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Abstract. In this paper, the solutions to second order Dirichlet

boundary value problems of p-Laplacian difference equations are in-

vestigated. By using critical point theory, existence and multiplicity

results are obtained. The proof is based on the Mountain Pass Lemma

in combination with variational techniques.

Keywords: Discrete Dirichlet Boundary Value Problem, Mountain Pass Lemma, p-

Laplacian, Critical point theory.

MS Classification 2010: 65L10, 35J05

1. Introduction

Let N, Z and R denote the sets of all natural numbers, integers and real

numbers respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, · · · }, Z(a, b) =

{a, a + 1, · · · , b} when a ≤ b. Let k be a positive integer and * denote the

transpose of a vector.

In this paper, we consider the second order difference equation

∆(ϕp(∆un−1)) + f(n, un+1, un, un−1) = 0, n ∈ Z(1, k) (1)

with Dirichlet boundary value conditions

u0 = uk+1 = 0, (2)

where ∆ is the forward difference operator ∆un = un+1−un, ∆
2un = ∆(∆un),

ϕp(s) is the p-Laplacian operator, that is, ϕp(s) = |s|p−2s(1 < p < ∞), f ∈
C(Z×R3,R).

We may think of Eq. (1) as being a discrete analogue of the second order

functional differential equation

[ϕp(u
′)]

′
+ f(t, u(t+ 1), u(t), u(t− 1)) = 0, t ∈ R (3)

1This work is supported by the Scientific Research Fund of Hunan Provincial Education
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which includes the following equation

c2u′′(t) = V ′(u(t+ 1)− u(t))− V ′(u(t)− u(t− 1)), t ∈ R (4)

where f ∈ C(R4,R). Eq. (3) has been studied extensively by many scholars.

For example, Smets and Willem have obtained the existence of solitary waves

of lattice differential equations, see [30] and the references cited therein.

The theory of nonlinear difference equations has been widely used to study

discrete models appearing in many fields such as computer science, economics,

neural network, ecology, cybernetics, etc. Since the last decade, there has been

much literature on qualitative properties of difference equations, those studies

over many of the branches of difference equations, such as [1, 3, 10, 12, 13,

18–21, 23–25, 27, 28].

In recent years, the study of boundary value problems for differential equa-

tions has received much attention. By using various methods and techniques,

such as Schauder fixed point theorem, the cone theoretic fixed point theorem,

the method of upper and lower solutions, and coincidence degree theory, a

series of results showing the existence of nontrivial solutions for differential

equations have been obtained in the literatures, we refer to [2, 4–8, 17, 32,

36]. It is well known that critical point theory is an powerful tool to deal with

differential equations [22, 26, 36]. Starting in 2003, critical point theory has

been employed to establish sufficient conditions on the existence of periodic

solutions of difference equations. In particular, Yu, Guo, Chen, Shi, Tian and

their collaborators considered second order nonlinear difference equations [9,14-

16,29,31,33-35]. However, to our best knowledge, the results on the boundary

value problem (BVP) of p-Laplacian difference equations are very scarce in

the literature.

Our aim in this paper is to use the critical point theory to give some suf-

ficient conditions for the existence and multiplicity of the BVP (1) with (2).

The main idea in this paper is to transfer the existence of the BVP (1) with

(2) into the existence of the critical points of some functional.

Our main results are as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:

(F1) there exists a functional F (n, v1, v2) ∈ C1(Z × R
2,R) with F (0, ·) = 0

such that for any n ∈ Z(1, k),

∂F (n− 1, v2, v3)

∂v2
+

∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3);

(F2) there exist constants δ > 0, α ∈
(

0, 1

2p/2p

(

c1
c2

)p

λ
p

2

min

)

such that

F (n, v1, v2) ≤ α

(

√

v21 + v22

)p

, for n ∈ Z(1, k) and v21 + v22 ≤ δ2 ;
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(F3) there exist constants ρ > 0, γ > 0, β ∈
(

1

p

(

c2
c1

)p

λ
p

2
max,+∞

)

such that

F (n, v1, v2) ≥ β

(

√

v21+v22

)p

−γ, for n ∈ Z(1, k) and v21 + v22 ≥ ρ2 ,

where c1, c2 are constants which can be referred to (8), and λmin, λmax are

constants which can be referred to (10).

Then the BVP (1) with (2) possesses at least two nontrivial solutions.

Remark 1.2. By (F3) it is easy to see that there exists a constant γ′ > 0

such that

(F ′
3) F (n, v1, v2) ≥ β

(

√

v21 + v22

)p

− γ′, ∀(n, v1, v2) ∈ Z(1, k)×R
2.

As a matter of fact, let

γ1 = max

{∣

∣

∣

∣

F (n, v1, v2)− β

(

√

v21 + v22

)p

+ γ

∣

∣

∣

∣

: n ∈ Z(1, k)v21 + v22 ≤ ρ2
}

,

γ′ = γ + γ1 ,

we can easily get the desired result.

The rest of the paper is organized as follows. In Sect. 2 we shall establish

the variational framework for the BVP (1) with (2) in order to apply the critical

point method and give some useful lemmas. In Sect. 3 we shall complete the

proof of the main results and give an example to illustrate the result.

2. Variational Structure and some Lemmas

In order to apply the critical point theory, we shall establish the corresponding

variational framework for the BVP (1) with (2) and give some basic notation

and useful lemmas.

Let Rk be the real Euclidean space with dimension k. Define the inner

product on Rk as follows:

〈u, v〉 =

k
∑

j=1

ujvj , ∀u, v ∈ Rk, (5)

by which the norm ‖ · ‖ can be induced by

‖u‖ =





k
∑

j=1

u2
j





1
2

, ∀u ∈ Rk. (6)
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On the other hand, we define the norm ‖ · ‖r on Rk as follows:

‖u‖r =





k
∑

j=1

|uj |
r





1
r

, (7)

for all u ∈ Rk and r > 1.

Since ‖u‖r and ‖u‖2 are equivalent, there exist constants c1, c2 such that

c2 ≥ c1 > 0, and

c1‖u‖2 ≤ ‖u‖r ≤ c2‖u‖2, ∀u ∈ Rk. (8)

Clearly, ‖u‖ = ‖u‖2. For the BVP (1) with (2), consider the functional J
on Rk as follows:

J(u) =
k

∑

n=0

[

1

p
|∆un|

p
− F (n, un+1, un)

]

, (9)

∀u = (u1, u2, · · · , uk)
∗ ∈ Rk, u0 = uk+1 = 0 and F is as in assumption (F1).

Clearly, J ∈ C1(Rk,R) and for any u = {un}n∈Z(1,k) ∈ Rk, by using

u0 = uk+1 = 0, we can compute the partial derivative as

∂J

∂un

= − [∆(ϕp(∆un−1)) + f(n, un+1, un, un−1)] , n ∈ Z(1, k).

Thus, u is a critical point of J on Rk if and only if

∆(ϕp(∆un−1)) + f(n, un+1, un, un−1) = 0, ∀n ∈ Z(1, k).

We reduce the existence of the BVP (1) with (2) to the existence of critical

points of J on Rk. That is, the functional J is just the variational framework

of the BVP (1) with (2).

Let P is a k × k matrix defined by

P =

















2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1

0 0 0 · · · −1 2

















.

Clearly, P is positive definite. Let λ1, λ2, · · · , λk be the eigenvalues of P .

Applying matrix theory, we know λj > 0, j = 1, 2, · · · , k.
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Denote

0 < λmin = min {λ1, λ2, · · · , λk} , λmax = max {λ1, λ2, · · · , λk} , (10)

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously

Fréchet-differentiable functional defined on E. J is said to satisfy the Palais-

Smale condition (P.S. condition[11] for short) if any sequence
{

u(k)
}

⊂ E

for which
{

J
(

u(k)
)}

is bounded and J ′
(

u(k)
)

→ 0 as k → ∞ possesses a

convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote

its boundary.

Lemma 2.1. (Mountain Pass Lemma [26]). Let E be a real Banach space and

suppose J ∈ C1(E,R) satisfies the P.S. condition. If J(0) = 0 and

(J1) there exist constants ρ, a > 0 such that J |∂Bρ
≥ a, and

(J2) there exists e ∈ E \Bρ such that J(e) ≤ 0.

Then J possesses a critical value c ≥ a given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)), (11)

where

Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (12)

Lemma 2.2. Suppose that (F1) − (F3) are satisfied. Then the functional J
satisfies the P.S. condition.

Proof. Let u(l) ∈ Rk, l ∈ Z(1) be such that
{

J
(

u(l)
)}

is bounded. Then there

exists a positive constant M2 such that

−M2 ≤ J
(

u(l)
)

≤ M2, ∀l ∈ N.

By (F ′
3), we have

−M2 ≤ J
(

u(l)
)

=
1

p

k
∑

n=0

∣

∣

∣
∆u(l)

n

∣

∣

∣

p

−

k
∑

n=1

F
(

n, u
(l)
n+1, u

(l)
n

)

=
1

p

[( k
∑

n=0

∣

∣

∣
∆u(l)

n

∣

∣

∣

p
)

1
p

]p

−
k

∑

n=1

F
(

n, u
(l)
n+1, u

(l)
n

)

≤
1

p

[

c2

( k
∑

n=0

∣

∣

∣
∆u(l)

n

∣

∣

∣

2
)

1
2
]p

−

k
∑

n=1

[

β

(

√

(

u
(l)
n+1

)2

+
(

u
(l)
n

)2
)p

− γ′

]

=
1

p
cp2

((

u(l)
)∗

Pu(l)
)

p

2

− β

[( k
∑

n=1

(

√

(

u
(l)
n+1

)2

+
(

u
(l)
n

)2
)p) 1

p

]p

+ kγ′
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≤
1

p
cp2λ

p

2
max

∥

∥

∥
u(l)

∥

∥

∥

p

2

− βcp1

[ k
∑

n=1

(

(

u
(l)
n+1

)2

+
(

u(l)
n

)2
)]

p

2

+ kγ′

≤
1

p
cp2λ

p

2
max

∥

∥

∥
u(l)

∥

∥

∥

p

2

− βcp1

∥

∥

∥
u(l)

∥

∥

∥

p

2

+ kγ′

=

(

1

p
cp2λ

p

2
max − βcp1

)

∥

∥

∥
u(l)

∥

∥

∥

p

2

+ kγ′.

That is,
(

βcp1 −
1

p
cp2λ

p

2
max

)

∥

∥

∥
u(l)

∥

∥

∥

p

2

≤ M2 + kγ′.

Since β > 1

p

(

c2
c1

)p

λ
p

2
max, there exists a constant M3 > 0 such that

∥

∥

∥
u(l)

∥

∥

∥

2

≤ M3, ∀l ∈ N.

Therefore,
{

u(l)
}

is bounded on Rk. As a consequence,
{

u(l)
}

possesses a

convergence subsequence in Rk. And thus the P.S. condition is verified.

3. Proof of the Main Results

In this section, we shall complete the proof of Theorem 1.1.

3.1. Proof of Theorem 1.1

Proof. For any n ∈ Z(1, k), by (F2) and (8),

J(u) =

k
∑

n=0

[

1

p
|∆un|

p
− F (n, un+1, un)

]

=
1

p

[( k
∑

n=0

|∆un|
p

)
1
p

]p

−

k
∑

n=1

F (n, un+1, un)

≥
1

p
cp1

[( k
∑

n=0

|∆un|
2

)
1
2
]p

−
k

∑

n=1

F (n, un+1, un)

=
1

p
cp1 (u

∗Pu)
p

2 −

k
∑

n=1

F (n, un+1, un)

≥
1

p
cp1λ

p

2

min
‖u‖p2 − α

k
∑

n=1

(

√

u2
n+1 + u2

n

)p
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=
1

p
cp1λ

p

2

min
‖u‖p2 − α

[( k
∑

n=1

(

√

u2
n+1 + u2

n

)p ) 1
p

]p

≥
1

p
cp1λ

p

2

min
‖u‖p2 − αcp2

[ k
∑

n=1

(

u2
n+1 + u2

n

)

]

p

2

≥
1

p
cp1λ

p

2

min
‖u‖p2 − αcp2

(

2‖u‖22
)

p

2

≥

(

1

p
cp1λ

p

2

min
− 2

p

2 cp2α

)

‖u‖p2.

Take a ,

(

1

p
cp1λ

p

2

min
− 2

p

2 cp2α
)

δp. Therefore,

J(u) ≥ a > 0, ∀u ∈ ∂Bρ.

At the same time, we have also proved that there exist constants a > 0 and

ρ > 0 such that J |∂Bρ
≥ a. That is to say, J satisfies the condition (J1) of the

Mountain Pass Lemma.

For our setting, clearly J(0) = 0. In order to exploit the Mountain Pass

Lemma in critical point theory, we need to verify other conditions of the Moun-

tain Pass Lemma. By Lemma 2.2, J satisfies the P.S. condition. So it suffices

to verify the condition (J2).
From the proof of the P.S. condition, we know

J(u) ≤

(

1

p
cp2λ

p

2
max − βcp1

)

‖u‖
p

2
+ kγ′.

Since β > 1

p

(

c2
c1

)p

λ
p

2
max, we can choose ū large enough to ensure that J(ū) < 0.

By the Mountain Pass Lemma, J possesses a critical value c ≥ a > 0, where

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)),

and

Γ = {h ∈ C([0, 1],Rk) | h(0) = 0, h(1) = ū}.

Let ũ ∈ Rk be a critical point associated to the critical value c of J , i.e.,
J(ũ) = c. Similar to the proof of the P.S. condition, there exists u ∈ Rk

such that J(u) ≥ a. Hence, there exists û ∈ Rk such that J(û) = cmax =

max
u∈R

k

J(u) ≥ a > 0.

Clearly, û 6= 0. If ũ 6= û, then the conclusion of Theorem 1.1 holds. Other-

wise, ũ = û. Then c = J(ũ) = J(û) = cmax. That is,

sup
u∈R

k

J(u) = inf
h∈Γ

sup
s∈[0,1]

J(h(s)).
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Therefore,

cmax = max
s∈[0,1]

J(h(s)), ∀h ∈ Γ.

By the continuity of J(h(s)) with respect to s, J(0) = 0 and J(ū) < 0 imply

that there exists s0 ∈ (0, 1) such that

J (h (s0)) = cmax.

Choose h1, h2 ∈ Γ such that {h1(s) | s ∈ (0, 1)} ∩ {h2(s) | s ∈ (0, 1)} is

empty, then there exists s1, s2 ∈ (0, 1) such that

J (h1 (s1)) = J (h2 (s2)) = cmax.

Thus, we get two different critical points of J on Rk denoted by

u1 = h1 (s1) , u2 = h2 (s2) .

The above argument implies that the BVP (1) with (2) possesses at least two

nontrivial solutions ũ, û or ũ, u1, u2. The proof of Theorem 1.1 is finished.

Remark 3.1. As an application of Theorem 1.1, finally, we give an example to

illustrate our result.

For n ∈ Z(1, k), assume that

∆(ϕp(∆un−1))+µun

[

(en−1)
(

u2
n+1+u2

n

)

µ

2
−1

+
(

en−1−1
) (

u2
n+u2

n−1

)

µ

2
−1
]

= 0,

(13)

with boundary value conditions

u0 = uk+1 = 0, (14)

where 1 < p < +∞, µ > p.
We have

f(n, v1, v2, v3) = µv2

[

(en − 1)
(

v21 + v22
)

µ

2
−1

+
(

en−1 − 1
) (

v22 + v23
)

µ

2
−1

]

and

F (n, v1, v2) = (en − 1)
(

v21 + v22
)

µ

2 .

Then

∂F (n− 1, v2, v3)

∂v2
+

∂F (n, v1, v2)

∂v2

= µv2

[

(en − 1)
(

v21 + v22
)

µ

2
−1

+
(

en−1 − 1
) (

v22 + v23
)

µ

2
−1

]

.

It is easy to verify all the assumptions of Theorem 1.1 are satisfied and then

the BVP (13) with (14) possesses at least two nontrivial solutions.
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