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I

Abstract

Nonlinear Receding Horizon (RH) control, also known as moving horizon control or nonlinear

Model Predictive Control (MPC), refers to a class of algorithms that make explicit use of a

nonlinear process model to optimize the plant behavior, by computing a sequence of future ma-

nipulated variable adjustments. Usually the optimal control sequence is obtained by minimizing

a multi-stage cost functional on the basis of open-loop predictions. The presence of uncertainty

in the model used for the optimization raises the question of robustness, i.e., the maintenance

of certain properties such as stability and performance in the presence of uncertainty.

The need for guaranteeing the closed-loop stability in presence of uncertainties motivates

the conception of robust nonlinear MPC, in which the perturbations are explicitly taken in

account in the design of the controller. When the nature of the uncertainty is know, and it is

assumed to be bounded in some compact set, the robust RH control can be determined, in a

natural way, by solving a min–max optimal control problem, that is, the performance objective

is optimized for the worst-case scenario. However, the use of min-max techniques is limited

by the high computational burden required to solve the optimization problem. In the case of

constrained system, a possibility to ensure the robust constraint satisfaction and the closed-loop

stability without resorting to min-max optimization consists in imposing restricted (tightened)

constraints on the the predicted trajectories during the optimization.

In this framework, an MPC scheme with constraint tightening for discrete-time nonlinear

systems affected by state-dependent and norm bounded uncertainties is proposed and discussed.

A novel method to tighten the constraints relying on the nominal state prediction is described,

leading to less conservative set contractions than in the existing approaches. Moreover, by

imposing a stabilizing state constraint at the end of the control horizon (in place of the usual

terminal one placed at the end of the prediction horizon), less stringent assumptions can be posed
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on the terminal region, while improving the robust stability properties of the MPC closed-loop

system.

The robust nonlinear MPC formulation with tightened constraints is then used to design off-

line approximate feedback laws able to guarantee the practical stability of the closed-loop system.

By using off-line approximations, the computational burden due to the on-line optimization is

removed, thus allowing for the application of the MPC to systems with fast dynamics. In this

framework, we will also address the problem of approximating possibly discontinuous feedback

functions, thus overcoming the limitation of existent approximation scheme which assume the

continuity of the RH control law (whereas this condition is not always verified in practice, due

to both nonlinearities and constraints).

Finally, the problem of stabilizing constrained systems with networked unreliable (and de-

layed) feedback and command channels is also considered. In order to satisfy the control ob-

jectives for this class of systems, also referenced to as Networked Control Systems (NCS’s), a

control scheme based on the combined use of constraint tightening MPC with a delay compen-

sation strategy will be proposed and analyzed.

The stability properties of all the aforementioned MPC schemes are characterized by using

the regional Input-to-State Stability (ISS) tool. The ISS approach allows to analyze the depen-

dence of state trajectories of nonlinear systems on the magnitude of inputs, which can represent

control variables or disturbances. Typically, in MPC the ISS property is characterized in terms

of Lyapunov functions, both for historical and practical reasons, since the optimal finite horizon

cost of the optimization problem can be easily used for this task. Note that, in order to study

the ISS property of MPC closed-loop systems, global results are in general not useful because,

due to the presence of state and input constraints, it is impossible to establish global bounds for

the multi-stage cost used as Lyapunov function. On the other hand local results do not allow to

analyze the properties of the predictive control law in terms of its region of attraction. There-

fore, regional ISS results have to employed for MPC controlled systems. Moreover, in the case of

NCS, the resulting control strategy yields to a time-varying closed-loop system, whose stability

properties can be analyzed using a novel regional ISS characterization in terms of time-varying

Lyapunov functions.
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Chapter 1

Introduction

Model Predictive Control (MPC) refers to a class of algorithms which make explicit use of a

process model to optimize the plant behavior, by computing a sequence of future manipulated

variable adjustments.

Originally developed to meet the specialized control needs of power plants and chemical

plants, MPC technology can now be found in a wide variety of application areas including food

processing, automotive, aerospace and medical applications, [97]. MPC has gained increasing

popularity in industry, mainly due to the ease with which constraints can be included in the

controller formulation.

It is worth to note that this control technique has achieved increasing attention among control

practitioners, since the 1980s, in spite of the original lack of theoretical results concerning some

crucial points such as stability and robustness.

In fact, a solid theoretical basis for this technique started to emerge more than 15 years after

it appeared in industry. Several recent publications provide a good introduction to theoretical

and practical issues associated with MPC technology (see e.g. the books [19, 37, 71, 104], and

the survey papers [31, 77, 81, 97, 103]).

Figure 1.1 depicts the basic principle of Model Predictive Control, which usually relies on

the following two ideas, [19]:

1) Model-based optimization: Relying on measurements obtained at time t (let us assume, at

this point, that the whole state vector xt ∈ R
n is measured), the controller predicts the

future dynamic behavior of the system over a prediction horizon Np ∈ N and determines

1
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(over a control horizon Nc ≤ Np) an input sequence such that a predetermined open-

loop performance objective functional is optimized. Optionally, also constraints on input

variables (ut ∈ U) and on state trajectories (xt ∈ X) are imposed. If there were no

disturbances and no model-plant mismatch, and if the optimization problem could be

solved for infinite horizons, then one could apply the computed input sequence for all

times from t to t+Nc − 1 in open-loop. However, this is not possible in general. Indeed,

due to external perturbations and model uncertainty, the true system behavior is different

from the predicted one;

2) Receding Horizon (RH) paradigm: In order to incorporate some feedback mechanism, the

open-loop input sequence obtained by the optimization will be implemented only until

the next state measurement becomes available. The time difference between the recalcu-

lation/measurements can vary, however often it is assumed to be fixed (typically, a state

measurement is available at each recalculation instant, such that only the first control

move of the computed sequence is applied to the plant). Using the new state measure-

ment xt+1 at time t + 1, the whole procedure (comprising prediction and optimization)

is repeated to find a new input sequence with control and prediction horizons moved

forward.

Since the Receding Horizon strategy and the model-based optimization are intrinsically con-

nected and represent the basic ingredients of the method, MPC is also called, with slight abuse

of terminology, RH control or moving horizon control.

Remarkably, the described underlying procedure applies both in linear and nonlinear MPC

formulations. However, apart from those basic common features, linear and nonlinear MPC are

usually approached separately in literature, mainly due to the implementation issues posed by

the nonlinear optimization and to the different theoretical tools needed to prove the closed-loop

stability in the two frameworks.

Linear MPC refers to a family of MPC schemes in which linear models are used to design the

controller. Linear MPC approaches have found successful applications, especially in the process

industries [97]. By now, linear MPC is fairly mature (see [81] and the reference therein) from

the theoretical point of view.

Many systems are, however, in general inherently nonlinear. In addition, tighter environ-

mental regulations and demanding economical considerations in the process industry require to
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operate systems closer to the boundary of the admissible operating region. In these cases, linear

models are often inadequate to describe the process dynamics and the nonlinearities have to be

taken in account. Moreover, in practical applications, the assumption that the system behavior

is identical to the model used for prediction is unrealistic. In fact, model/plant mismatch or

unknown disturbances are always present. The introduction of uncertainty in the system de-

scription raises the question of robustness, i.e., the maintenance of certain properties such as

stability and performance in the presence of uncertainty. These needs motivate the conception

of robust nonlinear MPC schemes ( see e.g., [6, 77, 103]), that stem from the consideration of

the uncertainties directly in the synthesis of the controller. The incorporation of uncertainties

in the control formulation adds complexity to the MPC design, in particular in the constrained

case, because the satisfaction of the constraints must be ensured for any possible realization of

uncertainty.

In the remainder of the present chapter, we will describe the different solutions proposed

in the current literature to cope with the presence of state and input constraints, as well as

the robust formulations aimed to cope with uncertainties, due, for instance, to the presence of

external disturbances of poor knowledge of the process dynamics. Finally, we will introduce the

original contributions presented in the thesis in the framework of robust nonlinear MPC.

1.1 Overview on Robust Nonlinear MPC

This section aims to describe the fundamental results raised in the last few years in the frame-

work of Model Predictive Control of nonlinear discrete–time systems. Before reviewing the

main contributions related to robust nonlinear MPC, let us introduce its unconstrained nominal

formulation, which does not explicitly account for uncertainty and constraints in the problem

setup.

1.1.1 MPC formulation for nominal nonlinear systems

Although the problem of designing MPC schemes for unconstrained and unperturbed systems

appears simple at first sight, many different different formulation have been proposed to achieve
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closed-loop stability in the nonlinear setup. Nonetheless, all the existent implementable MPC

formulations for discrete-time system rely on the solution, at each sampling instant, of a Fi-

nite Horizon Optimal Control Problem (FHOCP), which is introduced, in its simplest form, in

Definition 1.1.1 above.

Consider the nonlinear discrete-time dynamic system

xt+1 = f(xt, ut, υt), t ∈ Z≥0, x0 = x0 , (1.1)

where xt ∈ R
n denotes the state vector, ut ∈ R

m the control vector and υt ∈ Υ is an uncertain

exogenous input vector, with Υ ⊂ R
r compact and {0} ⊂ Υ. Assume that state and control

variables are subject to the following constraints

xt ∈ X, t ∈ Z≥0 , (1.2)

ut ∈ U, t ∈ Z≥0 , (1.3)

where X and U are compact subsets of R
n and R

m, respectively, containing the origin as an

interior point.

Given the system (1.1), let f̂(x, u) , with f̂(0, 0) = 0, denote the nominal model used for

control design purposes. Moreover, when it will be necessary to point out the dependence of a

nominal trajectory on the initial condition xt with a specific input sequence ut,t+i−1, we will

also use the notation x̂(i, xt,ut,t+i−1) = x̂t+i|t.

The complete list of notations used in the sequel and some basic definitions are given in the

Appendix A.

Definition 1.1.1 (FHOCP). Given a state measurement xt at time t, two positive integers

Nc, Np ∈ Z>0, an auxiliary state-feedback control law κf (·) : R
n → R

n, a stage cost function

h(·) : R
n → R≥0, a terminal penalty function hf (·) : R

n → R≥0 and a compact set Xf ⊂ R
n ,

the Finite Horizon Optimal Control Problem (FHOCP) consists in minimizing, with respect to

a sequence of control moves ut,t+Nc−1 the performance index
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JFH(xt,ut,t+Nc−1, Nc, Np) =

t+Nc−1
∑

l=t

h(x̂l|t, ul) +

t+Np−1
∑

l=t+Nc

h(x̂l|t, κf (x̂l|t)) + hf (x̂t+Np|t
) (1.4)

subject to:

1) the nominal state dynamics initialized with x̂t|t = xt;

2) (optionally) the control variable and state constraints; uj−1 ∈ U , x̂t+j|t ∈ X, j ∈

{1, . . . , Nc};

3) the terminal state constraints x̂t+Np|t ∈ Xf .

�

Then the RH strategy consists in applying to the plant the input ut = κRH(xt) = u◦t|t, where

u◦t|t is the first element of the optimal sequence u◦
t,t+Nc−1|t (implicitly dependent on xt) which

gives the minimum value of the multi-stage cost functions, that is

J◦
FH(xt) = JFH(xt,u

◦
t,t+Nc−1, Nc, Np) = min

u
t,t+Nc−1

JFH(xt,ut,t+Nc−1, Nc, Np) (1.5)

subject to the specified constraints.

Apart from the length of control and prediction horizon, Nc and Np, what distinguishes

the various proposals are the different design criteria for the stage cost h, the terminal cost hf

and/or the terminal constraint Xf in the FHOCP.

First, let us consider the case in which the dynamics of the system are perfectly known and

there are no exogenous perturbations (i.e., υt = 0, ∀t ∈ Z≥0 and f̂(x, u) = f(x, u, 0), ∀(x, u) ∈

X × U).

The simplest condition that can be posed in the FHOCP to guarantee the nominal stability

of the closed-loop system consists in a terminal equality constraint. In this version of MPC,

the following constraint is introduced x̂t+Nc|t ∈ Xf = {0} (i.e., the state at the end of the

control horizon is forced to reach the origin). The terminal equality constrained MPC can be

regarded as the earliest and, conceptually, the simplest tool to guarantee the stability of the

controlled system, whenever feasibility is satisfied. The first proposal of this form of MPC for
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nonlinear, discrete–time systems was made in [54]. This paper is particularly important, since it

provides a definitive stability analysis for this version of discrete-time receding horizon control

Figure 1.1 Scheme of the underlying principle of Model Predictive Control, based (a) on the
prediction of system trajectories over an horizon of Np steps and (b) on the computation of
open-loop sequences over a control horizon of Nc ≤ Np steps.

ut−3

ut = ut|t

U

ut+1|t

t t+ 1t− 1t− 2t− 3 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7

ut−1

ut−2
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Closed-loop inputs

Auxiliary controller

ut+Nc−1|t

xt−3

xt

x̂t+2|t
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X
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t+ 4 t+ 5t+ 3
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and shows that the optimal value function J◦
FH(xt,ut,t+Nc−1, Nc) associated with the finite

horizon optimal control problem approaches that of the infinite horizon problem as the horizon

approaches infinity. Other important papers on terminal constrained MPC are [24, 76] and [30].

Due to the simplicity and limitedness of this formulation, a detailed description of this approach

is omitted. Although this approach appears quite simple, it is capable to stabilize systems that

cannot be stabilized by feedback control laws continuous in the state [78].

One of the earliest proposals to overcome the feasibility issue of terminal equality constrained

MPC, thus enlarging the domain of attraction of the resulting closed-loop system, consists in

the use of a terminal cost function hf . In this version of model predictive control no terminal

constraints are introduced, so thatXf = R
n. If the system under analysis is globally stabilizable,

the terminal cost can be constructed as a global control Lyapunov function (i.e., a Lyapunov

function associated to the system in closed loop with an auxiliary nominally stabilizing controller

[89]). Related works are [3] and [72], in which a control horizon Nc ∈ Z>0 and a cost horizon

(also referred as prediction horizon) Np ∈ Z>Nc
are employed to show that closed-loop stability

ensues if the chosen Np is large enough. Hence, in the latter approaches, the terminal cost

function hf (·) is not given analytically, but is evaluated by extending the prediction horizon.

In the more recent work [42], the explicit characterization of a control Lyapunov function for

the system is not strictly required as in [72], since a generic terminal cost is employed, which can

be constructed assuming only the existence of a global value function for the system bounded

by a linear K–function, with argument the distance from the target set (the origin in the zero–

regulation problem). On the other side, similarly to the result in [72], global stability can be

ensured only if the given cost horizon is long enough.

Finally, a further approach to design stabilizing RH schemes consists in imposing terminal

inequality or terminal set constraints. In this version of MPC, the terminal constraint set

Xf ⊂ R
n is chosen as a neighborhood of the origin and no terminal cost is used to penalize

the finite horizon value function. The purpose of this formulation is to steer the state to Xf

in finite time, in nominal conditions. Inside Xf , a local stabilizing controller κf is employed;

this form of model predictive control is therefore sometimes referred to as Dual Mode, and was

first proposed, in the context of constrained, continuous-time, nonlinear systems, in the seminal

paper [80].



8 CHAPTER 1. INTRODUCTION

As far we have discussed about stabilizing MPC schemes for unconstrained nonlinear system.

In many applications the state of the system and/or the input variables are subject to constraints,

hence, it is of great interest to develop control strategies capable to keep the state and the input

within the prescribed bounds.

Now, assume that state and control variables are subjected to the constraints (1.2) and (1.3).

In the context of nonlinear MPC, a natural way to incorporate these requirements consists in

directly imposing constraints (1.2) on the predicted state and input sequences. In this way

the constrained MPC leads to the formulation of a constrained optimization problem at each

time step. Different solutions have been proposed to provide stability results in presence state

and input constraints, but basically all these approaches are based on the imposition of both a

terminal cost function and a terminal constraint.

In the context of receding horizon control of constrained continuous time systems, the most

used MPC formulation consists in the position of both terminal cost and terminal constraints.

Such a formulation was firstly proposed in [25] where the terminal constraint Xf , has been

chosen as a positively invariant set for the nonlinear system, satisfying the conditions Xf ⊂ X

and κf (x) ∈ U,∀x ∈ Xf , where κf is an auxiliary locally stabilizing control law. The terminal

cost is chosen as the local Lyapunov–function hf associated to the linear optimal static state

feedback law for the linearized system at the origin. This approach is referred by the authors

as quasi–infinite horizon predictive control because the finite horizon optimal control problem

approximates the full infinite–horizon constrained one.

For the case when the system is discrete–time and there are state and control constraints,

in [89] and [88] a generic locally stabilizing control law κf has been used as auxiliary controller,

while the terminal cost function hf has been chosen as a local Lyapunov function for the sta-

bilized system. Finally, it has been suggested to choose the terminal constraint set Xf as a

positively invariant sub-level set of hf under the closed–loop system with κf .

1.1.2 Robust RH control of nonlinear systems with constraints

The introduction of uncertainty in the system description raises the question of robustness,

i.e. the maintenance of certain properties such as stability and performance in presence of

uncertainty. As studied in [41], a nominal stabilizing MPC may exhibit zero-robustness.

Earliest studies on the robustness of RH controlled systems do not consider the presence of

constraints, establishing that if a global Lyapunov function for the nominal closed–loop system



1.1. OVERVIEW ON ROBUST NONLINEAR MPC 9

maintains its descent property if the disturbance (uncertainty) is sufficiently small, then per-

turbed (uncertain) closed-loop system preserves stability. In this respect, the inherent robustness

of RH controllers for unconstrained nonlinear discrete–time systems has been investigated in [30]

and [107]. By inherent robustness we mean robustness of the closed-loop system using model

predictive control designed ignoring uncertainty.

However, when constraints on states and controls are present, it is necessary to ensure, in

addition, that the constraints are satisfied also in presence of uncertainties. This adds an extra

level of complexity.

When the nature of the uncertainty is known, and it is assumed to be bounded in some

compact set, the robust MPC can be determined, in a natural way, by solving a min–max

optimal control problem, as proposed in the seminal paper [79]. It consists basically in imposing

that the state constraints, as well as the terminal set constraint, are satisfied for all the possible

realization of uncertainties by a feasible sequence of controls. The complexity of this problem

increases exponentially with horizon length. A defect of the classical formulation of MPC for

uncertain systems relies on the open-loop nature of the optimal control problem; in order to

overcome this limitation, recent papers propose to optimize over a parametrized family of control

feedback strategies rather then over a sequence of control moves, [38, 74, 106]. In this approach,

a vector of feedback control policies is considered in the minimization of the cost, for the worst

case perturbations. This closed-loop method allows to take into account the reaction to the

effect of the uncertainty in the predictions at expense of a practically intractable optimization

problem. In this context robust stability issues have been recently studied and some novel

contributions on this topic have appeared in the literature [32, 44, 45, 73, 57, 64, 68]. Although

the solid underlying theoretical basis, the high computational burden required to solve min-

max optimizations has limited the application of min-max nonlinear MPC to small dimensional

problems or very slow plant. The implementation issue still remains an open problem in the

min-max literature. Therefore, other approaches have been tackled to ensure robust closed-loop

stability in nonlinear MPC.

In order to alleviate the implementation issues of min-max MPC, open-loop formulations with

restricted constraints have been conceived (see for instance [26], for the linear case and [43, 66]

for the nonlinear one). This method for the design of robust MPC consists in minimizing
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a nominal performance index, while imposing the fulfillment of tightened constraints on the

trajectories of the nominal system. In this way, the nominal constraint are satisfied by the

perturbed (uncertain) system when the optimal sequence is applied to the plant. The main

drawback of this open-loop strategy is the large spread of trajectories along the optimization

horizon due to the effect of the disturbances and leads to very conservative solutions or even to

unfeasible problems. Indeed, the dramatic reduction of computational effort at the optimization

stage can be obtained at the cost of an increase of conservativeness: in order to enforce the

robust constraint satisfaction, restricted set constraints are imposed to the predicted state as

well as a restricted terminal state constraint. Due to the aforementioned limitations of existent

schemes, the development of more efficient and less conservative constraint-tightening algorithms

is a very active area of research [43, 62].

When uncertainties affect the system dynamics, the stability analysis of the closed-loop

systems given by both min-max or constraint-tightening MPC schemes is usually carried out

in the framework of Input-to-State Stability (ISS). The concept of ISS was first introduced in

[109, 110] and then further exploited by many authors in view of its equivalent characterization in

terms of robust stability, dissipativity and input-output stability (see e.g. [50, 51, 49, 61, 85, 86]).

The ISS approach allows to analyze the dependence of state trajectories of nonlinear systems

on the magnitude of inputs, which can represent control variables or disturbances.

Now, several variants of the ISS property have been conceived and applied in different con-

texts (see [34, 51, 111, 112]). Typically, in MPC the ISS property is characterized in terms of

Lyapunov functions, both for historical and practical reasons. Indeed, since the first theoretical

results on the stability MPC, [54, 76], the optimal value function of the FHOCP was employed

as a Lyapunov function for establishing the stabilizing properties of RH control schemes applied

to time-varying, constrained, nonlinear, discrete-time systems. Nowadays, the value function is

universally employed as a Lyapunov function for studying the ISS property of nonlinear MPC

(see for example [43, 62, 63, 64, 66, 67, 68]). Note that, in order to study the ISS property of

MPC closed-loop systems, global results are in general not useful because, due to the presence

of state and input constraints, it is impossible to establish global bounds for the finite horizon

cost used as Lyapunov function. On the other hand local results (see e.g., [50, 51]) do not

allow to analyze the properties of the predictive control law in terms of its region of attraction.

Therefore, regional ISS results have been recently introduced to apply the ISS theory to MPC
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closed-loop systems.

In this work, we will extensively use the ISS concept to analyze the stability properties of

several novel MPC schemes, based on constraint tightening, in presence of different classes of

uncertainties.

In particular, we will study the closed-loop behaviour of MPC-controlled systems affected

by state-dependent and bounded additive uncertainties, delays in the feedback and control

information paths, and perturbations due, e.g., by the off-line approximation of the exact RH

control law. In the sequel, we will describe the structure of the thesis and the content of each

chapter, evidencing the original contributions in the field of robust MPC for nonlinear discrete-

time systems.

1.2 Contents and Structure of The Thesis

The present thesis is mainly concerned with the use of the Input-to-State Stability (ISS) as a

tool to assess the robust stability properties of a class of MPC schemes based on constraint

tightening. This technique will be studied and analyzed in detail, and several improvements

will be proposed to reduce the inherent conservatism of the method. Indeed, the conception of

methodologies to alleviate this drawback represents a key point toward the possibility to use

this technique as an alternative to min-max MPC for uncertain nonlinear systems with fast

dynamics. Indeed, due to ease of implementation and to the reduced computational burden

required by the constraint tightening method, this class of algorithms is more attractive than

min-max formulations for practical deployment. In the same direction, we will also consider the

possibility to completely remove the need for the on-line optimization by approximating off-line

the control law. In this respect, we will establish a set of conditions under which the closed-loop

system with the approximate controller would preserve the Input-to-State practical stability

property. Finally, the constraint tightening MPC, together with a delay compensation strategy,

will be used to stabilize networked systems. In this case a novel characterization of ISS in terms

of time-varying Lyapunov functions will be proposed to analyze the closed-loop behavior of the

devised scheme.

The Thesis is organized as follows.
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In Chapter 2 we will introduce the notion of regional ISS, together with its characterization

in terms of Lyapunov functions. Moreover, the regional ISS property will be characterized by

means of time-varying Lyapunov functions, allowing to extend the ISS analysis to time-varying

systems.

The regional ISS concept will be used in Chapter 3 to prove the robust stability of an MPC

scheme with constraint tightening for systems affected by state-dependent and norm bounded

uncertainties. In this setup, a novel method to tighten the constraints relying on the nominal

state prediction will be proposed, leading to less conservative set contractions than in the existing

approaches. Moreover, by imposing a stabilizing state constraint at the end of the control horizon

(in place of the usual terminal one placed at the end of the prediction horizon), it will be shown

that less stringent assumptions can be posed on the terminal region, while improving the robust

stability properties of the MPC closed-loop system.

In Chapter 4 the robust nonlinear MPC formulation with tightened constraints will be used to

design off-line approximate feedback laws able to guarantee the practical stability of the closed-

loop system. In this framework, we will also address the problem of approximating possibly

discontinuous control laws, thus overcoming the limitation of existent approximation scheme

which assume the continuity of the RH controller (whereas this condition is not always verified

in practice).

Finally, the problem of stabilizing constrained systems with networked unreliable (and de-

layed) feedback and command channels will be addressed in Chapter 5. In order to satisfy

the control objectives for this class of systems, also referenced to as Networked Control Sys-

tems (NCS’s), a control scheme based on the combined use of MPC with a delay compensation

strategy will be proposed and analyzed. Notably, the resulting control strategy yields to a time-

varying closed-loop system, whose stability properties can be analyzed using the regional ISS

characterization in terms of time-varying Lyapunov functions described in Chapter 2.
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predictive control: a set invariance approach. In Proc. of International Workshop on Assessment
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Chapter 2

Regional Input-to-State Stability

for NMPC

Input-to-state stability (ISS) is one of the most important tools to study the dependence of

state trajectories of nonlinear continuous and discrete time systems on the magnitude of inputs

(which can represent control variables or disturbances) and on the initial conditions (see e.g.,

[51, 87, 110, 112]). Due to the possibility to characterize the ISS in terms of Lyapunov functions,

the ISS has been widely used to analyze stabilizing properties of closed-loop systems in that

the controller is designed accordingly to Lyapunov-based techniques, or for which a control

Lyapunov function can be constructed with ease. In the framework of MPC controllers, it is

well known that the optimal value function of the FHOCP can serve as a Lyapunov function to

study the stability of the closed-loop system.

However, in order to analyze the ISS properties of a system controlled by an MPC policy,

global results are in general not useful in view of the presence of state and input constraints.

On the other hand, local results do not allow to characterize the region of attraction of the

predictive control law. Then, in this chapter, the notion of regional-ISS is introduced (see also

[75]), and the equivalence between the ISS property and the existence of a suitable Lyapunov

function is established. Notably, this Lyapunov function is not required to be continuous nor

to be upper bounded in the whole region of attraction. An estimation of the region where the

state of the system converges asymptotically is also given.

The ISS results presented in this chapter will be successively used in the dissertation to
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characterize the stability properties of a specific class of robust MPC algorithms for constrained

discrete-time nonlinear systems, based on constraint tightening and open-loop optimization (i.e.,

the decision variables consist in a sequence of control actions over a finite time horizon, while

the prediction is performed on the basis of a nominal model of the controlled system).

Furthermore, we will use the ISS tool to develop an off-line approximate MPC control law

capable to guarantee the input-to-state practical stability of the closed-loop system toward an

equilibrium which may be not stabilizable by continuous static state-feedback laws.

Finally, a novel characterization of the regional-ISS property in terms of time-varying Lya-

punov functions will be here introduced, and then used in Chapter 5 to study the closed-loop

stability of Networked Control Systems (i.e., systems in which the informations are exchanged

between sensors, controller, and actuators over an unreliable packet-based communication net-

work with delays), in which an MPC controller is used in combination with a Network Delay

Compensation (NDC) strategy to mitigate the perturbing effect of communication delays.

2.1 Problem Statement and Definitions

Consider the discrete-time autonomous perturbed nonlinear dynamic system described by

xt+1 = g(xt, υt), x0 = x0, t ∈ Z≥0,

where g : R
n ×R

q → R
n is a nonlinear function, while xt ∈ R

n and υt ∈ R
q denote respectively

the state vector and an exogenous (unmeasurable) disturbance term. In order to point out the

effect of the disturbance term on the state evolution, given an initial condition x0 = x0 and a

disturbance sequence υ0,t−1 from time 0 to t − 1, we will denote the state vector at time t as

xt = x(t, x0,υ0,t−1). The transition function g and the disturbance are supposed to fulfill the

following assumption.

Assumption 2.1.1.

1) The origin is an equilibrium point (i.e., g(0, 0) = 0);

2) The disturbance υt is such that υt ∈ Υ, ∀t ∈ Z≥0, where Υ ⊆ Bq(υ), where υ ∈ (0,∞) is a

finite scalar; moreover Υ contains the origin as interior point. �
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The following regularity assumption will be needed.

Assumption 2.1.2. For every t ∈ R>0 , the state trajectories x(t, x0,υ0,t−1) of the system (2.1)

are continuous in x0 = 0 and υ = 0 with respect to the initial condition x0 and the disturbance

sequence υ0,t−1. �

Let us introduce the following definitions. For more details about the notation and the

acronyms used in the following, the reader is referred to Section A.3 of the Appendix. In

particular, the notion of Robust Positively Invariant (RPI) set given in Definition A.3.1 will be

used.

Definition 2.1.1 (UAG in Ξ). Given a compact set Ξ ∈ R
n including the origin as interior

point, the system (2.1), with υ ∈ MΥ, satisfies the Uniform Asymptotic Gain (UAG) property

in Ξ, if Ξ is a RPI set for system (2.1) and if there exists a K-funtion γ such that for any

arbitrary ǫ ∈ R>0 and ∀x0 ∈ Ξ, ∃T ǫ
x0

finite such that

|x(t, x0,υ)| ≤ γ(||υ||) + ǫ,

for all t ≥ T ǫ
x0

. �

Definition 2.1.2 (LS). System (2.1), with υ ∈MΥ, satisfies the Local Stability (LS) property

if for any arbitrary ǫ ∈ R>0, ∃δ ∈ R>0 such that

|x(t, x0,υ)| ≤ ǫ, ∀t ∈ Z≥0,

for all |x0| ≤ δ and all Υ ⊆ Br(δ). �

Definition 2.1.3 (ISS in Ξ). Given a compact set Ξ ⊂ R
n including the origin as interior point,

the system (2.1), with υ ∈MΥ, is said to be Input-to-State Stable (ISS) in Ξ if Ξ is a RPI set

for system (2.1) and if there exist a KL-function β and a K-function γ such that

|x(t, x0,υ)| ≤ β(|x0|, t) + γ(||υ||), ∀x0 ∈ Ξ,∀t ∈ Z≥0. (2.1)
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�

Note that, by causality, the same definitions of ISS in Ξ would result if (2.1) is replaced by

|x(t, x0,υ)| ≤ β(|x0|, t) + γ(||υ[t−1]||), ∀x0 ∈ Ξ,∀t ∈ Z≥0,

where υ[t−1] denotes a truncation of υ at the time instant k − 1.

It can be proven that if a system satisfies both the UAG in Ξ and the LS properties, then

it is ISS in Ξ (see [34]). This result, originally developed under the assumption of continuity

of g(·, ·), can be applied also to discontinuous systems if a bound on the trajectories can be

established. In particular, the trajectories are bounded if the set Ξ is RPI under g for all the

possible realizations of uncertainties. Hence, the following result can be stated.

Lemma 2.1.1. Suppose that Assumption 2.1.1 holds. System (2.1) is ISS in Ξ if and only if

the properties UAG in Ξ and LS hold.

The proof of this theorem can be found in [34] for discrete-time systems. We point out that

if also Assumption 2.1.2, then the LS property is redundant. In fact, the following proposition

holds.

Proposition 2.1.1. Under Assumptions 2.1.1 and 2.1.2, if the system (2.1) is UAG in Ξ, then

it verifies the LS property.

Conversely, Assumption 2.1.2 is necessary in order to have ISS. In fact, in view of (2.1), if

the solution of (2.1) is not continuous in (x, υ) = (0, 0), then the ISS property does not hold.

2.2 Regional ISS Characterization in Terms of Lyapunov

Functions

The regional-ISS stability property will now be associated to the existence of a suitable regional

ISS-Lyapunov function (in general, a-priori non smooth) defined as follows.
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Definition 2.2.1 (ISS-Lyapunov Function). Given the system (2.1) and a pair of compact sets

Ξ⊂R
n and Ω⊆Ξ, with {0}⊂Ω, a function V (·): R

n→R≥0 is called a (Regional) ISS-Lyapunov

function in Ξ, if there exist some K∞-functions α1, α2, α3, and two K-function σ1 and σ2 such

that

1) Ξ is a compact RPI set including the origin as an interior point;

2) the following inequalities hold ∀υ ∈ Υ

V (x) ≥ α1(|x|), ∀x ∈ Ξ, (2.2)

V (x) ≤ α2(|x|) + σ1(|υ|), ∀x ∈ Ω, (2.3)

V (g(x, υ))− V (x) ≤ −α3(|x|) + σ2(|υ|), ∀x ∈ Ξ, ; (2.4)

3) there exist some suitable K∞-functions ǫ and ρ (with ρ such that (id − ρ) is a K∞-function,

too) such that the following compact set

Θ , {x : V (x) ≤ b(υ)}, (2.5)

verifies the inclusion Θ ⊂ Ω ∽ Bn(c), for some suitable constant c ∈ R>0, where b(s) ,

α−1
4 ◦ ρ−1 ◦ σ4(s), α4 , α3 ◦ α

−1
2 , α3(s) , min(α3(s/2), ǫ(s/2)), α2(s) , α2(s) + σ1(s),

σ4 = ǫ(s) + σ2(s) and υ , maxυ∈Υ{|υ|}. �

Notably, the ISS-Lyapunov inequalities (2.2),(2.3) and (2.4) differ from those posed in the

original Regional-ISS formulation [75], since an input-dependent upper bound is admitted in

(2.3) (thus allowing for a more general characterization).

A scheme of the sets introduced in Definition 2.2.1 is depicted in Figure 2.1.

A sufficient condition to establish the regional-ISS of system (2.1) can now be stated.

Theorem 2.2.1 (Lyapunov characterization of ISS). Suppose that Assumption 2.1.2 holds. If

the system (2.1) admits an ISS-Lyapunov function in Ξ, then it is ISS in Ξ with respect to υ

and for all x0 ∈ Ξ it holds that lim
t→∞

d(x(t, x0,υ0,t−1),Θ) = 0, ∀υ ∈MΥ. �

Proof Let x̄ ∈ Ξ. The proof will be carried out in three steps:
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Figure 2.1 Scheme of the sets introduced in Definition 2.2.1

Ω
Ξ

Ω ∽ Bn(c)

Θ

0 c

1) First, we are going to show that the set Θ defined in (2.5) is RPI for the system. From the

definition of α2(s) it follows that α2(|x|)+σ1(|υ|) ≤ α2(|x|+|υ|). Therefore V (x) ≤ α2(|x|+|υ|)

and hence |x|+ |υ| ≥ α−1
2 (V (x)). Moreover, thanks to Point 3) of Definition 2.2.1, there exists

a K∞-function ǫ such that

α3(|x|) + ǫ(|υ|) ≥ α3(|x|+ |υ|) ≥ α4(V (x)).

Then, considering the perturbed state transition from xt to xt+1, we have

V (g(xt, υt))− V (xt) ≤ −α4(V (xt)) + ǫ(|υt|) + σ2(|υt|)

≤ −α4(V (xt)) + σ4(|υt|), ∀x ∈ Ω,∀υ ∈ Υ,∀t ∈ R≥0.
(2.6)

Let us assume now that xt ∈ Θ. Then V (xt, υt) ≤ b(υ); this implies ρ ◦α4(V (xt, υt)) ≤ σ4(υ).

Without loss of generality, assume that (id−α4) is a K∞-function, otherwise pick a bigger α2
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so that α3 < α2. Then

V (g(xt, υt)) ≤ (id− α4) (V (xt)) + σ4(υ)

≤ (id− α4) (b(υ)) + σ4(υ)

= −(id− ρ) ◦ α4 (b(υ)) + b(υ)− ρ ◦ α4 (b(υ)) + σ4(υ).

From the definition of b, it follows that ρ◦α4 (b(υ)) = σ4(υ) and, owing to the fact that (id−ρ)

is a K∞-function, we obtain

V (g(xt, υt)) ≤ (id− ρ) ◦ α4 (b(υ)) + b(υ) ≤ b(υ)

By induction one can show that V (g(xt+j , υt+j)) ≤ b(υ) for all j ∈ Z≥0, that is xt ∈ Θ,∀j ∈

Z≥0. Hence Θ is RPI for system (2.1).

2) Next, we are going to show that the state, starting from Ξ\Θ, tends asymptotically to Θ.

Firstly, if x ∈ Ω\Θ, then

ρ ◦ α4 (V (xt)) ≥ σ4(υ).

From the inequality α3(|xt|) + ǫ(|υt|) ≥ α4 (V (xt)), we have that

ρ (α3(|xt|) + ǫ(|υt|)) > σ4(υ).

Being (id− ρ) a K∞-function, it holds that id(s) > ρ(s), ∀s ∈ R>0, then

α3(|xt|) + ǫ(υ) > α3(|xt|) + ǫ(|υt|) > ρ(α3(|xt|) + ǫ(|υt|))

> σ4(υ) = ǫ(υ) + σ2(υ), ∀xt ∈ Ω\Θ,∀υt ∈ Υ,

which in turn implies that

V (g(xt, υt))− V (xt) ≤ −α3(|xt|) + σ2(υ) + σ3(υ)

< 0, ∀xt ∈ Ω\Θ,∀υt ∈ Υ.
(2.7)

Moreover, in view of (2.5), ∃c ∈ R>0 such that for all x
′

∈ Ξ\Θ there exists x
′′

∈ Ω\D such

that α3(|x
′′

|) ≤ α3(|x
′

|)− c. Then, from (2.7) it follows that

−α3(|x
′

|) + c ≤ −α3(|x
′′

|) < −σ2(υ)− σ3(υ), ∀x
′

∈ Ξ\Ω, ∀x
′′

∈ Ω\Θ.
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Then,

V (g(xt, υt))− V (xt) ≤ −α3(|xt|) + σ2(υ) + σ3(υ)

< −c, ∀xt ∈ Ξ\Ω,∀υt ∈ Υ.

Hence, for any x0 ∈ Ξ, there exists TΩ
x0
∈ Z≥0 finite such that xTΩ

x0
= x(TΩ

x0
, x0,υ) ∈ Ω, that

is, starting from Ξ, the region Ω will be reached in finite time.

Now, we will prove that starting from Ω, the state trajectories will tend asymptotically to the

set Θ. Since Θ is RPI, it holds that limj→∞ d
(

x(TΩ
x0

+ j, xTΩ
x0
,υ),Θ

)

= 0. Otherwise, posing

t = TΩ
x0

, if xt 6∈ Θ, then we have that ρ ◦ α4(V (xt)) > σ4(υ); moreover, from (2.7) it follows

that

V (g(xt, υt))− V (xt) ≤ −α4(V (xt)) + σ4(υ)

= −(id− ρ) ◦ α4(V (xt))− ρ ◦ α4(V (xt)) + σ4(υ)

≤ −(id− ρ) ◦ α4(V (xt))

≤ −(id− ρ) ◦ α4 ◦ α1(|xt|),∀xt ∈ Ω\Θ,∀υ ∈ Υ

Then, we can conclude that ∀ǫ
′

∈ R>0, ∃T
Θ
x0
≥ TΩ

x0
such that

V (xt) ≤ ǫ
′

+ b(υ).

Therefore, starting from Ξ, the state will arrive arbitrarily close to Θ in finite time and the

state trajectories will tend to Θ asymptotically. Hence limt→∞ d(x(t, x0,υ),Θ) = 0, ∀x0 ∈

Ξ,∀υ ∈MΥ.

3) Finally, we will show that system (2.1) is regionally ISS in Ξ. Given e ∈ R≥0, let us define

the sub-level set N[V,e] , {x ∈ R
n : V (x) ≤ e,∀υ ∈ Υ}. Let e , max{e ∈ R>0 : N[V,e] ∈ Ω}

and consider N[V,e]. Note that e > b(υ) and Θ ⊂ N[V,e]. Since the region Θ is reached

asymptotically from Ξ, the state will arrive in N[V,e] in finite time, that is, given x0 ∈ Ξ there

exists T
N[V,e]

x0
such that

V

(

x
T

N[V,e]
x0

+ j

)

≤ e, ∀j ∈ Z≥0

Hence, the region N[V,e] is RPI. Now, proceeding as in the Proof of Lemma 3.5 in [50], for any

x0 ∈ N[V,e], there exist a KL-function β̂ and a K-function γ̂ such that

V (xt) ≤ max β̂ (V (x0), t) , γ̂(||υ[t]||), ∀t ∈ Z≥0,∀υ ∈MΥ
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, with xt ∈ N[V,e] and where γ̂ can be chosen as γ̂ = α−1
4 ◦ ρ

−1 ◦ σ4. Hence, considering that

β̂(r + s, t) ≤ β̂(2r, t) + β̂(2s, t),∀(s, t) ∈ R
2
≥0 (see [68]), it follows that

α1(|xt|) ≤ max β̂ (α2(|x0|) + σ1(|υ0|), t) , γ̂(||υ[t]||)

≤ max β̂ (2α2(|x0|), t) + β̂ (2σ1(|υ0|), t) , γ̂(||υ[t]||), ∀t ∈ Z≥0,∀x0 ∈ N[V,e],∀υ ∈MΥ.

Now, let us define the KL-functions β̃(s, t) , α−1
1 ◦ β̂(2s, t) , β(s, t) , β̃(α2(s), t), and the

K-functions γ̃(s) , α−1
1 ◦ γ̂(s) and γ(s) , β̃(σ1(s), 0) + ˜γ(s) , we have that

|xt| ≤ max β̃ (α2(|x0|), t) + β̃ (σ1(|υ0|), t) , γ̃(||υ[t]||)

≤ β̃ (α2(|x0|), t) + β̃ (σ1(|υ0|), t) + γ̃(||υ[t]||)

≤ β̃ (α2(|x0|), t) + β̃
(

σ1(||υ[t]||), 0
)

+ γ̃(||υ[t]||)

≤ β (|x0|, t) + γ(||υ[t]||), ∀t ∈ Z≥0,∀x0 ∈ N[V,e],∀υ ∈MΥ.

(2.8)

Hence, by (2.8), the system (2.1) is ISS in N[V,e] with ISS-asymptotic gain γ. Considering

that starting from Ξ the set N[V,e] is reached in finite time, the UAG in N[V,e] implies the

UAG in Ξ.

Now, thanks to Lemma 2.1.1 Assumption 2.1.2, together with the UAG in Ξ, implies the LS

and UAG, as well, in Ξ, and hence the ISS property in Ξ. �

For systems in which the asymptotic stability cannot be proved even in absence of pertur-

bations, a property slightly different than ISS, namely the Input-to-State practical Stability

(ISpS), can be used to characterize the region of attraction (see [111]). In the next section, we

will introduce the ISpS, establishing its connections with the ISS.

2.3 Regional Input-to-State Practical Stability

In this section, the ISpS tool for the stability analysis of discrete-time autonomous perturbed

nonlinear systems is presented. The ISpS allows to address systems for which, even in absence

of perturbations, the asymptotic convergence of the trajectories toward the origin cannot be

proven (the reader is referred to [111] for a deeper insight into this topic). The results that are

going to be discussed will be employed in Chapter 4 to study the behavior of nonlinear system

in closed-loop with approximate MPC control laws. Indeed, in order to take in account the
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effect of non-vanishing perturbations on the controlled system, due to the use of an approximate

controller, the ISpS has been regarded as one of the most appropriate method of analysis.

The definition of the ISpS for perturbed discrete-time dynamic systems is given below.

Definition 2.3.1 (ISpS in Ξ). Given a compact set Ξ ⊂ R
n including the origin as interior

point, the system (2.1), with υ ∈ MΥ, is said to be Input-to-State practically Stable (ISpS) in

Ξ if Ξ is a RPI set for system (2.1) and if there exist a KL-function β, a K-function γ and a

constant c ∈ R≥0 such that

|x(t, x0,υ)| ≤ β(|x0|, t) + γ(||υ||) + c, ∀x0 ∈ Ξ,∀t ∈ Z≥0. (2.9)

�

Note that, by causality, the same definitions of ISpS in Ξ would result if the inequality (2.9)

is replaced by

|x(t, x0,υ)| ≤ β(|x0|, t) + γ(||υ[t−1]||), ∀x0 ∈ Ξ,∀t ∈ Z≥0 + c,

where υ[t−1] denotes a truncation of υ at the time instant k − 1.

Moreover it is worth to notice that, if the inequality (2.1) holds with c = 0, then the definition

of ISS in Ξ follows.

Analogously to the ISS property, regional results are need in the framework of of MPC

controlled system in order to use the ISpS for assessing the stability properties. Moreover,

also the ISpS can be associated to the existence of a suitable Lyapunov function (in general, a

priori non-smooth) with respect to υ. Sufficient conditions for characterizing the ISpS property

through Lyapunov functions have been introduced in [99], where the ISS result of [75] has been

extended to the ISpS case.

In order to briefly recall the basic result on the Lyapunov characterization of the regional

ISpS property, let us introducing the following definition.

Definition 2.3.2 (ISpS-Lyapunov Function). Given the system (2.1) and a pair of compact sets

Ξ⊂R
n and Ω⊆Ξ, with {0}⊂Ω, a function V (·):Rn→R≥0 is called a (Regional) ISpS-Lyapunov
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function in Ξ, if there exist some K∞-functions α1, α2, α3, two K-function σ1 and σ2 and two

non-negative scalars c1 and c2 ∈ R≥0 such that

1) Ξ is a compact RPI set including the origin as an interior point;

2) the following inequalities hold ∀υ ∈ Υ

V (x) ≥ α1(|x|), ∀x ∈ Ξ, (2.10)

V (x) ≤ α2(|x|) + c1, ∀x ∈ Ω, (2.11)

V (g(x, υ))− V (x) ≤ −α3(|x|) + σ2(|υ|) + c2, ∀x ∈ Ξ, ; (2.12)

3) there exist some suitable K∞-functions ǫ and ρ (with ρ such that (id − ρ) is a K∞-function,

too) such that the following compact set

Θc , {x : V (x) ≤ bc (σ2(υ) + c3)} , (2.13)

verifies the inclusion Θc ⊂ Ω ∽ Bn(c), for some suitable constant c ∈ R>0, where bc(s) ,

α−1
4 ◦ ρ

−1, α4 , α3 ◦α
−1
2 , α3(s) , min(α3(s/2), ǫ(s/2)), α2(s) , α2(s) + s, c3 , c2 + ǫ(c1)and

υ , maxυ∈Υ{|υ|}. �

By using the same arguments exploited in in the proof of Theorem 2.2.1, the following results

can be proven.

Theorem 2.3.1 (Lyapunov Characterization of regional ISpS). Suppose that Assumption 2.1.2

holds. If system (2.1) admists a regional ISpS Lyapunov function in Ξ with respect to υ, then it is

regional ISpS in Ξ with respect to υ and, for all x0 ∈ Ξ, it holds that lim
t→∞

d(x(t, x0,υ0,t−1),Θc) =

0, ∀υ ∈MΥ.

The reader is referred to [99], for a complete proof of Theorem 2.3.1.
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2.4 Regional ISS in terms of Time-varying Lyapunov

Functions

In the present section, the notion of regional ISS will be extended to time-varying systems. In

this case, as mentioned in the case of the regional ISS result for time-invariant systems, global

results are not suited for NMPC-controlled constrained dynamics, due to impossibility to obtain

global bounds for the optimal multi-stage cost function (see [21] and [86] for the global ISS

characterizations in the case of time-varying systems).

In the following, the Regional Input-to-State Stability property will be characterized for a

class time-varying systems, which admit a possibly time-varying Lyapunov function satisfying

suitable time-invariant comparison inequalities.

Let us consider the time-varying discrete-time dynamic system

xt+1 = g(t, xt, υt), t ∈ Z≥0, x0 = x , (2.14)

with g(t, 0, 0) = 0, ∀t ≥ T with T ∈ Z≥0, and where xt ∈ R
n and υt ∈ Υ ⊂ R

r denote

the state and the bounded input of the system, respectively. The discrete-time state trajectory

of the system (2.14), with initial state x0 = x and input sequence υ ∈ MΥ , is denoted by

x(t, x,υ0,t), t ∈ Z≥0.

In the case of time-varying controlled transition maps g(t, x0, υ), the following definition of

RPI set will be used (see the Appendix for an analogous definition in the time-invariant case).

Definition 2.4.1 (RPI set). A set Ξ ⊂ R
n is a Robust Positively Invariant (RPI) set for system

(2.14) if, for all t ∈ Z≥0, it holds that g(t, x, υ) ∈ Ξ, ∀x ∈ Ξ and ∀υ ∈ Υ. �

Moreover, the regional ISS property for time-varying discrete-time nonlinear systems of the

form (2.14) is given below.

Definition 2.4.2 (Time-varying regional ISS). Given a compact set Ξ⊂R
n, if Ξ is RPI for

(2.14) and if there exist a KL-function β and a K-function γ such that
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|x(t, x0,υ0,t−1)|≤max
{

β(|x0|, t),γ(‖υ[t−1]‖)
}

,∀t∈Z≥0,∀x0∈Ξ, (2.15)

then the system (2.14), with υ∈MΥ, is said to be Input-to-State Stable (ISS) with respect to υ

for initial conditions in Ξ. �

In the literature there exist some recent results concerning the characterization of the ISS

property in terms of time-varying Lyapunov functions for perturbed (uncertain) discrete-time

system [51, 59, 60]; on the other hand those results guarantee the Input-to-State Stability

property in a semi-global sense, and cannot be trivially used in the MPC setup due to the

impossibility to obtain global bounds for the candidate ISS Lyapunov function. Indeed, for

systems controlled by predictive control schemes the stability analysis needs to be carried out

by using non smooth ISS-Lyapunov functions with an upper bound guaranteed only in a sub-

region of the domain of attraction [75]. Therefore, a novel regional ISS result for a family of

time-varying Lyapunov functions has been derived to assess the stability properties of MPC-

based NCS’s.

To this end, let us first consider the following definition.

Definition 2.4.3 (ISS-Lyapunov Function). Given a pair of compact sets Ξ⊂R
n and Ω⊆Ξ, with

Ξ RPI for system (2.14) and {0}⊂Ω, a function V (·, ·): Z≥0 ×R
n→ R≥0 is called a (Regional)

ISS-Lyapunov function in Ξ, if there exist K∞-functions α1, α2, α3, and K-function σ1 and σ2,

such that

1) the following inequalities hold ∀υ ∈ Υ and ∀t ∈ Z≥0

V (t, x) ≥ α1(|x|), ∀x ∈ Ξ, (2.16)

V (t, x) ≤ α2(|x|) + σ1(|υ|), ∀x ∈ Ω, (2.17)

V (t+ 1, g(t, x, υ))− V (t, x) ≤ −α3(|x|) + σ2(|υ|), ∀x ∈ Ξ, (2.18)

2) there exist some suitable K∞-functions ǫ and ρ (with ρ such that (id − ρ) is a K∞-function,

too) and a positive scalar c ∈ R>0 such that the set

Θ , {x : V (t, x) ≤ b(υ),∀t ∈ Z≥0}, (2.19)
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verifies the inclusion

Θ ⊆ Ω ∽ Bn(c), (2.20)

with {0} ∈ Θ and where b(s) , α−1
4 ◦ ρ−1 ◦ σ4(s), α4 , α3 ◦ α

−1
2 , α3(s) ,

min(α3(s/2), ǫ(s/2)), α(s) , α2(s) + σ1(s), σ4 = ǫ(s) + σ2(s) and υ , maxυ∈Υ{|υ|}.

�

The following remark will provide some insight into the meaning of Condition 2) in Definition

2.4.3 above.

Remark 2.4.1. Due the fact that, in Definition 2.4.3, the set Ξ has been assumed to be compact,

there always exists a set Θ satisfying condition (2.20) for a suitably small uncertainty bound

υ ∈ R>0 (and hence for a suitable non empty uncertainty set Υ). Indeed, by setting ξ ,

infξ∈Rn\Ξ {|ξ|}, and noting that ξ is strict positive, a sufficient condition for (2.20) to hold is

that

v ≤ b−1
(

α1( ξ − cυ)
)

, (2.21)

for some cυ ∈ R>0, with cυ < ξ. Indeed from (2.21) it follows that b(v) ≤ α1(ξ − cυ). Then

∀ξ : |ξ| > ξ − cυ it holds that V (t, ξ)≥α1(ξ)>b(v), which implies Θ⊆Bn(ξ − cυ)⊆Ξ ∽Bn(cυ).

Due to the inherent conservativeness of the comparison function approach, in practice it

turns out that the uncertainty bound given by (2.21) is in general smaller than that for which

the invariance of Ξ can be guaranteed. However, this observation is nonetheless important, since

it permits to guarantee the convergence towards the origin in presence of small uncertainty,

while the robust constraint satisfaction (related to the concept of set invariance rather then to

comparison inequalities) can be enforced for larger uncertainties. �

Notably, the ISS-Lyapunov inequalities (2.16),(2.17) and (2.18) differ from those posed in

the original regional ISS formulation [75], since an input-dependent upper bound is admitted

in (2.17) (thus allowing for a more general characterization). Moreover, with regard to the

regional ISS result presented in [33], the ISS-Lyapunov function V (t, x) is allowed to belong a

family of time-varying functions. Remarkably, the possibility to incorporate an input-dependent

upper bound in (2.17) and to admit a time-varying characterization will be instrumental for

characterizing the ISS property for NCS’s, as it will clearly emerge in Section 5.4.
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Now, under Assumption 2.1.2, the characterization of the regional ISS property in terms of

Lyapunov functions can be stated.

Theorem 2.4.1 (Lyapunov characterization of regional ISS). Suppose that Assumption 2.1.2

holds. If the system (2.14) admits an ISS-Lyapunov function in Ξ, then it is ISS in Ξ with

respect to υ and

lim
t→∞

d(x(t, x0,υ0,t−1),Θ)=0 , ∀x0 ∈ Ξ.
�

Proof [Theorem 2.4.1 ] Let x ∈ Ξ. The proof will be carried out in three steps

1) First, we are going to show that the set Θ defined in (2.19) is RPI for the system. From

the definition of α2(s) it follows that α2(|x|) + σ1(|υ|) ≤ α2(|x| + |υ|). Therefore V (t, x) ≤

α2(|x| + |υ|) and hence |x| + |υ| ≥ α−1
2 (V (t, x)). Moreover, thanks to Point 2) of Definition

2.4.3, there exists a K∞-function ǫ such that

α3(|x|) + ǫ(|υ|) ≥ α3(|x|+ |υ|) ≥ α4(V (t, x)).

Then, considering the transition from (t, x) to (t+ 1, g(t, x, υ)), we have

V (t+ 1, g(t, x, υ))− V (t, x) ≤ −α4(V (t, x)) + ǫ(|υ|) + σ2(|υ|)

≤ −α4(V (t, x)) + σ4(|υ|), ∀x ∈ Ω,∀υ ∈ Υ,∀t ∈ R≥0.

(2.22)

Let us assume now that x ∈ Θ. Then V (t, x) ≤ b(υ); this implies ρ ◦ α4(V (t, x)) ≤ σ4(υ).

Without loss of generality, assume that (id−α4) is a K∞-function, otherwise pick a bigger α2

so that α3 < α2. Then

V (t+ 1, g(t, x, υ)) ≤ (id− α4) (V (t, x)) + σ4(υ)

≤ (id− α4) (b(υ)) + σ4(υ)

= −(id− ρ) ◦ α4 (b(υ)) + b(υ)− ρ ◦ α4 (b(υ)) + σ4(υ).

From the definition of b, it follows that ρ◦α4 (b(υ)) = σ4(υ) and, owing to the fact that (id−ρ)
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is a K∞-function, we obtain

V (t+ 1, g(t, x, υ)) ≤ (id− ρ) ◦ α4 (b(υ)) + b(υ) ≤ b(υ).

By induction it is possible to show that, V (t, x(t, x̄0,υ0,t−1)) ≤ b(υ), ∀x̄0 ∈ Θ, ∀t ∈ Z≥0, that

is xt ∈ Θ,∀t ∈ Z≥0. Hence Θ is RPI for system (2.14).

2) Next, we are going to show that the state, starting from Ξ\Θ, tends asymptotically to Θ.

Firstly, if x ∈ Ω\Θ, then

ρ ◦ α4 (V (t, x)) ≥ σ4(υ).

From the inequality α3(|x|) + ǫ(|υ|) ≥ α4 (V (t, x)), we have that

ρ (α3(|x|) + ǫ(|υ|)) > σ4(υ).

Being (id− ρ) a K∞-function, it holds that id(s) > ρ(s), ∀s ∈ R>0, then

α3(|x|) + ǫ(υ) > α3(|x|) + ǫ(|υ|) > ρ(α3(|x|) + ǫ(|υ|))

> σ4(υ) = ǫ(υ) + σ2(υ), ∀x ∈ Ω\Θ,∀υ ∈ Υ,

which in turn implies that

V (t+ 1, g(t, x, υ))− V (t, x) ≤ −α3(|x|) + σ2(υ) + σ3(υ)

< 0, ∀x ∈ Ω\Θ,∀υ ∈ Υ.
(2.23)

Moreover, in view of (2.19), ∃c ∈ R>0 such that for all x
′

∈ Ξ\Θ there exists x
′′

∈ Ω\D such

that α3(|x
′′

|) ≤ α3(|x
′

|)− c. Then, from (2.23) it follows that

−α3(|x
′

|) + c ≤ −α3(|x
′′

|) < −σ2(υ)− σ3(υ), ∀x
′

∈ Ξ\Ω, ∀x
′′

∈ Ω\Θ.

Then,

V (t+ 1, g(t, x, υ))− V (t, x) ≤ −α3(|x|) + σ2(υ) + σ3(υ)

< −c, ∀x ∈ Ξ\Ω,∀υ ∈ Υ.

Hence, for any x0 ∈ Ξ, there exists TΩ
x0
∈ Z≥0 finite such that xTΩ

x0
= x(TΩ

x0
, x0,υ) ∈ Ω, that

is, starting from Ξ, the region Ω will be reached in finite time.
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Now, we will prove that starting from Ω, the state trajectories will tend asymptotically to the

set Θ. Since Θ is RPI, it holds that limj→∞ d
(

x(TΩ
x0

+ j, xTΩ
x0
,υ),Θ

)

= 0. Otherwise, posing

t = TΩ
x0

, if xt 6∈ Θ, then we have that ρ ◦ α4(V (t, x)) > σ4(υ); moreover, from (2.23) it follows

that

V (t+ 1, g(t, x, υ))− V (t, x) ≤ −α4(V (t, x)) + σ4(υ)

= −(id− ρ) ◦ α4(V (t, x))− ρ ◦ α4(V (t, x)) + σ4(υ)

≤ −(id− ρ) ◦ α4(V (t, x))

≤ −(id− ρ) ◦ α4 ◦ α1(|x|),∀x ∈ Ω\Θ,∀υ ∈ Υ

Then, we can conclude that ∀ǫ
′

∈ R>0, ∃T
Θ
x0
≥ TΩ

x0
such that

V (TΘ
x0

+ j, xTΘ
x0

+j) ≤ ǫ
′

+ b(υ), ∀j ∈ Z≥0.

Therefore, starting from Ξ, the state will arrive arbitrarily close to Θ in finite time and

the state trajectories will tend to Θ asymptotically. Hence limt→∞ d(x(t, x0,υ0,t−1),Θ) =

0, ∀x0 ∈ Ξ,∀υ ∈MΥ.

3) The present part of the proof is intended to show that system (2.14) is regionally ISS in the

sub-level set N[V,e], where e , max{e ∈ R>0 : N[V,e] ∈ Ω}, having denoted with N[V,e] , {x ∈

R
n : V (t, x) ≤ e,∀υ ∈ Υ,∀t ∈ Z≥0} a sub-level set of V for a specified e ∈ R≥0. Let and

consider . Note that e > b(υ) and Θ ⊂ N[V,e]. Since the region Θ is reached asymptotically

from Ξ, the state will arrive in N[V,e] in finite time, that is, given x0 ∈ Ξ there exists T
N[V,e]

x0

such that

V

(

T
N[V,e]

x0
+j , x

T
N[V,e]
x0

+ j

)

≤ e, ∀j ∈ Z≥0

Hence, the region N[V,e] is RPI. Now, proceeding as in the Proof of Lemma 3.5 in [50], for any

x0 ∈ N[V,e], there exist a KL-function β̂ and a K-function γ̂ such that

V (t, xt) ≤ max β̂ (V (0, x0), t) , γ̂(||υ[t−1]||), ∀t ∈ Z≥0,∀υ ∈MΥ,

with xt ∈ N[V,e] and where γ̂ can be chosen as γ̂ = α−1
4 ◦ ρ−1 ◦ σ4. Hence, considering that
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β̂(r + s, t) ≤ β̂(2r, t) + β̂(2s, t),∀(s, t) ∈ R
2
≥0 (see [68]), it follows that

α1(|xt|) ≤ max β̂ (α2(|x0|) + σ1(|υ0|), t) , γ̂(||υ[t−1]||)

≤ max β̂ (2α2(|x0|), t) + β̂ (2σ1(|υ0|), t) , γ̂(||υ[t−1]||), ∀t ∈ Z≥0,∀x0 ∈ N[V,e],∀υ ∈MΥ.

Now, let us define the KL-functions β̃(s, t) , α−1
1 ◦ β̂(2s, t) , β(s, t) , β̃(α2(s), t), and the

K-functions γ̃(s) , α−1
1 ◦ γ̂(s) and γ(s) , β̃(σ1(s), 0) + ˜γ(s) , we have that

|xt| ≤ max β̃ (α2(|x0|), t) + β̃ (σ1(|υ0|), t) , γ̃(||υ[t−1]||)

≤ β̃ (α2(|x0|), t) + β̃ (σ1(|υ0|), t) + γ̃(||υ[t−1]||)

≤ β̃ (α2(|x0|), t) + β̃
(

σ1(||υ[t−1]||), 0
)

+ γ̃(||υ[t−1]||)

≤ β (|x0|, t) + γ(||υ[t−1]||), ∀t ∈ Z≥0,∀x0 ∈ N[V,e],∀υ ∈MΥ.

(2.24)

Hence, by (2.24), the system (2.14) is ISS in N[V,e] with ISS-asymptotic gain γ. Considering

that starting from Ξ the set N[V,e] is reached in finite time, the ISS in N[V,e] implies the UAG

in Ξ.

Now, thanks to Lemma 2.1.1 Assumption 2.1.2, the UAG in Ξ implies the LS, as well, in Ξ, and

hence the regional ISS property in Ξ. �

2.5 Concluding Remarks

In this chapter, the notion of regional Input-to-State Stability for discrete-time nonlinear con-

strained systems has been recalled. In particular, an equivalent characterization of the regional

ISS property in terms of (non-necessarily continuous) time-invariant Lyapunov functions has

been discussed (see [75]). This result will be used, in the sequel, to study the robustness of

MPC algorithms derived according to open-loop formulations.

In order to use the ISS tools to study the stability properties of discrete-time-varying non-

linear constrained system, such as those arising from the application of the MPC to networked

system (see Chapter 5 for further details), the regional ISS property has been characterized

in terms of (possibly discontinuous) time-varying Lyapunov functions satisfying suitable time-

invariant comparison inequalities.

This result will be instrumental to study the region of attraction for MPC-controlled system

in which the loop is closed through unreliable and delayed communication channels. It is also
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believed that this contribution can be used to improve the stability analysis of existing MPC

algorithms as well as to develop new design methods with enhanced robustness properties.



34 CHAPTER 2. REGIONAL ISS FOR NMPC



35

Chapter 3

Robust NMPC based on

Constraint Tightening

The idea of using restricted constraints in the formulation of the MPC, to provide the desired

degree of robustness to the closed-loop system, was first introduced in [26] for linear systems

and then extended to nonlinear systems in [66] and [100]. The main drawback of MPC with

tightened constraints is represented by the conservative set-restrictions introduced to account for

the disturbances, which consider a large spread of trajectories along the optimization horizon.

In order to overcome this limitation, the use of a closed-loop policy was suggested in [102],

where the concept of uncertainty tube, (an envelope of all the possible trajectories introduced

in [16] for uncertain linear system) was extended to some classes of nonlinear system.

It must be remarked that all existent constraint tightening approaches rely on an additive

description of uncertainties, that is, they do not consider the possibility to reduce the conserva-

tiveness by exploiting some knowledge on the structure of the perturbation.

If the system is affected by state-dependent disturbances, and the state is limited in a compact

set, it is always possible to bound the state-dependent perturbation with a worst-case value and

to apply the algorithms described in [66, 100, 102].

However, if the particular state-dependent structure of the disturbance is considered, signif-

icant advantages can be clearly obtained.

In the following, we are going to propose a modification the nonlinear constraint tightening

algorithms presented in [43, 62] and [66] in order to handle state-dependent disturbances more
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efficiently.

In this setup, the restricted sets are computed on-line iteratively by exploiting the state

sequence obtained by the open-loop optimization, thus accounting for a possible reduction of

the state dependent component of the uncertainty due to the control action. In this regard, it

is possible to show that the devised technique yields to an enlarged feasible region compared to

the one obtainable if just an additive disturbance is considered. Moreover, with respect to the

previous scheme, the proposed algorithm uses a control horizon shorter than the prediction one.

The terminal stabilizing constraint is imposed at the end of the control horizon, and not of the

prediction horizon as in [72], in order to reduce the propagation of the uncertainty. The use of a

long prediction horizon, along which an auxiliary controller is employed, is suggested to better

approximate the performance of the so-called infinite horizon control law (see e.g., [72]).

A graphical representation of the underlying principle of Model Predictive Control with

tightened constraints is given in Figure 3.1.

In order to analyze the stability properties of the closed-loop system in the presence of

bounded persistent disturbances and state-dependent uncertainties, the regional characterization

of Input-to-State Stability (ISS) in terms of Lyapunov functions is used (see Section 2.2 of

Chapter 2).

The robustness with respect to state-dependent disturbances is analyzed using the nonlinear

stability margin concept.

3.1 Problem Formulation

Consider the nonlinear discrete-time dynamic system

xt+1 = f(xt, ut, υt), t ∈ Z≥0, (3.1)

where xt ∈ R
n denotes the system state, ut ∈ R

m the control vector and υt ∈ R
r an exogenous

input which models the disturbance. The state and control variables are subject to the following

constraints

x ∈ X, (3.2)

u ∈ U, (3.3)
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Figure 3.1 Scheme of the underlying principle of MPC with Constraint Tightening: the re-
stricted constraints set (Xi ⊂ X, ∀i ∈ {1, . . . , Nc}) are applied along the control horizon to the
nominal system trajectories in (a). In this way, all the possible perturbed trajectories obtained
with a feasible control sequence will respect the nominal constraint X, (b).
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where X and U are compact subsets of R
n and R

m, respectively, containing the origin as an

interior point. Given the system (3.1), let f̂(xt, ut), with f̂(0, 0) = 0, denote the nominal model

used for control design purposes, such that

xt+1 = f̂(xt, ut) + dt, t ∈ Z≥0, (3.4)

where dt = dt(xt, ut, υt) , f(xt, ut, υt)−f̂(xt, ut) ∈ R
n denotes the discrete-time state transition

uncertainty. In the sequel, for the sake of brevity, we will not point out the functional dependence

of dt(xt, ut, υt) on its arguments except where strictly needed. The following assumptions will

be used throughout the note.

Assumption 3.1.1. f̂ is Lipschitz with respect to x for all x ∈ X, with constant Lfx
∈ R>0. �

Assumption 3.1.2 (Uncertainties). The additive transition uncertainty dt is limited in a time

varying compact ball Dt, that is dt(xt, ut, υt) ∈ Dt , Bn(δ(|xt|) + µ(Υsup)) , ∀xt ∈ X, ∀ut ∈ U ,

∀υt ∈ Υ, where δ and µ are two K-functions. The K-function δ is such that Lδ,min{L∈R>0 :

δ(|x|)≤L|x|,∀x∈X} exists finite. It follows that dt is bounded by the sum of two contributions:

a state-dependent component and a non-state-dependent one. �

The control objective consists in designing a state-feedback control law capable to achieve ISS

closed-loop stability and to satisfy state and control constraints in presence of state-dependent

uncertainties and persistent disturbances.

On the basis of the previous assumptions, let us formulate the control problem. To this end,

a suitable FHOCP (see Definition 1.1.1 for the standard formulation) should be introduced. At

any time t ∈ Z≥0, let ut,t+Np−1|t , col[ut|t, ut+1|t, . . . , ut+Nc−1|t, ut+Nc|t, . . . , ut+Np−1|t] denote

a sequence of input variables over the time-horizon Np. Moreover, given xt and ut,t+Np−1|t, let

x̂t+j|t denote the state “predicted” at time t + j, j ∈ {1, · · · , Np} by means of the nominal

model.

Definition 3.1.1 (FHOCP). Consider system (3.4). Given two positive integers Nc ∈ Z≥0 and

Np ∈ Z≥0, with Np ≥ Nc respectively representing the control and the prediction horizons, a

transition cost functionh, an auxiliary control lawκf , a terminal penalty functionhf , a terminal

setXNc
and a sequence of constraint sets X̂t+j|t ⊆ X, j ∈ {1, . . . , Nc − 1} (to be described later
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on), the FHOCP consists in minimizing, with respect to ut,t+Nc−1|t, the performance index

JFH(xt,ut,t+Nc−1|t, Nc, Np) ,
t+Nc−1
∑

l=t

h(x̂l|t, ul|t) +
t+Np−1
∑

l=t+Nc

h(x̂l|t, κf (xl|t)) + hf (x̂t+Np|t
) (3.5)

subject to

1) the nominal state dynamics x̂t+j|t= f̂(x̂t+j−1|t, ut+j−1|t), with x̂t|t = xt;

2) the control and the state constraints ut+j|t ∈ U , x̂t+j|t∈X̂t+j|t,∀j∈{0,. . . ,Nc − 1};

3) the terminal state constraints x̂t+Nc|t ∈ XNc
;

4) the auxiliary control law ut+j|t = κf (x̂t+j|t),∀j∈{Nc,. . . ,Np − 1}. �

Assumption 3.1.3. The transition cost function h is such that h(|x|)≤h(x, u), ∀x∈X, ∀u∈U

where h is a K∞-function. Moreover, h is Lipschitz with respect to x and u in X × U , with

Lipschitz constants Lh ∈ R≥0 and Lhu
∈ R≥0 respectively. �

The usual RH control technique can now be stated as follows: given a time instant t ∈ Z≥0,

let x̂t|t = xt, and find the optimal control sequence u◦
t,t+Nc−1|t by solving the FHOCP. Then,

according to the RH strategy, apply

ut = κMPC(xt) , (3.6)

where κMPC(xt) ,u◦t,t and u◦t,t is the first element of the optimal control sequence u◦
t,t+Nc−1|t

(implicitly dependent on xt).

With particular reference to the underlined definition of the FHOCP, note that, with respect

to the usual formulation, in this case the constraint sets are defined only within the control

horizon and the terminal constraint is stated at the end of the control horizon. Another pe-

culiarity is the use of a state constraint that changes along the horizon. In the following, it

will be shown how to choose accurately the stage cost h, the terminal cost function hf , the

control and prediction horizon Nc and Np, the constraint sets X̂t+j|t, j ∈ {1, . . . , Nc − 1}, the

terminal constraint XNc
and the auxiliary control law κf in order to guarantee closed-loop ISS.

In particular the set XNc
will be chosen such that, starting from any x ∈ XNc

in Np −Nc steps

the auxiliary control law can steer the state of the nominal system into a set Xf which satisfies
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the assumption asked for the terminal set of standard stabilizing MPC algorithm [77]. In the

following, XMPC will denote the set containing all the state vectors for which a feasible control

sequence exists, i.e. a control sequence ut,t+Nc−1|t satisfying all the constraints of the FHOCP.

3.2 Robust MPC Strategy

In order to formulate the robust MPC algorithm, let us introduce the following further assump-

tions.

Assumption 3.2.1. A terminal cost function hf , an auxiliary control law κf , and a set Xf

are given such that

1) Xf ⊂ X, Xf closed, 0 ∈ Xf ;

2) κf (x) ∈ U , ∀x ∈ Xf ; κf (x) is Lipschitz in Xf , with constant Lκf
∈ R>0;

3) the closed loop map f̂(x, κf (x)), is Lipschitz in Xf , with constant Lfc
∈ R>0;

4) f̂(x, κf (x)) ∈ Xf , ∀x ∈ Xf ;

5) hf (x) is Lipschitz in Xf , with constant Lhf
∈ R>0;

6) hf (f̂(x, κf (x)))−hf (x)≤−h(x, κf (x)), ∀x∈Xf ;

7) ũt,t+Np−1|t , col[κf (x̂t|t), κf (x̂t+1|t), . . . , κf (x̂t+Np−1|t)] , with x̂t|t=xt, is a feasible control

sequence for the FHOCP, ∀x∈Xf . �

Assumption 3.2.2 (Robust constraintXNc
). The robust terminal constraint set of the FHOCP,

XNc
, is chosen such that

1) for all x ∈ XNc
the state can be steered to Xf in Np −Nc steps under the nominal dynamics

in closed-loop with the auxiliary control law κf ;

2) there exists a positive scalar ǫ ∈ R>0 such that f̂(xt, κf (xt)) ∈ XNc
∽ Bn(ǫ), ∀xt ∈ XNc

. �

3.2.1 Shrunk State Constraints

In order to show the difference among the existing constraint tightening formulations and the

proposed scheme, let us recall the definition of restricted constraint sets under the usual as-

sumption of norm-bounded uncertainties, neglecting the possible state-dependent structure (see

e.g., [66]).
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Definition 3.2.1 (Tightened Constraints). Under Assumptions 3.1.1 and 4.2.2, suppose 1,

without loss of generality, Lfx
6= 1. The tightened constraints are defined as

Xi(d) , X ∽ Bn

(

Li
fx
− 1

Lfx
− 1

d̄

)

, ∀i ∈ Z>0. (3.7)

�

In the following, we will exploit the particular state-dependent nature of the uncertainty to

reduce the conservativeness of the set contraction relying on the nominal prediction of state

trajectories along the control (optimization) horizon.

Under Assumption 3.1.2, given xt, a norm-bound on the state prediction error will be derived.

Subsequently, it is shown that the satisfaction of the original state constraints is ensured, for

any admissible disturbance sequence, by imposing suitably restricted constraints to the predicted

open-loop trajectories.

Throughout this section, the following notation will be used: given an optimal sequence

u◦
t,t+Nc−1|t of control actions obtained by solving the FHOCP at time t, let us define the sequence

ūt+1,t+Nc|t+1 , col[u◦t+1|t, . . . , u
◦
t+Nc−1|t, ū], where ū ∈ U is a suitably defined feasible control

action implicitly depending on x̂t+Nc|t+1 . The following result will be instrumental for the

subsequent analysis.

Lemma 3.2.1 (Constraints tightening). Under Assumptions 3.1.1 and 3.1.2, given the state

vector xt at time t, let a control sequence, ūt,t+Nc−1|t, be feasible with respect to the restricted

state constraints of the FHOCP, X̂t+j|t, computed as follows

X̂t+j|t , X ∽ Bn(ρ̂t+j|t), (3.8)

where







ρ̂t+1|t , µ̄+ Lδ|xt|,

ρ̂t+j|t = (Lδ + Lfx
)ρ̂t+j−1|t + µ̄+ Lδ|x̂t+j−1|t|, ∀j ∈ {2, . . . , Nc}

(3.9)

with µ̄ , µ(Υsup). Then, the sequence ūt,t+Nc−1|t, applied to the perturbed system (3.1), guar-

1The very special case Lfx
= 1 can be trivially addressed by a few suitable modifications to the proof of

Lemma 3.2.1.
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antees xt+j ∈ X, ∀j ∈ {1, . . . , Nc}, ∀xt ∈ XMPC , ∀υ ∈MΥ. �

Proof. Given xt, consider the state xt+j obtained applying the first j elements of a feasible

control sequence ūt,t+j−1|t to the uncertain system (3.1). Then, the prediction error êt+j|t ,

xt+j−x̂t+j|t, with j∈{1, . . . , Nc}, is upper bounded by

|êt+j|t| = |f̂(xt+j−1, ut+j−1|t) + dt+j−1 − f̂(x̂t+j−1|t, ut+j−1|t)|

≤ Lfx
|êt+j−1|t|+ |dt+j−1| ≤ Lfx

|êt+j−1|t|+ µ̄+ Lδ|xt+j−1|

≤ (Lfx
+ Lδ)|êt+j−1|t|+ µ̄+ Lδ|x̂t+j−1|t|.

(3.10)

Finally, comparing (3.10) with (3.9), it follows that |êt+j|t| ≤ ρ̂t+j|t, which in turn proves the

statement. �

Remark 3.2.1. The constraint tightening (3.8), compared to previous approaches [66, 100], may

lead to less conservative computations. In fact, rather then using only the state information xt

at time t, it relies on the whole predicted state sequence x̂t+j|t, j ∈ {1, . . . , Nc}, thus accounting

for a possible reduction of the state-dependent component of the uncertainty along the horizon.

The effectiveness of the proposed approach in enlarging the feasible region of the FHOCP will be

shown in Section 3.3 by a simulation example.

3.2.2 Feasibility

In order to show the robust positive invariance of the feasible region, XMPC , under the closed

loop dynamics given by (3.1) and (3.6), an upper norm bound for the maximal admissible un-

certainty will be stated in Assumption 3.2.3, motivated by Lemma 3.2.2 [METTERE PROOF].

Lemma 3.2.2 (Technical). Given a set XNc
for which Assumption 3.2.2 holds, let us define

d̄κf
, ǫ/Lfx

and d̄ , dist(Rn\C1(XNc
),XNc

). Under Assumption 3.1.1, it holds that

1)XNc
⊂ XNc

⊕ Bn(d̄κf
) ⊆ C1(XNc

);

2) d̄ ≥ d̄κf
. �
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Proof Notice that, given a vector x ∈ XNc
⊕B(d̄κf

), there exist at least one vector x
′

∈ XNc

such that |x − x
′

| ≤ ǫ/Lfx
. Since f̂(x

′

, κf (x
′

)) ∈ XNc
∽ B(ǫ), with κf (x

′

) ∈ U , then, by

Assumption 3.1.1, it follows that f̂(x, κf (x
′

)) ∈ B(f̂(x
′

, κf (x
′

)), ǫ) ⊆ XNc
, and hence x ∈

C1(XNc
),∀x ∈ XNc

⊕ B(d̄κf
), thus proving the statement. �

It must be remarked that, for nonlinear systems, the numerical computation of C1(XNc
)

is a very difficult task, although the underlying theory is well established and many different

methods have been proposed since the seminal paper [16]. In this regard, for some classes

of nonlinear systems, there exist efficient numerical procedures for the computation of pre-

images and predecessor sets (see [18, 56, 101]). In addition, a novel algorithm to compute inner

approximations of controllability sets will be given in Section 3.4.

Assumption 3.2.3 (Bound on uncertainties). The K-functions δ and µ are such that the fol-

lowing inequality holds

δ(|xt|)+µ(Υsup)≤L1−Nc

fx
d̄, ∀xt ∈ X. (3.11)

�

The robust positively invariance of the feasible region, XMPC , under the closed-loop dynam-

ics, can now be stated and proved.

Theorem 3.2.1 (Feasibility). Let a system be described by equation (3.1) and subject to (3.2)

and (3.3). Under Assumptions 3.1.1-3.2.3, the set in which the FHOCP is feasible, XMPC , is

also RPI for the closed-loop system under the action of the control law given by (3.6). �

Proof. It will be shown that the regionXMPC is RPI for the closed-loop system, proving that,

for allxt ∈ XMPC , there exists a feasible solution of the FHOCP at time instant t+ 1, based

on the optimal solution in t, u◦
t,t+Nc−1|t. In particular, a possible feasible control sequence is

given by ūt+1,t+Nc|t+1 = col
[

u◦t+1|t, . . . , u
◦
t+Nc−1|t, ū

]

, where ū = ū(x̂t+Nc|t+1) ∈ U is a feasible

control action, suitably chosen to satisfy the robust constraint x̂t+Nc+1|t+1 ∈XNc
.

First, let us introduce the following technical lemma (the proof is given in Appendix).



44 CHAPTER 3. ROBUST NMPC WITH CONSTRAINT TIGHTENING

Lemma 3.2.3 (Technical). Given xt and xt+1 = f̂(xt, κMPC(xt)) + dt, with dt ∈ Dt, con-

sider the predictions x̂t+Nc|t and x̂t+Nc+1|t+1, obtained respectively using the input sequences

u◦
t,t+Nc−1|t and ūt+1,t+Nc|t+1, and initialized with x̂t|t = xt and x̂t+1|t+1 = xt+1. Given XNc

as described in Assumption 3.2.2, suppose that x̂t+Nc|t ∈ XNc
. In view of Assumption 3.2.3,

if δ(|xt|) + µ̄≤L1−Nc

fx
d̄, then x̂t+Nc|t+1 ∈ C1(XNc

). Moreover, if δ(|xt|) + µ̄≤ L1−Nc

fx
d̄κf

, then

x̂t+Nc|t+1∈XNc
⊕ Bn(d̄κf

). �

Now, the proof will be divided in two steps.

1) x̂t+j|t+1∈X̂t+j|t+1: First, in view of Assumptions 3.1.1, 3.1.2 and (3.9), it follows that































ρ̂t+1|t − ρ̂t+1|t+1 = Lδ|xt|+ µ̄,

ρ̂t+j|t − ρ̂t+j|t+1 = (Lfx
+ Lδ)

(

ρ̂t+j−1|t − ρ̂t+j−1|t+1

)

+ Lδ(|x̂t+j|t| − |x̂t+j|t+1|)

≥ (Lfx
+ Lδ)

(

ρ̂t+j−1|t − ρ̂t+j−1|t+1

)

− LδL
j−2
fx

(Lδ|xt|+ µ̄),

∀j ∈ {2, . . . , Nc}.

Proceeding by induction, it follows that, for all j ∈ {2, . . . , Nc}

ρ̂t+j|t − ρ̂t+j|t+1 ≥

[

(Lfx
+ Lδ)

j−1 − Lδ (Lfx
+ Lδ)

j−2
j−2
∑

k=0

(

Lfx

Lfx+Lδ

)k
]

(Lδ|xt|+ µ̄)

which yields

ρ̂t+j|t − ρ̂t+j|t+1≥L
j−1
fx

(Lδ|xt|+ µ̄), ∀j ∈ {1, . . . , Nc}. (3.12)

Now, consider the predictions x̂t+j|t and x̂t+j|t+1, with j∈{1, . . . , Nc}, made respectively using

the input sequences u◦
t,t+Nc−1|t and ūt+1,t+Nc−1|t+1, and initialized with x̂t|t=xt and x̂t+1|t+1=

f̂(xt, κMPC(xt)). Assuming that x̂t+j|t∈X̂t+j|t,X ∽ Bn(ρ̂t+j|t), with ρ̂t+j|t given by (3.9), let

us introduce η∈Bn(ρ̂t+j|t+1). Furthermore, let ξ,x̂t+j|t+1− x̂t+j|t +η. Then, under Assumption

3.1.1, it follows that |ξ| ≤ |x̂t+j|t+1 − x̂t+j|t| + ρ̂t+j|t+1 ≤ Lj−1
fx

(Lδ|xt|+ µ̄) + ρ̂t+j|t+1. In view

of (3.12), it turns out that |ξ| ≤ ρ̂t+1|t, and hence, ξ∈Bn(ρ̂t+j|t). Since x̂t+j|t∈X̂t+j|t, it follows

that x̂t+j|t+ξ=x̂t+j|t+1+η ∈ X, ∀η ∈ B
n(ρ̂t+j|t+1), which finally yields x̂t+j|t+1 ∈ X̂t+j|t+1.

2) x̂t+Nc+1|t+1 ∈ XNc
: if LNc−1

fx
(δ(|xt|)+µ̄)≤d̄κf

, in view of Lemma 3.2.2 there exists a feasible

control action such that the statement holds. If d̄κf
<LNc−1

fx
(δ(|xt|)+µ̄)≤ d̄, thanks to Lemma

3.2.3, it follows that x̂t+Nc|t+1∈C1(XNc
). Hence, there exists a feasible control action, namely
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ū∈U , such that x̂t+Nc+1|t+1 = f̂(x̂t+Nc|t+1, ū)∈XNc
, thus ending the proof. �

Remark 3.2.2. With respect to previous literature [66, 100], the use of XNc
instead of Xf as

stabilizing constraint set and the possibility to compute d̄ relying on C1(XNc
), together allow to

enlarge the bound on admissible uncertainties which the controller can cope with. In fact, consid-

ering that the restricted constraints are based on Lipschitz constants, which lead to conservative

computations, the limitation of their use to a shorter horizon (and not to the whole prediction

one) may enlarge the feasible set of the FHOCP. �

3.2.3 Regional Input-to-State Stability

In the following, the stability properties of system (3.1) in closed-loop with (3.6) are analyzed.

Let denote α1(s) = h(s), α2(s) = Lhf
s and c1 = 0. In order to state the main theorem concern-

ing the stability properties of the devised control scheme, the following alternate assumptions

are introduced.

Assumption 3.2.4. With reference to Definition 2.1.3, given

1) α3(s) = h(s)−
[

Lh

LNc

fx
− 1

Lfx
− 1

+ Lhf
L

Np−(Nc+1)
fc

LNc

fx
+ (Lh + Lhu

Lκf
)
L

Np−(Nc+1)
fc

− 1

Lfc
− 1

LNc

fx

]

δ(s);

2) σ(s) =
[

Lh

LNc

fx
− 1

Lfx
− 1

+(Lh+Lhu
Lκf

)
L

Np−Nc−1
fc

− 1

Lfc
− 1

LNc

fx
+Lhf

L
Np−(Nc+1)
fc

LNc

fx

]

µ(s);

3) c2 = 0;

let

i) δ(|xt|)+µ(|υt|)≤L
1−Nc

fx
d̄κf

, ∀xt ∈ XMPC , ∀υt ∈ Υ;

ii) α3 be a K∞-function ∀s≤ supx∈XMP C
{|x|} ;

iii) Υ be such that Θ defined in (2.5) is contained in Ω ∽ Bn(c), for some c ∈ R>0 and for all

υ ∈ Υ. �

Assumption 3.2.5. With reference to Definition 2.1.3, given

1) α3(s) = h(s)−Lh

LNc

fc
− 1

Lfc
− 1

δ(s);
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2) σ(s) = Lh

LNc

fc
− 1

Lfc
− 1

µ(s);

3) c2 =
[

(Lh+Lhu
Lκf

)
L

Np−(Nc+1)
fc

− 1

Lfc
− 1

+Lhf
L

Np−(Nc+1)
fc

]

max
{

|x−ξ|, (x, ξ)∈XNc
×(XNc

⊕Bn(d̄))
}

+

Lhf
L

Np−(Nc+1)
fc

Lhu
max {|u−w|, (u,w)∈U×U} ;

let

i) L1−Nc

fx
d̄κf

< δ(|xt|) + µ(|υt|) ≤ L
1−Nc

fx
d̄, ∀xt ∈ XMPC , ∀υt ∈ Υ;

ii) α3 be a K∞-function ∀s≤ supx∈XMP C
{|x|} ;

iii) Υ be such that Θ defined in (2.5) is contained in Ω ∽ Bn(c), for some c ∈ R>0 for all

υ ∈ Υ. �

Theorem 3.2.2 (Regional Input-to-State Stability). Let a system be described by equation (3.1)

and subject to (3.2) and (3.3). Under Assumptions 3.1.1-3.2.3,

1) if Assumption 3.2.4 holds, then the closed-loop system (3.1), (3.6) is regional ISS in Ξ =

XMPC with respect to vt ∈ Υ;

2) if Assumption 3.2.5 holds, then the closed-loop system (3.1), (3.6) is regional ISpS in Ξ =

XMPC with respect to v ∈ Υ. �

Proof. In view of Assumptions 3.1.1-3.2.3 it follows from Theorem 3.2.1 that XMPC is a RPI

set for system (3.1) under the action of the control law (3.6). So, the proof consists in showing

that V (xt) = JFH(xt,u
◦
t,t+Nc−1|t, Nc, Np) is an ISS-Lyapunov function in XMPC . First, by

Assumption 3.2.2, the set XMPC is not empty. In fact, for any xt ∈ Xf , a feasible control

sequence for FHOCP is given by ũt,t+Np−1|t , col
[

κf (x̂t|t), κf (x̂t+1|t), . . . , κf (x̂t+Nc−1|t)
]

.

Then XMPC ⊇Xf . Then, in view of Point 5) of Assumption 3.2.1 and Assumptions 3.1.3-3.2.2

it holds that

V (xt) ≤JFH(xt, ũt,t+Nc−1|t, Nc, Np) =
t+Np−1
∑

l=t

h(x̂l|t, κf (x̂l|t)) + hf (x̂t+Np|t
)

≤
t+Np−1
∑

l=t

[

hf (x̂l|t)− hf (x̂l+1|t)
]

+ hf (x̂t+Np|t
)

≤ hf (x̂t|t) ≤ Lhf
|xt|, ∀xt ∈ Xf .

Hence, there exists a K-function α2(|xt|) such that
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V (xt) ≤ α2(|xt|), ∀xt ∈ Xf . (3.13)

The lower bound on V (xt) can be easily obtained using Assumption 3.1.3:

V (xt) ≥ h(|xt|), ∀xt ∈ XMPC . (3.14)

Inequalities (2.2) and (2.3) hold respectively with Ξ = XMPC and Ω = Xf . Suppose2 that

Lfc
6= 1. Now, in view of Assumption 3.2.2 and Theorem 3.2.1, given the optimal control

sequence at time t, u◦
t,t+Nc−1|t+1, the sequence ūt+1,t+Nc|t , col

[

u◦t+1|t, . . . , u
◦
t+Nc−1|t, ū

]

with

ū=







κf (x̂t+Nc|t), if δ(|xt|) + µ(|υt|) ≤ L
1−Nc

fx
d̄κf

ū ∈ U : f̂(x̂t+Nc|t+1, ū) ∈ XNc
, if L1−Nc

fx
d̄κf

< δ(|xt|) + µ(|υt|) ≤ L
1−Nc

fx
d̄

is a feasible (in general, suboptimal) control sequence for the FHOCP initiated with xt+1 =

f(xt, κMPC(xt), υt) at time t+ 1, with cost

JFH(xt+1, ūt+1,t+Nc|t+1, Nc, Np) =

V (xt)− h(xt, u
◦
t,t) +

t+Nc−1
∑

l=t+1

[

h(x̂l|t+1, u
◦
l|t)− h(x̂l|t, u

◦
l|t)
]

+ h(x̂t+Nc|t+1, ū)

−h(x̂t+Nc|t
, κf (x̂t+Nc|t)) +

t+Np−1
∑

l=t+(Nc+1)

[

h(x̂l|t+1, κf (x̂l|t+1))− h(x̂l|t, κf (x̂l|t))
]

+h(x̂t+Np|t+1, κf (x̂t+Np|t+1)) + hf (f̂(x̂t+Np|t+1, κf (x̂t+Np|t+1)))− hf (x̂t+Np|t
).

Using Assumptions 3.1.1 and 3.1.3, it follows that

∣

∣

∣
h(x̂t+j|t+1, u

◦
t+j|t)− h(x̂t+j|t, u

◦
t+j|t)

∣

∣

∣
≤ LhL

j−1
fx

(δ(|xt|) + µ(|υt|)), (3.15)

for all j ∈ {1, . . . , Nc − 1}. Moreover, for j = Nc, we have

∣

∣

∣
h(x̂t+Nc|t+1, ū)− h(x̂t+Nc|t

, κf (x̂t+Nc|t))
∣

∣

∣
≤

LhL
Nc−1
fx

(δ(|xt|)+ µ(|υt|)) + Lhu
∆u(δ(|xt|) + µ(|υt|)),

(3.16)

2The very special case Lfc
= 1 can be trivially addressed by a few suitable modifications to the proof of

Theorem 3.2.2.
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where

∆u(s),







0, if s ≤ L1−Nc

fx
d̄κf

max{|u− w|, (u,w) ∈ U × U}, if L1−Nc

fx
d̄κf

< s ≤ L1−Nc

fx
d̄.

(3.17)

Finally, under Assumptions 3.1.1, 3.1.3 and 3.2.2, for all j ∈ {Nc + 1, . . . , Np − 1}, the

following intermediate results hold

∣

∣

∣
h(x̂t+j|t+1, κf (x̂t+j|t+1))− h(x̂t+j|t, κf (x̂t+j|t))

∣

∣

∣
≤

(Lh + Lhu
Lκf

)L
j−(Nc+1)
fc

[

∆x(δ(|xt|) + µ(|υt|)) + LNc

fx
(δ(|xt|) + µ(|υt|))

]

,
(3.18)

and

∣

∣hf (x̂t+Np|t+1)−hf (x̂t+Np|t)
∣

∣

≤Lhf
L

Np−(Nc+1)
fc

[

∆x(δ(|xt|)+µ(|υt|))+L
Nc

fx
(δ(|xt|)+µ(|υt|))

]

,
(3.19)

where

∆x(s),







0, if s ≤ L1−Nc

fx
d̄κf

,

max{|x−ξ|,(x, ξ)∈XNc
×(XNc

⊕ Bn(d̄))} − LNc

fx
s, if L1−Nc

fx
d̄κf

<s≤L1−Nc

fx
d̄.

(3.20)

Consider now the case δ(|xt|) + µ(|υt|) ≤ L1−Nc

fx
d̄κf

,∀xt ∈ X, ∀υt ∈ Υ. Then, in view of

Points 5) and 6) of Assumption 3.2.1, Assumption 3.2.2 and by using (3.15)-(3.20), the following

inequalities hold

JFH(xt+1, ūt+1,t+Nc|t
, Nc, Np)

≤ V (xt)− h(xt, u
◦
t,t) +

Nc
∑

j=1

LhL
j−1
fx

(δ(|xt|) + µ(|υt|)) +
Np−1
∑

j=Nc+1

(Lh + Lhu
Lκf

)L
j−(Nc+1)
fc

×LNc

fx
(δ(|xt|) + µ(|υt|)) + h(x̂t+Np|t+1, κf (x̂t+Np|t+1)) + hf (x̂t+Np+1|t+1)− hf (x̂t+Np|t+1)

+Lhf
L

Np−(Nc+1)
fc

LNc

fx
(δ(|xt|) + µ(|υt|)).

Now, from inequality V (xt+1)≤JFH(xt+1, ūt+1,t+Nc|t, Nc, Np) it follows that

V (f(xt, κMPC(xt), υt))− V (xt) ≤ −α3(|xt|) + σ(|υt|), ∀xt ∈ XMPC , ∀υt ∈ Υ (3.21)
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with α3(s) and σ(s) defined as is Assumption 3.2.4. If δ(s) is such that α3(s) is a K∞-function

∀s ≤ supx∈XMP C
{|x|}, then the closed-loop system has a stability margin for [50]. Therefore,

by (3.13), (3.14) and (3.21), if δ(|xt|) + µ(|υt|) ≤ L1−Nc

fx
d̄κf

, ∀xt ∈ XMPC , ∀υt ∈ Υ, then the

optimal cost JFH(xt,u
◦
t,t+Nc−1|t,Nc,Np) is an ISS-Lyapunov function for the closed-loop system

in XMPC . Hence, it is possible to conclude that the closed-loop system is regional ISS inXMPC

with respect to υ ∈MΥ.

Conversely, if L1−Nc

fx
d̄κf

< δ(|xt|)+µ(|υt|) ≤ L
1−Nc

fx
d̄, the following inequality can be straight-

forwardly obtained

V (f(xt, κMPC(xt), υt))− V (xt) ≤ −α3(|xt|) + σ(|υt|) + c2, ∀xt ∈ XMPC , ∀υt ∈ Υ (3.22)

with α3(s), σ(s) and c2 defined as is Assumption 3.2.5. Hence, in the latter case, provided that

α3 is a K∞-function, only ISpS can be guaranteed, although the invariance of XMPC and the

fulfillment of constraints are preserved thanks to Theorem 3.2.1. �

The characterization of the ISS property for the controlled system in terms of Lyapunov

function, as well as the characterization of the maximal admissible uncertainty under which

such a property is guaranteed, allows to design effective robust MPC schemes with ease. In the

following section, we will show how the basic set-invariance theoretic tools and the regional ISS

can be used for the synthesis and the analysis of the stabilizing property of the controller and

the estimation of its domain of attraction.

3.3 Simulation Results

Consider the following discrete-time model of an undamped nonlinear oscillator







x(1)t+1
=x(1)t

+0.05
[

−x(2)t
+ 0.5

(

1+ x(1)t

)

ut

]

+ d(1)t

x(2)t+1
=x(2)t

+0.05
[

x(1)t
+ 0.5

(

1− 4x(2)t

)

ut

]

+ d(2)t

(3.23)

where the subscript (i) denotes the i-th component of a vector. The uncertainty vector is given

by dt=1 ·10−3xt +υt, with |υt| ≤ 1 ·10−4. System (3.23) is subject to state and input constraints

(3.2) and (3.3), where the set X is depicted in Figure 3.2, while U , {u ∈ R : |u| ≤ 2}. The

Lipschitz constant of the system is Lfx
=1.1390.
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Figure 3.2 Perturbed closed-loop trajectories with initial points: (a)=(0.1,0.08)T,
(b)=(−0.15,−0.04)T, (c)=(−0.25,−0.40)T, (d)=(0.00,−0.20)T , (e)=(−0.17, 0.00)T . The
robust constraint set XNc

(dash-dotted) and the set Xf (dotted) are emphasized.
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Since affordable algorithms exist for the numerical computation of the Pontryagin difference

set of polytopes, for implementation purposes the balls to be “subtracted” (in the Potryagin

sense) from the constraint set X to obtain X̂t+j|t, ∀j ∈ {1, . . . , Nc} are outer approximated by

convex parallelotopes.

A linear state feedback control law ut = κf (xt) = kTxt, with k ∈ R
2, stabilizing (3.23) in a

neighborhood of the origin, can be designed as described in [88]. Choosing k = [0.5955 0.9764]T

and Nc = 5, the following ellipsoidal sets, Xf and XNc
, satisfy Assumption 3.2.1 and 3.2.2

respectively

Xf,







xt∈R
n: xT

t





167.21 −43.12

−43.12 305.50



xt≤1







,XNc
,







xt∈R
n: xT

t





114.21 −29.45

−29.45 208.67



xt≤1







,

with Lκf
= 1.1437, Lfc

= 1.0504 and Np = 12. Let the stage cost h be given by h(x, u) ,

xT Qx+ uTRu, and the final cost hf by hf (x) , xTPx, with
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Q =





0.1 0

0 0.1



, R = 1, P =





91.56 −23.61

−23.61 167.28



,

then hf satisfies Points 2) and 6) of Assumption 3.2.1 in Xf ⊆ X. Moreover κf (x) satisfies

point 7) of Assumption 3.2.1 in Xf . The following values for d̄κf
and d̄ can be computed:

d̄κf
=2.3311 · 10−4 and d̄=1.2554 · 10−3. It follows that the admissible uncertainties, for which

the feasibility set XMPC is RPI under the closed-loop dynamics, are bounded by

δ(|xt|) + µ(Υsup) ≤ 7.4591 · 10−4, ∀xt ∈ X.

Sample perturbed closed-loop trajectories obtained by simulation are depicted in Figure 3.2.

Figure 3.3 compares the feasible set XMPC obtained for the developed MPC policy (cyan)

with the feasible region of the controller designed according to [66] (orange), using the same

control horizon length with terminal constraint set Xf . It is enhanced the improving of the new

algorithm in terms of domain of attraction.

Figure 3.3 Comparison between the feasible region of the controller designed accordingly to
[66] with terminal set Xf and the enlarged feasible set obtained by using the robust constraint
set XNc

.
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In this section, we used some basic notions of set-invariance theory, such as controllability

sets, to characterize the robustness of the resulting MPC scheme. In order not to be reduced to a

vague concept, in the sequel of the chapter we are going to provide a numerical tool to compute

inner approximations of controllability sets, which can be used as conservative estimates of the

true ones in order to assess the robustness of the devised schemes. The algorithm proposed has

been used in the last given example to provide an effective estimate of the maximal admissible

uncertainty tolerable by the controller.

On the other hand, not to oversell the devised numerical procedure, it must be remarked that,

making use of gridding and computationally expensive set iterations, it can apply only to small

dimensional systems. However, by using some important computability results for predecessor

operators based on set-valued function theory, it has been possible to prove some interesting

properties of the proposed method; among them, the convergence and the monotonicity results

are recalled, since they guarantee that the set-estimates are improved at each iteration step,

while the convergence to the a desired distance metric is ensured for infinite iterations.
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3.4 Computing Convex Inner Approximations of Control-

lability Sets

In the previous sections, a design methodology for RH control schemes has been presented, and

the ISS properties of the resulting closed-loop scheme have been established, provided that the

uncertainties/perturbations are suitably bounded.

In particular, the bound on additive transition uncertainty, under which the invariance of the

feasible set for the MPC is guaranteed, has been shown to depend on the invariance properties

of the terminal set constraint Xf (see inequality (3.11) ).

Indeed, the distance metric dist(Rn\C1(Xf ),Xf ), on which the uncertainty bound relies on,

can be viewed as a measure of inherent contractivity of Xf under the controlled transition map

f̂(x, u) with the input constraint u ∈ U , and is therefore independent on the particular auxiliary

terminal controller used in the stability proof.

At a first glance, the exact evaluation of dist(Rn\C1(Xf ),Xf ) can be carried out by directly

computing C1(Xf ). However, in most situations, only an inner approximation Ĉ1(Xf ) can be

obtained numerically.

In this respect, given a compact invariant set Xf ⊂ R
n an iterative procedure will

be described to compute convex inner approximations of controllability sets Ci(Xf ), i ∈

Z>0 . In turn, the procedure will allow to compute lower approximations of the met-

ric dist(Rn\Ci(Xf ),Xf ), i ∈ Z>0, which is a multi-step generalization of the metric

dist(Rn\C1(Xf ),Xf ) used to bound the admissible uncertainty for RH schemes. The multi-

step result will be used later on in the framework of Networked Control System to characterize

the stability property of a control strategy, based on MPC, devised for this particular class of

systems (see Chapter 5 ).

The proposed algorithm algorithm is based on the following recursion







Ĉi(Ξ)1 = Xf ,

Ĉi(Ξ)j+1 = ϑ(Ĉi(Ξ)j ,Xf ), j ∈ Z≥1,
(3.24)

where ϑ is a suitable set-valued function and Ĉi(Ξ)j is the convex inner approximation of Ci(Xf )

computed at the j-th iteration. Referring to a numerical example reported in Section 3.3, Figure

3.4 shows a graphical representation of two sequences of sets generated by such a recursion to
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approximate C1(Xf ) and C8(Xf ).

Figure 3.4 Sequence of sets generated by the iterative procedure (3.24) for the terminal set Xf

used in the example reported in Section 3.3.
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Ĉ8(Xf )4

The main objective of the following analysis consists in designing the above set-valued oper-

ator ϑ, such as to guarantee the convergence the algorithm toward the desired euclidean metric

dist(Rn\Ci(Xf ),Xf ). In order to determine a function ϑ capable to satisfy the above require-

ments, we need to address the issue of numerical computability of set-valued operators, which

poses indeed some constraints on the structure of the approximation algorithm. A detailed

analysis of computability of set-valued operators for nonlinear discrete-time autonomous and

controlled systems is given in [8] and [29]. In order to present a key result on the computability

of controllability sets, some notions of set-valued analysis [10] are needed (see Appendix A.3). In

particular, the notion of Robust Controllability Set of Ξ ⊂ R
n in X ⊂ R

n, denoted as RCi(X,Ξ)

(see A.3.5), will be used extensively in the sequel. In the following, the shorthand RCi(Ξ) will

be used to denote RCi(R
n,Ξ).
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The possibility to obtain an arbitrary accurate numerical approximation of the robust pre-

decessor set is guaranteed by the following approximate computability result.

Theorem 3.4.1 ([29]). Given a set Ξ⊆X, if the map F̂ (x) is LSC in x, ∀x∈X , then C1(Ξ)

is open whenever Ξ is open. Hence, the operator Ξ 7→RC1(Ξ) is always lower semicomputable,

i.e., it can be approximated arbitrarily well by a sequence of compact sets {Ĉ1(Ξ)j}, j∈Z≥1, with

Ĉ1(Ξ)j⊃Ĉ1(Ξ)j−1, given an initial lower approximation Ĉ1(Ξ)1⊂RP(Ξ)⊆C1(Ξ). �

Noting that a set-valued map defined as in (A.6) is LSC under Assumption 3.1.1, Theo-

rem 3.4.1 can be readily extended to characterize the computability of the i-step robust control-

lability set RCi(Ξ). In this regard, let us introduce the following problem.

Problem 3.4.1. Given a finite integer i∈Z>0 and an invariant compact set Xf ⊂ R
n, we look

for a numerical set-iterative procedure, in the form of (3.24), capable to generate a sequence

{Ĉi(Xf )j , j∈Z≥1} of compact sets lower approximating RCi(Xf ), such that

1)Ĉ(Xf )j ⊂ Ci(Xf ), ∀j ∈ Z>0;

2)if dist(Rn\Ĉi(Xf )j ,Xf )<dist(Rn\RCi(Xf ),Xf )

⇒ dist(Rn\Ĉi(Xf )j+1,Xf)>dist(Rn\Ĉi(Xf)j ,Xf),∀j∈Z>0;

3)dist(Rn\RCi(Xf ),Xf )≤limj→∞dist(Rn\Ĉi(Xf )j ,Xf ) ≤ dist(Rn\Ci(Xf ),Xf ).

�

Now, we are going to introduce a numerical framework to address the issues raised by Problem

3.4.1. In particular, it will be shown that the function ϑ in (3.24) can be designed such that all

requirements are satisfied.

To this end, let us introduce the Finite Horizon Distance Optimal Control Problem (FH-

DOCP).

Problem 3.4.2 (FHDOCP). Given system (3.4), an invariant compact set Xf ⊂ R
n and a

compact set X ⊆ RCi(Xf ) (first guess inner approximation), consider a vector x0 ∈ ∂Ξ. The

(i-steps) Finite Horizon Distance Optimal Control Problem (FHDOCP) consists in finding the

sequence of control moves u0,i−1 = col[u0, . . . , ui−1], subject to (1.3), such that the following

value function, JFHD(x0,u0,i−1,Xf ), is maximized:
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JFHD(x0,u0,i−1(x0),Xf ) , Φ(x̂(i, x0,u0,i−1),Xf ) .

�

In the following, we will denote the optimal value function as

J◦
FHD(x0) ,= max

u0,i−1∈Ui
{Φ(x̂(i, x0,u0,i−1),Xf )},

and the optimal input sequence as u◦
0,i−1(x0). An effective optimization-based algorithm, which

satisfies the requirements raised by Problem 3.4.1, is now presented (for the sake of notational

simplicity, the dependency of J◦
FHD on Xf will be omitted).

Theorem 3.4.2 (Ĉi(Xf )). Given a positive integer i∈Z>0 and a compact invariant set Xf ⊂

R
n, consider the recursion (3.24) with ϑ defined as follows

ϑ(Ĉi(Xf )j ,Xf ) , Ĉi(Xf )j⊕B

(

L−i
fx

min
x∈∂Ĉi(Xf )j

{J◦
FHD(x)}

)

. (3.25)

Then the sequence of sets {Ĉi(Xf )j , j∈Z≥1} satisfies Points 1)-3) of Problem 3.4.1. �

Proof First, it is worth to note that, in a numerical framework, the geometric condition for

invariance of a compact set Ξ ⊂ R
n stated in Theorem A.3.1 must be replaced by its robust

counterpart, i.e., by the condition Ξ ⊆ RC1(Ξ). Now, it is possible to prove Theorem 3.4.2.

Points 1), 2) and 3) of Problem 3.4.1 are addressed separately in the following.

1) Ĉi(Xf )j⊂Ci(Xf )⇒Ĉi(Xf )j+1⊂Ci(Xf ),∀j∈Z≥1: Given a vector x
′

∈Ĉi(Xf )j⊕B(L
−i
fx
Jj), with

Jj , minx∈∂Ĉi(Xf )j
J◦

FHD(x), then ∃x
′′

∈ ∂Ĉi(Xf )j (⊂ Ci(Xf )) such that |x
′

− x
′′

| ≤L−i
fx
Jj .

Hence, there exists a feasible sequence of controls ū0,i−1 which yields to x̂(i, x
′′

, ū0,i−1) ∈

Xf ∽ B(Jj), with Jj ∈ R≥0. Then, under Assumption 3.1.1, the inequality |x̂(i, x
′

, ū0,i−1)−

x̂(i, x
′′

, ū0,i−1)| ≤Li
fx
|x

′

− x
′′

|, yields to x̂(i, x
′

,u0,i−1)∈Xf , and hence x
′

∈Ci(Xf ). These

arguments also prove the second inequality at Point 3) of Problem 3.4.1.

2) dist(Rn\Ĉi(Xf )j+1,Xf ) < dist(Rn\RCi(Xf ),Xf )⇒ Ĉi(Xf )j+1 ⊃ Ĉi(Xf )j (⊃ Xf ),∀j ∈ Z≥1:

Under the stated assumption, being Jj ∈ R>0, the subsequent inclusion follows from the

properties of Minkowski addition. If Jj =0 for some j∈Z≥1, then Ĉi(Xf )j+1=Ĉi(Xf )j ,∀j∈
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Z≥ j, and hence the limit is finitely determined.

3) dist(Rn\RCi(Xf ),Xf)≤ limj→∞dist(Rn\Ĉi(Xf )j ,Xf): The proof can be carried out by con-

tradiction. First, by Point 2), notice that ϑ(Ĉi(Xf )∞) = Ĉi(Xf )∞. Assume there exists

ǫ
′

∈ R>0 such that limj→∞dist(Rn\Ĉi(Xf )j ,Xf) = dist(Rn\RCi(Xf ),Xf)− ǫ
′

. Then, the

set ∂Ĉi(Xf )∞⊂Ci(int(Xf )). Since there exists ǫ
′′

∈R>0 such that minx∈∂Ĉi(Xf )∞
J◦

FHD(x)≥ǫ
′′

,

then there exist a set ϑ(Ĉi(Xf )∞)⊃Ĉi(Xf )∞, which invalidates the original assumption.
�

Remark 3.4.1. Notice that Theorem 3.4.2 assumes that the optimal value J◦
FHD(x) for each

x ∈ ∂Ĉi(Xf )j as well as the global minimum minx∈∂Ĉi(Xf )j
{J◦

FHD(x)} can be actually obtained.

For a generic nonlinear system this is not always the case, therefore a numerical method to

approximate the set-valued function ϑ is described. Notably, in this case the constraints imposed

by Points 1)-3) of Problem 3.4.1 cannot be strictly fulfilled, but can be violated with an arbitrarily

small tolerance specified by the designer, as described in the following section. �

3.4.1 Numerical implementation of the set-iterative scheme

In order to derive a numerically affordable implementation of the set iterations (3.24)-(3.25),

some properties of the optimal value function J◦
FHD(·) are going to be analyzed. In particular,

in a neighborhood of a point x
′

0 for which the optimal value function yields to J◦
FHD(x

′

0) =

JFHD(x
′

0,u
◦
0,i(x

′

0)), a conic lower bound can be established.

Lemma 3.4.1. Under Assumptions 3.1.1, given a vector x
′

0 ∈ ∂Ĉi(Xf )j, the optimal cost

J◦
FHD(x

′

0,u
◦
0,i(x

′

0)), the optimal control sequence u◦
0,i(x

′

0), and the optimal state prediction

x̂(x
′

0,u
◦
0,i(x

′

0), i), then the optimal value of the function J◦
FHD(x

′′

0 ,u
◦
0,i(x

′′

0 )) is lower bounded

by

J◦
FHD(x

′′

0 )≥ JFHD(x
′′

0 ,u
◦
0,i(x

′

0))≥J
◦
FHD(x

′

0)−αLf
i
x (3.26)

for any vector x
′′

0 ∈ R
n : |x

′

0 − x
′′

0 | ≤ α, with α ∈ R>0. �

Figure 3.5 shows a pictorial representation of the lower bound result stated by Lemma 3.4.1,

which is proved below.

Proof In view of Assumption 3.1.1, it follows that
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|x̂(i, x
′

0,u
◦
0,i(x

′

0))− x̂(i, x
′′

0 ,u
◦
0,i(x

′

0))| ≤ Lf
i
xα. (3.27)

Letη∈R>0be such thatα=ηL−i
fx
J◦

FHD(x
′

0), then it follows that the state vector x̂(i, x
′′

0 ,u
◦
0,i(x

′

0)) ∈

Bn
(

x̂(i, x
′

0,u
◦
0,i(x

′

0)), ηJ
◦
FHD(x

′

0)
)

. Considering that J◦
FHD(x

′′

0 ) ≥ JFHD(x
′′

0 ,u
◦
0,i(x

′

0)) , then

J◦
FHD(x

′′

0 )≥(1− η)J◦
FHD(x

′

0).

Finally, substituting the expression for η, the statement of the lemma trivially follows. �

In the sequel, an algorithm for numerically approximating the set-valued function ϑ in (3.25)

is discussed.

Figure 3.5 Graphical representation of the conic lower bound on J◦
FHD(x

′′

0 ), for |x
′′

0 − x
′

0| <

L−i
fx
J◦

FHD(x
′

).
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Procedure 3.4.1 (Numerical recipe for ϑ(Ĉi(Xf )j ,Xf )). First, notice that, given a lower bound
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Jj ≤ min
x∈∂Ĉi(xf )j

{J◦
FHD(x)}, Jj∈R>0

then the following inequality holds

Ci(xf )j⊆
(

Ĉi(xf )j⊕(L−1
fx
Jj)
)

⊆ϑ(Ĉi(Xf )j ,Xf )

Thanks to Lemma 3.4.1, Jj can be obtained by performing a series of FHDOCP’s in suitably

chosen vectors belonging to ∂Ĉi(Xf )j. In order to ensure the termination of the procedure in

a finite number of steps, let us fix an arbitrary tolerance δ ∈ R>0, whose significance will be

cleared later on. At this point, let us consider a grid-like subset XH ⊂ ∂Ĉi(Xf )j such that

d(x,XH)≤δ, ∀x∈∂Ĉi(Xf )j and ∃ǫ∈R>0 : d(x,XH\{x})≥ǫ, ∀x∈XH . Being Ĉi(Xf )j compact,

XH is numerable. Then, performing a finite number of FHDOCP’s on all the vectors of XH ,

we can compute

Jj=(1− 0.5Lfx
δ) min

x∈XH

{J◦
FHD(x)}

If Jj<0, the recursion is terminated. Notice that δ can be reduced to allow for a finer gridding,

which permits to compute a possibly tighter bound, at the cost of an increase in the computational

load. Conversely, if Jj>0, the set Ĉi(Xf )j+1=Ĉi(xf )j⊕(L−1
fx
Jj) is computed and the recursion

is continued.

For implementation purposes, it is convenient that Xf is given as a polytope [4], such that

the sets Ĉi(Xf )j+1, j∈{1, . . . , Nc} can be obtained by performing the Minkowski addition between

polytopes, having previously inner approximated the ball addendum in (3.25) by a parallelotope.

�

3.5 Concluding Remarks

In this chapter, a robust model predictive control design method for constrained discrete-time

nonlinear systems with state-dependent uncertainty and persistent disturbances has been pre-

sented.

Under suitable assumptions, by employing the devised technique, based on tightening the

original state-constraints, the robust constraint satisfaction and the recursive feasibility of the

scheme can be guaranteed.
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Furthermore, the closed-loop system under the action of the MPC law has been shown to be

Input-to-State Stable with respect to additive bounded perturbations.

Remarkably, the method proposed to tighten the constraints, which uses the nominal state

predictions to compute the set restrictions, allows for less conservative results and yields to

enlarged feasible regions with respect to previous approaches.

In the belief of the author, the conception of methodologies to reduce the inherent conserva-

tiveness of constraint-tightening MPC represents a key point toward the possibility to use this

technique as an alternative to min-max MPC for uncertain nonlinear systems with fast dynam-

ics. Indeed, due to ease of implementation and to the reduced computational burden required

by the open-loop optimization of constraint-tightening MPC, it is more attractive than min-max

formulations for practical deployment.
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Chapter 4

Off-line Approximated Nonlinear

MPC

In the last few years, the problem of reducing the computational complexity of MPC has at-

tracted increasing interest among the control engineers. Indeed, nonlinear plants with fast

dynamics, which require the computation of the control action with small sampling periods that

do not allow to solve the optimization problem on-line, call for the design of explicit RH control

laws. In practice, for a generic nonlinear system, only an approximation of the true RH control

law can be obtained by off-line computations. However the approximated control law is still

required to enforce the robust constraint satisfaction and to guarantee some stability property.

The problem of obtaining explicit RH controllers with quadratic costs and linear constraints

for linear systems can be solved by using parametric quadratic programming techniques [1,

15]. The multi-parametric optimization approach has also been used to obtain robust explicit

feedback laws for uncertain linear systems [14, 27, 83].

On the other side, in the context of nonlinear systems, an exact explicit solution cannot

in general be obtained. In this framework, the idea of approximating MPC control laws with

general function approximators, such as artificial neural networks, has been proposed in several

works [23, 89, 88], and more recently in [2] . Although the literature concerning the application

of approximate nonlinear RH controllers to real plants is rich [40, 82], there is a need for a

further investigation toward the effect of approximation errors on the robustness of the closed-

loop system, in particular when the dynamics are driven by strong nonlinearities and when state
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and input variables are subjected to hard constraints.

Recently, several approaches have been proposed to obtain explicit solutions of MPC prob-

lems for special classes of constrained uncertain nonlinear systems. An efficient off-line formula-

tion of the robust MPC problem has been developed in [119] for constrained linear time-varying

systems affected by polytopic uncertainty. Explicit MPC controllers for constrained piecewise

affine systems with bounded disturbances have been designed in [58] and [84].

An approximate RH control technique that can be applied to a generic nonlinear system with

state and input constraints has been proposed in [39], where the control law has been obtained

off-line by recursively partitioning the state space with a binary search tree. The major drawback

of the state space partitioning approach [52, 117] is that the structure of the approximator is

fixed by the algorithm which solves the multi-parametric optimization associated to the RH

controller. Moreover, a large number of regions may be necessary to guarantee the stability of

the closed-loop system. A method to reduce the complexity of the controller in case of nonlinear

input-affine systems has been proposed in [11].

With the aim of decoupling the computation of the optimal control law from the function

approximation stage, a detailed stability analysis has been carried out in [20] for a generic

nonlinear system driven by a set-membership approximate RH controller. In the aforementioned

work, the stability properties of the closed-loop system are studied under the assumption that

the true RH control law is Lipschitz continuous with respect to the state variables, and that the

Lipschitz constant (or a suitable upper bound) is known at the approximation stage. In this

respect, it must be remarked that this assumption is not always verified in practice, since the

optimal MPC law may be discontinuous, as deeply discussed in [78, 107].

In [78] it was shown that MPC could generate discontinuous feedback control law with respect

to the state variables even if the dynamic system is continuous. This is due to the fact that the

feedback law comes from the solution of a constrained optimization problem (when constraints,

as for example the terminal constraint, are considered). Only when the plant is unconstrained

and the terminal constraint is not active, [48], or when only constraints on the inputs are present,

[69], discontinuity of the control law is avoided. When the transition function of the system is

discontinuous (as for instance the case of hybrid systems) or the system is constrained, this

problem remains open, [63].

In this connection, we will show that it is possible to analyze the stability of a system driven

by a generic approximate static state-feedback without formulating any “a priori” assumption on
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the continuity of the resulting control law. To this end, the effect of the approximation error will

be decomposed in two bounded perturbation terms, one acting on the state measurements and

the other perturbing directly the control input. Finally, we will show that the Nearest Neighbor

(NN) interpolation (see [9]) can be effectively used to approximate (possibly discontinuous) MPC

laws.

To summarize, the main features of the proposed approximate RH control design are

1) it removes any “a priori” assumption on the continuity of the RH control law, thus permitting

to apply the method to systems which are not asymptotically stabilizable by continuous state-

feedback;

2) hard constraints on state and input variables can be robustly enforced;

3) it allows to compute a conservative bound on the quantization of the input command values

(due to the numerical implementation of the approximate control law).

4.1 Motivating example

In this section, we provide an example of a non-autonomous system which can not be locally

asymptotically stabilized to the 0-equilibrium by any static state-feedback control law continuous

in the state variables. We will prove that a discontinuous control law can effectively achieve the

asymptotic stabilization, and that a smooth Lyapunov function can be found for the closed-loop

system as described in [53]. This stabilizing discontinuous controller will be used, in section 4.4,

as an auxiliary feedback to design a RH control scheme capable to optimize a given performance

index and to enforce the satisfaction of state and and input constraint. In addition, assuming

that the discrete dynamics evolves with a small time-step that is not compatible with real-time

optimization, our goal is to obtain, by off-line optimization, a suitable approximation of the RH

(discontinuous) control law, preserving some stability property to be specified. Consider the

system














x(1)t+1
= x(1)t

[

2+(x(1)t
+0.95)ut

]

+0.1x(2)t
ut

x(2)t+1
=e−1

[

0.5− 0.5
x(1)t

+0.95

2
ut

]

x(2)t

, t ∈ Z≥0

x0 = (x(1)0
, x(2)0

) = x̄,

(4.1)

where the subscript (i), i ∈ {1, 2}, denotes the i-th component of xt.
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Proposition 4.1.1. For system (4.1) there does not exist a continuous time-invariant feedback

control law capable to asymptotically stabilize the 0-equilibrium. �

Proof The proof will be carried out by contradiction. Assume that there exists a (bounded)

continuous state feedback control law ut=κ(xt), κ : R
2 → R, κ(x)≤R, ∀x ∈ R

2, with R ∈ R>0,

capable to render locally asymptotically stable the closed-loop system toward the origin. For

local asymptotic stability to hold, for all ǫ>0 there must exist δ>0 such that |xt| < ǫ, ∀t≥0,

whenever |x0| < δ. Let us fix ǫ=(2 − r − 0.95)/(R+1), with r > 1, and consider an initial

condition x0=x̄=(x̄(1), 0), with |x0| < δ≤ǫ. Notice that, with the given initial condition, the

solution verifies x(2)t
≡ 0, ∀t≥0. Moreover, it holds that |(x(1)t

+0.95)κ(x(1)t
, x(2)t

)|≤2 − r,

∀t≥0, which implies |x(1)t+1
|≥r|x(1)t

|∀t≥0, and in turn that |xt|≥rt|x0|. From the assumption

r > 1, it follows that the local uniform stability property |xt| < ǫ, ∀t≥0 cannot be verified for

any initial condition satisfying |x0| > 0. �

On the other hand, the following discontinuous feedback law is able to asymptotically stabi-

lize the closed-loop system

κd(x(1), x(2))=







0, |x(1)|≤
√

|x(2)|

−2 1
x(1)+0.95 |x(1)| >

√

|x(2)|
(4.2)

The function κd is bounded by |κd(x)|≤2.1053 ,∀x ∈ R
2. Moreover the closed-loop system

admits the following Lyapunov function W : R
2 → R>0

W (x) = |x(1)|+
2e0.5

e0.25 − 1

√

|x(2)|, (4.3)

which satisfies the following inequality

W (f̂(x, κd(x)))−W (x)≤−
(

1− e−0.25
)

W (x) (4.4)

where f̂(x, u) denotes the state transition map given in (4.1).

Next, we are going to address the problem of designing robust MPC schemes for systems

that are non smoothly asymptotically stabilizable, as the one proposed in this section, and

that are subjected to hard constraint on state and input variables. Since we will prove that

MPC can asymptotically stabilize this class of systems, then it is possible to conclude that also

RH policies with terminal set constraint and terminal penalty (besides the formulation with
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terminal equality constraint already analyzed in [78]), can give rise to discontinuous control

laws. Finally, we will determine the conditions under which those systems can be effectively

controlled by approximate feedback laws obtained by off-line computations.

4.2 Regional ISS Result for Discontinuous MPC Feedback

Laws

Consider the nonlinear discrete-time perturbed dynamic system

xt+1 = f(xt, ut, ςt), t ∈ Z≥0, x0=x̄ , (4.5)

where xt∈R
n denotes the system state, ut ∈ R

m the control vector and ςt∈R
r an exogenous

disturbance input. The state and control variables are subject to constraints (1.2) and (1.3).

Given the system (4.5), let f̂(xt, ut), with f̂(0, 0)=0, denote the nominal model used for control

design purposes, such that

xt+1=f̂(xt, ut)+dt, t ∈ Z≥0, x0=x̄ , (4.6)

where dt,f(xt, ut, ςt)− f̂(xt, ut)∈R
n denotes the discrete-time state transition uncertainty.

In the sequel the following assumptions will be needed.

Assumption 4.2.1. The function f̂ : X×U→X is Lipschitz (L.) continuous with respect to

x ∈ X, with L. constant Lfx
∈ R>0, uniformly in u ∈ U (i.e., for any fixed u∈U , it holds that

|f̂(x, u)− f̂(x
′

, u)|≤Lfx
|x− x

′

| for all (x, x
′

)∈X2).

Furthermore, the function f̂ is uniformly continuous in u: there exists a K-function ηu such

that |f̂(x, u)− f̂(x, u
′

)|≤ηu(|u− u
′

|) for all x∈X and for all (u, u
′

)∈U2. �

Assumption 4.2.2 (Uncertainties). The additive transition uncertainty verifies dt ≤

µ(|ςt|), ∀t ∈ Z≥0 where µ is a K-function. Moreover, dt is bounded in a compact ball D, that is

dt∈D,B(d), ∀t ∈ Z≥0, with d̄ ∈ R≥0 finite. �

Assumption 4.2.3 (Input-to-state stabilizing controller). There exist a compact set Ξ̃ ∈X,

with {0}∈Ξ̃, and a state-feedback control law (possibly non-smooth)
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ut=κ(xt), κ(xt) : Ξ̃→ U, (4.7)

such that the following system, given by (4.6) in closed-loop with (4.7)

xt+1=f̂(xt, κ(xt))+dt, t ∈ Z≥0, x0=x̄, (4.8)

enjoies the properties:

1) it is ISS in Ξ̃ with respect to additive disturbances dt∈D. In particular, there exists a ISS-

Lyapunov function for which Equation 2) and 3) of Definition 2.2.1 hold.

2) the set Ξ̃ is RPI for system (4.6) with additive disturbances dt∈D.
�

Notice that a control law κ satisfying Assumption 4.2.3 can be designed by using some control

techniques recently developed in the framework of RH control. In this regard, the methodologies

described in [66, 94] guarantee the input-to-state stability of the closed-loop system with respect

to bounded additive disturbances and allow to evaluate the bounds on additive uncertainties

under which the feasible set of the optimization problem associated to the RH control can be

rendered robust positively invariant. In the following section, we will extend the aforementioned

RH control design procedures to systems that are not asymptotically stabilizable by continuous

static state feedback.

4.2.1 Formulation and Stability Properties of the Exact RH Control

Law

Given a perturbed nonlinear system (4.5), and a nominal model of the form (4.6) , the control

objective consists in designing a state-feedback control law (possibly discontinuous), capable to

meet the requirements posed by Assumption 4.2.3 and to satisfy state and input constraints

in the presence of additive uncertainties. On the basis of Assumptions 4.2.1 and 4.2.2, let us

formulate the MPC policy. To this end, a suitable Finite-Horizon Optimal Control Problem

(FHOCP) should be introduced.

Definition 4.2.1 (FHOCP). Given a positive integer Nc ∈ Z≥0, at any time t ∈ Z≥0, let

ut,t+Nc−1|t,col[ut|t, ut+1|t, . . . , ut+Nc−1|t] denote a sequence of input variables over the control
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horizon Nc. Moreover, given xt and ut,t+Nc−1|t, let x̂t+j|t denote the state “predicted” by means

of the nominal model, such that

x̂t+j|t=f̂(x̂t+j−1|t, ut+j−1|t), x̂t|t=xt,∀j∈{1, . . . ,Nc} . (4.9)

Then, given a transition cost functionh, an auxiliary control lawκf , a terminal cost functionhf ,

a terminal setXf and a sequence of constraint sets X̂t+j|t⊆X, j∈{1, . . . , Nc−1}, to be described

later on, the FHOCP consists in minimizing, with respect to ut,t+Nc−1|t, the cost function

JFH(xt,ut,t+Nc−1|t,Nc) ,
t+Nc−1
∑

l=t

h(x̂l|t,ul|t)+hf (x̂t+Nc|t
) (4.10)

subject to

1) the nominal dynamics (4.9), with x̂t|t=xt;

2) the control and the state constraints ut+j|t ∈ U , x̂t+j|t∈X̂t+j|t,∀j∈{0,. . . ,Nc − 1};

3) the terminal state constraint x̂t+Nc|t ∈ Xf . �

The usual RH control technique can now be stated as follows: given a time instant t ∈ Z≥0,

let x̂t|t =xt, and find the optimal control sequence u◦
t,t+Nc−1|t by solving the FHOCP. Then,

according to the RH strategy, apply

ut=κMPC(xt) , (4.11)

where κMPC(xt),u◦t|t and u◦t|t is the first element of the optimal control sequence u◦
t,t+Nc−1|t

(implicitly dependent on xt).

It can be shown that the satisfaction of the original state constraints is ensured, for any

admissible disturbance sequence, by imposing restricted constraints to the predicted open-loop

trajectories. The tightened constraints can be computed as prescribed by Definition 3.2.1, under

the assumption of norm-bounded uncertainties1.

In order to prove the ISS property for the closed-loop system, let us introduce the following

1In the current chapter we neglect the presence of state-dependent uncertainties in order to enhance the clarity
in the presentation. However, the state dependent contraction of constraints described in Lemma 3.2.1 can be
used without invalidating the stability results.
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assumptions.

Assumption 4.2.4. The transition cost function h is such that h(|x|)≤h(x, u), ∀x∈X, , ∀u∈U,

where h is a K∞-function. Moreover, h is Lipschitz with respect to x, uniformly in u, with L.

constant Lh> 0. �

Assumption 4.2.5. A terminal cost function hf , an auxiliary control law κf , and a set Xf

are given such that

1) Xf ⊂ X, Xf closed, 0 ∈ Xf ;

2) ∃δ > 0 : κf (x) ∈ U , ∀x ∈ Xf ⊕ Bn(δ);

3) f̂(x, κf (x)) ∈ Xf , ∀x ∈ Xf ⊕ Bn(δ);

4) hf (x) is Lipschitz in X, with L. constant Lhf
> 0;

5) hf (f̂(x, κf (x)))−hf (x)≤−h(x, κf (x)), ∀x∈Xf ⊕ B
n(δ); �

With respect to previous works [66, 75, 94] concerning the design of input-to-state stabilizing

MPC controllers, in order to cope with possibly discontinuous auxiliary control laws (consider,

for instance, the motivating example and the proposed controller (4.2)), here we do not require

neither κf (x) nor the closed-loop map f̂(x, κf (x)) to be Lipschitz continuous with respect to

x∈Xf . In addition, in order to establish the ISS property for the closed-loop system, we require

the following assumptions to be verified together with Assumption 4.2.5.

Assumption 4.2.6. Let Xf be a sub-level set of hf ( i.e. Xf = {x∈R
n : hf (x)≤ hf} ); the

transition cost function h and the terminal cost hf satisfy the condition

min
u∈U

{

inf
x∈C1(Xf )\(Xf⊕Bn(δ))

{hf (x)− h(x, u)}

}

> hf . (4.12)

where δ > 0 is a positive scalar for which Points 3) and 5) of Assumption 4.2.5 hold. �

Assumption 4.2.7 (Xκf
). Suppose that there exists a compact set Xκf

⊇ Xf for which

ũt,t+Nc−1|t , col[κf (x̂t|t), κf (x̂t+1|t), . . . , κf (x̂t+Nc−1|t)] is a feasible control sequence for the

FHOCP and for which Points 1), 2) and 5) of Assumption 4.2.5 are satisfied. �
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Remark 4.2.1. Notice that Assumption 4.2.6, which is an extension of Point 5) of Assumption

4.2.5 to the set C1(Xf ), can be easily verified if hf is Lipschitz continuous in C1(Xf ) with L.

constant Lhf
and if hf admits an exponential decay along the trajectories of the closed-loop

system under the auxiliary control law. In order to design a MPC controller for the system

described in the example given in Section 4.1, the Lyapunov function W can serve as a terminal

cost for the FHOCP, while Xf can be chosen as a sub-level set Xf ={x∈X : W (x)≤hf}. Indeed,

thanks to (4.4), it is possible to pick δ=(e0.5/2 − 1)hf/Lhf
, and then choose h such that Point

5) of Assumption 4.2.5 holds and

sup
(x,u)∈[C1(Xf )\(Xf⊕Bn(δ))]×U

{h(x, u)}<(e0.5/2−1)hf , (4.13)

in order to meet inequality (4.12). �

Under the stated assumptions, the following theorem characterizes the ISS property of the

closed-loop system with respect to bounded additive uncertainties. Moreover, in order to guar-

antee the recursive feasibility of the FHOCP, an upper bound on the admissible uncertainty is

introduced, which is shown to depend on the invariance properties of Xf . This theorem rep-

resents the extension of the ISS result presented in [94] to the case of systems which are not

asymptotically stabilizable by smooth feedback.

Theorem 4.2.1 (Regional ISS). Let us denote as XMPC ⊂ R
n the set of state vectors for which

the FHOCP is feasible. Under Assumptions 4.2.1,4.2.2, 4.2.5-4.2.7, the system (4.5), driven

by the MPC control law (4.11), is regional ISS in XMPC with respect to additive perturbations

dt ∈ D, with D ⊆ Bn(d) and

d ≤ L1−Nc

fx
dist(Rn\C1(Xf ),Xf ). (4.14)

�

Proof The proof will be carried out in two steps. The first step is aimed to prove the recursive

feasibility of the scheme under the prescribed bound on uncertainties, thus establishing the

robust positive invariance of the feasible set XMPC with respect to dt ∈D. The second step

consists in showing that V (xt) = JFH(xt,u
◦
t,t+Nc−1|t, Nc) is an ISS-Lyapunov function for the
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closed-loop system in XMPC .

1)First, by Assumption 4.2.7, the set XMPC is not empty. In fact, for any xt ∈ Xκf
, a fea-

sible control sequence for FHOCP is given by ũt,t+Nc−1|t , col
[

κf (x̂t|t), κf (x̂t+1|t), . . . ,

κf (x̂t+Nc−1|t)
]

. Then XMPC ⊇Xκf
⊇Xf . Moreover, since dt+j∈D,∀j∈Z≥0, with D⊆Bn(d)

and d≤ dist(Rn\C1(Xf ),Xf ), and by using standard arguments [66, 94], it is also possible

to show that, if the FHOCP at time t is feasible, then the recursive feasibility of the scheme

is guaranteed with respect to the restricted constraints. Furthermore, it possible to show

that, under the stated assumption on d, also the recursive feasibility with respect to the

terminal constraint set can be guaranteed. Indeed, from the assumption xt∈XMPC , it fol-

lows that the predicted state x̂t+Nc|t, obtained with the optimal sequence u◦
t,t+Nc−1|t, verifies

x̂t+Nc|t∈Xf . Now we claim that at time t+1, given xt+1=f̂(xt, u
◦
t|t)+dt, there exists a feasible

input sequence ūt+1,t+Nc|t+1, based on the optimal sequence u◦
t,t+Nc−1|t at time t, such that

x̂t+Nc+1|t+1∈Xf . Indeed, let us pick ūt+1,t+Nc|t+1=col[u◦t+1|t, u
◦
t+2|t, . . . , u

◦
t+Nc−1|t, ū], where

ū∈U is a feasible control action to be specified later on. From the Lipschitz continuity of

f̂(x, u) with respect to x, it follows that |x̂t+j|t − x̂t+j|t+1|≤L
j−1
fx

d̄, ∀j∈{1, . . . , Nc}. Then,

in view of (4.14), it holds that x̂t+Nc|t+1∈C1(Xf ), which implies the existence of a feasible

ū ∈ U such that x̂t+Nc+1|t+1 = f̂(x̂t+Nc|t+1, ū)∈Xf . Thus, we can conclude that XMPC is

RPI with respect to dt∈ D.

2)Suppose2 that Lfx
6= 1; then, in view of Point 5) of Assumption 4.2.5, for all xt ∈ Xκf

it holds

V (xt)≤JFH(xt, ũt,t+Nc−1|t, Nc) =
t+Nc−1
∑

l=t

h(x̂l|t, κf (x̂l|t))+ hf (x̂t+Nc|t
)

≤
t+Nc−1
∑

l=t

[hf (x̂l|t)−hf (x̂l+1|t)]+hf (x̂t+Nc|t
)≤hf (|xt|).

Hence, there exists a K-function α2(s)=hf (s) such that

V (xt) ≤ α2(|xt|), ∀xt ∈ Xκf
. (4.15)

The lower bound on V (xt) can be easily obtained by using Assumption 4.2.4

V (xt) ≥ h(|xt|), ∀xt ∈ XMPC . (4.16)

2The very special case Lfx
= 1 can be trivially addressed by a few suitable modifications to the proof of

Theorem 4.2.1.
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Then, inequalities (2.2) and (2.3) hold respectively with Ξ=XMPC and Ω=Xκf
.

Given the optimal control sequence at time t, u◦
t,t+Nc−1|t+1, consider now the sequence

ūt+1,t+Nc|t+1 , col
[

u◦t+1|t, . . . , u
◦
t+Nc−1|t, ūf (x̂t+Nc|t+1)

]

, with ūf : C1(Xf ) → U defined as

ūf (x),arg min
u∈U :f̂(x,u)∈Xf

{|u− κf (x)|} .

Clearly, ūt+1,t+Nc|t+1 is a feasible (in general, suboptimal) control sequence for the FHOCP

at time t+1, with cost

JFH(xt+1, ūt+1,t+Nc|t+1, Nc)=

V (xt)−h(xt, u
◦
t|t)+

t+Nc−1
∑

l=t+1

[h(x̂l|t+1, u
◦
l|t)−h(x̂l|t, u

◦
l|t)]

+h(x̂t+Nc|t+1, ūf (x̂t+Nc|t+1)) +hf

(

f̂(x̂t+Nc|t+1, ūf (x̂t+Nc|t+1))
)

−hf (x̂t+Nc|t
).

(4.17)

In view of Assumptions 4.2.5 and 4.2.6, and considering that x̂t+Nc|t+1 ∈ C1(Xf ), the following

inequalities hold

h(x̂t+Nc|t+1, ūf (x̂t+Nc|t+1))+hf

(

f̂(x̂t+Nc|t+1,ūf (x̂t+Nc|t+1))
)

−hf (x̂t+Nc|t
)

≤ h(x̂t+Nc|t+1, ūf (x̂t+Nc|t+1))+hf

(

f̂(x̂t+Nc|t+1, ūf (x̂t+Nc|t+1))
)

−hf (x̂t+Nc|t+1)

+|hf (x̂t+Nc|t+1)−hf (x̂t+Nc|t
)|

≤ Lhf
LNc−1

fx
µ(|υt|).

(4.18)

Moreover, Assumption 4.2.4 implies that

|h(x̂t+j|t+1,u
◦
t+j|t)−h(x̂t+j|t,u

◦
t+j|t)| ≤ LhL

j−1
fx
|dt|, ∀j ∈ {1, . . . , Nc − 1} (4.19)

Now, in view of (4.17), (4.18), (4.19) and Assumption 4.2.4, it is possible to conclude that the

optimal cost V (xt+1) satisfies

V (xt+1) ≤ JFH(xt+1, ūt+1,t+Nc|t+1, Nc)

≤ V (xt)−h(|x|)+

(

Lh

LNc

fx
−1

Lfx
−1

+Lhf
LNc−1

fx

)

|dt|.
(4.20)

Finally, inequality (4.20) implies the existence of two K-functions α3(s) = h(s) and σ(s) =

[LhL
Nc

fx
−1)/(Lfx

− 1)+Lhf
LNc−1

fx
]s , such that
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V (xt+1)− V (xt) ≤ −α3(|xt|)+σ(|dt|) (4.21)

�

In this section we have shown how to design an input-to-state stabilizing exact MPC control

law κMPC for system (4.6), which renders RPI the set XMPC ⊆ X with respect to additive

disturbances dt ∈ D. Therefore, Assumption 4.2.3 is verified by the MPC controller with

κ=κMPC and Ξ̃=XMPC .

Next, we are going to infer, from the stabilizing properties of κ, the stability properties of the

closed-loop system driven by an approximate control law κ∗, satisfying suitable requirements to

be specified later on.

4.3 Approximation of the NMPC Control Law: Sufficient

Conditions for Practical Stabilization

Consider the following dynamic system:

xt+1=f̂(xt, κ
∗(xt))+wt, t ∈ Z≥0, x0=x̄. (4.22)

where wt ∈W,Bn(dw) is a disturbance input and the function κ∗ : R
n → R

m is an approxima-

tion of the given ISS stabilizing κ satisfying Assumption 4.2.3. We will show that the stability

properties of (4.22) can be inferred from those of (4.8) provided that κ∗ satisfies the following

additional requirements.

Assumption 4.3.1. Let us define the K∞-function ηx(s)=Lfx
s+s for s≥0 and let dq∈R≥0

and dv∈R≥0 be two positive scalars satisfying the following inequality

dq +dv +dw≤d. (4.23)

Posing q,η−1
x (dq), assume that ∀ξ ∈ dom(κ), ∃ ζξ ∈ B

n(ξ, q) ∩ dom(κ) such that

ηu (|κ∗(ξ)− κ(ζξ)|) + ηx (|ζξ − ξ|) + dw ≤ d(ζξ) (4.24)
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where d(ζξ) is the local uncertainty bound under which the state can be driven from ζξin Ξ by

the control law κ, i.e.,

d(ζξ) , inf{c ∈ R>0|∃d ∈ B
n(c) : f̂(ζξ, κ(ζξ)) + d 6∈ Ξ}.

�

In this connection, it is worth to notice that for the global uncertainty bound d, it holds that

d ≤ d(ζξ). Thus, the conditions posed on the approximating function are less restrictive than

those formulated in [90], in which a global bound had been used.

Then, the stability properties of the closed-loop system driven by the approximate control

law κ∗ can be established.

Theorem 4.3.1. Suppose that Assumptions 4.2.1-4.3.1 hold and let Ξ,Ξ̃ ∽ Q, with Q , Bn(q).

Then, the following statements hold:

1) The set Ξ⊂X is RPI for the closed-loop system (4.22) with wt∈W , with W , Bn(dw);

2) The closed-loop system (4.22) is ISS in Ξ.
�

Proof Points 1) and 2) of Theorem 4.3.1 will be addressed separately in the following

1) Let x∈Ξ̃, q∈Q and w∈W . Now we will prove that Ξ is RPI for (4.22).

First, under Assumption 4.3.3, ∀x ∈ Ξ̃ there exist ζx=qx+x, with qx∈Bn(q) such that (4.24)

holds. Then, let us consider that

f̂(x, κ∗(x))+w+qx = f̂(xt, κ
∗(ζx))−f̂(x, κ(ζx))+ f̂(x, κ(ζx))+ f̂(ζx, κ(ζx))− f̂(ζx, κ(ζx))+w+qx,

which can be written in compact form as follows

f̂(x, κ∗(x))+w+qx = f̂(ζx, κ(ζx))+dx,w (4.25)

where

dx,w , f̂(x, κ∗(x))− f̂(x, κ(ζx))+ f̂(x, κ(ζx))− f̂(ζx, κ(ζx))+w+qx. (4.26)
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Using Assumption 4.2.1, we note that, for all w ∈ W and for all x ∈ Ξ̃, the following

inequalities hold:

|dx,w|=|f̂(x, κ∗(x))−f̂(x, κ(ζx))+ f̂(x, κ(ζx))− f̂(ζx, κ(ζx))+w+qx|

≤|f̂(x, κ∗(x))− f̂(x, κ(ζx))|+
∣

∣

∣
f̂(x, κ(ζx))−f̂(ζx, κ(ζx))

∣

∣

∣
+ |w|+ |qx|

≤ηu (|κ∗(x)− κ(ζx)|)+Lfx
|qx|+ |w|+ |qx|

≤ηu (|κ∗(x)− κ(ζx)|)+ηx(|ζx − x|)+ |w|.

(4.27)

In view of Assumption 4.3.1 it follows that

|dx,w| ≤ d(ζx) (4.28)

Since f̂(ζx, κ(ζx)) + d ∈ Ξ̃, ∀d ∈ Bn(d(ζx)), then (4.25) and (4.28) together imply that

f̂(x, κ∗(x)) + w + qx ∈ Ξ̃, ∀qx ∈ Q, ∀w ∈W. (4.29)

We can conclude that, under Assumptions 4.2.1 and 4.3.3, for any x ∈ Ξ, f̂(x, κ∗(x))+w ∈ Ξ,

∀w ∈W .

2) The ISS property for the closed-loop system can be straightforwardly proven considering that,

in view of Theorem 4.2.1 and taking in account inequalities (4.21) and (4.27), the optimal

finite horizon cost function satisfies the condition

V (f̂(x, κ∗(x)) + w)−V (x) ≤ −α3(|x|)+σ(dx,w)

≤ −α3(|x|) + σ(ηu (|κ∗(x)− κ(ζx)|)+ηx(|ζx − x|)+ |w|)
(4.30)

Now, posing vx , κ∗(x) − κ(ζx), in view of (4.28) and being Ξ compact, it holds that

|vx| ≤ v, ∀x ∈ Ξ for some v ∈ R>0. Then we can conclude that

V (f̂(x, κ∗(x)) + w)−V (x) ≤−α3(|x|)+σ(3ηu(|vx|))+σ(3ηx(|qx|))+σ(3|w|)

=−α3(|x|)+σv(|vx|)+σq(|qx|)+σw(|w|),
(4.31)

where σv(s),σ(3ηu(s)), σq(s),σ(3ηx(s)), σw(|wt|),σ(3s), s ∈ R≥0.

Hence, in view of Theorem 2.2.1, the closed-loop system is regional-ISS in Ξ with respect to the

bounded approximation-induced perturbations v ∈ V , Bn(v) qx ∈ Q and w ∈W . �
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In the following sections, we will show that the NN approximator (see [9]) can be used to

approximate possibly discontinuous MPC control laws with ISS guarantees.

4.3.1 Approximate MPC control law by off-line NN approximation

The NN has been chosen, among many available function approximators, for the possibility to

easily satisfy the requirements specified in Assumption 4.3.3, thus permitting to achieve the

closed-loop stability, thanks to Theorem 4.3.1, even in presence of discontinuous control laws

such as the ones possibly arising from MPC schemes.

At this point, we are going to design the NN approximator in such a way that Assumption

4.3.1 can be verified in practice.

First, assuming that a bound on the additive transition uncertainty is given (i.e., |wt|≤dw)

the designer must assign arbitrary values to the scalars dv and dq such that inequality (4.23)

holds true. These parameters are used to specify how close the approximate control law κ∗ will

be to κMPC , at the cost of increasing the complexity of κ∗. Then, the off-line procedure starts

with the construction of a suitable training data set by evaluating the MPC control law in a

finite number of points (knots) belonging to a (possibly non uniform) grid XG which covers the

whole region X. Such a grid must fulfill the following requirement.

Assumption 4.3.2 (XG). Given the set X and dq ∈ R>0 satisfying (4.23), the set XG verifies

1) ∀ξ ∈ X, ∃ ζξ ∈ XG : |ξ − ζ|≤qNN < η−1
x (dq);

2) ∃ψNN ∈ R>0 : |ζ
′

− ζ
′′

|≥ψ
NN

,∀(ζ
′

, ζ
′′

) ∈ XG
2,

where qNN and ψ
NN

are referred respectively as knot density and knot separation parameters,

(see [9] and the references therein). �

Notice that, since X is compact, then, by Point 2), XG is made up of a finite number of knots.

Moreover, the cardinality of the training set grows with the decrease of dq. However, considering

that a lower limit on dq is imposed by (4.23), there exists a finite upper bound on the knot density

qNN . Once the quantization (spatial sampling) of X, operated by XG, has been performed, the

control law must be evaluated at each point of XG. Noting that XMPC=dom (κMPC), the NN

data are given by the pair (X ,Y), with
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X=XG ∩XMPC⊂dom (κMPC) , Y,
⋃

ζ∈X

κ̃MPC(ζ), (4.32)

where κ̃MPC(ζ)= y (κMPC (ζ)) and y : U→U ⊂U is a quantizer in the command input space

which models the error that can be due to the coding of input command values with a finite

alphabet. This problem always affects numerical approximation schemes.

Now, it is straightforward to show that if an approximating function κ∗(·) verifies the fol-

lowing conditions, then Assumption 4.3.1 is satisfied. Assumption 4.3.3 below, although more

restrictive than Assumption 4.3.1, is going to be introduced because it can be verified with ease

by NN approximation schemes.

Assumption 4.3.3. Let dq∈R≥0 and dv∈R≥0 be two positive scalars satisfying the inequality

4.23. Defining v , η−1
u (dv) and q , η−1

x (dq), there exists λ ∈ (0, 1) : ∀ξ ∈ dom(κ), ∃ ζξ ∈

Bn(ξ, q) ∩ dom(κ) such that

1) |κ(ζξ)− κ
∗(ζξ)|≤(1− λ)v;

2) |κ∗(ξ)− κ∗(ζξ)|≤λv.

Moreover, let us assume that κ∗(ξ) ∈ U,∀ξ ∈ dom(κ). �

For the NN approximator, in order to meet the requirement posed by Point 1) of

Assumption 4.3.3, the input space quantizer is required to satisfy the following condition in cor-

respondence of points belonging to the training set

|y(κMPC(ζ))− κMPC(ζ)|≤ (1− λ)v
(

= (1− λ)η−1
u (dv)

)

, ∀ζ ∈ X . (4.33)

Hence, a local error on the sampling points may be tolerated. Conversely, if the output map is

exact on the grid points, then Point 2) of Assumption 4.3.3 is satisfied with |κ∗(ξ)−κ∗(ζξ)| ≡ 0

by this approximation scheme.

Then, given a state measurement xt ∈ XMPC ∽Bn(qNN ) at time t, the NN control law is

given by

ut=κNN (xt)=κ̃MPC (NX (xt)) , (4.34)

where NX : R
m→R

n denotes a single-valued NN search in the data-set X . Notice that the NN

approximator intrinsically verifies Point 2) of Assumption 4.3.3, since, ∀ξ∈XMPC , ∃ ζξ∈NX (ξ)⊆

X : |ξ − ζξ|≤qNN<q (=η−1
x (dq) ). Moreover it holds that κ∗(ξ)∈κ∗(NX (ξ))=κ̃MPC(NX (xt)).
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Finally, in view of Theorem 4.3.1, it is possible to conclude that the closed-loop system (4.22),

driven by the approximate MPC control law (4.34), is regional-ISS in XNN,XMPC ∽Bn(qNN )

with respect to the approximation-induced perturbations and the model uncertainty.

Remark 4.3.1 (ISpS). In order to complete the analysis on the stability properties of the

closed-loop system under the approximate control law κ∗=κNN , it is necessary to take in explicit

consideration the fact that the perturbations due to the finite knot density qNN and to the input

quantization vNN do not vanish along the system trajectories.

In order to assess the stability properties of the closed-loop system under non-vanishing per-

turbations, the ISpS tool, introduced in Section 2.3 of Chapter 2, will be used.

In view of (4.28) and the first inequality in (4.30), it follows that

V (xt+1)−V (xt)≤−α3(|xt|)+σ
(

2ηu(vNN )+2ηx(qNN )
)

+σ(2|wt|)

Hence, by Theorem 2.3.1, the closed-loop system driven by the approximate NN-MPC control law

κNN is ISpS in XMPC∽Bn(qNN ) with respect to the model uncertainty wt∈W . This result im-

plies that the closed-loop trajectories, driven by the approximate controller, cannot be guaranteed

to asymptotically converge to the origin. �

4.3.2 Smooth approximation of the control law

In the previous section, we have shown that a suitably designed NN approximator can fulfill

the requirements posed by Assumption 4.3.1, and therefore the resulting closed-loop system

guarantees the invariance of the region Ξ. However, the conditions posed by Assumption 4.3.1

can be satisfied even by other types of approximators, such as Neural Networks, with smooth

basis functions and smooth output function. With lack of formalism, the “smoothness” of

a Neural Network approximator with a given structure (number of layers, interconnections,

number of neurons) depends upon the shape of the activation functions and on the parameters

(weights) of the network w ∈ R
nw . At this point, assuming that the kind of the basis functions

(shape) is fixed “a priori” by the designer, and that the degrees of freedom of the output function

with respect to the parameters is sufficiently high3, then the approximation procedure consists

in finding a set of parameters which guarantees the fulfillment of Assumption 4.3.1.

3In general, the complexity of a Neural Network depends on the number of neurons. Therefore, we assume
the network complexity is such that a set of parameters satisfying Assumption 4.3.1 exists.
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In the following, given a grid of reference points XG satisfying Assumption 4.3.2 and set of

network parameters, w, we will show how the fulfillment of inequality (4.24) can be checked.

Inequality (4.24) can be rewritten as

ηu (|κ∗(ζξ)− κ
∗(ξ)|+ |κ∗(ζξ)− κ(ζξ)|) + ηx (|ζξ − ξ|) ≤ d(ζξ)− dw (4.35)

Let the approximation function κ∗ be locally Lipschitz in dom(κ). In particular, there exists a

function Lκ∗(x) : R
n → R≥0 such that

|κ∗(x)− κ(x
′

)| ≤ Lκ∗(x)|x− x
′

|, ∀x
′

∈ Bn(x, q)

Then, from (4.35), we have that, for all ζξ ∈ B
n(ξ, q)

ηu (|κ∗(ζξ)− κ
∗(ξ)|+ |κ∗(ζξ)− κ(ζξ)|) + ηx (|ζξ − ξ|)

≤ ηu (Lκ∗(ζξ) |ζξ − ξ|+ |κ
∗(ζξ)− κ(ζξ)|) + ηx (|ζξ − ξ|)

≤ ηu (Lκ∗(ζξ)q + |κ∗(ζξ)− κ(ζξ)|) + ηx (q)

≤ ηu (Lκ∗(ζξ)q + |κ∗(ζξ)− κ(ζξ)|) + Lfx
q + q

Therefore, the following implication holds

ηu (Lκ∗(ζξ)q + |κ∗(ζξ)− κ(ζξ)|) + (Lfx
+ 1)q ≤ d(ζξ)− dw

⇒ ηu (|κ∗(ξ)− κ(ζξ)|) + ηx (|ζξ − ξ|) ≤ d(ζξ)− dw

Then, by posing ǫ(ζξ) = d(ζξ)− d̄w − (Lfx
+ 1)q, let us consider the following inequality

ηu (Lκ∗(ζξ)q + |κ∗(ζξ)− κ(ζξ)|) ≤ ǫ(ζξ)

In order to point out the dependence of the approximating function and of the local Lipschitz

bound on the networks parameters4, we will use the notations κ∗(ζξ|w) and Lκ∗(ζξ|w). Then

4For the case of a two-layer Neural Network with Lipschitz continuous activation functions at the first layer
and linear output layer, denoting as w ∈ R

nw the overall network parameters, it holds that the approximating
function is locally Lipschitz for any value of w. However, the function Lκ∗ (ξ) (which locally bonds the Lipschitz
constant) is a function of the parameters.
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we have that

ηu (Lκ∗(ζξ|w)q + |κ∗(ζξ|w)− κ(ζξ)|) ≤ ǫ(ζξ)

and, finally,

Lκ∗(ζξ|w)q + |κ∗(ζξ|w)− κ(ζξ)| ≤ η
−1
u (ǫ(ζξ)) .

From a practical point of view, one can first sample the domain with a grid XG with density

parameter q, then, by posing ǫ
′

(ζ) , η−1
u (ǫ(ζ)) , ∀ζ ∈ XG, one can evaluate the map ǫ

′

(·) on

the grid points. Then, the approximating function must verify the condition

Lκ∗(ζ|w)q + |κ∗(ζ|w)− κ(ζ)| ≤ ǫ
′

(ζ), ∀ζ ∈ XG.

Notice that, in order to compute ǫ
′

(ζ), the K-function ηu(·) must be known. For a general

nonlinear transition map f̂ , we can compute a local linear bound on ηu(·) with ease. That

is, the problem of finding a global K-function ηu(·) is simplified in that of computing a local

Lipschitz bound Lfu
(ζ) such that

∣

∣

∣
f̂(ξ, u)− f̂(ξ, u

′

)
∣

∣

∣
≤ Lfu

(ζ)
∣

∣

∣
u− u

′
∣

∣

∣
, ∀ξ ∈ Bn(ζ, q), ∀(u, u

′

) ∈ U2.

A conservative bound on Lfu
can be evaluated as

Lfu
(ζ) = max

(ξ,u)∈B(ζ,q)×U

m
∑

j=1

n
∑

i=1

∣

∣

∣

∣

∣

∣

∂f̂(i)

∂u(j)

∣

∣

∣

∣

∣

ζ,u

∣

∣

∣

∣

∣

∣

where f(i) and u(j) are the i-th and the j-th components of f̂ and u respectively.

4.4 Simulation Results

In order to show the effectiveness of the proposed approach, the behavior of the system proposed

in Section 4.1, under the action of the devised approximate NN control law κNN , has been

simulated by choosing different starting points inside the feasible domain XMPC⊂X (see Figure

4.1). Relying on the proposed control design methodology, the following value of d̄=6.4·10−3 can
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Figure 4.1 Closed loop trajectories of the system under the action of the approximate MPC law
κNN , with starting points: (a)=[0.91,-0.921]; (b)=[0.95,0.2]; (c)=[0.95,0.95]; (d)=[-0.257,0.7];
(e)=[-0.5,-0.97]. The feasible area XMPC and the constraint set X are put in evidence.
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be computed considering the length of the control horizon Nc=5, the Lipschitz constant of the

system Lfx
=2.05, the input constraint set U=[−2.1053, 0.0263], and the invariance properties of

the terminal set used to set-up the optimization problem Xf={x∈X : hf (x)≤h̄f=0.8}, where the

function hf , used as terminal cost, has been chosen as the Lyapunov function W for the closed-

loop system under the action of the discontinuous stabilizing auxiliary controller given in Section

4.1. The black trajectories in Figure 4.1 show that the system has been effectively steered toward

{0} by κNN , while the state has been kept inside the constraint set X. Notably, if the constraints

are not tightened in the computation of the approximation control law, it may happen that,

due to the approximation-induced perturbations, the approximate controller fails to preserve

the state within X. Indeed, the blue trajectory in Figure 4.1, generated by an approximate

controller without tightening, violates the constraint in correspondence of the blue circled area,

whose magnification is depicted in Figure 4.2. Finally, the approximate κNN law obtained by

off-line computations over a uniform grid with knot density parameter q̄NN=1.9·10−3 is depicted
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in Figure 4.3, where the discontinuous nature of the MPC control law is enhanced.

Figure 4.2 Magnification of the circled area in Fig 4.1. The approximate control law with
constraint tightening (left) keeps the trajectories inside X, while the approximate controller
without tightening (right) fails in achieving the constraint satisfaction.
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4.5 Concluding Remarks

With the aim to reduce the on-line computational complexity of nonlinear constrained Receding

Horizon controllers, a method to obtain approximated off-line MPC laws has bee proposed.

The possibility to obtain an approximate RH control law by performing off-line optimization,

leads to a dramatic reduction of the real-time computational complexity with respect to on-line

algorithms, and allows the application of the developed control technique to plants with fast

dynamics, that require small sampling periods.

The robust stability properties of the off-line approximated RH control law have been an-

alyzed by using the regional ISS tool. In this regard, the closed-loop system driven by the

approximated controller is shown to be Input-to-State Stable with respect to approximation-

induced perturbations in a subset of the feasible region of the exact RH controller.
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Figure 4.3 The approximate MPC control law κNN in the domain XMPC⊂X.

Finally, a Nearest Neighbor-based implementation of the approximate control law has been

proposed, which guarantees the satisfaction of hard constraints and allows efficient on-line com-

putations.

The distinctive feature of the proposed approximation scheme consists in the possibility

to cope with possibly discontinuous state-feedback control laws, such as those arising from

nonlinear constrained optimization, while guaranteeing the fulfillment of hard constraints on

state and input variable despite the perturbations due to the use of an approximate controller.

It is believed that the proposed method can be further improved in terms of memory con-

sumption (for the storage of the off-line approximated control law) and speed of the on-line

computations by considering that, at least locally, some smooth approximation scheme (such as

Neural Networks) can be used to fulfill the robust stability requirements.
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Chapter 5

Networked Predictive Control of

Uncertain Constrained Nonlinear

Systems

5.1 Motivations

In the past few years, control applications in which sensor data and actuator commands are sent

through a shared communication network have attracted increasing attention in control engineer-

ing, since network technologies provide a convenient way to remotely control large distributed

plants [7, 46, 123]. Major advantages of these systems, usually referenced to as Networked

Control Systems (NCS’s), include low cost, reduced weight and power requirements and simple

installation and maintenance. Conversely, NCS’s are affected by the dynamics introduced by

both the physical link and the communication protocol, that, in general, need to be taken in

account in the design of the control schemes.

As many applications converge in sharing computing and communication resources, issues of

scheduling, network delay and data loss will need to be dealt with systematically. In particular,

the random nature of transmission delays in shared networks makes it difficult to analyze stability

and performance of the closed-loop systems. Remarkably, random delays are inherently related

with the problem of data losses in NCS’s. Indeed the stringent bounds imposed on time-delays
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by closed-loop stability requirements lead to the necessity to discard those packets arriving later

than a maximum tolerable delay threshold. In addition, when the design of feedback control

systems concerns wireless sensor networks, the implicit assumption of data availability no longer

holds, as data packets are randomly dropped and delayed.

While classical control theories provide solid analytical results to design the various com-

ponents of the control system, they critically rely on the assumption that the underlying com-

munication technology is ideal. In the networked communication setting, with possibly shared

resources, neglecting network-induced perturbations such as delays and packet losses can even-

tually compromise the stability of the closed-loop system, if no proper provision are adopted.

Various control strategies have been presented in the past literature to design effective NCS’s

for linear time-invariant systems [36, 70, 105, 116] in presence of lossy or delayed communica-

tions. In particular, many recent results are focused on characterizing the stability properties of

the closed-loop NCS’s in a stochastic framework when static state-feedback control laws or Lin-

ear Quadratic Gaussian (LQG) policies are adopted in presence of random transmission delays

and packet dropouts [22, 35, 47, 108].

Besides the development of inherently stable controllers for these systems, another important

aspect in the deployment of an effective NCS is the choice of the communication protocol to

be used. In this regard, the packet structure of most transmission networks has important

implications from the control point of view [118]. As it is well known, the performances of

digital control systems increases with the sampling rate; nonetheless, when shared resources

are used, it is not possible to increase arbitrarily the data transfer rate, due to the subsequent

increase of network congestion, delays and packet dropouts. An effective way to overcome

this limitation consists in using protocols which allow to transmit fewer but more informative

packets [5, 36]. Thus, large data packets can be used to collect multiple sensors data and send

predictions on future control inputs, without significantly increasing the network load [96, 114].

The basic layout of an NCS with multiple loops sharing a packet-based communication network is

depicted in Figure 5.1, where, in order to distinguish the time delays in the sensor-to-controller

and controller-to-actuator links, the network has been partitioned in two segments affected

respectively by delays τsc(t) and τca(t).

When strict bounds on data delays and losses can be assumed and large data packets are

allowed, model predictive control strategies have been proposed to cope with the design of a

stabilizing NCS [22, 115], due to their intrinsic features of generating a future input sequence
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Figure 5.1 Scheme of a NCS with multiple loops closed through a shared packet-based network
with delayed data transmission.

shared packet-based network

controller node

τca(t)

τsc(t)

node ut xtactuator
node

plant sensor
node

data packets at each node/network interface
networked packet-based link

that can be transmitted within a single data packet.

While the aforementioned control design/scheduling techniques rely on linear process models,

if the system to be controlled is subjected to constraints and nonlinearities, the formulation of

an effective networked control strategy becomes a really hard task [98]. In this framework, the

present chapter provides theoretical results that motivate, under suitable assumptions, the com-

bined use of nonlinear Model Predictive Control (MPC) with a Network Delay Compensation

(NDC) strategy [13, 96], in order to cope with the simultaneous presence of model uncertain-

ties, time-varying transmission delays and data-packet losses. In the current literature, for the

specific class of MPC schemes which impose a fixed terminal constraint set, Xf , as a stabilizing

condition, the robustness of the overall c-l system, in absence of transmission delays, has been

shown to depend on the invariance properties of Xf , [66, 94]. In this regard, by resorting to

invariant set theoretic arguments [17, 55], we will show that the proposed NCS can robustly

stabilize a nonlinear constrained system even in presence of data transmission delays and model

uncertainty. In particular, the tool recursive feasibility in constrained networked nonlinear MPC,

first addressed in [92], will be exploited to prove the Input-to-State Stability (ISS) of the scheme

w.r.t. additive perturbations. Indeed, by using the novel regional characterization of ISS in

terms of time-varying Lyapunov functions given in Chapter 2 (the regional ISS for time invari-

ant case has been introduced in [75], while semi-global results for time-varying discrete-time
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systems are given in [51, 60]), the ISS property of the closed-loop system will be established also

in presence of unreliable networked communications.

5.2 Problem Formulation

Consider the nonlinear discrete-time dynamic system

xt+1 = f(xt, ut, υt), t ∈ Z≥0, x0 = x , (5.1)

where xt ∈ R
n denotes the state vector, ut ∈ R

m the control vector and υt ∈ Υ is an uncertain

exogenous input vector, with Υ ⊂ R
r compact and {0} ⊂ Υ. Assume that state and control

variables are subject to the state and input constraints (1.2) and (1.3).

The transition function is supposed to be Lipschitz continuous in the state (see Assumption

3.1.1). Moreover we assume that the additive transition uncertainty is bounded, as stated by

Assumption 4.2.2, such that the system (5.1) can be posed in the form.

xt+1 = f̂(xt, ut) + dt (5.2)

with dt ∈ Bn(d) and d ∈ R≥0 finite.

Under the posed assumptions, the control objective consists in guaranteeing the ISS property

for the closed-loop system with respect to the prescribed class of uncertainties, while enforcing

the fulfillment of constraints in presence of packet dropouts, bounded transmission delays and

bounded disturbances.

With regard to the network dynamics and communication protocol, it is assumed that a set

of data (packet) can be sent, at a given time instant, through the network by a node, while both

the sensor-to-controller and the controller-to-actuator links are supposed to be affected by delays

and dropouts due to the unreliable nature of networked communications. In order to cope with

network delays, the data packets sent by the sensor node are Time-Stamped (TS) [114], that is,

they contain the information on when the transmitted state measurement had been collected.

Analogously, the controller node is required to attach to each data packet the time stamp of
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the state measurement which the computed control action relies on. The advantage of using a

time-stamping policy in NCS’s is well documented [12, 123], however it requires, in general, that

all the nodes of the network have access to a common system’s clock, or that a proper clock

synchronization service is provided by the network protocol. In our setup, we will assume that

perfect clock synchronization is maintained between sensors, actuators and controller. This task

can be achieved in different ways (see [113, 122, 124] and the references therein), however we

will abstract from the particular method used to maintain synchronization, since we are mainly

focused on the control design issues rather than on the transmission protocol and the network

scheduling policy.

The next section will describe how the TS mechanism can be used to compensate for trans-

mission delays.

5.2.1 Network dynamics and delay compensation

In the sequel, τca(t) and τsc(t) will denote the delays occurred respectively in the controller-to-

actuator and in the sensor-to-controller links, while τa(t) will represent the “age” (in discrete

time instant) of the control sequence used by the actuator to compute the current input and τc(t)

the age of the state measurement which had been used by the controller at time t to compute

the control actions to be sent to the actuator. Finally, τrt(t),τa(t)+τc(t−τa(t)) is the so called

round trip time, i.e., the age of the state measurement used to compute the input applied at

time t.

The NDC strategy adopted in the present work, which relies on the one devised in [96]

(originally developed for unconstrained systems nominally stabilized by a generic nonlinear

controller), is based on exploiting the time stamps of the data packets in order to retain only

the most recent informations at each destination node: when a novel packet is received, if it

carries a more recent time-stamp than the one already in the buffer, then it takes the place

of the older one and, in the TCP-like case, an acknowledgment of successful packet receipt

is sent to the node which transmitted the packet. The TS-based packet arrival management

implies τa(t) ≤ τca(t) and τc(t) ≤ τsc(t). Moreover, the NDC strategy comprises a Future

Input Buffering (FIB) mechanism (also known as “play-back buffer”, see [65] for details), which

requires that the controller node send a packeted sequence of Nc control actions (with Nc

sufficiently large) to the actuator node (in order to compensate for future packet dropouts or

delays). In turn the actuator, at the arrival of each new packet, first stores the entire sequence
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in its internal buffer, then, at each time instant t, selects a time-consistent control action to

be applied to the plant, by setting ut = ub
t , where ub

t is the τa(t)-th element of the buffered

sequence ub
t−τa(t),t−τa(t)+Nc−1, which, in turn, is given by

ub
t−τa(t),t−τa(t)+Nc−1= col[ub

t−τa(t), . . . , u
b
t , . . . , u

b
t−τa(t)+Nc−1] = uc

t−τa(t),t−τa(t)+Nc−1|t−τrt(t)
.

where the sequence uc
t−τa(t),t+Nc−1|t−τrt(t)

had been computed at time t−τa(t) by the controller

on the basis of the state measurement collected at time t − τrt(t) = t−τa(t)−τc(t−τa(t)). In

this framework, our control-theoretical approach will exploit the input buffering as a service

provided transparently by an underlying communication channel, therefore we will not focus

on the implementation details. Due to the capability of performing synchronization, buffering

operations and management of time stamped packets, the actuation device will be addressed to

as “smart”actuator. For a deeper insight on such a mechanism, the reader is referred to [5] and

[65].

In most situations, it is natural to assume that the age of the data-packets available at

the controller and actuator nodes subsume an upper bound [96], as specified by the following

assumption.

Assumption 5.2.1 (Network reliability). The quantities τc(t) and τa(t) verify τc(t) ≤ τ c and

τa(t) ≤ τa, ∀t ∈ Z>0, with τ c ∈ Z≥0 and τa ∈ Z≥0 finite. �

Notably, we don’t impose bounds on τsc(t) and τca(t), allowing the presence of packet losses

(infinite delay). In this way, an actuator buffer with finite length can be used.

Assumption 5.2.2 (Buffer length). The actuator buffer length, which is equal to the length of

the input sequence sent by the controller to actuator, verifies Nc ≥ τa + 1.

Under Assumptions 5.2.1 and 5.2.2 , the round trip time verifies τrt(t) ≤ τ rt = τ c + τa ≤

τ c +Nc − 1, ∀t ∈ Z>0.

We will first consider the case of networks with acknowledged communication protocols, also

known as TCP-like [47], in which the destination node sends an acknowledgment packet (ACK)

of successful packet receipt to the source node, and then the results will be extended to non-
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acknowledged protocols, which are usually referred to as UDP–like [47]. In a TCP-like scenario,

the acknowledgment messages are assumed to have the highest priority among all the routed

packets, such that, after each successful packet receipt, the source node receives a deterministic

notification within a single time-interval.

In this regard, the presence of ACKs in TCP-like networks can be exploited by the controller

(which is acknowledged of successful packet receipt by the actuator) to internally reconstruct

the true sequence of controls which has been applied to the plant [96] from time instant t− τc(t)

to t − 1, in order to get an estimation x̂t|t−τc(t) of the current state xt, on the basis of the

most recent available state measurement xt−τc(t). A graphical representation of the overall NCS

layout is depicted in Figure 5.2.

Figure 5.2 Scheme of the NDC strategy. In evidence the Time-Stamping packet arrival man-
agement (TS) and the Future Input Buffering (FIB) mechanism at the actuator node.
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5.2.2 State reconstruction in TCP–like networks

At time t, the computation of the control sequence to be sent to the actuator must rely on a

state measurement xt−τc(t) performed at time t−τc(t). In order to recover the standard MPC

formulation, the current (possibly unavailable) state xt has to be reconstructed by means of

the nominal model (4.9) and of the true input sequence ut−τc(t),t−1 , col[ut−τc(t), . . . , ut−1]

applied by the smart actuator to the plant from time t− τc(t) to t− 1. In this regard, the
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benefits due to the use of a state predictor in NCS’s are deeply discussed in [96, 120, 121] and

[114, 115]. The sequence ut−τc(t),t−1 can be internally reconstructed by the controller thanks to

an acknowledgment-based protocol.

Moreover, in presence of delays in the controller-to-actuator link, we must consider that the

computed control sequence may not be applied entirely to the plant.

Indeed, as shown in Figures 5.3 5.4 and 5.5, the presence of delays may lead to infeasibility

and even destabilize the plant, due to the fact that the sequence of commands applied to the

plant may consists of control actions belonging to spurious sequences (computed in different time

instants and with different informations) and for which the satisfaction of nominal constraints

is not ensured.

In order to ensure that the sequence used for prediction would coincide with the one that will

be applied to the plant, we can retain, at time t, some of the elements of the control sequence

computed at time t − 1 (i.e., the subsequence ub
t,t+τa−1|t−1−τc(t−1)), and optimize only over

the remaining elements (i.e., computing a sequence u◦
t+τa,t+Nc−1), initiating a Reduced Horizon

Optimal Control Problem (RHOCP) with the state prediction x̂t+τa
.

In the next section we will describe in detail how RHOCP can be formulated.

5.2.3 Reduced horizon optimization

In the following, we will describe the mechanism used by the controller to compute the sequence

of control actions to be forwarded to the smart actuator.

The class of algorithms which the considered controller belongs to is that of Model Predictive

Control (MPC), in which a Finite Horizon Optimal Control Problem, based on the current state

measurement, is solved at each time step to obtain a control action to be applied to the plant,

thus implicitly obtaining a closed-loop scheme. With regard to the aforementioned class of

controllers, in which the length of the horizon is usually kept fixed and equals the number

of decision variables of the optimization, the proposed method relies on the solution, at each

time instant t, of a Reduced Horizon Optimal Control Problem, that is, the number of decision

variables will be, in general, reduced by reusing some elements of previous optimizations. This

feature will allow to address the problem of delayed communication in the controller-to-actuator

path.

Moreover, a constraint tightening technique [66] will be used to robustly enforce the con-

straints.
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Figure 5.3 Example of a delayed command sequence delivery to the actuator node. At time
t = 0, the FIB is filled with a 3-steps feasible sequence ub, (a). The controller, after having
generated a control sequence uc, forms a packet and sends it through the network, (b). Due to
network delays, the transmitted sequence cannot be applied by the smart actuator, which picks
a control action from the sequence already stored in the FIB, (c).

0

Plant input

ub
t−τa(t),t−τa(t)+Nc

Network

1 2 3 4

uc
t,t+Nc−1|t−τc(t)

τ̄a = 2, Nc = 4

(a)

0

Plant input

ub
t−τa(t),t−τa(t)+Nc

Network

1 2 3 4

uc
t,t+Nc−1|t−τc(t)

(b)

0

Plant input

ub
t−τa(t),t−τa(t)+Nc

Network

1 2 3 4

uc
t,t+Nc−1|t−τc(t)

(c)



92 CHAPTER 5. NETWORKED PREDICTIVE CONTROL

Figure 5.4 At time t = 1, the controller generates a new input sequence and sends a new data
packet through the network, but the actuator still does not receive any new packets; thus, the
FIB provides the required control action, (d). At time t = 2 the controller computes a new
sequence and sends a packet (e), but the actuator node receives the sequence computed at time
t = 0, with τa(t) = 2, (f). The sequence in the FIB is replaced by the newest one, and the
control action to be applied is taken from the last received sequence.

0

Plant input

ub
t−τa(t),t−τa(t)+Nc

Network

1 2 3 4

uc
t,t+Nc−1|t−τc(t)

(d)

0

Plant input

ub
t−τa(t),t−τa(t)+Nc

Network

1 2 3 4

uc
t,t+Nc−1|t−τc(t)

(e)

0

Plant input

ub
t−τa(t),t−τa(t)+Nc

Network

1 2 3 4

uc
t,t+Nc−1|t−τc(t)

(f)



5.2. PROBLEM FORMULATION 93

Figure 5.5 Finally, at time t = 3, the sequence computed by the controller reaches the actuator
node with no delay, (g). It follows that the true sequence applied to the plant in the interval
{0, . . . , 3} is a combination of sequences computed in different instants, (h), which is not guar-
anteed (in general) to be feasible for the perturbed system, (i). Therefore, network induced
delays may lead to infeasibility if no proper provisions are adopted.
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First, let us introduce the following sets, obtained by restricting the nominal constraint X.

Definition 5.2.1 (Xi(d)). Under Assumptions 3.1.1 and 4.2.2, suppose1, without loss of gen-

erality, Lfx
6=1. The tightened sets Xi(d), are defined as

Xi(d),X∽Bn

(

Li
fx
− 1

Lfx
− 1

d

)

, ∀i ∈ Z>0 . (5.3)

�

Problem 5.2.1 (RHOCP). Given a positive integer Nc∈Z≥0, at any time t∈Z≥0, let x̂t|t−τc(t)

be the estimate of the current state, xt, obtained from the last available state measurement

xt−τc(t) with the controls ut−τc(t),t−1 already applied to the plant. Moreover let x̂t+τa|t−τc(t) be

the state computed from x̂t|t−τc(t) by extending the prediction using the input sequence computed

at time t − 1, uc
t,t+τa−1. Then, given a stage-cost function h, the constraint sets Xi(d)⊆X, i∈

{τc(t) + τa + 1, . . . , τc(t) +Nc}, a terminal cost function hf and a terminal set Xf , the Reduced

Horizon Optimal Control Problem (RHOCP) consists in solving, with respect to a (Nc− τa)-

steps input sequence, ut+τa,t+Nc−1|t−τc(t) , col[ut+τa|t−τc(t), . . . , ut+Nc−1|t−τc(t)], the following

minimization problem

J◦
FH(x̂t+τa|t−τc(t),u

◦
t+τa,t+Nc−1|t−τc(t)

, Nc − τa)

, min

ut+τa,t+Nc−1|t−τc(t)

{

t+Nc−1
∑

l=t+τa

h(x̂l|t−τc(t)
, ul|t−τc(t)

)+ hf (x̂t+Nc|t−τc(t))

}

subject to the

i) nominal dynamics (4.9);

ii) input constraints ut−τc(t)+i|t−τc(t)∈U , with i∈{τc(t)+τa, . . . , τc(t)+Nc−1};

iii) restricted state constraints x̂t−τc(t)+i|t−τc(t)∈Xi(d), with i∈{τc(t)+τa+1, . . . ,τc(t)+Nc};

iv) terminal state constraint x̂t+Nc|t−τc(t) ∈ Xf .

Finally, the sequence of controls forwarded by the controller to the actuator is constructed as

uc
t,t+Nc−1|t−τc(t)

,col[uc
t,t+τa−1|t−1−τc(t−1),u

◦
t+τa,t+Nc−1|t−τc(t)

] (i.e., it is obtained by appending

the solution of the RHOCP to the control sequence computed at time t− 1). �

1The very special case Lfx
=1 can be trivially addressed by a few suitable modifications to the Definition 5.2.1
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The following definitions will be used in the rest of the chapter.

Definition 5.2.2 (XMPC(τ)). Given a non-negative integer τ ∈ Z≥0, the set containing all

the vectors x0 ∈ R
n for which there exists a sequence of Nc control moves which satisfies all

the constraints specified below is said feasible set with τ -delay restriction, and it is denoted with

XMPC(τ).

XMPC(τ) ,



















x0 ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃u0,Nc−1 ∈ UNc :

x̂(i, x0,u0,i−1) ∈ Xτ+i(d),∀i ∈ {1, . . . , Nc}

and x̂(Nc, x0,u0,Nc−1) ∈ Xf



















(5.4)

�

For the sake of brevity, the set XMPC(0) will be denoted as XMPC .

Definition 5.2.3 (Feasible sequence at time t). Given a delayed state measurement xt−τc(t),

available at at time t to the controller, let us consider the prediction x̂t|t−τc(t) of the actual

state xt obtained with the nominal model and with the actual control sequence applied from time

t − τc(t) to t−1, ut−τc(t),t−1, which is known to the controller. Moreover consider a sequence

of Nc control moves uc
t,t+Nc−1 and its two subsequences uc

t,t+τa−1 and uc
t+τa,t+Nc−1 such that

uc
t,t+Nc−1 = col[uc

t,t+τa−1,u
c
t+τa,t+Nc−1].

The input sequence uc = uc
t,t+Nc−1 is said feasible at time t if the subsequence uc

t,t+τa−1 yields

to x̂t−τc(t)+i|t−τc(t)∈Xi(D), ∀i∈{τc(t) + 1, . . . , τc(t)+τa} and if the second subsequence satisfies

all the constraints of the RHOCP initiated with x̂t+τa|t−τc(t) = x̂(τa, xt−τc(t),u
∗
t−τc(t),t+τa−1).

�

Remark 5.2.1. Note that what we call feasible sequence in t is not just an input sequence which

satisfies the constraints of the RHOCP (specified in the horizon [t+ τa + 1, . . . , t+Nc]), but it

is required to keep the nominal trajectories inside the restricted constraints for an horizon of Nc

steps from t+ 1 to t+Nc, that is larger than the one considered by the optimization.

Now, by accurately choosing the stage cost h, the constraints Xi(d), the terminal cost func-

tion hf , and by imposing a terminal constraintXf at the end of the control horizon, it is possible
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to show that the recursive feasibility of the scheme can be guaranteed for t ∈ Z>0, also in presence

of norm-bounded additive transition uncertainties and network delays. Moreover, the devised

control scheme will be proven to be Input-to-State stabilizing if the following assumptions are

verified.

Assumption 5.2.3. The transition cost function h : R
n × R

m → R≥0 is such that h(|x|) ≤

h(x, u), ∀x∈X, , ∀u∈U, where h is a K∞-function. Moreover, h is Lipschitz w.r.t. x, uniformly

in u, with L. constant Lh∈ R>0. �

Assumption 5.2.4 (κf ,hf ,Xf ). There exist an auxiliary control law κf (x) : X→U , a function

hf (x) : R
n→R≥0, a positive constant Lhf

∈R>0, a level set of hf , Xf ⊂ X and a positive

constant δ∈R>0 such that the following properties hold:

i)Xf ⊂ X, Xf closed, {0} ∈ Xf ;

ii) κf (x) ∈ U, ∀x ∈ Xf ⊕ Bn(δ);

iii) f̂(x, κf (x)) ∈ Xf , ∀x ∈ Xf ⊕ B
n(δ);

iv) hf (x) Lipschitz in Xf , with L. constant Lhf
∈ R>0;

v) hf (f̂(x, κf (x)))−hf (x)≤−h(x, κf (x)), ∀x∈(Xf⊕Bn(δ))\0.

�

In addition, we require the following assumptions to be verified together with 5.2.3 and 5.2.4.

Assumption 5.2.5. Let Xf be a sub-level set of hf ( i.e. Xf ={x∈R
n : hf (x)≤hf} ); then we

assume that the transition cost function h and the terminal cost hf satisfy the condition

min
u∈U

{

inf
x∈C1(Xf )\(Xf⊕Bn(δ))

{hf (x)− h(x, u)}

}

> hf . (5.5)

where δ ∈ R>0 is a positive scalar for which Points iii) and v) of Assumption 5.2.4 hold. �

Remark 5.2.2. With regard to the choice of the terminal set, a sufficient procedure for obtaining

a set Xf satisfying Assumption 5.2.4 has been proposed in [66]. First, notice that, given a

locally stabilizing auxiliary state-feedback controller κf (x), a control Lyapunov function hf (x)

for f̂(x, κf (x)) and a sub-level set Ωf RPI under f̂(x, κf (x)) (i.e., Ωf , {x ∈ R
n : hf (x) ≤
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hf , hf ∈ R>0} such that f̂(x, κf (x)) ∈ Ωf ∽ B(δ),∀x ∈ Ωf for some δ ∈ R>0) it is always

possible to find a positive definite functions h(x, u) such that Point v) of Assumption 5.2.4 holds.

Then, it has been suggested to choose Xf = Ωf ∽ B(δ), imposing a bound on the maximal

admissible uncertainties which depends on δ.

On the other hand the constructive assumption posed in [66] is somewhat conservative. In this

regard, Assumption 5.2.5 allows to decouple the uncertainty bound which ensures the recursive

feasibility of the scheme from the particular choice of κf . In this way, the robustness of the

scheme depends only on the invariant properties of Xf through C1(Xf ). �

Now, the following Lemma ensures that the original state constraints can be satisfied by

imposing to the nominal trajectories in the RHOCP the restricted constraints introduced in

Definition 5.2.1.

Lemma 5.2.1 (Robust Constraint Satisfaction). Any feasible control sequence uc
t,t+Nc−1|t−τc(t)

,

applied in open-loop to the perturbed system from time t to t+Nc − 1, guarantees that the true

(networked/perturbed) state will satisfy xt+j∈X, ∀j∈{1, . . . , Nc}. �

Proof [Lemma 5.2.1] Given the state measurement xt−τc(t), available at time t at the controller

node, let us consider the combined sequence of controls u∗ formed by: i) the subsequence used

for estimating x̂t|t−τc(t) (i.e., the true control sequence ut−τc(t),t−1applied by the NDC to the

plant from t− τc(t) to t− 1) and ii) a feasible control sequence uc
t,t+Nc−1|t−τc(t)

, that is

u∗
t−τc(t),t+Nc−1|t−τc(t)

, col[ut−τc(t),t−1,u
c
t,t+Nc−1|t−τc(t)

]. (5.6)

Then, the prediction error êt−τc(t)+i|t−τc(t) , xt−τc(t)+i − x̂t−τc(t)+i|t−τc(t), with i ∈

{1, . . . , Nc+τc(t)} and xt−τc(t)+i obtained by applying u∗
t−τc(t),t+Nc−1|t−τc(t)

in open loop to

the uncertain system (5.1), is upper bounded by

|êt−τc(t)+i|t−τc(t)| ≤
Li

fx
− 1

Lfx
− 1

d, ∀i ∈ {1, . . . , Nc + τc(t)}

where d is defined as in Assumption 4.2.2. Being uc
t,t+Nc−1|t−τc(t)

feasible, it holds that

x̂t−τc(t)+i|t−τc(t) ∈ Xi(d),∀i ∈ {τc(t) + 1, . . . , Nc + τc(t)}, then it follows immediately that

xt−τc(t)+i=x̂t−τc(t)+i|t−τc(t)+ êt−τc(t)+i|t−τc(t)∈X. �
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The proposed control scheme, which uses the MPC technique to compute the control se-

quences and a NDC strategy to compensate for network delays and dropouts, will be address as

MPC–NDC scheme.

A functional scheme of the proposed controller is depicted in Figure 5.6.

Figure 5.6 Scheme of the mechanism used to compute the control sequence, based on pre-
diction (Pred.) and reduced horizon optimization (RHOCP). In evidence the input sequences
used to perform the prediction, uc

t,t+τa−1|t−1−τc(t−1) and ut−τc(t),t−1, and the control sequence
computed by the reduced horizon optimization, u◦

t+τa,t+Nc−1|t−τc(t)
.

uc
t,t+Nc−1|t−τc(t)

xt−τsc(t)

controller node

x̂t+τ̄a|t−τc(t) Pred.

ut−τc(t),t−1

T
S

xt−τc(t)

uc
t,t+τ̄a−1|t−1−τc(t−1)

col RHOCP

u◦
t+τ̄a,t+Nc−1|t−τc(t)

z−1

uc
t−1,t+Nc−2|t−1−τc(t−1)

shared packet-based network

5.3 Formalization of the MPC–NDC Scheme for TCP-like

Networks

The overall control scheme for NCS that has been presented in previous sections can be formally

described by the Procedure 5.3.1 below, which gives the sequence of operations that have to be

performed by the NCS components 2.

The sensor node, the controller and the smart actuator are in charge of processing informa-

tions and forming suitably structured data packets, by using some internal storage buffers and

computational resources. In this regard, we will neglect the issue of quantization raised by the

numerical implementation of the procedure.

2The low-level TCP–like communication protocol, in charge for packet routing and synchronization, is con-
sidered as a service provided by the network transparently to the components of the NCS
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In the sequel, we will denote as Psc and Pca the data packets sent by the sensor to the

controller and by the controller to the actuator respectively, while Pack will represent the ac-

knowledgment (which is, in turn, a data packet) transmitted by the actuator to the controller.

For the sake of clarity, all the packets will be addressed to as data structures of the form

P = { P.data, P.time }, containing a data field and a time stamp field.

Moreover, denoting as Ma the overall storage memory of the smart actuator, we assume that

Ma is structured in buffers: i) Ma.u ∈ R
m×Nc, which is used to store a sequence of Nc future

control actions and ii) Ma.T ∈ Z≥0 , which contains the time stamp of the information stored

in Ma.u.

The storage memory of controller node, Mc, in turn, is structured in buffers: i) Mc.U ∈

(Rm×Nc)× τa, which is a First-In-First-Out (FIFO) buffer used to store the control sequences

computed in the past τa time instants (each element is a sequence); ii) Mc.u ∈ R
m × τ c,

which is used to store the inputs applied to the plant from time t − τ c to t − 1 (each element

is a control move); iii) Mc.x ∈ R
n, which stores the last available state measurement; iv)

Mc.T ∈ Z≥0, which contains the time stamp relative to Mc.x and v) two counters Mc.iseq ∈ Z≥0

and Mc.iu ∈ Z≥0.

Let us denote as ← a data assignment operation. Given a buffer (array) B containing N

elements, let us denote as B(i) the i-th element of the array, with i ∈ {1, . . . , N}. Given a buffer

B containing M sequences of N elements each, let us denote as B(i, j) the j-th element of the

i-th sequence, with i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Then, the following procedure can be

outlined.

Procedure 5.3.1 (MPC–NDC scheme for TCP–like networks). Assume that, starting from

time instant t = 0, the initial condition x0 is known.

Initialization

1 Given x0, let Mc.x← x0;

2 Ma.u = Mc.u = Mc.U(1)← u0,Nc−1, with u0,Nc−1 feasible for x0;

3 Ma.T = Mc.T ← 0;

4 Mc.iseq = Mc.iu ← 0.

Sensor node

1 for t ∈ Z≥0
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2 form the packet







Psc.x← xt

Psc.T ← t
;

3 send Psc.

Controller node

1 for t ∈ Z≥0

2 if a packet Psc arrived

3 if Psc.T > Mc.T

4 Mc.x← Psc.x; (= xt−τc(t))

5 Mc.T ← Psc.T ; (= t− τc(t) )

6 if the acknowledgment Pack arrived

7 Mc.iseq ← t−Pack.T+1;

8 Mc.iu ← t−Mc.Tack + 1;

9 else

10 Mc.iseq ←Mc.iseq +1;

11 Mc.iu ←Mc.iu + 1;

12 Mc.u← col[Mc.u(2), . . . ,Mc.u(τ c), Mc.U(Mc.iseq,Mc.iu) ];

13 considering that Mc.x = xt−τc(t), compute the prediction x̂t|t−τc(t) by using (4.9)

and the input sequence ut−τc(t),t = col[Mc.u(τ c − τc(t) + 1), . . . ,Mc.u(τ c)]

where τc(t) = t−Mc.T (see 5) ;

14 starting from x̂t|t−τc(t), compute the prediction x̂t+τa|t−τc(t) by using (4.9)

and the input sequence uc
t,t+τa−1|t−1−τc(t−1), which can be retrieved

from the Mc.U(1) (see line 17);

15 solve the RHOCP initiated with x̂t+τa|t−τc(t), obtaining u◦
t+τa,t+Nc−1|t−τc(t)

;

16 form uc
t,t+Nc−1|t−τc(t)

= col[uc
t,t+τa−1|t−1−τc(t−1),u

◦
t+τa,t+Nc−1|t−τc(t)

];

17 shift by one position the sequences in the register Mc.U

and store Mc.U(1)← uc
t,t+Nc−1|t−τc(t)

;
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18 form the packet







Pca.u← uc
t,t+Nc−1|t−τc(t)

Pca.T ← t
;

19 send Pca.

Actuator node

1 for t ∈ Z≥0

2 if a packet Pca arrived

3 if Pca.T > Ma.T

4 Ma.u← Pca.u; (= uc
t−τa(t),t−τa(t)+Nc−1|t−τrt(t)

)

5 Ma.T ← Pca.T ; (= t− τa(t) )

6 form the packet Pack.T ←Ma.T ;

7 send Pack ;

8 apply the control action ut = Ma.u(t−Ma.T + 1). (= uc
t|t−τrt(t)

)

�

In the next section, the robust stability properties of the described control scheme will be

analyzed in presence of transmission delays and model uncertainty.

5.4 Recursive Feasibility and Regional Input-to-State Sta-

bility

The following Theorem states the recursive feasibility of the combined MPC–NDC scheme.

Theorem 5.4.1 (Invariance of the feasible set). Under Assumption 3.1.1, suppose that Lfx
>13.

Assume that at time instant t the control sequence computed by the controller, uc
t,t+Nc−1|t−τc(t)

,

is feasible. Then, in view of Assumptions 3.1.1-5.2.4, if the norm bound on the uncertainty

satisfies

d≤ min
k∈{0,τc}

{

min

(

Lfx
−1

LNc+k
fx
−LNc−1

fx

dist(Rn\C1(Xf ),Xf ),
Lfx
−1

LNc+k
fx
− 1

dist
(

R
n\Xk+Nc

(d),Xf

)

)}

,(5.7)

3The very special case Lfx
=1 can be trivially addressed by a few suitable modifications to the proof of

Lemma 5.2.1. In general, if the true Lipschitz constant of the system is lower than 1, considering Lfx
> 1 only

leads to more conservative results.



102 CHAPTER 5. NETWORKED PREDICTIVE CONTROL

then, the recursive feasibility of the scheme in ensured for every time instant t+ i,∀i∈Z>0, while

the closed-loop trajectories are confined into X. Hence, the feasible set XMPC is RPI under the

c-l networked dynamics w.r.t. bounded uncertainties. �

Figure 5.7 Sketch of the recursive feasibility result for the RHOCP with respect to the terminal
state constraint Xf . Given a feasible solution of the RHOCP at time t, initiated with the
reconstructed state x̂t|t−τc(t) ( relying on a state measurement performed at time t− τc(t), with
τc(t) = 3 in the example), if the uncertainty verifies the condition (5.7), then at time t + 1,
given the reconstructed state x̂t+1|t+1−τc(t+1) (relying on the state measurement xt+1−τc(t+1),
with τc(t+ 1) = 2 in the example), there exists a sequence which brings the nominal predicted
trajectory x̂t+Nc|t+1−τc(t+1) in C1(Xf ). Hence there exists a feasible control move which can
steer the state in Xf .

xt

x̂t+Nc|t−τc(t)

X

t t+ 1t− 1t− 2t− 3 t+ 2 t+ 6 t+ 7

xt−1

Past

t+ 4 t+ 5t+ 3

C1(Xf )

Control Horizon (at time t)

Predicted feasible state trajectories

Xf

x̂t|t−3

(τc(t) = 3)

xt−3

(τc(t+ 1) = 2)

x̂t+1|t−1

x̂t+Nc|t+1−τc(t−1)

x̂t+1+Nc|t+1−τc(t+1)

xt+1

Reconstructed states at t and t+ 1
relying on xt−3 and xt−1 repect.

Available state measurements
at times t and t+ 1

Closed-loop true perturbed trajectory

Proof The proof consists in showing that if, at time t, the input sequence computed by

the controller uc
t,t+Nc−1|t−τc(t)

is feasible in the sense of Definition 5.2.3, then, if the perturbed

system evolves under the action of the MPC–NDC scheme, there will exist a feasible control

sequence at time instant t+1. Finally, the recursive feasibility follows by induction. First, notice

that Points ii) and iii) of Assumption 5.2.4 together imply that dist(Rn\C1(Xf ),Xf ) ≥ δ > 0.

Now, the proof will be carried out in three steps.
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i) x̂t+Nc|t−τc(t) ∈ Xf ⇒ x̂t+Nc+1|t+1−τc(t+1) ∈ Xf : Let us consider the sequence

u∗
t−τc(t),t+Nc−1|t−τc(t)

defined in (5.6). It is straightforward to prove that the norm differ-

ence between the predictions x̂t−τc(t)+j|t−τc(t) and x̂t−τc(t)+j|t+1−τc(t+1) (initiated by xt−τc(t)

and xt+1−τc(t+1)), respectively obtained by applying to the nominal model the sequence

u∗
t−τc(t),t−τc(t)+j−1|t−τc(t)

and its subsequence u∗
t+1−τc(t+1),t−τc(t)+j−1|t−τc(t)

, can be upper

bounded by

|x̂t−τc(t)+j|t−τc(t)+i−x̂t−τc(t)+j|t−τc(t)| ≤
1

Lfx

i
∑

l=1

Lj−l+1
fx

d=
Lj

fx
−Lj−i

fx

Lfx
−1

d (5.8)

where we have posed i=τc(t)−τc(t+1)+1 and with j∈{i, . . . , Nc+τc(t)}. Considering now the

case j=Nc + τc(t), then (5.8) yields to |x̂t+Nc|t−τc(t)+i−x̂t+Nc|t−τc(t)| = |x̂t+Nc|t+1−τc(t+1)−

x̂t+Nc|t−τc(t)| ≤ (L
Nc+τc(t)
fx

−L
Nc+τc(t)−i
fx

)/(Lfx
− 1)d. If the following inequality holds ∀k ∈

{1, . . . , τ c}

d ≤
Lfx
− 1

LNc+k
fx

− LNc−1
fx

dist (Rn\C1(Xf ),Xf ) ,

then x̂t+Nc|t+1−τc(t+1)∈C1(Xf ), whatever be the values of τc(t) and τc(t + 1). Hence, there

exists a control move ut+Nc|t+1−τc(t+1) = uf (x̂t+Nc|t+1−τc(t+1))∈U , with uf : C1(Xf ) → U

defined as

uf (x),arg min
u∈U :f̂(x,u)∈Xf

{|u− κf (x)|} , (5.9)

which can steer the state vector from x̂t+Nc|t+1−τc(t+1) to x̂t+Nc+1|t+1−τc(t+1) ∈ Xf . A

pictorial representation of the recursive feasibility result is given in Figure 5.7.

ii) x̂t−τc(t)+j|t−τc(t) ∈ Xj(d) ⇒ x̂t−τc(t)+j|t+1−τc(t+1) ∈ Xj−i(d), with i = τc(t)− τc(t + 1) +

1 and ∀j ∈ {τc(t) + 1, . . . , Nc + τc(t)}: Consider the predictions x̂t−τc(t)+j|t−τc(t) and

x̂t−τc(t)+j|t−τc(t)+i(initiated respectively by xt−τc(t) and xt−τc(t)+i), respectively obtained

with the sequence u∗
t−τc(t),t−τc(t)+j−1|t−τc(t)

and its subsequence u∗
t−τc(t)+i,t−τc(t)+j−1|t−τc(t)

.

Assuming that x̂t−τc(t)+j|t−τc(t) ∈ X∽ Bn( (Lj
fx
− 1)/(Lfx

− 1)d ), let us introduce η ∈

Bn( (Lj−i
fx
−1)/(Lfx

−1)d ). Let ξ, x̂t−τc(t)+j|t−τc(t)+i− x̂t−τc(t)+j|t−τc(t) +η, then, in view

of Assumption 3.1.1 and thanks to (5.8), it follows that

|ξ|≤|x̂t−τc(t)+j|t−τc(t)+i − x̂t−τrt(t)+j|t−τc(t)|+ |η| ≤
Lj

fx
− 1

Lfx
− 1

d, (5.10)
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and hence, ξ ∈ Bn( (Lj
fx
− 1)/(Lfx

− 1)d ). Since x̂t−τc(t)+j|t ∈ Xj(d), it follows that

x̂t−τc(t)+j|t−τc(t) + ξ = x̂t−τc(t)+j|t−τc(t)+i + η ∈ X, ∀η ∈ Bn((Lj−i
fx
− 1)/(Lfx

−1)d), yielding

to x̂t−τc(t)+j|t+1−τc(t+1)∈Xj−τc(t)+τc(t+1)−1(d).

iii) x̂t+Nc|t−τc(t)∈Xf⇒x̂t+Nc+1|t+1−τc(t+1)∈XNc+τc(t+1)(d); Thanks to Point i), there exists a

feasible control sequence at time t+1 which yields to x̂t+1+Nc|t+1−τc(t+1)∈Xf . If d satisfies

d ≤ min
j∈{Nc,...,Nc+τc}

{

Lfx
−1

Lj
fx
−1

dist(Rn\Xj(d),Xf )

}

,

it follows that x̂t+1+Nc|t+1−τc(t+1)∈XNc+τc(t+1), whatever be the value of τc(t+ 1).

Then, under the assumptions posed in the statement of Theorem 5.4.1, given x0 ∈ XMPC , and

being τc(0) = 0 (i.e. at the first time instant the actuator buffer is initiated with a feasible

sequence) in view of Points i)–iii) it holds that at any time t ∈ Z>0 a feasible control sequence

exists and can be chosen as uc
t+1,t+Nc+1|t+1−τc(t+1)=col[uc

t+1,t+Nc−1|t−τc(t)
, ut+Nc|t+1−τc(t+1)].

Therefore the recursive feasibility of the scheme is ensured. �

Remark 5.4.1 (Recursive feasibility and invariance of XMPC). Given a delayed state measure-

ment xt−τc(t), if there exists a feasible sequence at time t, ut,t+Nc−1, we have that x̂t|t−τc(t) =

x̂(t, xt|t−τc(t),ut−τc(t),t−1), verifies the inclusion x̂t|t−τc(t) ∈ XMPC(τc(t)), since ut,t+Nc−1 sat-

isfies all the constraints specified in (5.4) with i = τc(t). Thus, proving that the scheme is

recursively feasible (that is, given a feasible sequence at time t, there exists a feasible sequence at

time t+ 1), would prove that x̂t+1|t+1−τc(t+1), will belong to XMPC(τc(t+ 1)), whatever be the

value of τc(t + 1) in the set {0, . . . , τ c}. Without loss of generality, assume that τc(t + 1) = 0,

then it holds that xt+1 = x̂t+1|t+1 ∈ XMPC .

Now, assuming that the initial condition x0, at time t = 0, is known to the controller

(i.e.,τc(0) = 0) and that the sequence stored in the actuator buffer is feasible, by induction

it follows that

xt ∈ XMPC , ∀t ∈ Z≥0. (5.11)

We can conclude that XMPC is RPI for the NCS driven by the MPC-NDC scheme. �

Considering that the transmission delay is bounded as well as the sequence of control action
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forwarded by the controller, then the control input applied to the plant can be viewed as the

output of a time-varying control law κMPC−NDC(t). Notably, the closed-loop perturbed system

becomes time-varying, i.e.,

xt+1 = g(t, xt, dt) , x0 = x0, t ∈ Z≥0 (5.12)

with g(t, xt, dt) , f̂(xt, κMPC−NDC(t)) + dt.

Now, the following important stability result can be stated.

Theorem 5.4.2 (Regional Input-to-State Stability). Under Assumptions 3.1.1-5.2.4, if the

bound on uncertainties verifies (5.7), then the closed-loop system system (5.12), controlled by

the proposed MPC–NDC strategy κMPC−NDC(t,xt−τrt,t), is regional ISS in XMPC with respect

to additive perturbations dt ∈ B
n(d). �

Proof [Theorem 5.4.2] Recalling that we have posed the assumption that, at time t = 0, the

FIB contains a feasible control sequence, then, in a worst case situation, the system will be

driven in open-loop for τa time instants (see Procedure 5.3.1). With regard to the ISS property,

this observation implies that the bound on the trajectories after τa should depend on xτa
and

the regional ISS inequality (2.15) has to be modified as follows

|x(t+ τa, xτa
,υ)|≤max

{

β(|xτa
|, t),γ(‖υ[t+τa−1]‖)

}

,∀t∈Z≥0,∀xτa
∈Ξ, (5.13)

where xτa
is the state at time τa after the system has been driven for τa steps by the open-loop

policy stored in the buffer at time t = 0. In view of previous consideration, the proof consists in

showing that there exist a ISS-Lyapunov function V (t + τa, xt+τa
) for the closed-loop system.

To this end, let us define the following positive-definite function V ◦ : R
n → R≥0

V ◦(x̂t+τa|t−τc(t)), J◦
FH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

(5.14)

where x̂t+τa|t−τc(t) = x̂(t+τa, xt−τc(t),ut−τc(t),t+τa−1) is a prediction obtained with the nominal

model initiated with xt−τc(t). Notice that V ◦ corresponds to the optimal cost subsequent to the

reduced horizon optimization. Now, consider the following candidate ISS-Lyapunov function
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V : Z≥0 × R
n → R≥0

V (t+ τa, xt+τa
), JFH

(

xt+τa
,u◦

t+τa,t+Nc−1|t−τc(t)
, Nc−τa

)

=
t+Nc−1
∑

l=t+τa

h
(

x̂l|t+τa
, u◦l|t−τc(t)

)

+ hf (x̂t+Nc|t+τa
)

(5.15)

where x̂t+τa+j|t+τa
, j ∈ {1, . . . , Nc − τa} are obtained using the nominal model initialized with

x̂t+τa|t+τa
= xt+τa

and the sequence u◦
t+τa,t+Nc−1|t−τc(t)

(which is optimal for x̂t+τa|t−τc(t) and

not for xt+τa
). Notice that, since u◦

t+τa,t+Nc−1|t−τc(t)
is not computed in correspondence of

xt+τa
, but exploiting a past state information xt−τc(t), V becomes a time-varying function of

the state. We will show in the following that V (t+ τa, xt+τa
) verifies the ISS inequalities with

time-invariant bounds.

Suppose, without loss of generality4, that Lfx
6= 1. Now, let us point out that, in view

of (5.8), the inclusion xt+τa
∈ Ω , Xf∽Bn((Lτc+τa

fx
− 1)/(Lfx

− 1)d) implies x̂t+τa|t−τc(t) ∈

Xf whatever be the value of τc(t). Then, by Assumption 5.2.4, the control sequence

ũt+τa,t+Nc−1|t−τc(t),col[κf (x̂t+τa|t−τc(t)),κf (x̂t+τa+1|t−τc(t)), . . . ,κf (x̂t+Nc−1|t−τc(t))] is feasible

for the RHOCP, hence the set XMPC is not empty.

Now, our objective consists in finding a suitable comparison function to upper bound the

candidate ISS-Lyapunov function V (t+τa, xt+τa
). By adding and subtracting V ◦(x̂t+τa|t−τc(t))

to the right-hand side of (5.14), we obtain

V (t+ τa, xt+τa
) ≤

t+Nc−1
∑

l=t+τa

h
(

x̂l|t+τa
, u◦l|t−τc(t)

)

− h
(

x̂l|t−τc(t), u
◦
l|t−τc(t)

)

+hf (x̂t+Nc|t+τa
)− hf (x̂t+Nc|t−τc(t))

+J◦
FH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

,

(5.16)

In view of Assumptions 3.1.1,5.2.3 and thanks to (5.8), the following inequalities holds

t+Nc−1
∑

l=t+τa

∣

∣

∣
h
(

x̂l|t−τc(t), u
◦
l|t−τc(t)

)

− h
(

x̂l|t+τa
, u◦l|t−τc(t)

)∣

∣

∣

≤ Lh

L
τc(t)+τa

fx
−1

Lfx
−1

Nc−τa−1
∑

j=0

Lj
fx
||d[t+τa−1]||

≤ Lh

Lτrt

fx
−1

Lfx
−1

LNc−τa

fx
−1

Lfx
−1

||d[t+τa−1]||,

(5.17)

4The case Lfx
=1 can be trivially addressed with a few suitable modification to the proof of theorem 5.4.2
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moreover

|hf (x̂t+Nc|t+τa
)− hf (x̂t+Nc|t−τc(t))| ≤ Lhf

Lτrt

fx
− 1

Lfx
− 1

LNc−τa−1
fx

||d[t+τa−1]||, (5.18)

and

JFH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

≤ JFH

(

x̂t+τa|t−τc(t),ũt+τa,t+Nc−1|t−τc(t)
, Nc−τa

)

=
t+Nc−1
∑

l=t+τa

h
(

x̃l|t−τc(t), ũl|t−τc(t)

)

+ hf (x̃t+Nc|t−τc(t)).

(5.19)

where, given x̂t+τa|t−τc(t) ∈ Xf , we have posed

x̃t+τa+j|t−τc(t) = f̂(x̃t+τa+j−1|t−τc(t), κf (x̃t+τa+j−1|t−τc(t))) ∈ Xf , ∀j ∈ {1, . . . , Nc − τa}.

Considering that
∑t+Nc−1

l=t+τa
h
(

x̃l|t−τc(t), ũl|t−τc(t)

)

+hf (x̃t+Nc|t−τc(t) ≤ hf (x̂t+τa|t−τc(t)), then the

following bound can be established

JFH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

≤ hf (x̂t+τa|t−τc(t))− hf (xt+τa
) + hf (xt+τa

)

≤ Lhf

Lτrt

fx
− 1

Lfx
− 1
||d[t+τa−1]||+ hf (xt+τa

).

(5.20)

Finally, in view of (5.17) (5.18) and (5.20) the following inequalities hold

V (t+ τa, xt+τa
)≤

Lτrt

fx
−1

Lfx
−1

[

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx
+ Lhf

]

||d[t+τa−1]||+ hf (xt+τa
)

≤ α1(|xt+τa
|) + σ1(||d[t+τa−1]||), ∀xt+τa

∈Xf ,∀d∈MBn(d)

(5.21)

where

α1(s),Lhf
|s|

σ1(s),
Lτrt

fx
−1

Lfx
−1

[

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx
+ Lhf

]

s

The lower bound on V (t+ τa, xt+τa
) can be easily obtained using Assumption 5.2.3

V (t+ τa, xt+τa
) ≥ h(xt+τa

), ∀xt+τa
∈ XMPC (5.22)

Then, in view (5.21) of (5.22), the ISS inequalities (2.2) and (2.3) hold respectively with
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Ξ = XMPC and Ω =Xf∽B
n((Lτrt

fx
− 1)/(Lfx

− 1)d). Moreover, in view of Point i) in

the proof of Theorem 5.4.1, given the (feasible) control sequence computed at time t,

uc
t,t+Nc−1|t−τc(t)

= col[uc
t,t+τa−1|t−1−τc(t−1),u

◦
t+τa,t+Nc−1], the sequence uc

t+1,t+Nc|t+1−τc(t+1) =

col[uc
t+1,t+Nc−1|t−τc(t)

, uf (x̂t+Nc|t+1−τc(t+1))], with uf (·) defined as in (5.9), is a feasible sequence

(in general, suboptimal) at time t+ 1. The subsequence uc
t+τa+1,t+Nc|t−τc(t)

along the reduced

horizon gives rise to a cost which verifies the inequality

JFH

(

x̂t+τa+1|t+1−τc(t+1),u
c
t+τa+1,t+Nc|t−τc(t)

, Nc−τa

)

≤J◦
FH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

−h
(

x̂t+τa|t−τc(t), u
◦
t|t−τc(t)

)

+

t+Nc−1
∑

l=t+τa+1

h
(

x̂l|t+1−τc(t+1),u
◦
l|t−τc(t)

)

− h
(

x̂l|t−τc(t),u
◦
l|t−τc(t)

)

+h
(

x̂t+Nc|t+1−τc(t+1), uf (x̂t+Nc|t+1−τc(t+1))
)

+hf

(

x̂t+Nc+1|t+1−τc(t+1)

)

−hf

(

x̂t+Nc|t−τc(t)

)

(5.23)

Now, by (5.16), (5.17) and (5.18) we have that

V (t+ τa + 1, xt+τa+1) ≤ JFH

(

x̂t+τa+1|t+1−τc(t+1),u
◦
t+τa+1,t+Nc|t−τc(t)

, Nc−τa

)

+
Lτrt

fx
−1

Lfx
−1

[

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

]

||d[t+τa]||,
(5.24)

and that

JFH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

≤

V (t+ τa, xt+τa
) +

Lτrt

fx
−1

Lfx
−1

[

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

]

||d[t+τa−1]||.
(5.25)

Moreover, in view of Point v) of Assumption 5.2.4 and thanks to Assumption 5.2.5, it follows

that

h
(

x̂t+Nc|t+τa+1, uf (x̂t+Nc|t+τa+1)
)

+ hf

(

x̂t+Nc+1|t+τa+1

)

−hf

(

x̂t+Nc|t+τa

)

≤ hf

(

x̂t+Nc|t+τa+1

)

−hf

(

x̂t+Nc|t+τa

)

≤ Lhf
LNc−τa−1

fx
||d[t+τa]||

(5.26)

Then, we have that the following inequality follows from (5.23) by using (5.24), (5.25), (5.26)
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V (t+ τa + 1, xt+τa+1)−V (t+ τa, xt+τa
)

≤−h
(

x̂t+τa|t−τc(t), u
◦
t|t−τc(t)

)

+

t+Nc−1
∑

l=t+τa+1

h
(

x̂l|t+1−τc(t+1),u
◦
l|t−τc(t)

)

− h
(

x̂l|t−τc(t),u
◦
l|t−τc(t)

)

+

[

Lhf
LNc−τa−1

fx
+ 2

Lτrt

fx
−1

Lfx
−1

(

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

)]

||d[t+τa]||

≤−h
(

xt+τa
, u◦t|t−τc(t)

)

+Lh

Lτrt

fx
− 1

Lfx
− 1
||d[t]||+ Lh

Lτc

fx
− 1

Lfx
− 1

LNc−τa

fx
− 1

Lfx
− 1

||d[t]||

+

[

Lhf
LNc−τa−1

fx
+ 2

Lτrt

fx
−1

Lfx
−1

(

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

)]

||d[t+τa]||

Finally, by using Point iv) of Assumption 5.2.4, the third ISS inequality can be obtained

V (t+ τa + 1, xt+τa+1)−V (t+ τa, xt+τa
)

≤−h(|xt+τa
|) +

[

Lh

Lτrt

fx
− 1

Lfx
− 1

+ Lh

Lτc

fx
− 1

Lfx
− 1

LNc−τa

fx
− 1

Lfx
− 1

+ Lhf
LNc−τa−1

fx

+2
Lτrt

fx
−1

Lfx
−1

(

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

)]

||d[t+τa]||

≤ −α2(|xt+τa
|) + σ2(||d[t+τa]||), ∀xt+τa

∈XMPC ,∀d∈MBn(d)

(5.27)

where

α2(s),h(s)

σ2(s),

[

Lh

Lτrt

fx
− 1

Lfx
− 1

+ Lh

Lτc

fx
− 1

Lfx
− 1

LNc−τa

fx
− 1

Lfx
− 1

+ Lhf
LNc−τa−1

fx

+2
Lτrt

fx
−1

Lfx
−1

(

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

)]

.

Finally, in view of (5.21), (5.22) and (5.27), it is possible to conclude that the closed-loop system

is regional ISS in XMPC with respect to d ∈ Bn(d). �

5.5 Formalization of the NDC–MPC Scheme for UDP–like

Networks

In the case of UDP–like networks, no ACKs are sent by the actuator node to the controller. In

this scenario, the problem of delayed arrival of packeted input sequences to the actuator (which
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may lead to wrong open-loop predictions at the controller side, due to the fact that the truly

applied input sequence is not known to the controller if a specific strategy is not adopted to

compensate for the lack of ACK’s), could represent a major source of uncertainty. Thus, with

the aim to recast the formulation in a deterministic framework, such that the sequence used by

the predictor to obtain x̂t would coincide with the true input sequence applied by the actuator

to the plant from time t− τc(t) to t− 1, a possible solution consists enlarging the buffer length

Nc, as specified in the following assumption.

Assumption 5.5.1 (Buffer length in UDP–like networks). The buffer length of the smart actu-

ator, which is equal to the length of the input sequence sent by the controller to actuator, verifies

Nc ≥ τ c + τa + 1.

In this set up, being Nc also the length of the sequence computed by the controller to be

forwarded to the actuator, we have that Nc ≥ τ rt + 1. The optimization, in the UDP–like case,

has to be performed over an input sequence, namely ut+τrt,t+Nc−1|t−τc(t), consisting of Nc− τ rt

control actions. Moreover the RHOCP has to be initiated with the predicted state x̂t+τrt|t−τc(t).

The input sequence used to obtain x̂t+τrt|t−τc(t) is

u∗
t−τc(t),t+τrt−1 = col[u∗

t−τc(t),t−2,u
c
t−1,t+τrt−1|t−1−τc(t−1)] (5.28)

where u∗
t−τc(t),t−2 and uc

t,t+τrt−1|t−1−τc(t−1) are respectively a subsequence of u∗
t−1−τc(t−1),t+Nc−2

(which can be retrieved recursively from a buffer in which the sequences u∗ are stored at each

computational step) and a subsequence of the control sequence uc
t−1,t+Nc−2|t−1−τc(t−1) com-

puted at time t− 1. At this point, noting that the first τ rt elements of uc
t−1,t+Nc−2|t−1−τc(t−1)

coincide with the subsequence u∗
t−1,t+τrt−2, then (5.28) can be rearranged as

u∗
t−τc(t),t+τrt−1 = col[u∗

t−τc(t),t+τrt−2, u
c
t−τrt−1|t−1−τc(t−1)] (5.29)

where the control action uc
t−τrt−1|t−1−τc(t−1) is the element of the optimal subsequence

u◦
t−τrt−1,t+Nc−τrt−2|t−1−τc(t−1), obtained by solving the RHOCP at time t − 1 (i.e.,

uc
t−τrt−1|t−1−τc(t−1) = u◦t−τrt−1|t−1−τc(t−1)). By this position, with suitable few modifications to

the proof Theorem 5.4.1, it is possible to show that the proposed scheme is robustly recursively

feasible in the UDP–like framework and that the closed-loop system is regionally ISS stable.
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Remarkably, given a buffer sequence length Nc, the further shortening of the optimization hori-

zon may reduce the degree of optimality of the control action with regard to the TCP–like

formulation.

The MPC–NDC control scheme for UDP–like networks5 can be formally described by the

Procedure 5.5.1 listed below. In this case, the buffers Mc.U, Mc.iseq and Mc.iu, introduced in

Procedure 5.3.1, are not used, while the buffer Mc.u must be enlarged to store τ rt + τ c control

actions.

Procedure 5.5.1 (MPC–NDC scheme for UDP–like networks). Assume that, starting from

time instant t = 0, the initial condition x0 is known.

Initialization

1 Given x0, let Mc.x← x0;

2 Ma.u = Mc.u← u0,Nc−1, with u0,Nc−1 feasible for x0;

3 Ma.T = Mc.T ← 0.

Sensor node

1 for t ∈ Z≥0

2 form the packet







Psc.x← xt

Psc.T ← t
;

3 send Psc.

Controller node

1 for t ∈ Z≥0

2 if a packet Psc arrived

3 if Psc.T > Mc.T

4 Mc.x← Psc.x; (= xt−τc(t))

5 Mc.T ← Psc.T ; (= t− τc(t) )

6 considering that Mc.x = xt−τc(t), compute the prediction x̂t+τrt|t−τc(t) by using (4.9)

and the input sequence u∗
t−τc(t),t+τrt−1, which can be retrieved from Mc.u

5The low-level UDP–like communication protocol, in charge for packet routing and synchronization, is con-
sidered as a service provided by the network transparently to the components of the NCS
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(see (5.29) and Line 9);

7 solve the RHOCP initiated with x̂t+τrt|t−τc(t), obtaining u◦
t+τrt,t+Nc−1|t−τc(t)

;

8 form uc
t,t+Nc−1|t−τc(t)

= col[uc
t,t+τrt−1|t−1−τc(t−1),u

◦
t+τrt,t+Nc−1|t−τc(t)

];

9 store Mc.u← col[Mc.u(2), . . . ,Mc.u(τ rt), u
c
t+τrt|t−τc(t)

];

10 form the packet







Pca.u← uc
t,t+Nc−1|t−τc(t)

Pca.T ← t
;

11 send Pca.

Actuator node

1 for t ∈ Z≥0

2 if a packet Pca arrived

3 if Pca.T > Ma.T

4 Ma.u← Pca.u; (= uc
t−τa(t),t−τa(t)+Nc−1|t−τrt(t)

)

5 Ma.T ← Pca.T ; (= t− τa(t) )

6 apply the control action ut = Ma.u(t−Ma.T + 1). (= uc
t|t−τrt(t)

)

�

5.6 Example

In order to show the effectiveness of the devised control scheme, the closed-loop behavior of

the following nonlinear system (forward-Euler discretized version of an undamped single-link

flexible-joint pendulum) is simulated first in nominal conditions and then under the simultaneous

presence of model uncertainty and unreliable communications between sensors, controller, and

actuators


































x(1)t+1
=x(1)t +Tsx(2)t

x(2)t+1
=x(2)t−

Ts

I

[

MgL sin(x(1)t)+k
(

x(1)t−x(3)t

)]

x(3)t+1
=x(3)t +Tsx(4)t

x(4)t+1
=x(4)t +

Ts

J

[

k
(

x(1)t−x(3)t

)

+u
]

x0 = x, t ∈ Z≥0

(5.30)

where x(i)t , i∈{1, . . . , 4} denotes the i-th component of the vector xt, Ts=0.05 s is the sampling

interval, I=0.25 kg ·m2 the inertia of the arm, J=2 kg ·m2 the rotor inertia, g=9.8ms2 the
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gravitational acceleration, M =1 kg the mass of the link, L=0.5m the distance between the

rotational axis and the center of gravity of the pendulum-arm, k=20N · m/rad the stiffness

coefficient of the link. The control objective consists in stabilizing the system toward the (open-

loop unstable) 0-state equilibrium, while keeping in the trajectories within prescribed bounds

depicted in Figure 5.10 (green).

The following auxiliary linear controller is used κf (x) = [−55.92 −7.46 124.01 19.22] · x,

with Xf = {x ∈ R
4 : xT ·Pf ·x ≤ 1}, hf (x) = 103(xT ·Pf ·x) and

Pf = 103

















1.3789 −0.0629 −1.7904 −0.1508

−0.0629 0.0186 0.1404 0.0074

−1.7904 0.1404 3.1580 0.2216

−0.1508 0.0074 0.2216 0.0292

















The predictive controller has been set up with control sequence length Nc=12, and quadratic

stage cost h(x)=xT ·Q ·x+Ru2, where Q=diag(10, 0.1, 0.1, 0.1) and R=10−3.

Figure 5.8 Scheme of the single-link flexible-joint pendulum used in the example.

x(1)

x(3)

x(2)

x(4)

M g sin(x(1))

L

J

Iu

k

In the uncertain/unreliable networked scenario, a TCP–like protocol has been simulated,

with delay bounds τ c=τa=5, while the nominal model is subjected to the following parametric

uncertainty Mnom=1.05M .

The timing diagrams of the simulated networked packet-based communication links are given

in Figure 5.9. Notice that, due to the use of a TS strategy, the networks delays τca and τsc have

been decoupled from the age of information used in the nodes τa and τc, retaining only the
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packets which carry the most recent information.

Finally, Figure 5.10 shows the trajectories of the state variables in the nominal case (black)

and in the uncertain/delayed conditions (blue). Notably, the constraints are fulfilled and the

recursive feasibility of the scheme is guaranteed even in the networked case. At the opposite, if

a network delay compensation strategy is not used, then system (5.30), controlled by a nominal

MPC, becomes unstable even for small delays τ c=τa=2, as shown in Figure 5.11.

Figure 5.9 Timing diagrams of feedback and control communication links. Each slanted seg-
ment in τca and τsc diagrams represents a successfully delivered data packet form the sending
time (square) to the arrival time (triangle). The length of each segment represent the age of
the packet at the receipt instant. In τc and τa diagrams the triangles represent the age of the
information retained in each node thanks to the TS strategy.
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5.7 Concluding Remarks

In this chapter a networked control system, based on the combined use of a constraint tight-

ening based model predictive controller with a network delay compensation strategy, has been

designed with the aim to stabilize toward an equilibrium a constrained nonlinear discrete-time

system, affected by unknown bounded perturbations and subjected to delayed packet-based

communications in both sensor-to-controller and controller-to-actuator links.

The characterization of the robust stability properties of the devised scheme represents a
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Figure 5.10 Trajectories of the state variables of system (5.30) controlled by the combined
strategy MPC+NDC over an unreliable network with uncertainty (blue : τ c = τa = 5) and in
nominal conditions (black : τ c = τa = 0).
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Figure 5.11 Trajectories of the state variables for system (5.30) controlled by a nominal NMPC,
without delay compensation (τ c=τa=2). Feasibility gets lost and instability occurs.
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significant contribution in the context of nonlinear networked control systems, since it estab-

lishes the possibility to enforce the robust satisfaction of constraints under unreliable networked

communications in the feedback and command channels, even in presence of model uncertainty.

Moreover, the problem of guaranteeing the recursive feasibility of the scheme has been ad-

dressed.

By exploiting a novel characterization of the regional Input-to-State Stability in terms of

time-varying Lyapunov functions, the networked closed-loop system has been proven to be Input-

to-State Stable with respect to bounded perturbations.

In the belief of the author, the strategy presented in this chapter can be further used to

deploy constrained advanced-step MPC schemes (in which the control actions computed by the

controller are applied to the plant after a fixed time interval) with ISS guarantees. Indeed, the

advanced-step MPC, in which a constant delay affect only the controller-to-actuator path, turns

out to be a particular case of the delayed networked configuration considered in the present

work.
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Appendix A

A.1 Main Notations and Basic Definitions

Let R, R≥0, Z, and Z≥0 denote the real, the non-negative real, the integer, and the non-negative

integer sets of numbers, respectively. The Euclidean norm is denoted as | · |.

For any discrete-time sequence υ : Z≥0 → R
m, ‖υ‖ , sup k≥0{|υk|} and

‖υ[τ ]‖ , sup 0≤k≤τ{|υk|}, where φk denotes the value that the sequence υ takes on in corre-

spondence with the index k. The set of discrete-time sequences of υ taking values in some

subset Υ ⊂ R
m is denoted by MΥ. Given a sequence υ ∈ MΥ and two non-negative integers

k ∈ Z≥0 and t ∈ Z≥0, we will denote as υk,t the subsequence formed by elements indexed from

k to t (i.e., υk,t , {υk, υk+1, . . . , υt−1, υt}).

Given a compact set A ⊆ R
n, let ∂A denote the boundary of A. Given a vector x∈R

n,

d(x,A) , inf {|ξ−x| , ξ∈A} is the point-to-set distance from x ∈ R
n to A. Given two sets

A ⊆ R
n, B ⊆ R

n, dist(A,B) , inf {d(ζ,A), ζ ∈ B} is the minimal set-to-set distance. The

difference between two given sets A ⊆ R
n and B ⊆ R

n, with B ⊆ A, is denoted as A\B ,

{x : x ∈ A, x /∈ B}. Given two sets A∈R
n, B∈R

n, the Pontryagin difference set C is defined as

C=A∽B , {x ∈ R
n : x+ξ ∈ A,∀ξ ∈ B}. Given a vector η ∈ R

n and a scalar ρ ∈ R>0, the

closed ball in R
n centered in η of radius ρ is denoted as Bn(η, ρ), {ξ ∈ R

n : |ξ−η| ≤ ρ}. The

shorthand Bn(ρ) is used when η = 0.
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A.2 Comparison Functions

The notions of functions of class K, class K∞, and class KL are used to characterize stability

properties of the control schemes presented in the dissertation.

A function α : R≥0→R≥0 belongs to class K if it is continuous, zero at zero, and strictly

increasing.

It belongs to class K∞ if it belongs to class K and is unbounded.

A function β :R≥0×Z≥0→R≥0 belongs to class KL if it is nondecreasing in its first argument,

nonincreasing in its second argument, and lim s→0β(s, t)=lim t→∞β(s, t)=0.

In the sequel, a collection of some well-known properties of comparison functions is presented.

Property A.2.1 (Comparison functions). Let α1(·) and α2(·) be both K-functions;α3(·) and

α4(·) be K-functions and let β(·, ·) be a KL-function. Finally, let s, s1, s2 ∈ R≥0 be positive

scalars. Then

1) α−1
1 (·) is a K-function;

2) α1 ◦ α2(·) is a K-function;

3) α1 ◦ β(·, ·) is a KL-function;

4) max(α1(s), α2(s)) and min(α1(s), α2(s)) are both K-functions;

5) α1(s1 + s2) ≤ α1(2s1)) + α1(2s2), ∀s1, s2 ∈ R≥0;

6) α1(s1) + α2(s2) ≤ α1(s1 + s2) + α2(s1 + s2), ∀s1, s2 ∈ R≥0;

7) α1(s1) + α2(s2) ≤ min(α1(0.5(s1 + s2)) + α2(0.5(s1 + s2))), ∀s1, s2 ∈ R≥0;

8) there exists a K∞-function α5(·) such that α5(s) ≤ α3(s), ∀s ∈ R≥0 and s − α5(s) is a

κ∞-function.

A.3 Brief Introduction to Set-Invariance Theory

Let us consider the discrete-time dynamic system
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xt+1 = g(xt, υt), t ∈ Z≥0, x0 = x (A.1)

with g(0, 0) = 0 and where xt ∈ R
n and υt ∈ Υ ⊂ R

r denote the state of the system

and a bounded disturbance (exogenous input), respectively. The discrete-time state trajectory

of the system (A.1), with initial state x̄ and disturbance sequence υ ∈ MΥ , is denoted by

x(t, x̄,υ), t ∈ Z≥0.

Definition A.3.1 (RPI set). A set Ξ ⊂ R
n is a Robust Positively Invariant (RPI) set for

system (A.1) if g(xt, υt) ∈ Ξ, ∀xt ∈ Ξ and ∀υt ∈ Υ. �

Consider the nonlinear discrete-time dynamic system

xt+1 = f(xt, ut, υt), t ∈ Z≥0, x0 = x0 , (A.2)

where xt ∈ R
n denotes the state vector, ut ∈ R

m the control vector and υt ∈ Υ is an uncertain

exogenous input vector, with Υ ⊂ R
r compact and {0} ⊂ Υ. Assume that state and control

variables are subject to the following constraints

xt ∈ X, t ∈ Z≥0 , (A.3)

ut ∈ U, t ∈ Z≥0 , (A.4)

where X and U are compact subsets of R
n and R

m, respectively, containing the origin as an

interior point.

Given the system (A.2), let f̂(xt, ut) , with f̂(0, 0) = 0, denote the nominal model used for

control design purposes.

Let x̂t+i|t, i ∈ Z>0 denote the state prediction generated by the nominal model on the basis

of the state informations at time t under the control sequence ut,t+i−1 = col[ut, . . . , ut+i−1],

that is

x̂t+i|t=f̂(x̂t+i−1|t, ut+i−1), x̂t|t = xt, t ∈ Z≥0, i ∈ Z>0. (A.5)

Moreover, when it will be necessary to point out the dependence of a nominal trajectory on

the initial condition xt with a specific input sequence ut,t+i−1, we will also use the notation

x̂(i, xt,ut,t+i−1) = x̂t+i|t.
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Having introduced the nominal transition map f̂(x, u), the following definition can now be

posed.

Definition A.3.2 (Ci(X,Ξ)). Given a set Ξ ⊆ X, the i-step Controllability Set to Ξ, Ci(X,Ξ),

is the set of states which can be steered to Ξ by a control sequence of length i, u0,i−1, under the

nominal map f̂(x, u), subject to constraints (A.3) and (A.4), i.e.

Ci(X,Ξ),



















x0∈X : ∃u0,i−1∈U×. . .×U such that

x̂(t, x0,u0,i−1)∈X, ∀t ∈ {1, . . . , i− 1},

and x̂(i, x0,u0,i−1)∈Ξ.



















�

The shorthand C1(Ξ) will be used in place of C1(R
n,Ξ) to denote the one-step controllability set

to Ξ, [17].

In order to give a complete our overview on basic concepts of set-invariance theory, also some

notions of set-valued analysis (see [10]) must be introduced. In this regard, let us introduce the

following definition.

Definition A.3.3 (F̂ (x)). Given the nominal transition function f̂(x, u), the set-valued map

F̂ :X 7→Y, Y⊆R
n is defined as

F̂ (x) ,
⋃

u∈U

f̂(x, u). (A.6)

�

Definition A.3.4 (LSC). A set-valued map F̂ : X 7→Y is called Lower Semi-Continuous (LSC)

in X if ∀x
′

∈X, given ǫ∈R>0, ∃δ∈R>0 such that inequality |x
′

−x
′′

|<δ implies

F̂ (x
′

) ⊆ F̂ (x
′′

)⊕ B(ǫ).

�

Noting that the predecessor operator generates the natural weak set-valued preimage [28] of

a given set Ξ ⊆ Y under F̂ , C1(Ξ)=F̂−1(Ξ),{x∈X : F̂ (x)∩Ξ 6=∅}, a computability result for

F̂−1(Ξ) would imply the computability of C1(Ξ).
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To this end, let us introduce the notion of robust robust controllability set, which plays a key

role in the computability theory for set-valued operators, since it represents the best computable

approximation of the true predecessor set [29].

Definition A.3.5 (RCi(X,Ξ)). Given a set Ξ ⊆ X and the nominal map f̂(x, u), the i-step

Robust Controllability set to Ξ is defined as RCi(X,Ξ),Ci(X, int(Ξ)). �

The following important theorem can be stated.

Theorem A.3.1 (Geometric Condition for Invariance,[17]). A set Ξ ∈ R
n is a control/positively

invariant set if and only if Ξ ⊆ C1(Ξ). �
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