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 1.1 Introduction 
 

At the beginning of the XXIst century every kind of industry is 
worried about making their products more competitive in the 
global market. The competition concerns different aspects of the 
production processes, from the starting material to the products 
purity. 
Going through this direction it is essential to think back to the 
traditional synthetic route mostly based on classical chemical 
synthesis. In order to perform more efficient processes in terms of 
reaction selectivity, products purity, operational conditions, etc. 
biocatalytic reactions represent the most promising solution. In 
this sense they are covering an even more important role every 
day. 
The conversion of most industrial chemical processes into 
biochemicals requires a huge number of well known enzymes able 
to catalyse almost all the necessary chemical reactions. The 
industrial evolution in this direction is braked by a cultural factor 
against the enzymatic reactions, as well as, by a lack of 
knowledge of enzymatic mechanisms which limits the enzymatic 
process optimization. 
Recent advantages in computational sciences have led to novel 
sophisticated and refined computational methods that are able to 
describe the biocatalyst machinery in detail.1 
In this field molecular dynamics simulations (MD) cover an 
important role since these techniques are able to simulate complex 
systems with high accuracy and to investigate conformational 
possibilities of the simulated elements.2 The application of MD 
simulations to biocatalysis problems allows to investigate 

                                                 
1 P Braiuca, C Ebert, A Basso, P Linda, L Gardossi, Trends Biotechnol, 2006, 
24, 419. 
2 J P Mesirov, K Schulten, D W Sumners, Mathematics and Its Applications, 
1996, New York, Springer-Verlag. 
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enzymatic systems in real operational behavior and to investigate, 
at the molecular level, enzymes-substrates interactions as well as 
enzyme stability and all the other important characteristics that a 
good biocatalyst needs.3 
Unfortunately MD simulations are not able to simulate too 
complicate problems; in these cases other computational 
approaches, such as chemometrics, can be of aid because they are 
able to extract relevant information from experimental data and 
eventually they enable the construction of predictive models of the 
enzyme behavior.1 Chemometrics is a set of statistical approaches 
which are able to extract relevant and latent information from 
experimental data sets. Moreover extensive statistical 
investigations of various data sets, coming both from MD 
simulations and experiments, can lead to the creation of predicting 
models based on empirical equations. 
Joint applications of the two computational approaches have been 
already employed to successfully solve several complex issues, 
especially in cases of enzyme selectivity previsions.4  
The combination of computational and experimental research in 
biocatalysis offers the possibility to greatly enhance the level of 
knowledge of a biocatalytic system and reduce experimental 
efforts and costs. The solution of research problems can be found 
within different time frames and accuracy levels as a function of 
the computational techniques chosen.1 
As a matter of fact, computational methods have been developed 
just for the last twenty years; nevertheless the recent evolution of 
modern calculators offers new and exciting opportunities to 
explore this research field. 
The further development of these promising combined 
experimental and computational approaches require the 

                                                 
3 R J Kazlauskas, Curr Opin Chem Biol, 2000, 4, 81. 
4 P Braiuca, L Knapic, V Ferrario, C Ebert, L Gardossi, Adv Synth Catal, 2009, 
351, 1293. 



1.INTRUDUCTION 

4 
 

improvement and invention of new and more efficient 
computational techniques as well as the creation of new hybrid 
strategies in order to achieve the full comprehension of bicatalytic 
problems. 
 
 

1.2 Molecular modelling 
 

The possibility to simulate real systems, to predict properties and 
to explain experimental data, makes molecular modelling a 
powerful complementary tool of experimental research. It is able 
to offer new research opportunities, improve the activity of 
already known compounds and reduce the rate of the failures.5 
The molecular modelling opens the perspective to calculate 
several molecular properties from three-dimensional models of 
chemical systems. It comprises a plethora of methods and 
approaches, relying on algorithms of different complexity and it is 
applicable to almost any (bio-)chemical field. 
The interest in these techniques is long-term established in some 
areas, such as drug design, but the interest is increasing also in all 
the other chemistry related areas, because they can fill the lack of 
routine experimental procedures allowing to observe phenomena 
at molecular level. 
The increasing computational power (and the subsequent decrease 
of costs) makes complex simulation methods more and more 
widely available, increasing their application scope and utility. 
Despite the huge power of the modern CPUs, often calculations 
still require a significant computational cost, especially for the 
most interesting applications, where the complexity of the systems 
increase enormously the number of of variables of the system. The 
need to apply computational chemistry to complex systems 
pushed the development of simplified methods of empirical 

                                                 
5 M Ferameglia, S Pricl, G Longo, Chem Biochem Eng Q, 2003, 17, 69. 
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nature, that despite their fundamental simplicity and intrinsic 
limitations, are of impressive utility and are undoubtedly 
considered as potent tools in the hand of chemists. Molecular 
mechanics (MM) belongs to this ensemble of empirical methods 
and comprises the vast majority of applications in chemistry-
biology interface fields, such as biocatalysis. 
Quantum mechanics represents the rigorous approach, able to 
simulate virtually any chemical system and process, since it relies 
on the solution of the Schroedinger equation. Nevertheless it is 
severely hampered by the complexity if its mathematics and its 
application is still limited to small molecular systems (up to 200 
atoms). 
 

 
1.2.1 Quantum mechanics and molecular mechanics 
 
The construction of a chemical model in a virtual three-
dimensional space, able to be treated computationally, requires the 
transformation of chemical information into mathematical 
information. To achieve this, the concept of chemical bond has to 
be redefined into a set of atoms  in a Cartesian space. Each atom is 
then described by a triplet of numbers, representing its spatial 
coordinates in the Cartesian space, perfectly saving the 
geometrical information such as the bond distances and angles. 
From the structure it is possible to derive energy information, 
applying an appropriate law. From the energy of a system it is 
possible to derive many other properties. 
Molecular modelling decomposes the energy into two principal 
components, potential energy and kinetic energy. This is what is 
currently defined as dynamic energy: 
 

kineticpotentialdynamic EEE +=  
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If the molecule is completely still (0 K) or if the system is 
relativistic (the observer is moving together with the molecule), 
the kinetic energy is null and therefore the total energy comes 
from the potential energy only. This  is what is usually defined as 
mechanic energy. 
The correlation of the structure with its energy is the fundamental 
idea of molecular modelling. All the molecular modelling 
methods, either belonging to MM or QM, are based on the 
definition of a set of equations aiming at correlating structure and 
energy: 
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To achieve this, the application of several principles is necessary: 

• QM laws: complicated and expensive in terms of time and 
resources, they include the quantistic mechanic (QM) and 
the quantistic dynamic (QD); 

• Classical mechanic laws or Newtonian laws: simplistic 
and not sufficient to explain all the molecular properties of 
interest, they include the classical molecular mechanic 
(MM) and the classical molecular dynamic (MD). 

Efforts to combine the flexibility of MM to the precision of QM 
gave origin to hybrid systems (MM/QM), a compromise that 
allows to define a part of a molecule, usually the most important 
(i.e. the active site), in a quantistic mode, and the rest of the 
molecule, less important, in a classical mode. It is important to 
specify that the hybrid systems are complicated by the necessity to 
parametrize properly the interface between the QM and the MM 
part. Complexity of this aspect sometimes overcome the 
advantages of the general idea, thus making application of 
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QM/MM methods still questionable in many cases. 
1.2.2 Quantum mechanics and molecular orbital 
method (MO) 
 
All the systems using quantomechanic principles, combine the ab-
initio methods and the semi-empirical methods, are based on the 
approximate solution of the Schrödinger equation: 
 

ψψ EH =  
 

where H is the Hemiltonian operator which describes the kinetic 
energy of the nucleus and of the electrons of the molecule. E is the 
total energy of the system and ψ represent the wave function that 
describes the motion of the particles. 
The resolution of this equation, valid for polielectronic atoms and 
molecules, is possible using approximate solutions only. 

• Born-Oppenehimer approximation: the nucleus are fixed 
and only the electrons movement are considered. 

• Hartree-Fock approximation: the electrons movement is 
described only by monoelectronic wave functions  (the 
spatial part is called molecular orbital) and not by 
polielectronic wave functions, with the aim of following 
the movement of a single electron in an electromagnetic 
field generated by the other electrons. 

• LCAO method: the wave function ψ, named also 
molecular orbital, is expressed by a linear combination of 
atomic orbitals Ф: 
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The final quality of the ab-initio calculation is strictly dependent 
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from the base set, namely the set of Фi used.6 The Cij coefficients 
are calculated by the same algorithm used for the ab-initio 
calculation that leads to an energy minimum where the orbitals 
assume a constant value by iterative variations.7 
This method is affected by a disadvantage: the calculation time 
increases with the fourth potency of the number of the basis sets 
used;8 this is translated into a big computational cost, limiting the 
application to systems with less than, or with a few hundred atoms 
only. 
Semiempirical methods introduce simplifications and empiric 
parameters in the molecular orbital calculations, leading to a 
considerable gain in terms of calculation time, but also to an 
unavoidable loss in precision. 
Only a compromise between the calculation rate and the accuracy 
of the results can expand the application scope of QM methods to 
system of several hundred atoms. 
 
 
1.2.3 Molecular mechanics: atom types and force 
field 
 
In molecular mechanics (MM) the atom loses its quantomechanic 
characteristics and it is simply described as a sphere with a certain 
mass, a volume and a point charge on the basis of the atom it 
represents. Calculation of molecular electronic state is completely 
avoided. To recover the concept of valence, a concept lost in this 
approximation, it is necessary to introduce the concept of atom 
type which correlates every sphere to all the properties describing 
each atom. In molecular mechanic there are as many atom types  

                                                 
6 D De Frees, B Levi, S Pollak, W Hehre, S Binkley, J Pople, J Am Chem Soc, 
1979, 6, 2. 
7 T Clarke, Handbook of Computational Chemistry, New York, USA, 1985. 
8 D Boyd, K Lipkowitz, J Chem Educ, 1982, 59, 269. 
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as the number of possible chemical situations, in different 
molecules. 
For the description of the interactions of a molecule it is necessary 
to use a mathematical function called force field which based on 
classical mechanics laws. The force field has to describe as a 
simple mathematical function, continues and differentiable 
functions which define the potential energy in relation to the 
coordinates of all the atoms that belong to the molecule. 
It is fundamental, for its applicability, that the potential energy 
associated to the force field balances opportunely its simplicity 
with its accuracy in the description of its energetic and structural 
properties among the different analysed molecules. 
Therefore, there are different force field specialized for different 
molecule types and applications (Table 1.1). 
 

MM2, MM3, MM4 
(Allinger, 1977, 1988, 1989, 1996, 1997; Lii, 
1989a, 1989b, 1989c, 1991, 1998; Nevins, 
1996; Hay, 1998) 
CFF93 
(“Central Force Field”, Levy, 1979) 
MMFF 
(“Merck Molecular Force Field”, Halgren, 
1992, 1996a, 1996b, 1996c, 1996d, 1996e) 

Small Organic 
Molecules 

PEF95SAC 
(Rasmussen, 1997) Polysaccharides 

SHAPES 
(Allured, 1991) 

Metallic 
Compounds 

ECEPP 
(“Empirical Conformational Energy Program 
for Peptides”, Momany, 1975; Nemethy, 
1983; Sippl, 1984) 

Proteins and 
Nucleic Acids 
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CHARm 
(“Chemistry at Harvard Macromolecular 
Mechanics”, Brooks, 1983; MacKerell, 1998, 
2004) 
AMBER 
(“Assisted Model Building with Energy 
Refinement”, Weiner, P.K. 1981; Weiner, S.J. 
1984; Kollman, 1986, 1995; Pearlman, 1991; 
Ponder, 2003) OPLS (“Optimised Potentials 
for Liquid Simulations”, Jorgensen, 1988, 
1996; Kaminski, 1994; Damm, 1997) 
GROMOS 
(“Groningen Molecular Simulation”, 
Hermans, 1984; Ott, 1996) 
Table 1.1: Examples of specialized force fields. 
 
The molecular mechanics is anyway affected by some intrinsic 
limits due to the theory at its basis: 

• The deletion from the mathematical treatment of the 
intrinsic atomic structures, and therefore, the implicit 
representation of its electronic configuration, limits these 
methods to the study of the fundamental molecular 
structures. The accurate description of every process that 
implicates the formation or the breaking of chemical bonds 
is not possible. 

• The obtained results are strictly related to the quality of the 
potential energy function (force field) and to the 
parameters set of every atom type. 

• The potential energy function described by the force field 
has scarce chemical meaning, except for structures 
associated with stable thermodynamical conformations and 
in some cases for energetic rotational barriers. 

The force field is therefore an empiric function of the potential 
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energy. Force fields are created to be applied mainly to 
conformational analysis and these force field-based methods 
originated in the same period as the development of the 
applications of the quantomechanical methods. These came from 
the vibrational spectroscopy in which it is necessary to build up 
particular potential energy functions to use the spectroscopic 
information for the description of the global molecular behaviour. 
In this field the potential energy function, used to describe 
molecular vibrations, is simulated by: 

• A mathematical function which is the sum of all the 
internal interactions among atoms, without any precise 
correlation with the covalent structure of the molecule.9 

• A mathematical function correlated to the values of the 
distances and the values of the interatomic angles;10 the 
difference from the CFF model is that this model is tightly 
dependent on the molecule. 

The modern molecular mechanics, based on the force field 
concept, was developed from those different approaches; this 
methods allow very important calculations for the modern organic 
chemistry, from the thermodynamical properties to the vibrational 
spectra. 
These methods, as explained before, treat the molecule as a set of 
particles joined by simple harmonic forces described in terms of 
potential energy, adding all the steric factors that have a 
contribution. The results is the following equation:11 
 

ibondsHnbtorsbendstrp EEEEEEE +++++= −  

 
Where Estr is the energy due to the bonds deformation along the 

                                                 
9 J Maple, M Hwang, T Stockfish, U Dinur, M Waldman, C Ewig, A Adler, J 
Comput Chem, 1994, 15, 161. 
10 J Martins, A Zunger, Phys Rev, 1984, 30, 6217. 
11 P Cox, J Chem Educ, 1982, 59, 275. 
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axis (stretching or compression), Ebend is the energy due to the 
bending, Etors is the energy due to the bonds torsion, Enb is the 
energy due to non bonding interactions such as electrostatics or 
Van der Waals, EH-bonds is the energy due to the hydrogen bonds 
formation and Ei is the term that includes the solvent effect or 
other particular contributions. Each of these terms represents a 
possible molecule deformation from a hypothetical reference 
geometry. 
If the length of the bond Csp3-Csp3 free from any stress is about 
1.5-2.0 Å, every deviation from this value causes an increase of 
the potential energy. This factor describes the bond deformation 
and can be expressed with the following formula: 
 

∑ −=
bonds

lstr llKE 2
0)(  

 
Where Kl (kcal/mol.Å2) is the force elastic constant, l is the bond 
length (Å), l0 is the bond length of the same bond free from any 
perturbation and the summation is for every bond of the molecule. 
The potential energy for the valency angles is described by the 
expression: 
 

∑ −=
angles

bend KE 2
0 )( θθθ  

 
Where Kθ is the bending constant [kcal/mol.(°)2], θ is the angle 
value between two next atoms (°) and θ0 is the value of the same 
angle free from any perturbation. 
Concerning torsion angles, the energetic contribution is described 
from the following formula: 
 

∑ +=
dihedrals

tors nsKE )cos1( ωω  
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Where kω is the constant force which expresses the free rotation 
energetic hindrance (kcal/mol), ω represents the torsion angle (°), 
n is the periodicity of kω and s can assume values of +1 (minimal 
energy) 0 and -1 (maximum energy). 
The potential energy due to the non bonding interaction 
(electrostatics or Van der Waals) is dependent by the distance r, 
and can be expressed by the formula: 
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Where Aij is the coefficient that describes the atomic repulsive 
interactions (AiAj)

1/2, Bij is the coefficient that describes the atomic 
attractive interactions (BiBj)

1/2, qi and qj are the net charges on the 
atom i and on the atom j, ε is the dielectric constant of the media 
and Rij is the distance between the atom i and the atom j (Å). 
At the end, the contribution of the hydrogen bonds formations: 
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Where Cij is the coefficient that describes the repulsive interaction 
between the hydrogen atom and the acceptor, (CiCj)

1/2, Dij is the 
coefficient that describes the attractive interactions between the 
hydrogen atom and the acceptor (DiDj)

1/2 and Rij is the distance 
between the atoms (Å). 
If necessary, other factors can be used to take into account the 
deformations outside Coulomb and solvent interactions plane. 
Several empirical parameters are necessary for the force field, 
such as force constants and geometrical values without 
perturbations. These parameters can be determined by 
thermodynamical experiments or by diffraction experiments 



1.INTRUDUCTION 

14 
 

performed on a statistical significant number of appropriate 
molecules. The initial values obtained this way are often a coarse 
estimation and they need to be improved by a trial and error 
approach or by a least square method. The quality of the derived 
force field is defined by its ability to reproduce the data with a 
higher or at least equal accuracy compared to the experimental 
methods.11 
For an optimal use, a set of three-dimensional coordinates of the 
molecule's atoms under examination is necessary, this set will be 
progressively modified during the calculation to reduce the energy 
penalty with respect to an “ideal” situation. It’s possible to assume 
that from all the possible conformations of the molecule, that one 
having the lowest energy level represents the most favourable 
conformation for the isolated molecule. 
It is important to notice that molecular mechanics is basically an 
empiric method and the model obtained by using this technique is 
referred to an hypothetical (defined as ideal, as best compromise 
to fulfil the atom types definitions) state of immobility at the 
absolute zero K. 
 
 
1.2.4 Conformation analysis 
 
The conformational transformations a molecule can incur are 
mainly due to torsion angles variations because changes in angles 
and bond lengths are usually associated with severely higher 
energy penalties, except the normal vibrations, constrained within 
very limited ranges. 
Conformational changes of a molecule can be considered as a 
movement in a multidimensional surface which describes the 
relationship between the potential energy and the molecule 
geometry. This surface is generally called potential energy 
hypersurface, or simply potential energy surface. Each point on it 
represents the potential energy of a given conformation of the 
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molecule. Energetically stable conformations corresponds to local 
minima and the peaks on the surface the transition energy to pass 
from one conformation to the other. 
The relative population of a conformation depends on its 
statistical weigh, which is influenced not only by the single value 
of  potential energy but also by the energy barriers that separate it 
from all the rest of the conformational space. Consequently the 
absolute minima of the potential energy surface is not always 
correspondent to the structure having the major statistical 
incidence.12 
In the “real world” the conformational change is a dynamic 
process heavily affected by the entropic contribution, often 
dominating the potential energy contribution. This is not 
necessarily taken into account by computational methods for 
conformational search and this potential limitation has to be taken 
into account when using information gathered by computational 
methods into the experimental practice. 
Experimental techniques like NMR are able to supply information 
about one or few conformations of a molecule. A comprehensive 
analysis of the conformational space can be accomplished by 
theoretical calculations only. 
For this reason a lot of theoretical methods for the conformational 
analysis have been developed. 
The most general methods are able to identify all the minima on 
the potential energy surface, but their computational cost is 
directly dependent on the number of rotatable bonds and the angle 
steps considered in the simulation, thus creating a huge number of 
conformations as result for most molecules and requiring 
unacceptably long simulation time. The time necessary for a 
conformational analysis depends also by the method used for the 
energy evaluation. The quantum mechanical methods are very 

                                                 
12 H Holtje, G Folkers, Molecular Modeling, Basic Principles and Applications, 
1997, Wiley VCH ed, Weinheim, Germany. 
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expensive in this sense. For these reasons most of the 
conformational search software are based on molecular mechanic 
methods for the energy calculation. 
 
 
1.2.5 Systematic conformational search procedures 
 
The systematic search represents the most simple and natural 
method for the conformational search, as far as it generates all the 
possible conformations going through the systematic variations of 
every torsion angle of the molecule.12 
If the value selected for the increase of every single angle selected 
by this method is small enough, a complete exploration of the 
conformational space of the molecule is possible. 
The number of the generated conformers depends on the value of 
the angle increase chosen, but also by the number of rotatable 
bonds: if n is the numbers of these bonds, the number of 
conformations grows with the nth potency, as it is easily 
understandable from the following formula where N is the number 
of generated conformers and δ is the angle increase. 
 

n

N 






 °=
δ

360
 

 
In some cases, the result in terms of different conformations is so 
high that it can not be easily analysed. In these cases some 
procedures are necessary for the reduction of obtainable 
conformers. The first step, in this sense, is applied before the 
potential energy calculation, analysing the structures and 
discarding the ones in which there are non bonded atoms 
overlapping (Van der Waals screening or bump check). 
The remaining conformers undergo to potential energy calculation 
by molecular mechanics method, with the possibility to discard 
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more conformers considering an energy space which excludes 
automatically the conformers with inappropriate energy values. 
The resulting conformations represent a complete set of 
energetically acceptable conformers for the molecule under 
examination.12 
 
 
1.2.6 Monte Carlo method or random search 
 
The Monte Carlo method,13 named by its creator von Neumann 
alluding to the capital of Monaco, executes the search of the 
possible structure conformations using statistical techniques. 
Every generated structure is randomly modified in the step after 
step in order to obtain a new one. The search has to start from a 
pre-optimized structure, this is a fundamental requirement to 
increment the validity of results. 
On every iteration, the new torsion angles and the new cartesian 
coordinates are placed randomly. The resulting conformations are 
then minimized with a molecular mechanics method and this 
random process is then repeated. Every generated conformation is 
compared with the previous one and kept only if it is different. 
This process assures, in principle, a complete exploration of all 
the possible regions of the conformational space, but practically 
this is possible only if the process is performed for a sufficient 
time, which can become very long, because the possibility to find 
a new and unique conformation decreases with the increase of the 
conformers number already discovered. In reality, if a 
conformation has already been found for n times, the probability 
that all the searched conformations were found is [1-(1/2)n]. 
Numerically, the algorithm used by this method stops the search 
when the same structure is found for 8 times, assuring in this way 

                                                 
13 W Hastings, Monte Carlo sampling methods using Markov chains and their 
applications, Biometrikam, 1970, 57, 97. 
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the theorical exploration of the 99.6 % of the conformational 
space.    
The major advantages of this technique consists in the possibility 
of processing structures of any dimensions, even if molecules with 
high flexibility give just occasionally converging results due to the 
huge dimension of the conformational space. 
Another advantage is the possibility of analysis of cyclic systems 
that are usually hardly analysable with the systematic search. 
Concerning this technique, it is important to highlight that the 
method is able to perform conformational search with good 
quality for different kind of molecules, but it can require too much 
computational time to assure a completeexploration of the whole 
conformational space. 
 
 
1.2.7 Molecular dynamics 
 
This method is able to study and to explore the conformational 
space of a molecular structure, also a complex one, without the 
limitations of the systematic search and without the high 
computational cost of the Monte Carlo method. The principle of 
this method is based on the integration of the classical motion 
equations derived from the second Newton low.12 
 

)()( tamtF iii =  

 
Where Fi is the force acting on the atom i at the time t, mi is the 
mass of the atom i and ai is the acceleration of the atom i at the 
time t. 
The force acting on the atom i can be calculated directly deriving 
the potential energy function E relative to its coordinates ri. 
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This classical motion equation allows to determine the coordinates 
and the velocity after a given time (trajectory). The potential 
energy gradient, computed by the force field, is used for the 
determination of the forces that act on every single atom, while 
the starting velocities of the atoms are generated randomly at the 
beginning of the simulation. This simulation, which duration can 
be decided by the scientist, generates a series of energetically 
accessible conformations for the molecule under examination. 
Compared to the other techniques for performing conformation 
analysis, molecular dynamic has the advantage that the 
energetically non accessible conformers are automatically deleted, 
but it has also the limit that the energy barrier that separates the 
different conformations can be hard to overcome, thus excluding 
some conformational space regions. This disadvantage can be 
overcome using suitable temperatures that allows to overcome 
these barriers, increasing kinetic energy. 
The atoms movement calculations are performed every discreet 
interval (time step) which is defined by the operator. The 
movements of the atoms during the time step is calculated using 
the Varlet14 method, which uses the speed in the average point of 
the time step. Since the atom velocity is not constant during the 
time step, this speed is extrapolated from the speed and the 
acceleration values of the previous step, using the following 
algorithm: 
 

)(
2

1
)()()( 2 tatttvtrttr ∆+∆+=∆+  

                                                 
14 L Verlet, Phys Rev, 1968, 165, 201. 
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Where F(t+∆t) is the force that acts on the atom and is calculated 
deriving the potential energy function at the position r(t+∆t). 
To assure a correct integration of the equation, and reduce 
mistakes of system energy calculations, it is necessary that the 
integration interval is between 1/1000 and 1/20 of the time 
associated to the fastest movement which the system is subjected 
to. 
In classical molecular dynamics, the fastest movement is 
associated to the bond vibration (10/100 fs). If the time steps are 
too high the resulting atom movement is too enhanced, on the 
other hand a too short time step involves the analysis of a major 
number of conformations that lead to an increase of the 
calculation time. 
A good compromise can be achieved by using the shake 
algorithm,15 which allows to freeze the bonds vibration 
movements with the hydrogen atoms (C-H, N-H, O-H, etc.). This 
algorithm has to be used taking care of the parameter settings, a 
too high number of iterations can cancel the  advantage derived 
from using bigger time steps. Usually in protein-ligand interaction 
studies the durations of ps units are pre-set,16 while the time steps 
used are usually from 1 to 5 fs, using the shake algorithm. In a 
molecular dynamics simulation the temperature is initially set to 0 
K and that leads to the desired temperature (equilibration stage); 
then this desired temperature is kept during all the dynamics. 
During the equilibration stage the velocity of all the atoms is 
equally modified in order to keep the population kinetically 

                                                 
15 J Ryckaert, G Cicciotti, H Berendsen, J Comput Phys, 1977, 23, 327. 
16 M Norin, K Hult, Biocatalysis, 1993, 7, 131. 
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Where T0 represents the temperature of experiment and T is the 
temperature of the system. After the equilibration, the system is 
kept at the constant temperature using the Berendsen method,17 in 
which the velocity is put in relation with the little oscillation of 
the temperature by a factor λ, given from the formula: 
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Where ∆t is the size of the time step, τ is the relaxing time, T0 is 
the simulation temperature and T is the instantaneous temperature. 
The temperature achieved after the equilibration step incur in 
some oscillation, for this reason frequently adjustments are 
necessary; these continuous temperature oscillations are due to the 
energy of the system which is affected by the atoms positions. 
Concerning the pressure, the procedure is analogous to the 
temperature. 
A frequently used technique is the blocks definition: groups of 
atoms which positions are keep fixed during the dynamics, while 
the energy contributions is calculated anyway and considered in 
the system total calculations. This strategy is manly used in the 
enzyme-substrate interactions evaluation, where the aminoacids of 
the active site are more interesting. The main advantage is 
obviously the reduction of the calculation time. 

                                                 
17 H Berendsen, J Postma, W van Gunsteren, A Di Nola, J Haak, J Chem Phys, 
1984, 81, 3684. 
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The chemical-physical phenomena that occur at atomic and 
molecular level can require different time, from few fentoseconds 
to several tens of seconds, to happen. Therefore the simulation 
time must be tuned on the basis of the phenomena to be studied. 
As reported in the Figure 1.1 it is possible observe that: 

• The fastest phenomenon is the electrons transfer (1fs). For 
an accurate description quantum mechanics equations are 
necessary, extremely costly in terms of computational 
time. Nevertheless, if the system is made by a limited 
numbers of atoms, this phenomenon can be simulated in a 
reasonable time. 

• The movement of the aminoacidic chains of a protein takes 
picoseconds. For a very accurate simulation of this 
phenomenon a quantum mechanical simulation is 
necessary, anyway the system in this case would be too 
complicated. For this reason the system is simplified and 
simulated by molecular mechanics. 

• Conformational changes are more complex phenomena 
and require from tens to hundreds of nanoseconds; often 
some approximations are necessary to simulate this 
phenomena in a reasonable time. 

• Folding of peptides, enzymes, or nucleic acids is the most 
difficult phenomenon to simulate and its duration depends 
on the number of atoms of the system. Several hundreds of 
aminoacids sequences take some microseconds to fold 
normally, while the folding of complex system, like DNA 
or enzymes, takes some seconds. For this type of 
simulations several hundreds of processors are necessary 
but themost of them are still unreachable with the current 
computational facilities. 
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Figure 1.1: Timescale of the principle atomic and molecular movement. 
 

 
1.2.8 GROMACS 
 
GROMACS (Groningen Machine for Chemical Simulation) is an 
engine to perform molecular dynamics simulations and energy 
minimization developed by the research group of the Professor 
Berendsen and Professor Van Gunsteren of the Chemical 
department of the Groningen University during the second half of 
the eighties. It is a collection of libraries for molecular dynamics 
simulations (MD) and data analysis of the trajectories.18, 19 
Even if the software was developed for biological molecules with 
complex binding interactions, the implementation of the non-

                                                 
18 H Berendsen, D van der Spoel, R van Drunen, Comp Phys Comm, 1995, 91, 
43. 
19 D van der Spoel, E Lindahl, B Hess, G Groenhof, A Mark, H Berendsen, J 
Comput Chem, 2005, 26, 1701. 
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bounded interactions calculations makes the software suitable for 
any kind of molecular dynamic simulation. 
GROMACS is essentially based on the GROMOS package, which 
was developed for the simulation of bio(macro)molecules in 
solution. The planned choices for the GROMACS development 
are: 

• There are three bond type: bond forces based on pre-fixed 
lists that include four-body interactions which allow to 
describe more appropriately torsion angles; non-bonding 
forces based on dynamic list of of particle couples; 
external forces which take into account non-equilibrium 
forces. 

• The calculation of the non-bonding forces is based on a 
couple lists which are updated every n steps. Particles are 
divided in charged groups, the charged group is included 
in the list if it is positioned within a cut-off radius. This 
procedure avoids the charge creation on a neutral group. 

• Optionally a twin cut-off range can be used: two list are 
prepared, Rshort and Rlons cut-off, when the Rshort cut-off 
list is prepared the coulomb forces between particles and 
charged groups placed in a distance between Rshort and 
Rlons are calculated. These long-range forces are keep 
constant for n steps and added to the short-range forces. 

• Leap-frog algorithm, which is equal to the Verlet 
algorithm,14 is used to solve the motion equation. This 
involves the position in discreet time intervals, measured 
in time steps, and the velocities. The system is keep in 
constant condition of temperature and pressure. 

• The length of the covalent bonds and bond angles can be 
limited. The resulting constrain equation are solved by the 
Shake algorithm,20 which changes the constrain-free 
configuration in a constrained configuration moving the 

                                                 
20 S. Miyamoto, P A Kollman, J Comput Chem, 1992, 13, 952. 
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vectors trough a new direction based on a reference 
structure. 

It is useful at this point to consider the limitations of MD 
simulations. The user should be aware of those limitations and 
always perform checks on known experimental properties to 
assess the accuracy of the simulation. The list of approximations 
can be found below. 
1 - The simulations are classical 
Using Newton’s equation of motion automatically implies the use 
of classical mechanics to describe the motion of atoms. This is all 
right for most atoms at normal temperatures, but there are 
exceptions. Hydrogen atoms are quite light and the motion of 
protons is sometimes of essential quantum mechanical character. 
For example, a proton may tunnel through a potential barrier in 
the course of a transfer over a hydrogen bond. Such processes 
cannot be properly treated by classical dynamics. Helium liquid at 
low temperature is another example where classical mechanics 
breaks down. While helium may not deeply concern us, the high 
frequency vibrations of covalent bonds should make us worry! 
The statistical mechanics of a classical harmonic oscillator differs 
appreciably from that of a real quantum oscillator, when the 
resonance frequency υ approximates or exceeds kBT/h. Now at 
room temperature the wavenumber σ = 1/λ = υ/c at which hυ = 
kBT/h is approximately 200 cm-1. Thus all frequencies higher than, 
say, 100 cm-1 may misbehave in classical simulations. This means 
that practically all bond and bond-angle vibrations are suspect, 
and even hydrogen-bonded motions as translational or librational 
H-bond vibrations are beyond the classical limit. What can we do? 
Well, apart from real quantum-dynamical simulations, we can do 
one of two things: (a) If we perform MD simulations using 
harmonic oscillators for bonds, we should make corrections to the 
total internal energy U = Ekin + Epot and specific heat CV (and to 
entropy S and free energy A or G if those are calculated). The 
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corrections to the energy and specific heat of a one-dimensional 
oscillator with frequency υ are: 
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where x = hυ/kT. The classical oscillator absorbs too much energy 
(kT), while the highfrequency 
quantum oscillator is in its ground state at the zero-point energy 
level of 1/2hυ. (b) We can treat the bonds (and bond angles) as 
constraints in the equation of motion. The rational behind this is 
that a quantum oscillator in its ground state resembles a 
constrained bond more closely than a classical oscillator. A good 
practical reason for this choice is that the algorithm can use larger 
time steps when the highest frequencies are removed. In practice 
the time step can be made four times as large when bonds are 
constrained than when they are oscillators. GROMACS has this 
option for the bonds and bond angles. 
The flexibility of the latter is rather essential to allow for the 
realistic motion and coverage of configurational space.21 
2 - Electrons are in the ground state 
In MD we use a conservative force field that is a function of the 
positions of atoms only. This means that the electronic motions 
are not considered: the electrons are supposed to adjust their 
dynamics instantly when the atomic positions change (the Born-
Oppenheimer approximation),22 and remain in their ground state. 
This is really all right, almost always. But of course, electron 
transfer processes and electronically excited states can not be 

                                                 
21 W van Gunsteren, H Berendsen, Mol Phys, 1977, 34, 1311. 
22 M Born, J Oppenheimer, Ann Phys, 1927, 84, 457. 
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treated. Neither can chemical reactions be treated properly, but 
there are other reasons to shy away from reactions for the time 
being. 
3 - Force fields are approximate 
Force fields provide the forces. They are not really a part of the 
simulation method and their parameters can be user-modified as 
the need arises or knowledge improves. But the form of the forces 
that can be used in a particular program is subject to limitations. 
The force field that is incorporated in GROMACS is described in 
Chapter 4. In the present version the force field is pair-additive 
(apart from long-range coulomb forces), it cannot incorporate 
polarizabilities, and it does not contain fine-tuning of bonded 
interactions. This urges the inclusion of some limitations in this 
list below. For the rest it is quite useful and fairly reliable for bio 
macro-molecules in aqueous solution! 
4 - The force field is pair-additive 
This means that all non-bonded forces result from the sum of non-
bonded pair interactions. Non pair-additive interactions, the most 
important example of which is interaction through atomic 
polarizability, are represented by effective pair potentials. Only 
average non pairadditive contributions are incorporated. This also 
means that the pair interactions are not pure, i.e., they are not 
valid for isolated pairs or for situations that differ appreciably 
from the test systems on which the models were parametrized. In 
fact, the effective pair potentials are not that bad in practice. But 
the omission of polarizability also means that electrons in atoms 
do not provide a dielectric constant as they should. For example, 
real liquid alkanes have a dielectric constant of slightly more than 
2, which reduce the long-range electrostatic interaction between 
(partial) charges. Thus the simulations will exaggerate the long-
range Coulomb terms. Luckily, the next item compensates this 
effect a bit. 
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5 - Long-range interactions are cutoff 
In this version GROMACS always uses a cutoff radius for the 
Lennard-Jones interactions23 and sometimes for the Coulomb 
interactions as well. Due to the minimum-image convention (only 
one image of each particle in the periodic boundary conditions is 
considered for a pair interaction), the cutoff range can not exceed 
half the box size. That is still pretty big for large systems, and 
trouble is only expected for systems containing charged particles. 
But then truly bad things can happen, like accumulation of 
charges at the cutoff boundary or very wrong energies! For such 
systems you should consider using one of the implemented long-
range electrostatic algorithms, such as particle-mesh Ewald.24 
6 - Boundary conditions are unnatural 
Since system size is small (even 10,000 particles is small), a 
cluster of particles will have a lot of unwanted boundary with its 
environment (vacuum). This we must avoid if we wish to simulate 
a bulk system. So we use periodic boundary conditions, to avoid 
real phase boundaries. But liquids are not crystals, so something 
unnatural remains. This item is mentioned last because it is the 
least of the evils. For large systems the errors are small, but for 
small systems with a lot of internal spatial correlation, the periodic 
boundaries may enhance internal correlation. In that case, beware 
and test the influence of system size. This is especially important 
when using lattice sums for long-range electrostatics, since these 
are known to sometimes introduce extra ordering. 
 
 
1.2.9 Minimization methods 
 
The potential energy of a molecule is directly correlated to its 
geometry and to its chemical characteristics. The minimization 

                                                 
23 J Lennard-Jones, Proceedings of the Physical Society, 1931, 43, 461. 
24 T Darden, D York, L Pedersen, J Chem Phys, 1993, 98, 10089. 
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process consists in iterative mathematical operations in order to 
optimize the structural geometry and reach the coordinates set 
corresponding to the energy minima. 
Three problems are present in the potential energy function 
analysis: 

• The choice of the initial direction of optimization, critical 
because the space is multidimensional; 

• The research of the minimum number of steps to reach the 
nearest minima. It is important to remember that after 
every coordinate variation the force field has to be re-
applied for the potential energy calculation; 

• The choice of the mathematical method for the 
determination of the reaching of the minima (converging 
criteria). 

Traditional minimization methods are able to search only for the 
nearest minima. Critical factor in this sense is the starting 
conformation: the only way to find the absolute minimum is to 
make a conformational search to obtain one or several starting 
conformation(s) for the minimization. 
The methods used for these processes can be divided in two 
categories on the basis of the type of algorithm used: 

• Non derivative methods: the most used is the simplex 
method,24 based on a very light mathematical algorithm in 
terms of calculation complexity. It is scarcely efficient, its 
application is restricted to cases where the potential energy 
surface is extremely complex. This method acts on every 
atom until the forces are under a certain value. 

• Derivative methods: as already seen, one of the 
fundamental requirement for a function describing a force 
field is being continuous and differentiable in every point. 
In fact, from the analysis of the first and second 
derivatives of these mathematical functions we can have 
information about the topology of the potential energy 
surface. In this topology three main approaches exist: 



1.INTRUDUCTION 

30 
 

Steepest descent, Conjugated gradient and Truncated 
Newton.25 

The Steepest descendent method searches the minimum going to 
the direction of the maximum slope on the potential energy 
surface. This method is called line searching and it acts by 
changing the direction of search always perpendicularly. This is 
not the best minimization algorithm and is not accurately 
convergent, but it can be used taking into account that the result 
will not be very close to the minimum. It can be defined as an 
approaching algorithm. 
The Conjugated gradient is an evolution of the previous one, it 
uses the line searching method as before for the pathway 
optimization, but in this case every step is stored to avoid that the 
same pathway is covered for a second time. This process is more 
expensive because the pathway chosen at each step follows the 
analysis of the previous steps. The increase in efficiency justifies 
the increase of computational cost. 
The truncated Newton method uses the gradient for the direction 
identification and a curvature function  (second derivative). This 
method is used when the minimum is near the starting point or 
when the function is almost harmonic, otherwise divergences are 
possible (going far away from the minimum). 
A geometrical and energetic criteria are taken into account when 
reaching the minimum. The gradient of these criteria is analysed, 
when the gradient is zero the minimum is reached. 
For the theoretical achievement of the converge criteria, a high 
number of steps is necessary, for this reason a value close to zero 
is set. 
 
 
 

                                                 
25 W Press, B Flannery, S Teukolski, W Vetterling, The Art of Scientific 
Computing, 1988,Cambridge University Press, Cambridge, UK. 
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1.2.10 Homology alignment 
 
Homology alignment is a bioinformatic technique that determines 
the correspondence of two or more protein chains. The main 
assumption is that the two chains are related. 
There are different data banks and tools for the similarity search 
of the sequences (BLAST, FASTA), and other for the pairwise 
alignment (LFASTA, WISE, SIM) and multiple alignment 
(ClustalW, MAP). 
The instrument used for this research work is MOE-align,26 which 
can align several protein sequences at the same time (multiple 
sequence alignment tool). The software is also able to use 
information coming from the primary structure (secondary 
structure prevision) to perform multiple sequences alignment. The 
information based on the structure can be also used when the 
structural information are not available for all the protein chains; 
therefore MOE-align can work with mixed sets of information 
about sequences and structures. The alignment can be optimized 
using constrains in the structure alignment and using a manual 
repositioning of residues. 
MOE-align is the modified version of the original alignment 
methodology introduced into molecular biology by Needleman 
and Wunsch.27 In this method the alignments are computed 
optimizing the base scoring function based on the similarity of the 
residues (obtained applying an aminoacid substitution matrix to 
the residue aligned couple) and gap penalties. Gap penalties are 
set in order to introduce and extend gaps in one sequence 
respecting the other one. The optimized final value is defined as 
alignment score. MOE includes a matrix that derives directly from 
the family of the aligned proteins, e.g. a matrix that derives from 

                                                 
26 Molecular Operating Environment versione 2006.08, Chemical Computing 
Group, Montreal, Canada. 
27 S B Needleman, C D Wunsch, J Mol Biol, 1970, 48, 443. 
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the application of an evolution model to the matrix set correlated. 
Moe-align is able to calculate alternated matrices of similarity 
using the Needleman-Wunsch procedure as well as gap-penalties 
for specific position. For example, MOE-align can adapt 
similarity matrices and gap penalties using the secondary structure 
prevision or the real secondary structure.28 
Since the Needleman-Wunsch procedure allows the alignment of 
an arbitrary number of sequences, the calculations become 
computationally expensive when the number of chains is higher 
than four. For this reason multiple align protocols act redoing the 
pairwise alignment of the groups of already aligned chains. 
Nevertheless, the theoretical difficulty comes from the scoring of 
the new gaps. MOE-align perform the multiple alignment in four 
steps: 
1. Pairwise initial building: the starting evaluation of the 
alignment can be calculated in two different modes: 

• Progressive: align the chains 1 and 2, then align to the 
result the chain 3 and so on until all the chains are aligned 

• Sensible to the chain order; more expensive in 
computational terms 

2. Round-robin realignment: the initial alignment evaluation (or 
the evaluation of the present alignment) is improved with a series 
of single round-robin alignments, where every chain is extracted 
from the global alignment and realigned to the chains left. 
3. Random iterative refinement: the results of the initial alignment 
and of the round-robin can be sensible to the order in which the 
chains are processed. To reduce this dependency, the series of 
alignment can be calculated dividing randomly the chains in two 
groups and aligned independently. If the new alignment has a 
better score it is accepted, otherwise no. 
4. Structure based realignment: the chains that contain the 
information about their α-carbons can be re-aligned taking into 

                                                 
28 W Kabsch, C Sander, Biopolymers, 1983, 22, 2577. 
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account the spatial information of their structure. From the 
starting evaluation the method then generates a new similarity 
matrix using the relative coordinates of the C-α which results from 
a multi-body overlapping. This matrix is used for the realignment 
of the chains populated by C-α only. This operation is repeated 
until the Root Mean Square Distance (RMSD) of the 
superimposition is no more improving. At this point the chains are 
reintroduced as indivisible units not computed yet and the steps 
from 1 to 3 are repeated. 
 
 
1.2.11 Homology modelling 
 
To perform the homology modelling in this work, the MOE-
homology tool was used. The tool use a comparative modelling 
procedure to build complete models with all atoms of the 
sequence based on one or more structure template. 
MOE-homology consist of three steps: 
1. Initial specification of the partial geometry: an initial partial 
geometry for the sequence is specified. The MOE-homology copy 
the geometry of the regions from one or more template chains. 
The residue identity is preserved between the template and the 
model and all its coordinates are copied, or just the backbone 
coordinates are used. 
2. Building of intermediate model: the independent models of the 
target protein structure are build up using the Boltzmann-weighted 
randomized modelling procedure used by Levitt,29 combined with 
a specialized logic for the correct treatment of the residues 
different from the template.30 Everyone of those intermediate 
models is evaluated by the residue packing quality function which 
is sensible to the exposition rank of the non polar side chains and 

                                                 
29 M Levitt, J Mol Biol, 1992, 226, 507. 
30 T Fechteler, U Dengler, D Schomberg, J Mol Biol, 1995, 253, 114. 
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to the opportunity to hydrogen bond formation. First the list of 
molecular data are collected in order to model the missing atoms. 

• Indels list: list of backbone fragment that allow the 
inclusions in the target sequence; 

• Sidechain list: list of the alternative conformations of the 
side chain belonging to residues with non modelled atoms: 

• Outgap list: list of backbone fragments to model residues 
which can need more exceptions of N- and C- terminal in 
the template chain. 

The Indel data are collected searching backbone segments through 
the high resolution chains of the protein data bank (PDB),31 which 
are well overlapping with the ending residues at the end of the 
adding area. During this segment searching the back shifting of 
the indel regions is possible if no one segment agree with the 
RMSD criteria.29 The data on the side chain are built starting from 
a large rotamers collection, generated with a systematic grouping 
of the high resolution PDB data. 
After the data collecttion, a number of independent models is 
created. First the loops in random order are modelled. For every 
loop the contact energy function analyse the list of candidates 
collected in the segment collecting step, taking in account all the 
atoms already modelled and all the user specified one because are 
members of the modelling environment (e.g. ligand bonded to the 
template). 
Those energies are used for choosing the candidates generated by 
the Boltzmann-weighted procedure, which the coordinates are 
copied into the model. Every missing atom is modelled using the 
same procedures. The sidechain atoms of the residues which the 
coordinates are copied from the template are modelled first, 
followed by the sidechain loops. The outgaps and their sidechains 
are the last to be modelled; 
 

                                                 
31 The UniProt consortium, Nucleic Acids Res, 2006, 36, 190. 
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3. Building of the final model: The coordinates of the final model 
are generated as the average of the coordinates of the modelled 
atoms and as the coordinates of the model with the best peacking 
quality function. 
 
The final procedure is to check the Protein Report to verify the 
presence of outliers (parameters that are outside allowable 
values). Bonds length, angles, dihedral angles and atoms contacts 
are the major parameters reported in the Protein Report. In case of 
outlier, restrained local minimizations can be applied for 
corrections. Ω angles, chirality of α carbons, Χ angles bond agles 
of the main chains, and bond length constitute another set of 
important parameter for the model quality evaluation. They are 
compared to data of statistical maps from Protein Data Bank.32 
Non-bonding forces between heavy atoms are tested in relation 
with the sum of their Van deer Waals interactions. Two type of 
outlier are not defined by limit values: Ψ and Φ angles, which 
could be simply placed in “not allowed” regions of the 
Ramachandran plot and they must be corrected during the model 
refinement. 
 
 
1.2.12 Docking simulations 
 
All the procedures named molecular docking include all the 
simulations where molecules approach each other, aimed to the 
study of their interactions. This technique is mainly based on the 
analysis of the electrostatic and steric interactions of the involved 
species. Docking allows, for instance, the placement of a substrate 
into an enzymatic active site. Therefore this type of analysis is 
able to provide very relevant information for the identification of 
the most important structural elements that permit an optimal 

                                                 
32 R Laskowski, A Moss, S Thornton, J Mol Biol, 1993, 231, 1049. 
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interaction concerning either the receptor and the ligandl. This 
information, for instance, is useful for engineering new ligands 
with better affinity or for the creation of plausible hypothesis for 
action mechanisms. 
Docking applications concern different research fields: 

• Interactions between macromolecular receptor and ligand 
with low molecular weight (i.e. enzyme-substrate). 

• Interactions between macromolecular receptor and 
macromolecular ligand (i.e. protein-protein, DNA-protein, 
DNA-DNA). 

• Interaction between low molecular weight receptor and 
low molecular weight ligand (i.e. inclusions). 

Fundamental requirement for this technique is the knowledge of 
the three-dimensional structure of the target molecule, which has 
to be highly defined to assure high quality results. Docking 
usually takes place searching the best interaction between a rigid 
macromolecular target (usually a protein) and a mobile and 
flexible ligand of limited size. 
Docking can be applied on the whole macromolecular target, but 
the research of bonding is usually focused on a smaller and 
specific area named site. 
A lot of different docking software have been developed like 
DOCK, FlexX, Combi-DOCK, and they use different algorithms 
for the scoring of the poses they calculate. In this work the 
software MOE was used. 
The docking analysis consists in several steps: 
Conformational analysis: to search different ligand 
conformations. 
Placement: different poses of a single ligand conformation are 
generated. This application uses different placement techniques, 
everyone of those with different properties. These methods are 
deterministics and it is normal that outputs change from a 
calculation to another. 
The available methodologies are: 
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• Alpha Triangle: it is the standard method. Positions are 
generated by overlapping the coordinates of the ligand 
atoms with the coordinates of the receptorial site 
represented by alpha spheres. Alpha spheres are virtual 
spheres, which are generated inside receptorial pockets. 
They does not contain any atoms inside and they are big 
enough to allow the ligand placement at bond distance 
from the protein atoms. A binding site is described as a set 
of spheres in contact with each other. At every iteration a 
ligand conformation is randomly chosen, and the 
algorithm tries to overlap the ligand atoms with a 
randomly chosen set of alpha spheres. 

• Triangle Matcher: this method generates conformations 
aligning the coordinates of the ligand atoms with the 
coordinates of the alpha sphere in a systematic mode. 

• Alpha PMI: it is a method that generates positions aligning 
significantly ligand conformations with randomly chosen 
alpha spheres. This is the best method for narrow 
receptorial pockets, it is a fast method and the research 
space is more strictly defined. 

1. Pharmacophore filtering: it is possible to limit the freedom of 
conformations generation forcing determined interactions in order 
to satisfy an arbitrary condition to respect an eventually 
parmacophoric group. This set can be used as a docking filter: all 
the results that does not satisfy this condition will be delete. 
2. scoring: every pose generated with the placement methodology 
is subjected to a score (scoring) which identifies the most 
favourite poses. Typically, the scoring functions highlight 
hydrophobic contacts, ionic contacts and hydrogen bonds. 
Available methodologies are: 

• London dG Scoring: it is the function that calculates the 
free energy of binding of the ligand in that pose. The 
functional form is the sum of the following terms: 
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Where c represents average gain/lose of rotational and 
translational entropy; Eflex is the energy due to the lost flexibility 
of the ligand (calculated by the topology); fhb measures the 
geometrical imperfections of the hydrogen bonds and it can 
assumes the values [0,1]; cHB is the energy of an ideal hydrogen 
bond; fM measures the imperfections of the coordination bonds 
and it can assume the values [0,1]; cM is the energy of an ideal 
coordination bond; Di is the desolvation energy of the atom i. The 
difference of the desolvation energies is calculated by the formula: 
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Where A and B are the volumes of the protein and/or of the ligand 
with the atom i belonging to the volume B; Ri is the solvation 
diameter of the atom i (taken as parameter OPLS-AA Var der 
Waals σ plus 0.5 Å); and ci is the desolvation coefficient of the 
atom i. Coefficients {c, cHB, cM, ci} are obtained from ̴400 x-ray 
crystal structures of protein-ligand complexes with available 
experimental pKi. Atoms are categorized in ̴12 atom type for the 
assignment of the ci coefficients. Integrals are rounded using the 
generalized formulas of the Born integral. 

• Affinity dG Scoring: it is the function that calculates the 
enthalpy at the bound free energy using the linear function: 

 

aaaahphphhhhmligmligionionhbhb fCfCfCfCfCfCG +++++=  

 
Where f defines the fraction of the specific atomic contacts and 
the C coefficients measure the contribution of the terms of the 
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affinity evaluation. The individual terms are: 
I. hb: interaction between a couple of donor-acceptor of hydrogen 

bonds; it is supposed that two hydroxides group interact in the 
most favourable mode. 

II.  ion: ionic interactions; the Coulombian term is used for the 
evaluation of interactions between charged groups, which can 
contribute to rise or decrease the bond affinity. 

III.  mlig: coordination bond; interactions between 
Nitrogen/Sulphur and transition metals are calculated as 
coordination bonds. 

IV.  hh: hydrophobic interactions; i.e. the interactions among 
aliphatic carbons. These interactions are usually favourable. 

V. hp: interactions between hydrophobic and polar atoms; these  
interactions are usually unfavourable. 

VI.  aa: interactions between any atoms; these interactions are 
usually weak but favourable. 
• Depth HB Scoring: this scoring is a linear combination 

between two terms. The first term measures how much 
deep is posed the ligand into the active site and it is the 
sum of all the atomic scores of the ligand. The score is 
roundly the fraction of the volume of a sphere of 5 Å 
radius, this sphere is centred on the atom and the volume is 
the volume occupied by the receptor atoms. The second 
term measures the effects of hydrogen bonds. Score of +2 
is assigned if the site is occupied by the favourable atom. 
Otherwise, if it is occupied by any other ligand atom, the 
assigned score is -1. Concerning donor and acceptor sp3, 
all the favourable atoms within 3.5 Å contribute with a 
score of +1; while all the others contribute with a -1 score. 
Metals on receptors are treated like acceptor but with a 
triplicate effect. 
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1.3 GRID 
 
The Molecular Discovery programs33 are used to predict specific 
non-covalent interactions between a molecule with known three-
dimensional structure (target) and a small chemical group (probe), 
mimicking various chemical functionalities. The employed probes 
can be characterized by different nature and include, among the 
others, water, methyl group, amino nitrogen, carbonyl and 
hydroxyl. The procedure builds a three-dimensional grid all 
around the target molecule and it calculates the interaction energy 
between the target and the probe at every grid knot. The 
calculation output is a three-dimensional matrix of interaction 
energies named Molecular Interaction Field (MIF). Energies are 
computed basing on attractive and repulsive forces, their 
combination leads to simple functions for energy minima 
visualization, which corresponds to a favourable non-bond 
organization of atoms and molecules. This is expressed by the 
Lennard-Jones function:23 
 

612 // dBdAElj −=  

 
Where d is the distance between the non-bonded atom couple, 
which potential energy of Lennard-Jones Elj is described by the 
empirical parameters A and B.33 
A huge number of target can be studied, including enzymes, 
nucleic acids, polysaccharides, glycoproteins, peptides, 
membranes, crystals, drugs and a lot of other organic compounds. 
The MIF can be used in many different ways, the most obvious 
one is its visualisation as isopotential energetic surface. It can also 
be used as molecular descriptor in structure-activity correlation 
studies. 

                                                 
33 P Goodford, J Med Chem, 1985, 28, 849. 
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1.4 Protein Data Bank 
 
As stated above, it is important to know the three-dimensional 
structure of molecules under examination. These structures are a 
fundamental starting point for most computational studies. Their 
definition plays a key role for the success of the undertaken 
research. Therefore, structures solved by x-ray crystallography as 
well as structures solved by other techniques like 2D/3D-NMR 
and homology modelling are generally used. 
The Protein Data Bank (PDB),34 that collects three-dimensional 
structures coming from x-ray or NMR studies is an extremely 
source of data for molecular modelling. PDB is supported by the 
Research Collaboratory for Structural Bioinformatics (RCSB). It 
is a no-profit consortium which is aimed to improve the 
comprehension of biological systems by the study of the three-
dimensional structures of macromolecules. Actually 56635 
structures are freely available.    
 
 

1.5 QSAR 
 
QSAR methods (Quantitative structure-activity relationship) try 
to figure out, for a compound set, a correlation between chemical-
physics properties and a generally defined activity, which can be 
any measurable properties of the compound under study. 
Generally a QSAR equation is a linear equation: 
 

)...()()( 2211 nn PcPcPcCostActivity +++=  

 
Where the parameters Pi are calculated for each molecule of the 

                                                 
34 H Berman, J Westbrook, Z Feng, G Gilliland, T Bhat, H Weissig, I 
Shindyalov, P Bourne, Nucleic Acids Res, 2000, 28, 235. 



1.INTRUDUCTION 

42 
 

set by a computer, and the coefficients ci are calculated by a 
correlation between the parameters variations and the variations of 
activity. 
The correlation between structure and activity needs a 
mathematical expression of molecular structure, that is usually 
called molecular descriptor. 
A lot of parameters can be used as a molecular descriptor: for 
instance, the Hansch approach35 (defining the beginning of QSAR 
paradigm) uses electronic and structural characteristics of the 
molecule, described by the σ parameter. 
In every QSAR the parameters choice is the first and most 
important step. The success is strictly correlated with the use of 
appropriate molecular descriptors. Only if the chosen parameters 
and the activities are closely related a model able to predict the 
activity is feasible. The QSAR techniques depend on the 
assumption that each compound of the series interacts with the 
target molecule in the same way. Since the activity depends from 
the affinity of the ligand for the receptor, which is a function of 
the ligand structure, QSAR can be used for receptor binding 
studies, which is the standard QSAR application. 
The main problem of QSAR models is that they are not ab-initio 
methods: a series of experimental values are necessary to build the 
model. Therefore the model is trained to predict a certain type of 
structure-activity relationship and they are not able to predict 
properties of compounds with no reference to the structural 
variability which is represented by compounds of the training set. 
In other words is not possible to predict the activity of a molecule 
totally different from the molecules of the training set. Moreover, 
if a model is built with high activity molecules it will not be 
precise in the prediction of low activity molecules and viceversa. 
Essential requirements in order to obtain a good QSAR model are 

                                                 
35 H Kubinyi, R Mannhold, P Krogsgaard-Larser, H Timmerman, QSAR: 
Hansch Analysisand Related Approaches, 1993, VCH, Weinheim. 
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the choice of an appropriate data set and a good description of the 
chemical properties of the molecules under examination. 
The 3D-QSAR techniques (based on three dimensional 
descriptors) have the advantage of considering a more refined 
model of compounds compared with bidimensional methods. 
Information related to the spatial component of the molecule 
allows to obtain more realistic systems and therefore to extract 
more accurate molecular description. This generally improves the 
predictivity of the outcoming models. 
 
 

1.6 Chemometrics-Multivariate analysis 
 
Chemometrics is a science based on mathematical and statistical 
methods for the resolution of multivariate chemicals problems. It 
can be defined as the application of mathematics, statistics and 
graphical methods to chemistry in order to maximize the 
extraction of information from data. The term multivariate 
analysis indicates an approach that considers more than one 
variable at the same time. Multivariate analysis are used in 3D-
QSAR studies in order to summarize all the informations which 
are contained in the variables matrix. Important and most used 
techniques to perform multivariate analysis are PCA (principal 
component analysis)36 and PLS (partial least square or projection 
to latent structures).37 
 
 
1.6.1 Principal components analysis (PCA) 
 
In almost any 3D-QSAR, especially the ones based on the GRID 
method, the number of molecular descriptors is very high. The 

                                                 
36 R N Carey, S Wold, J O Westgard, Anal Chem, 1975, 47, 1824. 
37 A Hoskuldsson, J Chemom, 1988, 2, 211. 
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PCA method reduces this number of original variables  by 
combining them in a series of latent variables called Principal 
Components. By doing so, the method preserves the intrinsic 
variability of the original variables in terms of physical-chemical 
information they contain. Moreover, this method is mostly useful 
to understand the differences among the studied compounds and 
estimate the quality of the produced molecular descriptors. It is in 
fact important to verify that the selected description of the 
involved compounds can be able to discriminate between two 
clearly distinct ones. For a GRID analysis the PCA method can be 
useful to identify variables that contain similar information from 
those that contribute differently to the description of the 
compounds. 
Two interesting characteristics of the Principal Components are 
that they are orthogonal to each other, and there is no correlation 
between the information contained in each of them and the second 
one is that they are extracted in and order of importance, meaning 
that the first PC contains more information that the second one 
and so on. 
These characteristics allow to overcome the general limitations 
present in the multiple linear regression method in which it is 
important that the variables are independent one form another and 
that the number of objects exceeds the number of variables. 
In the PCA method, the user can choose how many PC he wants 
to extract. Nevertheless this number may not be big since 
generally the first five PCs contain around 90% of the model's 
variance. 
 
 
1.6.2 Projection on latent structures (PLS)  
 
PLS are methods that are used to generate regression models. In 
the regression models, the correlation between the molecular 
descriptors and the experimentally obtained biological activity is 
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achieved by the extraction of the Principal Components in the 
presence of the activity data. In other words, the extracted PCs are 
not only the ones responsible for the explanation of the maximal 
variability of the system, but also the ones that show the best 
correlation to the experimental data. Therefore the PCs extracted 
in this procedure are somewhat different to the ones of the PCA 
method in a way that they have to meet the necessity to maximize 
the correlation between the molecular descriptors and the activity 
values of the compounds in the data set.  
This multivariate statistical method is the mostly used one in the 
QSAR studies. Nevertheless, the predictivity of the model is 
clearly attributed to the existence of a tight correlation between 
the calculated and the measured properties. 
 
 
1.6.3 Model validation 
 
Once the model has been obtained, it has to be evaluated in terms 
of its quality and predictivity. This is usually done in two ways: 
via an internal (or cross) validation or an external validation. 
The cross-validation in based on reduced models that do not 
contain the entire data set which are then used to predict the 
properties of the excluded objects. The predicted properties are 
confronted to the experimentally obtained ones, and the goodness 
of the prediction is evaluated by different indicators such as the r2 
(correlation coefficient), the SDEP (standard deviation of error 
prediction) and the q2 (prediction  correlation coefficient). 
Another type of validation is the external validation in which the 
complete 3D-QSAR model is used for the prediction of the 
activity of one or more new compounds (a so called test set) , not 
included in the initial data set. These new compounds are built 
and their activity is experimentally measured and compared to the 
activity predicted by the model. 
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The use of enzymatic reactions to catalyse chemical 
transformations in commercial processes, in competition with 
conventional chemical catalysis, is becoming increasingly 
convenient and affordable to many industries in recent years. 
Biocatalytic reactions are generally more energy efficient, have 
lower cost, and produce less hazardous waste than chemical 
catalytic reactions. Biocatalysts are used in many sectors, 
including the food, textile, pharmaceutical, chemical and energy 
industries.  
There is still a technological gap, basically due to the need to 
understand many of the mechanisms at the basis of biocatalysed 
reactions, that limits the diffusion of industrial application of 
biocatalysis. The most efficient strategy to face this limitations is 
probably the synergy between dry and wet labs' investigations. It 
is clear that the development of new computational methods, 
specifically thought to be complementary to the experimental 
activity, represent a greatly interesting field. 
The work of this thesis is aimed at the development of 
computational methods for simulating enzymes under operational 
conditions simulating chemical systems in as “real” (realistic) as 
possible operating environments. 
The work was initially focused on a well known enzyme class, the 
lipases. The development of computational methodologies started 
with the analyses of the activation mechanisms of these enzymes. 
A number of different lipases, extremely eterogeneous from the 
structural point of view, but very similar from the mechanism of 
action and general characteristics, was taken into account. First 
the physical-chemical properties of the enzymes surfaces were 
investigated with the GRID methods analysis in order to find 
common features. Afterwards lipases activation was studied by 
applying different types of molecular dynamics (MD) simulations. 
The opportunity to investigate the conformational possibilities of 
enzymes in chemically defined environments makes MD 
simulations a suitable technique in order to understand common 
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activation mechanisms. Classical MD approaches were applied 
together with other strategies, such as steered MD and coarse 
grained force field based MD, to tackle different aspects of lipase 
application to synthetic processes. 
In particular, the potentiality of the MARTINI force field was 
exploited. This particular coarse grained force field was applied to 
investigations of lipases orientation at the oil/water interface as 
well as to the study of lipase stability. 
While MD demonstrated its potential in the investigation of 
solvent dependent enzyme behaviour and to the study of the 
dynamics of activation/inactivation, more complex problems, like 
the study of enzyme-substrate interactions, require different 
computational approaches to be efficiently investigated. The study 
of lipase enantio-selectivity was studied by the application of a 
hybrid method based on the combination of both MD simulations 
and 3D-àQSAR approach, based on chemometric analysis. 
Finally, the promising results got with lipases pushed the need to 
verify the general applicability of the concepts. For this reason, 
the same approaches were used during the investigation of a 
completely different enzyme, the Alkanesulfonate 
monooxygenase. This enzyme was chosen because it catalyses 
very attractive reactions from an industrial point of view. 
Moreover enzymatic redox reactions are not well diffused in 
industrial applications, basically because of the lack of knowledge 
on monooxygenase and other related enzyme classes. 
Computational studies object of this thesis should be able to 
describe how the enzyme can be affected by the surrounding 
environment and to predict properties like enzyme stability, 
conformational changes and substrate selectivity. 
The idea is providing answers to the industrial and academic 
requirements in terms of information concerning not only the 
isolated biocatalyst, but especially focusing on conditions of its 
real utilization. Obviously to be really complementary (and 
useful) to the experimental practice, computational tools must be 
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competitive in terms of time and costs, therefore major attention 
have been put on the control of computational cost, exploring the 
simplification of the models on the basis of the various research 
goals. 
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3.1 Introduction 
 

Lipases constitute an important group of biotechnologically 
valuable enzymes, mainly because of the versatility of their 
properties and ease of mass production. They are triacylglycerol 
ester hydrolases (EC 3.1.1.3) that catalyze the hydrolysis of long-
chain acylglycerols. Lipases are widely diversified in their 
enzymatic properties and substrate specificity, making them very 
attractive for industrial applications. In the industrial segment, 
lipases and cellulases are anticipated to post the best gains. It is 
expected that in the next few years lipases will benefit from their 
versatility and continued penetration into the detergent and 
cosmetics markets. Cellulases, which share lipases’ versatility, 
will continue to be used to emulate the stone-washing of denim 
while making substantial gains in the pulp and paper industry as 
bleaching and lignin-removal agents. Lipases and cellulases, like 
most specialty and industrial enzymes, will increasingly be 
produced via recombinant DNA technology.1 
In fine chemistry, lipases are valued biocatalysts because they act 
under mild conditions, are highly stable in organic solvents, show 
broad substrate specificity, and usually show high regio- and/or 
stereoselectivity in catalysis. The usefulness of bacterial lipase in 
commerce and research stems from its physiological and physical 
properties.2 
Bacterial lipases are generally more stable than animal or plant 
lipases. They are active under ambient conditions reducing the 
energy cost required for high temperature and pressures processes, 
avoiding at the same time the instability of temperature labile 
reactants and products. In the industrial application, lipases share 
the general advantages of biocatalysis over traditional synthetic 
processes of the reduction of side products, milder conditions, 

                                                 
1 K E Jeager, B W Dijsktra, M T Reetz, Annu Rev Microbiol, 1999, 53, 315. 
2 E A Snellman, E R Sullivan, R R Colwell, FEBS J, 2002, 269, 5771. 
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reduction of wastes, offering cost-effectiveness over with 
traditional downstream processing. Moreover, their remarkable 
stability in organic solvents represents a plus for the industrial 
applicability.3 
 
The hydrolytic activity of most lipases, but not esterases, is 
enhanced hugely upon contact with a lipid–water interface,4, 5 a 
phenomenon known as interfacial activation.6, 7 
Three-dimensional structures of lipases coming from a wide 
variety of sources8 help to understand this property. Thus, a partial 
explanation of interfacial activation comes from the presence of 
an amphiphilic flexible lid,9,10 a protein domain switching from a 
so-called closed conformation (or inactive state) coving the 
active-site entrance and an open conformation (or active state) 
allowing full access to the inner part of the pocket to substrates. 
Though this evidence might demonstrate a very simple activation 
mechanism, the structural basis of lipase interfacial activation, i.e. 
the distinction between lipases and esterases, is intrinsically much 
more complex, as it can be deduced from the fact that not all 
lipases with a lid domain exhibit this behavior11 and, conversely, 
there are lipases without a lid, that show interfacial activation.12 
For these reasons, lipases can be defined pragmatically as 
esterases that act on long-chain acylglycerols. 

                                                 
3 F Hasan, A A Shah, A Hameed, Enz Microb Technol, 2006, 39, 235. 
4 H L Brockman, J H law, F J Kézdy, J Biol Chem, 1973, 248, 4965. 
5 L Sarda, P Desnuelle, Biochem Biophys Acta, 1958, 30, 513. 
6 P Desnuelle, L Sarda, G Alihaud, Biochem Biophys Acta, 1958, 37, 570. 
7 R Verger, Methods Enzymol, 1980, 64, 340. 
8 J Pleiss, M Fischer, M Peiker, C Thiele, R D Schmid, J Mol Catal sect B, 
2000, 10, 491. 
9 J D Schrag, M Cygler, Methods Enzymol, 1997, 284, 85. 
10 K E Jaeger, M T Reetz, Trends Biotechnol, 1998, 16, 396. 
11 M Nardini, B W Dijsktra, Curr Opin Struct Biol, 1999, 9, 732. 
12 J C Chen, L J Miercke, J Krucinski, J R Starr, G Saenz, X Wang, 
Biochemistry, 1998, 37, 5107. 
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Lipases are widely used for industrial purposes. They are efficient 
stereoselective catalysts in the kinetic resolution of a wide variety 
of chiral compounds13 and are useful in transesterification, 
synthesis of esters and peptides, and resolution of racemic 
mixtures to produce various optically active compounds. Several 
organochemical and crystallographic studies have provided some 
insight into their enantioselectivity.14 On the basis of these studies, 
a general rule for the enantiopreference towards the production of 
a secondary alcohol, and the positioning of the scissile fatty acid 
chain and ester bond has been proposed.15 
Lipases are, in general, highly variable in size and the sequence 
similarity among them is limited to short spans located around the 
active-site residues. However, the three-dimensional structures of 
lipases, in their cores, share a common fold motif, known as an 
α/β hydrolase fold.16 This α/β  hydrolase fold has been identified 
in many other distantly or closely-related enzymes. 
The general α/β hydrolase fold (Figure 3.1) consists of eight 
central, mostly parallel β sheet strands  of which the second strand 
is antiparallel. The parallel β3 to β8 strands are connected by α 
helices, packing on either side of central β sheet. The β sheet has a 
left-handed superhelical twist such that the surface of the sheet 
covers about half a cylinder and the first and last strands cross 
each other at an angle of around 90˚. The curvature of the β sheet 
may differ significantly among the various enzymes, and also, the 
spatial positions of topologically equivalent α helices may vary 
considerably. They differ substantially in length and architecture, 
in agreement with the large substrate diversity of these enzyme. 

 

                                                 
13 E Santaniello, P Ferraboschi, P Grisenti, A Manzocchi, Chem Rev, 1992, 92, 
1071. 
14 R J Kazlauskas, A N E Weissfloch, A T Rappaport, L A Cuccia, J Org Chem, 
1991, 56, 2656. 
15 M Cygler, A H Gupta, J Am Chem Soc, 1994, 116, 3180. 
16 D L Ollis, A Goldman, Protein Eng, 1992, 5 197. 
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Figure 3.1: Canonical α/β fold. α Helices are indicated by cylinders and β 
strands are indicated by shaded harrows. The topological position of the 
active site residues is shown by solid circles; the nucleophile is the residue 
after β strand 5, the Asp/Glu residue is after β strand 7, and the histidine 
residue is in the loop between β8 and αF. 
 

Lipases are hydrolases acting on the hydrolysis of ester bonds 
connecting fatty acids and glycerol. Their active site consists of a 
Ser-His-Asp/Glu catalytic triad. This catalytic triad is similar to 
that observed in serine proteases, and therefore lipases catalysis is 
thought to proceed along a similar pathway. Hydrolysis takes 
place in two steps (Figure 3.2). It starts with an attack by the 
oxygen atom of the hydroxyl group of the nucleophilic serine on 
the activated carbonyl carbon of the susceptible lipid ester bond 
(Figure 3.2). A transient tetrahedral intermediate is formed, which 
is characterized by a negative charge on the carbonyl oxygen atom 
of the scissile ester bond and four atoms bonded to the carbonyl 
carbon atom arranged as a tetrahedron (Figure 3.2). The 
intermediate is stabilized by the helix macrodipole of helix C 
(Figure 3.1), and hydrogen bonds between the negatively charged 
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carbonyl oxygen atom (the “oxyanion”) and at least two main-
chain NH of OH groups (the “oxyanion hole”). One of the NH 
groups is from the residue just behind the nucleophilic serine; the 
other one is usually from the residue at the end of strand β3.17 The 
nucleophilicity of the attacking serine is enhanced by the catalytic 
histidine, to which a proton  from the serine hydroxyl group is 
transferred. This proton transfer is facilitated by the presence of 
the catalytic acid, which precisely orients the imidazole ring of the 
histidine and partly neutralizes the charge that develops on it. 
Subsequently, the proton is donated to the ester oxygen of the 
susceptible bond, which is cleaved. At this stage the acid 
component of the substrate is esterified to the nucleophilic serine 
(the “covalent intermediate”), whereas the alcohol component 
diffuses away (Figure 3.2). The next stage is the deacylation step, 
in which a water molecule hydrolyzes the covalent intermediate. 
The active-site histidine activates this water molecule by drawing 
a proton from it. The resulting OH- ion attacks the carbonyl 
carbon atom of the acyl group covalently attached to the serine 
(Figure 3.2). Again, a transient negatively charged tetrahedral 
intermediate is formed, which is stabilized by interactions with the 
oxyanion hole. The histidine donates a proton to the oxygen atom 
of the active serine residue, which then releases the acyl 
component. After diffusion of the acyl product the enzyme is 
ready for another round of catalysis.18, 19 
 

                                                 
17 R J Kazlauskas, Trends Biotechnol, 1994, 12, 464. 
18 K H G Verschueren, F Seljée, H J Rozeboom, K H Kalk, B W Dijkastra, 
Nature, 1993, 363, 693. 
19 A M Brozozowski, L Thim, Nature, 1991, 351, 491. 
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Figure 3.2: Reaction mechanism of lipases. [1] Binding of lipid, activation 
of nucleophilic serine residue by neighboring histidine and nucleophilic 
attack of the substrate’s carbonyl carbon atom by Ser O-. [2] Transient 
tetrahedral intermediate, with O- stabilized by interactions with two 
peptide NH groups. The histidine donates a proton to the leaving alcohol 
component of the substrate. [3] The covalent intermediate (“acyl enzyme”), 
in which the acid component of the substrate is esterified to the enzyme’s 
serine residue. The incoming water molecule is activated by the 
neighboring histidine residue, and the resulting hydroxyl ion performs a 
nucleophilic attack on the carbonyl carbon atom of the covalent 
intermediate. [4] The histidine residue donates a proton to the oxygen 
atom of the active serine residue, the ester bond between serine and acyl 
component is broken, and the acyl product is released. 
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3.2 Choice of the lipases for the study 
 
For a deeper investigation of enzymatic activation phenomena of 
lipases we chose to study an heterogeneous group of members of 
this enzyme class. This way it is possible to obtain different data 
related to lipases from different taxa and genus, with the aim to 
have a sample as homogeneous and representative as possible. 
The enzymes object of this study are listed in the table below 
(Table 1.1). For the most of them the crystal structure was 
available, at least for one of the two conformations; for three of 
them (Candida rugosa lipase; Humicola lanuginosa lipase; 
Rhizomucor miehei lipase) the two conformations were both 
available; for two of them (Pseudomonas fluorescens lipase; 
Rhizopus oryzae lipase) it was not possible to find any crystal 
structure, therefore homology modeling procedures were 
necessary. 
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LIPASE TAXON  

Bacillus subtilis lipase Bacteria 

Burkholderia cepacia (Pseudomonas cepacia) lipase Bacteria 

Candida antarctica lipase B (CaLB) Yeast 

Candida rugosa lipase Yeast 

Geotrichum candidum (Botrytis geotricha; Torula geotricha) 
lipase 

Fungus 

Humicola lanuginosa (Termomyces lanuginosus; Monotospora 
lanuginosa; Sepedonium lanuginosum) lipase 

Fungus 

Pseudomonas aeruginosa lipase Bacteria 

Pseudomonas fluorescens lipase Bacteria 

Rhizomucor miehei (Mucor miehei) lipase Fungus 

Rhizopus niveus lipase Fungus 

Rhizopus oryzae lipase Fungus 

 
Table 1.1: List of used lipases and their taxa; in black the lipases with only 
one conformation available, in blue lipases with both conformations 
available, in red lipase structures obtained by homology modelling. 

 
 
3.2.1 Bacillus subtilis lipase 
 
Several structures of Bacillus subtilis extracellular lipase (BsL) 
are deposited in the PDB. Among them, 1ISP is the most accurate 
with a resolution of 1.3 Å. This structure was used in this thesis 
for all the studies concerning Bacillus subtilis lipase. 
BsL is encoded by the lipA gene,20 has a molecular weight of 19,4 
kDa, which is exceptionally low for a member of the bacterial 
lipase family; the range is generally 30-75 kDa. BsL is stable even 
                                                 
20 V Dartois, A Baulard, K Schanck, C Colson, Biochim Biophys Acta, 1992, 
1131, 253. 
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under highly alkaline conditions (pH 12) and has optimal activity 
at pH 10; it is therefore regarded as an alka-liphilic lipase.21 The 
activities of ordinary lipases are known to be enhanced greatly in 
the presence of their substrate lipid micelle,22 implying that 
lipases act on their substrates at the lipid-water interface (so-called 
“interfacial activation”). The enzymatic activity of BsL, however, 
does not depend on the formation of the substrate micelle, 
indicating that BsL possesses no inter-facial activation, and takes 
place even at a low concentration of the substrate. Because of 
these unique characteristics, BsL is thought to be widely 
applicable to industrial uses. 
The three-dimensional structures of BsL variants have been 
determined by X-ray crystallography (Figure 3.3).23 
 
 

                                                 
21 E Lesuisse, K Schanck, C Colson, Eur J Biochem, 1993, 216, 155. 
22 L Sarda, P Desnuelle, Biochim Biophys Acta, 1958, 30, 513. 
23 Z S Derewenda, Adv Protein Chem, 1994, 45, 1. 
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Figure 3.3: Structure of Bacillus subtilis lipase (PDB 1ISP) in new cartoon 
representation, coloured by secondary structure; the catalytic triad is 
highlighted in licorice mode: Ser in green, His in yellow and Asp in red. 
 
They share a common topology named the α/β-hydrolase fold24 
consisting of a six to eight-stranded parallel β-sheets. The β-sheet 
is connected through α-helices, which are generally located 
surrounding the β-sheet. The active site of lipase is constructed in 
the C-terminal portion of the β-sheet and consists of Ser, His and 
Asp (the catalytic triad). In ordinary lipases, the active site is 
covered by a hydrophobic `lid' consisting of one or two α-
helices,25, 26 in this case there is no lid, and this can be the 

                                                 
24 D L Ollis, E Cheah, M Cygler, B Dijkstra, F Frolow, S M Franken, M Harel, 
S J Remington, I Silman, J Schrag, J L Sussman, K H G Verschueren, A 
Goldman, Protein Eng, 1992, 5, 197. 
25 A M Brzozowski, U Derewenda, Z S Derewenda, G G Dodson, D M Lawson, 
J P Turkenburg, F Bjorkling, B Huge-Jensen, S A Patkar, L Thim, Nature, 1991, 
351, 491. 
26 U Derewenda, A M Brzozowski, D M Lawson, Z S Derewenda, 
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motivation of the absence of interfacial activation.27 
 
 
3.2.2 Burkolderia cepacia lipase 
 
The lipase from Burkolderia cepacia (Pseudomonas cepacia, 
PcL) represents a widely applied biocatalyst for highly 
enantioselective resolution of chiral secondary alcohols. Its 
stereopreference is determined predominantly by the substrate 
structure, while stereoselectivity depends on atomic details of 
interactions between substrate and lipase.28  
Several structure of this enzyme, in the open conformation only, 
are available from PDB. 1YS1 was chosen to be used in the study 
because of its highest resolution (1.10 Å). 
The structure of PcL (Figure 3.4) is made up by 320 aminoacid 
residues (33 kDa) and shows an highly open conformation, typical 
for most bacterial lipases, which is likely to represent the active 
state of the enzyme at an oil–water interface. 
 

                                                                                                            
Biochemistry, 1992, 31, 1532. 
27 K Kosei, K Hidemasa, S Mamoru, O Satoru, T Sakae, Acta Cryst, 2002, D58, 

1168. 
28 T Schulz, J Pleiss, R D Schmid, Protein Sci, 2000, 9, 1053. 
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Figure 3.4: Structure of Bulkolderia cepacia lipase (PDB 1YS1) open 
conformation in new cartoon mode coloured by secondary structure; the 
catalytic triad is highlighted in licorice mode: Ser in green, His in yellow 
and Asp in red. 
 
PcL is a globular enzyme with approximate dimensions of 30 Å × 
40 Å × 50 Å; the comparison of its structure with the general 
hydrolase fold points out an additional strand, lined up with the 
sixth strand, but in the opposite direction.29 
The active site Ser (Ser-His-Asp represent the catalytic triad) lies 
at the bottom of a cleft in the protein and is probably fully 
exposed to the solvent when the enzyme is in solution. The 

                                                 
29 K K Kyeong, K S Hyun, H S Dong, Y H Kwang, W S Se, Structure, 1997, 5, 
173. 
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entrance of the cleft has an ovoid shape and it is 10 Å × 25 Å 
across and about 15 Å deep.30 
 
 
3.2.3 Candida antarctica lipase B 
 
Candida antarctica lipase B (CaLB) is an efficient catalyst for 
hydrolysis in water and esterification in organic solvents.31 It is 
used in many industrial applications because of its high 
enantioselectivity, wide range of substrates, thermal stability, and 
stability in organic solvents.32 Different structures of CaLB are 
available from PDB, 1TCA is the most accurate one with a 
resolution of 1.55 Å; this was the structure used in all the 
investigation about this enzyme. 
CaLB (Figure 3.5) is a lipase with 33 kDa molecular weight and 
belongs to the α/β hydrolase fold family with a conserved 
catalytic triad consisting of Ser, His, and Asp.33, 34 
 

                                                 
30 J D Schrag, Y Li1, M Cygler1, D Lang, T Burgdorf, H J Hecht, R Schmid, D 
Schomburg, T J Rydel, J D Oliver, L C Strickland, C M Dunaway, S B Larson, 
J Day, A McPherson, Structure, 1997, 5, 187. 
31 E M Anderson, K M Larsson, O Kirk, Biocatal. Biotrnsform, 1998, 16, 181. 
32 D Rotticci, J C Rotticci-Mulder, S Denman, T Norin, K Hult, ChemBioChem, 
2001, 2, 766. 
33 J Uppenberg, M T Hansen, S Patkar, T A Jones, Structure, 1994, 2, 293. 
34 J Uppenberg, N Ohrner, M Norin, K Hult, G J Kleywegt, S Patkar, V 
Waagen, T Anthonsen, T A Jones, Biochemistry, 1995, 34, 16838. 
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Figure 3.5: Structure of Candida antarctica lipase B (PDB 1TCA) in new 
cartoon mode coloured by secondary structure; the catalytic triad is 
highlighted in licorice mode: Ser in green, His in yellow and Asp in red. 
 
The binding pocket for the substrates consists of an acyl-binding 
pocket, a large and a medium binding pocket for the small and 
large moiety of secondary alcohols, respectively. In contrast to 
most lipases, CaLB has very small lid which is not big enough to 
cover the entrance to the active site and therefore the enzyme 
shows no interfacial activation.35, 36 
 
 
 
 
                                                 
35 M Martinelle, M Holmquist, K Hult, Biochim Biophys Acta, 1995, 1258, 272. 
36 P Trodler, J Pleiss, BMC Struct Biol, 2008, 8, 9. 



3.LIPASES 

65 
 

3.2.4 Candida rugosa lipase 
 
Lipase from Candida rugosa (CrL) is a versatile biocatalyst which 
catalyzes hydrolysis, alcoholysis, esterification and 
transesterification of triacylglycerols and other hydrophobic 
esters. It is widely applied in a variety of biotechnological 
applications as diverse as production of carbohydrate esters of 
fatty acids, stereoselective synthesis of pharmaceuticals and a 
multitude of applications in food and flavour production.37 
Structures of this enzyme in its open and closed conformation are 
available from PDB. Structures 1CRL and 1GZ7 representing 
open and closed conformation respectively, were used in the 
study. 
Candida rugosa expresses a mixture of lipase isoforms which 
differ in substrate specificities. Each gene codes for a 534 amino 
acid residue polypeptide chain, with molecular masses of around 
60 kDa (Figure 3.6).38 

 

 

 

                                                 
37 A Padney, S Benjamin, C R Soccol, P Nigam, N Krieger, V T Soccol, 
Biotechnol Appl Biochem, 1999, 29, 119. 
38 J M Mancheno, M A Pernas, M J Martinez, B Ochoa, M L Rua, J A Hermoso, 
J Mol Biol, 2003, 332, 1059. 
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Figure 3.6: Structure of Candida rugosa lipase a- in open (on the left) and 
closed (on the right) conformation (PDB 1CRL and 1GZ7 respectively) in 
new cartoon mode coloured by secondary structure; b- the two 
conformation overlapped, the open one in green and the closed one in red. 
 

Like other microbial lipases, CrL is a member of the α/β hydrolase 
fold family. A mobile element covers the catalytic site in the 
inactive form of the lipase. In the open, active form the lid moves 
away and makes the binding site accessible to the substrate.39 Lid 
movement is clearly showed in figure 3.6. 

                                                 
39 J Schmitt, S Brocca, R D Schmid, J Pleiss, Protein Eng, 2002, 15, 595. 
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3.2.5 Geotrichum candinum lipase 
 
Lipases produced by the fungus Geotrichum candidum belong to 
the class of big lipases (approximately 60 kDa) with significant 
amino acid similarity to many esterases.40 Early reports regarding 
the substrate specificity of G. candidum lipase (GcL) indicated its 
preference for long chain fatty acids.41 
Only one structure of this enzyme, in its closed conformation, is 
available from PDB with the code 1THG (Figure 3.7). 
 
 
 

                                                 
40 M Cygler, J D Schrag, J L Sussman, M Harel, I Silman, M K Gentry, B P 
Doctor, Protein Sci, 1993, 2, 366. 
41 R G Jensen, J Sampugna, J G Guinn, D L Carpenter, T A Marks, J Am Chem 
SOC, 1965, 42, 1029. 
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Figure 3.7: Structure of Geotricum candidum lipase (PDB 1THG) closed 
conformation in new cartoon mode coloured by secondary structure; the 
catalytic triad is highlighted in licorice mode: Ser in green, His in yellow 
and Asp in red. 
 
GcL is another member of α/β hydrolase fold family, it has a big 
mobile lid, that can cover the active site in the closed inactive 
conformation; the catalytic triad is represented by Ser-His-Glu.42 
 
 
3.2.6 Humicola lanuginosa lipase 
 
Structures of Humicola lanuginosa lipase (HlL) in open and 
closed conformations are available from PDB; structures with 
codes 1DTE and 1TIB for open and closed conformation 

                                                 
42 J D Schrag, M Cygler, J Mol Biol, 1993, 239, 575. 
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respectively are the most accurate ones and were used for all the 
calculations about this protein. 
HlL is an enzyme of 30 kDa and 219 amino acids43 which consists 
of a single, roughly spherical domain containing a central eight-
stranded, predominately parallel β-pleated sheet and five 
interconnecting α-helices, compacted to a volume of approx. 
9,7x103 Å3 . The active site of HlL is composed of a Ser-His-Asp 
catalytic triad44 (Figure 3.8).  
 

                                                 
43 A M Brzozowski, H Savage, C S Verma, J P Turkenburg, D M Lawson, A 
Svendsen, S Patkar, Biochemistry, 2000, 39, 15071. 
44 K Zhu, A Jutila, E K J Tuominen, S A Patkar, A Svendsen, P K J Kinnunen, 
Biochim Biophys Acta, 2001, 1547, 329. 
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Figure 3.8: Structure of Humicola lanuginosa lipase a- in open (on the left) 
and closed (on the right) conformation (PDB 1DTE and 1TIB respectively) 
in new cartoon mode coloured by secondary structure; b- the two 
conformation overlapped, the open one in green and the closed one in red. 
 
The coparison of the two crystal structures shows that the main 
difference by the two enzyme conformations is represented by the 
flexible lid domain. 
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3.2.7 Pseudomonas aeruginosa lipase 
 
The structure of Pseudomonas aeruginosa lipase (PaL) in open 
conformation is available from PDB with code 1EX9. This is the 
only one available for this lipase. 
PaL has a nearly globular shape with approximate dimensions of 
35x40x50 Å. Its structure consists of a “core” domain, showing 
the typical features of the α/β hydrolase fold topology,45 and a 
“cap” domain, with four α-helices that shape the active site cleft 
(Figure 3.9). 
 

                                                 
45 P Heikinheimo, A Goldman, C Jeffries, D L Ollis, Structure, 1999, 7, 141. 
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Figure 3.9: Structure of Pseudomonas aeruginosa lipase (PDB 1EX9) open 
conformation in new cartoon mode coloured by secondary structure; the 
catalytic triad is highlighted in licorice mode: Ser in green, His in yellow 
and Asp in red. 
 
PaL structure is similar to the lipase structures from Burkolderia 
glumae, Burkolderia cepacia, and Chromobacterium viscosum, 
which show 42% amino acid sequence identity to PaL.46, 47 The 
structural similarity is mainly localized in the core domain, where 
                                                 
46 D Lang, B Hofmann, L Haalck, H J Hecht, F Spener, R D Schmid, D 
Schomburg, J Mol Biol, 1996, 259, 704. 
47 D A Lang, M L M Mannesse, G H De Haas, H M Verheij, B W Dijkstra, Eur 
J Biochem, 1998, 254, 333. 
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the secondary structure elements  have an almost equal structural 
distribution .48 
 
 
3.2.8 Rhizomucor miehei lipase 
 
Rhizomucor miehei lipase (RmL) is a single chain protein 
consisting of 269 aminoacids with a total molecular weight of 29 
kDa and an isoelectric point of 3.5. RmL is probably one of the 
most widely used fungal lipase.49 The stereochemistry of the 
oxyanion hole of RmL is not clear. It has been proposed, on the 
basis of X-ray crystallography studies, that the oxyanion hole of 
RmL can exist only in the open, active conformation.50 
Structure of this enzyme in its open and closed conformation are 
available from PDB; 4TGL for the open and 3TGL for the closed 
conformation respectively are the most accurate structures for this 
protein and were used for the studies (Figure 3.10). 
 
 
 
 
 
 

                                                 
48 M Nardini, D A Lang, K Liebeton, K E Jaeger, B W Djkstra, J Biol Chem, 
2000, 275, 31219. 
49 B Folmer, K Holmberg, M Svensson, Langmuir, 1997, 13, 5864. 
50 M Norin, F Haeffner, A Achour, T Norin, K Hult, Protein Sci, 1994, 3, 1493. 
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Figure 3.10: Structure of Rhizomucor miehei lipase a- in open (on the left) 
and closed (on the right) conformation (PDB 4TGL and 3TGL 
respectively) in new cartoon mode coloured by secondary structure; b- the 
two conformation overlapped, the open one in green and the closed one in 
red. 
 
Once again the main difference between the two enzyme 
conformation is well showed in figure 3.10 and is represented by 
the lid domain. 
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3.2.9 Rhizopus niveus lipase 
 
The structure of Rhizopul niveus lipase (RnL) in its open 
conformation is available from PDB with code 1LGY and it is the 
only one available. 
The mature form of the enzyme (lipase II) is 269 aminoacids long. 
Lipase II come from lipase I form, which contains two 
polypeptide chains combined through non-covalent interaction. 
The structure of Lipase II (Figure 3.11) shows a typical α/β 
hydrolase fold containing the so-called nucleophilic elbow (a 
conserved lipase domain between strand β5 and helix α4 where is 
usually located the catalytis Ser, this domain is located deep 
within the core of classical lipase structure showed in figure 3.1). 
The catalytic center of this enzyme is analogous to those of other 
neutral lipases and serine proteases.51 
 

 
 
 
 
 
 
 
 
 
 
 

                                                 
51 M Kono, J Funatsu, B Mikami, W Kugimiya, Y Morita, J Biochem, 1996, 
120, 505. 
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Figure 3.11: Structure of Rhizopus niveus lipase (PDB 1LGY) open 
conformation in new cartoon mode coloured by secondary structure; the 
catalytic triad is highlighted in licorice mode: Ser in green, His in yellow 
and Asp in red. 
 
 

3.3 Homology modelling 
 
In several cases only the aminoacidic sequence of an enzyme is 
available. In these cases three-dimensional structure can be 
calculated by homology modelling. The first step of this 
procedure is the homology alignment; which is a bioinformatic 
technique that determines the correspondence between protein 
sequences. Therefore, if the protein of unknown structure has a 
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strong sequence correspondence (> 70%) with a protein which 
structure is known, it will be possible to build the homology 
structure. The known structure is used as a template to build up 
the structure of the other enzyme. Afterwards, refinement 
processes are needed in order to relax the structure and achieve a 
structure of acceptable quality. 
 
 
3.3.1 Pseudomonas fluorescens lipase 
 
The aminoacidic sequence of Pseudomonas fluorescens lipase 
(PfL) is available on UniProtKB52 database with the code 
Q0PM63_PSEFL and its length is 617 aminoacids. A homology 
search of the aminoacid sequence was performed on SRS@EBI53 
website. PfL is 88 % homologous to Pseudomonas sp. MIS30 
lipase (PsL) as it can be seen in Figure 3.12. The structure of PsL 
is available on PDB with the code 2Z8X. Starting from the 
structure of PsL, used as template, a homology model of the 
structure of PfL was generated. The sequences of the two enzymes 
were first aligned with the MOE align tool. Then the residues of 
the catalytic triad of PsL (Ser28, His30, Glu77) were constrained 
to the corresponding residues of PfL in order to keep the spatial 
geometry of the catalytic machinery. Ten homology models were 
generated, the structure with the highest score was selected for the 
next steps. The generated structure was minimized and analysed 
with the protein report tool which takes into account the allowed 
geometrical parameters of the residues. The PfL catalytic triad is 
Ser 207, His 313, Asp 255. The model refinement was performed 
by total and local energy minimisation and local molecular 
dynamics simulations in order to achieve acceptable protein report 

                                                 
52 The UniProt Consortium, Nucleic Acids Res, 2006, 36, 190. 
53 N Harte, V Silventoinen, E Quevillon, S Robinson, K Kallio, X Fustero, P 
Patel, P Jokinen, R Lopez, Nucleic Acid Res, 2004, 18, W3. 
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parameters for all the aminoacids. 
The final structure (figure 3.14) was evaluated by means of 
Ramachandran plot (figure 3.13). Only eight outliers are present 
and they are generally close to allowed regions of the plot; the 
Ramachandran high score indicates the general quality of the 
model, in fact 87% of the residues fall in the core region. 
 

Figure 3.12: Sequence alignment of PfL against PsL, in green the identical 
residues, in blue the similar residues and in red the other residues. 
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Figure 3.13: Ramachandran plot of the generated structure of PfL; in 
green circles the residue in the core structure, in yellow circles the allowed 
residues and in red crosses the outliers. 
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Figure 3.14: Generated structure of Pseudomonas fluorescens lipase’s open 
conformation in new cartoon mode coloured by secondary structure; the 
catalytic triad is highlighted in licorice mode: Ser in green, His in yellow 
and Asp in red. 
 
The structure of PfL seems to be made by two distinct structural 
domains. Two thirds of the enzyme is exposed by a well structured 
domain made by a core of β-sheets connected by random coil 
parts; while the active site domain shows the typical α/β hydrolase 
fold. 
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3.3.2 Rhizopus oryzae lipase 
 
In the case of Rhizopus oryzae lipase (RoL), the generation of the 
homology model was performed with a different strategy. The 
primary structure of RoL is available in the UniProtKB52 database 
with the code Q2QFX1_RHIOR. A homology search of the 
aminoacid sequence was performed on SRS@EBI53 website. RoL 
is closely related to Rhizopus niveus lipase but it is interesting to 
note that RoL can be present in a pre-mature enzymatic form. The 
mature forms of these two enzymes are 99% homologous in their 
primary structure, just a two residues difference is found between 
these two enzyme sequences (Figure 3.15). This differences are 
His134 of RnL which is replaced by an Asn in RoL and Val200 of 
RnL which is replaced by an Ala in RoL. 
In this case the three dimensional structure of RoL was generated 
by a simple in silico mutation of these different residues 
performed on the available structure of RnL. 
The PDB structure 1GLY was mutated using the mutagenesis 
PyMol54 tool and then minimized in MOE using AMBER 99 force 
field. Therefore the generated RoL structure was analysed in order 
to assure the reliability of the model. The Ramachandran plot 
(Figure 3.15) shows that just four residues are considered as 
outliers, but they are close to the allowed regions. None of these 
outliers are mutated residues. The high score of the 
Ramachandran plot indicates the general quality of the generated 
structure, in fact 92% of the residues are in the core region. 
 

                                                 
54 PyMol 0.99, DeLano Scientific, Palo Alto, CA, USA. 
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Figure 3.15: Sequence alignment of RoL against RnL, in green the 
identical residues, in blue the similar residues and in red the other 
residues. 
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Figure 3.16: Ramachandran plot of the generated structure of RoL; in 
green circles the residue in the core structure, in yellow circles the allowed 
residues and in red crosses the outliers. 
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Figure 3.17: Generated structure of Rhizopus oryzae lipase open 
conformation in new cartoon mode coloured by secondary structure; the 
catalytic triad is highlighted in licorice mode: Ser in green, His in yellow 
and Asp in red. 
 
The structure of RoL (Figure 3.17) is substantially identical to 
RnL and presents the classical α/β hydrolase fold. 
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3.4 Surface analysis 
 
A detailed surface analysis was performed on the lipase structures 
in order to map the distribution of the hydrophilic and 
hydrophobic zones of the enzymes’ surfaces. 
The study of the physical-chemical properties of the enzymatic 
surface can be very useful because the information can be used for 
rationalize the experimental work. A significant number of 
enzyme properties is correlated to the characteristics of its surface 
and the most of them affects enormously the experimental activity. 
The dependency of enzyme action on polarity of medium, or the 
immobilization on solid supports of different chemical nature are 
two representative examples of the role that can be played by the 
surface analysis in the experimental practice. Another example 
can be the analysis and prediction of enzyme stability, as recently 
reported by our group.55 
As described in the previous paragraphs, lipases are generally 
characterised by the tendency to be governed by interfacial 
activation. Although some differences do exist, common tracts on 
their structural organization group them in a single big ensemble 
of enzymes, displaying common behaviours, despite often major 
structural differences among them emerge very clearly. 
The analysis of the protein surface can be made by many different 
computational strategies. The generation of the Molecular 
Interaction Fields (MIFs) represents one of the most powerful. A 
MIF is a tridimensional map of the interaction between a given 
molecule and a chemical probe, mimicking a given interaction 
capability (i.e. hydrogen bonding donor, acceptor, dipolar 
interaction, etc.). The software GRID (version 22) was used to 
measure the non-covalent interactions between the target protein 
structure and two different probes:  

• WATER, for the simulation of the properties of a water 
                                                 
55 P Braiuca, A Buthe, C Ebert, P Linda, L Gardossi, J Biotechnol, 2007, 2, 214. 
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molecule able to accept and donate recognize hydrogen 
bonds; 

• DRY, to recognize non-polar areas on the enzyme surface 
and describe hydrophobic interactions. 

The lipases object of this study were submitted to this procedure 
in order to investigate and compare their surface characteristics. 
As far as Bacillus subtilis lipase is concerned, the surface analysis 
of the structure shows a big hydrophobic area placed in the 
correspondence of the active site of the enzyme, whereas the rest 
of the structure is prevalently hydrophilic (Figure 3.18). 
 

Figure 3.18: Surface analysis of Bacillus subtilis lipase (PDB 1ISP) in 
yellow the hydrophobic areas (DRY probe) of the enzyme surface and in 
blue the hydrophilic ones (WATER probe). 
 
The surface analysis of the structure of Pseudomonas cepacia 
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lipase shows a similar behaviour; the structure is very distinctly 
polarized and a large hydrophobic area is located just above the 
zone of the big active site of the protein (Figure 3.19). This 
picture indicates the probable behaviour of the enzyme at the 
interface, the active site will be oriented to the non-polar solvent. 
 

Figure 3.19: Surface analysis of Pseudomonas capacia lipase (PDB 1YS1) in 
yellow the hydrophobic areas (DRY probe) of the enzyme surface and in 
blue the hydrophilic ones (WATER probe). 
 
The surface characteristics of Candida antarctica lipase B (CaLB) 
are also somewhat related with the previous analysis (Figure 
3.20). In this case hydrophobic zones are still concentrated in the 
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active site area but are also spread on the rest of the enzyme 
surface. 
 

Figure 3.20: Surface analysis of Candida antarctica lipase B (PDB 1TCA) 
in yellow the hydrophobic areas (DRY probe) of the enzyme surface and in 
blue the hydrophilic ones (WATER probe). 
 
In the case of Candida rugosa lipase the analysis was performed 
on both structures: open and closed. The results of the surface 
analysis of the structure in the open conformation are similar to 
the results described before. On the other hand, the surface 
analysis of the structure in the closed conformation is different, 
the enzyme is less hydrophobic than in the open conformation 
(Figure 3.21). This is due to the lid movement that covers the 
active site of the protein and its hydrophobicity. 
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Figure 3.21: Surface analysis of Candida rugosa lipase a- in the open 
conformation (PDB 1CRL); b- in the closed conformation (PDB 1GZ7); in 
yellow the hydrophobic areas (DRY probe) of the enzyme surface and in 
blue the hydrophilic ones (WATER probe). 
 
Concerning Geotrichum candidum lipase, the analysed structure 
was the one in the closed conformation. For this reason the 
hydrophobic regions are, as expected, quite small and mostly 
located near the active site area (Figure 3.22). 
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Figure 3.22: Surface analysis of Geotricum candidum lipase (PDB 1THG) 
in yellow the hydrophobic areas (DRY probe) of the enzyme surface and in 
blue the hydrophilic ones (WATER probe). 
 
For Humicola lanuginosa lipase, the surface analysis of the 
structure in the open conformation shows a big hydrophobic area 
in correspondence of the active site. On the other hand, the surface 
analysis of the structure in the closed conformation is different, 
the enzyme is less hydrophobic than in the open conformation 
(Figure 3.23). This is due to the lid movement that covers the 
active site of the protein and its hydrophobicity, similarly to what 
observed in the case of Candida rugosa lipase. 
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Figure 3.23: Surface analysis of Humicola lanuginosa lipase a- in the open 
conformation (PDB 1DTE); b- in the closed conformation (PDB 1TIB); in 
yellow the hydrophobic areas (DRY probe) of the enzyme surface and in 
blue the hydrophilic ones (WATER probe). 
 
The surface analyses allowed to point out a common feature for 
the studied lipases; all of them display a neatly polarized surface. 
The active site of this enzymes is a big hydrophobic area, whereas 
the rest of the enzyme surface is usually balanced in small zones 
of hydrophobic and hydrophilic character. The balance of the non 
catalytic part of the enzyme depends on the intrinsic 
characteristics of the different lipases and on their natural 
phylogenetic evolution. The polarization phenomenon can also 
explain how they act on water/oil interfaces, positioning the 
catalytic part of the enzyme into the non-polar phase. The lid 
movement is able to influence the hydrophobicity of the enzyme 
surface covering the active site. Even if the active site is covered 
by the lid some hydrophobic regions are always present near the 
covered part, and they probably have the role of driving the right 
movement and the positioning of the enzyme at the interface, as 
well as affecting the initial part of the interfacial activation 
process affecting in this way the lid opening movement. 
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3.5 Molecular dynamics simulations 
 
Molecular dynamics (MD) is a technique that explores the 
conformational possibilities of the system during time. The 
opportunity to simulate and therefore to study complex 
phenomena with high accuracy makes MD simulations a suitable 
technique for investigating lipases' activation processes. 
Different variants of the basic molecular dynamics procedure can 
be performed in order to perturb the system equilibrium, to change 
the accuracy and consequently reduce the required simulation 
time. The idea of MD is simulating a system to observe a 
phenomenon dependent on the time evolution of the system. The 
nature of the phenomenon defines the probability of its happening 
in the time of the simulation. In other words the probability of 
observe a given phenomenon is a function of its intrinsic nature 
and of the total time simulated. A very probable event will happen 
many times in a single short trajectory, a rare event can not 
happen at all in a very long one. 
The idea of non equilibrium MD (or steered MD) is forcing an 
alteration of the simulated chemical system, that spontaneously 
tends to a thermodynamic equilibrium, to accelerate the desired 
event, or to make its occurrence more probable. In principle the 
concept is very simple and it is based on the alteration of one or 
more parameters during the simulation (pressure gradient, forces 
gradient, etc.). 
Another obvious strategy to observe a slow or improbable 
phenomenon is increasing the simulation time. Although letting 
the system to evolve spontaneously for the necessary time is much 
more rigorous than forcing non-equilibrium by applying forces to 
the system, the computational cost is usually too big to pursue this 
route. The need to reduce the computational cost can only be 
satisfied by reducing the accuracy of the simulation. Many efforts 
have been spent on this concept and nowadays it is possible to put 
simplification in the definition of the chemical system at the cost 
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of a loss of accuracy, often tolerable if it does not affect severely 
the phenomenon of interest. 
Accuracy alterations can be achieved principally changing the 
force field type. Various types of force fields can be employed 
during an MD simulations, and they are classified on the basis of 
different simulation targets they describe best (proteins, organic 
molecules, DNA, etc.) or on the basis of their accuracy (fine grain, 
coarse grain). 
Each MD type and each force field has advantages and 
disadvantages and the operator should be able to choose the right 
simulation conditions on the basis of the system that has to be 
simulated and on the basis of the aim that has to be achieved. 
In figure 3.24 an example of the parametrization of a molecule of 
propanol using different force fields is reported.  

• fine grained force fields, such as OPLS-AA,56 typically all 
atom force fields, where  molecules are actually 
represented by all their atoms;  

• united atom force fields, such as GROMOS,57 represent 
only the polar hydrogens, other hydrogens are not 
explicitly simulated but they are considered together with 
the heavy atoms they are bonded to (i.e. CH3); 

• coarse grained force fields, such as MARTINI,58 represent 
molecules with molecular building blocks, where every 
simulated sphere can represent more than one chemical 
group (i.e. CH4-CH3-CH3-). 

The use of united atoms or coarse grained force fields is possible 
when the object of the study is a phenomenon not related, or not 
heavily affected by the simplification at the basis of the force field 

                                                 
56 W L Jorgensen, J Triado Rives, J Am Chem Soc, 1988, 110, 1657. 
57 W R P Scott, P H Huenenberger, I G Tironi, A E Mark, S R Billeter, J 
Fennen, A E Torda, T Huber, P Krueger, W F van Gunsteren, J Phys Chem A, 
1999, 103, 3596. 
58 S J Marrink, H J Risselada, S Yefimov, D P Tieleman, A H de Vries, J Phys 
Chem B, 2007, 111, 7812. 
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(i.e. non polar hydrogen atoms in the united atoms representation). 
The effect of simplifications must be taken into account in the 
analysis step of the work, in order to assess the quality of the 
model. 
 

 
Figure 3.24: different force fields parametrization of a molecule of 
propanol; hydrogens in white spheres, carbons in cyan spheres and oxygen 
in red spheres. 
 
 
3.5.1 Classical MD simulations 
 
Lipases’ activation phenomena are governed by the lid movement. 
This kind of event has a probabilistic nature and in a simulation 
protocol its observation can require several nanoseconds. 
Lipase activations, at molecular level, have not been deeply 
investigated yet, just few information on some lipases are 
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available from literature.59, 60 In order to investigate the nature of 
the lid movements and the environmental factors acting of it 
classical MD simulations were performed.  
The lid’s closure movement is exactly the opposite of its opening 
movement but from a practical point of view it is easier to 
simulate the deactivation process. This is due to the fact that the 
lid closure (enzyme inactivation) happens in polar media, such as 
water, which is the easiest case of solvation and parametrization 
for an MD run. All the systems were parametrized using the 
GROMOS force field57 and all the MD simulations were 
performed starting from enzymes in their open conformation in 
water environment.  
 
 
3.5.1.1 Classical MD on Pseudomonas cepacia lipase 
 
PcL is is characterised by a huge lid domain formed by 30 
aminoacids: residues from Gly116 to Leu149. For this reason the 
simulation of its conformational change is particularly interesting. 
Similarly to a common door, the lid hinges are constituted by 
hydrogen bonds on its ends. The first one is fixed by hydrogen 
bonds formed between His114 and Ser271, and between Gly 116 
and Ser271. On the other hand, the second hinge is due to 
hydrogen bonds between Thr150 and Ala24, and Ser152 and 
Asp21. This lid has an arch shape with its first half (from Gly116 
to Pro131) more rigid and stabilised by 2 hydrogen bonds, 
between Ser117 and Leu167 and between Asp121 and Thr169. 
The second half of the arch (from Thr132 to Leu149) is stabilised 
by just one hydrogen bond between Asp144 and Ala160 (Figure 
3.25). 

                                                 
59 P Trodler, R D Shmid, J Pleiss, BMC Struct Biol, 2009, 9, 38. 
60 S L Cherukuvada, A S N Seshasayee, K Raghunathan, S Anishetty, G 
Pennathur, PLoS Comput Biol, 2005, 28, 182. 
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Figure 3.25: Hydrogen bond that stabilize the second half of the lid of PcL. 
 
The simulation was performed starting from the open 
conformation of the enzyme. PcL (PDB 1YS1) was put in the 
centre of an 80 X 80 X 80 Å3 cubic system and solvated with 
water. The system was first minimised and equilibrated with a 500 
ps of molecular dynamic simulation in NPT conditions, during 
this equilibration step the enzyme was keep restrained in its 
position. 
Afterwards the restrain on the enzyme was removed. MD 
simulation was performed for 10 ns in NPT conditions. The 
system was then minimised and equilibrated with 500 ps of MD 
simulation in NPT conditions. The trajectory was analysed 
measuring the minimum distance between two residues located on 
the opposite side of the active site cleft, namely Ala141 and 
Ala247. The calculated structure was overlapped with the starting 
structure (Figure 3.26).  
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Figure 3.26: Superimposition of the crystal PcL (PDB 1YS1) and the 
structure resulting afret classical MD simulation. In the red box the lid is 
highlited. 
 
It is clearly observable a lid position variation. In order to verify 
the achievement the correct deactivation movement a GRID 
analysis of the calculated structure was performed (Figure 3.27). 
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Figure 3.27: Comparison between the GRID analysis of the crystal 
structure of PcL (PDB 1YS1) and its calculated structure after classical 
MD simulation. In yellow the hydrophobic areas and in blue the 
hydrophilic ones. 
 
Lid domain movement was not enough pronounced to cover the 
hydrophobicity of the active site, being the polarity of the active 
site area substantially unchanged. The simulation was then not 
able to reproduce a complete inactivation of the enzyme, despite 
the suitable simulation time and the repeated calculations. This 
result demonstrates that these kinds of phenomena are not easy to 
simulate and the lid of this enzyme is very strongly stabilised in 
its open conformation, even if put in a polar solvent. Considering 
once again the probabilistic nature of the lid movement, new 
attempts to simulate the deactivation phenomenon should be 
achieved performing simulations longer than 10 ns. Nevertheless 
simulations of more than 10 ns become extremely expensive in 
terms of computational time and this was against the thesis aims.  
A different strategy, able to keep the necessary precision on 
classical MD approach, but with a significantly reduced 
computational cost had to be pursued. The choice fell to steered 
MD simulations and will be described in paragraph 3.5.2.  
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Recently a work of Pleiss and co-workers demonstrated that the 
complete closure of PcL lid requires at least 20 ns of a classical 
MD trajectory, confirming what observed.59  
 
 
3.5.1.2 Classical MD on Pseudomonas aeruginosa lipase 
 
Structural comparison of PaL and PcL points out a striking 
similarity. Nevertheless a major difference emerges very clearly. It 
is given by one single domain, which is structured by two 
antiparallel β sheets (Figure 3.28). This domain is located at the 
opposite side of the active side entrance with respect to the lid and 
it might have a role in the activation mechanism. Classical MD 
simulations were applied to the study of this aspect. 
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Figure 3.28: superimposition of PaL (PDB 1EX9) in blue and PcL (PDB 
1YS1) in red. The main difference between the two structures is 
highlighted in the green box. 
 
Like in the case of PcL the lid is the biggest among lipases, arch 
shaped with hinges at the ends. The first half hinge is constituted 
by the hydrogen bond between Gly111 and Ser236; this domain 
part is stabilised in its open conformations by hydrogen bonds 
between Ser112 and Leu162, and between Asp116 and Ser164. 
The second half of the lid has a hinge formed by the hydrogen 
bond between Ser146 and Asp20, and it is stabilised in its open 
conformation by hydrogen bonds between Ser143 and Gly148 and 
interactions that Asn136 establishes with Gln153 and Ser155 
(Figure 3.29). 
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Figure 3.29: Hydrogen bonds that stabilize the lid of PaL. 
 
The simulation was performed starting from the open 
conformation of the enzyme which is also the only crystal 
structure available for this enzyme (PDB 1EX9). PaL was put in 
the centre of an 80 X 80 X 80 Å3 cubic system and solvated with 
water. The system was minimised and equilibrated with a 500 ps 
of molecular dynamic simulation in NPT conditions, during this 
equilibration step the enzyme was keep restrained in its position. 
Afterwards the restrain on the enzyme was removed and the 
system was subjected to 10 ns MD simulation in NPT conditions. 
The system was then minimised and equilibrated with 500 ps of 
MD simulation in NPT conditions.  
In this case, the data analysis shows a consistent reduction of the 
distance between the two edges of the active site cleft. It is 
possible to verify that lid closure was achieved within 6 ns.  
The GRID analysis confirms that the conformational change is 
actually an inactivation mechanism (Figure 3.30). 
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Figure 3.30: Comparison between the GRID analysis of the crystal 
structure of PaL (PDB 1EX9) and its calculated structure after classical 
MD simulation. In yellow the hydrophobic areas and in blue the 
hydrophilic ones. 
 
In fact the active site hydrophobicity was appreciably reduced at 
the end of MD trajectory, confirming the quality of the simulated 
movement. A superimposition of the starting PaL structure with its 
calculated closed conformation was performed (Figure 3.31).  
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Figure 3.31: Superimposition of the crystal structure of PaL (PDB 1EX9) 
in blue, with the calculated closed structure of PaL, in red. 
 
Surprisingly the superimposition shows that the conformational 
change is due to the movement of two protein domains: the 
already mentioned lid and another domain (from Leu208 to 
Thr221) located on the opposite side of the active site cleft, just 
next to the zone that differs from PcL. This concerted mechanism 
appears unique among lipases.  
This “cooperative” lid was further analysed. It also stabilised by a 
network of hydrogen bonds, similarly to the “real” lid domain. 
The bonds are formed between Asp209 and Val258 and between 
Asp212 and Thr205 (Figure 3.32). 
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Figure 3.32: Hydrogen bonds that stabilize the cooperative lid of PaL. 
 
The two lids are stabilised in their closed conformations by the 
establishment of hydrogen bonds between each other (Figure 
3.33), particularly between Leu138 and Phe214 and Gly139 and 
Pro210. 
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Figure 3.33: Hydrogen bonds that stabilise the calculated closed 
conformation of PaL. 
 
Cooperative lids movement of PaL was compared with the 
incomplete movement of PcL. This analysis found some common 
behaviour among the two lipase movements. In both cases the lid 
movement, the “main” lid in the case of PaL, follows the 
movement of another little domain (from Asp21 to Glu28 in PcL 
and from Asp20 to Tyr27 in PaL). This small domain in both cases 
is constituted by 2 β sheets. These sheets flex toward the core of 
the enzyme generating the necessary space for the lid movement. 
On the other hand, the two antiparallel β sheets (D-domain) that 
structurally distinguish PcL from PaL stabilise the potential 
second lid of PcL with supplementary hydrogen bonds (Figure 
3.34).  
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Figure 3.34: Hidrogen bonds that stabilise the putative second lid of PcL. 
 
The high number of weak bonds acting on this cooperative lid in 
PcL stabilizes significantly its conformation, subsequently, despite 
the strong homology, the lid activation of PcL is entrusted by a 
single lid domain only. The stabilising effect of the D-domain 
explains the different activation time required by the two 
enzymes. The different evolution of these clearly phylogenetically 
related lipases is nevertheless fascinating and could be topic of 
further studies in the future. 
 
 
3.5.1.3 Classical MD on Humicola lanuginosa lipase 
 
Classical MD simulations have been applied on bacterial lipases 
also, representing a different taxa in the lipase family. The HlL 
was chosen for this purpose. Crystal structures of this enzyme are 
available in both open and closed conformations as mentioned at 
the beginning of this chapter. These structures should allow to 
verify the quality of the simulated conformational changes. As 



3.LIPASES 

107 
 

briefly mentioned in paragraph 3.2.6, comparing the open 
structure of the protein with the closed one it is evident that the 
main difference is represented by the position of the lid domain 
only (Figure 3.8), without any other significant difference.  
Differently to PcL and PaL, the lid is much smaller, composed by 
residues from Gly82 to Ile90, but only residues from Ser83 to 
Glu87 show a remarkable difference in terms of spatial position in 
the open and close conformations. The lid is stabilized in its open 
conformation by several hydrogen bonds between different 
residues of the lid and different aminoacids of the nearest domain 
just behind it. The two most important hydrogen bonds are 
between Ser85 and Asp62 and between Asn88 and Asp62. The 
rest of the lid is stabilized by seven other hydrogen bonds, making 
this part of the domain basically fixed (Figure 3.35). This is 
particularly relevant, since not the entire domain is mobile, mainly 
because of these seven H-bond interactions. 
 

 
Figure 3.35: hydrogen bonds that stabilize the mobile part of the lid of 
HlL. 

 
HlL (PDB 1DTE) was put, like in the other cases, in the centre of 
a 80 X 80 X 80 Å3 cubic system and explicitly solvated with 
water. Afterwards the system was minimised and equilibrated with 
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a 500 ps of molecular dynamic simulation in NPT conditions. 
During this equilibration step the enzyme was kept restrained in 
its position. 
After equilibration the restrain on the enzyme was removed. MD 
simulation was calculated for 10 ns in NPT conditions. The 
system was then minimised and equilibrated by 500 ps of MD 
simulation in NPT conditions. 
The results of the trajectory analysis show that the lid movement 
is reproducible and the final achieved conformation demonstrated 
to be reliable, since during the last equilibration phase it remains 
stable in the closed position. The trajectory of the simulation was 
used to investigate the minimum distance between Ser85 and 
Asp254, which showed that the lid closure takes about 3 ns, and 
the total lid movement is about 10 nm. 
The analysis of the calculated closed conformation shows that the 
lid is stabilized in its position by the establishment of new 
hydrogens bonds (Figure 3.36) between Ser83 and His258 and 
Arg84 that can establish interaction with Gly266 or with Cys268. 
 

 
Figure 3.36: Hydrogen bonds that stabilize HlL in its closed conformations. 
 
The calculated closed conformation was superposed with the 
crystal one (Figure 3.37) in order to prove the quality of the 
simulation result. 
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Figure 3.37: Superimposition of the crystal structure of HlL (PDB 1TIB) 
and the calculated one by classical MD simulation; in the green box the lid 
domain. 
 
The comparison proves the quality of the simulation; some 
differences are observable especially in the lid domain area. These 
differences are expected since lid is the most mobile part of the 
protein and they are still small enough to prove the quality of the 
simulation.  
The equilibrium of the MD trajectory is clearly drifted towards the 
closed conformation of the enzyme, cinfirming the tendency of 
inactivation in water environment. At he end of the trajectory the 
lid covers the hydrophobicity of the active site, increasing the 



3.LIPASES 

110 
 

polar surface of the enzyme, as demonstrated by surface analysis 
described above. Since the simulation is calculated in water, this is 
the driving force of the deactivation process. The loss in 
hydrophobicity of the surface represents an energy gain for the 
enzyme immersed in a polar environment, while the open 
conformation, remark by a more hydrophobic situation, is 
energetically favored in hydrophobic environment or at the 
interface. 
 
 
3.5.2 Steered MD simulations 
 
The classical MD application to lipase inactivation proved to be 
able to reproduce what it is possible to indirectly derive 
experimentally. Nevertheless, in one case it was not possible to 
observe the complete inactivation process because of the 
computational cost needed and in the successful cases, still at least 
10 ns were necessary to be simulated. Ten ns of lipases classical 
MD simulation in explicit solvent condition can take several days 
of calculation time, even if performed on modern computers. This 
makes application of classical MD scheme not particularly 
intriguing and definitely too far from a high throughput 
application. Therefore, in order to reduce the computational cost 
of such studies a different scheme was designed. Non-equilibrium 
MD can accelerate the observation of lid movements by 
constantly perturbing the equilibrium of the simulated system. A 
force vector was put on the lid to accelerate the lid movement and 
increasing the probability of observing the phenomenon. 
The attention was focused particularly on the force calibration and 
direction, since the aim was to accelerate the 
activation/deactivation movement but not to influence it too much, 
nor to induce undesired structural alterations on the protein 
structure. The lid’s closure movement is exactly the opposite of its 
opening movement but from a practical point of view it is easier 
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to simulate the deactivation process. This is due to the fact that the 
lid closure (enzyme inactivation) happens in polar media, such as 
water, which is the easiest case of solvation and parameterization 
for an MD run. All the systems were parameterized using the 
GROMOS force field57 and all the steered MD simulations were 
performed starting from enzymes in their open conformation in 
water environment, applying a fine tuned force to observe lid 
closure mechanism. 
 
 
3.5.2.1 Steered MD on Pseudomonas cepacia lipase 
 
Classical MD simulations on PcL did not permit to observe 
inactivation in water. It was obvious to test the approach on this 
enzyme first. New simulations on this enzyme were performed 
with a different protocol in order to observe the desired 
phenomenon in a reduced simulation time. 
The PcL’s lid was described in detail in paragraph 3.5.1.1, but the 
description is reported again here below, for making the analysis 
easier to follow.  
This lid is similar to a common door with two well distinguishable 
hinges, the lid hinges are constituted by hydrogen bonds on its 
ends. The first one is fixed by hydrogen bonds formed between 
His114 and Ser271, and between Gly 116 and Ser271. On the 
other hand, the second hinge is due to hydrogen bonds between 
Thr150 and Ala24, and Ser152 and Asp21. This lid has an arch 
shape with its first half (from Gly116 to Pro131) more rigid and 
stabilised by 2 hydrogen bonds, between Ser117 and Leu167 and 
between Asp121 and Thr169. The second half of the arch (from 
Thr132 to Leu149) is stabilised by just one hydrogen bond 
between Asp144 and Ala160 (Figure 3.25). 
During this steered MD simulation a force of 0.3 nm/ps2 was 
applied on the lid region including residues from Ile148 to 
Leu134. Concerning the force direction, it was calculated starting 
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from the Cα of Ala141 to the Cα of Ala247 (Figure 3.38). 
 

Figure 3.38: Vector force applied on PcL; on the bottom the secondary 
structure of the enzyme in its open conformation (PDB 1YS1), in the red 
box representation of the hydrogen bonds that stabilize the lid; in the 
green box representation of the vector orientation. 
 
The simulation was performed starting from the open 
conformation of the enzyme. PcL (PDB 1YS1) was put in the 
centre of an 80 X 80 X 80 Å3 cubic system and solvated with 
water. The system was first minimised and equilibrated with a 500 
ps of molecular dynamic simulation in NPT conditions, during 
this equilibration step the enzyme was keep restrained in its 
position. 
Afterwards the force was applied and the restrain on the enzyme 
was removed. A small region opposite to the lid, from Ala1 to 
Tyr4, was freezed in its Cartesian position during the simulation to 
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avoid protein rotation caused by the force. MD simulation was 
performed for 1.5 ns in NPT conditions. At the end of this 
trajectory, the force was removed and also the freezing block. The 
system was then minimised and equilibrated with 500 ps of MD 
simulation in NPT conditions. 
Despite the simulation has been calculated several times, the 
steered MD simulation on this enzyme was not successful. It was 
not possible to observe a correct lid closure mechanism. Different 
forces, changing in strength and direction were applied, but the 
only result was a structural distortion. 
The impossibility to successfully simulate the deactivation 
mechanism of PcL defines this lipase as an outlier if compared to 
the rest of the family members. As already discussed in paragraph 
3.5.1.2 its structural similarity to PaL can be the source of an 
explanation. In fact, PaL is substantially identical but its 
activation/deactivation is a concerted conformational change of 
two different domains, which make it apparently easier and faster. 
PcL at the contrary, besides having a big lid, apparently 
significantly flexible, probably follow a much more complex 
machinery. 
 
 
3.5.2.2 Steered MD on Humicola lanuginosa lipase 
 
The same steered MD protocol was applied on HlL also. The 
availability of crystal structure of both active and inactive state of 
the enzyme made the validation of the simulation possible. The 
starting point of the study was the evaluation of the point of force 
application, before proceeding with the simulation. Lid 
description analysis was performed again in order to clarify the 
vector force application. The lid is stabilized in its open 
conformation by several hydrogen bonds between different 
residues of the lid and different aminoacids of the nearest domain 
just behind it. The two most important hydrogen bonds are 
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between Ser85 and Asp62 and between Asn88 and Asp62. The 
rest of the lid domain is stabilized by seven other hydrogen bonds, 
making this part of the domain basically fixed. This is particularly 
relevant, since not the entire domain is mobile, mainly because of 
these seven H-bond interactions (Figure 3.35).  
For these reasons, the vector was put on the flexible lid region 
between Ser85 and Asn88 (Figure 3.40). The vector force had to 
be intense enough to accelerate the movement of the mobile part 
of the lid but also weak enough to assure a correct and not 
distorted movement. A trial and error strategy was applied, 
validating the result after each run by comparison with available 
crystal structures. After several tests an acceptable force was 
identified in 0.3 nm/ps2. 
The force vector direction was oriented from Ser85 toward 
Asp254 (considering the coordinates of the Cα of the residues) 
which lie exactly on the opposite sides of the active site entrance. 
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Figure 3.40: Vector force applied on HlL; on the bottom the secondary 
structure of the enzyme in its open conformation (PDB 1DTE), in the red 
box representation of the hydrogen bonds that stabilize the lid mobile part; 
in the green box representation of the vector orientation. 
 
The simulation was performed starting from the open 
conformation of the enzyme (PDB 1DTE). HlL was put in the 
centre of a 80 X 80 X 80 Å3 cubic system and explicitly solvated 
with water. Afterwards the system was minimised and equilibrated 
with a 500 ps of molecular dynamic simulation in NPT conditions. 
During this equilibration step the enzyme was kept restrained in 
its position. 
After equilibration, the force was applied and the restrain on the 
enzyme was removed. Cartesian coordinates of a small region 
opposite to the lid, comprising Glu1 and Val2, were kept constant 
during the simulation, to avoid rotation of the whole protein in 
reaction to the application of the force vector. MD simulation was 
calculated for 2 ns in NPT conditions. 
At the end of this trajectory, the force and the Cartesian constraint 
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were removed. The system was then minimised and equilibrated 
by 500 ps of MD simulation in NPT conditions. 
The results of the analysis show that the lid movement is 
reproducible and the final achieved conformation demonstrated to 
be reliable, since during the last equilibration phase it remains 
stable in the closed position. The trajectory of the steered MD 
simulation was used to investigate the minimum distance between 
Ser85 and Asp254, which showed that the lid closure takes about 
750 ps with the application of this specific force. For the rest of 
the simulation time the lid position is quite stable even if the 
vector is still acting on it (Figure 3.41). This behaviour proves that 
the force applied was strong enough to just accelerating the 
closure process while not causing structural distortions, or other 
artefacts on the system. In this case the extension of closure 
movement, regarding its mobile part, was of about 9 Å (distance 
from the initial 19 Å to about 10 Å). During the last 250 ps of the 
simulation the measured Ser85-Asp254 distance was slightly 
increasing, despite the force. The final equilibration step stabilized 
it at around 11 Å. 
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Figure 3.41: Steered MD simulation of HlL analysis; minimum distance 
between Ser85 and Asp254.  
 
The calculated structure was superimposed with the PDB 1TIB 
structure (HlL in its closed conformation) in order to compare the 
results obtained from the simulation with the data coming from 
the crystal structure (Figure 3.42). 
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Figure 3.42: Superimposition of the calculated structure of HlL, in blue, 
with the crystal structure of the same enzyme (PDB 1TIB), in red; the lid is 
highlighted in the red box. 
 
The comparison between the two structures demonstrates the good 
quality of the calculated structure. The two structures are quite 
similar. Some negligible differences are however visible in the lid 
domain where major differences could be expected as it was the 
most stressed part of the protein during the simulation. A 
quantitative comparison can be achieved by the Root Mean 
Square Deviation (RMSD) calculations which compute the 
differences in terms of spatial position among two structures. The 
RMSD for the crystal HlL against the calculated one was 1.32 Å. 
The detailed RMSD for each residue (Figure 3.43) shows that the 
most different domain between the two structures was represented 
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by the residues constituting the lid domain, whereas the rest of the 
protein is almost identical. These minimal differences are 
expected because even if the applied force was accurately tuned a 
little deformation of the stressed region is not avoidable. However 
these differences cannot be considered as significant artefacts they 
are not evidence of bad quality of the simulation. Nevertheless 
particular attention has to be used during the interpretation of 
steered MD simulations results. 
 

 
Figure 3.43: RMSD of HlL, The RMSD for each residues shows that the 
two proteins have almost the same structure, except for the lid domain, in 
the red box, where there are some differences. 
 
Looking more closely at the calculated conformation it is clear 
that the lid is stabilized in its position by the generation of new 
weak interactions, one between Ser83 and His 258, and another 
between Arg84 and both Gly266 and Cys268 (Figure3.44). 
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Figure 3.44: Calculated structure of HlL in its closed conformations, weak 
interactions that stabilised the lid in its closed form are highlighted in the 
red box. 
 
Comparing the results obtained with the classical MD simulations 
described before, no significant differences emerged. These two 
simulations converge substantially to the same results. 
The steered MD simulation produces an efficient lid movement 
with a significant gain in terms of computational time. 
 
 
3.5.2.2 Steered MD on Candida rugosa lipase 
 
Steered MD was used to study CrL, applying the same strategy 
used for HlL described above. Again, structures of CrL are 
available in both open and closed conformations from PDB 
(1CRL and 1GZ7 respectively). CrL has a big lid domain formed 
by residues from Glu66 to Ser94. Comparing open and closed 
crystal structure there is no evidence of lid sub-domains 
characterised by different mobility, as seen in the previous case. 
The lid is stabilized all along its length by three hydrogen bonds 
formed with aminoacids placed in the nearest domain just behind 
it. These three hydrogen bonds are due to the interaction between 
Glu67 and Gly295, Lys75 and Asn292, Gln83 and Glu287 (Figure 
3.45). A force of 0.3 nm/ps2 was put on the lid region from Glu71 
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to Ala89; this region comprises two of the three lid stabilising 
hydrogen bonds. 
The force direction calculation was performed considering the Cα 
coordinates of Val86, which is one of the lid residues, and Ile453, 
which is a residue positioned on the opposite site of the active site 
cleft (Figure 3.45). 
 

Figure 3.45: Vector force applied on CrL; on the bottom the secondary 
structure of the enzyme in its open conformation (PDB 1CRL), in the red 
box representation of the hydrogen bonds that stabilize the lid, aminoacids 
in licorice mode; in the green box representation of the vector orientation, 
aminoacids in licorice mode. 
 
Following the same strategy applied in the case of HlL, the 
simulation was performed starting from the open conformation of 
the enzyme (PDB 1CLR). CrL was put in the centre of an 80 X 80 
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X 80 Å3 cubic system and solvated with water. The system was 
then minimised and equilibrated with a 500 ps of molecular 
dynamic simulation in NPT conditions, with the enzyme kept 
restrained in its initial position. 
Afterwards the force was applied and the restrain on the enzyme 
was removed. A small region opposite to the lid, from Ser94 to 
Asn500, was freezed in its initial cartesian position during the 
simulation, to avoid protein rotation as a reaction to the 
application of the force. MD simulation was performed for 1.5 ns 
in NPT conditions. At the end of this trajectory, the force and the 
Cartesian constraint were removed. The system was then 
minimised and equilibrated with 500 ps of MD simulation in NPT 
conditions. 
The analysis of the results shows that the lid is stable in its 
position after the last equilibration step and remains in its closed 
conformation. The trajectory of the MD simulation was 
investigated measuring the minimum distance between Val86 and 
Ile453 (figure 3.46). The lid closure movement takes about 150 ps 
under the action of the force vector. After the closure is 
completed, it remains stably in the closed conformation for the 
rest of the simulation, even if the applied force is still acting on it. 
As previously stated, this behaviour proves that the force applied 
was just accelerating the closure process and was not causing 
destabilization of the whole structure. In this case the extension of 
closure lid movement was about 12 Å, significantly bigger than 
the cases inspected above. 
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Figure 3.46: Steered MD simulation of CrL analysis; minimum distance 
between Val86 and Ile453. 
 
The calculated structure was superimposed with the PDB 1GZ7 
structure (CrL in its closed conformation) in order to compare the 
results obtained from the simulation with the data coming from 
the crystal structure (Figure 3.47). 
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Figure 3.47: Superimposition of the calculated structure of CrL, in blue, 
with the crystal structure of the same enzyme (PDB 1GZ7), in red; lid is 
highlighted in the red box; friezed domain in the green box. 
 
The comparison between the two structures demonstrates the high 
quality of the simulation. Some differences in the lid domain are 
actually present, but they are due to the structural stress caused by 
force application. Nevertheless the calculated lid conformation 
was still acceptably structured. There were some appreciable 
differences also in a loop on the surface of the enzyme opposite to 
the lid that corresponds to the freezed part during the simulation. 
This loop seems to be very mobile and the difference is caused by 
the freezing procedure. RMSD calculations for the crystal CrL 
against the calculated structure resulted into a value of 2.74 Å. 
The detailed RMSD for each residue (Figure 3.48) shows that the 
major differences between the two structures were represented by 
the lid domain and by the freezed domain which has the highest 
RMSD. The total RMDS value is surely affected by the 
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hyperflexibility of the freezed domain since the rest of the two 
structures were almost identical. 
 

 
Figure 3.48: RMSD of CrL, the RMSD for each residues shows that the 
two proteins have almost the same structure, except for the lid domain, in 
the red box, and the friezed domain in the green box. 
 
 
3.5.3 MD simulations using the MARTINI force field 
 
MARTINI is a coarse grain (CG) force field. The use of CG 
models in a variety of simulation techniques has proven to be a 
valuable tool to reduce the time and the length scale of the studied 
systems. A large diversity of CG approaches is available; they 
range from qualitative, solvent-free models, through more realistic 
models with explicit water, to models including chemical 
specificity.61, 62 MARTINI force field, has also been developed in 
close connection with atomistic models; however its philosophy is 
different. Instead of focusing on an accurate reproduction of 
structural details at a particular state for a specific system, 
MARTINI aims for a broader range of applications without the 

                                                 
61 M Venturoli, M M Sperotto, M Kranenburg, B Smit, Phys Lett, 2006, 437, 1. 
62 M Mùller, K Kastov, M Schick, Phys Lett, 2006, 434, 113. 
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need to re-parametrize the model each time. It was designed by an 
extensive calibration of the chemical building blocks that 
constitute the force field, using thermodynamic data as a 
reference, in particular oil/water partitioning coefficients. The 
same concept has also been applied by the widely employed 
united atoms GROMOS force field.57 The use of a consistent 
strategy for the development of compatible CG and atomic level 
force fields is of additional importance for its use in multiscale 
applications.63 
Another important feature of this CG force field is determined by 
its simple molecule parameterization which makes MD 
simulations performed with MARTINI extremely fast in terms of 
computational time. This time gain is due to the less accuracy of 
the force field definition. Compared with fine grain force fields, 
MARTINI needs just a few numbers of particles to define the 
same system as briefly explained in paragraph 3.5. 
The application of CG forcefield to simulate a conformational 
process governed by a few intramolecular weak interactions is 
extremely challenging. The reason for that is the dramatic 
simplification of the atomistic description in the CG forcefield. 
Nevertheless MARTINI demonstrated to be particularly 
successful in simulating molecular events influenced by the 
surrounding environment. Moreover the reduction of 
computational cost would make the application of this procedure 
particularly appealing as a support to the experimental practice.  
 
 
3.5.3.1 MARTINI MD simulation on Humicola lanuginosa 
lipase 
 
Considering the above mentioned limitations that the application 
of this simulation intrinsically possesses, it was necessary to focus 

                                                 
63 J W Chu, G S Ayton, S Izvekov, G A Voth, Mol Phys, 2007, 105, 167. 
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the attention to the simplest possible case study. The HlL enzyme 
was selected since it resulted as the most successful in the other 
MD approaches. HlL was defined in the force field using specific 
tools. The enzyme was put in the centre of a cubic space of the 
same dimension of the previous cases (521000 Å3). Afterwards 
the system was completely filled with water (the weight of one 
water particle in MARTINI is 72 Da because it represents four 
real water molecules). After a minimization step the protein was 
restrained in its position and the system was equilibrated with 1 ns 
of molecular dynamic simulation. The restrain on the protein was 
then removed, and subsequently to a new minimization step, the 
system was subjected to a 100 ns MD simulation. 
The simulation trajectory was analyzed once again measuring the 
minimum distance between Ser85 and Asp254 (Figure 3.49). The 
analysis of this trajectory generated by this type of simulation is 
more complex in respect to other MD protocols because of the 
intrinsic properties of the force field which generate simulations 
with a high noise. This noise is due to the force field derived 
system simplifications, the simulated particles are less defined and 
consequently less controlled than particles of fine grain force field 
definitions. In other words, the number of weak interactions truly 
taken into account is way lower than the ones calculated by fine 
grained force fields therefore the vibration of the system particles 
results much more intense. In fact comparing the same simulation 
performed in GROMOS and in MARTINI the average RMSD of 
the whole protein during the dynamics is about five times higher 
for the MARTINI system definition. 
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Figure 3.49: Minimum distance between Ser85 and Asp254 during the 
MARTINI MD simulation. 
 
The interpretation of the analysis shows that a movement of about 
0.5 nm seems to appear after 30 ns of simulation, but this is not in 
agreement with previous simulations, steered and classical MD, 
during which the lid movement is completed within 1 ns and 7 ns 
respectively. The noise level made any other consideration 
impossible. 
The complete analysis of the results led to the conclusion that 
MARTINI lacks the necessary accuracy to be applied in the study 
of such a fine conformational process. 
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3.5.4 Other MD simulations using the MARTINI 
force field 
 
Understanding the factors that can influence lipase activation is as 
important as gaining knowledge on the lid movements. It is 
obvious that important information for a full comprehension of the 
lipase nature can be obtained by investigating its behaviour in its 
natural operating conditions. 
The operating environment can influence not only the activation 
phenomena but also the lipase localization in the medium. As 
described above, lipases are polarized enzymes and this feature is 
responsible for their orientation and localization, especially if they 
are put in heterogeneous systems. A correct enzyme orientation 
and localization is an important variable that is necessary to take 
into account. For instance, polymers in the catalysis environment 
can influence the orientation of the enzyme’s active site towards 
the solvent or towards the solid phase. At water/oil interface a 
lipase will locate presumably in the middle of the two phases with 
the active site oriented towards the non polar phase. It is perfectly 
understandable that if the enzyme is too strongly attracted towards 
the polymer, the active site will be less accessible to soluble 
substrates or, on the other hand, if the catalytic machinery is 
completely immerse in a non polar phase it cannot act on 
molecules solvated in the aqueous phase. 
In silico simulations of lipase orientation are significantly 
complicated from an operational point of view because of the time 
scale for the phenomenon observation is much longer than the one 
needed for observing conformational changes, but they do not 
require the same precision needed for the studies of the lid 
movements. For these reasons, the application of MARTINI force 
field appeared particularly suitable. 
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3.5.4.1 MARTINI interface simulation 
 
The generation of the interface environment started with the 
definition of a cubic space big enough to include both the 
interface solution and the enzyme that has to be simulated. 
Usually for a simulation of a single, medium weight lipase the 
cubic space was set to 80 Å X 80 Å X 80 Å. Afterwards the 
enzyme was put in the system in a random position. Initially the 
cube was filled with all water molecules. The water in MARTINI 
is parameterized as a single sphere representing four water 
molecules (weight of 72 Da). This cube filled of water molecules 
was then minimised and equilibrated by a 500 ps of MD 
simulation, during which the enzyme structure was restrained in 
its original Cartesian position. 
The hydrophobic phase was simulated afterwards; octane was 
chosen for the purpose. Octane molecules were added replacing 
water molecules in the cube and since this solvent is 
parameterized as two beads, two water spheres were replaced by 
one octane molecule. Octane was added in the quantity necessary 
to replace two thirds of the water particles in order to have enough 
space for the enzyme in each phase and to have an equimolar 
water/octane solution. 
After the substitution (the octane molecules were randomly added 
in the box) the solvent box needed to be equilibrated for creating 
the interface. After this step, the cube was re-minimised and 
subjected to MD simulation for 1 ns, an equilibration step during 
which the lipase was restrained in its position. At this point the 
interface was ready. 
Starting from this point the enzyme was free to move and to orient 
itself at the interface. Different simulations of 10 ns each were 
performed changing the starting position of the enzyme in order to 
assure that the same enzyme orientation was achieved starting 
from different situations. These type of studies were performed on 
two enzymes: CaLB and PcL. These proteins were selected 
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because PcL is one of the investigated lipases with the highest 
hydrophobic surface while CaLB represents the opposite situation. 
In each trajectory, for both enzymes, the simulation proved that 
the interface was stable and enzymes were able to orient their 
active site toward the hydrophobic phase represented by octane. 
The correct orientation time depends on the starting position of 
the enzyme but in all the cases it takes place in the first 3 ns. 
After the orientation phenomena, in all the simulations, enzymes 
started to rotate on its axis randomly in clockwise or 
contraclockwise direction and changing frequently the rotation 
direction (figure 3.50). This observation was particularly 
intriguing, since it seems like the enzymes were “trying to found 
something to eat (to catalyse). This behaviour is highly 
reproducible and it might have entropic reasons concerning 
diffusion of reactants and products in and out of the active site. 
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Figure 3.50: Enzyme oriented at the interface; in blue the water phase, in 
yellow the octane phase, in green CaLB with the active site toward the 
hydrophobic phase, the black line represents the enzyme axis, the red 
arrow indicates the enzyme rotation. 
 
These simulations demonstrate that the MARTINI force field is 
perfectly able to simulate enzyme orientation phenomena, 
building blocks which is parameterised with are perfectly able to 
take into account differences in terms of hydrophobicity. These 
features of the force field can be used in various applications 
which are based on non bonding interactions. Next step for taking 
advantages from these types of simulation is the parameterization 
of more complex systems, with different solvents, several 
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enzymes and functionalized polymers. The parameterization of 
these polymers is particularly interesting because it can allow to 
make predictions in terms of orientation of enzymes during an 
immobilisation procedure or in terms of proteins separation during 
a chromatography purification. The loss of accuracy of these CG 
force field is not compromising information concerning 
intermolecular interactions and it takes strong advantages in terms 
of calculation speed. 
 
 
3.5.4.2 MARTINI polymer simulation 
 
Nevertheless immobilization procedure, performed in order to 
enhance the protein stability, should be rationally programmed 
since the enzyme orientation is a key factor of to achieve the best 
enzymatic performances. An immobilized enzyme can truly 
improve its stability, but when the enzyme is bonded to a solid 
phase with a wrong orientation the accessibility of the active site 
can be compromised. The idea was to evaluate the possible 
enzyme orientation during an immobilization procedure. The 
simulation of big systems with important intermolecular 
interaction was performed once again with the employment of 
MARTINI force field. The first step of this procedure was the 
polymer definition. A commercial polymer, based on methacrylic 
units was selected for this simulation challenge (Figure 3.51). 
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Figure 3.51: Simulated polymer. On the left an example of polymer sphere; 
on the right polymer single repeated unit polymer. 
 
The correct polymer simulation in MARTINI starts with the 
polymer definition. This process is significantly complex because 
the polymer structure represents an unusual chemical specie for 
this force field, although MARTINI is in theory perfectly suitable 
for its simulation. In order to select the correct building block and 
to faithfully reproduce the right polymer behavior, a repeatable 
polymer unit of a commercial immobilization polymer was first 
defined in the GROMOS force field and simulated for 5 ns in 
vacuum.  
Also the polymer GROMOS definition was not an automatic 
procedure, but in this case some tools such as the Dundee 
PRODRG2 server64 helps during this delicate parameterization. 
MARTINI particles are defined focusing particularly attention to 
the non-bounded interactions defined by energy non-bounded 
interactions calculated by means of Lennard-Jones potential 
energy function.65 There are just four particle types definition in 
the MARTINI force field considering the polarity, each particle 
type is differentiated is other four or five sub classes concerning 

                                                 
64 A W Shuettelkopf, D M F van Aalten, Acta Crystallog, 2004, D60, 1355. 
65 J E Jones, Proc R Soc Lon A, 1924, 106, 463. 
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the possibilities to establish hydrogen bonds (Table 1.2). 
 

 
Table 1.2: Level of interaction indicates the well depth in the LJ potential: 
O, E= 5.6 kJ/mol; I, E=5.0 kJ/mol; II, E=4.5 kJ/mol; III , E=4.0 kJ/mol; IV, 
_ ) 3.5 kJ/mol; V, E=3.1 kJ/mol; VI, E=2.7 kJ/mol; VII, E=2.3 kJ/mol; 
VIII, E=2.0 kJ/mol; IX, E=2.0 kJ/mol. The LJ parameter δ E= 0.47 nm for 
all interacion levels except level IX for which δ E=0.62 nm. Four different 
CG sites are considered: charged (Q), polar (P), nonpolar (N), and apolar 
(C). Subscripts are used to further distinguish groups with different 
chemical nature: 0, no hydrogen-bonding capabilities are present; d, 
groups acting as hydrogen bond donor; a, groups acting as hydrogen bond 
acceptor; da, groups with both donor and acceptor options; 1-5, indicating 
increasing polar affinity. 
 
The results of the GROMOS simulation were used as a template 
for the MARTINI definition. Each particle characteristics and 
each correlation with the other particle of the molecule has to be 
accurately regulated. MARTINI particle selection was based on 
the chemical characteristics of the molecule moiety defined by the 
MARTINI particle. Afterwards each bond distance, angle and 
dihedral was deeply investigated by mapping the molecule 
behavior during the reference GROMOS trajectories in order to 
reproduce the same behavior in the MARTINI definition. 
This step of the work was particularly tedious because each one of 
these parameter has to be defined with a try and error approach for 
each bond, angle or dihedral. The verification of the correct 
parameterization were achieved by 5 ns of MARTINI MD 
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simulation and the behavior of the molecule was compared with 
the reference force field simulation. 
The repeatable polymer unit only was correctly and completely 
parameterized in the MARTINI force field because of the long 
definition time required, the polymer definition is still under 
development (Figure 3.52).  
 

 
Figure 3.52: Polymer definition; polymer chemical structure on the left; on 
the right MARITNI force field definition. 
 

 

3.7 Conclusions 
 
Grid method was successfully applied in the study of chemical-
physical properties and demonstrates the role of the lid movement 
which is involved in lipase activation process. Concepts 
comprehended by MIFs applications lead to deeper investigation 
by molecular dynamics simulations. MD simulations results prove 
to be suitable to reproduce enzymes behaviours. Steered MD 
simulations were successfully applied to simulate accelerate lid's 
movement. This technique reduces the computational time 
necessary to observe enzyme activation. Difficulties in this 
application are due to the delicate compromise between the event 
acceleration and the necessity to do not influence the nature of the 
process and to avoid structural distortions. Moreover the direction 
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of the acceleration has to be carefully selected to avoid effects in 
contrast with the natural lid dynamics. 
Classical MD simulations are able to simulate the same 
phenomena anyhow and they must be considered the standard 
reference for those kinds of investigations. They proved to be 
useful in the study of lipases activation/deactivation, at least when 
the mechanism can be observed within a reasonable time frame. 
On the other hand, the computational power requested by this 
simulation type is at least ten times larger than in the case of 
steered MD simulation. Moreover, an accurate tuning of force 
vector to be applied on the lid, with the aim of reducing the 
energy barrier of the conformational change initiation, ensure an 
absolute quality of conformations and dynamic, perfectly 
comparable to the classical MD scheme. It must be taken into 
account, however, that the delicacy of the parameters settings 
requested by steered MD simulations requires time for testing to 
optimize vector force regulations. 
Concerning lipases, different activation/deactivations mechanisms 
were highlighted by simulation results. Huge lid bacterial lipases 
demonstrate complex lid movement, where more than one protein 
domain are usually involved during the activation process, while 
eukaryotic lipases, with a considerable higher molecular weight, 
usually have a small lid domain acting with more simple 
movements governed just by a few hydrogen bonds. These 
behaviours can lead to a new lipases classification based on lid 
movement complexities. 
Finally, MARTINI force field was successfully applied to more 
complex simulations, namely in interface simulations. This 
promising force field shows all its potential where several weak 
bonds are involved like in division coefficient problems or 
enzymes orientation. After an initial time consuming part 
necessary for system parameterization, simulations based on this 
force field result very fast. The loss of accuracy due to the 
intrinsic characteristics of the force field is balanced by a huge 
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gain in terms of computational time. Nevertheless, MARTINI 
demonstratd to be inappropriate to simulate phenomena finely 
governed by few weak interactions, such as activation/inactivation 
mechanisms. Applications of MARTINI force field are strongly 
suggested where the simulation of the problem does not require 
high accuracy like intermolecular events investigations while for 
intermolecular studies a fine grain force field like GROMOS 
represents a better choice. 
 

 
3.8 Experimental section 

 
The protein structures used for this study were retrieved from the 
Protein Data Bank. Initial structures were pretreated in pymol by 
removing the crystallographic water molecules and sugar 
molecules eventually present (usually N-acetylglucosamine) in the 
pdb file. Hydrogen atoms were added in dependence on the force 
field characteristics. 
 
 
Homology modelling 
 
Aminoacid sequences of the enzymes generated by homology 
modelling were taken from UniProtKB database. Homology 
search was performed on SRS@EBI server by using BlastP 
algorithm.66 Chain alignment were performed with the align 
algorithm of the MOE program by using the Blosum 30 amino 
acid substitution matrix with a tree-based method.67 
The construction of the three-dimensional models was carried out 
with the MOE homology modelling module calculating 10 

                                                 
66S F  Altschul, W Gish, W Miller, E W Myers, D J Lipman, J Mol Biol, 1990, 
215,403. 
67S  Henikoff, J G Henikoff, Proc Nat Acad Sci U S A, 1992, 89, 10915. 



3.LIPASES 

139 
 

intermediate models for each enzyme. The obtained structures 
were ranked by the structure quality Z score of the MOE and one 
model for each enzyme was chosen on the basis of the Z score. 
The quality of the generated models was assessed by 
Ramachandran plot. 
Final structures were parametrised in AMBER94 force field68 and 
refined with the program MOE by energy minimisations, using 
both steepest descendent and conjugated gradient algorithms, and 
molecular dynamics simulations in NVT conditions. 
 
 
Surface analysis 
 
Matrices of interaction energies (MIFs) were calculated by using 
the GRID methods with WATER and DRY probes. For each 
structure the calculation was performed simulating a grid with 0.5 
Å knots distance. The calculated MIFs were visualized with the 
program Gview setting -4.00 kcal for WATER interactions and -
0.25 kcal for DRY interactions. 
 
 
Classical MD simulations 
 
All the steered molecular dynamics simulations were performed 
using the software GROMACS with the GROMOS96 53a6 force 
field. 
Protein structures were implemented in the force field in gro file 
format by using the automatic tool of the GROMACS software 
which also add the necessary hydrogens. Proteins were solvated 
with explicit water in virtual cubic boxes of 512 nm3. All the 

                                                 
68 W D  Cornell, P Cieplak, C I Bayly, I R Gould, K M Merz, D M Ferguson, D 
C Spellmeyer, T Fox, J W Caldwell, P A Kollman. J Am Chem Soc. 1998, 117, 
5179. 
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dynamics were performed in a NPT environment simulating the 
temperature of 300 K and keeping the pressure constant 
(Berendsen-thermostat and pressure),69 cut-off for electrostatic 
interaction was setted at 1.4 nm and the limit for the van der 
Waals interactions setted at 1.4 nm. Only for the minimization 
procedures the PME algorithm70 (Particle Mesh Ewald and not a 
simple cut-off) was used for the calculation of the electrostatic 
interactions setting the limit at 1.0 nm and using both steepest 
descendent and conjugated gradient algorithms and performing a 
steepest descendent step every 100 conjugated gradient step. 
Minimization were performed until the maximum force was 
smaller than 10 kJ/mol·nm or at least for 1000 steps. Systems 
were minimized every molecular dynamics calculation. 
Molecular dynamics analysis were performed with GROMACS 
tools; distances measurements were calculated using g_mindist 
which computes the minimum distance between two residues and 
using g_rms which computes the RMSD between two structures; 
the results were visualized using Grace software. 
 
 
Steered MD simulations 
 
All the steered molecular dynamics simulations were performed 
using the software GROMACS with the GROMOS96 53a6 force 
field. 
Protein structures were implemented in the force field in gro file 
format by using the automatic tool of the GROMACS software 
which also add the necessary hydrogens. Proteins were solvated 
with explicit water in virtual cubic boxes of 512 nm3. All the 
dynamics were performed in a NPT environment simulating the 
temperature of 300 K and keeping the pressure constant 
(Berendsen-thermostat and pressure),69 cut-off for electrostatic 

                                                 
69 H J C Berendsen, J P M Postma, A DiNola, J R Haak, J Chem Phys, 1984, 
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interaction was setted at 1.4 nm and the limit for the van der 
Waals interactions setted at 1.4 nm. Only for the minimization 
procedures the PME algorithm70 (Particle Mesh Ewald and not a 
simple cut-off) was used for the calculation of the electrostatic 
interactions setting the limit at 1.0 nm and using both steepest 
descendent and conjugated gradient algorithms and performing a 
steepest descendent step every 100 conjugated gradient step. 
Minimization were performed until the maximum force was 
smaller than 10 kJ/mol·nm or at least for 1000 steps. Systems 
were minimized every molecular dynamics calculation. Forces 
intensity were selected by a try and error approach. Directions 
were calculated considering the Cα coordinates of the two 
residues for each enzyme. 
Molecular dynamics analysis were performed with GROMACS 
tools; distances measurements were calculated using g_mindist 
which computes the minimum distance between two residues and 
using g_rms which computes the RMSD between two structures; 
the results were visualized using Grace software. 
 
 
MD using the MARTINI force field 
 
Molecular dynamics simulations were performed using the 
software GROMACS with the MARTINI force field. 
Protein structures were implemented in the force field in gro file 
format by using the necessary scripts available on the MARTINI 
web site71 and the DSSP program72 for the necessary secondary 
structure definition. Proteins were solvated with explicit water in 
virtual cubic boxes of 512 nm3. All the dynamics were performed 
in a NPT environment simulating the temperature of 300 K and 
                                                                                                            
81, 3684. 
70 P Ewald, Ann Phys, 1921, 369, 253. 
71 http://md.chem.rug.nl/cgmartini/index.php/home. 
72 K Wolfgang, C Sander, Biopolymers, 1983, 22, 2577. 
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keeping the pressure constant (Berendsen-thermostat and 
pressure),69 cut-off for electrostatic interaction was setted at 1.4 
nm, the limit for the van der Waals interactions setted at 1.4 nm 
and the time step for integration set to 4 fs (usually this value is 
set to 2 fs). Minimization procedures were performed using cut-
off for electrostatic interactions setting the limit at 1.4 nm and 
using steepest descendent algorithm. Minimization were 
performed until the maximum force was smaller than 10 
kJ/mol·nm or at least for 1000 steps. Systems were minimized 
every molecular dynamics calculation. 
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4.1 Introduction   
 
The possibilities to perform enzymatic transformations in pure 
(neat) organic solvent is an accepted and applied property of 
several enzyme class.1 Moreover the use of organic solvents in 
biocatalysis applications is a fundamental requirement that can be 
due to different factors like substrate solubility as well as the 
reaction type.2 
Usually enzymes show a more stable behaviour in pure organic 
solvent than in water-organic mixtures.3 In these kind of mixtures 
water acts as a molecular lubricant while in neat solvent enzymes 
result very rigid.4 Therefore is plausible that in organic media 
enzymes have the naturally trend to unfold but not the necessary 
flexibility to do it.5 
The stability of an enzyme is affected by many factors, such as 
temperature, pH, oxidative stress, the solvent, binding of metal 
ions or co-factors, and the presence of surfactants. The effect of 
organic solvents is important since the presence of such solvents 
is often essential when applying enzymes for the production of 
fine chemicals.6 
It is often assumed that enzymes with improved thermal stability 
also become more resistant to other denaturing factors. However, 
this correlation is not absolute, especially not when it comes to 
denaturation processes which do not, or to a minor extent, depend 

                                                 
1 A M Klibanov, Nature, 2001, 409, 241. 
2 V G H Eijsink, S Gaseidnes, T V Borchert, B van den Burg, Biomolecular 
Engineering, 2005, 22, 21. 
3 S Lapanje, Physicochemical Aspects of Protein Denaturation, 1978, Wiley, 
New York. 
4 J A Rupley, G Careri, Adv Protein Chem, 1991, 41, 37. 
5 A J Straathof, S Panke, A Schmid, Curr Opin Biotechnol, 2002, 13, 548. 
6 V G H Eijsink, S Gaseidnes, T V Borchert, B van den Burg, Biomolecular 
Engineering, 2005, 22, 21. 
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on folding stability.7 
There is still a lack of knowledge concerning the factors that can 
influence enzyme stability, especially in aqueous-organic 
mixtures. Nevertheless there is a clear evidence about the need of 
a predicting tool, or at least of a set of rules to speed up the 
process design when dealing with aqueous-solvent, pure solvent, 
or multiphasic systems. The application of hybrid molecular 
modelling and pure experimental studies could actually shed light 
on this matter. 
From the computational point of view MD simulations can 
represent a suitable tool for investigation of enzyme stability, 
although the simulation of a complex chemical system can push 
the computational cost too further for a really applicable tool. 
Nevertheless, as deeply described in chapter 3, coarse grained 
force field based MD, more precisely MARTINI force field based 
MD, demonstrated to be valuable in the simulation of lipases in 
bi-phasic systems, while reducing significantly the calculation 
time.  
It must be underlined that enzyme stability is a complex 
phenomenon. Instability can be well represented by the loss of 
tertiary structure, but unfolding usually happens in many tens of 
nanosecond, also in the most disadvantageous conditions, 
therefore it is necessary to increase significantly the simulation 
time. MARTINI has a strong parameterization and testing in case 
of proteins and it is reasonably cheap in terms of computational 
resources. For that reasons it seems an ideal candidate for the 
development of a computational scheme for predicting enzyme 
stability.  
 
 

 

                                                 
7 S D’Amico, J C Marx, C Gerday, G Feller, J Biol Chem, 2003, 278, 7891. 
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4.2 General strategy 
 
Stability of lipases to alcohol is of particular interest. Being 
hydrolases, the reaction they catalyse usually produces alcohol, or 
uses alcohol to synthesize an ester. A remarkable number of 
industrial applications, especially in the food industry and in the 
biodiesel production, would benefit from a rational approach to 
the improvement of lipase stability to alcohol. Experimental 
measurements can be time consuming and significantly costly, 
therefore a support tool for predicting solvent stability would be 
of great utility for the experimental practice. 
This is why the stability of CaLB in water/propanol  mixtures was 
taken as a case study. 
Enzyme rigidity, as explained in the introduction above, is 
supposed to be strictly related with enzyme stability. Structural 
flexibility is a feature that can be easily simulated and measured 
by analysing the outcome of extended MD simulations. The 
rigidity of a given enzyme can be measured simulating, for a 
sufficiently long time, the protein in operational conditions and 
subsequently calculating the Root Mean Square Deviation 
(RMSD) of the structure. This is a qualitative parameter, 
obviously affected by the force field parameterization. 
Nevertheless, as soon as a set of simulations is calculated under 
the same protocol and using the same force field, the structural 
RMSD of the protein can represent a powerful score of enzyme 
stability. For that reason, performing simulations in different 
aqueous-organic mixtures and extracting RMSD for each 
condition, makes possible to obtain estimations of the relative 
enzyme stability in the different conditions, as soon as the force 
field has an appropriate parameterization for the system of 
interest. 
In order to transform these qualitative values into true quantitative 
estimations, RMSD data were correlated with the residual activity 
of the enzyme measured after experimental incubation in the same 
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conditions. Regression between the two sets of data enables the 
calculations of enzymes stability models, that can find practical 
application in the set up of biocatalysed synthetic processes. 
 
 

4.3 RMSD calculations 
 
Calculations of RMSD were performed analysing the outcome of 
each MD simulation performed in different conditions. The 
extensive simulations of different aqueous-organic mixtures are 
the typical cases where the MARTINI force field8 represents a 
first choice. MARTINI force field guarantees minimum 
computational cost and it is particularly suitable for simulating 
different solvents and solutions.  
The simulation space was defined as a 512 nm3 cube which has in 
its geometrical centre the protein already defined into the 
MARTINI force field. The remaining volume was filled with all 
water molecules. It is important to remember that water in 
MARTINI is parametrized as a single sphere which represents 
four real water molecules, for this reason a MARTINI water 
sphere weight is 72 Da. After a minimisation step the system was 
minimised with a 1 ns MD simulation during which the enzyme 
was restrained in its position. 
The organic fraction was simulated using propanol. Propanol 
molecules were added replacing water molecules in the cube; this 
solvent is parametrized as one spheres also, thus four water 
molecules were replaced by one propanol molecule. Propanol was 
added in different molar fractions depending on the desired 
aqueous-organic mixture concentration taking into account. The 
replaced water fraction was calculated considering the nature of 
water sphere: for example a solution formed by 10 water beads 

                                                 
8 S J Marrink, H J Risselada, S Yefimov, D P Tieleman, A H de Vries, J Phys 
Chem B, 2007, 111, 7812-7824. 



4.SOLVENT STABILITY 

148 
 

and 10 propanol beads represents a solution of 20 % of propanol 
because each water sphere simulate four water molecules. After 
the substitution (the propanol molecules were randomly 
positioned in the box) the solvent needs to be equilibrated for the 
homogeneous solution generation. Therefore the cube was re-
minimised and subjected to MD simulation for 1 ns. During this 
equilibration step the lipase was restrained again in its position. At 
this point the solution is ready. 
Afterwards, the restrain on the enzyme was removed and each 
solution system was subjected to extended MD simulation. 
 
 

4.4 CaLB RMSD calculation 
 
A first stability model was generated on the enzyme CaLB. 65 to 
100 ns MD simulations of CaLB in different water/propanol 
solutions were performed and global structural RMSD was  
measured  during the trajectory. The data (Figure 4.1) show that in 
all the simulations RMSD value reaches a plateau after 
approximately 40-50 ns and this value is strongly dependent on 
the concentration of propanol. The simulations reproduced 
remarkably well the expected decrease of stability with the 
increase of propanol concentration in the mixture. For instance in 
50% propanol the enzyme reaches a 2nm RMSD, increased to 
3nm in 100% propanol. Obviously those values are indices of real 
protein denaturation. At the contrary, the RMSD value of the 
100% water simulation is about 0.7 nm, perfectly compatible with 
a completely and correctly folded structure. 
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Figure 4.1: RMSD calculation of CaLB in different water/propanol 
simulations; the percentage indicates the propanol quantity.  
 
 

4.5 Stability model 
 
Commercial preparation of native lipase (Lipozyme CaLB-L, 
purchased from Novozyme) was previously subjected to a dialysis 
procedure in order to eliminate all the undesired compounds that 
can potentially interfere with activity assay such as preserver or 
stabilizer; the final preparation was solved in Kpi buffer 0.1 M pH 
7.0. Afterwards the dialyzed protein solution was characterized in 
terms of protein content and specific activity; more in detail the 
protein solution concentration was 13.11 mg/mL with a specific 
activity of 385.28 U/mg.  
Different solution of water/propanol mixtures were prepared in 
order to study the enzyme stability. Each stability test was 
performed in a final volume of 5 mL of the desired solvent 
mixture using 65.55 µg of enzyme at constant temperature of 30 
°C. Enzyme activity assay were performed at different time for 
each solvent mixture tested. 
A general qualitative agreement is evident comparing the 
experimental measurement with the results of the MD simulations. 



4.SOLVENT STABILITY 

150 
 

The experimental data (Figure 4.2) show that the residual activity 
decreases with the increase of the propanol concentration. In pure 
water the protein retains more than 80 % of its activity after 1500 
minutes, while residual activity decreases to 20 % for the 100 % 
propanol condition. 
 

 
Figure 4.2: Experimental CaLB stability in different water/propanol 
mixtures, residual activity expressed as percentage. In blue roundes 0 % 
propanol, in violet crossess 25 % propanol, in red squares 50 % propanol, 
in green triangles 75 % propanol  and in charcoal rhombus  100 % 
propanol. 
 
The regression of the average RMSD achieved after 40 ns of 
simulation and the residual activity after 1500 minutes allowed to 
find out a linear correlation (with a correlation coefficient R2 of 
0.96) between the two sets of data. The outcoming linear equation 
represents a simple yet useful stability model (Figure 4.3) for 
CaLB. The impressive correlation between the experimental data 
and the simulations demonstrates the effectiveness of the 
computational approach for predicting such a complex 
mechanism.  
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Figure 4.3: CalB stability model, on top left the straight line equation with 
its relative R2 value. 
 
 

4.6 Conclusions 
 
These models prove that the RMSD can be used as a parameter to 
evaluate the enzyme stability in different solvent conditions. 
These stability models can be easily generated for any lipase with 
just two information needed: the protein structure and the 
possibility to experimentally measure residual activity in different 
conditions. 
With the availability of these kind of models it will be possible to 
select in advance the suitable  solvent mixture in order to have a 
sufficiently high enzyme activity and perhaps to meet industrial 
requirements. 
The scheme demonstrated its potential in the case of CaLB, but it 
will be applied to other enzymes in the prospected work, to assess 
the general applicability of the concept. 
Another possible step in this direction will be the identification of 
structural parameters that can be directly used as descriptors of 
enzyme rigidity, but for that purpose several steps in the 
comprehension of structural mechanisms of protein folding still 
appear necessary. 
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4.7 Experimental section 
 
 
MD simulations 
 
All the molecular dynamics simulations were performed using the 
software GROMACS with the MARTINI force field. 
Protein structures were implemented in the force field in gro file 
format by using the necessary scripts available on the MARTINI 
web site9 and the DSSP program10 for the necessary secondary 
structure definition. Proteins were solvated with explicit water in 
virtual cubic boxes of 512 nm3. All the dynamics were performed 
in a NPT environment simulating the temperature of 300 K and 
keeping the pressure constant (Berendsen-thermostat and 
pressure),11 cut-off for electrostatic interaction was setted at 1.4 
nm, the limit for the van der Waals interactions setted at 1.4 nm 
and the time step for integration set to 4 fs (usually this value is 
set to 2 fs). Minimization procedures were performed using cut-
off for electrostatic interactions setting the limit at 1.4 nm and 
using steepest descendent algorithm. Minimization were 
performed until the maximum force was smaller than 10 
kJ/mol·nm or at least for 1000 steps. Systems were minimized 
before every molecular dynamics calculation. RMSD were 
calculated with the GROMACS tool g_rms. 
 
 
 
 
 

                                                 
9 http://md.chem.rug.nl/cgmartini/index.php/home. 
10 K Wolfgang, C Sander, Biopolymers, 1983, 22, 2577. 
11 H J C Berendsen, J P M Postma, A DiNola, J R Haak, J Chem Phys, 1984, 
81, 3684. 
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Dialysis 
 
2 mL of commercial enzyme preparation Lipozyme CaLB-L 
purchased from novozyme, was diluted in Kpi buffer 0.01 M pH 
7.0 to a final volume of 10 mL. The preparation was then put in a 
dialysis membrane (14 kDa pore size), and dialyzed versus Kpi 
buffer 0.01 M pH 7.0. The procedure was performed for 24 hours 
with renewer of the washing buffer every 8 hours. 
 
 
Protein determination 
 
The protein content of Lypozyme CaLB-L was determined by 
using bicinchoninic acid kit 
(SIGMA) - Pierce method, using BSA as standard protein. 
 
 
Activity assay 
 
The assay is based on the hydrolysis of glycelyl tributyrate into 
butyric acid. 30 mL of an emulsified solution 0.17 M of glyceryl 
tributyrate was added with 50 µL of dialyzed enzyme solution at 
constant temperature of 30 °C. The butyric acid produced by the 
enzymatic hydrolysis was measured by reaction with NaOH 0.1 
M. The reaction was followed during time. One activity unit 
corresponds to the amount of enzyme that hydrolyses 1 µmol of 
glyceryl tributyrate in one minute at 30 °C. 
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5.1 Introduction 
 
Different molecular dynamics strategies were described in the 
previous chapters. Important information concerning potential 
MD applications on the study of enzymes activation and stability 
were already gained. Although in many cases the goals of 
reaching a quantitative estimation of the desired properties and of 
keeping the computational cost as low as possible have been 
achieved, there are other cases where MD still shows strong 
limitations. The investigation of catalytic properties, such as 
enzyme selectivity, are certainly one of those cases. In the study of 
enzyme-substrate interactions MD surely represents the reference 
for conformational analysis, but it still is unsatisfactory in  the 
generation of robust quantitative predictions of enzyme 
(enantio)selectivity, even when applying very detailed simulation 
schemes, such as free energy perturbation. Very complex 
approaches can give practical indications, but they are too 
computationally expensive and their outcome cannot usually be 
considered more that a qualitative evaluation of enzyme kinetics. 
For that reasons the need for completely different approaches is 
emerging.  
In the present chapter an original protocol based on the concept of 
3D-QSAR (three-dimensional Quantitative Structure-Activity 
Relationships) is described. The idea comprises the combination 
of molecular modelling techniques, molecular descriptors 
calculation and statistical regression to a set of available 
experimental data by means of multivariate statistics. 
Once again Candida antarctica lipase B (CaLB) was taken as a 
case study. Despite its extensive application and huge number of 
publications based on it, its peculiar enantioselectivity is still very 
hard to be predicted quantitatively.1 This makes it the perfect 

                                                 
1 R J Kazlauskas, A N E Weissfloch, A T Rappaport, L A Cuccia, J Org Chem, 
1991, 56, 2656. 
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candidate for the development of the concept.  
The CaLB active site is located in a deep and relatively small 
cavity if compared to the total size of the enzyme. The binding 
site of the enzyme has a funnel shape and it contributes to drive 
the substrate in the active site assuring the correct orientation. 
Like all the lipases, CaLB presents a catalytic site constituted by 
the aminoacidic triad Ser105-His224-Asp187. The so called 
catalytic machinery is completed by the hoxyanion site (Thr40, 
Gln106) which makes possible tetrahedral intermediate (TI) 
formation. The spatial geometry of the hoxyanion site makes 
possible the formation of three hydrogen bonds with the carbonilic 
oxygen of the substrates, which is negatively charged in the TI. 
The CaLB lid corresponds to a little α helix formed by few amino 
acids. Therefore it can just partially limit the active site access, as 
a matter of fact CaLB does not show interfacial activation.2 CaLB 
enantioselectivity also depends on its particular active site, which 
is composed by two distinct subsite: the acylic one and the 
alcholic/aminic one (Figure 5.1).  
 

                                                 
2 M Skiot, L De Maria, L Chatterijee, A Svendsen, S A Patkar, P R Ostergaard, J 
Brask, ChemBioChem, 2009, 10, 520. 
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Figure 5.1: CaLB schematic division of the active site in the two distinct 
subsite. 
 
These two subsites receive different moieties of the substrate. 
Moreover a stereospecific pocket (Thr42, Ser 47, Trp104) which 
is involved in the enantiomer discrimination does also exist 
(Figure 5.2).1 
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Figure 5.2: Schematic CaLB active site with the representation of the 
stereospecific pocket, and different enantiomer orientation during the 
catalysis, L is the large substituent and M the medium one. 
 
 

5.2 General Strategy 
 
Is generally accepted that the enantioselectivity depends on the 
interactions that a given molecule  establishes with enzyme’s 
active site.1 Therefore, a promising approach is represented by the 
calculation and comparison of the interactions established by a set 
of different substrates.  
The idea is taking a number of substrates, calculating their 
conformations in the enzyme active site, discard the enzyme and 
focus the analysis on the comparison of the substrates. The use of 
a set of experimental measurements and multivariate analysis for 
the regression of the structural differences among the compound 
of the set will finally allow the generation of a mathematical 
model for the prediction of the desired enzyme kinetic property. 
In this perspective a molecular descriptor able to identify the 
interaction capabilities of the compounds is necessary. MIF 
(Molecular Interaction Field), obtained by GRID analysis, 
contains an entire set of information based on the interaction 
possibilities of a molecule. If MIFs of two molecules differ in a 
particular space region it should be possible in theory to identify 
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this difference as the source of different kinetics by enzyme 
action. Moreover this should guide to focus the study of enzyme-
substrate interactions in specific areas, shedding light on the 
molecular basis of substrate (enantio)recognition. Of course, 
spatial orientation and conformation of compounds affect heavily 
the corresponding MIF. Therefore it is of basic importance to pay 
the necessary attention to conformational analysis and spatial 
alignment of the molecules in the data set. It has been 
demonstrated that MIF based 3D-QSAR models can be extremely 
predictive in the case of penicillin amidase.3 
When developing a 3D-QSAR model, the first step is always 
choosing the data set. The set of compounds used as a reference 
will affect enormously the final outcome. The training set was 
chosen combining seven racemic amines and twelve racemic 
alcohols and their corresponding experimentally measured values 
of enantiometic ratio (E) in the CaLB catalysed synthesis 
reaction.4, 5, 6 (Table 5.1).  
 
 
 
 
 
 

                                                 
3 P Braiuca, A Buthe, C Ebert, P Linda, L Gardossi, Adv Synth Catal, 2006, 348, 
773. 
4 L E Iglesias, V M Sanchez, F Rebolledo, V Gotor, Tetrahedron:Asimmetry, 
1997, 8, 2675. 
5 K A Skupinska, E J McEchern, I R Baird, R T Skerlj, G J Bridger, J Org 
Chem, 2003, 68, 3546. 
6 J Ottosson, L Fransson, K Hult, Protein Sci, 2002, 11, 1462. 
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Table 5.1: Data set of the resolution of amines on the left and alcohols on 
the right. 
 
The choice fell on these reactions among the numerous examples 
reported in the literature, because they meet the necessary 
requirements in terms of molecular diversity and E values range 
and homogeneity of distribution, crucial for the generation of a 
consistent 3D-QSAR model.7 The distribution of enantiomeric 
ratio values throughout the data set is well balanced and structural 
diversity of nucleophiles is significant. Some difficult cases are 
included, such as nucleophiles bearing halogen substitution in the 
medium-sized chain, which are not resolved by CaLB because of 
polarity effects.7 

In a general 3D-QSAR model there is the biunivocal 
correspondence of each compound of the data set with a given 

                                                 
7 P Braiuca, L Knapic, V Ferrario, C Ebert, L Gardossi, Adv Synth Catal, 2009, 
351, 1293. 
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“activity”. When facing the prediction of enantioselectivity, the 
“activity” is represented by E values that are properties of a 
couple of compound, not of each single molecule. Therefore it 
was not possible to apply the same scheme used in the case of 
PGA.3 
The novelty of the concept was the generation of a novel class of 
MIF-based molecular descriptors, melting the information of two 
enantiomers into a single molecular entity,making possible the 
biunivocal association with a E value. The accomplishment of this 
task was achieved with the calculation of a second generation 
MIF, the Differential MIF (DMIF). It is basically the 
mathematical difference between the MIFs of the two enantiomers 
of each couple, calculated by a simple matrix subtraction. The 
DMIF represents a sort of molecular hybrid, a virtual molecule 
comprising all the information of each enantiomer couple. In 
particular it is very useful because it amplifies by definition the 
structural differences of the two enantiomers.  
In fact, if a given variable of the MIF carries the same information 
for both enantiomers (the same value of interaction energy for the 
two enantiomers), the corresponding DMIF value will be zero. At 
the contrary if the variable has a different value for the two 
enantiomer, the generated DMIF variable will be as big as the 
difference between the original MIFs values. Therefore the DMIF 
assumes null values in the zones where the structures two 
enantiomer are identical and it assumes high values where there 
are significant differences. This is very important because big 
structural differences indicate different interactions with the 
enzyme active site. 
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5.3 Active conformers calculations 
  
The structures of the compounds of the data set were manually 
generated and minimized in the AMBER 99 force field8 using the 
software MOE.9 
The first and the most delicate step of this investigation involved 
the calculation and the assessment of the tetrahedral intermediates 
for each acylation reaction by molecular modelling techniques. 
For this purpose, the corresponding esters and amides were 
docked into the active site of the lipase and the best conformers 
were chosen on the basis of the results of the docking algorithm 
scoring function (London dG) as well as by evaluating the 
geometric compatibility with the initiation of the catalytic 
mechanism. Different criteria were taken into account during the 
structural compatibility assessment: I) the correct orientation of 
the acylic and nucleophilic portion of the conformer inside the 
hydrophilic/hydrophobic pocket of the active site; II) the distance 
of the catalytic Ser105 from the carbonyl carbon of the substrate, 
which must be compatible with the nucleophilic attack; III) the 
correct orientation of the carbonyl oxygen toward the Thr40 and 
Gln106 that constitute the oxyanion hole. The tetrahedral 
intermediates were then simulated by forming a covalent bond 
between the hydroxy group of the catalytic serine (Ser105) and 
the carbonyl carbon of the acylated substrate, thus resulting in the 
corresponding oxyanions. 
After the formation of the tetrahedral intermediates the obtained 
systems were minimised and each enzyme-substrate complex was 
subjected to 300 ps of molecular dynamic simulation using the 
software MOE (NVT conditions at the temperature of 300 K and 
implicit water solvation), in which only amino acid residues 
within a 10 Å radius sphere from the catalytic serine (Ser105) 

                                                 
8 J Wang, P Cieplak, P A Kollman, J Comp Chem, 2000, 21, 1049. 
9 MOE 2006.08, Chemcomp, Montreal, Canada. 
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were allowed to move. The rest of the protein was kept 
constrained. The simulations generated energy stable complexes 
within the first few tens of ps of the simulations. 
The simulation during time of enzyme-substrate complexes allows 
a complex evaluation of the interaction that occurs during 
substrate stabilization in the active site. Moreover, it was possible 
to investigate the space and the conformational freedom of the 
substrates and of the enzyme either. The comparison between the 
enantiomeric couples allows to identify the main structural basis 
of CaLB enantioselectivity.7 For instance, in the case of amides 
with high E values, important structural differences were observed 
between the TIs of the fast- and the slow-reacting enantiomers. As 
shown in Figure 5.3 for substrate 1, the TI of the fast-reacting 
enantiomer is embraced inside the hydrophilic pocket on the right 
hand portion of the active site (the so-called alcoholic sub-site).  
 

 
Figure 5.3: Initial (red) and final (yellow) conformation of the slow-
reacting (S), on the left, and the fast-reacting (R)  nantiomer, on the right, 
of substrate 1. 
 
On the other hand, the TI of the slow-reacting enantiomer remains 
at the outer region of the active site which makes the second 
nucleophilic attack unfeasible. Another evident discriminating 
factor is illustrated in 5.4, which represents the outcome of the 
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MD based conformational search of the two enantiomers of 
substrate 8.  
 

 
Figure 5.4: Energy minima conformations of the fast-reacting (blue) and 
the slow-reacting (yellow) enantiomers for the acylation of compound 8 
obtained by MD simulations. The different orientation of the oxyanions (in 
red) is clearly visible: only the fast-reacting enantiomer is stabilized 
through the formation of hydrogen bonds (dashed lines) with Thr 40 and 
Gln 106. 
 
In the case of the slow-reacting enantiomer, the minimum energy 
conformer is not able to perfectly place the oxyanion in the 
oxyanionic hole, with a consequent energy destabilization as 
compared to the fast-reacting enantiomer where stabilizing 
hydrogen bonds take place between the oxyanion and the Thr40 
and Gln106 residues of the oxyanion hole. In this case the MD 
causes the evolution of the slow-reacting enantiomer towards an 
unproductive conformation, as defined by the criteria used for the 
docking scoring. This means that the initiation of the reaction for 
that enantiomer is unfavorable and consequently the E values is 
very high. Although this leads to the comparison of productive 
and unproductive conformations in the QSAR, this dramatic 
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conformational difference is certainly correlated to the high E, so 
that both the productive and unproductive conformers must be 
included in the model.7 
 
 

5.4 DMIFs calculation 
 
The outcome of every MD simulation was carefully analysed and 
conformers with the lowest potential energy (as calculated by MD 
algorithm for the whole unconstrained part of the system, 
therefore within the active site region) were selected as the best 
simulations of the different TIs and they were used for the 
construction of the 3D-QSAR model. The enzyme substrate 
complexes were superimposed by overlaying the catalytic triad 
and the oxyanion hole of all selected configurations. This was 
necessary because after the MD simulations the Cartesian 
coordinates of the systems were perturbed, although the 
conformational changes of the active site residues were always 
negligible. The protein structures were discarded after the removal 
of the covalent bond between the substrates and the catalytic 
serine, while the overall geometry of the substrate conformers was 
kept unaltered, to generate a so-called “supermolecule”, which 
consisted in all the 38 active conformers (19 enantiomeric 
couples), both R  and S. GRID analysis was then performed by 
setting the dimensions of the grid to contain all the conformers 
and each of them was analyzed separately (14 Å x 24 Å x 21 Å, 
knots every 1 Å). In order to take into account the most important 
non-covalent interactions, two probes with diverse physico-
chemical properties were used in the calculation of the molecular 
interaction fields, namely the WATER and the DRY probe. The 
WATER probe describes and quantifies the dipolar interactions 
and the hydrogen bond formation, whereas the DRY probe 
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considers all the hydrophobic interactions.10 The DMIF 
calculation was performed in a matrix differential procedure 
where each variable of the MIF of the slow-reacting enantiomer 
was mathematically subtracted from the corresponding variable of 
the MIF of the fast-reacting enantiomer (Figure 5.5).  
 

 
Figure 5.5: The procedure used for the calculation of the DMIFs taking as 
example the case of interaction energies between the water probe and the 
two enantiomers of compound 16. The mathematical difference between 
matrices was calculated to generate a single “differential matrix”. 
 
It must be noted that the redundancy of the information contained 
in the calculated MIFs was cut by operating a “zeroing values 

                                                 
10 J Pleiss, Enzymes in Lipid Modification, Wiley-VCH Verlag, Weinheim, 2005, 
85. 
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pretreatment”: all the positive/unfavourable interaction energies 
were set to zero, because every cluster of positive variables (nodes 
of the MIFs grid) has a corresponding cluster of negative variables 
that contains information that is identical from the statistical point 
of view. This procedure led to the quantitative evaluation of the 
differences in interactions between the two enantiomers and both 
polar and hydrophobic regions of the active site. Consequently, as 
explained before, DMIFs present null values in the 
correspondence of areas where the enantiomers establish identical 
interactions with the active site, whereas high absolute values 
indicate that the enantiomers establish different interaction 
patterns with the enzyme.7 
 

 

5.5 Generation of the mathematical model 
 
The energy values contained in the “differential matrices” of the 
DMIFs were statistically analyzed to generate PLS11 models able 
to correlate the quantitative differences between the two 
enantiomers with the experimental E values. The three-
dimensional DMIFs are unfolded to form the so called bi-
dimensional X-matrix, where each row corresponds to an 
enantiomeric couple and each column to a MIF grid node, 
matching a specific three-dimensional position. Each column of 
the X-matrix (containing the values of the DMIFs) is an X 
variable and the enantiomeric ratio E is the Y variable (or the 
“dependent” variable). As a matter of fact, molecular interaction 
fields describe the steric and electrostatic properties of substrates 
by sampling the interaction energies at all predefined gridpoints. 
The multitude of gridpoints and, therefore, the quantity of 
variables present in a DMIF can be extremely high even in the 
case of small molecules. Moreover, some of these variables are 

                                                 
11 J Ottosson, L Fransson, K Hult, Protein Sci, 2002, 11, 1462-1471. 



5.STATISTICAL ANALYSIS 

168 
 

more informative than others. Although the procedure of DMIF 
calculation halved the number of objects, the number of 
independent X variables was still unvaried and it amounted to 
24,950 for each couple of enantiomers. Therefore, the first stage 
in the statistical analysis was the choice of the most important 
variables and the discarding of the insignificant and redundant 
ones. For this purpose the GOLPE12 program was used. GOLPE is 
a software package largely used for the construction, the 
validation and the interpretation of 3D-QSAR models. It is 
particularly adequate for models with large numbers of variables 
since it has a variety of tools for their selection. Once the DMIFs 
were calculated, all those variables having very low absolute 
values were discarded due to their negligible contribution to the 
quantification of the differences in enzyme-enantiomer 
interactions. Then, variables with a standard deviation close to 
zero were discarded as well because of their small variation 
through all of the DMIFs, that makes them useless in 
discriminating the objects in the data set. A last action was 
performed on the remaining active variables by using the “block 
unscaled weights” algorithm that attributes different weights to all 
blocks of variables giving them the same initial importance in the 
model without modifying the variable scale. This latter step was 
necessary because the polar interaction energies are significantly 
higher in absolute value than the hydrophobic interaction energies, 
therefore the statistical analysis would overestimate their 
importance in the model. Finally, the standard GOLPE procedure 
was applied on these pre-treated data, by employing the D-optimal 
pre-selection and the FFD variable selection algorithm which 
conserved only 568 active variables.13 The multivariate statistical 
analysis was performed on 16 of the initial 19 compounds, by 
performing the PLS regression and five principal components 

                                                 
12 GOLPE 4.5, Multivariate Infometric Analysis srl, Perugia, Italy. 
13 S Raza, L Fransson, K Hult, Protein Sci, 2001, 10, 329-338. 
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were calculated. Three compounds, fulfilling the requirement of 
having small, medium and high E values, were randomly chosen 
and excluded from the training set. The predictivity of the model 
was evaluated by means of the leave-one-out (LOO) cross-
validation method as well as by performing an external validation 
using the GOLPE PLS external prediction on the three compounds 
not included in the training set (Table 5.2).  
 

 
Table 5.2: Comparison between the measured experimental E values and 
the values calculated by the model in the LOO (leave-one-out) cross-
validation procedure applied on the training set. 
 
The predictive correlation coefficient (q2) provides the 
quantitative evaluation of the consistency of the model. The best 
q2 value for the model is 0.76 on the third principal component 
and 99 percent of the variance of the model is explained by the 
first two principal components (expressed by the correlation 
coefficient r2). Although the mathematical model was constructed 
on the basis of an experimental data set with a broad distribution 
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of E values, the algorithm proved to be quite predictive and robust 
as illustrated in (Figure 5.6).  
 

 
Figure 5.6: Predictivity of the model in terms of experimental versus 
predicted E values. 
 
The worst predictions are represented by compounds 16 and 18 
that are, however, characterized by extremely low E values (1.6 
and 1.3. respectively). Because of these two compounds the model 
appears to be more predictive towards compounds having higher 
E values. It is an intrinsic property of any QSAR model to be 
more robust for the compounds in the middle of the activity range, 
simply because this zone is usually more populated. Nevertheless, 
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in all cases the model is able to identify correctly the fast-reacting 
enantiomer and, more importantly, to recognize those couples of 
enantiomers characterized by poor enantiodiscrimination (for 
substrates 16 and 18 the calculated E values are < 15 in both 
cases). The external validation was performed on three additional 
compounds (8, 17, 9) not originally included in the training set 
that were chosen due to their low, intermediate and high E values, 
respectively. For every compound the complete procedure was 
repeated, as described above, in order to generate the molecular 
descriptors (DMIFs). Their E values were then predicted by 
applying the generated 3D-QSAR model. As it can be seen from 
Table 5.3, although the model predicts with good precision the 
ability of the enzyme to enantiodiscriminate within a couple of 
enantiomers (predictivity expressed as q2= 0.78), in the case of 
compound 8 the E value is underestimated.  
 

 
Table 5.3: External validation of the calculated PLS model (q2=0.78) 
towards compounds not included in the training set. 
 
This underestimation was observed also for compounds 2, 10, 11, 
13 and it might suggest that the variables crucial for structural 
discrimination for substrates having low E values are different as 
compared to variables describing substrates with high E values. In 
other words, the 3D-QSAR model is trained on the basis of a 
pattern of interactions which are actually different as compared to 
those taking place in the case of substrates with high E values, and 
this might limit the predictivity of the PLS model. It should be 
noted that in the case of compounds 2 and 13 the underestimation 
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given by the model could be ascribed to the presence of the 
halogen substituent, whose polar character might be measured 
with insufficient precision by the WATER probe. Even though this 
probe can adequately estimate polar interactions that are not 
correlated to hydrogen bonding, the halogen atoms might not be 
described comprehensively by the force field parameterization of 
the WATER probe. Therefore, a second model, specifically trained 
for the prediction of high E values, was calculated in order to 
refine the quantitative predictivity of E values for those 
enantiomers that are efficiently enantiodiscriminated by the 
enzyme. The new data set was constructed by setting the value of 
E= 50 as a threshold since E values lower than 50 correspond to 
enantiomers poorly enantiodiscriminated (examples are 
compounds 3, 5, 6, 15  in Table 5.4). Indeed, the predictivity of 
this second model improved (q2= 0.88) and, as expected, the same 
model was less efficient in predicting the E values for copules of 
enantiomers that are poorly enantiodiscriminated.  
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Table 5.4: Data set used for the calculation of the second model and for its 
validation in terms of predicted E values by the LOO (leave-one-out) cross-
validation procedure (q2=0.88). 
 
This second “specialized” model is based on a larger number of 
variables as compared to the first general model (618 instead of 
568 of the general model) and its increased predictivity suggests 
that the variables involved in the two models are substantially 
different, not only quantitatively. It must be noted that each 
variable corresponds to a specific grid point, therefore to a 
specific Cartesian coordinate in the active site of the enzyme. To 
understand the differences between the two models in deeper 
detail, each single variable was analysed and its position in the 
space refolded. The two models share nearly 25% of the variables 
(125 variables), while they differ for the rest of them. A detail of 
the analysed space with the spatial position of included variables 
is represented in Figure 5.7. It is evident that in the first general 
model the crucial variables are scattered throughout the active 
site, whereas in the second “specialized” model the crucial 
interactions are concentrated in the oxyanion hole and in the 
alcoholic subsite (central and the right-hand part of the molecule).  
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Figure 5.7: Representation of variables utilized for the construction of the 
first general predictive model (left) and the second “specialized” model 
(right). Substrate 8 is shown in both images, as an example. 
 
The analysis confirms what emerged from the conformational 
analysis: for substrates characterized by high E value the slow-
reacting enantiomer either cannot place the oxyanion into the 
oxyanionic hole or it cannot place the alcoholic moiety inside the 
corresponding subsite. As a rule of thumb, when dealing with the 
prediction for a new substrate, the first general model should be 
used to obtain an initial classification of the CaLB 
enantiodiscriminating potential. If the first model predicts a high 
E value, the second specialized model should be used for 
obtaining a more refined quantitative prediction.7 
 
 

5.6 Conclusion 
 

The combination of molecular modelling with multivariate 
statistics constitutes a powerful tool for predicting and also 
interpreting the enantioselectivity of biocatalysts. The remarkable 
flexibility of this “hybrid” computational tool makes it adaptable 
to the solution of different problems as well as to the investigation 
of the molecular basis of enantiodiscrimination. By definition, the 
success of any 3D-QSAR strategy depends strongly on the 
experimental data set used for the training of the mathematical 
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model. Moreover, the generation of the PLS model heavily relies 
on the selection of the most informative variables of the whole 
data set. This statistical procedure is of fundamental importance 
and constitutes one of the bases of the QSAR paradigm. 

 
 

5.7 Experimental section 
 

The protein structure used for this study was retrieved from the 
Protein Data Bank (1TCA). This initial structure was pretreated in 
MOE9 by removing the crystallographic water molecules and two 
molecules of NAG (N-acetylglucosamine) present in the pdb file. 
Hydrogen atoms were added and their position was optimized 
with an energy minimization procedure in the Amber99 force 
field14 in its MOE implementation. Subsequently a minimization 
of the side chains was performed keeping the backbone atoms 
fixed. The substrates were built, minimized and then docked into 
the active site of CaLB by means of the DOCKING module of 
MOE. The docking was performed on a 10 Å radius selected area 
surrounding the active site. The force field used for the docking 
was MMFF94x,15 the charges of substrate atoms were calculated 
at the QM PM3 semi-empirical level, by means of the MOPAC7 
program. The initial positions of the substrates were manually set 
in order to meet the criteria previously reported. For each 
substrate, the conformation presenting the highest score and 
fulfilling the structural requirements for the initiation of the 
enzymatic catalysis, was chosen. Construction of Tetrahedral 
Intermediates All tetrahedral intermediates were sketched bonding 
the hydroxy oxygen of the serine residue (Ser 105) and the 
reactive carbonyl carbon of the substrate. This carbon atom 
changes to a tetrahedral sp3-hybridized configuration. The partial 

                                                 
14 J Wang, P Cieplak, P A Kollman, J Comp Chem, 2000, 21, 1049. 
15 T A Halgren, J Comp Chem, 1996, 17, 490. 
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charges and geometry of this chemical species (the substrate and 
the serine) were calculated by an ab initio algorithm, based on 
DFT-TZVB, by Turbomole.16 In the molecular mechanics 
calculations, the standard MMFF94x atom types were used for the 
atoms of the tetrahedral intermediates, while bond lengths, angles 
and torsions on tetrahedral carbon were constrained to the values 
obtained by the ab initio optimization. 
 
 
Molecular Dynamics 
 
The molecular dynamics simulations were performed using the 
DYNAMICS module of MOE. All the dynamics were performed 
in an NVT environment simulating the temperature of 
approximately 300 K. In order to reduce the calculation time, the 
attention was focused on the relevant part of the system: all the 
atoms of the substrate and the protein residues within a sphere of 
10 _ radius, centered on the catalytic serine (Ser105) were allowed 
to move, all the rest of the system was kept constrained. An 
integration time of 2 fs was used and a frame of the trajectory was 
saved every 10 fs. Each substrate conformation chosen for the 
construction of the data set for the QSAR analysis, was the one 
characterized by the lowest potential energy out of all the frames 
saved in the dynamics database. All enzyme structures chosen by 
these criteria were superimposed with the database viewer 
superpose implementation. The active conformers were than 
extracted. 
 
 
 
 
 

                                                 
16 TURBOMOLE 5, Cosmologic, Leverkusen, Germany. 
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GRID 
 
The GRID analysis was performed on every constituent of the 
data set. The chosen dimensions of the cage were 14 Å X 24 Å X 
21 Å with NPLA (number of grid planes per Angstrong) set to 2 
while the probes used were DRY probe and WATER probe. Once 
the MIFs have been calculated, all the unfavorable interactions 
were set to zero. For the DMIFs calculation a specific algorithm 
was constructed which performs the matrix differential procedure 
for the subtraction of the two MIFs. 
 
 
GOLPE 
 
The pretreatment section of GOLPE was used to perform the 
variable selection. All the variables having an absolute value 
lower than 0.1 for the water probe and 0.03 for the dry probe were 
set to zero and those with standard deviation of less than 0.2 for 
the water probe and 0.06 for the dry probe were discarded. The 
pretreatment was eventually completed with the block unscaled 
weight application. Both PLS models with 5 principal components 
were computed and validated with the LOO (leave-one-out) 
method. The prediction ability of the general model was tested on 
a test set by using the PLS predictions module of the GOLPE 
program. 
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6.1 Introduction 
 
In the previous chapters several different computational 
techniques for the study of lipases were reported. The most of the 
work object of this thesis was based on molecular dynamics and 
on calculation of molecular descriptors and statistical analysis. 
Several different simulation schemes and applications have been 
described, all together representing a powerful set of tools for the 
study of lipases from many different points of view. Nevertheless, 
although in principle the approaches should have general 
applicability, the limitation of application to lipases only cannot 
assess this important aspect. For that reason the combination of 
MD for testing the dynamics of enzyme action and 3D-QSAR for 
constructing quantitative predicting models of enzyme selectivity 
was applied to a completely different enzyme. 
The alcansulfonate monooxigenase is an enzyme with relatively 
unknown properties, extremely different, both structurally and 
from the point of view of the mechanism of action. It catalyses an 
extremely different reaction and it is a cofactor-dependent 
enzyme.  
 

 
6.1.1 The alcansulfonate monooxygenase 

 
In bacteria sulfur is mainly assimilated from inorganic sulfate via 
the cysteine biosynthetic pathway. In nature, where the levels of 
inorganic sulfate may be low, bacteria have to rely on 
organosulfur compounds such as sulfate esters, sulfamates and 
sulfonates as sulfur sources. Under conditions of sulfate 
starvation, Escherichia coli synthesizes the TauABCD and 
SsuEADCB proteins, which cover the full range of uptake and 
desulfonation activities for growth with taurine and a variety of 
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aliphatic sulfonates as sole sources of sulphur.1 Sulfite liberated 
inside the cells from taurine and alkanesulfonates serves as sulfur 
for cell growth. 
SsuD is an FMNH2-dependent monooxygenase, which catalyzes 
the oxygenolytic cleavage of the C-S bond of 1-alkanesulfonates 
by monooxygenation leading to the release of the corresponding 
aldehyde and sulfite. Catalysis is absolutely dependent upon 
oxygen and reduced FMN, the latter of which is provided by the 
associated NAD(P)H:FMN oxidoreductase SsuE.2 SsuD or SsuD-
like enzymes showing high sequence identity to E. coli SsuD, and 
whose function in sulfur-scavenging from varying ranges of 
organosulfur compounds was assessed are found in Bacillus 
subtilis,3 Pseudomonas strains4 and Corynebacterium 
glutamicum.5 Elucidating the detailed catalytic mechanism of 
SsuD is of interest as it will allow shedding light on the unique 
role in C-S bond cleavage of this among microorganisms 
widespread enzyme. 
The 3-dimensional structure of SsuD was solved showing a TIM-
barrel fold as structural core and the location of the active site was 
proposed at the end of the β–barrel based on biochemical 
observations.6 This fold, which is adopted by many enzymes for 
flavin binding7 has been found in all members of the luciferase 
family whose structure have been sold so far. Luciferase LuxAB,19 

                                                 
1 J R van der Ploeg, E Eichhorn, T Leisinger, Review Arch Microbiol, 2001, 
176, 1. 
2 E Eichhorn, J R van der Ploeg, T Leisinger, J Biol Chem, 1999, 274, 26639. 
3 J R van der Ploeg, N J Cummings, T Leisinger I F Connerton, Microbiology, 
1998, 144, 2555. 
4 A Kahnert, P J Vermeij, C Wietek, P James, T Leisinger, J Bacteriol, 2000, 
182, 2869. 
5 D J Koch, C Ruckert, D A Rey, A Mix, A Puhler, J Kalinowski, Appl Environ 
Microbiol, 2005, 71, 6104. 
6 E Eichhorn, C A Davey, D F Sargent, T Leisinger, T J Richmond, J Mol Biol, 
2002, 324, 457. 
7 G K Farber, G A Petsko, Trends Biochem Sci, 1990, 15, 228. 
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long-chain alkane monooxygenase LadA,8 F420-dependent N5,N10 

methylenetetrahydromethanopterin reductase Mer,9 and F420-
dependent secondary alcohol dehydrogenase Adf from 
methanogenic Archaea.10 All use reduced flavin or the flavin 
analogue F420 as a cosubstrate and show high structural similarity. 
The striking homology between SsuD, luciferase and LadA 
translates into highly conserved amino acid residues among these 
proteins where the SsuD active site has been proposed. SsuD’s 
Cys54, His228, Arg297 and Tyr331 find their counterparts in 
luciferase at Cys106, His44, Arg291 and Tyr110, where His44 
mutations produced inactive luciferase.11 The reactive thiol of 
Cys106 was observed in the crystal structure of luciferase-bound 
FMN to project directly towards position C(4a) of the 
isoalloxazine ring, the site of flavin oxygenation.12 They also find 
their counterparts in LadA at Cys14, His311 and Tyr63, where 
activity was completely abolished when mutating His311 and 
Tyr638 as well as in Cys14 mutants of which were unable to 
produce the dimeric assembly required for enzymatic activity. 
SsuD enzymes involved in sulfur scavenging from organosulfur 
sources are synthesized under sulfate-starvation conditions; they 
show a very low content in sulfur-containing amino acids. Cys54 
of E. coli SsuD is remarkably conserved, suggesting that this 
amino acid may play an important role in catalysis of 
alkanesulfonate desulfonation. Labeling of Cys54 in SsuD led to 
inactive enzyme, but the role of this residue was not elucidated.6 
                                                 
8 L Li, X Liu, W Yang, F Xu, W Wang, L Feng, M Bartlam, L Wang, Z Rao, J 
Mol Biol, 2008, 376, 453. 
9 S Shima, E Warkentin, W Grabarse, M Sordel, M Wicke, R K Thauer, U 
Ermler, J Mol Biol, 2000, 300, 935. 
10 S W Aufhammer, E Warkentin, H Berk, S Shima, R K Thauer, U Ermler, 
Structure, 2004, 12, 361. 
11 A J Fisher, T B Thompson, J B Thoden, T O Baldwin, I Rayment, J Biol 
Chem, 1996, 271, 21956. 
12 Z T Campbell, A Weichsel, W R Montfort, T O Baldwin, Biochemistry, 2009, 
48, 6085. 
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Very recently Carpenter et al.13 established by means of 
mutagenesis studies that Cys54 may be directly or indirectly 
involved in stabilizing the C(4a)-hydroperoxyflavin intermediate 
formed during catalysis through hydrogen-bonding interactions.  
 
 

6.2 Enzyme structure 
 
The initial characterization of SsuD did not address the question 
of the enzyme’s reaction mechanism. Also, interactions between 
the enzyme and its substrates were not elucidated when the crystal 
structure of the enzyme was solved: no crystals of enzyme-
susbstrate complexes were obtained. However, many studies have 
been conducted with this enzyme by means of biochemical, 
mutagenesis and spectrometry techniques to get insight into 
enzyme-substrate interactions. 
The work presented here aims at shedding light on the SsuD 
interactions with cofactor and substrates, its most significant 
structural elements, either static or dynamic, determining its 
substrate specificity at molecular level. Moreover, the information 
gathered by molecular docking, molecular dynamics and analysis 
of molecular interaction fields were used for building a QSAR 
model14 for the quantitative prediction of SsuD substrate 
selectivity. 
The lack of knowledge about the enzyme action at molecular level 
required a structural comparison with other members of the same 
enzyme family. The presence of preserved aminoacids in the same 
spatial positions among the active sites of the structures means 
that these residues can play an important role in the enzyme's 
activity and selectivity. 

                                                 
13 R A Carpenter, X Zhan, H R Ellis, Biochim Biophys Acta, 2010, 1804, 97. 
14 P Braiuca, L Boscarol, C Ebert, P Linda, L Gardossi, Adv Synth Catal, 2006, 
348, 773. 
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The structure of SsuD was compared with the structures of highly 
homologous enzymes not only based on their sequence similarity, 
but also in terms of tertiary structure.  
The crystal structure of SsuD was taken from the Protein Data 
Bank (PDB)15 where it is available since July 2002 under the entry 
code 1m41 and having a resolution of 2.3 Å. 
In the asymmetric unit, SsuD appears as a homo-dimer (subunit A 
and B); each subunit consists of a single domain, an eight-
stranded α/β-barrel motif. This fold classifies SsuD as a member 
of the big (β/α)8 TIM-barrel family (Figure 1).6 

 

 
Figure 6.1: Secondary structure of SsuD; subunit A in silver and subunit B 
in charcoal. 

                                                 
15 H Berman, J Westbrook, Z Feng, G Gilliland, T Bhat, H Weissig, I 
Shindyalov, P Bourne, Nucleic Acids Res, 2000, 28, 235. 
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SsuD is an FMNH2-dependent enzyme, but in the 1m41 PDB 
structure there is no co-crystallised reduced FMN cofactor. The 
following members of the (β/α)8 TIM-barrel structures were used 
for the comparison: 

� Bacterial luciferase (PDB 1luc); 
� Long-chain alkane monooxygenase (LadA) co-crystallised 

with FMN (PDB 3b9o); 
� Methylenetetrahydromethanopterin reductase (Mer) co-

crystallised with a different cofactor, namely F420 (PDB 
1z69). 

The first two enzymes, bacterial luciferase and LadA, are 
classified as FMN/FMNH2 monooxygenases and are members of 
the same family along with SsuD. Therefore they presumably 
share a similar catalytic mechanism, since they also share a 
homologous aminoacidic organization within the active site.11 

In particular, the structures 1luc, 3b9o and 1m41 showed after 
superimposition three highly conserved residues: a His, a Trp and 
an Arg (His 11, Trp 196 and Arg 127 fur SsuD; His 44, Trp 194 
and Arg 107 for bacterial luciferase; and His 311, Trp 348 and Arg 
157 for LadA). It was clear that the spatial position of the Arg 
residue is highly conserved, whereas more divergences can be 
seen in the cases of His and Trp (Figure 2). 
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Figure 6.2: Superimposition of the most preserved residues, His, Trp and 
Arg in the active site area among the compared structures: grey balls and 
sticks for SsuD, charcoal balls and sticks for bacterial luciferase and silver 
sticks for LadA. 
 
The alkalinity of the Arg residue plays an important role in the 
stabilization of the phosphate group of the FMN cofactor. As a 
matter of fact, Mer lacks this residue, probably due to a different 
and bulkier cofactor, which steric hindrance is an obstacle for the 
presence of such a residue in this position. 
A Trp residue is located in the middle of the active sites of all 
three enzymes and creates a hydrophobic pocket to accommodate 
the substrates. Moreover, observing the Trp positions in LadA and 
in Mer, it appears evident that its indolic ring stabilizes the 
cofactor by interacting with its isoalloxazine tricycle ring. 
Concerning the role of SsuD's His a valuable explanation was 
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found in a previous publication on Bacterial luciferase, whose His 
44 was proven to be the crucial aminoacid11 for the catalytic 
activity, responsible for the substrate stabilization in the active 
site. Moreover, its distance from FMNH2 seems to be sufficient 
for the accommodation of substrates. 
The spatial variability of this His residue among the superimposed 
enzymes is due to the different substrate specificity spectrum of 
the enzymes. 
 
 

6.3 Surface analysis 
 
In order to map the physical chemical properties, a detailed 
GRID16 analysis of the enzyme surface was performed. Three 
different probe types were used: WATER probe which describes 
and quantifies the dipolar interactions and the hydrogen bond 
formation, DRY probe which describes all the hydrophobic 
interactions and OS, sulphone/sulphoxide probe, necessary for the 
specific substrate affinity of SsuD.  
Looking at the enzyme surface, the prevalence of hydrophilic 
regions is in agreement with the cytosolic origin of the protein; 
nevertheless small hydrophobic regions are present and spread all 
over the surface. A bigger hydrophobic area is located at the 
entrance of the active site, which might have the function of 
facilitating the substrate entrance in the catalytic site and of 
reducing the entropic penalty caused by the expulsion of water 
generated during catalysis (Figure 3). 
 

                                                 
16 P G Goodford, J Med Chem, 1985, 28, 849. 
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Figure 6.3: Isopotential surfaces calculated by the GRID analysis of SsuD,  
the hydrophilic areas are displayed in  grey crosses (-0,7 kcal/mol)  while 
the hydrophobic ones are visualized in charcoal solid surface (-2,5 
kcal/mol). 
 
The molecular interaction fields generated by GRID in the inner 
part of the active site are characterised by the presence of a big 
hydrophobic zone, which is mostly due to Trp 196. This result 
indicates the existence of significant and widespread area, 
characterised by a neat hydrophobicity, mainly due to Trp, that has 
a major role in cofactor stabilization (Figure 4). 
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Figure 6.4: An insight of the active site of SsuD. The hydrophobic zone 
(grey surface) around Trp 196 is clearly visible. 
 
The substrates of alkanesulfonate monooxygenase (SsuD) are 
aliphatic sulphonic acids, the probe OS was therefore used in 
order to simulate the HSO3

- group of the substrate. Alkaline 
residues show high affinity for this probe and since the active site 
contains a few of them, an unambiguous binding position for the 
substrate was not recognisable with this procedure (Figure 5). 
Besides this finding does not give a conclusive evidence for 
formulating a hypothesis about the substrate binding, it still 
represents valuable information. 
 
 
 



6.ALKANESULFONATE MONOOXYGENASE 

189 
 

 
Figure 6.5: The same perspective of the active site of SsuD as in figure 4. 
Areas with affinity for the OS probe are highlighted by the gray surfaces. 
 
 

6.4 Cofactor interaction 
 
The following step of the SsuD analysis was the calculation of the 
interaction with the cofactor. This was made by docking17 and 
molecular dynamics18 of the enzyme-substrate complex. 
As previously stated, SsuD is a homo-dimer in the asymmetric 
unit, and in its crystal structure two active sites are present, one in 
each subunit. A detailed analysis pointed out that they show a 
different conformation: the active site of subunit A seems to be 
more closed than the active site of subunit B. 
 

                                                 
17 T Lengauer, M Rarey M, Curr Opin Struc Boil, 1996, 6, 402. 
18 B J Alder, T E Wainwright, J Chem Phys, 1959, 31, 459. 
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Figure 6.6: Active site of SsuD, closed conformation for Subunit A on the 
left and open for Subunit B on the right. The residue Asp interacts with the 
residue Arg in the closed conformation of Subunit A and with the residue 
Glu in the open conformation of Subunit B. 
 
The conformational differences are mainly due to the interactions 
of three aminoacids: Arg 297, Asp 111 and Glu 21. Arg 297 can 
establish ionic interactions with both acidic residues (Asp 111 and 
Glu 21), switching the active site conformation from closed to 
open state and vice-versa. As a matter of fact, these two different 
states suggest the existence of a dynamic switching mechanism 
ruled by Arg 297 conformational changes (Figure 6). Moreover, 
the enzyme-cofactor interaction may be affected by this switch. 
The cofactor was docked in both active sites (subunit A and B). A 
large number of diverse poses were generated and a relevant 
difference between the two active sites (being in two different 
states) emerged. Therefore an unambiguous pose for the cofactor 
was not determinable with the sole docking simulation. By 
looking at the scoring function (London dG)19 as well as at the 

                                                 
19 MOE 2006.08, Chemcomp, Montreal, Canada. 
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potential energies of the different conformations, it was clear that 
the overall interactions between FMN and the active site of 
subunit A (closed conformation) were more favourable than the 
interactions with the open form of subunit B. 
A further scoring criterion was necessary for screening the 
calculated cofactor conformations. The three-dimensional 
coordinates of LadA co-crystallized FMN was used for this 
purpose. This way it was possible to univocally select one 
conformation satisfying the energy based scoring function and the 
structural requirements derived from the superimposition with 
LadA. Nevertheless, the obtained structure had a high potential 
energy due to its unrefined position, an energy minimisation was 
therefore necessary. 
 
 

6.5 Molecular dynamic simulation of active 
site conformational changes 

 
The enzyme-cofactor interactions were further studied by 
subjecting the enzyme-cofactor complex to ns-scale molecular 
dynamics simulations. 
The enzyme-cofactor minimized complex, with FMNH2 present in 
the active site of subunit A only, was explicitly solvated in water 
and re-minimized using the PME20 algorithm implemented in 
GROMACS21 with GROMOS-96 53a622 force field. The 
generated system was used as input for 20 ns molecular dynamics 
simulation. 

                                                 
20 U Essmann, L Perera, M L Berkowitz, T Darden, H Lee, L G Pedersen, J 
Chem Phys, 1995, 103, 8577. 
21 H J C Berendsen, D van der Spoel, R van Drunen, Comp Phys Comm, 1995, 
91, 43. 
22 C Oostenbrink, A Villa, A E Mark, W F van Gunsteren, J Comput Chem, 
2004, 25, 1656. 
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The study of the active site conformational change was performed 
by analysing the dynamics trajectories focusing on the movement 
of the Arg 297 residue. The initial distance between Arg 297 and 
Asp 111 is about 7 Å; this distance decreases during the 
simulation and reaches equilibrium at the distance of 2 Å in 
approximately 10 ns, after which it remains stable for the rest of 
the time. 
This movement is due to the presence of FMNH2 that perturbs the 
system, which takes approximately 10 ns to reach a new 
equilibrium state. The ionic interactions between Arg 297 and Asp 
111 prevent the expulsion of the cofactor; while the distance 
between Arg 297 and Glu 21 is variable during the entire period of 
the simulation fluctuating between 12 and 3 Å (Figure 7).  
 

 
Figure 6.7: Evaluation of the minimal distances between Arg 297, Asp 111 
and Glu 21 during the 20 ns molecular dynamics simulation of Subunit A. 
 
The results of the simulation of subunit B show an opposite 
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phenomenon: the distance between Arg 297 and Asp 111 is not 
stable and fluctuates between 5 and 12 Å, on the contrary the 
distance between Arg 297 and Glu 21 is stable at 2 Å during the 
entire simulation (Figure 8). 
 

 
Figure 6.8: Evaluation of the distances between Arg 297, Asp 111 and Glu 
21 during the 20 ns molecular dynamics simulation of Subunit B. 
 
This simulation showed that the presence of the cofactor 
influences the progressive stabilization towards the closed 
conformation of the active site, while the empty site remains 
stable in the open state. 
After this simulation the cofactor was removed from subunit A 
and the system was submitted to another MD simulation, to verify 
whether the hypothesized dynamic switch does exist. The 
mechanism was not observed after 20 ns, but increasing the 
simulation time to 100 ns the dynamic switch of Arg 297 was 
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noticeable. In this simulation after approximately 25 ns Arg 297 
breaks its interaction with Asp 111 and establishes new hydrogen 
bonds with Glu 21, the distance between these two residues 
gradually changes from the initial 15 Å to a final distance of 3 Å 
(Figure 9). 
These simulations confirm that Arg 297, Asp 111 and Glu 21 are 
important residues for the enzymatic activity because they are 
responsible for cofactor entrapment. A dynamic conformational 
change of the active site, switching from a closed to an open state, 
due to Arg 297 was also demonstrated. The presence of FMNH2 

undoubtedly stabilizes the active site in the closed conformation, 
while on the other hand the empty active site is energetically more 
stable in its open conformation and therefore accessible for 
cofactor accommodation. Nevertheless the opening-closing 
mechanism is necessary for substrate access and cofactor 
regeneration. 
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Figure 6.9: Evaluation of the minimal distance between Arg264 and Glu21 
during 100 ns MD simulation of subunit A after cofactor removal. 
 
 

6.6 Substrate interactions and selectivity 
 
After having obtained the enzyme-cofactor complex and having 
understood its major structural features and dynamic behaviour, it 
was possible to study the interaction with substrates. SsuD 
catalyses the oxidation of aliphatic sulphonates and though its 
specificity seems to be pretty narrow towards long linear alkyl 
compounds, it can accept a significantly diverse set of 
compounds. A set of substrates was taken from the literature,2 
molecular docking and molecular dynamics were used for the 
calculation of their complexes with the enzyme and a subsequent 
quantitative structure activity relationship (QSAR) approach was 
applied to the system for generating a predictive model of the 
substrate specificity. 
The substrates used in this part of the study and their 
corresponding experimentally measured kcat/KM are reported in 
table 1. The data set meets the necessary requirements in terms of 
structural diversity, kcat/KM range and homogeneity of distribution, 
which are crucial for the generation of a consistent QSAR model.  
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Compound R-CH2-SO3H 
Experimental2 

kcat/KM (min-1µM -1) 
1  6,7 
2  6,1 

3 

 

6,0 

4 
 

4,6 

5  4,0 

6 

 

3,2 

7 
 

2,7 

8  1,8 

9 
 

1,1 

10  0,6 

11 

 

0,4 

Table 6.1: Data set of the 3D-QSAR model.  
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The starting point for the determination of the substrates' active 
conformers was the equilibrated enzyme-cofactor complex 
structure after 20 ns dynamics simulation. The substrates were  
docked into the same active site and the criteria for the screening 
of the generated poses was based on the molecular interaction 
fields calculated by GRID, especially based on OS probe and 
described above.  
Despite several different interaction regions were pointed out by 
the OS probe, this information was of outstanding importance for 
the docking scoring step.  
The scoring of the docked conformations of the substrates was 
based on three criteria:  

i) Position of the sulphonic group in the areas determined by 
OS probe molecular interaction field and correct 
orientation towards the alkaline side chain of  His 11; 

ii)  The geometric compatibility with a possible catalytic 
mechanism, namely the distance between the sulphonic 
group and the FMNH2-bonded oxygen molecule involved 
in the catalysis; 

iii) The docking algorithm energy based scoring function 
(London dG).19 

Following this scheme one single conformation for each substrate 
was chosen and the system was subjected to energy minimization 
and molecular dynamics for a more detailed conformational 
analysis. In particular, each system was solvated with a water shell 
and energy minimized using PME20 algorithm by GROMACS21 
and GROMOS-96 53a622 force field. Subsequently a 300 ps 
molecular dynamics simulation for each enzyme-substrate 
complex was carried out.  
The outcome of every MD simulation was carefully analysed and 
the substrate conformers with the lowest potential energy were 
selected and subsequently used for the construction of the QSAR 
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model. The GRID independent descriptors (GRIND)23 
implemented in the software ALMOND24 were used, since this 
procedure is alignment independent and permits to avoid errors 
coming from superimposition of substrates, common obstacle in 
3D-QSAR. 
GRIND starts from the molecular interaction fields (MIFs), 
obtained with the GRID approach, pointing out regions where the 
molecule can produce energetically favourable interactions with 
its environment, simulated by the probes. Then the method 
transforms these MIFs in a relatively small number of variables, 
namely an ensemble of vectors coupling points of the MIFs 
(representing favourable interactions) at different distances, 
having the highest possible energy. The vector can join points 
belonging to the same MIF, or to different MIFs. This way the 
variables are grouped in blocks generally called correlograms and 
specifically auto-correlograms when the vectors join points within 
a single MIF, cross-correlogram when they join points belonging 
to different MIFs. In other words, the GRIND descriptors are 
auto- and cross-correlation vectors that join the MIF's points with 
the highest energy products.  
Four probes with different physico-chemical properties were used 
in the calculation of the molecular interaction fields, namely the 
WATER, the DRY, the Ca++ and the TIP probe. The WATER 
probe describes and quantifies the dipolar interactions and the 
hydrogen bond formation, the DRY probe considers all the 
hydrophobic interactions, the Ca++ probe takes into account the 
interactions with charged groups, for instance the sulphonic 
group, and the TIP probe generates a MIF that is strictly 
dependent on the shape of the molecule. Those four probes 
generated totally 10 correlograms, four auto-correlograms and six 

                                                 
23 M Pastor, G Cruciani, I McLay, S Pickett, S Clementi, J Med Chem, 2000, 
43, 3233. 
24 ALMOND 3.3.0, Molecular Discovery Ltd, Perugia, Italy. 
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cross-correlograms (all possible couples), corresponding to 600 
independent variables (vectors). 
The energy values contained in the matrices of the GRIND 
descriptors were statistically analysed to generate PLS25 models 
able to correlate the molecular descriptors with the experimental 
kcat/KM values.  
The first model included all 600 variables, but its predictivity was 
low. In order to improve the consistence of the generated model, a 
variable selection process was necessary. All the vector blocks 
containing insufficient information in terms of substrate 
discrimination (vector blocks with standard deviation close to 
zero) were discarded. In this operation all the vectors coming from 
the Ca++ probe were deleted; probably because the Ca++ probe 
generates high interaction values only in correspondence of the 
sulphonic group which is present in every object of the data set. 
Then we applied the FFD variable selection algorithm26 which 
conserved only 136 active variables. The final PLS analysis was 
performed only on 10 of the initial 11 compounds; one compound 
(5) with average kcat/KM value was excluded from the training set 
due to its outlier behaviour. Five principal components were 
calculated.  
The model was validated by means of the leave-one-out (LOO) 
cross-validation procedure (Table 2). The predictive correlation 
coefficient (q2) which provides the quantitative evaluation of the 
consistency of the model was as high as 0.719 on the third 
principal component whereas 71 percent of the variance of the 
model was explained by the first three principal components and 
showed an r2 of 0.976 on the third PC. 
The predictivity of the model was satisfactory, showing a good 
quality of prediction especially for the molecules lying in the 

                                                 
25 F Ildiko, J Friedman, Technometrics, 1993, 35, 109. 
26 G Cruciani, S Clementi, M Baroni, Theory Methods and Applications, H Ed. 
ESCOM: Leiden, 1993, 551. 
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medium to high part of the kcat/KM range (see Table 2 and Figure 
10). The performances of the model slightly decreases for the 
molecules having low kcat/KM, simply because that zone of the 
plot is less populated. This means that in principle the predictivity 
of the model could be even higher than measured by the LOO 
procedure. 
 

Compound 
Experimental2 

kcat/KM 
(min-1µM -1) 

Predicted kcat/KM by 
LOO 

(min-1µM -1) 
1 6,7 4,9 
2 6,1 6,3 
3 6,0 3,9 
4 4,6 3,5 
6 3,2 3,6 
7 2,7 3,2 
8 1,8 1,4 
9 1,1 0,6 
10 0,6 1,3 
11 0,4 1,2 

Table 6.2: Comparison of the measured experimental kcat/KM values and 
the kcat/KM predicted by LOO cross-validation procedure applied on the 
data set.  
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Figure 6.10: Predictivity of the model in terms of experimental versus 
predicted kcat/K M; values expressed in p (-Log) scale. 
 
The interpretation of a QSAR model based on GRIND descriptors 
can sometimes be a difficult task. The advantage of having 
alignment free mathematical description of the data set causes the 
loss of the direct connection between molecule's chemical 
characteristics and their absolute position in the Cartesian space, 
making the comparison of the different molecules of the data set 
particularly difficult. Nevertheless it is still possible to get 
important information from the analysis of the model's variables 
having the highest statistical weight; this is being highly 
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correlated with the activity of interest. The analysis of the 
correlograms and the PLS weights profile plot is of great utility in 
this perspective.  
Statistics point out that among all the original variable blocks, 
only those coming from DRY and TIP probes MIFs were 
informative. 
 

 
Figure 6.11: Auto- and cross-correlograms of the probes DRY and TIP; 
each single point corresponds to a vector correlated with a measured 
activity, high activity values in red, low in blue. 
 
The correlograms show that the GRIND descriptors are able to 
separate the active compounds from the inactive ones (Figure 11). 
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The DRY-DRY auto-correlogram generates vectors with small 
module (the product of MIFs original variables it connects) for 
low activity (blue points) and vectors with big module for highly 
active molecules (red points). The same trend is preserved also for 
the DRY-TIP cross-correlogram. The TIP-TIP auto-correlogram 
discriminates among the activities in a different, yet similar way. 
The discrimination is 'horizontal', with the active compounds 
having a broader ensemble of vectors whereas the inactive 
compounds show narrower correlograms. In other words, the 
substrates having a high kcat/KM generate longer vectors than the 
compounds characterized by low kcat/KM. This is associated with 
the length and shape of the molecules. TIP probe describing long 
linear alkyl chains usually generates two strong interaction zones 
at the ends of the chain, while with globular or complex shaped 
structures it generates several different zones around the molecule. 
In this latter case the average distances among these zones are 
significantly shorter, thus generating an ensemble of shorter 
vectors. 
The comparison of two molecules, lying on the opposite side of 
the activity graph (Figure 10), is useful to understand how a 
chemical meaning can be extracted from the statistical model. 
Highlighting the vectors having the major contribution to the PLS 
in both the DRY and TIP MIFs demonstrates how the distribution 
of hydrophobicity and the shape of the substrates in their active 
conformation are the key elements for interpretation. Comparing 
for instance molecule 1 and 9 (Figure 12), it appears clearly that 
extended linear conformations, presenting significant 
hydrophobicity in their central parts are necessary for displaying 
high kcat/KM. Compound 1 is substantially linear and hydrophobic, 
the vectors corresponding to the highest PLS weights are 
extremely similar and they univocally connect the two ends of the 
molecule. The DRY auto-correlogram is made by a complex 
network of relatively short vectors, connecting the extensive 
central hydrophobic zone of the compound. On the other hand, the 
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shape of compound 9 shows a slightly globular character, 
affecting significantly the ensemble of vectors of the TIP auto
correlograms, as it can be seen in figure 11. The hydrophobic 
character is still present, but it is unhomogeneously distributed 
and the molecule is remarkably shorter than compound 
the network of vectors of the DRY auto-correlogram. 
The TIP representation is correlated with the shape of the active 
site cleft, which is long and narrow, and the DRY representation is 
correlated to the interactions that the substrate establishes with the 
isoalloxazine ring of the cofactor. 
 

Figure 6.12: ALMOND vectors for the auto-correlograms of the DRY 
probe on top and for the TIP probe on bottom; compound 1 on the left, 
compound 9 on the right. 
 
Besides being an instrument for the prediction of alkanesulfonate 
monooxygenase substrate specificity, the model offers a guideline 
describing the physico-chemical characteristics necessary for 
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being accepted by this enzyme. In this context it can be used as a 
reference for reaction engineering. 
 
 

6.7 Conclusions 
 
Molecular simulation methods have been applied to the study of 
SsuD action at molecular level, shedding light to many aspects of 
enzyme-substrate interaction mechanisms. The enzyme showed a 
two-states dynamic mechanism, switching between an open and a 
closed conformation of its active site. The presence of FMNH2 
cofactor stabilizes the closed state, while the empty active site 
showed to be energetically more stable in the open state. This 
mechanism has never been observed before and its function is 
clearly the regulation of substrates access and cofactor 
regeneration. 
The role of some residues, already pointed out as relevant for the 
enzyme’s catalytic activity, has been confirmed and clarified. For 
instance, Arg 297, Asp 111 and Glu 2 govern the dynamical 
switch between the open and closed conformations, while His 44 
and Trp 196, on the other hand, are crucial for stabilizing the 
sulphonic group of the substrates and the cofactor respectively. 
The conformational analysis of a set of substrates, of known 
kcat/KM, performed by MD simulations was used for the 
generation of a 3D-QSAR model for the prediction of SsuD 
substrate specificity. The Grid INdependent Descriptors (GRIND) 
and Partial Least Squares (PLS) have been used for building up 
the model, which demonstrated to be statistically robust and 
predictive. The interpretation of the 3D-QSAR model helped in 
pointing out the most relevant structural characteristics correlated 
with enzyme specificity. The distribution of hydrophobicity and 
the shape of the substrates in their active conformation showed to 
be essential in this aspect. Substrates whose active conformation 
is elongated, with a neat and defined polar part, corresponding to 
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the sulphonic group, linked to a long and narrow hydrophobic 
structure are those showing the highest kcat/KM. On the contrary, 
the globular character of the hydrophobic part of the substrate is 
inversely proportional to enzyme substrate specificity.  
The model can be used to predict SsuD selectivity towards new 
compounds, thus representing a helpful tool for the support in 
developing synthetic processes involving this enzyme. 
The results achieved during the studies on Alkanesulfonate 
monoxygenase prove that the computational methodologies 
previously employed on lipases can be successfully applied on 
other enzymatic systems with equal success. Molecular dynamics 
simulations demonstrated once again their high efficiency in 
conformational sampling, while hybrid approaches obtained by 
the synergic application of MD simulations, molecular descriptors 
calculation and multivariate statistics lead to the generation of 
very powerful quantitative predictive models.  
 

 

6.8 Experimental section 
 
The protein structures used for this study were retrieved from the 
Protein Data Bank (Id:1m41 for SsuD, 1luc for bacterial 
luciferase, 3b9o for LadA and 1z69 for Mer). These initial 
structures were pretreated in MOE by removing the 
crystallographic water molecules present in the pdb file. Hydrogen 
atoms were added and their positions were optimized with an 
energy minimization procedure in the Amber99 force field in its 
MOE implementation. Subsequently a minimization of the side 
chains was performed keeping the backbone atoms fixed. 
Superimpositions of protein structures was performed using the 
MOE Superpose tool fixing the spatial position of the most 
preserved residues (His, Trp, Arg) in all the superimposed 
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structures. The alignment was performed using the blosum3027 
matrix. 
 
 
GRID 
 
The GRID analysis was performed on the SsuD protein, choosing 
a cage big enough to include the whole protein. The grid nodes 
were set every 0.5 Å. The probes used for the calculation of the 
molecular interaction fields were DRY (hydrophobic probe), 
WATER (H2O probe) and OS (sulphonic acid mimic probe).  
 
 
Docking 
 
The Docking procedure was performed using the docking module 
of MOE.  
Concerning FMNH2, the procedure was performed on a 10 Å 
radius selected area surrounding the active site, taken from the 
coordinates of active His, Trp and Arg residues. The force field 
used for the docking was MMFF94x, the partial charges of the 
atoms were calculated at the PM3 semi-empirical level, by means 
of the MOPAC7 program and the different poses were placed with 
the alpha PMI method and scored by means of the London dG 
scoring function. The final FMNH2 pose was finally located by 
evaluation of the scoring function (London dG) and the pose 
similarity with the FMN co-crystallized in the PDB structure of 
LadA (PDB 3b9o). 
The docking simulations of the substrates were performed in the 
same way considering a 12 Å radius selected area surrounding the 
FMN; the initial positions of the substrates were manually set in 
order to meet the three different criteria: i) sulphonic group 

                                                 
27 S Henicoff, J F Henicoff, PNAS, 1992, 89, 10915. 
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located in a OS probe interacting area; ii) sulphonic group 
distance from FMNH2; iii) London dG scoring function. The 
substrate molecules were inserted by building each molecule with 
the MOE builder tool and subsequently minimized. For each 
substrate, the conformation presenting the highest score and 
fulfilling the structural requirements for the initiation of the 
enzymatic catalysis was chosen.  
 
 
Molecular dynamics 
 
The molecular dynamics simulations were performed using the 
software GROMACS with the GROMOS-96 53a6 force field. The 
SsuD pdb crystal structure was implemented in the force field in 
gro file format by using the automatic tool of the GROMACS 
software which also add the necessary hydrogens. The protein was 
solvated with explicit water in a virtual box of 1331 nm3. All the 
dynamics were performed in a NPT environment simulating the 
temperature of 300 K and keeping the pressure constant 
(Berendsen-thermostat and pressure), cut-off for electrostatic 
interaction was setted at 1.4 nm and the limit for the van der 
Waals interactions setted at 1.4 nm. Only for the minimization 
procedures the PME algorithm (Particle Mesh Ewald and not a 
simple cut-off) was used for the calculation of the electrostatic 
interactions setting the limit at 1.0 nm. The FMNH2 and the 
substrate molecules were parametrised in the GROMOS-96 53a6 
force field by using the Dundee PRODRG2 server40 and manually 
refined in order to meet the correct force field definition. The 
reduced FMN and the substrate molecules were manually added in 
the gro file taking the coordinate from the docking results. The 
system was previously minimized with 1000 step of steep 
descendent algorithm before every molecular dynamics 
calculation.  
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Molecular dynamics analysis were performed with GROMACS 
tools; distances measurements were calculated using g_mindist 
and computing the minimum distance between two residues; the 
results were visualized using Grace software. 
Each substrate conformation chosen for the construction of the 
data set for the QSAR analysis was the one characterized by the 
lowest potential energy out of all the frames saved in the 
dynamics trajectories. 
 
 
Almond 
 
Four different probes were used for the Almond vectors 
generation, namely DRY (hydrophobic probe), WATER (H2O 
probe), Ca++ (charged probe) and TIP (shape probe). These 
probes generated in total ten correlograms (four auto-correlograms 
and six cross-correlograms) corresponding to 600 variables 
(vectors). 
All the vectors generated from the data coming from the Ca++ 
probe were discarded (standard deviation close to zero).  
Variables selection was performed by using the FFD algorithm 
keeping the uncertain variables, 136 variables were active after 
this operation. One compound (5) with average kcat/KM value was 
excluded from the training set (outlier behaviour). 
PLS models with 5 principal components were computed and 
validated by LOO (leave-one-out) method. QSAR substrate 
predictivity model is expressed in terms of experimental versus 
predicted (on three principal component) kcat/KM with values 
expressed in p (-Log) scale. 
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Great advantages of biocatalytic processes in relation with 
classical chemical approaches have been universally accepted 
during the last few years. More and more biocatalytic applications 
are now commonly employed in industrial processes.  
A comprehensive knowledge about the enzyme of interest is a key 
factor for the improvement and expansion of biocatalysis 
processes, nevertheless several aspects of enzymatic behaviour, as 
well as new enzyme activities, have not been completely 
investigated yet. 
The classical experimental trial and error approach needs to be 
reviewed in order to maximise the information gained from any 
experimental attempt and rationalize at molecular level the 
enzyme behaviour.  
New strategies based on molecular modelling techniques have 
been developed during the last ten years. Molecular dynamics 
simulations (MD) are able to investigate enzyme behaviours at 
molecular level. The principal limitation of this computational 
methodology is its inefficiency for simulations regarding complex 
phenomena. In these cases a different statistical approach is more 
recommended and it can be used to extract relevant information 
from any experimental test and create a predictive model. 
All these techniques represent the bases for the development of 
new hybrid approaches for enzyme and biocatalyticaly based 
procedures. 
This idea was applied to one of the most important and used 
enzyme classes, the lipases. Several lipases were investigated 
looking at their crystal structure and studying their surface 
properties in order to find some common features during the 
lipase activation process. This process depends on the movement 
of a protein domain called lid which covers the active site when 
the enzyme is in its inactive conformation and undergoes a 
conformational change, exposing the active site and making it 
accessible for the substrate in the enzyme’s active conformation. 
This phenomenon concerning the lid movements of several lipases 
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was investigated by performing molecular dynamics simulations. 
Different molecular dynamics simulation techniques were used, 
starting from classical MD simulations, steered MD simulations 
which reduce the computational time required to simulate the 
desired event and finally coarse grained MD simulations with the 
MARTINI force field. Classical MD simulations demonstrated to 
be able to simulate correctly the process of lipase activation. 
Steered MD simulations effectively reduced the computational 
time needed for the study of these phenomena. Nevertheless, 
results obtained by steered MD simulations need to be carefully 
analysed because of the slight movement distortion caused by the 
method itself. 
Different concepts were acquired during the work of this thesis, 
not only from the methodological point of view. Concerning 
lipases, it was observed that small bacterial lipases are usually 
characterised by a huge lid which is affected by a complex 
movement that involves more than one protein domain. On the 
other hand, other eukaryotic lipases with a consistent molecular 
weight usually have a small lid and its movement is governed just 
by the breaking and the formation of few hydrogen bonds. These 
lid movement features can be used for a new type of lipase 
classification. Moreover the force that drives these conformational 
changes has to be found in the media characteristics because in 
polar environments the protein hinders the hydrophobicity of its 
active site in order to minimise the unfavourable interactions that 
would be established between the solvent and the protein active 
site. 
MARTINI demonstrated to lack the necessary accuracy to 
simulate a fine event like the lid movement. On the other hand 
MARTINI was successfully applied in the simulation of enzyme 
orientation at the interface and more generally it proved to be 
suitable for the simulation of big system in order to study enzyme 
orientation.  
The intrinsic characteristics of MARTINI make it suitable for the 
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estimation of the average molecular vibrations of an enzyme in 
different water-solvent mixtures which were performed in order to 
study enzyme stability in different conditions. The combination of 
these computed vibrations with experimental data of enzyme 
residual activity after incubation in the same water-solvent 
mixtures that were parametrised in silico led to the generation of a 
predictive model. This was performed for the Candida antarctica 
lipase B. 
Another important enzyme characteristic given by the enzyme 
selectivity was investigated during this work. In order to 
quantitatively describe this feature a statistical approach based on 
3D-QSAR was performed on the same enzyme. This consisted in 
the development of a new class of molecular descriptors, namely 
differential Molecular Interaction Field. The intrinsic properties of 
these newly developed descriptors is the ability to describe two 
objects simultaneously and can therefore be applied as the 
descriptors for the characterization of the enantioselectivity of an 
enzyme. 
To test the general applicability of the computational approaches 
developed for the study of lipases, they were finally tested on a 
completely different and relatively unknown enzyme in order to 
prove the universality of these methods. MD simulations to study 
the dynamics of enzyme activation/inactivation, as well as 3D-
QSAR approach to study the substrate selectivity were 
successfully applied to Alkanesulfonate monooxygenase. 
This enzyme is different from the other studied enzymes in terms 
of its classification, mechanism of action as well as the necessity 
of a cofactor involved in the catalytic process. The application of 
the previously established techniques proved to be adequate in this 
case study as well. Different interesting notions about the enzyme 
properties were highlighted during the study. It was seen that the 
enzyme undergoes a conformational change in the 
presence/absence of the cofactor given by a motion of a particular 
structural domain. With the aid of molecular docking and MD 
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based approaches the correct substrate collocation inside the 
active site was comprehended. Nevertheless, for a deeper 
understanding of the enzyme substrate recognition, at molecular 
level, a 3D-QSAR methodology was applied. The constructed 
model proved to be consistent for the description of the desired 
properties as well as predictive for the enzyme selectivity 
estimation. 
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