmetry, it represents a full CI procedure which exactly solves
the electronic Schrödinger equation in the given basis.

3.3 MCSCF

The Multi-Configuration Self-Consistent Field (MCSCF) methods represent a se-
ries of computational methods which include only a few number of determinants
in Eq. (3.22). The MCSCF methods provide a general approach for describing
chemical systems in which a single-electron configuration does not permit an ade-
quate description of the electronic structure. In particular, they can be considered
as a CI where both the coefficients in front of the determinants in Eq. (3.22) and
the MOs used for constructing the determinants are variationally optimized [78].
This is distinct from the regular CI case where only the coefficients are optimized.

For the wavefunction Ψk in the MCSCF expansion:

ΦMCSCF =
∑
k

AkΨk, (3.23)

we can use a single determinant, a linear combination of determinants or CSFs.
MCSCF treatments are generally designed to correct the HF energy by in-

cluding the static part of the correlation. This contribution, known as the near-
degeneracy effect, is mainly due to the existence of different degenerate solutions
and refers to the inadequacy of a single reference in describing a given molecular
state. The remaining dynamical contribution is associated with the instantaneous
correlation between electrons. This term can be included in several ways. One ap-
proach is by using a perturbative treatment which will be subsequently illustrated
3.4.

The main problem in MCSCF methods is in choosing the most important
configurations to describe the property of interest. There exist several implemen-
tations of this approach based on different choices of the Ψk and of the optimization
methods. One of these will be illustrated in the next section 3.3.1.
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3.3.1 CASSCF

One of the most famous multideterminantal approaches is the Complete Active
Space Self-Consistent Field (CASSCF) method, which has been popularized by
Roos et al. [79]. In this approach, the initial molecular orbital space, which may
be taken from a HF calculation, is partitioned into inactive and active spaces. The
inactive space is composed of the doubly occupied orbitals in all CSFs that are
used to build the multiconfigurational wavefunction. Meanwhile, the active space
includes both occupied and virtual orbitals. These orbitals will typically include
some of the highest occupied and some of the lowest unoccupied MOs from a HF
calculation. We include all determinants which are allowed for a particular choice
of active orbitals. These determinants contribute to the expansion in Eq. (3.23).
The orbitals in the resulting wavefunction can have a fractional occupation (typi-
cally from 1.999 to 0.001). The wavefunction tends to easily converge with respect
to the general MCSCF methods.

A common notation to indicate the procedure is [n,m]-CASSCF, which means
that n electrons are distributed in all possible ways in m orbitals. Once the ac-
tive space has been adequately chosen, the CASSCF wavefunction will include the
most important CSFs in the full CI wavefunction. This means that a full CI is
performed within the active MOs.

The choice of the correct active space represents the chief difficulty in the
CASSCF method. Indeed, there do not exist unequivocal rules to guarantee that
the orbital space is correctly partitioned. The subdivision between active and in-
active orbitals depends on the target system and on its properties of interest. One
wishes to consider those orbitals whose occupations change during the chemical
process. In the optimal case, these orbitals are included in the active space.

Furthermore, it is essential to take into account the intrinsic limit of the
method represented by the computational expense. Indeed, in practice, it is im-
possible to include in an active space of more than 15 electrons in 15 orbitals. This
restriction depends on memory and disk storage in the available software packages.
The CASSCF model is then inapplicable to systems where a larger active space is
chemically necessary.

In relation to the computational expense, a key factor in CASSCF calcula-
tions is scaling the method with system size. There is a factorial dependence on
both the number of active electrons and on the number of active orbitals. The
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number of Slater determinants in a full configuration interaction calculation is

nSlater =

(
M

Nα

)(
M

Nβ

)
, (3.24)

where M is the number of active orbitals, Nα and Nβ are the numbers of active
electrons with α-spin and β-spin, respectively, and the quantities in parentheses
are binomial coefficients: (

a

b

)
=

a!

b!(a− b)!
. (3.25)

If spin adapted CSFs are used, then the number of configurations is given by the
Weyl-Robinson formula [78]:

nCSFs =
(2S + 1)

M + 1

(
M + 1

M −N/2− S

)(
M + 1

N/2− S

)
, (3.26)

where S is the total spin and N the total number of active electrons. Further
reduction is obtained by use of special symmetry, generally restricted to the abelian
groups.

3.4 NEVPT2

Perturbation theory is one of the affordable methods used to treat dynamic corre-
lation. This contribution is essential to generate quantitatively accurate results.

In particular, n-electron valence state perturbation theory (NEVPT) is a per-
turbative treatment which can be applied to a multireference CASSCF wavefunc-
tion. It means that one can first performs a CASSCF calculation which takes into
account static correlation and then uses the NEVPT2 to include a part of the
dynamic correlation.

Roughly, in the NEVPT2 method, the orbital space is divided into three
orbital subspaces of inactive orbitals with occupations of 2, active orbitals with
variable occupations, and virtual orbitals with zero occupation. A certain number
of classes of spaces are generated by the action of excitation operators. These
classes are characterized by a different number of electrons promoted to and from
the CAS space. Different numbers of perturbing functions are chosen for these
spaces by further subdividing them into various categories: strongly contracted
spaces and partially contracted spaces [80–82].
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3.5 Density Functional Theory

"The birth of Density Functional Theory as a formal subject took place

in 1964 with P. Hohenberg and W. Kohn serving as midwives. [...] The

baby was beautiful - and surprisingly compact for a child who had been caus-

ing labor pangs for over half a century. The first prenatal kicks, associated

with the Drude model of metals, came around the turn of the century. These

were followed by ever-increasing activity: the Thomas-Fermi atom, Slater’s

approximate treatment of exchange and the Xα method, then countless ap-

plications of various approximate DFT methods to specific atoms, molecules

and solids.

DFT is now a teenager, still a bit uncertain of its roots and its place in

society, but able, if provoked, to do an honest day’s work."

D. R. Salahub

Since the complexity of the many-particle wave functions grows factorially
with the number of particles (see CI before), many approaches have been devel-
oped to find approximate solutions for the multielectron case. Among the various
approaches, wavefunction based methods such as Hartree-Fock (HF) or post-HF
are very sophisticated but computationally expensive for large systems.

Using Density Functional Theory (DFT) in many-body problems provides an
enormous simplification because the basic variational object is represented by the
electron density instead of a many-particle wavefunction. Indeed, the many-body
wavefunction is a very complex function in a 3N-dimensional space, on the con-
trary the density is a simple function that depends solely on 3 variables, x, y and
z. Considering the computational time, while the traditional methods scales ex-
tremely poorly with the number of atoms N , DFT grows much less rapidly. As
a consequence, DFT is the only available method for the very large systems. In
addition to its capability to treat relatively big systems, DFT is also characterized
by high accuracy in structure calculations such as calculations of geometries, inter-
atomic distances and vibrational frequencies. Although DFT is computationally
very similar to the HF method, it has become very popular because it includes the
correlation energy in the Hamiltonian in a simple way and provides results that
give a better representation of the multielectron structure [83, 84].

The idea of describing the molecular energy as a functional of the electron
density started with Thomas [85, 86], Fermi [87–89] and Dirac [90]. They ini-
tially formulated an approximate theory of electronic structure depending only on
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the total electronic density. However, this theory was unable to self-consistently
reproduce atomic shell structure and the resulting energies had errors of around
10%. The aims of Thomas, Fermi and Dirac were not achievable until later when
P. Hohenberg and W. Kohn [83] proved that there is a unique functional of the
electron density which gives the exact ground state energy of the system. Ho-
henberg and Kohn theorems, however, do not offer a way to calculate an actual
ground state. The existence of modern DFT methods is based on the further work
of Kohn and L. J. Sham [84]. They proposed a method in which self-consistent
equations must be solved for an auxiliary set of orbitals used for representing the
electron density. In these equations, a rather small fraction of the total energy,
the exchange-correlation (XC) energy, must be given in terms of electron density
and represents the only unknown functional. In practical calculations the goal of
DFT is to approximate the XC contribution. As a consequence, the accuracy of
the calculations depends on the quality of this approximation.

3.5.1 Schrödinger Equation

A system of N interacting electrons is described, within the Born-Oppenheimer
approximation [91], by the nonrelativistic Schrödinger equation [92]:

ĤΨ(r1, ..., rN) = EΨ(r1, ..., rN). (3.27)

The wavefunction Ψ completely describes the state of the system [93–95].
The many-body Hamiltonian operator is given by

Ĥ = T̂ + V̂ + Û =

[
−1

2

∑
i

∇2
i +

∑
i

Vi(ri) +
1

2

∑
i<j

U(rirj)

]
, (3.28)

where T̂ , V̂ and Û are, respectively, the kinetic energy, the external potential, i.e.
the attraction potential created by the nuclei, and the electron-electron interaction
operators. The solution of this 3N-dimensional differential equation is complicated
by the presence of the interelectronic potential in the Hamiltonian.

We can reformulate Eq. (3.27) by calculating the expectation value of the
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total energy:

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ|T̂ + V̂ + Û |Ψ〉 =

= −1

2

∫
dr∇2ρ(r) +

∫
drv(r)ρ(r) +

x
dr1dr2

ρ(r1, r2)

r12

,
(3.29)

where ρ(r) is the electron density defined as

ρ(r) = N

∫
dr2...drNΨ∗(r1, ..., rN)Ψ(r1, ..., rN), (3.30)

and ρ(r1, r2) is the two-particle density function given by

ρ(r1, r2) = N(N − 1)

∫
dr3...drNΨ∗(r1, ..., rN)Ψ(r1, ..., rN). (3.31)

DFT is founded on the idea that the ground state electronic energy of the system
can be expressed and calculated as a functional of the electron density, without
having to calculate its full wave function. By extension, any observables are a
functional of the ground state electron density.

Comparing with the wavefunction-representation approach, the energy func-
tional can be divided into three parts:

E[ρ] = T [ρ] + V [ρ] + U [ρ]. (3.32)

In Eq. (3.29) we can express the operator Û as the classical Coulombian self-
interaction of a charge distribution:

〈Ψ|Û |Ψ〉 = J [ρ] =
1

2

x
dr1dr2

ρ(r1)ρ(r2)

r12

, (3.33)

but by using this approximation we do not consider the particle self-interaction
and the exchange interaction which stem from the antisymmetry of the wavefunc-
tion with respect to coordinate exchange for fermions (Pauli principle). Then we
introduce a pair correlation function hxc(r1, r2) that includes non-classical effects.
We can write the two-particle density function as

ρ(r1, r2) = ρ(r1)ρ(r2)[1 + hxc(r1, r2)]. (3.34)

This probability is called the exchange-correlation hole. The exchange part of hxc
is called the Fermi hole, while the dynamical correlation gives rise to the Coulomb
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hole. The expectation value of Û then becomes

〈Ψ|Û |Ψ〉 = J [ρ] +
1

2

x
dr1dr2ρ(r1)ρ(r2)

hxc(r1, r2)

r12

=

= J [ρ] +
1

2

∫
dr1ρ(r1)vxc(r1),

(3.35)

where vxc(r1) is a local potential that takes into account correlation and exchange
effects, defined as

vxc(r1)
.
=

∫
dr2ρ(r2)

h(r1, r2)

r12

. (3.36)

The accuracy of DFT is determined by the accuracy of the description of vxc.

3.5.2 Hohenberg-Kohn Theorems

P. Hohenberg and W. Kohn in 1964 [83] formulated the two following theorems:

• Theorem I: for a non degenerate ground state, the external potential V̂,
and hence the total energy, is a unique functional of the electron density ρ.

• Theorem II: the density ρ that minimizes the total energy E[ρ] is the
exact ground state density.

Proof I Let us assume that two different potentials, V̂ (1) and V̂ (2), give rise to
the same ground state density ρ(r). These potentials belong to two distinct Hamil-
tonian operators Ĥ(1) and Ĥ(2) with respective ground-state eigenstates Ψ(1)(r)

and Ψ(2)(r) and eigenvalues E(1) and E(2). According to the variational principle:

E(1) < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉+ 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉 , (3.37)

E(1) < E(2) + 〈Ψ(2)|V̂ (1) − V̂ (2)|Ψ(2)〉 = E(2) +

∫
ρ(r)[v(1)(r)− v(2)(r)]dr. (3.38)

Exchanging labels in the above equation, we obtain:

E(2) < E(1) + 〈Ψ(1)|V̂ (2) − V̂ (1)|Ψ(1)〉 = E(1) +

∫
ρ(r)[v(2)(r)− v(1)(r)]dr. (3.39)

Adding Eq. (3.38) and Eq. (3.39), we have

E(1) + E(2) < E(2) + E(1), (3.40)
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which is clearly an absurdum. It means that the initial assumption was wrong and
it must be:

ρ(1)(r) 6= ρ(2)(r). (3.41)

As a consequence, the electron density uniquely determines the external potential
and all the properties of the system.

We can write the general form for the exact energy of the ground state as:

E[ρ0] = T [ρ0] + V [ρ0] + Uee[ρ0], (3.42)

where T is the kinetic energy, V is the potential created by the nuclei:

V [ρ0] = −
M∑
α=1

∫
Zα

|r−Rα|
ρ0(ri)dri, (3.43)

and the bielectronic term Uee is given by

Uee[ρ0] =
1

2

x ρ0(ri, rj)

|ri − rj|
dridrj =

=
1

2

x ρ0(ri)ρ0(rj)

|ri − rj|
dridrj︸ ︷︷ ︸

J [ρ0]

+
1

2

x ρ0(ri)hXC(ri, rj)

|ri − rj|
dridrj︸ ︷︷ ︸

Exc[ρ0]

,
(3.44)

where the term Exc represents the non-classical contribution to the electron-
electron interaction and is unknown. Rewriting the equation for any density ρ, we
obtain:

E[ρ] = FHK +

∫
ρ(r)v(r)dr, (3.45)

with
FHK = T [ρ] + Uee[ρ]. (3.46)

FHK is the universal Hohenberg-Kohn functional which can be expressed by the
sum of classical terms, that is kinetic, coulombian and non-classical terms.

Proof II In the ground state of the system, the energy is defined by the unique
ground state density ρ(1)(r):

E(1) = E[ρ(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 . (3.47)
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According to the variational principle, a different density ρ(2)(r) will give a higher
energy:

E(1) = E[ρ(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = E(2). (3.48)

Then if one minimizes the total energy of the system written as a functional of
ρ(r) with respect to ρ(r), it is possible to find the total energy of the ground state.
The correct density that minimizes the energy is then the ground state density.

3.5.3 The Kohn-Sham Equations

The foundation for the use of DFT methods in computational chemistry is the
introduction of orbitals as suggested by Kohn and Sham [96]. They made use of
a fictitious non-interacting system where its ground-state density was exactly the
same as that of some interacting system of interest. The ground-state wavefunction
associated with this non-interacting system can be represented with a single Slater
determinant of orthonormal orbitals, ψi. Thus, the expression of the electronic
density becomes

ρ(r) =
∑
i

|ψi(r)|2. (3.49)

The problem for the pure DFT approach lies in the lack of accurate approximations
for the kinetic energy functional. Nevertheless, if we consider a non-interacting
system, the total kinetic energy can be calculated from an auxiliary set of orbitals
used for representing the electron density (ref KS):

T0 = −1

2

∑
i

∫
drψ∗i (r)∇2ψi(r). (3.50)

In reality, the electrons are interacting and so the above equation does not truly
provide the total kinetic energy. However, the difference between the exact kinetic
energy and that calculated by assuming a non-interacting system is small and the
remaining kinetic energy is absorbed into an exchange-correlation term.

The equations of KS theory are derived by partitioning the ground state
energy functional as

EKS[ρ] = T0[ρ] + J [ρ] +

∫
drρ(r)v(r) + EXC [ρ], (3.51)
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where T0 and J are given by exact expressions, while EXC is the exchange-
correlation energy functional and represents the unknown functional. It is a rather
small fraction of the total energy.

By equating this energy to the exact energy Eq. (3.45), we can find an ex-
pression for EXC :

EXC [ρ] = T [ρ]− T0[ρ] + Uee[ρ]− J [ρ]. (3.52)

The EXC term is then composed of both kinetic and potential energies. By ap-
plying the variational principle for the energy to the functional E[ρ] for arbitrary
variations of the density, one obtains the Kohn-Sham differential equations:

− 1

2
∇2ψi + vKSψi = εiψi, (3.53)

where vKS is given by:

vKS = vext +
δJ

δρ
+
δEXC
δρ

= vext + vee + vxc. (3.54)

According to the KS equations, electrons in atoms, molecules and solids behave
as independent particles moving in the effective potential vKS.

Although DFT is in principle exact, it requests two kind of approximations
in its practical application. The first approximation concerns the XC energy func-
tional and, as a consequence, the XC potential; the second one refers to Kohn-
Sham equations which need to be solved using some computational scheme. Self-
consistent procedure consists of starting with an initial guess distribution, ρ(i),
used to build the external potential V , the Coulomb potential J and the exchange-
correlation potential VXC . The single terms are then summed to obtain the effec-
tive potential v(i)

KS. The corresponding Kohn-Sham equation is solved for {ψ(i)
j } to

update ρ and vKS. Then Kohn-Sham equation is solved again and the procedure
is carried on until the difference between two consecutive vKS is below a predeter-
mined accuracy threshold.

To implement the Kohn-Sham scheme, the exchange-correlation functional
must to be approximated. There exist different classes of functionals, depending
on the kind of the approximation. In the next sessions, the two most important
classes of these functionals will be briefly illustrated.
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3.5.3.1 Local Density Approximation

The history of XC functionals in ground-state DFT starts with the Local Density
Approximation (LDA) [96]. In this approximation it is assumed that the exchange-
correlation potential depends only on the value of the charge density at the same
point:

ELDA
XC =

∫
ρ(r)εXC [ρ(r)]dr, (3.55)

where εXC(ρ) is the exchange-correlation energy of a homogeneous electron gas
[97–100] having the local value ρ(r) of the density. The LDA potential is local,
i.e., the value of the potential at position r depends solely on the value of the spin
densities at the very same point. It is a reasonable first approximation, for atoms
as well as molecules, certainly good when the density is a slowly varying function.
It provides atomic and molecular total ground-state energies within 1-5% of the
exact value, and molecular equilibrium distances and geometries within about 3%
[101]. However, it presents also some shortcomings: among these, the asymptotic
behaviour. The XC potential goes to zero exponentially fast and not as −1/r and,
as a consequence, the Kohn-Sham energy eigenvalues are too low in magnitude.

3.5.3.2 Generalized Gradient Approximation

LDA can be improved by including a dependence also on gradients of the density.
This permits one to define a new generation of functionals, the Generalized Gradi-
ent Approximations (GGA) [102]. The XC energy density has then the following
form:

EGGA
XC =

∫
drρ(r)εXC(ρ(r),∇ρ(r)). (3.56)

Among the most famous GGA functionals, there are the B88 exchange functional
[103], the LYP correlation functional [104] and the PBE functional [105]. Their
improvements has progressively led to the development of the hybrid functionals,
which include the exact Hartree-Fock exchange functional. The most popular is
B3LYP [98, 104, 106].
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3.6 Time-dependent density functional theory

Time-dependent density-functional theory (TDDFT) extends the basic ideas of
ground-state DFT to the treatment of time-dependent phenomena and excited
states. This generalization of DFT includes the calculation of photoabsorption
spectra, as well as dynamical polarizability [107]. Analogously to the static case,
the many-body time-dependent Schrödinger equation can be replaced by a set
of time-dependent Kohn-Sham (TDKS) equations whose orbitals yield the same
time-dependent density [108].

If the time-dependent potential is weak, it is possible to use the linear-response
theory to study the target system [109, 110]. In particular, within this approxi-
mation, TDDFT yields predictions for electronic excitations and it has become,
in this research area, a standard tool. On the other hand, if the time-dependent
potential is strong, a full solution of the Kohn-Sham equations is required.

3.6.1 Basic concepts

Let us consider a system ofN electrons which obeys the time-dependent Schrödinger
equation

i
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t). (3.57)

The one-electron density obtained from the wavefunction Ψ(r, t) gives the proba-
bility of finding the electrons in position r:

ρ(r, t) = N

∫
d3r2 · · · d3rN |Ψ(r, r2 · · · rN , t)|2, (3.58)

normalized at all times to the total number of electrons, N .
The Hamiltonian operator can be written as:

Ĥ(r, t) = T̂ (r) + Ŵ (r) + V̂ext(r, t), (3.59)

where the first term is the kinetic energy of the electrons

T̂ (r) = −1

2

N∑
i=1

∇2
i , (3.60)



Chapter 3. Methods 61

the second term Ŵ accounts for the Coulomb repulsion between the electrons

Ŵ (r) =
1

2

N∑
i 6=j

1

|ri − rj|
, (3.61)

and, finally, the third term is the time-dependent potential, V̂ext(r, t), which in-
cludes the fixed nuclear potential.

If we consider a system interacting with a laser beam which we treat classi-
cally, the additional V̂ext in the length gauge and within the dipole approximation
[56] is expressed as:

V̂ext(r, t) = Ef(t)sin(ωt)
N∑
i=1

ri ·α, (3.62)

where α, ω and E are, respectively, the polarization, the frequency and the am-
plitude of the laser. The function f(t) is an envelope that describes the temporal
shape of the laser pulse.

3.6.2 The Runge-Gross theorem

The Runge-Gross theorem [111] represents the time-dependent extension of the
Hohenberg-Kohn theorem [83]. It proves that there is a one-to-one correspondence
between the external time-dependent potential and the electronic density for many-
body systems evolving from a fixed initial state. Hence, analogously to time-
independent case, knowing the density of a system permits to find the external
potential which, in turn, permits to solve the time-dependent Schrödinger equation
and obtain all properties of the system. The proof of the Runge-Gross theorem
is considerably more involved than the proof of the ordinary Hohenberg-Kohn
theorem and it will do not consider here.

Given the Runge-Gross theorem, the next step consists in determining the
fictitious non-interacting system (i.e., the Kohn-Sham system) which has the same
density as the interacting system of interest. In the static case, a minimization of
the energy functional yields the ground-state density and thus all other ground-
state observables. On the contrary, in time-dependent systems the ground state
can not be determined through the minimization of the total energy functional,
because the total energy is not a conserved quantity. However, it is possible to
introduce a quantity analogous to the energy, the quantum mechanical action,
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given by

A[Φ] =

∫ t1

t0

dt 〈Φ(t)|i ∂
∂t
− Ĥ(t)|Φ(t)〉 , (3.63)

where Φ(t) is a N-body function.
In their original paper, Runge and Gross [111] offered a derivation of the

Kohn-Sham equation starting from the action (3.63). However, it was later dis-
covered that this formulation encompasses some fundamental problems [107] which
were solved by van Leeuwen in 1998 [112].

3.6.3 Time-dependent Kohn-Sham equations

The Runge-Gross theorem, analogously to the Hohenberg-Kohn theorem, does
not permit to calculate the electronic density. However, starting from the asser-
tion offered by Runge-Gross theorem, it is fairly straightforward to construct a
time-dependent Kohn-Sham scheme. As a consequence, we consider an auxiliary
system of noninteracting electrons subject to an external local potential vKS. This
potential is chosen such that the density of the Kohn-Sham electrons is the same
as the density of the interacting system. These Kohn-Sham electrons obey the
time-dependent Schrödinger equation

i
∂

∂t
ϕi(r, t) =

[
−∇

2

2
+ vKS(r, t)

]
ϕi(r, t), (3.64)

which have the form of a one-particle equation.
It is worth noting that the Kohn-Sham equation is not a mean-field approxi-

mation. Indeed, if we knew the exact Kohn-Sham potential, vKS, we would obtain
from Eq. (3.64) the exact Kohn-Sham orbitals, and from these the correct density
of the system.

The density of the interacting system can be obtained from the time-dependent
Kohn-Sham orbitals

ρ(r, t) =
N∑
i

|ϕi(r, t)|2, (3.65)

The Kohn-Sham potential, which gives the density of the interacting system, is
given by the sum of three terms

vKS(r, t) = vext(r, t) + vH(r, t) + vxc(r, t). (3.66)
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The first term is the external potential, the second one is the Hartree potential
which accounts for the classical electrostatic interaction between the electrons, i.e.

vH(r, t) =

∫
dr′

ρ(r, t)

|r− r′|
. (3.67)

Finally, the xc potential takes into account all the non-trivial many-body effects
and is usually approximated by means of the Adiabatic Local Density Approxima-
tion (ALDA).

3.6.4 Exchange-correlation functionals: adiabatic approxi-

mation

While in the stationary DFT many functionals are available to approximate the vxc
potential, within the TDDFT approximations to vxc(r,t) are still in their infancy.
The first and simplest of these is the ALDA, which approximates the XC potential
at point r and time t by that of a ground-state uniform electron gas of density
ρ(r, t). This is clearly accurate when the density varies sufficiently slowly in time
and space, but works surprisingly well beyond that limit for many systems and
properties, just as LDA does for most ground-state problems.

Considering that ṽxc[ρ] is an approximation to the ground-state xc density
functional, an adiabatic time-dependent xc potential can be written as

vadiabaticxc (r, t) = ṽxc[ρ](r)|ρ=ρ(t), (3.68)

where we employ the same functional form but evaluated at each time with the
density ρ(r,t). The adiabatic approximation works only in cases where the tem-
poral dependence is small, i.e., when our time-dependent system is locally close to
equilibrium.

By inserting the LDA functional [96] in Eq. (3.68), we can obtain the ALDA:

vALDAxc (r, t) = vHEGxc (ρ)|ρ=ρ(r,t). (3.69)

This approximation assumes that the xc potential at the point r and time t is
equal to the xc potential of a homogeneous-electron gas (HEG) of density ρ(r, t).

The ALDA has the same problems present in the LDA. Amongst these, there
is the erroneous asymptotic behaviour of the LDA potential: for neutral finite
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systems, the exact xc potential decays as −1/r, whereas the LDA xc potential falls
of exponentially. Furthermore, most of the generalized-gradient approximations
(GGAs) have asymptotic behaviours similar to the LDA.

3.6.5 Linear response theory

Let us consider the case in which the system responds to a small time-dependent
perturbation. As a consequence, we will focus on the linear change of the density.

Let us assume that for t < t0 the system is subject only to the nuclear
potential, v(0), and it is in its ground-state with ground-state density, ρ(0). At t0
we turn on the perturbation, v(1), which induces a change in the density. The total
external potential is now vext = v(0) + v(1).

It is possible to express the density in a perturbative series

ρ(r, t) = ρ(0)(r) + ρ(1)(r, t) + ρ(2)(r, t) + ... (3.70)

where ρ(1) is the component of ρ(r, t) that depends linearly on v(1), ρ(2) depends
quadratically etc. If the perturbation is weak, we only consider the linear term,
ρ(1). In frequency space it becomes:

ρ(1)(r, ω) =

∫
dr′χ(r, r′, ω)v(1)(r′, ω). (3.71)

The quantity χ is the linear density-density response function of the system. The
evaluation of χ through perturbation theory is a very demanding task (ref). We
can use the TDDFT to simplify this process.

We can calculate the linear change of density using the Kohn-Sham system

ρ(1)(r, ω) =

∫
dr′χKS(r, r′, ω)v

(1)
KS(r′, ω). (3.72)

It means that the response function in Eq. (3.72), χKS, is the density response
function of a system of non-interacting electrons. In terms of the unperturbed
stationary Kohn-Sham orbitals we have

χKS(r, r′, ω) = lim −−−→
η→0+

∞∑
jk

(fk − fj)
ϕj(r)ϕ∗j(r

′)ϕk(r
′)ϕ∗k(r)

ω − (εj − εk) + iη
, (3.73)
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where fm is the occupation number of the m orbital in Kohn-Sham ground-state
and η is a positive infinitesimal. The Kohn-Sham potential, vKS, includes all pow-
ers of the external perturbation due to its non-linear dependence on the density.
The potential in Eq. (3.72) is just the linear change of vKS, i.e. v

(1)
KS. This lat-

ter quantity can be calculated explicitly from the definition of the Kohn-Sham
potential

v
(1)
KS(r, t) = v(1)(r, t) + v

(1)
Hartree(r, t) + v(1)

xc (r, t). (3.74)

The variation of the external potential is simply v(1), while the change in the
Hartree potential is

v
(1)
Hartree(r, t) =

∫
dr′

ρ(1)(r′, t)

|r− r′|
. (3.75)

Finally the third term,v(1)
xc (r, t), is the linear part in ρ(1) of the functional vxc[ρ],

given by:

v(1)
xc (r, t) =

∫
dt′
∫
dr′

δvxc(r, t)

δρ(r′, t)
ρ(1)(r′, t). (3.76)

It is useful to introduce the exchange-correlation kernel, fxc, defined by

fxc(rt, r
′t′) =

δvxc(r, t)

δρ(r′, t′)
. (3.77)

Combining the previous results, and transforming to frequency space we arrive at:

ρ(1)(r, ω) =

∫
dr′χKS(r, r′, ω)v(1)(r′, ω)+∫
dx

∫
dr′χKS(r,x, ω)

[
1

|x− r′|
+ fxc(x, r

′, ω)

]
ρ(1)(r′, ω). (3.78)

From Eq. (3.71) and Eq. (3.78) trivially follows the relation

χ(r, r′, ω) = χKS(r, r′, ω)+∫
dx

∫
dx′χ(r,x, ω)

[
1

|x− x′|
+ fxc(x,x

′, ω)

]
χKS(x′, r′, ω). (3.79)

This equation gives a formally exact representation of the linear density response.
It means that if we possessed the exact Kohn-Sham potential, a self-consistent
solution of (3.79) would yield the response function, χ, of the interacting sys-
tem. The key ingredient of Eq. (3.79) is then the xc kernel, fxc. The simplest
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approximation to fxc is the ALDA kernel, which in linear response reads:

fxcALDA(rt, r′ω) = δ(r− r′)

(
dV LDA

xc

dρ

)
ρ=ρ0

. (3.80)

In practical implementation, Eq. (3.78) is solved with respect to ρ(1)(r, ω), then the
photoabsorption spectrum is calculated from the imaginary part of the complex
dynamical polarizability:

σ(ω) =
4πω

c
I
∫
zρ1(r, ω)dr. (3.81)



Chapter 4

Multicenter B-spline static-exchange

DFT method

4.1 The B-spline functions

B-splines, originally introduced by I. J. Schoenberg [113, 114], constitute an ex-
cellent basis set which became, in the last few decades, a powerful tool in atomic
and molecular physics [115]. Their widespread usage in this field is mainly due to
the publication of the monograph by de Boor [116]. B-spline functions are defined
as piecewise polynomials and they bridge the gaps left by the standard basis func-
tions, such as Slater Type Orbitals (STOs) or Gaussian Type Orbitals (GTOs), in
the treatment of specific molecular problems. In particular, with respect to our
purpose, the description of the continuum states requires basis sets which could
obey to the peculiar continuum boundary conditions and could reproduce the os-
cillating behaviour of the wavefunction to infinity. Traditional GTO and STO
functions are not adequate to represent the rapidly oscillating continuum states,
since numerical linear dependencies rapidly come up as the basis set increases.
B-splines, on the contrary, are very flexible functions and can describe accurately
both bound and continuum states without running into numerical dependencies.
They produce smooth curves with continuous derivatives at every point. Since
B-splines are defined in a restricted space, usually referred to as a box, one has to
define a certain knot sequence, depending on the target system. The continuum
wavefunctions can be correctly reproduce by using a linear grid of points and a
sufficient density of B-splines.

67
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4.1.1 Mathematical definition

Let us introduce some mathematical definitions to properly describe the B-spline
functions [115]:

• the order k (maximum degree k − 1) which defines the polynomial:

p(x) = a0 + a1x+ ...+ ak−1x
k−1

• the interval I = [a, b], divided in l subintervals Ij = [ξj, ξj+1], where the l+ 1

breakpoints {ξj} are in strict ascending order:

a = ξ1 < ξ2 < · · · < ξl+1 = b

• the class Cn which specifies the maximum derivation order n for which the
derivative function fn is still continuous over a specified interval

• another sequence of points constituted by the knots {ti}, in ascending order,
not necessarily distinct:

t1 ≤ t2 ≤ · · · ≤ tm

and associated with ξj and νj as follows:

t1 = t2 = · · · = tµ1 = ξ1

tµ1+1 = tµ1+2 = · · · = tµ1+µ2 = ξ2

· · ·

tµ1+µ2+···+µi−1+1 = · · · = tµ1+···+µi = ξi

· · ·

tµ1+···+µi+···+µl+1 = · · · = tµ1+···+µl+1
= ξl+1

where µj is the multiplicity of the knots ti at ξj and is given by the relation
µj = k − νj which implies that µ1 = µl+1 = k and defines the continuity at
the knots which is Ck−µj−1. In particular at the end points µ1 = µl+1 = k

The most common choice for knot multiplicity at inner breakpoints is unity. This
choice corresponds to the maximum continuity Ck−2 in the interval I =]a, b[. Then,
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the number of B-splines is given by:

n = l + k − 1 (4.1)

Once these definitions have been introduced, we can express any function f in a
B-spline basis set over an interval [a, b]:

f(x) =
n∑
i=1

ciB
k
i (x) (4.2)

Hence f is a linear combination of B-splines, made of l polynomial pieces of order
k, one for each subinterval Ij . Such a function is conventionally called a piecewise
polynomial function (pp-function).

4.1.2 The B-spline basis set

A single B-spline Bk
i (x), defined by the order k > 0 and a set of k + 1 knots, has

the following properties:

• Bk
i (x) is a pp-function of order k over [ti, ti+k]

• Bk
i (x) > 0 for x ∈]ti, ti+k[

• Bk
i (x) = 0 for x 6∈]ti, ti+k[

• Bk
i (x) ∈ Ck−1−µj for x = ξj

• Bk
j (x) 6= 0 over ]ti, ti+1[ for j = i− k + 1, · · · , i which implies that there are

exactly k non-zero B-splines on each interval Ij and:

Bk
i (x) ·Bk

j (x) = 0 for |i− j| ≥ k (4.3)

• the previous property reduces the number of expansion terms to k:

f(x) =
n∑
j=1

cjB
k
j (x) =

i∑
j=1−k+1

cjB
k
j (x) for x ∈]ti, ti+1[ (4.4)

• the B-splines are normalized

∑
i

Bk
i (x) = 1 over the whole interval [tk, tn+1] (4.5)
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• for simple equidistant knots, each Bk
i (x) is just a translation by one interval

of the previous one. If the knots are not equidistant there is a smooth change
in the shape

• the index i of each B-spline corresponds to the index of the left knot of the
interval Ij = [ξj, ξj+1] = [ti, ti+1]

• Since the B-splines are defined positive and own a minimal support (i.e. an
interval ]ti, ti+k[ where Bk

j (x) > 0), the expansion coefficients of an arbitrary
function f are close to the function values at the knot. The main consequence
is that wild oscillations in the coefficients are avoided, cancellation errors are
minimal and numerical stability maximal

• the B-splines satisfy the recursion relation:

Bk
i (x) =

x− ti
ti+k−1 − ti

Bk−1
i (x) +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x) (4.6)

From the last relation it is possible to construct recursively all of the k B-
splines of order k from a former one of order k = 1 at a specific x. The
former B-spline of order k = 1 is defined by:

B1
i (x) =

1, for ti ≤ x < ti+1,

0, otherwise
(4.7)

It is worth recalling that for each x, we obtain k non-zero B-splines and their sum
equal to 1. The choice of the first and the last k points is completely free but it
has to fulfill the increasing order condition:

t1 ≤ · · · tk ≤ ξ1 and ξl+1 ≤ tn+1 ≤ · · · tn+k (4.8)

Although it affects only the first and last k B-spline functions, it is generally
adopted to use the following sequence:

t1 = · · · = tk = ξ1 and ξl+1 = tn+1 = · · · = tn+k (4.9)

This choice is very convenient because it imposes to all B-splines to cancel outside
of the interval I = [a, b]. Furthermore, only the first B1(x) and the last Bn B-
splines are respectively discontinuous at x = a and x = b. In this context, the
boundary conditions can be easily implemented removing B1 and Bn to satisfy
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f(a) = 0 and f(b) = 0.
In practice calculations, the stable evaluation of B-splines is accomplished

by a recursion algorithm efficiently implemented in subroutine BSPLVP [116]. By
giving as input values the spline order, the knot sequence, the value of the abscissa
and the index of the ’left knot’ ti, this subroutine evaluates the k B-splines that
are non-zero at x. Another subroutine, called BSPLVD, can also be used in order
to obtain their derivatives which are needed in most of the quantum mechanical
applications.

4.2 B-spline static-exchange DFT method

The present method [117] is based on the use of B-spline functions associated to a
particularly simple least-squares formulation for the determination of eigenvectors
in the continuum spectrum.
It consists of three different steps:

1. Standard DFT calculation (by means of the ADF program) to generate the
ground state electron density.

2. Construction of the Hamiltonian matrix in the Linear Combination of Atomic
Orbitals (LCAO) basis set, followed by a generalized diagonalization for
bound states and application of Galerkin approach for continuum states.

3. Dipole transition moment calculation to obtain photoionization observables.

Let us illustrate each single step of this procedure.

4.2.1 Initial guess

A standard LCAO-DFT calculation of the ground state of the molecule represents
the first step of the method. This can be done through the program Amsterdam
Density Functional (ADF) [118], by using, in our case, a double zeta plus polar-
ization (DZP) basis set centered on each atom and a LB94 or LDA functional to
describe exchange and correlation effects. This allows to generate the Kohn-Sham
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orbitals for the ground state. They are a linear combination of STOs:

φSTOnlmζ(r) = RSTO
nζ (r)Ylm(θ, φ), (4.10)

where Ylm(θ, φ) are the spherical harmonics and the radial part is defined as:

RSTO
nζ (r) = Nrn−1e−ζr. (4.11)

In the above expressions n is the principal quantum number, l the azimuthal
quantum number, m the magnetic quantum number and ζ the nuclear effective
charge.
The calculated STOs permit to express the ground state density as:

ρ0(r) =
N∑
i=1

ϕ∗i (r)ϕi(r), (4.12)

where the Kohn-Sham orbitals are defined as

ϕi(r) =
Natoms∑

j

∑
nlm

anlmφ
STO
nlmζ(rj). (4.13)

This density is used as initial guess to build the hamiltonian matrix in a new basis
set.

4.2.2 Construction of the LCAO basis set

In the present method the wavefunction is expanded in a basis set obtained as a
product of radial B-spline functions [116] and real spherical harmonics adapted to
the symmetry [119]. The first implementation was based on a One Center Expan-
sion (OCE), where the functions are centered on a single origin. The subsequent
step consisted in adding off-center functions, located at non-equivalent nuclei, to
the B-spline expansion. This multicenter approach permits to improves dramati-
cally the convergence of the calculation for most molecules [117]. Since the basis
set is built on many centers, we indicate the employed basis set as LCAO. Tradi-
tionally LCAO basis set is constituted by GTO or STO functions that yield fast
convergence for the lowest bound states with a limited number of basis functions.
Increasing the basis represents a difficult task because, as already mentioned, nu-
merical linear dependencies rapidly come up. This is due to the large overlap
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between functions on different centers. One of the advantages of using spherical
B-spline functions lies on the fact that their local nature permits to control the
overlap between functions and avoid numerical linear dependence problems [115].

The radial and angular parts of the basis set are expanded over several suit-
able centers to correctly describe bound and continuum states. These centers are:

• The centre of mass of the molecule, marked by superscript O, associated with
a large sphere of radius RO

max to correctly describe the long range behaviour
of the continuum wavefunctions.

• The position occupied by each nucleus, marked by the superscript i > 0,
associated with a small sphere of radius Ri

max to comply with the Kato’s
cusp condition [120]. The radius is generally quite small (≈ 1a.u.) in order to
avoid significant overlap with expansion performed on neighbouring centers.

In particular, the OCE is located on a chosen origin and the functions are given
by

χOnlhλµ =
1

rO
Bn(rO)Xlhλµ(ϑO, ϕO), (4.14)

where Bn is the nth B-spline monodimensional function and

Xlhλµ(θ, φ) =
∑
m

Y R
lm(ϑ, ϕ)blmhλµ, (4.15)

are symmetry adapted linear combination of real spherical harmonics Y R
lm(ϑ, ϕ)

[117]. The indices have the following meaning: l and m are the usual angular mo-
mentum quantum numbers, λ indicates the irreducible representation (IR) of the
molecular point group under consideration, µ the subspecies in case of degenerate
IR and h distinguishes amongst different elements with the same {l, λ, µ} set.
The further off-center functions are given by:

χinlhλµ =
∑
j∈Qi

1

rj
Bn(rj)

∑
m

blmhλµjY
R
lm(ϑj, ϕj), (4.16)

where i is an index which runs over the non-equivalent nuclei, Qi is the set of
equivalent nuclei, j runs over the equivalent nuclei and gives the origin of the
off-center spherical coordinates, rj, ϑj, ϕj. The coefficients blmhλµ and blmhλµj are
determined by symmetry.

B-splines are built over different radial intervals:
[
0;RO

max

]
for the set {χOnlhλµ}
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and [0;Ri
max] for the set {χinlhλµ}. Furthermore, R0

max � Ri
max. Each shell i

comprises a different number of B-splines N i
b .

These functions, as already highlighted, are completely defined by their order k
and by the grids of knots. In our calculation, k has been fixed to 10 and the grids
defined linearly with a specific density for each shell.
The cost and the accuracy of the calculation are due to:

• the point group symmetry of the molecule

• the B-spline parameters: k, RO
max, Ri

max and N i
b

• the maximum value of the angular momentum L0 used in the OCE

4.2.3 Construction of the Hamiltonian matrix

Once the self-consistent electron density has been obtained by the ADF calcula-
tion, it is possible to build the Hamiltonian matrix. The present method is called
static-exchange DFT, by reference to static-exchange in Hartree-Fock method. It
has the advantage to provide directly orthogonal bound and continuum states.

In the LCAO basis, each elements of the matrix is given by:

Hλ
ijmnhh′ll′ =

∫
Bi
m(ri)X

i
lhλµ(ϑi, ϕi)ĥKSB

j
n(rj)X

j
l′h′λµ(ϑj, ϕj). (4.17)

By definition, the hamiltonian matrix H is totally symmetric. As a consequence,
it is block-diagonal with the quantum numbers λ and independent on µ and can be
partitioned into blocks for each λ value. The off-center spheres do not overlap and
then the only non-zero blocks are diagonal blocks Hii connecting basis functions
from the same set

{
χiλµhl

}
and off-diagonal blocks Hi0 and H0i connecting basis

functions from two different sets
{
χOnlhλµ

}
and

{
χinlhλµ

}
. The Hamiltonian matrix

has then the following structure:

Ĥ =



Ĥ00 Ĥ01 · · · Ĥ0i · · · Ĥ0κ

Ĥ10 Ĥ11 · · · 0 · · · 0
...

...
... 0

...
...

Ĥi0 0 · · · Ĥii · · · 0
...

...
... 0

...
...

Ĥκ0 0 · · · 0 · · · Ĥκκ


. (4.18)
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Since multicentric electronic integrals between B-splines are not analytical, the
largest computational effort is due to the calculation of the non-diagonal block
elements Hi0 (H0i = HT

i0). A numerical three-dimensional Gauss-Legendre scheme
is used to carry out the integration: the weights and points are distributed in
spherical coordinates around the jth off-center nucleus, with polar axis rotated
and passing through the origin of the large OCE. This rotation of the coordinate
framework permits to reduce the integration to two variables (r and ϑ). Within
this new framework only the molecular potential must be numerically integrated
over ϕ also.

4.2.4 Solutions of the KS equations

The one-electron orbitals are obtained as the solutions of the KS equations

HKSϕi = εiϕi, i = 1, ..., n, (4.19)

where the KS Hamiltonian is given by

HKS = −1

2
∇2 −

∑
N

ZN
|r−RN |

+

∫
ρ0(r′)dr′

|r− r′|
+ VXC [ρ0(r)]. (4.20)

The density obtained from the ADF program is used to build the hamiltonian
(4.20) in the new basis, which will take the form (4.18). One can evaluate sepa-
rately each term:

• the kinetic energy term and the Coulomb attraction potential can be easily
integrated in the LCAO basis set used

• the solution of the Poisson equation, ∇2VH = −4πρ(r), in the same basis,
provides the classical electrostatic Hartree potential, represented by the third
term in Eq. (4.20)

• depending on the target system, one can choose among several exchange-
correlation potentials, VXC [ρ0(r)]. In particular, for small molecules, LB94
and LDA(VWN) functionals reproduce quite well the photoelectron spectra
[121].

Through a generalized diagonalization of the Hamiltonian one can solve the KS
equations and the resulting Kohn-Sham orbitals are expanded on the full basis set.
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Since the LCAO basis set is larger than the DZP one, the bound states obtained are
expected to be more accurate than those obtained in the initial ADF calculation,
notably in the long range region, which appreciably affects the transition moments
to the continuum.

In order to correctly describe both bound and continuum states near the nu-
clear positions, it is essential to use a dense knot grid around the nuclei. However,
these states do not have the same properties and then we must consider different
elements for the parametrization of the basis:

• since the bound states spread spatially with the increasing of the principal
quantum number, the description of higher bound states needs a bigger box
size

• the variation of the continuum states at large scales implies the use of a box
bigger than for the case of bound states

• since the asymptotic period of radial oscillations associated to the contin-
uum wavefunctions decreases linearly with the square root of the energy, the
description of higher continuum states requires a denser knot grid

4.2.5 The continuum

The spectrum of the static-exchange DFT Hamiltonian is constituted by a bound
eigenvalues spectrum below zero electron energy and by a continuum eigenvalues
spectrum above. These continuum states can be obtained with a correct normal-
ization by using the Galerkin (or least-squares) approach.

4.2.6 Galerkin method

This method represents a generalization of the Ritz-Galerkin method originally
developed to extract bound states. Within this approach, the continuum states
do not vanishes at RO

max and are obtained for specific energies in a fixed basis
set [122]. For the traditional Galerkin approach, one considers the traditional
algebraic eigenvalue problem (secular equation):

(H− ES)c = 0. (4.21)
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For the continuous spectrum, such equation does not admit non-trivial solutions
c 6= 0 and the energy ε of the photoelectron is fixed. However, we can equiva-
lently find approximate solutions by calculating the coefficients that minimize the
residual vector, Hc− εSc, with c 6= 0. In order to do this, we solve the following
eigenvalue problem instead of (4.21):

A(ε)c = ac, (4.22)

where A(ε) = H − εS. Fischer et al. [123] proposed to solve this equation by
taking as approximate solutions the values of c that correspond to the eigenvalues
closest to zero. Of course, for exact solutions of the KS equation, a should be
zero. This can not be exactly satisfied in a finite basis. However, the minimum
modulus eigenvalues a of A corresponding to the required number of the indepen-
dent solutions (open channels) are well separated from the others when the basis
set is sufficiently dense and flexible to provide accurate solutions. The matrix A

is not Hermitian, because there are not boundary conditions, and the eigenval-
ues a and eigenvectors c are generally complex. Meanwhile, A is real, and they
necessarily occur by conjugate pairs (a, c) and (a∗, c∗). If all these solutions are
associated to the same energy ε, it is possible to avoid complex representations by
taking R(c) and I(c) as independents solutions. Once known the eigenvalues, it is
possible to obtain eigenvectors by block inverse iteration [124]. These constitute a
complete and independent set of stationary solutions. From these states, one can
build continuum states that are normalized and which satisfy required boundary
conditions. Actually, it has been later found that a better stability is obtained
solving the modified equation

ATAc = ac, (4.23)

which is an hermitian problem.

4.2.7 TDDFT

The static-exchange DFT method might be unsuitable when the coupling between
different photoionization channels is significant. The TDDFT level results, in
such a situation, are expected to be improved with respect to the simpler KS.
The response of the electrostatic potential due to a first order variation in the
electronic density can be consider, according to Zangwill and Soven [125], in a self
consistent way, by taking into account a total perturbing potential ΦSCF , which
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results from two contributions: the external potential ΦEXT and the Coulomb
and exchange-correlation terms due to the screening of electrons. The deriving
expression is:

ΦSCF (r, ω) = ΦEXT (r, ω) +

∫
δρ(r, ω)dr′

|r− r′|
+
∂VXC
∂ρ

∣∣∣∣
ρ(r)

δρ(r, ω), (4.24)

where δρ(r, ω) is the induced density and the adiabatic local density approximation
(ALDA) to the exchange-correlation kernel is employed. The induced density is
obtained from the KS dielectric susceptibility (χ) and the SCF potential:

δρ(r, ω) =

∫
χ(r, r′, ω)ΦSCF (r′, ω)dr′. (4.25)

So we have to solve the two coupled equations, (4.24) and (4.25). In order to do
this, it is possible to use different algorithms. Iterative algorithms, for example,
consist in starting with the initial guess ΦSCF = ΦEXT and then alternatively
solve (4.25) and (4.24) until convergence is met for ΦSCF . However, since the
two equations are linear in ΦSCF , one can avoid the iterative procedure and use
a direct (noniterative) algorithm. By substituting (4.25) in (4.24) we can obtain
the equation:

ΦSCF (r, ω) = ΦEXT (r, ω) +
x

K(r, r′)χ(r′, r′′, ω)ΦSCF (r′′, ω)dr′r′′, (4.26)

where K indicates the Coulomb and the ALDA exchange-correlation kernel:

K(r, r′) =
1

|r− r′|
+ δ(r− r′)

∂VXC
∂ρ

∣∣∣∣
ρ(r)

. (4.27)

If the integral (4.26) is solved with respect to ΦSCF , the TDDFT problem can
be recast avoiding the SCF procedure. Once ΦSCF is obtained, all the parame-
ters which describe the photoionization process are calculated through transition
moments using ΦSCF instead of dipole operator in the conventional expressions
[125, 126].

4.2.7.1 Resolution of the direct TDDFT equation

If Eq. (4.26) is represented over the LCAO B-spline basis set, we can indicate
with K and χ the matrix representation of the kernel and dielectric susceptibility,
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respectively, with ΦSCF and ΦEXT the vector of the coefficients of the unknown
SCF and the known external dipole potential, respectively. Solving with respect
to ΦSCF the following algebraic linear system is obtained:

(Kχ− 1)ΦSCF = −ΦEXT . (4.28)

If a method is given to build the two matrices which appear in (4.28) over the
basis set, the TDDFT problem is recast to a linear set of algebraic equations, and
the SCF procedure is avoided.

The K matrix is energy independent, and gives the potential generated in first
order by a charge density δρ

δΦ = Kδρ = δVc + δVxc, (4.29)

δVxc = −4π∆−1δρ, (4.30)

where ∆ is the matrix of the Laplacian (Poisson equation) and δVc = ∂Vxc
∂ρ
|ρ0(r)δρ.

Employing δρ = τj, a basis functions, both matrices are easily evaluated. The
linear response is instead energy (ω) dependent and gives the density response to
a potential perturbation. Again the idea is to employ a single basis functions τj
as a potential perturbation, and to compute the induced density δρj = χτj. Then
χkj(ω) = 〈τk, χτj〉 = 〈τk, δρj〉. In order to solve the linear response equations, we
can employ the Modified Sternheimer Approach (MSA) [127]. In this formalism,
the generic induced density δρj can be obtained from the perturbation of the KS
orbitals ϕ(1,±)

ij :
δρj(r, ω) =

∑
i

ni(ϕ
∗
iϕ

(1,±)
ij + ϕiϕ

(1,∓)∗
ij ), (4.31)

where ni are the occupation numbers and ϕ
(1,±)
ij are extracted from the solution

of the inhomogeneous equation:

[HKS − εi ± ω]ϕ
(1,±)
ij = −P̂ τjϕi, (4.32)

where the generic basis element τj has been substituted to the ΨSCF of the in-
homogeneous equation [128], ω indicates the photon energy and P̂ is a projector
which orthogonalizes with respect to the occupied orbitals.

Equation (4.32) can be represented in the LCAO basis set, obtaining a sys-
tem of linear algebraic equations, where the left-hand side matrix is built from the
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unperturbed KS Hamiltonian and the overlap matrix, while the right-hand side
consists in integrals between two basis elements and an occupied molecular orbital
properly orthogonalized [129]. More precisely this equation can be solved with
standard Lower-Upper (LU) decomposition for each photon energy. The adequate
outgoing boundary conditions for the photoelectron wave functions are also im-
posed. The integrals between the two basis elements and an occupied molecular
orbital are calculated with the same numerical integration scheme employed in
the construction of the KS Hamiltonian. Once Eq. (4.32) has been solved, the
coefficients ϕ(1,±)

ij are obtained and from them δρj and χkj(ω). Once the solution
vector ΦSCF of the coefficients is obtained, the integrals between an initial occu-
pied orbital, the SCF potential and the continuum orbital, necessary to calculate
the cross section and the asymmetry parameters, are calculated from the integrals
between the occupied orbitals and the two basis functions, by performing two
summations running over both continuum and SCF potential coefficients.



Chapter 5

Correlated single channel approach

5.1 Bound states calculation

In the correlated single channel approach, the initial and final bound states are
computed at the CASSCF level, with Molpro package [130]. The first step of
the procedure is the choice of a suitable active space for the target system. This
is followed by a CASSCF calculation of the ground state of the molecule and
then a CASSCF calculation of the ionic state of interest. The obtained CASSCF
wavefunctions are then employed to compute the relative Dyson orbitals. This is
done through a code set up in collaboration with the theoretical chemistry group
of the University of Ferrara. This code is based on the direct evaluation of the
overlap between the CASSCF wavefunctions separately optimized for the ion and
for the neutral molecule.

5.2 Transition moment from the Dyson orbitals

Let us consider two given wavefunctions for an initial N particle system, ΨN
I , and

for the N − 1 system, ΨN−1
F . The Dyson orbital is uniquely defined as

φdIF (1) =
√
N

∫
ΨN
I (1, ..., N)ΨN−1

F (2, ..., N)d2...dN. (5.1)
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Let us introduce an orthonormal basis {φp} and the associated creation and anni-
hilation operators {a+

p , ap}. Then the Dyson orbital can be expanded as

φd =
∑
p

γpφp, (5.2)

where the amplitudes γp are given by

γq = 〈ΨN−1
F |aq|ΨN

I 〉 . (5.3)

At high energy, the final wavefunction corresponding to a given ionic state, de-
scribed by a bound N − 1 particle wavefunction, ΨN−1

F , and a photoelectron of
kinetic energy ε (neglecting additional quantum numbers), φε, can be written as
an antisymmetrized product

A(ΨN−1
F φε) = a+

ε ΨN−1
F , (5.4)

where a+
ε is the creation operator relative to the photoelectron wavefunction φε.

By following the Arneberg’s derivation [131], one can express the photoelectron
wavefunction as

φε =
∑
p

φp 〈φp|φε〉 , (5.5)

from which one can also obtain the relations:

a+
ε =

∑
p

a+
p 〈φp|φε〉

aε =
∑
p

ap 〈φε|φp〉 ,
(5.6)

and
[ap, a

+
q ] = δpq, [aε, a

+
q ]+ = 〈φε|φq〉 . (5.7)

Let us also write the transition (dipole) operator T in second quantized form as

T =
∑
pq

tpqa
+
p aq. (5.8)

Therefore the dipole transition moment between the initial wavefunction and the
final one is defined as

DFI = 〈a+
ε ΨN−1

F |T |ΨN
I 〉 = 〈ΨN−1

F |aεT |ΨN
I 〉 . (5.9)
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By calculating

aεT =
∑
pq

tpqaεa
+
p aq =

∑
pq

tpq 〈φε|φp〉 aq −
∑
pq

tpqa
+
p aεaq =

=
∑
p

∑
q

〈φε|φp〉 〈φp|t|φq〉 aq +
∑
pq

tpqa
+
p aqaε =

=
∑
q

〈φε|t|φq〉 aq + Taε =
∑
q

〈φε|t|φq〉 aq + T
∑
q

〈φε|φq〉 aq,

(5.10)

we can obtain:

DFI =
∑
q

〈φε|t|φq〉 〈ΨN−1
F |aq|ΨN

I 〉+
∑
q

〈φε|φq〉 〈ΨN−1
F |Taq|ΨN

I 〉 , (5.11)

DFI =
∑
q

〈φε|t|φq〉 γq +
∑
q

〈φε|φq〉 ηq, (5.12)

where one has defined the amplitudes

γq = 〈ΨN−1
F |aq|ΨN

I 〉

ηq = 〈ΨN−1
F |Taq|ΨN

I 〉 .
(5.13)

In this expression, originally derived by Martin and Shirley [70], the first term is
called the direct term and the second one the conjugate term. At high energy
(or simply if the photoelectron wavefunction is considered orthogonal to all bound
orbitals included in the expansion of the initial state, ΨN

I ) the conjugate term is
negligible and only the first term survives.

Moreover, we have already seen that in a basis of one-particle states {φp} the
Dyson orbital can be expanded as

φd =
∑
p

γpφp.

The dipole transition moment is then expressed as

DFI =
∑
p

〈φε|t|φp〉 γp = 〈φε|t|φd〉 , (5.14)

namely it is reduced to the dipole transition moment between the Dyson orbital
and the photoelectron wavefunction.
Finally, at the independent particle level (unrelaxed Hartree-Fock configurations)
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γp = 1 for the primary ionic states

ΨN−1
F = apΦ

N
0 , (5.15)

and γp = 0 otherwise (ΦN
0 is the HF initial state), so only those final states are

allowed, and the relative Dyson orbitals are just the canonical occupied HF orbitals
φp, of unitary norm.
The norm of the Dyson orbital, defined as

‖φd‖2 =
∑
p

|γp|2 = RF , (5.16)

is often called spectral strength (or pole strength, or spectroscopic factor) of the
final state ΨN−1

F . Correlation lowers the spectral strengths of the primary ionic
states and, at the same time, gives intensity to additional states, i.e. satellite or
shake-up states, characterized by further electronic excitations. The usual values
for the outermost primary states (outer valence) are about 0.8 − 1.0. The effects
become especially strong for the inner valence region mainly because of the mixing
with 2h− 1p configurations relative to outer excitations and the spectral strength
can spread over many final states of low intensity. Another important effect is
represented by the mixing of different canonical MOs in the Dyson orbital, namely
a rotation of the occupied orbitals upon ionization.

5.3 Projection onto the B-spline basis

In Molpro, as in most quantum chemistry programs, MOs are approximated by
Gaussian basis functions, since the required integrals can be computed very quickly
in this basis. Actually, the basis functions are constituted by linear combination
of gaussian primitives. Such a basis functions will have their coefficients and expo-
nents fixed. These linear combinations, called contractions, are defined Contracted
Gaussian Type Orbitals (CGTO).

Once the ab initio orbitals have been obtained, the first task in our procedure
consists in expanding these orbitals expressed in Gaussian basis functions onto
the B-spline basis by projection. This is related to the ease of evaluating one
particle dipole matrix elements. The calculation of dipole matrix elements is the
only part, in the present formulation, where mixed Gaussian/spline integrals are



Chapter 5. Correlated single channel approach 85

needed. This has the advantage of decoupling the calculation of Dyson orbitals
from that of continuum dipole matrix elements, and can be easily adapted to any
calculation of the former.

In practice, in order to express the bound states monoelectronic wavefunc-
tions, we can choose MOs coefficients which result from a HF calculation or, in-
deed, from a CASSCF calculation. Once the ab initio calculation of the ground
state of the target system is performed, we can dump the current geometry, the
basis functions and the MOs coefficients in a Molden file. Molden is a package
for displaying molecular density from several ab initio packages and the Molden
format can be easily handled. The MOs orbitals contained in this file, which is
suitably modified, are then projected onto the B-spline basis through a specific
implemented subroutine.

In the case of Dyson orbitals, we first obtain these orbitals as linear combi-
nation of CASSCF orbitals with suitable coefficients obtained from the previous
calculation and then we can do the projection onto the B-spline basis.
In particular, within our procedure, each MO is expressed as:

ϕk =
n∑
j=1

cjkφj, (5.17)

where {φj} is the CGTO set. The MOs orbitals so obtained are used to express
the ith Dyson orbital as:

ϕDi,λ,µ =
∑
k

ϕk,λ,µC
D
k,i,λ, (5.18)

where k runs over the number of orbitals in each symmetry, λ is the active sym-
metry index, µ stands for the symmetry degeneracy and the coefficients CD

k,i,λ are
obtained by the matrix elements:

CD
k,i,λ = 〈ΨN |a+

kλµ|Ψ
N−1
i 〉 . (5.19)

The projection of the MOs ϕk is obtained by computing the scalar products with
the B-spline basis

bnkλ = 〈χnλµ|ϕkλµ〉 , (5.20)
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by the same numerical integration algorithms employed for the calculation of other
matrix elements. Then it is easy to obtain the coefficients in the expansion

ϕkλµ =
∑
n

ankλχnλµ, (5.21)

by solving the linear system

∑
n

Sλmnankλ = bmkλ. (5.22)

The accuracy of the expansion is monitored by the norms of the projected orbitals,
which are extremely close to 1. The projected orbitals are in any case renormalized.
The expansion coefficients for the Dyson orbitals are obtained in the same way.

5.4 Test case

We carried out some tests to verify the accuracy of our procedure and the size
of the basis set required to reach the convergence. The test case was represented
by a simple molecule: H+

2 . The results obtained have been compared with those
of the standard DFT procedure fully converged with respect to the B-spline basis
in Fig. 5.1. We tested several basis sets for both cases. These basis sets are
reported in the table 5.1, with the corresponding number of basis functions. The
results obtained both for the cross sections and for the asymmetry parameters
show that it is necessary, at least in the case of asymmetry parameters, to use an
extremely large basis set to reach the convergence with the CGTO basis. This is
due to the extension of the B-spline basis with respect to the Gaussian basis set.
In particular, only by using the d-aug-cc-pV5Z basis set reported in Fig. 5.2, the
curves have a good match. The excellent agreement between the calculated values
proves the correctness of the current implemented procedure.
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Basis set Number of CGTOs

cc-pVTZ 17

aug-cc-pVTZ 27

d-aug-cc-pVTZ 37

d-aug-cc-pVQZ 77

d-aug-cc-pV5Z 143

Table 5.1: Number of CGTOs associated to each basis set.
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(a) Cross section of H+
2

(b) Asymmetry parameter of H+
2

Figure 5.1: Cross section and asymmetry parameters of H+
2 calculated with

different basis sets and compared to the B-splines approach.
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(a) Cross section of H+
2

(b) Asymmetry parameter of H+
2

Figure 5.2: Cross section and asymmetry parameters of H+
2 calculated with

d-aug-cc-pV5Z and compared to the B-splines approach.
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Chapter 6

Introduction

The high energy behaviour of cross sections in molecular photoemission has re-
ceived scant attention up till now. This is due to the difficulty of observing rapidly
decreasing cross sections over a wide energy range. Moreover it was tacitly assumed
that all molecular features die after approximately 50–100 eV, so that only flat and
dull behaviour would be observed due to the sum of atomic cross sections. De-
velopment of latest-generation synchrotron radiation has extended the accessible
energetic range in photoelectron spectroscopy and it has instead been seen that
there are structures at high energy in cross section profiles due to diffraction and
interference effects. As the wavelength of the emitted electron becomes compa-
rable to the size of interatomic distances, diffraction and interference phenomena
appear in the spectra as a result of wave propagation. This gives rise to an os-
cillatory behaviour superimposed on the fast declining atomic cross section. So,
far from being an exceptional feature of the spectra, confined to peculiar systems,
it is expected that such oscillations represent a universal phenomenon, present
in all polyatomic targets, from diatomics to complex non-symmetrical molecules
and from the deep core to the outer valence shell. Besides the general qualita-
tive understanding the observed features may differ considerably in the details.
This points to the richness of potential chemical information, about both geo-
metrical and electronic structure, but complicates the interpretation, such that a
more careful analysis is needed. Ultimately, the full reconstruction of the observed
patterns may require accurate theoretical modelling and a least squares retrieval
of interesting information from fitting the simulated profiles to the experimental
ones. At the outset however two quite separate mechanisms can be distinguished:
interference due to direct emission from equivalent centres, and diffraction due
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to secondary waves scattered from adjacent inequivalent centres. These effects,
related to electron waves emitted by photoionization, are a manifestation of the
wave particle duality at the heart of Quantum Mechanics. They have been ob-
served and understood long ago [132] and have been revived in more recent times
to become the widespread EXAFS technique [133] which is of routine application
in the determination of the geometry of molecules, solids and surfaces. Photoelec-
tron interference due to coherent emission from equivalent centers, also known as
Young’s type interference, had been also predicted in 1966 by H. D. Cohen and U.
Fano (CF) [27], from a model calculation on H+

2 . However, it laid dormant until
quite recently, when it became possible to observe the predicted features in the
ionization of core orbitals in N2 [134–136] and C2H2 [137, 138] and also in related
collision experiments [139, 140].

The original idea of Cohen and Fano consists in considering that the nuclei
could act as two-center emitters. The results of this interaction are waves that
interfere like in a typical Young’s double slit experiment. As a consequence, fin-
gerprints of these interferences are expected in the photoionization cross sections.
Within this picture, the photoelectron is supposed to be coherently emitted from
the two atomic centers when the wavelength is comparable to the internuclear
distance. This can be considered valid for quite localized initial MOs such as core
MOs. Actually, this assumption can be done also in the case of valence shell pho-
toionization for small molecular systems such as N2 and CO. The CF formula for
oscillation in the total cross section is given by:

σ(k) = σ∗(k)
1

1 + S

[
1 +

sinkR

kR

]
(6.1)

where k is the photoelectron momentum, S the overlap integral, R the interatomic
distance and σ∗ an effective atomic cross section. The above formula, although
capturing the basic mechanism involved, fails to quantitatively describe the actual
interference patterns as it has been verified by accurate calculations on H2, H+

2

[141] and in some early experiments [134, 135]. This is basically due to the inad-
equacy of the plane wave description of the continuum employed by CF, and the
corresponding phase shifts, especially at low energy, where the molecular potential
gives rise to a quite structured continuum.

The reason that most investigations have concentrated in the core region is
due to the simple nature of the relevant MOs, 1σg and 1σu, which correspond to the
symmetric and antisymmetric combinations of 1s AOs. Experimentally their study
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requires resolving the two individual ionization channels. This is because oscilla-
tions appear exactly out of phase in the two channels and cancel in the unresolved
cross section. In practice this restricts investigation to the already mentioned N2

and C2H2 molecules, which have a larger 1σg-1σu separation of about 100 meV
because of the short interatomic distance, caused by the triple bond, just at the
limits of experimental feasibility. Indeed, commonly, the g/u splitting of core or-
bitals is too small to be observable; generally well below lifetime broadening and
vibrational excitation.

In general, oscillations induced by interference are difficult to observe directly
as they are a tiny modulation over a strongly decreasing background. A clear way
of revealing them experimentally is by taking cross section ratios between different
channels. Since cross sections from gerade and ungerade states originating from
1s orbitals on equivalent centers have fully out of phase oscillations, interference
is clearly revealed in taking 1σg / 1σu ratios.
The investigation on diatomic and small polyatomic molecules has shown the ubiq-
uitous appearance of interference and diffraction effects, not only in the partial
cross sections, but in angular distributions [142, 143] and vibrational branching
ratios (v-ratios) as well [29, 138, 144, 145].

Since the spectrally unresolved splitting of core orbitals does not permit the
study of interferences in most systems, an interesting possibility is constituted by
taking into account the ionization of inner-valence orbitals deriving from the C 2s
AOs. Indeed, they have a much larger splitting due to the stronger bonding in-
teraction that can be experimentally resolved. Although ionizations of 2s-derived
MOs are often influenced by very strong many-body effects which prevent the ob-
servation of the primary line, a direct study of the interference effects is possible at
least in many hydrocarbon molecules [146]. Even though the C 2s-derived orbitals
are mixed with AOs of neighbouring atoms, they remain mainly localized on the
equivalent centers, so that well-developed interference patterns are expected.

In a recent study [146] the possibility of investigating the same phenomenon
in the inner valence orbitals originating from the C 2s AO was considered. In-
deed, the relevant MOs present are split by a few eV and therefore can be easily
investigated. This has allowed us to consider interference in the three simplest
hydrocarbons C2H2, C2H4 and C2H6, with the aim to investigate the expected
dependence of interference pattern on the bond length. This was indeed observed
and it was shown that accurate theoretical simulations of the interference patterns
are potentially able to recover the geometric information from the experimental
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data with high accuracy. It also turned out that the pattern was more complex,
due to partial delocalization of the inner valence MOs on the full molecule and to
the presence of many-body effects. This in turn made the study of such structures
a potential source of important information about the electronic structure of the
target.

As well as in simple molecules, these features can appear under favourable
circumstances in the outer valence shell of very complex molecules. This has
been long known in C60 [30–32, 37] and other fullerenes, as well in other very
symmetrical molecules like MgCp2 [147]. Indeed, a strong and rather short period
oscillation in the partial cross sections relative to HOMO and HOMO-1 ionizations
was previously discovered in the outer valence photoionization of C60 [30]. Since
oscillations appear in antiphase in the two channels, the effect can be magnified,
as already highlighted, by taking the ratio of the two cross sections. This ratio
has been accurately measured both in the gas phase [31] and in the solid state
[32]. A number of models have been put forward to explain the phenomenon,
including quantization in a spherical box [33], diffraction from its edges [34] and
various spherical models [35]. Our interpretation [36, 37], also followed by [32], is
that their origin is in the interference of electron waves emitted from equivalent
centres and is just another manifestation of the interference effects predicted and
observed in diatomic molecules. Analogous structures have also been uncovered in
deeper channels [38, 39] and in the non-dipole parameters [40]. The whole range of
effects has been quantitatively reproduced and this has also permitted the ability
to predict analogous effects in a number of different situations. This clarifies the
interplay of interference (coherent emission from equivalent centers) and scattering
(EXAFS structures) from neighbouring centers, as well as the role of the electronic
structure of the orbitals involved [146, 148–151]. In fact, while emission from core
orbitals is essentially atomic-like, strongly localized and can be well assimilated to
a point source, in contrast the emission from valence orbitals is generally delocal-
ized. This valence emission also mixes orbitals from different atomic species. As
a consequence, different amplitudes emerge from different regions of space and so
the resulting interference pattern is less regular and significantly more complex,
although it is still accurately described by the theoretical model.

In next chapters we will illustrate the effects just described in the photoion-
ization profiles at high energy for several systems. In the core region, we have
analysed the oscillations in the intensity ratio C2,3/C1,4 in the carbon 1s pho-
toelectron spectrum for 2-butyne, which will be the first result to be presented
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(Chapter 7).
In the inner valence shell region, the interference effects in the photoionization

spectra of simple polyatomic molecules (propane, butane, isobutane, cis/trans-2-
butene) were studied. All the experiments on these systems were carried out by
an experimental group at the Soleil synchrotron in Paris and the results from the
theory and experiment are presented in Chapter 8.

Furthermore, we analysed the effect due to coherent emission from equiva-
lent centers and diffraction from neighbouring non-equivalent atoms in core and
valence photoelectron spectra. We investigated mono and disubstituted fluoro-
and iodo-acetylenes, compared to the simple acetylene system. These results are
presented in Chapter 9.

In the outer valence shell, we have investigated interference effects in the
outer valence ionization cross sections of simple hydrocarbons, C2H2, C2H4, C2H6

and we found that they are comparable to those observed in core and inner va-
lence ionizations as outlined in Chapter 10. In the same region, another class of
compounds which has been examined is that of Mg and Be metallocenes. The
influence of geometrical structure on their photoionization profiles is studied by
varying metal-ring distance in the permethylated compounds MgCp∗2 and BeCp∗2
as well as in non-permethylated MgCp2 (Chapter 11).

Finally, in the inner valence shell region, we considered the photoionization
profiles for the case of ArC60. The results are compared with data already avail-
able in literature and with a previous study on the C60 molecule in Chapter 12.

All these results have been analysed in terms of the model based on the DFT
method combined with the use of a B-spline basis (Chapter 4). This method gives
a good description of the energy dependence of the intensity ratios.



Chapter 7

Intensity oscillations in the carbon

1s ionization cross sections of

2-butyne

7.1 Introduction

The energy-dependent modulations of inner-shell cross sections well above thresh-
old were predicted theoretically for carbon 1s ionization in a number of molecules
[152] and observed experimentally by Söderström et al. in chlorine-substituted
ethanes [150]. In this work it was found that the oscillations were associated with
the chlorinated carbon atom and that the degree of oscillation increased with the
number of chlorine atoms attached to the ionized carbon. These results were inter-
preted as arising from EXAFS-type scattering of the outgoing photoelectron from
the attached chlorine atoms and it was shown that they could be accounted for
quantitatively by a multiple-scattering EXAFS calculation using the FEFF codes
[153, 154]. The geometrical information is currently retrieved in EXAFS studies
by accurate fitting and background subtraction of the absorption signal. In this
respect photoemission is much richer of information content, because of the abil-
ity to disentangle individual ionization channels which are superimposed in the
total absorption cross section, e.g the possibility of distinguishing several inequiv-
alent sites, to analyze also valence and inner valence photoemission, and to obtain
additionally electronic structure information. However extraction of the features
from the photoemission signal is more difficult, and an appealing possibility, when
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Figure 7.1: Carbon 1s photoelectron spectrum of 2-butyne taken at photon
energy of 340 eV. Open circles show the data. Solid lines show the overall fits

and the contribution from individual components.

missing an internal reference given by the ratio of two similar channels, is to use a
mixture with a reference compound against which to normalise the cross section.
While it may be reasonable to expect pronounced scattering effects in the presence
of heavy atoms such as chlorine, it might not be anticipated that such effects would
also play a significant role in molecules containing only first-row atoms. Guided by
some preliminary observations of non-stoichiometric intensity ratios in 2-butyne
(CH3C=CCH3), we have investigated the carbon 1s photoelectron spectra of 2-
butyne over a range of photon energies from threshold to 150 eV above threshold.
Over this energy range we see oscillations in the intensity ratio (C2,3/C1,2) that
range from 0.8 to 1.15, indicating that nonstoichiometric cross section ratios will
be found even when there is no high-Z scattering center.

7.2 Results and Discussion

Gas-phase carbon 1s photoelectron spectrum for 2-butyne, shown in Fig. 7.1, was
measured at photon energies from 295 eV to 450 eV using beamline I411 of the
MAX II synchrotron [155]. For the two triply bonded carbon atoms in 2-butyne, C2
and C3, there are two core orbitals separated by approximately 100 meV resulting
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Figure 7.2: Comparison between density-functional calculations and experi-
mental values for the intensity ratios (C2,3/C1,4) for the carbon 1s photoelectron
spectra of 2-butyne. The solid line represents the results of the DFT methods

and the dashed line represents the results from the TDDFT method.

from the bonding and antibonding combinations of the two atomic 1s orbitals. The
intensities for photoemission from the two different carbon atoms are obtained from
the areas under the peaks. The intensity ratio, C2,3/C1,2, as a function of the
average momentum of the photoelectron is shown in Fig. 7.2. It is apparent from
Fig. 7.2 that there are energy dependent oscillations of the cross section ratio.
These are similar to those reported by Söderström et al. [150] for chlorinated
ethanes, and, specifically, comparable in magnitude to those for 1,1-dichloroethane
(CH3CHCl2). In the chloroethanes these oscillations have been interpreted as
arising from EXAFS-like scattering of the outgoing electrons from the chlorine
substituents. This view is supported by the observation that the magnitude of the
oscillations increases with the number of chlorine substituents and by theoretical
calculations that take this scattering into account. In 2-butyne what appears
to be a similar phenomenon must arise from scattering of the photoelectrons by
the carbon atoms, primarily those adjacent to the ionized carbon. Since the two
central carbon atoms each have two nearest neighbours and the terminal carbon
atoms have only one, we expect that this scattering effect will be larger for the
central atoms than it is for the terminal ones.
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For the density-functional calculations the multicentric B-spline code has been
employed with asymptotic angular expansion up to Lmax = 24, which ensures
complete convergence of the calculated cross sections. Two sets of calculations
have been made. One is based on DFT and the other on TDDFT. In Fig. 7.2 we
compare the experimental intensity ratios with the predictions of the two density-
functional theoretical models. There is a good agreement between theory and
experiment. Both show a sharp peak in the intensity ratio for k slightly greater
than 1 a.u., but the theoretical results predict a much higher ratio (1.8-2.0) than
is observed (about 1.1). An observed dip in the intensity ratio at k ≈ 1.5 a.u. is
reproduced accurately by the theory. A second peak at k ≈ 2 a.u. is reproduced
by the theory, which predicts the position, height, and structure of this peak
reasonably well. Beyond k≈ 2.5 a.u. the theory shows another peak approximately
where one is observed in the data. Overall, the theory predicts the peaks at slightly
lower values of k than they are observed in the experimental data, and this trend
increases with increasing k. There is little difference between the DFT and TDDFT
predictions. If the energy scale for the theoretical calculations is shifted to higher
energies by about 3 eV (with a corresponding shift in the values of the momentum)
the agreement between theory and experiment is improved. The need for such a
shift arises because the exchange-correlation potential employed in the calculation
is slightly too attractive, and shifts the calculated profiles towards threshold. A
more detailed look at the theoretical calculations shows that the strong peak at k
≈ 1 a.u. arises from ionization of the 2a′1 molecular orbital, which is equivalent to
a σg orbital made from the gerade combination of the two 1s orbitals of the triply
bonded central carbon atoms. This is similar to the behaviour seen in ethyne,
where the 1σg ionization shows a broad peak in the cross section at a photon
energy of about 310 eV (k = 1.2 a.u.) [156]. By contrast ionization of the 2a′′

orbital in 2-butyne shows a monotonically decreasing cross section in this energy
region, which is similar to the behavior seen for ionization of the 1σu orbital in
ethyne. A strong shape resonance at k ≈ 1 a.u. is predicted to be a common
feature for substituted ethyne molecules such as FCCH, FCCCH3, and FCCCN
[152]. The origin of this feature is the presence of a continuum σ∗u resonance,
associated with the ionization of the σ C2C3 antibonding orbital, similar to that
seen in the core ionization of N2. Such a feature also appears in the 1a′1 ionization,
but with much reduced intensity, because of the smaller dipole transition moment
from the adjacent methyl C1s orbital.
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7.3 Conclusions

The experimental results show that the intensities of the peaks in the photoelec-
tron spectrum of 2-butyne do not necessarily reflect the exact stoichiometry of
the molecule, but may differ from this expectation by as much as 20%. Moreover,
the intensity ratio oscillates with the photon energy (or momentum of the pho-
toelectron). This behaviour is similar to that seen for chloroethanes [150], where
the chlorine substituents provide strong scattering centers. The current results
show that such oscillations and nonstoichiometric intensity ratios can be expected
also in cases where there is no strong scattering center. These results have im-
portant consequences for the use of photoelectron spectroscopy as an analytical
tool. Comparison of the experimental results with predictions of the theoretical
approach shows that our method accounts well for the overall structure seen in
the energy-dependence of the cross-section ratios. In detail, the theoretical models
overestimate the magnitude of these effects near threshold. This overestimate is
particularly noticeable for the peak at k ≈ 1 a.u. As noted, this peak arises from
the presence of a shape resonance near threshold and it is commonly observed that
this level of calculation predicts the profiles of shape resonances to be sharper and
more intense than is experimentally observed.



Chapter 8

Interference and diffraction in

molecular photoionization: isomer

discrimination

8.1 Introduction

A recent study on the inner-valence MOs of a series of simple hydrocarbons with
two centers has shown that the interference in coherent emission of photoelectrons
from these equivalent centers represents the microscopic analogy of the Young’s
double-slit experiment [146]. This type of interference is related to both electronic
and geometrical structure. By considering the electronic structure, even if inner-
valence MOs remain basically atomic, they are mixed with AOs of neighbouring
atoms and a certain amount of delocalization is always present. This complicates
the interpretation of the interference patterns. In particular, the most important
effect will be the amount of H 1s orbital participation, which will generally give
a change in the value of the cross-section ratio considered due to the rapidly de-
creasing hydrogen cross section at high energies. Furthermore, the geometrical
dependence of the interference patterns can offer a method to accurately deter-
mine molecular geometries, especially when photoemission is the chief investigative
tool. In particular, the potential of such structures for accurate determination of
interatomic distances has been put forward [146].

In collaboration with an experimental group of the Soleil synchrotron in Paris
on the Pléiades beamline, we have explored the feasibility of examining interference

101
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in photoemission from 2s-derived orbitals in simple hydrocarbon molecules with
two or more pairs of chemically equivalent carbon atoms: propane, cyclopropane,
butane, isobutane and 2-butene. This permitted us to verify the existence of os-
cillations in interference profiles which depend on the internuclear distance, on
the electronic structure and on the orbital composition. In particular, given the
great interest in isomer discrimination we propose a new investigation specifically
aimed at distinguishing different isomers by the change in the interference pattern
expected on the basis of the different distance between the centers in cis- and
trans-dimethylethene (2-butene) that are not directly bonded. Since in this case
the molecular geometry is rigid, we expect comparisons between theory and exper-
iment to be more straightforward and lead us to better understand the potential
for conformation discrimination in the case of more flexible molecules.

In the results that we will illustrate, we have taken into account branching
ratios and cross section ratios instead of simple cross section profiles in order to
emphasize the interference effects. The branching ratio is defined as the ratio
between a specific cross section and the sum of all considered cross sections, i.e.

BRi =
σi
σtot

. (8.1)

The second possibility to enhance the differences between different cross section
profiles is constituted by the intensity ratios between single bands, namely:

Rij =
σi
σj
. (8.2)

Let us now to examine the different target systems.

8.2 Results and discussion

8.2.1 Propane

The most simple system with more than two centers is propane, C3H8. Fig. 8.1
shows the inner-valence spectrum taken at a photon energy of 105 eV for this
molecule. Experimentally, once the peak areas are obtained, their ratios can be
derived. The ionization of three inner-valence orbitals, 3a1, 2b2 and 4a1, originating
from C 2s AOs are well separated and experimentally resolved, in contrast with the
small separation between C 1s orbitals (almost 0.13 eV) [157]. The corresponding



Chapter 8. Interference and diffraction in molecular photoionization: isomer
discrimination 103

Figure 8.1: Valence-electron spectrum of propane.

eigenvalues obtained both by an ADF calculation and from the B-splines/DFT
method are reported in Tab. 8.1 and they match quite well with the experimental
ionization potentials.

ADF B-spline

3A1 23.99 23.93

2B2 21.45 21.42

4A1 19.10 19.06

Table 8.1: Inner-valence MOs eigenvalues [eV] of propane.

In order to obtain these values, the large one center basis with maximal ex-
pansion up to Lmax = 24, with a range Rmax = 25 a.u. and step size h = 0.2 is
supplemented by expansions around the carbon and hydrogen atoms with lmax = 2,
rmax = 0.6 for carbon and lmax = 1, rmax = 0.6 for hydrogen. We note that this
basis affords a very accurate solution of discrete DFT orbitals as well as continuum
orbitals. Moreover, the excellent agreement between ADF eigenvalues and those
calculated with the B-spline/DFT method indicates the convergence of the chosen
basis.
The molecular structure of propane with non-equivalent atoms labelled with dif-
ferent numbers and a scheme of 2s-derived MOs are reported in Fig. 8.2. The
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Figure 8.2: Propane molecule and MOs deriving from C2s AOs.

corresponding percentage composition of each orbital, obtained by an ADF calcu-
lation, is shown in Tab. 8.2. Here the non-equivalent atoms are labelled with the
same convention used in Fig. 8.2.

C1 C3 H4 H8 H10

2s 2p 2s 2p 1s 1s 1s

3A1 35.23% 3.41% (py) 35.46% 1.52% (pz) 13.00% 6.27% 10.67%

2B2 53.89% // // 8.70% (py) 22.65% 14.12% //

4A1 16.65% 8.53% (pz) 22.94% 5.60% (pz) 17.72% 5.49% 17.86%

Table 8.2: Orbital composition of inner-valence MOs of propane.

The percentages less than 1% have been neglected, so the total percentage is
not 100%. This choice has been made for all the molecules considered.
In order to emphasize the oscillations characterizing the interference profiles, we
considered the branching ratio values instead of simple cross sections. In Fig. 8.3,
we illustrate the experimental and calculated branching ratios related to the three
inner-valence orbitals as a function of photon energy. The shape and the absolute
values of the theoretical curves are matched extremely well by the experimental
points. As one can note, strong oscillations are present in the branching ratio val-
ues, corresponding to a complex and irregular structure. In general, irregularities
in the oscillations are directly informative of the nature and atomic composition of
the inner-valence MOs. Indeed, these orbitals include not only contributions from
C 2s but also from C 2p and H 1s as one can see from the Tab. 8.2. By considering
all three profiles, the oscillations for the inner-valence orbitals are far from being
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Figure 8.3: Branching ratios associated to 3a1, 2b2 and 4a1 inner-valence
orbitals of propane.

regular around a mean value but they diverge quite rapidly at high photon ener-
gies. This is essentially due to the different MO composition in terms of AOs. Let
us examine in detail the composition of each orbital. 70% of the deepest orbital,
3a1, is composed of C 2s AOs from both terminal and central atoms. Thus, it
can be considered as an in-phase sum of terminal and central atom contributions.
Meanwhile, the second orbital, 2b2, has a strong contribution from terminal carbon
2s AOs together with a large contribution from the H 1s AOs bonded to them.
Finally, the 4a1 orbital has a composition more closely related to that of 3a1 be-
cause it includes C 2s contributions from both types of carbon atoms, although it
has a noticeably large contribution from the central carbon atom. By comparison,
of the branching ratio curves associated to two orbitals of symmetry a1, one can
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Figure 8.4: A selected orbital ratio for propane molecule.

note that they present anti-phase interference structures. This is related to their
different nodal structure, +++ for 3a1 and -+- for 4a1, reported in the scheme 8.2.
It is interesting to note that the branching ratio associated with the 2b2 orbital
exhibits a structure with a shorter period and a frequency which is almost double
with respect to the other two curves. This is due to the relationship between
interference and distance between emission centers: the larger the distance, the
smaller the period of the oscillations. In this case, the interference is exclusively
due to the emission from the two C terminals which are characterized by a distance
which is double that of the terminal-center separation. The period of oscillation is
almost half with respect to that of the two other orbitals. Furthermore, since the
atomic cross sections of C 2s orbitals at high energy decay slower than C 2p and H
1s, the branching ratio at high energy increases with the C 2s contribution in the
corresponding orbital. As a consequence, one can expect the following behaviour
in the branching ratios: BR 3a1 > BR 2b2 > BR 4a1.

One can consider the ratios between single cross sections if one is interested
in highlighting oscillations in the interference patterns. In particular, the relevant
ratio between the orbitals 3a1 and 2b2 is reported in Fig. 8.4. A very clear inter-
ference pattern emerges, indicating that it is mostly dominated by the different C
2s contribution of the two orbitals and not by the details of their composition.



Chapter 8. Interference and diffraction in molecular photoionization: isomer
discrimination 107

Figure 8.5: Valence-electron spectrum of n-butane.

8.2.2 Butane

The great potential of the technique for accurate determination of molecular con-
formers in the gas phase emerges by considering the case of butane. Indeed, in the
beginning, investigations of emission from C 2s-derived MOs of butane had shown
some disagreement with theoretical simulations. This disagreement was traced
back to the neglect of the gauche isomer in the theoretical treatment; the isomer
was expected to be thermally populated. In Fig. 8.5, we show the inner-valence
spectrum taken at a photon energy of 105 eV for n-butane. The inner-valence
shell is constituted by four orbitals, 3ag, 3bu, 4ag and 4bu, originating from C 2s
AOs of the anti-conformer. Their ionization peaks which appear well separated
in the spectrum can be experimentally resolved (Fig. 8.5). The same applies
to the gauche-conformer: the ionizations derive from 3a, 3b, 4a and 4b orbitals.
The corresponding eigenvalues obtained both by an ADF calculation and the B-
splines/DFT method are reported in Tab. 8.3. Also in this case, they match quite
well with the experimental ionization potentials. In order to obtain these values,
as for the propane case, we have used the large one center basis, with maximal
expansion up to Lmax = 26, with a range Rmax = 25 a.u., and step size h = 0.2

together with, for the anti-conformer, expansions around the C ans H atoms, with
lmax = 2, rmax = 0.4 (central carbon), lmax = 2, rmax = 1.0 (terminal carbon) and
lmax = 1, rmax = 1.0 (H). For the gauche-conformer, the parameters are just a bit
different: lmax = 2, rmax = 0.5 (central carbon), lmax = 2, rmax = 0.8 (terminal
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Anti butane Gauche butane

ADF B-splines ADF B-splines

3Ag 24.467 24.382 3A 24.464 24.394

3Bu 22.852 22.498 3B 22.395 22.360

4Ag 20.085 20.045 4A 20.393 20.373

4Bu 18.798 18.773 4B 18.499 18.491

Table 8.3: Inner-valence MOs eigenvalues [eV] of butane.

carbon) and lmax = 1, rmax = 0.8 (H). This choice provides a very accurate solu-
tion of discrete DFT orbitals. The excellent agreement between ADF eigenvalues
and those calculated with B-spline basis indicates the convergence of basis used.
Fig. 8.6 shows the molecule where non-equivalent atoms are labelled by different
numbers and a scheme of MOs deriving from C2s AOs. The percentage composi-
tion of each MO deriving from C2s AOs of anti-conformer and gauche-conformer is
reported in Tab. 8.4 and 8.5, respectively. These percentages have been obtained
by an ADF calculation.

C1 C3 H5 H9 H11

2s 2p 2s 2p 1s 1s 1s

3Ag 55.30% 2.42% (px) 19.44% 3.13% (py) 15.66% 3.40% 7.34%

3Bu 16.04% 9.25% (py) 46.54% // 4.05% 9.10% 16.16%

4Ag 14.72% 7.85% (py) 34.29% 3.78% (py) 6.10% 11.33% 19.26%

4Bu 29.04% 17.03% (px) 6.42% 8.49% (px) 27.75% 1.34% 9.10%

Table 8.4: Orbital composition of inner-valence MOs of anti butane.

As in the previous case, the non-equivalent atoms are labelled with the same
criterion of Fig. 8.6. From the analysis of the percentage composition, one can in-
fer that even if the 2s-derived MOs are partially involved in the bonding and they
are mixed with AOs of neighbouring atoms, such orbitals are still predominantly
localized on the equivalent centers. As such, well-developed interference patterns
are expected. Let us now examine the composition for each MO. The 3Ag orbital
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Figure 8.6: Butane molecule and MOs deriving from C2s AOs: anti-conformer
(upper panel) and gauche-conformer (lower panel).

of the anti-conformer and the 3A orbital of the gauche-conformer constitute al-
most 75% of the C 2s AOs contribution and are essentially localized on the central
carbon atoms. The contributions deriving from the H 1s AOs exceeds 10% only
in the case of the anti-conformer. The other MOs, 4Bu (anti) and 4B (gauche),
are mainly localized on the central carbon atoms, although the total percentage of
C 2s AOs is less than the 3Ag/3A case and there is a large contribution deriving
both from the C 2p AOs and H 1s AOs. For this reason we would expect a less
pronounced oscillation with respect to those associated with the orbitals 3Ag/3A.
We consider the other two orbitals, 3Bu/3B and 4Ag/4A, which are essentially
localized on the terminal carbon atoms even if with different percentages: in the
first case the localization is more prominent with respect to the second. As already
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C1 C3 H5 H7 H9 H11 H13

2s 2p 2s 2p 1s 1s 1s 1s 1s

3A 52.84% 1.46% (pz) 21.27% 1.72% (py) 7.83% 7.66% 3.16% 4.14% 3.85 %

3B 18.00% 6.15% (py) 44.48% // 3.17% 2.47% 9.78% 6.70% 7.92 %

4A 16.61% 7.63% (pz) 31.96% 2.18% (pz) 5.27% 3.41% 8.99% 11.15% 7.95 %

4B 27.54% 8.76% (px) 8.75% 5.51% (pz) 9.50% 15.59% 2.85% 3.88% 7.54 %

Table 8.5: Orbital composition of inner-valence MOs of gauche butane.

highlighted, the differences in the composition of the MOs are directly reflected
in the interference patterns. In order to verify this, let us consider the branching
ratio values of the different ionization events.

If we only consider the anti-conformer, Fig. 8.7, the experimental and cal-
culated BR values are in reasonable agreement for the ionizations deriving from
3Ag, 4Ag and 4Bu but not for the 3Bu orbital. In Fig. 8.8, the experimental and
calculated branching ratios related to the four inner-valence orbitals as a function
of photon energy are illustrated. By mixing the contribution of both conformers,
one can obtain an excellent agreement between theory and experiment. The oscil-
lations observed are not regular around a mean value because of different orbital
composition. They diverge quite rapidly at high photon energy. Firstly, if one con-
siders the ionization cases which derive from the MOs which are mainly localized
on the central carbon atoms, namely 3Ag/3A and 4Bu/4B, one can observe that
they present anti-phase oscillations due to their different nodal structure which
is reported in the scheme 8.6. The oscillations related to the 3Ag/3A branching
ratios are somewhat more evident with respect to those of 4Bu/4B because of a
higher percentage of C 2s AOs: in particular, 55.4% for 3Ag against 29.4% for
4Bu in the case of the anti-conformer and 52.8% for 3A against 27.5% for 4B in
the case of the gauche-conformer. By considering the ionization cases due to the
MOs mainly localized on the terminal carbon atoms, the profiles exhibit different
periods and frequencies of oscillation with respect to the profiles which are related
to the central carbon atoms. This is a consequence of the dependence on the
distance between the slits. Then, as already highlighted for the case of propane,
the emission linked to the terminal atoms generates an oscillation with smaller
period and, consequently, larger frequency. This is true both for 3Bu/3B and
4Ag/4A but it is more pronounced for 3Bu/3B because of a larger percentage of
C 2s contributions.
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(a) 3Ag (anti) orbital. (b) 3Bu (anti) orbital.

(c) 4Ag (anti) orbital. (d) 4Bu (anti) orbital.

Figure 8.7: Branching ratios associated to 3ag, 3bu, 4ag and 4bu inner-valence
orbitals of anti butane.

8.2.3 Isobutane and cyclopropane

In this series of hydrocarbon molecules we have also considered the cylcopropane
and isobutane. However, the analysis of current experimental data is still in
progress then only our theoretical results are available. The inner-valence shell
of cyclopropane is constituted by two orbitals, 2a′1 and 2e′1, originating from C 2s
AOs. The corresponding eigenvalues obtained both by an ADF calculation and
by the B-splines/DFT method are reported in Tab. 8.6.
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(a) 3Ag (anti) and 3A (gauche) orbitals. (b) 3Bu (anti) and 3B (gauche) orbitals.

(c) 4Ag (anti) and 4A (gauche) orbitals. (d) 4Bu (anti) and 4B (gauche) orbitals.

Figure 8.8: Branching ratios associated to 3ag/3a, 3bu/3b, 4ag/4a and 4bu/4b
inner-valence orbitals of anti/gauche butane.

As for the previous cases, in order to obtain these values, the large one center
basis, with maximal expansion up to Lmax = 20, with a range Rmax = 25 a.u.,
and step size h = 0.2 is supplemented by expansions around the C ans H atoms,
with lmax = 2, rmax = 0.5 (C), lmax = 1 and rmax = 1.0 (H). Fig. 8.9 shows
the molecule where not equivalent atoms are labelled by different numbers and a
scheme of MOs deriving from C2s AOs. In Tab. 8.7 the percentage compositions
of MOs deriving from C2s AOs are reported. They have been obtained by ADF
calculation. As in the previous cases, the non-equivalent atoms are labelled with
the same numbers of Fig. 8.9.
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ADF B-spline

2A′1 25.790 25.798

2E′1 19.306 19.336

Table 8.6: Inner-valence MOs eigenvalues of cyclopropane.

Figure 8.9: Molecular structure of cyclopropane and scheme of MOs deriving
from C2s AOs.

C1 H4

2s 2p 1s

2A′1 73.42% 18.84% (px) 13.64%

2E′1 50.99% 12.60% (px) 37.04%

Table 8.7: Orbital composition of inner-valence MOs of cyclopropane.

One can consider the ratios between the two single cross sections to highlight
oscillations in the interference pattern. The ratio between the orbitals 2a′1 and 2e′1

is reported in Fig. 8.10. The very clear interference pattern that emerges indicates
that it is mostly dominated by the different C 2s contribution of the two orbitals
and not by the other details of their composition.

In Fig. 8.11, we show the inner-valence spectrum taken at a photon energy of
105 eV for isobutane. Three ionizations of inner-valence 3a1, 2e1 and 4a1 orbitals
originating from C 2s AOs of isobutane are well separated and experimentally
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Figure 8.10: Ratio between the orbitals 2a′1 and 2e′1 of cyclopropane.

Figure 8.11: Valence-electron spectrum of isobutane.

resolved. The corresponding eigenvalues obtained both by ADF calculation and
by B-splines/DFT method are reported in Tab. 8.8.

As for the previous cases, in order to obtain these values, we have used the
large one center basis, with maximal expansion up to Lmax = 24, with a range
Rmax = 25 a.u., and step size h = 0.2. Further expansions around the C ans H
atoms, with lmax = 2, rmax = 1.0 (C), lmax = 1 and rmax = 0.8 (central hydrogen)
and lmax = 1 and rmax = 1.0 (H) have been employed. This choice provides a very
accurate solution of discrete DFT orbitals. Fig. 8.12 shows the molecule where
non-equivalent atoms are labelled by different numbers and a scheme of MOs



Chapter 8. Interference and diffraction in molecular photoionization: isomer
discrimination 115

ADF B-spline

3A1 24.703 24.616

2E1 21.428 21.396

4A1 18.382 18.364

Table 8.8: Inner-valence MOs eigenvalues of isobutane.

Figure 8.12: Molecular structure of isobutane and MOs deriving from C2s
AOs.

deriving from C2s AOs. In Tab. 8.9 the percentage compositions of MOs deriving
from C2s AOs are reported. They have been obtained by an ADF calculation.

C1 C2 H5 H6 H9 H10

2s 2p 2s 2p 1s 1s 1s 1s

3A1 39.98% // 36.95% 6.19% (px) 4.87% 7.04% 12.12% //

2E1 // 10.74%(px,py) 53.09% 1.83% (px) // 10.26% 8.41% 16.05%

4A1 22.48% 6.85%(pz) 13.78% 10.54% (pz) 10.75% 13.91% 11.89% //

Table 8.9: Orbital composition of inner-valence MOs of isobutane.

By taking into account the composition of three orbitals, one can note that
while the 2E1 orbital is essentially localized on the three equivalent carbon atoms
with a non-negligible contribution from the C1 2p AO, the orbitals of symmetry
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(a) 3A1 orbital. (b) 2E1 orbital.

(c) 4A1 orbital.

Figure 8.13: Branching ratios associated to 3a1, 2e1 and 4a1 inner-valence
orbitals of isobutane.

A1 are delocalized on both type of carbon atoms, although for the 4A1 orbital the
percentage of the 2s AO is more relevant for the C1 atom. Consequently, we can
expect shorter period oscillations for the 2E1 ionization with respect to other (Fig.
8.13(b)). Further, a quite similar behaviour for the 3A1 (Fig. 8.13(a)) and 4A1

(Fig. 8.13(c)) ionizations occurs, although with a more pronounced oscillation for
the 3A1 orbital because of a more significant C 2s percentage. Finally, there is
an anti-phase oscillation between the 3A1 (Fig. 8.13(a)) and 4A1 (Fig. 8.13(c))
orbitals because of different nodal structures, as one can verify from the scheme
(8.12). As before, the irregularity in the interference profiles is typically due to
the contribution of H 1s AOs.
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(a) Cis-2-butene (b) Trans-2-butene

Figure 8.14: PE spectrum of cis/trans-2-butene.

8.2.4 2-butene

In this section, we examine the interference patterns in ionization of inner-valence
orbitals originating from C2s AOs of the two cis/trans isomers of 2-butene. Cross
section profiles for the inner-valence region for the two systems have been ob-
tained in the photon energy range of 0.27-700 eV and different cross section ratios
have been derived. The experimental data has recently been collected at the Syn-
chrotron Soleil of Paris but, unfortunately, they have not yet been available for
the comparison with theoretical results in this thesis. As for the cases previously
analysed, this study permitted us to investigate the dependence of the interference
patterns on the bond-length as well as on the electronic structure. Our study aims
to verify the sensitivity of the interference patterns to the different configurations
of the two isomers, in particular with respect to the distance between the two
terminal methyl groups. The PE spectrum of both molecules [158], shown in the
Fig. 8.14, exhibits four sufficiently resolved bands which are those expected for
the MOs deriving from the C2s AO. The inner-valence shell is constituted by four
orbitals, 3ag, 3bu, 4ag and 4bu, originating from C 2s AOs of the trans-isomer. The
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same applies to the cis-isomer: the ionizations derive from 3a1, 3b1, 4a1 and 4b1

orbitals. The corresponding eigenvalues obtained both by an ADF calculation and
from a B-splines/DFT method are reported in Tab. 8.10 and they match quite
well with the experimental ionization potentials.

Cis-2-butene Trans-2-butene

ADF B-splines ADF B-splines

3A1 24.227 24.208 3Ag 24.165 24.122

3B1 22.311 22.292 3Bu 22.574 22.520

4A1 20.654 20.652 4Ag 20.226 20.195

4B1 17.288 17.307 4Bu 17.852 17.868

Table 8.10: Inner-valence MOs eigenvalues of 2-butene.

In order to obtain these values, as for the previous cases, we have used the
large one center basis, with maximal expansion up to Lmax = 26, with a range
Rmax = 25 a.u., and step size h = 0.2 together with, both for the cis-isomer and for
the trans-isomer, expansions around the C ans H atoms, with lmax = 2, rmax = 0.4

(central carbon), lmax = 2, rmax = 1.0 (terminal carbon) and lmax = 1, rmax = 1.0

(H). This choice provides a very accurate solution of discrete DFT orbitals. Fig.
8.15 and Fig. 8.16 show the two isomers where non-equivalent atoms are labelled
by different numbers and, for each isomer, a scheme of MOs deriving from C2s
AOs. The percentage composition of each MO deriving from C2s AOs of cis-
isomer and trans-isomer is reported in Tab. 8.12 and 8.11, respectively. These
percentages have been obtained by an ADF calculation.

C1 C3 H5 H7 H9

2s 2p 2s 2p 1s 1s 1s

3Ag 60.27% 1.73% (px) 22.68% // 6.01% 4.81% 7.42%

3Bu 13.29% 5.81% (py) 49.93% // 1.22% 9.35% 18.98%

4Ag 21.08% 11.49% (px) 31.70% 2.47% (px) 2.73% 7.36% 19.74%

4Bu 28.04% 13.62% (py) 2.86% 13.06% (py) 24.90% 7.34% 1.25%

Table 8.11: Orbital composition of inner-valence MOs of trans-2-butene.
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Figure 8.15: Cis-2-butene and MOs deriving from C2s AOs.

Figure 8.16: Trans-2-butene and MOs deriving from C2s AOs.

As in the previous cases, the non-equivalent atoms are labelled with the same
criterion of Fig. 8.2. Fig. 8.17 shows, in the upper panel, the cross sections relative
to the 3ag and 3a1 ionizations of trans and cis-2-butene, respectively. Meanwhile,
in the lower panel, the cross sections relative to the 4ag and 4a1 ionizations are
also shown. The first set of cross sections indicate the in-phase combination of
the C 2s AOs of the central atoms. They are almost indistinguishable because the
electronic structures and bond distances of the atoms are approximately the same.
On the contrary, in the second case it is possible to distinguish small oscillations
characterized by a different periodicity in the two conformers. This behaviour is
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Figure 8.17: Theoretical cross sections relative to the 3ag and 3a1 ionizations
(upper panel) and to the 4ag and 4a1 ionizations (lower panel) of trans and

cis-2-butene.
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C1 C3 H5 H7 H9

2s 2p 2s 2p 1s 1s 1s

3A1 58.03% 1.95% (pz) 24.49% 1.71% (px) 6.08% 5.29% 6.77%

3B1 14.84% 5.23% (px) 49.77% // 1.74% 7.45% 20.12%

4A1 21.68% 9.46% (px) 29.78% 1.36% (pz) 6.20% 9.98% 15.12%

4B1 32.08% 9.80% (px) 5.04% 16.86% (pz) 18.65% 5.40% 7.46%

Table 8.12: Orbital composition of inner-valence MOs of cis-2-butene.

mainly due to the significant change in the distance between the two terminal
methyl groups. Nevertheless, it is also clear that these structures are very difficult
to observe from a direct measure of the cross section because the quantity quickly
diminishes. Hence they can be highlighted by taking into account suitable cross
sections ratios of the same conformer. In this way, indeed, the effect of the decrease
of the cross section is deleted since it is practically identical for MOs which derive
from the same AOs. We can separately consider the two ratios relative to 3A and
4B ionizations and those relative to 4A and 4B ionizations. The first ratios are
relative to the orbitals predominantly localized on the central carbon atoms and
they are reported in Fig. (8.18). While they show relatively small changes in the
two conformers, a more evident change is present in the second case and for the
ionization relative to the orbital 3B, Fig. (8.19). 3B is the orbital which is mainly
localized on the terminal carbon atoms. In particular, it is worth noting that the
period of oscillation is clearly different in the two isomers. Hence it represents
the more suitable property for one to experimentally distinguish between the two
conformations.
As already mentioned, it is possible to emphasize the oscillation patterns by con-
sidering single orbital ratios. Let us examine three of these ratios. The first one
is the 4A/3A ratio, reported in Fig. 8.20(a). It exhibits only small changes al-
though it involves orbitals with rather different composition: the 4A orbital is
distributed on the whole molecule while the 3A orbital is mainly localized on
the C=C group. We partially anticipated this behaviour since orbitals with the
same parity, corresponding to in-phase combination of AOs, exhibit in-phase os-
cillations which tend to cancel each other out in terms of the ratio. The second
ratio, namely ratio 3B/3A shown in Fig. 8.20(b), contains large differences, in
particular there are large displacements between minima and maxima associated
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Figure 8.18: Cross section ratio relative to 3A and 4B ionizations of trans and
cis-2-butene.

with the two conformers. This ratio can then be used to distinguish between the
different conformations. The last ratio is the 3B/4A ratio, shown in Fig. 8.20(c).
Although we do note significant differences between the two conformers, they are
not so clear as in the previous cases. This is true even though these ionizations
formally correspond to two orbitals with different parity. These orbitals originate
from C2s AOs localized on the terminal methyl groups. This is an indication of
the complex and delocalized nature of the orbitals, in particular of the 4A orbital
at higher energy.

Summarizing, the differences between the interference patterns associated to
the different isomers are quite large and constitute an unambiguous signature of
two conformers. This makes possible to do, at least in the simple cases, a con-
formational analysis of more than two conformers with the relative populations
by the accurate comparison amongst the experimental and theoretical interference
patterns.
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Figure 8.19: Cross section ratio relative to 4A and 4B ionizations of trans and
cis-2-butene.
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(a) 4A/3A ratio

(b) 3B/3A ratio

(c) 3B/4A ratio

Figure 8.20: Selected orbital ratios of cis/trans-2-butene.



Chapter 9

Interference and diffraction in

photoelectron spectra

9.1 Introduction

An effect due to diffraction from neighbouring inequivalent atoms has been known
for a long time [132, 133] and is at the basis of EXAFS oscillations observed in
core X-ray photoabsorption spectra, which should obviously stem from the same
underlying features in photoemission. In this case, considering again a single lo-
calized core orbital for simplicity, there is a single origin of photoelectron waves,
which are however rescattered by the potential wells generated by the adjacent
atoms, like a wave hitting an obstacle, giving rise to a reflected wave that inter-
feres with the original one. A clear signature of the difference is the oscillation
period, as now the path covered by the wave is twice the internuclear distance,
giving a sin(2kR) modulation. Moreover, as the scattered wave is much less in-
tense than the primary one,it is expected that the amplitude of the oscillations
is significantly weaker than in the case of Young type interference. This diffrac-
tion pattern has escaped attention until very recently, probably because of the
experimental difficulty of accurately observing photoemission over an extended
energy range. A beautiful set of EXAFS type oscillations has been observed in the
chloroethanes [150], and even in the light atom only molecule dimethylacetylene
[151]. Also in this case a neat observation of the diffraction pattern is possible by
taking ratios of cross sections from inequivalent atom C 1s ionizations, eliminating
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the strong damping due to the cross section decrease. The geometrical informa-
tion is currently retrieved in EXAFS studies by accurate fitting and background
subtraction of the absorption signal. In this respect photoemission is much richer
of information content, because of the ability to disentangle individual ionization
channels which are superimposed in the total absorption cross section, e.g. the
possibility of distinguishing several inequivalent sites, to analyse also valence and
inner valence photoemission, and to obtain additionally electronic structure in-
formation. However extraction of the features from the photoemission signal is
more difficult, and an appealing possibility, when missing an internal reference
given by the ratio of two similar channels, is to use a mixture with a reference
compound against which to normalize the cross section. One interesting issue is
now the interplay of interference due to coherent emission from equivalent centres
and diffraction due to backscattering from neighbouring atoms, their relative im-
portance and their disentangling. Actually the distinction becomes blurred in the
case of valence orbitals, which in complex molecules are often delocalized, with
several centres and different atomic species, contributing to the cross section with
unequal amplitudes. It may be worth recalling that the degree of localization is
basically determined by the ratio between the energy difference of the relevant
atomic orbitals, possibly shifted by the different substituents, and their mutual
interaction, which is proportional to their overlap. For core orbitals interaction
is very small, and even a small perturbation can completely localize the molecu-
lar orbitals on a single centre. In the valence shell interaction is much stronger,
and localization due to substituents is generally modest, unless the two sites in-
volved are not directly connected.In the simple hydrocarbons, diffraction from the
neighbouring hydrogens is negligible, due to the smallness of electron density. To
explore the interplay of interference and diffraction we have performed a series of
calculations on the fluorine and iodine substituted acetylenes, both core C 1s and
inner valence C 2s ionizations,with the same approach that has been shown to
be very accurate in describing such features, so that the results reported should
rep-resent a close description of the phenomena. In the case of HCCF and HCCI
the equivalence of the two carbon atoms is lost, and only diffraction is at play in
C 1s ionizations, but not in C 2s, because,although skewed, the relevant orbitals
remain largely delocalized. Because of the large chemical shifts, the predicted
features should be amenable to experimental verification.In the case of the disub-
stituted compounds, C2F2 and C2I2, symmetry is restored, and both interference
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and diffraction are atwork, because of the bulky substituents. In this case ex-
perimental verification becomes hardly possible due to the tiny separation of the
core levels. Still diffraction should appear even without resolving the core states.
To reveal it we consider the ratio of C 1s cross section of C2F2 and C2H2, and
show that diffraction pattern emerges very clearly. To confirm that diffraction is
detectable even in the smallest systems, we have considered the CO molecule, and
compared C 1s and O 1s ionizations to those of CH4 and H2O respectively. The
emergence of a well defined diffraction pattern shows that the proposed approach
is general, and experimentally feasible.

9.2 Results and discussion

9.2.1 HCCF, HCCI

As already mentioned the loss of inversion symmetry causes complete localization
of C 1s orbitals on each one of the two inequivalent sites. Instead of the two 1σg,
1σu orbitals here one has 2σ, the lower lying, localized on the carbon bound to
the electronegative fluorine, and 3σ, localized on the other site. Interference is
then completely lost, and only diffraction is expected. It is very informative to
compare the C 1s cross ratio 3σ/2σ to the 1σg/1σu ratio in C2H2 [146] reported in
Fig. 9.1, where basically a pure interferenceeffect is present. As expected, there is
a dramatic drop in the amplitude of oscillations, confirming that diffraction effects
are much weaker than interference ones and also the damping is much more pro-
nounced. There is however a clear oscillatory structure, more complex than in the
pure interference case, with a kind of bimodal structure, one with a similar period
as the interference pattern,with a superimposed short period oscillation. Actu-
ally, neglecting the H atom, one can expect three frequencies coming into play,one
associated to the C-C distance, equal for the two centres, and two different ones
associated with the two different C-F distances,which show up in the cross section
ratio. These qualitative features are completely borne out by the calculations,
which show also stronger shape resonant features at low energy. A comparison of
the C 1s ionization ratio in HCCF and HCCI is reported in Fig. 9.2. A much
stronger scattering amplitude could have been expected from the bulky iodine sub-
stituent. Actually this is not apparent at low energy, but the oscillations become
of shorter period, due to the longer C-I distance, and are much more persistent
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Figure 9.1: Theoretical cross section ratios as a function of electron kinetic
energy in C 1s-derived orbital ionizations of C2H2 (1σg/1σu) and C2HF (3σ/2σ).
Pure interference effects in C2H2 are compared with pure diffraction in C2HF.

at higher energy. One can speculate that due to a harder inner core iodine keeps
a strong scattering power even towards high energy electrons, while F becomes
almost transparent. The results relative to oscillations originating from the C 2s
dominated molecular orbitals (2σg, 2σu in C2H2; 5σ, 6σ in C2HF and 12σ, 13σ in
C2HI) are reported in Fig. 9.3. Already in C2H2 the pattern is less regular due to
the delocalized nature of the inner valence orbitals, and the admixture of atomic
orbitals of the H atoms, which is different and much stronger in the higher lying
2σu orbital. Going to the C2HF and C2HI, there is a drastic decrease in the ratio,
and a more irregular pattern. This is due to the interplay of interference,which, at
variance with the core is only partly lost, as the two C 2s orbitals do not localize
strongly, and participate to both orbitals, and diffraction from the halogen atom.
The decrease in the ratio is basically due to a more even participation of the two
C 2s orbitals to both molecular orbitals, as well as to the comparable cross section
of halogen orbitals admixed, which render the high energy ratio much closer to the
ideal limit of 1, as is very accurately verified in the case of core ionization [146],
where two pure C 1s cross sections are involved. So the valence ratios, in addition
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Figure 9.2: Theoretical cross section ratios as a function of electron kinetic
energy in C 1s-derived orbital ionizations of C2HF (3σ/2σ) and C2HI (7σ/8σ).
Comparison between the scattering amplitudes of the F and I substituents.

to the geometrical structure, contain further information on the AO composition,
i.e.the electronic structure, of the relevant MOs, although the latter can be ob-
tained only through a theoretical model and a simulation of the spectra. It must
be reminded that also in the case of core spectra, the high energy limit ratio of
1 is obtained in the present simulation by employing a Koopmans’ theorem like
formulation, and that many body effects neglected can affect the different holes
to different extent, causing the asymptotic ratio to deviate significantly from the
statistical ratio. This has been experimentally seen most clearly in a recent study
of diffraction patterns in the C1s coreionization of chlorinated ethanes [150], where
it was significantly dependent on the degree of substitution. Looking at Fig. 9.3
it appears that the amplitude of the oscillation is significantly reduced in C2HF
and C2HI compared to C2H2. In part this may be amplified as percentage by the
larger value of the ratio in the latter, but it is also a sign of reduced interference
effects due to the partial localization ("unequal slits") of the C 2s AOs due to the
substituent. In this case the situation is intermediate with respect to the C1s case,
where the drop in amplitude is very strong.
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Figure 9.3: Theoretical cross section ratios as a function of electron kinetic
energy in C 2s-derived orbital ionizations of C2H2 (2σg/2σu), C2HF (5σ/6σ)
and C2HI (12σ/13σ) molecules. Both interference and diffraction are apparent
in the valence shell. Electronic structure change is responsible of the decrease

of the ratio in the substituted acetylenes.

9.2.2 C2F2, C2I2

In this case symmetry is restored and full interference is expected again, com-
pounded however with non-negligible diffraction due to the substituents. Again it
is very instructive to compare the results with those obtained for acetylene. The
comparison between C2H2 and C2F2 C 1s cross sections ratio is reported in Fig.
9.4. The anticipation is fully confirmed, C2F2 shows an interference oscillation
very close, in period and amplitude (the C-C bond length is very similar), with
smaller superimposed oscillations due to diffraction from the neighbouring fluo-
rines, of shorter period and quite strongly damped. The pattern repeats for C2I2,
which is added in Fig. 9.5, where it is seen that in this case, as happens also in
C2HI, the diffraction oscillations have a significantly shorter period, and persist at
higher energies. The diffraction oscillations are in general more complex, as there
are two inequivalent C-X distances. The results for the inner valence orbitals are
reported in Fig. 9.6. The situation is further complicated in the case of C2I2,
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Figure 9.4: Theoretical cross section ratios as a function of electron kinetic en-
ergy in C 1s-derived orbital ionizations of C2H2 (1σg/1σu) and C2F2 (2σg/2σu).
C2F2 shows interplay of interference, very similar to that in C2H2, and diffrac-

tion, due to the additional substituents.

because 5s AO mixes in heavily with C 2s, and there are two σg orbitals, 11σg and
12σg which have significant C 2s participation, so that we have considered both
ratios with respect to 11σu. Actually, although quite different in detail, both show
analogous features. Overall, the general behaviour is similar to that found in the
mono-substituted compounds. Curiously, oscillations appear significantly reduced
in the case of C2F2, possibly because of some destructive interplay of interference
from equivalent centres and diffraction effects. While the situation is very neat
in the case of core ionization, unfortunately experimental verification is unlikely
because of the difficulty of resolving the very small σg/σu splitting. In the case of
different sets of equivalent atoms, it is still possible to reveal diffraction pattern
(not the interference) by taking ratio of the cross sections of the two inequiva-
lent channels. This has been indeed observed in the case of dimethylacetylene,
CH3CCCH3 [151], by taking the ratio of acetylenic and methyl C 1s cross sections.
In the case of a single equivalent set of atoms, like C2F2, this is no longer possible,
but it can be experimentally feasible to analyse a mixture of two compounds, one
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Figure 9.5: Theoretical cross section ratios as a function of electron kinetic en-
ergy in C 1s-derived orbital ionizations of C2H2 (1σg/1σu), C2F2 (2σg/2σu) and
C2I2 (7σg/7σu). The effects of different subtituents on the diffraction pattern
are shown. Shorter oscillation period in C2I2 is due to the longer bond length.

chosen as an external reference, taking the ratios of the two photoemission lines
(it is easy to correct for non 1:1 molar ratio). Indeed examination of Fig. 9.4
suggests that this could be the case for the couple C2F2/C2H2, and the ratio of
the two unresolved σg, σu C1s ionizations is reported in Fig. 9.7. As can be seen
the diffraction pattern emerges strongly and could be easily detected and anal-
ysed. To further test this approach we have considered the simplest case of the
CO molecule. In a previous investigation we unsuccessfully attempted to reveal a
diffraction pattern by taking the ratio of C1s/O1s cross sections [159]. Actually,
since the same diffraction pattern appears, as we shall verify, in both ionizations,
it basically cancels out. In any case, given the large energy separation of C1s and
O1s ionizations,measuring an accurate value of this ratio could be experimentally
difficult.In the present case we have employed two different external standards,
CH4 for C 1s and H2O for O 1s. The ratios of C1s and O1s cross sections of CO
to the two standards are reported in Fig. 9.8. Even in this small molecule of first
row atoms, a diffraction pattern is clearly revealed, even if relatively weak, and
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Figure 9.6: Theoretical cross section ratios as a function of electron kinetic
energy in C 2s-derived orbital ionizations of C2H2 (2σg/2σu), C2F2 (4σg/4σu)
and C2I2 (11σg/11σu, 12σg/12σu). The more complex pattern in the valence
shell is due to the interplay of interference and diffraction. Two σg orbitals with

strong C 2s participation are available in C2I2 due to mixing with I 5s AO

as expected the pattern is very similar, given the unique interatomic distance. Of
course each separate molecule will have a separate diffraction pattern, and so the
one measured with reference to a standard is really a ratio of two different pat-
terns, although in the case of the pure hydrides like CH4 and H2O the diffraction
is expected to be tiny. Indeed diffraction effects have been clearly revealed in CH4

as embodied in the cross section ratios of the individual vibrational components,
the so-called v-ratios [144]. Ideally one would employ purely atomic cross sections,
but this is not experimentally feasible. It does not mean however that the patterns
obtained with reference to an external standard are meaningless, since the quan-
titative extraction of the information content embodied in the diffraction pattern,
geometrical as well as electronic structure, will require comparison with the simu-
lated pattern and leastsquares fitting, while qualitative information will be often
available by simple analysis of trends obtained in classes of related compounds.
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Figure 9.7: Ratio of the two unresolved σg, σu C 1s cross section ratio for
C2F2 (2σg+2σu) and C2H2 (1σg+1σu). Although interference pattern is lost,

diffraction is clearly revealed.

9.3 Conclusions

The different behaviour of interference due to the coherent emission from equiva-
lent centres and diffraction from neighbouring inequivalent atoms has been clearly
revealed in the analysis of core ionization of simply (asymmetric) and doubly
(symmetric) substituted haloacetylenes, as well as their interplay.Both effects par-
ticipate with different extent in photoionization of valence orbitals, giving rise to
a more complex oscillatory pat-tern which although carrying important geometric
and electronic structure information is more difficult to analyse in simple terms.
Diffraction patterns in the core region are very clear and can be easily detected
by taking cross section ratios with respect to a reference standard molecule mixed
with the sample under examination.In this respect the simple hydrides appear very
convenient. Previous experience suggests that the static-exchange DFT approach
presently employed can be profitably employed for an accurate and cost effective
simulation of the spectra, and as a means of extracting quantitative information
via least squares fitting.
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Figure 9.8: C 1s cross section ratio for CO/CH4 (upper panel) and O 1s cross
section ratio for CO/H2O (lower panel). Diffraction effects show clearly, and are

very similar in the two ratios.



Chapter 10

Interference effects in the valence

shell ionization of simple

hydrocarbons

10.1 Introduction

A full delocalization is expected in the outer valence shell, which could be expected
to wash out completely the interference structure. On the other side, outer va-
lence ionization is very rich, as it comprises several orbitals, including those most
responsible of the bonding and chemical properties of the compound. Although in
complex molecules the full valence spectrum may become very crowded and often
unresolved, typically a few ionization show up as well resolved isolated bands, or
even resolved composite bands can be analyzed, giving a wealth of opportunities
for application. To investigate such possibility in this chapter we report structures
in the outer valence shell cross section of the four molecules C2H2, C2H4, C2H6

and C3H8. All cross sections have been computed at the static density functional
level, employing the LCAO B-spline approach previously developed, which has
been shown to produce interference structures in excellent agreement with the
experiment [138, 146].
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Figure 10.1: 3σg/1πu cross section ratio for C2H2

10.2 Results and discussion

10.2.1 C2H2

In this case the outer valence shell only comprises two orbitals: the 3σg (HOMO)
and the 1πu (HOMO-1). 1πu, in a minimal LCAO picture, is purely localized on
the two carbons, being composed of symmetric and antisymmetric combination
of C 2p orbitals, while the 3σg is fully delocalized and contains an important
contribution from H 1s. The relevant cross section ratio is reported in Fig. 10.1.
Despite the different nature, a very clear interference pattern emerges, indicating
that it is mostly dominated by the different g, u symmetry of the two orbitals, and
not by the details of their composition. The average cross section ratio is close to
the statistical ratio of 0.5.

10.2.2 C2H4

In this case the outer valence shell comprises four different ionizations, 1b3u (HOMO),
1b3g, 3ag, 1b2u, all well resolved, and an ample choice of cross section ratios to
investigate. We have chosen the ratio of HOMO (π) to the three higher lying
orbitals (σ), which are reported in Fig 10.2. Well developed interference patterns
are apparent in all three ratios. The two peaks, around 70 and 400 eV, quite
similar in all ratios, are therefore probably attributed to patterns in HOMO, while
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(a) 1b3u (HOMO) versus 1b3g, 3ag, 1b2u ionizations

(b) 1b2u/1b3g ratio

Figure 10.2: Cross section ratios for C2H4

the profiles of the two ratios 1b3u/1b3g and 1b3u/1b2u show an additional relative
oscillatory pattern, with smaller period. To see it more clearly, we have plotted
the ratio 1b2u/1b3g in Fig. 10.2 where their structure appears very clearly. It is
interesting that 1b2u and 1b3g have basically opposite composition, 1b2u is 64%
C 2py + 34% H 1s, and the composition is reversed in 1b3g. These opposite par-
ity, delocalized orbitals, extending over the whole molecule, originate the regular,
short period interference pattern, that would be otherwise unexpected, given the
single short C-C internuclear distance in C2H4.
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Figure 10.3: Cross section ratio for C2H6: 1e1g/3ag ratio and 1e1g/1e1u ratio

10.2.3 C2H6

In this case, because of the higher symmetry, only three outer valence ionizations
are present: 1e1g (HOMO), 3ag and 1e1u. We have considered HOMO/3ag and
HOMO/1e1u cross section ratios reported in Fig. 10.3. While the former displays
well developed oscillations, the latter shows a flatter and less regular pattern, with
shorter oscillation period, like in the 1b2u/1b3g case in C2H4, again a sign of the
delocalized nature of the orbitals involved. So in this case, more than the u/g
difference, it is the specific nature of the MOs that dominates the pattern.

10.2.4 C3H8

This serves as an example of a congested outer valence region. There are seven
ionizations, spanning 6-7 eV, which cannot be resolved, but give rise to three well
separated composite bands I: 2b2, 6a1, 4b1; II : 1a2, 3b2; III: 5a1, 1b1 [160]. To
give an idea of the complexity we have rather arbitrarily plotted (Fig. 10.4) the
ratios of all cross sections relative to the 1a2 one, chosen because of its simple and
localized nature, about 50% C 2px, 43% H 1s on the terminal CH3 groups. One can
observe a very regular oscillatory pattern in the 1b1/1a2 ratio, together with many
strong but irregular features. An alternative, experimentally feasible, is to consider
ratios of the composite bands, which are also reported in Fig. 10.4. Although many
details are lost, and interpretation may be more difficult, significant interference
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(a) Cross section ratio of all valence orbitals with respect to the 1a2
ionization

(b) Ratios of the composite bands resolved in the outer valence
spectrum, band 1 (2b2, 6a1, 4b1), band 2 (1a2, 3b2), band 3 (5a1,
1b1)

Figure 10.4: Cross section ratio for C3H8.
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patterns still survive, and may yield sufficient information in combination with a
theoretical simulation.

10.3 Conclusions

We have shown that well developed interference patterns emerge from cross section
ratios in the outer valence shell of simple hydrocarbons. They contain important
information both on the geometrical and electronic structure of the molecule.
Strong evidence of the sensitivity of the interference pattern to molecular orbital
delocalization over the full molecular skeleton is given by oscillation period shorter
than expected on the basis of C-C bond distance. Also in the case of unresolved
ionizations, ratios of composite bands still show significant interference pattern
and convey useful information.



Chapter 11

Photoelectron interference in

metallocenes

11.1 Introduction

As already highlighted, emission from valence orbitals is generally delocalized and,
since it involves also mixing of orbitals from different atomic species, the resulting
interference patterns are characterized by more complex profiles with respect to
those related to the emission from core orbitals. The ubiquitous appearance, and
the complexity, carry however an important reward in the form of the richness
of information contained in the diffraction patterns, which concerns foremost the
geometrical structure of the target, but also the detailed composition of the molec-
ular orbitals probed. Indeed the ability of photoeelectron spectroscopy to select
individual orbital ionizations allows to maximize the information required. Actu-
ally, in the course of an investigation on the electronic structure and photoemission
properties of transition metallocenes, some high energy structures that emerged
prompted to investigate the simpler Magnesocene, where strong oscillations in the
HOMO/HOMO-1 ratios, qualitatively similar to those observed in C60, although
quite different in detail, were predicted and subsequently observed [147].

The recent emphasis on the suitability of photoelectron diffraction patterns to
obtain quantitative geometrical parameters, also in complex molecules, prompted
us to reconsider the metallocene case, with the purpose of investigating the sen-
sitivity of the patterns to molecular geometry. To this end we have performed
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theoretical investigations by arbitrarily changing the metal-ring distance in bis-
cyclopentadienyl-magnesium (MgCp2), a procedure that has been shown able to
retrieve the experimental C-C distance to better than 0.01 Å in the simple case
of acetylene [146]. Moreover we have computed diffraction patterns in the bis-
decamethyl-cyclopentadienyl compounds of Mg and Be (MgCp∗2 and BeCp∗2). In
the former, metal-ring distance is very similar to that in MgCp2, and offers then an
opportunity to investigate the change, if any, of the diffraction pattern induced by
the additional methyl groups. While their influence on the geometrical parameters
is very limited, it is known that their electronic donor properties affect significantly
the electronic structure and the chemical properties of the metallocenes. In par-
ticular the inductive donor effect of methyl groups causes a growth of electronic
density along metal-CpMe5 bond axis [161]; this phenomenon might be connected
to the profiles of the photoionization dynamical observables. On the other hand
the large change in the metal-ring distance brought about by the Be substitution,
due to its much smaller ionic radius, is expected to reflect in a dramatic change of
the oscillation period in the interference patterns, in addition to specific changes
due to subtler electronic structure effects. Although no experimental data are
available, the excellent agreement with experiments obtained in a number of cases
including MgCp2 makes us confident in the basic soundness of the results reported
and the conclusions drawn, which in any case are readily amenable to experimen-
tal verification.

Last it is worth recalling the great varieties of geometries, coordination modes
and electronic structures of metal sandwich compounds, which span the entire pe-
riodic table [162, 163]. In a previous study the difference of the photoelectron
diffraction pattern in MgCp2 with those of FeCp2 and Cr(C6H6)2 was traced to
metal d participation into the relevant orbitals [147]. On the other hand the
bonding and geometry in BeCp2 is still not settled [164], in CaCp∗2 the rings be-
come tilted, and a variety of coordination patterns is present in other compounds.
This will challenge the capabilty of the diffraction pattern to reproduce them, in
turn paving the way to establish this observable as a general and viable tool for
structural and electronic information on complex systems.
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11.2 Method

For VXC we have employed the exchange-correlation potential LB94 [165]. The
SCF initial electronic density of the ground state is obtained by means of the
ADF program [166], employing a DZP basis set for H and C (TZP for Mg and
Be), taken from the otpimized database included in the ADF package. For VXC we
have employed the exchange-correlation potential LB94 [165]. The basis comprises
a long-range one-center expansion, with large angular momenta, plus a set of short
range expansions centered on all nuclei. This allows an accurate treatment of both
the bound states and the oscillating long range continuum functions, up to the
asymptotic limit. The convergence of the calculation is mainly determined by the
largest L value employed in the long range expansion, called Lmax. Both the geo-
metrical size of the molecule and the maximum energy in the continuum increase
the number of angular continuum channels which become open at high energy,
and influence the value of Lmax needed to reach convergence. While convergence
in MgCp2 up to 300 eV photoelectron energy is obtained already at Lmax = 30,
a larger Lmax = 40 is needed for the more spatially extended MgCp∗2 and BeCp∗2
molecules, as illustrated in Fig. 11.3. One can notice convergence with Lmax = 30

up to about 150 eV in the case of MgCp∗2, and a little higher for BeCp∗2, a reflection
of the slightly smaller molecular size.

11.3 Results and discussion

The permethylated metallocenes geometry has been otpimized with the ADF code
employing the VWN exchange-correlation potential. Optimized bond lenghts for
MgCp2, MgCp∗2 and BeCp∗2, compared to some available experimental parameters,
are shown in Tab. 11.1. The geometry optimization of the complexes was carried
out with the Cp∗ rings staggered with respect to each other (D5d symmetry).
Indeed calculations showed that the D5h and D5d forms are nearly degenerate.

We have studied the two outermost valence ionizations of MgCp2, MgCp∗2 and
BeCp∗2, HOMO and HOMO-1. The percentages of the contributions of atomic or-
bitals to the molecular orbitals involved in the ionizations are summarized in Tab.
11.2, and the HOMO/HOMO-1 orbitals plots are shown in Fig. 11.2. Both in the
case of MgCp∗2 and in that of BeCp∗2, the main contribution to the HOMO and
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Figure 11.1: HOMO-1/HOMO cross section ratio calculated with L = 30 and
L = 40.
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MgCp2 MgCp2 exp MgCp∗2 MgCp∗2 exp BeCp∗2 BeCp∗2 exp

r(C-C) 1.411 1.419 1.415

r(C-CH3) // 1.479 1.476

r(C-H) 1.089 1.104 1.104

r(Me-C) 2.326 2.339a 2.295 2.341b, 2.305d 2.011 1.969-2.114c

r(Me-ring) 1.992 2.008a 1.952 2.011b 1.611 1.655c

Table 11.1: Optimized values of bond lengths (Å); a: [167]; b: [168]; c: [169] ;
d: [170]

HOMO HOMO-1

MgCp2 90% pz C + 3.6 % dxy Mg 85% pz C + 9% px Mg

MgCp∗2 76% pz C + 9% s H + 3% dyz Mg 70% pz C + 9% s H + 8% px Mg

BeCp∗2 80.6% pz C + 9% s H + 1.2% dyz Be 62% pz C + 10% s H +9.9% px Be

Table 11.2: Percentages of the contributions of atomic orbitals to HOMO and
HOMO-1 orbitals.

HOMO-1 orbitals is given by pz orbital of carbon of the ring. The percentages of
metal d orbital and metal p orbital, respectively in HOMO and HOMO-1 orbitals,
were negligible. The bonding of the Cp∗ ligand to the s-block elements (groups
1,2) is generally considered to be mainly ionic, while complexes of the p-block
elements should be predominantly covalent. The two lowest ionizations arise from
the e1g (HOMO) and e1u (HOMO-1) orbitals in D5d symmetry. These are the
symmetric and antisymmetric combinations of the outermost orbital, e1u (π), of
the (C5Me5)− ring. It is interesting to observe the large reduction of C 2pz ring
population in the case of permethylated compounds, and the opposite trend for
HOMO and HOMO-1 obtained for the Mg and Be compounds. This is brought
about by the significant delocalization of these orbitals over the methyl groups.
The reduction is however comparable for both HOMO and HOMO-1, and therefore
expected to have a minor effect on their cross section ratio. The calculated HOMO
and HOMO-1 cross sections, evaluated at the DFT level, are reported in Fig. 11.3,
both for MgCp∗2 and BeCp∗2. They show the typical oscillations due to diffraction
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Figure 11.2: HOMO orbitals (upper panel) and HOMO-1 orbitals (lower
panel) for MgCp2, MgCp∗2 and BeCp∗2.

effects, analogous to those obtained in C60, rather strong up to 200 eV, and then
progressively damped. They are in antiphase for the two HOMO and HOMO-1
orbitals, characteristic of opposite parity combinations of the constituent atomic
orbitals. It is also interesting to compare the HOMO orbital cross sections in all
three compounds, which are shown in Fig. 11.4. One may observe a noticeable
similarity between cross sections of MgCp2 and MgCp∗2, apart from a clear dephas-
ing of the oscillations due to the slightly different period, and the surprising fact
that the absolute cross section is appreciably larger in the permethylated com-
pound. On the contrary the BeCp∗2 profile is significantly different, more clearly
in the lower energy range, an indication of differences in electronic structure due
to the different metal atom. To test the sensitivity of the diffraction pattern to a
change in the metal-ring distance, we have computed the diffraction pattern rela-
tive to the HOMO-1/HOMO cross section ratio by changing the distance by ±5%.
The results are shown in Fig. 11.5 , where it is seen the large change obtained in
the profiles, which points out the high sensitivity of the approach to geometrical
parameters. The most obvious change is in the positions of the maxima and min-
ima, which reflect the shortening of the period with the increase of the distance
between the rings, as expected from the well known inverse relationship between
interference fringes and slit separation. For instance sets of 3 maxima appear at
(93.4, 102.4, 112.6) and (150.2, 166.6, 187.6) eV, and corresponding minima at
(68.8, 76.9, 85.0) and (120.7, 132.5, 146.8) eV, so that the distance between the
minima are about (51, 56, 62) eV and between maxima (57, 64, 75) eV, a large
difference which is easily appreciated. Moreover large changes are apparent also in
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(a) MgCp∗2

(b) BeCp∗2

Figure 11.3: HOMO and HOMO-1 cross sections.

the shape of the profiles at lower energies: the height of the first shape resonance,
and its shoulder, as well as an analogous change in the shape of the maxima around
50 eV. Also in this more complex system the sensitivity of the diffraction pattern
to changes in geometrical parameters is quite high, and by careful least squares
adjustment of the calculated spectra on the experimental one could provide an
estimate of the relevant structural parameter, in this case the metal-ring distance,
to better than 1%. This is already a quite interesting information. In fact, as it is
seen in Tab. 11.1, two different determinations of metal-ring distances in MgCp∗2
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Figure 11.4: Cross sections of HOMO ionizations.

Figure 11.5: HOMO-1/HOMO cross section ratio for MgCp2 at different
Mg-ring distances.
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vary quite significantly, by about 2%. In fact the DFT calculation agrees with
the most recent one, that shows some shrinking of the metal-ring distance with
permethylation, despite the possible increase in sterical hindrance brought about
by the latter. So it is argued that a comparison of accurate experimental profiles
should be able to distinguish easily between the two possibilities, and give an ac-
curate value for those distances, and even more accurately for their difference. In
the absence of sure data, we employed then the geometrical parameters afforded
by DFT optimization, with the metal-ring distances collected in Tab. 11.3.

Me-ring distance

MgCp2 1.992

MgCp∗2 1.952

BeCp∗2 1.611

Table 11.3: Calculated values (Å) of metal-ring distance.

Finally, a comparison of the calculated HOMO-1/HOMO cross section ratios is
reported in Fig. 11.6 for the couples MgCp2, MgCp∗2 and BeCp∗2, MgCp∗2. In the
former case the most apparent feature is still a clear difference in the oscillation
period, with the largest one associated with MgCp∗2. This is basically a reflection
of the shorter Mg-ring distance employed in the calculation. Other differences are
the shapes and heights of the maxima, and the apparent drift to higher values of
the ratio at higher energy in MgCp∗2. While this underlines once more the high
sensitivity of the profile to the Mg-ring distance, it is difficult to ascertain the
influence of further electronic differences due to permethylation. That might be
revealed by investigating different orbital ionization ratios, despite the difficulties
associated with the congestion of the photoelectron spectrum at higher ionization
energies. On the other hand, the change in the profiles between MgCp∗2 and BeCp∗2
is dramatic, as expected, because of the large change in the metal-ring distance.
In addition the average ratio in the Be compound is significantly lower than in the
Mg one, which is seen in the height of the maxima, and especially in the much
lower value of the profile at high energy, which averages around 0.8, compared with
the value above 1.2 in the Mg compound. This is a typical signature of electronic
effects. For a pure π1 ± π2 combination of two π ring orbitals, one would expect
the ratio to oscillate at high energy around a value of 1, this is indeed very well
observed, as well as computed, for the 1σu/1σg ratio in diatomics [134, 135, 146].
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Figure 11.6: HOMO-1/HOMO cross section ratio.

So this large deviation points out to a different amount of delocalization of the
two HOMO and HOMO-1 orbitals in the two compounds, as actually suggested
by the simple Mulliken population analysis reported in Tab. 11.2, which shows
different behaviour in the two compounds. Again it is seen that even rather mod-
est changes give rise to pretty large differences in the cross section ratios, another
interesting piece of information available from this observable. A further source of
deviation in the ratios predicted at the one particle level is the presence of different
many-body effects in the orbitals involved, as already observed both in the core
[150] and inner valence [146] ionizations.
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11.4 Conclusions

In conclusion, the long range oscillations in the molecular photoemission cross
sections are a general phenomenon, which can give important information about
geometric and electronic structure of the target. Convergent results at the DFT
level can be easily obtained also for rather complex molecules. A computational
experiment changing the Mg-ring distance in MgCp2 shows the high sensitivity
of the cross section ratio profile considered to the geometrical parameter, and
is expected to allow its determination to better than 1% by comparison with
the experiment. The results obtained for the case of MgCp2 are compared to
the analogous results for the two methyl-subtituted cyclopentadienyl compounds,
MgCp∗2 and BeCp∗2. The main effect is again due to the geometrical change,
and an experimental determination should allow to resolve the discrepancy in
the literature concerning the relative Mg-ring distance in the the normal and
permethylated compound. Subtler effects due to small differences in electronic
structure are also imprinted in the profiles, notably in the low energy shapes,
relative height of the maxima, and especially high energy average value. This
is particularly shown in the large effect on the asymptotic ratios in MgCp∗2 and
BeCp∗2, attributed to an opposite, but rather minor, change in the delocalization
of HOMO and HOMO-1 orbitals over the methyl groups in the two compounds.



Chapter 12

Interchannel coupling and

confinement resonance effects in the

inner Ar 2p subshell of Ar@C60

12.1 Introduction

Starting from its discovery in 1985, many photoionization studies have been fo-
cused on fullerene (C60) [171–173]. The interest in this molecule is mainly due
to its particular and extremely stable structure. Among fullerenes’ derivatives,
the endohedral compounds M@C60 constitute a special class [174] and over the
past decade or so they have been the subject of a large number of studies. These
compounds are characterized by the presence of a dopant agent (M) embedded in
the C60 cage, where M can be an atom or a small molecule. When an atom is
encapsulated inside a hollow spherical carbon buckyball, the complex is called an
endofullerene. Theoretically, if the atom is an unreactive noble gas like xenon, it
should be centered within the cage. This particular conformation allows one to
probe the variations of the properties both of the dopant and the cage. Indeed,
they represent an exceptionally clean and stable "laboratory" to study the effects
of confinement upon the properties on the encapsulated atom and to understand
how the confinement alters the static and dynamic properties of the atom. There
exist many possible applications of endohedral atoms, such as quantum computing
[175], drug delivery [176], photovoltaics [177] and hydrogen storage [178].

Of the many extant photoionization studies, the overwhelming majority are
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theoretical, due to the difficulties in the fabrication of endohedral systems in large
enough quantities to investigate experimentally, although some experimental pho-
toionization work has been reported. The first system of this type to be discovered
was La@C60 [174] and after its detection many experiments to encapsulate many
other atoms inside C60 have been done [179–184]. Among these atoms, noble gas
has been considered. Recently, experimental photoabsorption of the Xe@C60 [185]
showed the existence of an oscillatory behaviour in the total cross-section, known
as confinement oscillations or confinement resonances (CR), which is related to the
superposition or interference of the electron wavepacket scattered by the spherical
shell of the C60 cage. From the theoretical perspective, confinement oscillations
were predicted by using simplified spherical potential models, such as the jellium
potential. Endohedral systems were then approximated by an atom surrounded
by a spherically symmetric potential [186–189]. The few studies considering the
full molecular potential have been at the DFT (central field) [36, 190, 191] or
static-exchange (Hartree-Fock) level [192]. Thus, there are no reports of calcu-
lations which include both molecular structure and correlation; such calculations
are, however, important to provide some notion of the qualitative and quantitative
accuracy of the previous calculations. This is needed owing to the relative scarcity
of experimental results. We have performed calculations of photoionization of
Ar@C60, which has been the subject of a number of earlier studied [192–195], in-
cluding both the molecular structure of the target and correlation. The correlation
is included through the use of TDDFT [129]. Within this study, we have focused
on two questions: the first one is how confinement resonances are affected by the
inclusion and interaction of both the molecular structure and correlation; the sec-
ond one is how the inclusion of the C 1s channels of C60, and the interchannel
coupling with these channels, affects the inner-shell atomic photoionization chan-
nels. We consider the Ar 2p cross section to explore these questions. Ar 2p was
chosen because it is an inner shell (no hybridization and negligible interaction with
the confining shell) so that we could focus on the effects of the confining environ-
ment and correlation on the final state continuum wave function which results in
the changes to the cross section.
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Figure 12.1

12.2 Results and discussion

The results of our calculations for the 2p subshell of free Ar and confined Ar@C60

are given in Fig. 12.1; in the confined case, in molecular notation, Ar 2p becomes
the 3T1u state of the combined Ar@C60 system. Let us start to examine first the
free case. For this case, the DFT cross section exhibits a small rise from threshold
resulting from the shape resonance in the d-wave continuum of the 2p→ εd tran-
sition. Including correlation with the TDDFT result, the shape resonance is still
there, although somewhat altered in shape from DFT, and a significant difference
in magnitude is seen at threshold, a difference which decreases with increasing en-
ergy, eventually disappearing completely. This difference arises from both initial
state correlation (configuration interaction with double excitations), and final state
correlation (in the form of interchannel coupling among photoionization channels).
It is of importance to point out that the present TDDFT results are in excellent
agreement with experiment and previous sophisticated calculations [196]. This
agreement is of importance because it shows that the present TDDFT calculation
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includes all the important atomic effects for this particular case. It is also to be
noted that the cross sections, except for the near-threshold shape resonance, are
quite smooth as a function of energy.

Examining now the confined case, a rather different picture emerges. The
atomic cross section is very substantially modulated; these confinement resonances
have been seen experimentally for the case of 4d photoionization in the Xe@C60

endohedral fullerene [185]. Basically these are caused by interference between the
photoelectron wave emerging directly with waves that are scattered from the in-
ner and outer walls of the confining C60 shell. It is important to note that these
confinement resonances are almost exactly the same in DFT and TDDFT calcula-
tions, thereby confirming that confinement geometry is the dominant determinant
of this phenomenon; correlation, although it is seen to have some effect, does not
play a large role in their behaviour.

Note also that the three lowest resonances closest to threshold are quite sharp,
but the higher energy resonances are much smoother. The sharpness of the res-
onances near threshold is evidently due to the more granular nature of the con-
finement potential when the molecular structure is considered; the slower pho-
toelectrons have more time to "experience" the different confinement potential.
This is rather different than the predictions of a spherical jellium model of the
confining potential which predicts all confinement resonances to be rather smooth
[197]. However, it does agree with a previous study at the Hartree-Fock level which
als predicted sharp near-threshold confinement resonances [192]. The confinement
resonances are also stronger than those predicted by a spherical jellium model of
the confining potential; even 150 eV above threshold, the amplitude is about 10 %
of the cross section. The amplitude of the confinement resonances diminish much
more rapidlyn with energy in a jellium model. This difference too is evidently the
effect of using the full molecular, as opposed to jellium, confining potential in the
calculations.

The sharpness of the lower-energy confinement resonances would probably not
be seen in a room temperature experiment owing to the vibrations which would
move some of the confined atoms off-center, thereby smearing out the confinement
resonances. Such a mechanism was suggested earlier as an explanation as to why
confinement resonances had not been seen; they have since been observed [185].
This suggests that, to compare with experiment, a broadening factor would have
to be applied to account for this vibrational excitation. This also suggests that
experiment work on cold target systems would change the observed shape of the
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Figure 12.2

low-energy near-threshold confinement resonances.
Now, in the results presented in Fig. 12.1, the Ar 2p photoionization channels

for the confined system were not coupled the C 1s photoionization channels arising
for the C60 cage. This could be of some importance since the C 1s threshold is at
about 300 eV, so that above 300 eV the Ar 2p and C 1s photoionization channels
are both open; furthermore, the threshold C60 1s photoionization cross section is
about 60 Mb, which is estimated as 60 times the threshold cross section of the free
carbon atom, ant this is an order of magnitude larger than the Ar 2p cross section
at that energy, as seen in Fig. 12.1. Thus, with a small mixing of the C60 1s cross
section, the Ar 2p cross section could be considerably altered. To explore this pos-
sibility, the calculation for the confined system has been redone at the TDDFT to
include interchannel coupling with C 1s; the Ar 2p photoionization cross sections
are shown in Fig. 12.2, with and without interchannel coupling between Ar 2p and
C 1s. The outstanding feature of this comparison is that the curves are almost
exactly the same; thus, despite the C 1s cross section being about a factor of ten
larger than the Ar 2p cross section around 300 eV, the interchannel coupling is
negligible.
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To understand this result, it is important to note that two conditions must
be fulfilled for interchannel coupling to alter a cross section of a particular pho-
toionization channel. First, the cross section for that channel must be degenerate
with a channel with a significantly larger cross section. And second, there must
be a non-negligible interchannel coupling matrix element connection the two chan-
nels. The first condition is clearly satisfied for Ar 2p with C60 1s, as discussed
above. Thus, given the results depicted in Fig. 12.2, it must be the case that the
interchannel coupling matrix elements are extremely small. The direct part of the
matrix element for this case, the Coulomb interaction between the 2p5εl1s60 final
state and the 2p61s59ε′l′ final state (2p is Ar 2p and 1s is C60 1s), can be written as
〈2pεl| 1

r12
|1sε′l′〉, and is included in the calculation. This coupling matrix element

is, however, negligible because the overlap of the discrete Ar 2p and C 1s wave
functions is extremely small because these two wave functions are quite compact
(∼0.2 atomic units in radius) and centered about 6 a.u. apart. The exchange part
of the interchannel coupling matrix element, 〈2pεl| 1

r12
|ε′l′1s〉, is treated only ap-

proximately in LDA using a local-VXC approximation. This matrix element too is
quite small in the present case. Each of the bound orbitals in the exchange matrix
element overlaps with the continuum orbital of the other channel. Even at the C
1s threshold, where the exchange matrix element should maximize, while the ε′l′

continuum orbital (arising from C 1s ionization) is slowly varying, the εl orbital,
arising from Ar 2p ionization moderately energetic and oscillates rather rapidly.
Thus, while the 2p overlaps somewhat with the threshold ε′l′ function, the overlap
of the 1s with the εl orbital is negligible, owing to the oscillation in the latter. And
this matrix element clearly decreases rapidly with increasing energy a because the
continuum wave functions oscillate more rapidly in space as the energy increases
so that the overlap with the bound wave function decreases.

This suggests that it might be possible for interchannel coupling to be im-
portant if the confined atom or molecule has an inner subshell whose ionization
energy was very close to the C 1s ionization energy, in which case, interchannel
coupling in the threshold region could be significant, owing to the exchange part of
the interchannel coupling matrix element. A molecule containing a carbon atom
is a good candidate for this since the 1s electrons of the carbon in the confined
molecule will have a threshold energy very close to the 1s carbon atoms of the C60

shell.
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12.3 Conclusions

The first calculation of the photoionization of an atom confined in a fullerene
cage taking into account both correlation and molecular structure has been per-
formed. The Ar@C60 system was investigated and the near-threshold confinement
resonances were found to be quite sharp, unlike the findings of calculation using
spherical jellium models of the confining potential. In addition, as a result of the
inclusion of molecular structure, the confinement resonances were found to extend
to much higher energy as compared to jellium calculation. It was also seen that
interchannel coupling of the small Ar 2p photoionozation cross section with the
(degenerate) much more intense C60 1s channels was not found, and the finding
explained. As a result of the understanding of why interchannel coupling was
negligible in this case, it was also suggested under what conditions interchannel
coupling between the C60 1s and the photoionization channels of a confined atom
or molecule might be found.

As mentioned in the introduction, this work is the first step of a larger project.
We will next look at the photoionization of all of the subshells of the encapsulated
Ar atom with an eye to understanding where the simpler jellium results are correct
and where they need correction. Based upon that investigation, other systems will
be scrutinized.

Finally, by producing cross section of significant accuracy, it is our hope that
these and future results will stimulate laboratory investigation of the photoioniza-
tion of endohedral fullerenes. And with the increasing capabilities of fabricating
significant quantities of samples, we urge that photoelectrons spectroscopic studies
be performed to separate the cross section by subshell and test theory stringently.



Chapter 13

Dynamical photoionization

observables of the CS molecule

A second line of research during my PhD has followed the correlated description
of photoionization observables through a new method based on ab initio close cou-
pling formalism, as explained in detail in Chapter 5. As first application of this
method, we have performed highly correlated calculations on the primary ionic
states and the prominent satellite present in the outer valence photoelectron spec-
trum of CS. Dyson orbitals are coupled to accurate one-particle continuum orbitals
to provide a correlated description of energy-dependent cross sections, asymmetry
parameters, branching ratios and Molecular Frame Photoelectron Angular Distri-
butions.

13.1 Introduction

The presence of additional bands, satellite or non-KT bands, has attracted great
interest, both experimentally and theoretically, since the early years of photoelec-
tron spectroscopy, as they provide a most clear manifestation of electron correla-
tion, being associated with multielectron excitations, forbidden in a one electron
picture [198–200]. Very recently, satellite states have been considered also in dou-
ble core hole states [201, 202]. A major source of satellite lines in the valence shell
is constituted by strong correlation between primary (1h) and (2h-1p) configura-
tions in the final ionic states. This effect becomes often very strong in the inner
valence shell, so that a single main ionization is no more clearly discernible, as the
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intensity is distributed among a multitude of closely spaced lines, a phenomenon
appropriately termed breakdown of the one particle picture [5]. On the contrary,
both experiments and accurate calculations of dynamical parameters, such as cross
sections and angular distributions of satellite lines, for molecules are rather scarce,
as they are quite demanding. From the theoretical side, both a sophisticated treat-
ments of correlation effects and accurate continuum calculations have to be linked
in a full calculation [203, 204]. From the experimental side, one major problem is
a clear identification of a simple satellite line, describing an individual electronic
final state [160]. In fact, satellite lines tend to be quite weak, often crammed
together, and vibrationally very broad, because of the generally repulsive nature
of the associated potential energy surface. A number of recent investigations is
reported in Refs. [205, 206], where the interpretation of the mechanism leading to
some satellites is still uncertain.

A rather exceptional situation is met in the CS molecule, where an isolated
satellite, with a fully developed vibrational structure, is already present in the
valence shell, as the third ionic state. This is due to the strong FISCI correlation,
illustrated in Chapter 2, which manifests also in the so called breakdown of KT
(inversion of the KT ordering of ionic states) which is present in CS. The satellite
correlates with the much studied C ionic state in CO and N2, which is however
much weaker, and lying at higher energy. The satellite was observed in the early
times of photoelectron spectroscopy [199, 200], and it has been studied and well
understood at the bound state level [207, 208]. A recent calculation has offered an
accurate characterization of its spectroscopic parameters, in good agreement with
experimental values. On the experimental side, the difficulty lies in the production
of the unstable CS molecule, and in the separation of the overlapping spectrum
due to the accompanying CS2 species, which have been however successfully over-
come [199, 209]. No information is available on the other hand on the dynamical
behaviour of the satellite or even of the primary ionic states, and on the influence
of the strong correlation effects on the latter. A hint of such effects is however the
anomalous intensity of the satellite in the low energy PES spectrum (21.22 eV). In
fact, at a first approximation, intensity ratios between a satellite and the primary
peak from which it borrows intensity via configuration mixing is given by the ratio
of the corresponding spectral strengths (or pole strengths) RIk [5, 160], which will
be examined in more detail below, but which suggest a satellite/primary 6σ ratio
around 0.3-0.5, while judging from the spectrum in Ref. [199] it appears larger
than 1, even taking into account the diminishing transmission of the analyzer.
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With the procedure illustrated in Chapter 5, we have evaluated absolute cross
sections, branching ratios, asymmetry parameters, and a set of molecular frame
photoelectron angular distributions (MFPADs) over an extended energy range, for
both the primary and satellite final states. It has to be noted, though, that IC
effects, neglected in the present study, have been found important in the inner
valence shell of C2H2 and CO close to threshold [203, 204] and could be of rele-
vance for CS as well. At this level of theory, all correlation effects present in the
bound states (ISCI and FISCI) are completely described by the single Dyson or-
bital, which is used in the present implementation for the calculation of correlated
dipole matrix elements. Spectral strengths RIk = |χIk|2 are often employed to
estimate the intensity ratio IJ/IK = RJk/RKk between a satellite and the corre-
sponding primary state, in the so called sudden limit, neglecting dynamical effects.
Correlated calculations for the initial and final bound states are computed at the
CASSCF level, which is also employed for the calculation of the relative Dyson
orbitals. Ionization energies have been further corrected for the residual dynamical
correlation contribution by employing the NEVPT2 multireference perturbation
theory [80, 81], at the Partially contracted (PC(2)) level. Finally all photoioniza-
tion parameters are computed in terms of dipole matrix elements and K-matrix
by well known expressions [66, 210].

13.2 Computational details

Calculations on CS have been performed at the equilibrium geometry, req = 1.545

Å. Hartree-Fock, CASSCF and NEVPT2 results have been obtained with MOL-
PRO [130], and special modules developed in collaboration with the theoretical
group of Ferrara University. The calculation of the Dyson orbital has been per-
formed with a code set up in our laboratories, carrying out the direct evaluation
of the overlap between the CASSCF wavefunctions separately optimized for the
ion and for the neutral molecule. The basis set employed is aug-cc-pVTZ. Two
CASSCF calculations have been performed, to check convergence level, correlat-
ing the 10 valence electrons: 5-7 σ, 1π, and including either (2σ,1π) or (3σ,2π)
virtual orbitals, CAS-10/9 and CAS-10/12 calculations, i.e. 5 occupied orbitals, 4
virtual orbitals and 5 occupied orbitals and 7 virtual orbitals respectively. Ground
state DFT calculations have been performed with the ADF code [166], employ-
ing the DZP STO basis in the ADF database. With this density both occupied



Chapter 13. Dynamical photoionization observables of the CS molecule 163

and continuum orbitals are calculated in a basis of products of radial B-splines
times spherical harmonics, Bi(r)Ylm(θ, ϕ). A large one center basis, with maximal
expansion up to Lmax = 30, with a range Rmax = 25 a.u., and stepsize h = 0.2
is supplemented by expansions around the C and S atom, with Lmax = 2, Rmax

= 0.6 (C) and Rmax = 0.3 (S) . This basis affords a very accurate solution of
both the discrete and continuum DFT orbitals. Actually, for ease of evaluating
one particle dipole matrix elements, bound state orbitals obtained from ab-initio
calculations have been expanded in the B-spline basis by projection, giving a very
accurate representation. All DFT calculations have employed the LB94 exchange-
correlation potential [165], which has proven to be well suited for the calculation
of photoionization observables [211].

13.3 Results and discussion

We shall first discuss the bound state results, i.e. IP’s andRIk’s, which are reported
in Tab. 13.1.

EXPa KT CASSCF PC(2) ADC(3)b

ion state IP IP IP R IP IP R

7 σ 11.33 12.83 10.21 0.85 11.05 11.51 0.85

2 π 12.79 12.55 12.18 0.82 12.72 12.74 0.90

satellite σ 16.05 - 15.13 0.26 15.80 15.54 0.18

6 σ 18.00 18.87 17.43 0.53 17.83 18.02 0.69

Table 13.1: CS. IP’s values [eV], R is the pole strength; a: Ref.[199]; b: Ref.[71]

As it can be seen, at the KT level the lowest IP is calculated to be the 2π one, while
in the experiment it is more bound than the HOMO 7σ by about 1.5 eV, a rather
large error. The correct sequence is recovered at the CASSCF level, although now
the IP’s are computed too low by about 1 eV, because of the GS dynamical corre-
lation lost upon ionization, which is only partly described by CASSCF. NEVPT2
results, on the other hand, are vastly improved, showing excellent energy separa-
tions among the different states, while the absolute values are slightly too low, by
about 0.2 eV. Results of comparable quality were obtained by the highly correlated
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ADC(3) approach [71]. It is hardly sensible to compare with vertical experimental
IP’s with accuracy of better than 0.1 eV, however, because vibrational broadening
is generally much larger than that. More accurate comparison requires taking into
account also vibrational levels. This has been considered in Ref.[212], employing
CASSCF + MRCI, with excellent agreement of electronic and vibrational energies
with experimental data.

The second interesting comparison concerns spectral strengths RIk. Here a
rather large disagreement may be observed between CASSCF and ADC(3) results
for the values relative to the satellite and the inner valence 6σ ionization. This is
particularly evident in their ratio, Rsat

R6σ
, which is computed to be 0.49 and 0.26 at

CASSCF and ADC(3) level, respectively, while a value of 0.52 is obtained from
the MRCI of Ref.[212]. This underlines the difficulty of obtaining accurate values
of the spectral strengths, despite intensive theoretical work. Unfortunately, these
are not easily accessible experimentally, although they can be obtained by very
careful high energy electron momentum spectroscopy [73, 213]. Also recent work
on branching ratios in photoelectron spectra, coupled to accurate single particle
continuum calculations, has shown the possibility to obtain reliable values for such
quantities [146].

Let us discuss now cross sections and angular distributions for all states con-
sidered. Results for the theoretical cross sections relative to the four ionic states
considered are reported in Fig. 13.1.



Chapter 13. Dynamical photoionization observables of the CS molecule 165

Figure 13.1: CS. Theoretical cross sections relative to the four ionic states
considered

Five results are reported: HF, CASSCF, DFT, DYSON from CAS 10/9 and from
CAS 10/12. Actually, preliminary investigations showed the importance of em-
ploying a large basis set, and in particular of augmented diffuse functions, to reach
convergence even at the HF level. This is basically due to the fact that basis sets
are generally optimized with respect to total energy, which heavily weighs the short
range region, where potential is largest. On the contrary, in the length gauge em-
ployed in the present work, dipole matrix elements, and therefore photoionization
observables, are more sensitive to the long range tails of the molecular orbitals.
For the outer ionizations 7σ and 2π, all results are quite similar, although Dyson
results are significantly lower, basically because of the reduced spectral strength.
The results are more different for the inner ionization 6σ, where correlation effects
are larger. Here the Dyson orbital results are much lower, again due to spectral
strength reduction, and also the difference between CAS 10/9 and CAS 10/12
results is significant, indicating that full convergence may have not been obtained.
There is also a large difference between HF and CASSCF results close to thresh-
old, with the DFT one closer to CASSCF, although it gives a small modulation at
intermediate energies, absent in the ab-initio results. Only Dyson results are obvi-
ously available for the satellite, and somewhat unexpectedly excellent agreement
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Figure 13.2: CS. Theoretical asymmetry parameters relative to the four ionic
states considered

between CAS-10/9 and CAS-10/12 results is obtained, so that it appears easier
to converge the satellite wavefunction than the one relative to the primary hole.
The asymmetry parameters β are reported in Fig. 13.2. They appear much more
sensitive to the different approximations, showing much larger variations in all
primary ionizations, especially in the intermediate valence region. For instance, at
around 20 eV electron kinetic energy (KE), the excursion is about 0.3 β units for
7σ, 0.2 for 2π, over 0.5 for 6σ. In the case of the HOMO ionization 7σ, HF results
show the maximum deviation from Dyson ones, while DFT is closest to the latter
up to about 40 eV electron KE, while it shows a different and flatter behaviour
beyond that. In 2π and 6σ ionizations, DFT results are instead on the opposite
side than HF with respect to Dyson, and the deviation is largest for 6σ. In general,
the two Dyson results are quite close to each other for all states considered and
in particular, again, for the satellite. Noteworthy is the rather different pattern
of the β profiles for all ionizations, which appears quite informative for discrimi-
nation, and in particular the one associated with the satellite, with a large dip at
around 15 eV KE, which does not resemble either that of 7σ or 6σ, showing that
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(a) 6σ/7σ ratio (b) 2π/7σ ratio

Figure 13.3: CS. Cross section ratios

the assumption of satellite states simply borrowing intensity from a correspond-
ing primary peak is untenable in this case, as will be further illustrated in the
following. Also the entity of the β variations between the different approaches is
such that careful experimental measurement should be able to easily discriminate
among them [214].

While the cross section profiles appear relatively smooth, there are rather
large variations among them that can be magnified by taking individual cross sec-
tion ratios. This is also an observable much more easily accessible experimentally,
since accurate absolute cross sections are notoriously difficult to measure. The
cross section ratios taken with respect to HOMO 7σ are reported in Fig. 13.3.
One can see much larger differences between the various treatment than is appar-
ent in Fig. 13.1, even for the 2π

7σ
ratio, where the deviation of the DFT results from

the ab-initio ones appears quite large in the intermediate energy range, between
20 and 50 eV photon energy.

The ratio of the satellite to both 7σ and 6σ cross sections is also reported in
Fig. 13.4, both in a low energy range and to higher energy, and compared with
the 6σ

7σ
ratio, at the CAS-10/12 Dyson orbital level. At low energy it is seen that

neither ratio approaches a constant, showing again the inadequacy of the simple
borrowing mechanism, although a flatter behaviour in the satellite/6σ ratio ap-
pears at the highest energy considered, around 60 eV photon energy. Notably, the
ratio is maximal close to threshold with respect to both primary ionizations, and
declines fast afterwards, reaching a minimum around 28 eV photon energy, and
a slow increase afterwards, a rather distinct signature. This cross section effect
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(a) (b)

Figure 13.4: CS. Cross section ratios (Dyson orbitals): in the a) panel, the
cross-section ratios in a low energy range; in the b) panel, the same cross-section

ratios in an energy range up to 600 eV

reproduces quite accurately the anomalous high intensity observed in the 21.22 eV
original spectrum, where the intensity is much higher than expected on the basis
of its spectral strenght, and seems to support also the higher spectral strenght
obtained in the CASSCF (or MRCI [212]) approach. Note, however, that different
intensity ratios may be appreciated in the spectrum reported in Ref.[209]. The
high energy behaviour of the ratios shows the satellite/6σ ratio slowly approaching
a constant limit, around 0.4, which is close to the ratio of the spectral strengths
which is 0.39 (Rsat,6σ = 0.207, R6σ,6σ = 0.529), illustrating the limit of validity
of the sudden approximation. The limit is reached at rather high energy, around
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Figure 13.5: CS. MFPADs calculated from the Dyson orbitals at photon en-
ergy ω = 20 eV. The molecular orientation is shown. The polarization vector
is parallel to the molecular axis in the upper panel and is perpendicular to the

molecular axis in the lower panel

400 eV photon energy, after a couple of oscillations, which might induce a false
expectation if not followed through, like the apparently flat behaviour shown by
the same ratio in the left panel around 60 eV. The behaviour of the satellite/7σ
ratio is even more structured with the several wide range oscillations on a steadily
increasing ratio. The latter is a reflection of the increasing 6σ/7σ ratio, which
derives by the larger s AO content of the 6σ state, whose atomic cross section
decrease is slower than that of the corresponding p AO orbitals.

Finally, as a signature of the final states, we have also considered the angu-
lar distribution of photoelectron in the molecular frame, MFPADs. These can be
measured in favourable circumstances from coincidence detection of photoelectron
and ionic fragments obtained from fast dissociation [215], or alternatively from
molecules aligned in strong laser fields [216]. MFPADs calculated from the rele-
vant Dyson orbitals at 20 and 30 eV photon energies for the three σ final ionic
states are reported in Figures 13.5 and 13.6 for either parallel or perpendicular
orientation of the linear polarization vector with respect to the molecular axis.
MFPADs are very sensitive to the nature of the final state, embodied in the cor-
responding Dyson orbital. Inspection of Fig. 13.5 shows the completely opposite
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Figure 13.6: CS. MFPADs calculated from the Dyson orbitals at photon en-
ergy ω = 30 eV. The molecular orientation is shown. The polarization vector
is parallel to the molecular axis in the upper panel and is perpendicular to the

molecular axis in the lower panel

pattern of the 7σ and 6σ orbitals, reflecting the different localization, 7σ mainly
composed of 40.7% 2pz C, 36.2% 2s C, 18.9% 3pz S and 6σ of 35.8% 3pz S, 32.8%
2s C, 31% 3s S. The satellite behaviour is still different, somehow in between,
although more similar to the 6σ in the perpendicular orientation. A large change,
especially in the parallel orientation, is shown by all three final states at 30 eV.
While 6σ shows now similar forward and backward emission, the satellite shows
emission concentrated at 0◦, but with major lobes perpendicular to the molecular
axis. Although less dramatic, large changes in shapes are apparent also for the
perpendicular orientation. The 7σ emission becomes completely concentrated in
two large butterfly-like lobes, and the satellite into two narrow lobes in the oppo-
site direction, while 6σ develops important secondary lobes, giving an asymmetric
four-lobe pattern. Both orbital and energy dependence, known in MFPADs stud-
ies, show up promimently also in this case. They provide a very strong signature of
the final ionic state, confirming once more that satellites, even if mainly borrowing
from a single primary ionization, have a specific individuality, that is best probed
by their dynamical photoionization observables, and afford a stringent test of the
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Figure 13.7: CS. MFPADs for the different approximations at photon energy ω
= 20 eV. The molecular orientation is shown. The polarization vector is parallel
to the molecular axis in the upper panel and is perpendicular to the molecular

axis in the lower panel

quality of the initial and final wavefunctions. The comparison between MFPADs
for 7σ and 6σ states calculated from the Dyson orbitals and those calculated for
the other approximations is also reported in the Fig. 13.7. In this case the gen-
eral shape appears quite similar in all cases, although the DFT results are a bit
closer to the Dyson ones than are the HF results. It is interesting the behaviour
of the 6σ ionization, where the cross section of the Dyson orbital is expected to be
much lower than that of HF or DFT orbitals, because of the much reduced norm.
Actually, in the parallel orientation the DFT results are quite close to the Dyson
ones, despite the HF been much larger. The behaviour is however opposite for the
perpendicular orientation, where both HF and DFT are much larger, as expected,
but with the DFT the largest. This reflects tiny differences in orbital composition
which are magnified by specific electric field orientation.
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13.4 Conclusions

Strong correlation effects are present in the photoionization of the CS molecule,
as indicated by the breakdown of the KT already for the two outermost ioniza-
tions, and the appearance of a conspicuous satellite in the outer valence region,
a rather unique feature. NEVPT2 calculations of ionization energies are in ex-
cellent agreement with the experimental results, and compare well with previous
accurate theoretical values. Dyson orbitals coupled to accurate continuum orbitals
obtained at the DFT level are employed to compute dynamical photoionization
observables, cross sections, asymmetry parameters and MFPADs, which are com-
pared with results obtained at the HF, CASSCF and DFT level. Strong sensitivity
to the nature of the bound state wavefunctions is shown in all results, and provide
a stringent test on the quality of the wavefunction employed. HF and DFT results
also show a large difference between each other, and often bracket the correlated
result. Distinct features are obtained for the satellite, different from those of both
7σ and 6σ states of the same symmetry, indicating the limitations of the simple
intensity borrowing picture, according to which the same cross section is expected
for a satellite and the primary peak from which it steals intensity. Notably inten-
sity ratios of the satellite to both 7σ and 6σ states show strong variations with
photon energy, and explain the unusual high intensity observed for the satellite at
HeI, 21.22 eV photon energy. The present approach takes accurately into account
bound state correlations in the initial and final states, and illustrates the power
of dynamical photoionization observables as a test of a quality of such wavefunc-
tions. It can be readily applied to larger and more complex systems, given the
availability of accurate Dyson orbital calculations. Experimental measurements
of matching accuracy are now well within the capabilities of Syncrotron radiation
laboratories [214], and reveal a richness of detail which includes further couplings
neglected at the present level, and challenge corresponding theoretical advances.
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Conclusions

In this work, we presented a theoretical study of photoionization processes, pay-
ing particular attention to the high photon energy region. Indeed, it has recently
confirmed that, also above a 100 eV threshold, there are structures in cross section
profiles, due to diffraction and interference effects. The extension of the acces-
sible energetic range in photoelectron spectroscopy has been made possible from
the availability by latest-generation synchrotron light sources. We have studied
the diffraction and interference effects in the photoionization profiles for several
systems in the core shell, in the inner valence shell and in the outer valence shell
as well. This has been done by means of an approach based on the DFT method
combined with the use of a B-spline basis.

The first analysis of photoelectron interference due to the coherent emission
from equivalent centers was done by Cohen and Fano in the 1960s. It has only
been possible recently to observe these effects in the core photoionization of N2.
Our study has highlighted that the interference effect is more easily visible in the
outer-valence region and inner-valence of small polyatomic molecules. The same
type of phenomenon has been, surprisingly, observed also in the outer-valence pho-
toionization of C60. The oscillations of the cross section profiles can be amplified
by taking into account the ratio of the cross sections relative to the orbitals HOMO
and HOMO-1. These oscillations are due to the interference of waves emitted by
equivalent centers and they represent further evidence of the interference effects
predicted and observed in diatomic molecules. Oscillations similar to those of C60

have been also observed for the case of magnesocene. This inspired us to study the
photoionization observables of two bis-decamethyl-cyclopentadienyl compounds of
Mg and Be: MgCp∗2 and BeCp∗2. We examined the cross section ratios relative to
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the outer-valence ionizations of these molecules and we observed that these ra-
tios are very sensitive to the molecular geometry, in particular to the value of the
metal-ring distance, as well as to the electronic structure. The substantial differ-
ence in the intensity and in the frequency of the oscillations observed confirms that
the diffraction patterns, in general, permit one to obtain information both on the
geometrical structure and on the electronic structure of the target molecules. The
energy-dependent modulations of cross sections, above the threshold, are observed
not only for ionizations from the outer-valence shell (as for C60 and cyclopentadi-
enyl compounds above mentioned) but also for the ionization from inner-valence
shell. This is the case of 2-butyne, for which the intensity ratio C2,3/C1,2 has
been analysed. For the two triply bonded carbon atoms in 2-butyne, C2 and C3,
there are two core orbitals separated by approximately 100 meV resulting from the
bonding and antibonding combinations of the two atomic 1s orbitals. In this case
the g-u splitting of the two couples of C2,3 and C1,2 are to close to be resolved,
and only the cross section ratio between them can be measured. The C 1s pho-
toelectron spectrum of this molecule has been measured over a range of photon
energies from the threshold to 150 eV above threshold. The study of this molecule
was inspired by previous theoretical predictions on the effects which were in the C
1s photoionization spectra for several compounds and which were experimentally
observed in the case of chlorinated ethanes. Different from that case, 2-butyne
there is no atom which can constitute a high-Z scattering center. For this reason,
the oscillations observed were unexpected. These energy-dependent oscillations
are due to the scattering of photoelectrons from the carbon atoms, in particular
to those adjacent to the ionized carbon atom. The scattering effect is greater for
the central atoms than the terminal carbon atoms.

If the g/u splitting between 1s orbitals is too small to be observed, it is possi-
ble to examine the ionization from the inner-shell orbitals which stem from 2s AOs
of the first period atoms. They have a much larger g/u splitting and so they can
be experimentally resolved. This allows a direct study of interference patterns for
a much larger number of molecular systems. On the basis of this consideration, a
further object of research has been the study of interference effects in the photoion-
ization spectra of simple polyatomic molecules (propane, butane, isobutane and
cis/trans-2-butene), This was done in order to verify the existence of oscillations
in the cross sections profiles and their dependence on internuclear distance. The
experimental data, which was compared to the theoretical predictions, was col-
lected at the Soleil synchrotron in Paris. The theoretical and experimental study
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of the photoelectron spectra of hydrocarbon molecules was over on an photon en-
ergy range between 70 and 700 eV. We observed a strong dependence of the shape
and period of oscillations on the C-C distance which is different for the different
hydrocarbon molecules considered. In particular, we have highlighted the great
potential for the technique in the accurate determination of molecular conformers.
The differences between the interference patterns associated with different isomers
constitutes an unambiguous signature of the different conformers. This makes it
possible to do, at least in the simple cases, a conformational analysis of more than
two conformers with the relative populations by an accurate comparison of the
experimental and theoretical interference patterns.

A further study on the photoionization dynamical observables was done by
considering the endohedral compounds, where the metal is embedded in a cage
represented by a fullerene molecule. The interest on the photoionization of these
compounds, as well as on that of C60, is related to the fact that cross sections
and photoelectron angular distributions allows for a deep study of their electronic
structure. The calculations on these compounds show the presence of sharp res-
onances on the total cross section which are defined as a confinement resonances.
We then focused on the photoionization of Ar@C60 in the core region relative to
Ar 2p ionization. In contrast with spherical models previously used, our treatment
accurately describes the molecular effects. For our analysis, we have considered
both the DFT approach and the TDDFT approach for the ionization from the
core shell of Ar@C60, compared with the case of isolated C60 molecule, to examine
both the influence of an accurate molecular treatment of the cage, and the effect
of the possible coupling with the neighbouring C 1s ionizations.

A second line of research was the correlated description of photoionization
observables. We worked on a new method based on ab initio close-coupling for-
malism. Although the DFT approach, used for the calculations just illustrated, is
very efficient, it can not describe further features in the spectra due to electron
correlation. Since the progress of new light-sources and multichannel detectors
has opened the possibility of an experimental study much more detailed on small
molecules, our aim is extending the methodology of DFT which is already available
in the field of ab initio Hamiltonians. The theoretical ingredients for the calcu-
lation of photoionization observables are the transition dipole moments between
initial bound state and continuum wavefunction. The final goal is the implemen-
tation of a close-coupling formalism where the final continuum wavefunction is
expressed in analogous way to that of CI for bound states. The first level of this
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ab initio implementation only takes correlation fully into account for the bound
states. In particular, we have implemented subroutines in Fortran to project Gaus-
sian orbitals onto the B-splines basis and an interface to use Dyson orbitals on a
Gaussian basis. The Dyson orbitals represent the superposition between the initial
N-particle wavefunction and the final N-1 particle wavefunction. This permit one
to describe situations where strong correlation effects in the ionic states modify
the nature of the initial orbital.
The employment of Dyson orbitals has been applied to the description of pho-
toionization observables for the CS molecule. A strong satellite band is present
in the photoelectron spectrum of this molecule. Since it is entirely due to effects
of the electron correlation, it can not be described at the DFT level. The results
obtained with Dyson orbitals are compared to those from HF and DFT methods.
The different features of the cross sections and asymmetry parameters related to
the satellites and primary ionic states of the same symmetry indicate that these
states can be distinguishable through the study of photoionization observables.

The calculation of photoionization observables through Dyson orbitals can be
combined with a semiclassical non-adiabatic dynamics calculation. This combi-
nation represents a possible and interesting development of our work. The first
steps in this direction have been carried out during the last few months of my
PhD, in collaboration with the theoretical chemistry group of the Ruđer Bošković
Institute in Zagreb. This project aims to a high-level theoretical description of
Time-Resolved Photoelectron Spectroscopy (TRPES) observables obtained from
pump-probe experiments.
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