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ABSTRACT 
 

The auditory system is a complex machinery, constituted by many 

molecules involving hair cells, cochlear neurons, the stria vascularis, and 

combinations thereof. The analysis of complex genetic traits/diseases 

such as normal hearing function and Age-Related Hearing Loss has long 

been an enigma of genetic biology, whether in the animal or in medical 

sciences. In particular, Age-Related Hearing Loss is the most prevalent 

sensory impairment in the elderly affecting 30% of people aged over 60. 

The disease is not directly life threatening but it contributes to loss of 

autonomy and is associated with anxiety, depression, and cognitive 

decline largely compromising the quality of life.  

Until now, only few genes are known to contribute to variability of normal 

hearing function and Age-Related Hearing Loss. In both cases interactions 

between lifestyle and environmental determinants as well as several 

molecular and cellular basis and pathways should be taken into account. 

The main aim of the thesis is the understanding of the molecular bases of 

variation of normal hearing function and Age-Related Hearing Loss using:  

a) Genome Wide Association Studies to identify new genes/loci, b) 

immunohistochemistry to evaluate their expression in the mouse cochlea 

and c) epidemiological studies to identify environmental/lifestyle factors. 

Genome-Wide Association studies and the following Meta-analysis have 

been carried out on 3815 people coming from isolated villages located in 

Italy, Croatia, Caucasus and central Asia recruited within the International 

Consortium G-EAR leading to the identification of 3 loci (rs614171 on 

chromosome 13, rs3786724 on chromosome 19, rs11711388 on 

chromosome 3) with p-value≈1*10-8, 26 loci with p-value ≈1*10-7 and many 

others with high p-value.  

23 genes have been then chosen for evaluation using expression studies 

in wildtype mice by immunohistochemistry and confocal microscopy. Five 

of them (Arsg, Slc16a6, Dclk1, Gabrg3, Csmd1) display strikingly specific 

expression in the cochlea and additional eight (Ptprd, Grm8, 
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Kiaa056/GlyBP, Evi5, Irg1, Rimbp2, Ank2, Cdh13) show expression in 

multiple cell types of the cochlea. 

As regards environmental/lifestyle factors, the epidemiological analysis 

revealed that coffee consumption (coffee yes vs. no) and coffee intake 

(cups/day) displayed a significant association with better hearing function 

in four out of ten populations investigated. In particular, coffee drinking 

was associated at low and high frequencies (lowest p-value=0.006) while 

the intake only at high frequency (lowest p-value=0.003). Moreover, a 

statistical significant association between ARHL and education level was 

detected (lowest p-value=0.0003) confirming previously reported data.   
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INTRODUCTION 
 
1.1 General overview of the auditory system 

The auditory system is one of the most complex mechanisms of sensation 

ability in humans. The mammalian inner ear is an intricate structure 

functionally organized into auditory and vestibular components designed 

to transform mechanical energy into electrical stimuli, which will eventually 

be translated in the brain (Dror A. et al. 2010). The hearing system is 

characterized by three structures: a) the outer part, b) the middle ear, and 

c) the inner ear, that all play a role in hearing function. The hearing system 

is difficult to study through biochemical routes, due to the small amounts 

of tissue available for analysis and by key molecules that may be present 

in only a few tens of copies per cell, thus compounding the difficulty (Steel 

K.P. et al. 2001). The hair cells in the organ of Corti located in the inner 

ear, are composed of an inner row and three outer rows of hair cells. The 

apical side of the hair cells facing the scala media contains the stereocilia, 

actin-rich projections arranged in bundles at their upper surface, packed 

with actin filaments, and deflected by the vibrations of sound (Steel K.P. et 

al. 2001). This activity opens ion channels modulating potential within the 

cell, and releasing neurotransmitters to synaptic junctions between hair 

cells and neural fibers of the auditory nerve. The neural spike 

subsequently propagates in the auditory nerve fiber and impulses are 

perceived by the brain, mainly in the temporal lobe where they can be 

processed and assigned meaning.  

 

1.2 Hearing loss: genes and phenotypes 
Given the complexity of the hearing mechanism, it should come as no 

surprise that many genes are involved in hearing. So far, more than 140 

loci associated with Non-Syndromic Hearing Impairment (NSHL) have 

been mapped, and approximately 80 genes identified in humans 
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(http://hereditaryhearingloss.org/). In mouse models more than 230 genes 

have been so far described (http://hearingimpairment.jax.org/index.html) 

to cause inner ear malformations or dysfunction. Despite the identification 

of these genes, the molecular basis of variation of normal hearing function 

is still largely unknown. Several molecules have been identified as having 

a role in auditory function and hair cell transduction because they are 

specifically expressed in or around the stereocilia and mutations in their 

genes lead to hearing impairments in either humans or mice models 

(Quint E. et al. 2003). These dysfunctional proteins are involved in 

impaired molecular-physiologic processes of potassium and calcium 

homeostasis, apoptotic signaling, stereocilia linkage, mechano-electric 

transduction, electromotility, and many other processes (Van Laer L. et al. 

2003). Briefly, these molecules include myosins which represent one of 

the largest group of deafness associated molecules, adhesion protein 

such as cadherins, member of the ferlin family, components of the 

tectorial membrane, genes involved in ion homeostasis such as connexins 

(Martınez A.D. et al. 2009) and many others (Hilgert N. et al. 2009).  

Hearing Loss  (HL) can also be multifactorial or complex in causality such 

as Age-Related Hearing Loss (ARHL)  (Reiss M. et al. 2009) and Noise-

Induced Hearing Loss (NIHL) (Konings A. et al. 2009), reflecting the 

interaction of a number of genetic and environmental factors. ARHL or 

presbycusis is a growing problem that has been reported to reduce the 

quality of life (Ciorba A. et al. 2012).  Many studies define heritability of 

ARHL being in the range between 25% and 75% in different analyzed 

cohorts (Wolber L.E. et al. 2012, Gates G.A. et al. 1999, Viljanen A. et al. 

2007, Karlsson K.K. et al. 1997). 

Patients usually show a high tone hearing loss, which has a major 

adverse effect on communication, particularly in noisy and/or reverberant 

listening situations. Later, it progresses in the 2–4 kHz range which means 

that the ability to detect, identify, and localize sounds is impacted (Huang 

Q. et al. 2010). Regarding the frequency of ARHL, the data are largely 

variable depending on the sample size, the ethnicity, and the use of 
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different classification systems (Roth T.N. et al. 2011). The disease is 

partially preventable, and can be only treated symptomatically with the 

provision of hearing aids or, in a minor proportion of cases, of a cochlear 

implant (Zahnert T. 2011). Many pathophysiological processes underlying 

age-related changes in the auditory mechanism have been described. 

Histologically, the aged cochlea shows degeneration of the stria 

vascularis, the hair cells, the primary afferent neurons and the central 

auditory pathways (Fetoni A.R. et al. 2011). Age-related hearing changes 

do not occur uniformly and more than one pathological process may be 

acting upon the auditory system. Classically, ARHL was categorized into 

different etiopathogenic categories: sensory with high frequency loss, hair 

cell loss but also non-sensory and supporting cells loss, neural with loss of 

word discrimination in the presence of stable pure-tone thresholds caused 

by a loss of neurons in the spiral ganglion, metabolic/strial with atrophy of 

the lateral wall and the stria vascularis of the cochlea and a flat or slightly 

descending pure-tone threshold audiometric pattern associated with 

excellent word discrimination scores (Schuknecht H.F. et al. 1993). 

Additional type has been described as mechanical where there is no 

cochlear abnormalities and is characterized by a linear descending pure-

tone audiogram which is considered to be often coupled with degeneration 

in the spiral ligament along the cochlear lateral wall. Finally, ARHL could 

be mixed and indeterminate showing combinations of flat, gradually 

sloping, and abrupt high-tone hearing loss with observable light 

microscopy abnormalities of multiple cochlear elements. This multifactorial 

process can vary in severity from mild to severe and it could worsen by 

the contribution of a lifetime of insults to the auditory system.  

Environmental factors (such as diet, level of education, medical condition, 

exposures to environmental-ototoxic agents, trauma etc.) (Bovo R. et al., 

2010) as well as risk factors (free radical, vascular insults, metabolic 

changes, hormones, immune system etc.) are essential components in 

the development of ARHL (Huang Q. et al. 2010). Despite some relevant 

efforts done to identify the molecular bases of these conditions, up to now, 
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only a few genes have been associated with either ARHL (Reiss M. et al. 

2009, Newman D.L. et al. 2012) or NIHL (Konings A. et al. 2009). 

 

1.3 Isolated populations 
The use of isolated populations to reduce heterogeneity of complex and/or 

quantitative traits has already proven very useful in identifying DNA 

polymorphisms associated with these traits even if this argument is still an 

open issue (Shifman S. et al. 2001). In principle, the inbreeding, typical of 

small communities, reduces genetic heterogeneity, increases 

homozygosity and Linkage Disequilibrium (i.e. LD refers to correlations 

among neighbouring alleles, reflecting 'haplotypes' descended from single, 

ancestral chromosomes), and reduces environmental factors providing 

greater power for detection of susceptibility genes (Varilo T. et al. 2004, 

Lowe J.K. et al. 2009). Isolated populations are often either geographically 

isolated, for example on islands, such as the Sardinian, Icelandic and 

Orkney populations, or linguistically isolated, such as the Saami (Huyghe 

J.R. et al. 2011, Francalacci P. et al. 2003) or inhabitants from Resia, a 

village located in the Friuli Venezia Giulia (FVG) genetic park (Esko T. et 

al. 2012). Moreover, a population isolate can exist without physical or 

linguistic barriers, as is the case in Kuusamo and Southern Ostrobothnia 

(Jakkula E. et al., 2008, Hovatta I. et al., 1997). In these populations the 

enrichment of certain rare alleles and diseases could be very common as 

demonstrated for example with the high frequencies of multiple sclerosis 

in Sardinia, Southern Ostrobothnia and Orkney islands (Pugliatti M. et al. 

2005; Tienari P.J. et al., 2004; Rothwell P.M. et al. 1998). As regards 

hearing impairment, our isolated populations/communities coming from 

Italy, Caucasus, Central Asia and Tajikistan showed many differences. In 

particular, the proportion of affected in people aged < 40 increased from 

Caucasus region to Tajikistan while in those aged ≥ 40, Caucasus region 

showed the highest percentage (Girotto G. et al. 2011 A).  

Considering that for most disorders only few common variants, detected 
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with Genome Wide Association Studies (GWAS) are implicated and the 

associated SNPs explain only a small fraction of the genetic risk, isolated 

populations could be particularly useful to detect rare variants, those with 

less than 1% allele frequencies in the population and can have a stronger 

effect compared to the common ones. In fact, rare variants, may even be 

private mutations that only appear in a few individuals/families or be very 

widespread in isolated population as a consequence of a founder effect. 

Moreover, rare variants, despite being seen in a small fraction of those 

who are affected, are expected to raise the risk in carriers at a higher rate 

and to have larger effect sizes than common variants (Wray N.R. et al. 

2001). 

 

1.4 Genotyping and Imputation  
The effect of genome variation might be investigated using high-density 

single nucleotide polymorphism (SNP) array. Current genotyping platforms 

use single array that contains up to 5 million SNPs to genotype up to 

twelve samples, while in the past less dense arrays were used. In order to 

increase the number of available markers for analysis, additional 

information to predict missing values in a sample might be imputed. 

Imputation is a method where genotypes of markers that are not 

genotyped are computationally estimated based on the LD information 

from variation in a reference population (Marchini J. et al. 2007, Servin B. 

et al. 2007). In this light, appropriate software that exploited linkage 

disequilibrium among SNPs and accurately imputed large numbers of 

ʻʻmissingʼʼ genotypes (Cantor R.M. et al. 2010) has been created. Tools 

such as the 2.5M HapMap CEU SNP set v22 and the 1000 Genomes 

Project (1000GP et al. 2010) now provide more dense coverage of the 

genome at increasingly affordable costs. These developments have 

resulted in an explosion of positive GWAS and the identification of many 

new genes for common diseases (Cantor R.M. et al. 2010). 

Since in medical genetics, the ultimate objective is to identify causal 

functional variants and elucidate the mechanisms through which they 
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exert their effects (Stranger B.E. et al. 2011), new high density SNP arrays 

aimed at detecting functional variants have been developed. These arrays 

contain approximately 900.000 optimized common tag SNPs and novel 

functional exonic variants taken from over 12,000 sequenced exomes. 

 

1.5 Association studies  
Association analyses have become increasingly popular for mapping 

genes involved in complex traits and diseases. In a population association 

having a specific allele (e.g. A) could make you more or less susceptible 

to a particular disease (e.g. D) compared with the frequencies reported in 

a reference population. Usually, a general population contains several 

genetically distinct subsets caused by differences in allele frequencies 

(population stratification) and both the disease and allele A could be 

particularly frequent in one population rather than in another. In 

association studies, a given number of markers (in some cases specific of 

one or more candidate genes or regions) are genotyped and the statistical 

dependence between the genotypes and the phenotype is statistically 

measured testing any association between those markers and a disease. 

Moreover, SNPs are often selected based on LD, to tag as much regional 

genetic variation as possible with as few markers, or polymorphisms, as 

possible. Association is considered significant if the likelihood of falsely 

rejecting the null hypothesis is less than 5% (p-value < 0.05) but the raw 

p-value needs a correction for the number of tests performed.  

 
1.5.1 Association studies vs. Genome wide association studies  

Thanks to the development of high-throughput sequencing and genotyping 

technologies, one of the new uses of the association method is to conduct 

a Genome wide association studies (GWAS) which are an excellent 

complement to Quantitative Traits Loci (QTL) mapping (Miles C.M. et al. 

2008). GWAS is a genetic association study design in which a sample is 

genotyped for a large number of genetic markers (usually SNPs). The 

main aim of GWAS design is to capture all common genetic variation 
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across the genome and to relate this variation to disease risk. These 

studies have become the preferred experimental design in exploring the 

genetic etiology of complex human traits and diseases (Wang X. et al. 

2012).  GWAS require three essential items: 1) a large number of samples 

accurately phenotyped from populations that effectively provide genetic 

information regarding the research question, 2) polymorphic alleles that 

can be inexpensively and efficiently genotyped and cover the whole 

genome adequately, and 3) analytic methods that are statistically powerful 

and can be employed to identify the genetic associations in an unbiased 

fashion.  

In particular, as regard the first item, a large use of Meta-analyses studies 

which combine results across different studies and populations have been 

applied. Therefore, by combining association studies the sample size 

grows, which in turn increases the statistical power to detect association 

signals. Several Meta-analysis methods exist, that differ, for example, in 

the way they weigh the contribution of each population and they can 

generally account for population stratification (Nelis M. et al., 2009, 

Consortium WTCC, 2007, Devlin B. et al., 1999, Pritchard J.K. et al., 

2000).  

Regarding the second item, as already described, many different arrays 

are available to detect variation in the genome.  

Concerning the third item, many different approaches could be used 

based on the analyzed trait. Analysis of continuous variables requires 

linear model (LM) when data are normal distributed or generalized linear 

model (GLM) for non-normal distributed data and discrete variables. In 

addition, Mixed Models (both linear LMM, and generalized mixed model 

GLMM) are more accurate for representing clustered, and therefore 

dependent, data, arising for example from a large group of individuals; 

these models are largely applied in GWAS to account for population 

stratification and in statistical epidemiological studies (Bolker B.M. et al. 

2009). These methods can model population structure, family structure 

and cryptic relatedness being the main used approach for the analysis of 
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inbred populations. In particular, in a GWAS this method could be applied 

to model phenotypes using a mixture of fixed and random effects. Fixed 

effects include the candidate SNP and optional covariates such as gender 

or age, while random effects are based on a genotypic covariance matrix 

(Price A.L. et al. 2010).  

 
1.5.2 Experimental bias 

All steps in the process of conducting GWAS (e.g. clinical ascertainment, 

DNA sampling and processing, DNA quantification, GWAS genotyping, 

genotype calling and statistical analysis) have the potential for introducing 

bias. In GWAS there are half a million or more opportunities to find a SNP 

that is correlated with disease either by chance or though experimental 

bias. Therefore, by themselves, even very small p-values do not 

necessarily imply a true association has been found (Neale B.M. et al. 

2008).  

 
1.5.3 How to overcome these biases? Multiple testing 

With the number of markers collected in genetic association studies ever 

growing, it is important to correct for random events that falsely appear 

significant (Noble W.S. 2009). Since multiple testing increases the risk of 

false positive findings, or by chance observations, of a p-value less than 

0.05, the level of significance needs to be readjusted (Risch N. et al. 

1996). Methods for correcting for multiple testing in genetic studies 

include, for example, Bonferroni adjustment that considers the number of 

tests, permutation methods for empirical p-value, and the Nyholt method 

that takes into account the LD between the markers (Nyholt D.R. 2004). 

The limit for a significant uncorrected p-value has been calculated to be 

5*10-8 in a GWAS, assuming 1,000,000 independent association tests and 

95% probability of no false positives (Risch N. et al. 1996). 
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1.6 Immunohistochemistry and confocal microscopy 
Immunohistochemistry or IHC refers to the process of detecting antigens 

(e.g., proteins) in cells of a tissue section by exploiting the principle of 

antibodies binding specifically to antigens in biological tissues. It uses 

cells that are broken by the sectioning process and could be used for 

example in the mouse cochlea to detect gene expression and distribution 

in the inner ear. Another approach is to combine Immunofluorescence 

(IMF) with confocal microscopy that use whole-mounts of cochlear tissues 

retaining much of the structure of the tissue but can lead to artifacts due to 

variable access of the antibody to different cells or parts of cells. The high 

resolution provided by confocal microscopy enabled the detailed study of 

the expression of single cells. Therefore, the combination of these two 

approaches provide enough information on the clear and real expression 

of the genes studied. 

 

1.7 Epidemiological studies: environmental and 
lifestyle factors 

Several environmental risk factors such as noise, aging, ototoxic drugs, 

viral and bacterial infections, and interactions between these factors might 

affect hearing function. In particular, it has been suggested the role of 

tobacco, noise exposure, frequent infections, trauma, ototoxic substances, 

alcohol, leisure activities like hunting and shooting, imbalanced diet (low 

fruit and vegetable intake), level of education, etc. in the development of 

non-Mendelian forms of hearing loss, such as ARHL and NIHL (Gaur K. et 

al. 2012, Bovo R. et al. 2011, Huang Q. et al 2010, Zhan W. et al. 2011, 

Van Eyken E. et al. 2007). In epidemiological studies, statistical analysis 

might rely on different models such as GLMM. In this case fixed effects 

(e.g. covariates) are evaluated in addition to random effects such as 

population, medical center, operator, repeated-measures etc. 
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2. MATERIALS & METHODS  
 

2.1 Subjects 
Thanks to the International consortium called G-EAR, subjects coming 

from several isolated villages have been recruited: Carlantino located in 

South Eastern Italy (Bedin E. et al. 2009), Friuli Venezia Giulia Genetic 

Park, characterized by 6 villages located in North Eastern Italy (Nelis M. et 

al. 2009), Korcula, an island in the Adriatic sea (Croatia) (Polasek O. et al. 

2009), Campora and Cardile two isolated villages located in the Cilento 

Nationalʼs park characterized by 2 different isolated villages in South 

Western Italy (Bedin E. et al. 2009), and, Talana, Seulo, Urzulei some 

isolated villages from Ogliastra Genetic Park in central part of Sardinia, 

Italy (Fraumene C. et al. 2006), plus Split an outbred not isolated 

population located on the Dalmatian coast (Croatia). Finally, additional 

samples were coming from Silk Road isolated villages/communities (3 

communities from Ukraine, 10 from Caucasus (Armenia, Georgia and 

Azerbaijan) and 16 from Central Asia (Tajikistan, Uzbekistan, Kyrgyzstan 

and Kazakhstan) (Girotto G. et al. 2011 A). An overall number of 3815  

(aged from 18 to 95 years old) were available for the genetic analysis 

while 4401 (aged from 4 to 95 years old) for epidemiological studies. 

Among all these samples, during my thesis, I was directly involved in 

collecting saliva and performing audiometric evaluation of all Silk Road 

samples (874) and part of those coming from Friuli Venezia Giulia Genetic 

Park (252). All tests were performed using standard portable audiometers 

designed for field studies  (Madsen Micromate 304, GN Otometrics, 

Denmark). Subjects underwent pure-tone audiometry obtained after any 

acoustically obstructing wax had been removed. The analysis of hearing 

function was done calculating the pure-tone average of air-conduction 

(PTA at the lower 0.25, 0.5 and 1 kHz, medium 0.5,1 and 2 kHz, and high 

frequencies 4,8 kHz) (Girotto G. et al. 2011 B).  
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A questionnaire to obtain socio-demographic information, as well as data 

on physical activity (i.e. job, sport, etc.), lifestyle (e.g. smoking, alcohol 

consumption, coffee intake, diet including taste and food preferences, 

etc.), clinical examinations (psychological, neurological, cardiological, 

etc.), clinical chemistry including blood count, more than 20 parameters 

related to drugs intake, diseases presence and other information 

regarding the health status (BMI, bone density, blood pressure, etc.) have 

been collected for each subject. Clear familial forms of severe hearing loss 

have been excluded from the study. 

A problem that is often encountered in both population-based and family-

based GWAS is that of identifying cryptic relatedness and population 

stratification because it is well known that failure to appropriately account 

for both pedigree and population structure can lead to spurious 

association. A number of methods have been proposed for identifying 

relatives in samples from homogeneous populations, such as isolated 

ones. One of them, is based on the use of the kinship coefficients which 

can be written as a function of the IBD-sharing probabilities. When 

pedigrees are known, software programs are available for calculating IBD-

sharing probabilities and kinship coefficients. When pedigrees are partially 

or completely unknown, genome-screen data can be used for estimating 

measures of relatedness. In our case, before running GWAS analyses we 

calculated the genomic kinship by using shared genotype counts as a 

measure of genetic distance between individuals.  

 

2.2 Phenotypes 
For both the analyses we used only the threshold from the better ear, 

defined as the ear with lowest value of hearing loss for each individual and 

the following quantitative traits have been tested: 

• Seven different thresholds (125Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 

and 8 kHz) 

• Pure Tone Average at low, medium and high frequencies: PTAL are 
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defined as the mean between 250Hz, 500Hz, 1000Hz, PTAM as the mean 

between 500Hz, 1000Hz, 2000Hz while PTAH as the mean between 

4000Hz and 8000Hz. In the case of PTAs, when calculating the right and 

the left PTA, we chose the lowest. 

• The first 3 Principal Components (PC1, PC2, PC3) were estimated on all 

frequencies. All these components were adjusted by sex and age. Each 

component describes a different pattern in the data (Van Laer L. et al. 

2010): PC1 is a “size variable” that represents an overall measure of a 

subjectʼs hearing ability, PC2 and PC3 are instead “shape variables”. In 

particular PC2 shows the ratio of hearing between the high and the low 

frequencies and is a measure of the slope of the audiogram, PC3 

contrasts the middle frequencies with the lower and higher frequencies 

and can be considered a measure of the concavity of an audiogram. 

 

2.3 DNA sampling, genotyping and imputation 
All studies had appropriate ethical approval by the Institutional Review 

Board of IRCCS-Burlo Garofolo, (Trieste-Italy) and by the other involved 

members. Consent forms for clinical and genetic studies have been 

signed by all the participants in the study. Blood samples were collected 

and DNA extracted according to standard protocols. After measuring 

quantity and quality of DNA, 3927 samples were genotyped with Illumina 

370k platform (Carlantino, FVG Genetic Park, Cilento, Korcula and Split), 

Affymetrix 500K (Talana) or Illumina 700K (Silk Road). Genotype quality 

control and data cleaning were conducted independently by each study 

group resulting in a final number of 3815 samples. As regards our group, 

genotypes were obtained through our Genomics core facility, while 

imputation to the 2.5M HapMap CEU SNP set v22 was carried out by the 

biostatisticians belonging to the same core facility. 
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2.4 Statistical analysis: quantitative GWAS 1 
In this first analysis, each trait was first linearly regressed against age. 

Being residuals from this regression bell-shaped, data were cleaned from 

outliers following these standard criteria of exclusion (mean +/- 6 SD) and 

normalized with rank normal transformation. I then performed association 

analysis using sex as a covariate and through a mixed model linear 

regression where the random effect was given by the genomic kinship. 

The analysis was implemented in GenABEL (Aulchenko Y.S. et al. 2007) 

package for genotyped SNPs and ProbABEL (Aulchenko Y.S. et al. 2010) 

for imputed data. Meta-analysis was conducted using the inverse variance 

model as implemented in the MetABEL (Aulchenko Y.S. et al. 2007) R 

library. For PC traits fixed effects meta-analysis was conducted where Z-

scores were estimated from p-value and weighted on the sample-size as 

implemented in METAL (Willer C.J., et al. 2010). SNPs with imputation 

quality (Rsq in MACH) less than 0.3 or with less than 30 copies of an 

allele in each population, were excluded. After quality control, 3409 

subjects and approximately 2.2 million SNPs were used for this first meta-

analysis (Girotto G. et al. 2011 B).  

 
2.4.1 Statistical analysis: GWAS2 

I carried out a second analysis on a larger number of 3815 individuals with 

a slight modification of the protocol. As described in Girotto G. et al. 2011 

A, after observing 1) a non-linear relationship between the hearing trait 

and age and 2) age-related audiometric profile between men and women, 

several adjustments procedures were performed. In this light, to better 

adjust for age, a more precise function based on double linear regression 

was applied while to overcome the sex differences, men and women 

datasets were firstly separated, then traits were corrected for age and 

finally merged for both sexes.  

As regards PCs, in order to be more accurate, this correction was applied 

to raw data before computing them (Van Laer L. et al. 2010).  
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2.4.2 Statistical analysis: quantitative GWAS3 
Finally, in a sex-separated analysis, as already described above, I firstly 

separated men and women adjusting for age, then performed the analysis 

in the two different datasets (males and females). 

 
2.4.3 Statistical analysis: qualitative analysis GWAS4  

This association analysis was performed using the same software as the 

quantitative one (see above, section 2.4). Moreover, PTAs already 

calculated in the quantitative analysis have been used to define cases and 

controls as follow: 

Cases were people aged equal or more than 50 years old with PTAH≥ 

40dB while controls those aged equal or more than 50 years old with 

PTAH≤25dB. Before running the analyses, the proportion of cases and 

controls was approximately 1:1 (within the sample size of 1622). Because 

people aged more than 50 years old show generally more hearing 

problems, in order to avoid confounding effects related to the trait and the 

age, we decided to adjust the trait for age. 

 

2.5 Expression studies 
	  
2.5.1 Immunohistochemistry 

A list of 23 candidate genes (DCLK1, GRM8, PTPRD, CMIP, RIMBP2, 

DFFB, KIAA0562/GLYBP, C1orf174, FZD6, GABRG3, CDH13, FOS, 

FAM69A, EVI5, RPL5, SNORA66, SNORD21, ANK2, CSMD1, AMZ2, 

ARSG, SLC16A6, and IRG1) has been created combining data arising 

from the different GWAS. Wild-type mice at postnatal day P4 and P5 

stage from the albino C57BL/6J-Tyrc-Brd or pigmented C3HeB/FeJ inbred 

strains were used for all experiments. The heads of all samples were 

dissected in PBS before fixation for two days in 10% formalin at 4°C, 

washing, dehydrating and embedding in paraffin wax. Embedded samples 

were cut into 8µm thick sections along the sagittal plane. 

Immunohistochemistry was then carried out on slides using the Ventana 
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Discovery machines with the manufacturerʼs reagents (CC1 (cat.no 950-

124), EZPrep (cat.no 950-100), LCS (cat.no 650-010), RiboWash (cat.no 

760-105), Reaction Buffer (cat.no 95-300), and RiboCC (cat.no 760-107) 

and according to the manufacturerʼs instructions.  The DABMapTM Kit 

(Ventana; cat.no 760-124) with hematoxylin counterstain (cat.no 760-

2021) and bluing reagent (760-2037) was used. All antibodies were diluted 

in ʻAntibody staining solutionʼ: 10% fetal calf serum, 0.1% Triton, 2% BSA 

and 0.5% sodium azide in PBS.  The primary antibodies of genes with 

positive staining were: anti-Dclk1 (Abnova, PAB2050, 1:50), anti-Arsg 

(Sigma Aldrich, HPA023245, 1:50), anti-EVI5 (Abgent, AP9168c, 1:10), 

anti-Ptprd (Abcam, ab103013, 1:200), anti-Slc16a6 (Santa Cruz, sc-

51325, 1:20), anti-GlyBP (Abcam, ab28773, 1:100), anti-Grm8 (Abcam, 

ab53094, 1:50), anti-Rimbp2 (Santa Cruz, sc-169182, 1:25), anti-Gabr3 

(Santa Cruz, sc-7371, 1:50), anti-Cadh3 (Abcam, ab36905, 1:200), anti-

Ank2 (Santa Cruz, sc-28560, 1:50) anti-Csmd1 (Santa Cruz, sc-68280, 

1:50) and anti-Irg1 (Santa Cruz, sc-84189, 1:100). Secondary antibodies 

used were Jackson ImmunoResearch biotin-conjugated donkey anti-rabbit 

(711-065-152, 1:100) and Jackson ImmunoResearch biotin-conjugated 

donkey anti-goat (705-065-147, 1:100). For each gene, slides covering the 

entire inner ear for at least three different mouse samples at P5 or P4 

were stained, and the observed expression patterns were only considered 

reliable if present in all three samples. Stained slides were examined and 

images obtained using an AxioCam HRc camera mounted on a Zeiss 

microscope.  Images were then processed in Photoshop CS5 extended. 

 
2.5.2 Whole mount immunofluorescence 

Heads from 5 days old mice (P5) were bisected and inner ears plus bone 

were removed from the skull and then fixed in 4% paraformaldehyde for 2 

hours at room temperature. Subsequently specimens were fine dissected 

in PBS, then washed and permeabilized in 1% PBS/Triton-X-100 (PBT) 

and blocked with 10% sheep serum. Then, they were incubated with the 

primary antibody, goat polyclonal against Csmd1 (N-20), Santa Cruz 
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Biotechnology, cat. no. sc-68280, dilution 1:100) overnight at 4°C. After 

washes with PBT, samples were incubated with anti-goat Alexa Fluor 488 

secondary antibody (Invitrogen, anti-rabbit, diluted 1:300) and 

rhodamine/phalloidin (Invitrogen, diluted 1:100). Samples were mounted in 

Prolong Gold Antifading reagent (Invitrogen). Images were acquired on a 

LSM 510 Meta confocal microscope (Zeiss, Welwyn Garden City). Post-

acquisition image analyses were performed using Adobe Photoshop CS2.  

 

2.6 Epidemiological studies 
Epidemiological analyses for hearing function have been carried out on 

4401 healthy individuals ranging from 4 to 95 years of age. The following 

variables: smoking, consumption of chocolate, coffee, tea, wine, beer, dairy 

products and spirits were taken into account and used as possible 

covariates for the normal hearing function, besides sex and age. All these 

lifestyle/environmental factors have been both analysed as binomial 

(yes/no) and quantitative (e.g. intake) traits. In particular, intake of coffee 

was calculated from 1 to 5 or more cups/day. 

A simple linear regression analysis between hearing function (PTAL, 

PTAM and PTAH) and each of the six lifestyle-variables (smoke, coffee, 

wine, beer, spirits and dairy products) was carried out including age and 

sex as potential confounding variables. In order to find the best fitting 

model and to detect any possible interaction between hearing functions 

and the above mentioned variables, an automated step-wise selection 

process was then used. This is well achieved with the R software (“step” 

function, http://www.r-project.org/). This function fits all the possible 

models by adding and dropping covariates in a given linear or general 

linear model. Moreover, in order to verify if sex and age were interacting 

with the other covariates in the model, we used the Wilcoxon test to 

exclude those that showed significant associations. The significance level 

was set at 5%. 
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As regards ARHL the analysis was performed on 2767 cases and controls 

equally divided, ranging from 50 to 95 years of age. The level of education 

was assessed in five different categories comprehending 1) no education, 

2) elementary school, 3) secondary school, 4) high school and 5) 

university. As far as occupation is regarded, the different jobs were 

clustered in four groups: unskilled manual, skilled manual, skilled non-

manual and, professional work. An additional group consists of retired and 

unemployed people.  

In this case, the main statistical analysis relied on the use of a mixed-

effect model that is more accurate to analyze large group of individuals 

belonging to different populations (see section 1.5.1). Covariates sex, age 

and age-squared were added to the fixed effects of the model, to avoid 

confounding effects due to the strong correlation between the hearing trait 

and these variables. Furthermore population was considered as a random 

effect, in order to account for geographical and cultural differences.  

Correlation between the categorical variables analysed was computed 

using the polychoric correlation technique, implemented in the R software 

(“hector” function). This method is used for estimating the correlation 

coefficient φ between two ordinal variables, in our case the five education 

levels and the professional categories of work. The significance level was 

set at 5%. 
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3. RESULTS  
 

3.1 Genetic factors 
Meta-analyses have succeeded in identifying some GWAS loci associated 

with hearing traits and ARHL, plus several additional ones strongly 

suggestive. As reported in Table 1A in the first quantitative analysis 

(GWAS1) 4 loci were strongly associated with the analyzed traits (max p-

value=3.18*10-7), 10 with p≈10-6 or 10-5 and many others suggestive with 

higher p-values (not shown). In the second quantitative analysis 

(GWAS2), one locus with p-value=7.69E-08, 6 loci with p-value≈10-7 

(Table1B) plus 77 with p-value≈10-6 (not shown) have been identified. 

Finally, in the quantitative study sex separated (GWAS3; Table 1C), 2 loci 

with p-value=4.32*10-8 and 7.03*10-8, 16 with p-value≈10-7 and 150 with p-

value≈10-6 (not shown) were identified. As regards the qualitative analysis, 

GWAS4, (i.e. ARHL; Table 1D) 7 loci with p-value≈10-6 were identified as 

well as others 64 showing a p-value≈10-5 (not shown).  

In all cases, when the most significant hint was located outside of a given 

gene, we selected the closest gene/s among those located in a region of 

200Kb upstream and downstream the most significant SNP. 

Going into details, in GWAS1, the highest hit (p=3.18*10-07) was found at 

4kHz with a SNP in LD with DCLK1 gene, a member of the doublecortin 

family expressed in the ear according to NCBI data 

(http://www.ncbi.nlm.nih.gov/gene/). Other suggestive hits were: 

rs2687481, rs10815873 and rs898967. The first one was detected with 

the lowest p-value (3.22*10-7) at PC1, really close to GRM8 gene, a 

glutamate receptor that inhibits adenylyl cyclase decreasing the formation 

of cAMP (Scherer S.W. et al. 1997). The second one was rs10815873 

located within PTPRD gene; data available from the literature show that 

another member of this gene family plays an important role in the hearing 

system (Goodyear R.J. et al. 2003). The third SNP is located within CMIP 

gene, reported from NCBI (http://www.ncbi.nlm.nih.gov/gene/) as 
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expressed in the ear. Additional interesting associations were detected 

with the following genes: RIMBP2, KIAA056/GLYBP, DFFB, C1orf174, 

FZD6, GABRG3, CDH13, FOS, EVI5, SNORA66, RPL5, SNORD21, 

FAM69A, ANK2, CSMD1, ARSG, AMZ2, SLC16A6.  

After running the first analysis, in GWAS2, a more accurate age correction 

(see section 2.4.1) has been performed, and the analysis carried out on a 

larger sample size as compared to that of GWAS1. The top SNP/gene (p-

value of 7.69*10-08) was within Immunoresponsive 1 homolog (IRG1).  

As regards GWAS3 (Table 1C), the analysis led to the identification of 

very interesting associations separately in males and females; some 

examples are: in the males cohort we detected SMARCA4 gene 

(p=4.3*10-8), a member of the SWI/SNF family of proteins while in the 

females cohort we found MMP8 gene together with others members of the 

matrix metalloproteinase protein family (p-value=1.24*10-07). 

Regarding qualitative analysis (GWAS4), the study has been performed in 

a selected cohort (1622 cases and controls equally divided) leading to the 

identification of 7 SNPs with p-value thresholds of ≈10-6 (Table 1D). One 

possible interesting gene, among those marked by positive hints, is EDN3 

a member of the endothelin family, whose members have been already 

associated with hearing impairment or are expressed in inner ears 

(Uchida Y. et al. 2009, Ida-Eto M. 2001). 
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A

GWAS1

SNP chr position p-value gene Trait NSNP closest genes                                  
(+/- 200 Kb)

rs9574464 13 36314793 3.18E-07 NA 4k 5 NBEA; DCLK1

rs2687481 7 125869122 3.22E-07 NA PC1 9 GRM8

rs10815873 9 8436194 3.35E-07 PTPRD 125 2

rs898967 16 81566780 9.64E-07 CMIP 1k 9

rs10848114 12 130979355 4.75E-06 RIMBP2 PC1 4

rs6673959 1 4123117 7.97E-06 NA PTAH 8 DFFB;KIAA0562/GLYBP       
C1orf174

rs1110115 8 104098620 9.54E-06 NA 2k 5 FZD6

rs7182802 15 27347206 9.94E-06 GABRG3 PC1 6

rs12758887 1 93394055 8.68E-06 FAM69A PTAH 3 EVI5;RPL5        
SNORD21;SNORA66

rs17195859 16 83318996 2.07E-05 CDH13 500 12

rs11159133 14 75759172 2.98E-05 NA PCA3 0 FOS

rs17045059 4 113775047 7.81E-05 ANK2 125 2

rs10091102 8 3060466 8.75E-05 CSMD1 PC1 2

rs8077384 17 66163231 9.66E-05 NA 500 0 AMZ2;SLC16A6                          
ARSG

 
B

GWAS2

SNP chr position p-value gene Trait NSNP closest genes                 
(+/- 200 Kb)

rs614171 13 77516752 7.69E-08 NA PC1 5 IRG1

rs1328967 6 47810090 2.54E-07 NA PTAM 12 OPN5;PTCHD4

rs13022609 2 36269425 3.21E-07 NA PC1 4 NA

rs1420134 7 29530473 5.91E-07 CHN2 X2K 5

rs2170756 4 10968348 6.83E-07 NA X8K 1 NA

rs11731909 4 76421029 7.72E-07 RCHY1 PC3 0

rs7617144 3 43848450 8.19E-07 NA X8K 9 ABHD5;ANO10
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C

GWAS3

SNP chr position p-value gene trait NSNP closest genes                
(+/- 200 Kb)

rs3786724 19 11166791 4.32E-08 SMARCA4 500_M 0

rs11711388 3 194759980 7.03E-08 NA 6K_M 0 XXYLT1; ACAP2

rs6590986 11 102598859 1.24E-07 MMP8 PTAL_F 51

rs2717795 7 148195053 1.47E-07 NA PTAH_F 7 CNTNAP2;C7orf33

rs3002330 9 92149146 2.32E-07 NA PC2_F 5 SEMA4D; GADD45G

rs12868445 13 105831211 2.45E-07 NA 6K_F 22 NA

rs9390779 6 102209081 4.30E-07 GRIK2 PC2_F 43

rs7844675 8 70961514 4.31E-07 PRDM14 250_M 1

rs3769702 2 99195095 4.87E-07 INPP4A PTAL_F 2

rs260406 5 1890233 5.72E-07 IRX4 2K_M 0

rs10171479 2 161596138 5.83E-07 NA 8K_M 72 RBMS1

rs9319217 13 25973403 5.99E-07 ATP8A2 4K_M 5

rs2314305 5 154449947 6.76E-07 NA 8K_F 0 KIF4B

rs2710832 4 169409002 7.31E-07 DDX60L PC1_F 4

rs6903872 6 37728547 7.40E-07 NA PTAL_F 3 MDGA1; ZFAND3

rs701554 13 103607804 8.25E-07 NA PTAH_F 7 METTL21EP; SLC10A2

rs4356243 11 59596197 8.44E-07 GIF 8K_F 13

rs10917398 1 23927205 9.76E-07 MDS2 6K_F 5
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D
GWAS4

SNP chr position p-value gene trait NSNP closest genes                
(+/- 200 Kb)

rs156248 20 58013270 2.69E-06 NA ARHL 0 EDN3; PIEZO1P1

rs9596486 13 51837299 3.02E-06 FAM124A ARHL 5

rs12648011 4 25956191 3.38E-06 NA ARHL 2 C4orf52

rs16977831 15 58189489 4.58E-06 NA ARHL 0 ALDH1A2

rs4974419 3 127124096 4.61E-06 NA ARHL 4 C3orf56; TPRA1

rs7341233 6 108940280 7.84E-06 FOXO3   
SUMO2P8 ARHL 3

rs7236648 18 56761318 8.43E-06 NA ARHL 0 SEC11C

 
 
 
Table 1. List of genes/loci selected from the four studies with details of lowest p-

values. 1.A, 1.B, 1.C and 1.D show candidates genes from GWAS1, GWAS2, GWAS3 

and GWAS4, respectively. In Table 1C the column trait distinguishes between top hints 

obtained in females (F) and those in males (M). Genes in bold belong to the list of the 23 

candidates: in red are those expressed in the cochlea while in black those with negative 

staining. 

SNP: referral SNP with the lowest p-value, Chr: chromosome position, position: genomic 

position, p-value: p-value, gene: gene related to the referral SNP, trait: trait in which the 

association is found, NSNP: overall number of SNPs showing an association (p-value 

equal or lower than 5*10-5) within the locus marked by the referral SNP, closest gene: 

closest gene/genes in a region of ±200 Kb upstream and downstream the referral SNP
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3.2 Expression studies 
GWAS data arising from the meta-analyses were used to define a first list 

of 23 candidate genes to be included in an expression analysis by 

immunohistochemistry. In particular, combining results coming from 

GWAS1 and GWAS4 we generated a list of 11 genes detected in both 

studies (AMZ2, ARSG, DFFB, C1orf174, EVI5, FAM69A, 

KIAA0562/GLYBP, RPL5, SLC16A6, SNORA66, SNORD21). Additional, 

11 candidates have been selected among the top hints in the GWAS1 

(DCLK1, GRM8, PTPRD, CMIP, RIMBP2, GABRG3, CDH13, ANK2, 

CSMD1, FOS, FZD6). Finally, the last gene corresponds to the most 

significant hint in GWAS2 (IRG1).  

Results from these studies demonstrated specific cochlear expression for 

13 of them, while in the remaining 10 cases results were not conclusive 

showing either no detectable labeling (Amz2, Rpl5 and Cmip), or 

widespread labeling that appears non-specific (Dffb, Fzd6 and Fos).  Two 

different antibodies were tested for Dffb, Amz2 and Cmip, but no specific 

pattern of labeling was seen with either. In addition, the RNA genes 

Snora66 and Snord21 were tested by in situ hybridisation using custom-

designed Locked Nucleic Acid probes, but no labeling was seen in the ear. 

Finally, for two of them (C1orf174 and FAM69A), antibodies were not 

available. All genes under investigation gave the same levels of staining 

from the apex to the base of the cochlea and for most of them data 

regarding the expression in the vestibular system have been also 

obtained. A summary of the distribution of labeling is given in Table 2 and 

according to the inner ear topography we could divide the pattern of 

expression into three different categories.  

 

1) Expression in marginal cells of the stria vascularis: 

Doublecortin-like kinase 1 (Dclk1) displays a strong pattern of expression 

in the marginal cells including projections towards the basal cells in the 

stria vascularis (Fig.1 A,B). In the vestibular system, staining of Dclk1 

could be seen in the dark cells adjacent to the crista (Fig.6 A,B).  
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2) Expression in the hair cells of the organ of Corti: 

Arylsulfatase G (Arsg) shows striking specific expression at the top of 

sensory hair cells in the organ of Corti (Fig.1 C,D). No staining in the 

vestibular system has been detected.  

Solute carrier family 16, member 6 (Slc16a6) shows expression at P4, at 

the top of the outer hair cells in the organ of Corti (Fig.1 E, F), but weak 

staining is also present in the hair cells and supporting cells of the 

maculae and cristae of the vestibular system (Fig.6 C, D). The staining of 

this gene is variable between mice of different genetic backgrounds: it is 

very clear in outer hair cells of C3HeB/FeJ mice (n=4), while a more faint 

and less specific pattern of expression was detected in C57BL/6J-Tyrc-Brd 

mice (n=4). 

Csmd1, a CUB and Sushi multiple domains 1, expression could be noted 

in the outer and inner hair cells in the organ of Corti (Fig.2 A, B). To better 

understand the precise localization of this expression, a confocal 

experiment has been also performed. The expression is strongly localized 

in the stereocilia of the inner hair cells but a faint staining is also present in 

the stereocilia of the outer hair cells (Fig.2 E). Heavy expression was also 

noted in the hair cells in the maculae and cristae of the vestibular system 

(Fig.2 C, D).  

Gabrg3 is a member of the GABA receptor gene family, a group of 

proteins involved in the GABAergic neurotransmission of the mammalian 

central nervous system. It shows a striking specific expression in the outer 

and inner hair cells. In particular, the outer hair cells have the strongest 

staining (Fig.2 F,G).   

3) Expression in multiple cell types in the cochlea 

Protein tyrosine phosphatase, receptor type, D (Ptprd) is expressed in the 

outer as well in the inner hair cells, in the stria vascularis, in the cells of 

Köllikerʼs organ and in the spiral ganglion (Fig.3 A, B, C). Expression was 

also noted in the hair cells and supporting cells in the cristae and maculae 

of the vestibular system (Fig.6 E, F). Faint staining is also present in the 

neural dendrites.  
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Ankyrin 2, a member of the ankyrin family, group of molecules that link the 

integral membrane proteins to the underlying spectrin-actin cytoskeleton. 

Ank2 expression could be noted in the Hensenʼs cells, Deitersʼ cells and 

Pillar cells and in the Reissner's membrane (Fig.3 G, H). 

Cdh13 is a member of the cadherin superfamily. Cdh13 is expressed in 

cells of Claudius and Hensen cells, outer and inner hair cells, Deitersʼ cells 

and pillar cells, cells of Kölliker's organ, interdental cells and spiral limbus. 

Staining was also noted in the marginal cells of the stria vascularis, in the 

Reissner's membrane, spiral prominence and external sulcus cells (Fig 3 

I, L).   

Glutamate receptor, metabotropic 8 (Grm8) gave positive signals in the 

outer and inner cells in the organ of Corti, cells of Claudius, Hensenʼs cells 

as well as in the cells of Köllikerʼs organ (Fig.4 A, B, C, D). Expression 

could be seen in the spiral ganglion neurons. Staining of this protein was 

also noted in the root cells, in the spiral prominence and in the stria 

vascularis. Heavy expression was present in the hair cells and supporting 

cells in the maculae and cristae of the vestibular system (Fig. 7 A, B). As 

in the cochlea, neurons in the vestibular system showed strong 

expression of Grm8. 

RIMS binding protein 2 (Rimbp2) could be noted in the outer and inner 

hair cells in the organ of Corti, in the lateral edge of the tectorial 

membrane, root cells, spiral prominence, spiral ganglion and in the 

marginal and intermediate cells of the stria vascularis (Fig.4 E, F, G, H). 

Heavy expression was also noted in the hair cells and supporting cells in 

the maculae, and cristae in the neural dendrites of the vestibular system. 

(Fig.7 C, D). 

Centrosomal protein 104kDa (GlyBP/KIAA0562) expression could be seen 

in the outer and inner hair cells and in the Hensensʼ cells. Strong 

expression could also be seen in the spiral prominence, in the tectorial 

membrane and in the basilar membrane (Fig.5 A, B, C, D). In addition, 

discreet patches of GlyBP expression could be seen in the hair cells and 
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supporting cells in the maculae and cristae and in supporting cells 

adjacent to the sensory patches of the vestibular system (Fig.7 E, F). 

The expression of Evi5 could be noted in the outer and inner cells in the 

organ of Corti, in Deitersʼ and pillar cells, cells of Köllikerʼs organ, spiral 

ganglion (neuronal dendrites), root cell processes, in the spiral 

prominence and in the stria vascularis. A weak staining could be also 

seen in the cells of Claudius and Hensen cells (Fig.5 E, F, G). Heavy 

expression was also noted in the hair cells and in the supporting cells in 

the maculae and in the cristae of the vestibular system. Strong staining is 

also present in the neural dendrites (Fig.7 G, H).   

Finally, Irg1 expression could be noted in the nuclei of the outer and inner 

cells in the organ of Corti, in the root cells and in the spiral prominence 

(Fig.3 D, E, F). Expression was also noted in the hair cells and supporting 

cells in the maculae and cristae and in the neural dendrites of the 

vestibular system (Fig.6 G, H).  
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Gene ihc ohc rc sp tm bm sv pc Dc cC Hc Ko sg
Dclk1 +
Grm8 + + + + + + + + +
Ptprd + + + + +
Rimbp2 + + + + + + +
GlyBP + + + + + +
Gabrg3 + +
Cdh13 + + + + + + + + +
Evi5 + + + + + + + + + + +
Ank2 + + +
Csmd1 + +
Arsg + +

Slc16a6 +
Irg1 + + + +

 

Table 2. List of genes with specific labeling patterns in the cochlea with a summary 

of expression results.  

ihc, Inner hair cells; ohc, outer hair cells; rc, root cells; sp, spiral prominence; tm, tectorial 

membrane; bm, basilar membrane; sv, stria vascularis; pc, pillar cells; Dc, Deiter cells; 

cC, cells of Claudius; Hc, Hensen cells; Ko, Köllikerʼs organ; sg, spiral ganglion, + 

indicates expression is detected. 
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Figure 1. Immunohistochemistry in the mouse cochlea at P5 (P4 for Slc16a6 gene) 

Brown signals indicate positive staining. A, B) Expression of Dclk1, showing intense 

staining in the marginal cells of the stria vascularis; C, D) Expression of Arsg is localized at 

the top of sensory hair cells in the organ of Corti (bracket in C, arrowheads in D). E, F) 

Hair cells at P4, show staining in outer hair cells of Slc16a6 (bracket in E, arrowheads in 

F). Note that these samples are from the C3HeB/FeJ strain, which is pigmented. Scale bar 

indicates 20µM. 
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Figure 2. Immunohistochemistry and confocal microscopy in the mouse cochlea at 

P5 

Brown signals indicate positive staining. A, B) Expression of Csmd1 is localized at the top 

of sensory hair cells in the organ of Corti; C, D) Heavy expression of Csmd1 was also 

noted in the hair cells in the cristae (C) and in the maculae (D) of the vestibular system. E) 

confocal expression shows a strong staining localized in the stereocilia of the inner hair 

cells and a faint staining is also present in the stereocilia of the outer hair cells. The red 

labels indicate the expression of rodhamin phalloidin, which marks the actin filaments in 

the stereocilia. The green labels indicate the expression of the Csmd1 protein and the 

yellow labels indicate the merge between Csmd1 and phalloidin, and therefore their actual 

co-localisation in the stereocilia bundles (E).	   F), G) Gabrg3 shows a striking specific 

expression in the outer and inner hair cells (arrowheads in G). In particular, the inner hair 

cells have the strongest staining. Scale bar indicates 20µM. 
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Figure 3. Immunohistochemistry in the mouse cochlea at P5      
Brown signals indicate positive staining.  A, B, C) Ptprd is localized in hair cells of the 

organ of Corti (bracket in A, arrowheads in C), in the marginal cells of the stria vascularis 

(arrow in A, and arrowheads in B), in the spiral ganglion and in the supporting cells of the 

Köllikerʼs organ; D, E, F) Expression of Irg1 showing staining in nuclei of hair cells (bracket 

in D, arrowheads in F), root cells and spiral prominence (indicated by arrow in D and 

arrowheads in E). G) H) Ank2 could be noted in the Hensenʼs cells, Deitersʼ cell and pillar 

cells and in the Reissner's membrane (arrowheads in G). I) L) Cdh13 is expressed in cells 

of Claudius and Hensen cells, outer and inner hair cells, Deitersʼ cells and pillar cells, cells 

of Kolliker's organ, interdental cells and spiral limbus. Staining was also noted in 

Reissner's membrane, stria vascularis, spiral prominence and external sulcus cells 

(arrowheads in I, bracket in L). Scale bar indicates 20µM. 
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Figure 4. Immunohistochemistry in the mouse cochlea at P5   

Brown signals indicate positive staining. A, B, C, D) Staining of Grm8 showing expression 

throughout the cochlea, most notably the root cells (curly brackets in A and B) and root cell 

processes (asterisks in A and B), the stria vascularis (open arrowhead in A), the hair cells 

(brackets in A, arrowheads in D) and also in the spiral ganglion neurons (double asterisks 

in A); E, F, G, H) Expression of Rimbp2 showing staining in hair cells (bracket in E, 

arrowheads in F), tectorial membrane (double arrowhead in E), the stria vascularis (open 

arrowhead in E) and in the spiral prominence (arrow in E) and root cell processes 

(asterisks in E and H). Scale bar indicates 20µM.  
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Figure 5. Immunohistochemistry in the mouse cochlea at P5  

Brown signals indicate positive staining. A), B, C, D) Expression of GlyBP showing 

staining in hair cells (bracket in A, arrowheads in B), tectorial membrane (double 

arrowhead in A), root cells (curly brackets in A) and basilar membrane (asterisk in A and 

B). E, F, G) Staining of Evi5 localized throughout the cochlea, including hair cells (bracket 

in E, arrowheads in F) and spiral prominence and stria vascularis (arrow and open 

arrowhead in A respectively, G). Scale bar indicates 20µM. 

 



	   40	  

 

Figure 6. Immunohistochemistry in the mouse vestibular system at P5   

Brown signals indicate positive staining. A, B) Expression of Dclk1, showing staining in the 

dark cells of the crista (arrow, A) and in supporting cells of the macula (B); C, D) Slc16a6 

showing a weak staining in the hair cells and supporting cells of the cristae (C) and 

maculae (D) of the vestibular system. E), F) Staining of Ptprd in the hair cells and in the 

supporting cells of the cristae (E) and the maculae (F) of the vestibular system and a faint 

staining in the neural dendrites (asterisk, E); G), H) Expression for Irg1 is clear in the hair 

cells and in the supporting cells in the cristae (G) and maculae (H) and in the neural 

dendrites of the vestibular system (asterisks in G and H). Scale bar indicates 20µM. 

 

 



	   41	  

 
Figure 7. Immunohistochemistry in the mouse vestibular system at P5   

Brown signals indicate positive staining. A, B) Strong staining of Grm8 is present in the 

hair cells and in the supporting cells in the cristae (A) and in the maculae (B) of the 

vestibular system as well as in the neural dendrites (asterisks in A and B); C, D) 

Expression of Rimbp2 showing staining in the hair cells and in the supporting cells in the 

cristae (C) and in the maculae (D) as well as in the neural dendrites of the vestibular 

system (asterisks in C and D); E, F) GlyBP expression could be seen in the hair cells, in 

the dark cells and in the supporting cells in the cristae (E) and in the maculae (F) of the 

vestibular system. G, H) Staining of Evi5 is present in the hair cells and in the supporting 

cells in the cristae (G) and in the maculae (H) of the vestibular system and in the neural 

dendrites (asterisks in G and H). Scale bar indicates 20µM. 
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3.3 Environmental/lifestyle factors 
Among a series of analyzed variables such as smoking, drinking of spirits 

(e.g. yes/no), chocolate, tea, wine, beer, dairy products, coffee, and coffee 

intake (2-3 cups per day) only the last two showed a significant 

association with better hearing function in four out of ten populations 

investigated. In particular, coffee drinking was associated with better 

hearing at low and high frequencies (Figure 8; P=0.006 in Southern Italy, 

P=0.017 in Azerbaijan, P=0.016 in Tajikistan and P=0.038 in Sardinia).  

 

 
Figure 8. Coffee drinking and hearing trait	  	  

Boxplots represent hearing trait (PTAL and PTAH adjusted for sex and age), expressed 

in decibels (dB) along the y-axes referred to coffee-drinkers (labelled “yes”) and coffee 

non-drinkers (labelled “no”) on the x-axis. The difference in hearing ability at PTAL 

between coffee-consumers and non-drinkers is reported in four communities: Azerbaijan 

(A), Tajikistan (B), Southern Italy (C) and for PTAH in Sardinia (D). Notice that lower 

values correspond to better hearing. 
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As regards the intake of coffee (number of cups/day) we found an 

association between an intake of 2/3 cups/day (P=0.01, P=0.003, 

respectively) and better hearing at high frequencies (Figure 9). No 

association was found in the other populations, neither with other 

substances.  

' 

	  
	  
Figure 9. Coffee intake and hearing function 

Blue line indicates the average of the hearing profile at PTAH for coffee consumers in the 

four populations where the association was detected. Red line shows the average of 

PTAH in non-consumers group. 

 

On ARHL trait, educational/occupational factors have been tested. An 

association between education level and ARHL was found. Moreover, 

after detecting a suggestive disproportion in the distribution of cases 

across education levels, the association was tested using a mixed logistic 

regression model. Thanks to this method, we were able to overcome the 

complex structure of the data and to increase the statistical power. After 

excluding people with missing values, the overall number of people 

included in each categories was: 44 with no education, 918 with primary 

school, 863 with secondary school, 556 with high school and 185 with 
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university. The distribution of cases and controls is represented in Figure 

10. The higher percentage of cases mainly belong to lower levels of 

education. For this reason we decided to better investigate any 

association between ARHL and the level of education. In fact, a statistical 

significant association between ARHL and education was detected (lowest 

P=0.0003). Moreover, people with no education showed a higher risk of 

developing the disease as compared with people with a higher education 

(the difference between the levels has P<0.001). Several explanations 

could be taken into account including individual jobs (classified as 

unskilled manual, skilled manual, skilled non-manual and, professional 

work); in fact a strong correlation (φ>0.60) between a noise-exposed job 

and level of education was also found. 

12%!

82%!

41%!

83%!
79%!

 
Figure 10. ARHL and level of education 

The barplot shows the percentage of cases (dark grey) and controls (light grey) 

for each level of education considered. Cases are prevalent among lower 

education, while controls belong mostly to higher education levels. 
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4. DISCUSSION 
 

4.1 Discussion genetics and expression studies 
GWAS became the tool of choice for the identification of genes for 

quantitative and qualitative traits, since they are able to analyze large 

amounts of data. By this way it is possible to identify common variants 

resulting from very old mutations, each one adding to the risk of the trait in 

an individual. Moreover, the use of genetic isolates largely increases the 

possibility of detecting rare variants.  

Despite recent progress, almost nothing is known about the molecular 

bases of variation of normal hearing or ARHL, apart from genes identified 

as being directly involved in HHL and one gene recently described for 

ARHL in human (Friedman R.A. et al. 2009). Here, four different kinds of 

GWAS have been performed: three on quantitative trait (one sex 

separated) and one on qualitative trait (ARHL).  This multi-analyses 

strategy was based on the following considerations: 1) enlarge the sample 

size in order to increase the statistical power of the analysis (from GWAS1 

to GWAS2), 2) define a more precise age correction based on our 

experience (from GWAS1 to GWAS2), 3) check for the possible difference 

in hearing ability between male and females (GWAS3), and finally 4) focus 

on ARHL (GWAS4).  

In order to further support our GWAS data, a first list of 23 candidate 

genes has been defined to be included in the expression studies in the ear 

by immunohistochemistry. Results showed that 13 of them are clearly 

expressed in the mouse cochlea. 

These findings suggest that integrating gene expression in specific cell 

types within the cochlea of a series of genes identified by GWAS may be 

an effective filtering and discovery approach, allowing one to uncover 

novel weakly associated genetic variants.  

Going into details, among the most relevant genes identified for hearing 

function, the encoded protein of DCLK1 is involved in several different 
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cellular processes, including neuronal migration in the developing brain 

and in maturation of nervous system (Lin P.T. et al. 2000). All of these 

mechanisms could be interesting on hypothesizing an important role of 

this gene in the development of sensitive neurons that we know essential 

for the hearing function. The expression pattern observed for this gene is 

clearly localized into the marginal cells of the stria vascularis into the 

cochlea. Because the stria vascularis is essential for the secretion of (K+) 

into the endolymph and for maintaining its associated endocochlear 

potential (i.e. cochlear power supply), this gene could control the 

expression of ion channels essential for endolymph production. For this 

reason, variants in this gene might alter the endolymph homeostasis, a 

feature that enhances the electrochemical gradient across the top of hair 

cells, making them more sensitive. 

Another interesting gene is PTPRD, a member of the protein tyrosine 

phosphatase (PTP) family. PTPs are known to be signaling molecules that 

regulate a variety of cellular processes including cell growth, 

differentiation, mitotic cycle, and oncogenic transformation. Moreover, 

studies of homologous genes in others species suggest the role of PTPs 

family in promoting neurite growth and regulating neurons axon guidance, 

both mechanisms important for neuronal development (Burgoyne A.M. et 

al. 2009). PTPRD belongs to the same family of proteins that includes 

PTPRQ that, if mutated, causes autosomal recessive non-syndromic 

hearing impairment (Shahin H. et al. 2010). Moreover, Ptprq is expressed 

throughout the lifetime of most hair cells in hair bundles in the mouse 

(Nayak G. et al. 2011) and is required for formation of the shaft connectors 

of the hair bundle, the normal maturation of cochlear hair bundles, and the 

long-term survival of high-frequency auditory hair cells (Goodyear R.J. et 

al. 2003). A similar role might be hypothesized on the basis of the present 

results for the PTPRD gene. 

Another interesting gene is GRM8 a member, together with GRM7, of the 

group III of metabotropic glutamate receptors (GRMs) family that are 

neurotransmitter receptors (Cartmell J. et al. 2000). This family has been 



	   47	  

divided into three groups on the basis of sequence homology, putative 

signal transduction mechanisms, and pharmacologic properties (Friedman 

R.A. et al. 2009, Scherer S.W. et al. 1997). GRM8 and GRM7 proteins 

show 87% of homology and 76% of identity using BLAST analysis 

(Friedman R.A. et al. 2009) and GRM7 has been recently reported to be a 

candidate for involvement in ARHL (Friedman R.A. et al. 2009; Schulz 

H.L. et al. 2002). Consequently the strong expression of Grm8 in the 

mouse cochlea but also in the spiral ganglion, supports a role for this 

gene. Grm8 is located close to the recessive deafness loci DFNB14 and 

DFNB17 on chromosome 7, but falls outside of the reported loci 

(Mustapha M. et al. 1998, Greinwald J.H. et al. 1998).  

Additional strong biological candidates are: RIMBP2, GABRG3 and 

CSMD1. RIMBP2 is a member of a family of proteins that act as binding 

partners of the presynaptic active zone proteins RIMs (Mittelstaedt T. et 

al. 2007) as well as for voltage-gated Ca2+-channels, such as CACNA1B 

and CACNA1D, the latter already known to be involved in deafness (Baig 

S.M. et al. 2011). In this light, the strong staining of this protein in the 

organ of Corti as well as in root cells, root cell processes and in the spiral 

prominence and the possible interaction with CACNA1D could 

consequently indicate an important role in hearing function. RIM-binding 

proteins (RIM-BPs) were suggested to form a functional link between the 

synaptic-vesicle fusion apparatus and Ca2+ channels (Mittelstaedt T. et al. 

2007). Because the influx of (Ca2+) ions is fundamental to depolarize the 

hair cell and to stimulate the release of neurotransmitter at the basal pole 

of the hair cells (Sziklai I. et al. 1996), any mutations in RIMBP2 could 

interfere with synaptic activity. Interestingly, RIMBP2 maps within the 

DFNA41 locus associated with dominant-inherited progressive hearing 

loss, very close to the marker showing the highest lod score (Blanton S.H. 

et al. 2002).  

GABRG3 is a gamma-aminobutyric acid (GABA) A receptor, gamma 3. 

Very interestingly, expression studies already demonstrated a reduction of 

Gabrg3 expression levels in middle aged, old mild and severe presbycusic 
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mice when compared to young adult mice (Friedman R.A. et al. 2009). In 

addition, other members of this family have already been associated with 

hearing loss (Maison S.F. et al. 2009, Dong S. et al. 2010). Moreover, 

GABAergic component of the olivocochlear system contributes to the long-

term maintenance of hair cells and neurons in the inner ear (Maison S.F. 

et al. 2006). The expression pattern of this gene very well localized in the 

inner and outer hair cells of the cochlea and all the literature findings 

reported above, further increase the importance of this gene as potentially 

involved in ARHL. 

Also found with the lowest p-value at PC1 was CSMD1, a CUB and Sushi 

multiple domains 1. Analysis of Csmd1 mRNA expression by in situ 

hybridization and immunolabeling of neurons indicates that the primary 

sites of synthesis are the developing CNS and epithelial tissues (Kraus 

D.M. et al. 2006). Despite this, the immunohistochemistry analysis of this 

gene in the ear showed a clear staining localized in the stereocilia of the 

hair cells in the organ of Corti. The stereocilia bundles are sensory hairs 

linked each other with filamentous connections that led to the opening and 

the closing of the channels near the top of the hair cells. Because many 

molecules expressed in the stereocilia have already been related with 

hearing loss, we hypothesize that this gene, if mutated, could be 

associated with hearing impairment. Very interestingly a linkage study 

carried out on HHL identified a pedigree with non-syndromic deafness due 

to a homoplasmic mitochondrial mutation whose phenotype was modified 

by a locus defined by a marker which is within CSMD1 gene 

(Bykhovskaya Y. et al. 1998). In support of this, it is very well known that 

mitochondrial DNA (mtDNA) mutations have been implicated in various 

age-related diseases such as ARHL. In fact, experimental evidence 

suggests that mitochondrial dysfunction associated with reactive oxygen 

species (ROS) plays a central role in the aging process of cochlear cells 

(Someya S. et al. 2010.).  

Little is known about GlyBP/KIAA0562, a gene primarily associated with 

PTAH. It is expressed in the hair cells and in the border cells of the organ 
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of Corti, as well as in the basilar membrane and in the tectorial 

membrane. The inner ear is responsible for transforming the mechanical 

energy of the sound waves into electrical stimuli, and its function relies 

critically on the integrity of the extracellular matrix of the tectorial 

membrane and the basilar membrane in order to achieve proper 

mechanical stimulation of the cochlear sensory cells. For this reason, 

variants/mutations in this gene might affect this function (Dror A. et al. 

2010).  

Found to be principally associated at low frequencies were ARSG and 

SLC16A6 that are located in the same locus. ARSG is a gene involved in 

hormone biosynthesis, modulation of cell signaling, and degradation of 

macromolecules. This protein is strictly localized to the apical surface of 

the outer and inner hair cells. Because the cochlear hair cells translate the 

mechanical forces evoked by sound into an electrical signal, any variant in 

this gene could alter the sensitivity of hearing. SLC16A6, belongs to the 

solute carrier (Slc) family, which includes several members encoding 

anion transporters and related proteins. Several members of this family 

have already been associated with different forms of deafness (Liu X.Z. et 

al. 2003). GWAS findings, coupled with the restricted expression of 

Slc16a6 at the top of outer hair cells in a specific mouse background, 

further support a relevant role of this gene in hearing function. Because 

the cochlear amplifier relies on an active process located in the outer hair 

cells, variants of this gene might cause a change in the amount of 

amplification provided by these hair cells.  

Two additional genes detected at low frequencies (125 Hz and 500Hz) are 

ANK2 and CDH13, both clearly expressed in specific cells type in the 

cochlea. Unfortunately, no data are provided about hearing function/loss in 

K/O mice models, apparently (Scotland P. et al. 1998, Hebbard L.W. et al. 

2008). In particular, members of the Ankyrinʼs family link many different 

proteins like the TRPN proteins and a member of the TRPN family 

(TRPA1 channel) which has 17 ankyrin repeats, is expressed in 

mammalian inner ear hair cells and seems to be a candidate for the 
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mechanosensitive channel responsible for hearing (Gaudet R. et al. 2008). 

As regards cadherins, they are calcium dependent cell adhesion proteins 

and they preferentially interact with themselves in a homophilic manner in 

connecting cells (El-Amraoui A. et al. 2010). They have already been 

associated with hearing loss, most likely playing a fundamental role in the 

tip-link between the hair bundle of the hair cells (Sotomayor M. et al. 

2010).  

EVI5 gene, found to be associated with the 2kHz threshold, encodes a 

protein recently reported (Faitar S.L. et. 2005) as a novel centrosomal 

protein that binds to alpha and gamma tubulin, essential components of 

microtubules. Moreover, tubulin isoforms are enhanced in sensory hair 

cells and five different supporting cells (inner and outer pillar cells, Deiters 

cells, cells of Kölliker's organ, and cells of the tympanic covering layer) 

(Tannenbaum J. et al. 1997). Thus, the expression throughout the cochlea 

and in particular in the hair cells, might indicate EVI5 protein as an 

important player in translating mechanical forces evoked by sound into an 

electrical signal. 

Finally, we should consider IRG1, whose expression is strictly localized in 

the nuclei of the cells of the organ of Corti and in the root cells. This 

specific pattern of expression might suggest an important role in 

regulating hearing function. 

Interestingly, among genes identified to be associated with hearing in 

males we should mention SMARCA4, which belongs to a family of 

proteins with helicase and ATPase activities. On the contrary, in females 

MMP8 was detected. It belongs to the matrix metalloproteinases family, 

whose members are very well known to play a significant role in inner ear 

structure and function (Kundu S. et al. 2012). For example, a 

polymorphism in MMP1 has been also demonstrated to increase risk of 

sudden deafness in Korean population (Nam S.I. et al. 2011). Moreover, 

Hu et al. also demonstrated that in rats, MMPs and their related genes 

participate in the regulation of cochlear responses to acoustic 

overstimulation and that the modulation of MMP activity can serve as a 
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novel therapeutic target for the reduction of noise-induced cochlear 

damage (Hu B.H. et al. 2012). The most significant hints mark different 

genes in females as compared to males further supporting the possible 

role of specific gender factors such as hormones, jobs, etc.               

As regards qualitative analysis, considering the p-value, the sample size 

and the lack of immunohistochemistry data, I consider them as preliminary 

ones.  They need to be further replicated or obtained in even more large 

cohorts.  Despite this, EDN3 gene is worth to be mentioned as well as the 

absence of genes known to involved in aging processes.  

In conclusion, our approach clearly confirms the usefulness of combining 

candidate gene data from GWAS with expression studies to further 

support the role of novel genetic associations including those with weak 

effects, which cannot be distinguished from spurious associations (due to 

low power) using a standard GWAS approach alone. In this light, the 

specific expression patterns of many GWAS candidate genes suggests 

that the standard correction for multiple testing may lead to cautious calls 

of significance. Even when SNPs show only suggestive association rather 

than significant association with the trait, consideration of expression data 

can be used in a Bayesian approach to assessing the significance of the 

observations.  

 

4.2 Discussion Environmental/lifestyle factors 
An association between coffee drinking/intake and a better hearing 

function in four different populations/communities has been identified and 

explanations could be many. Recently, experiments in animal models 

have shown that trigonelline, one of the main active compound of coffee 

extract (Allred K.F. et al. 2009), or other coffee compounds can potentially 

facilitate recovery from pyridoxine-induced auditory neuropathy (Hong 

B.N. et al. 2009). Another possible mechanism of action could be related 

to coffeeʼs high content of various polyphenols which play a role against 

several oxidative stress related diseases including hearing loss and 

presbycusis (Ewert D.L. et al. 2012, Cascella V. et al. 2012, Sergi B. et al. 
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2004).  Although the coffee antioxidant properties could depend on many 

different factors including the bean type and the roasting process, a recent 

study reported that coffee contains higher antioxidant concentration as 

compared to red wine, herbal teas, cocoa etc. (Krell J. et al. 2012).  In this 

light, it is possible to hypothesize that antioxidants contained in the coffee 

interacts with the specific environment/genetic background of these four 

populations influencing in some way the hearing function. Moreover, the 

beneficial effect of coffee on hearing functions might go beyond anti-

oxidation, thus involving mechanisms not yet known as suggested by 

recent data underlying the controversial role of antioxidants in ARHL (Sha 

S.H. et al. 2012, Gopinath B. et al. 2011). As far as coffee intake is 

concerned, our findings suggest that not only the consumption but also an 

optimal quantity (2-3 cups per day) of coffee is related to better auditory 

function. In this light, results could suggest that the consumption of more 

than 3 cups per day does not improve the audiometric profile. 

Interestingly, in the four communities there is a different way of preparing 

and drinking coffee. In particular, Italians drink mostly espresso while in 

Caucasus and Central Asia people mainly drink Turkish or instant soluble 

coffee. Thus, the positive effect is probably mediated by coffee 

compounds regardless of the different ways of preparing it. 

As regards ARHL and the level of education, to date, it has been proven 

that the socio economic status and in particular the level of education can 

be considered as an indirect marker for many risk factors (that can be 

difficult to investigate one by one), and become good predictors for the 

risk of developing ARHL. Sixt E. et al. 1997 have already found evidence 

of correlation between low social class, low education level and ARHL in a 

single outbred cohort of Swedish people. Our data clearly confirm these 

findings in cohorts coming from different parts of Europe, Caucasus and 

Central Asia indicating that a low education level represents a risk factor 

for ARHL. Many possible explanations could explain this finding. First of 

all, as expected, there is a very high correlation between education and 

occupation; quite often people with a low education perform a noise-
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exposed job. Furthermore, in principle, they might be also more exposed 

to ear infection and pay less attention to sense organ stimulation and 

preservation. In fact many different studies have proven that poor social 

conditions associated with deprived neighbourhood constitute one of the 

most relevant environmental risk factors for public health. Moreover, low 

education and insufficient employment opportunities may affect 

individual's self-esteem, social status, and consequently health in a net of 

concurrent causes hard to break down individually (Poortinga W. et al. 

2012). On the other hand, people attending university courses are usually 

dedicated to professional activities (teaching and similar) that stimulate 

their sense of hearing and pay more attention to their hearing health 

status. In this light, education can reflect the socioeconomic status of the 

family of origin and hence influence personal habits for a subject, such as 

health care, hygiene, prevention and awareness of medical conditions.  

 

4.3 Conclusion and future prospects 
During these three years of PhD, results led to: 

1. the identification of a series of new genes for quantitative and 

qualitative traits using GWAS and meta-analysis approaches  

2. the support of the role of some of them using expression studies in the 

mouse inner ear 

3. the detection of environmental/lifestyle factors involved in hearing 

function and ARHL 

Preliminary results prove the useful combination of GWAS and expression 

studies providing new insights into the molecular basis of hearing function 

and ARHL. Moreover, these findings, together with the understanding of 

lifestyle/environmental factors involved in these complex traits, contribute 

to define new targets for hearing impairment treatment and prevention.  

The next plan is: 

1. to increase our population cohorts recruiting other samples  

2. to replicate our candidate genes in other cohorts 

3. to perform whole genome sequencing in a subset of individuals  
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4. to identify causative functional variants and their role in ARHL disease 

pathogenesis. 

5. to further improve our methods of statistical analysis (i.e using new 

algorithms, software and tools) 

In particular, in order to increase the sample size, a new sample collection 

is in progress in some isolated Sardinian villages (Urzulei and Seulo). 

Moreover, we recently imputed all of our samples up to 1000 genome in 

order to have accurate haplotype information on all forms of human DNA 

polymorphism in the hope of increase the power of our analysis (1000GP 

et al. 2010 et al. 2010). In fact, thanks to this improvement, a new GWAS 

will be performed. In addition to the additive model which displays most of 

the common genetic variants, future analyses will include dominant, over-

dominant and recessive model that could be the alternative options 

providing in some cases (presence of certain rare alleles) strongest 

associations (Salanti G. et al. 2009). As regards replication of the data, it 

is already in progress in an outbred population (1958 British birth cohort in 

collaboration with Sally Dawson, UCL-UK).  

Moreover, considering that: 1) replication of data obtained from isolated 

populations may be tricky; 2) rare variants, will require sophisticated 

analysis methods, and different functional studies; 3) common variants 

explain only a modest fraction of the genetic components of human 

common diseases, and 4) a large part of the heritability is still missing, 

Whole Genome Sequencing is now in progress in a subset of individuals 

as well as genotyping of 250.000 functional variants to increase genetic 

information. 
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Websources 
http://hereditaryhearingloss.org/ 

http://hearingimpairment.jax.org/index.html 

http://www.r-project.org/ 

http://www.ncbi.nlm.nih.gov/gene/ 
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