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Asymptotic behavior for the elasticity
system with a nonlinear dissipative
term
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ABSTRACT. We study the asymptotic behavior of an elasticity prob-
lem with a nonlinear dissipative term in a bidimensional thin domain
Q. We prove some convergence results when the thickness tends to
zero. The specific Reynolds limit equation and the limit of Tresca free
boundary conditions are obtained.
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1. Introduction and mathematical model

The topic dealing with propagation of elastic waves with dissipative term is a
subject of considerable interest due to its industrial applications such as the
dynamics of rubbers, silicones, and gels. Furthermore, in quantum mechanics
the dissipation term determines the phenomenon according to which a dynamic
system (wave, oscillation...) loses energy with time, where this energy turns
into heat. Heat production occurs usually when there is friction between two
bodies, and is mathematically modeled adding to the equation of motion a
term dependent on the velocity. From a theoretical point of view, the math-
ematics and mechanics of wave phenomena with dissipation is a classical yet
still active subject of research, where many studies have been published in this
field. We cite among these the article [15], where Lions studied theoretically
the problem for the wave equation with Dirichlet boundary conditions and a
nonlinear dissipative term % P %, in which the author proved the existence
and the uniqueness of the solution. In [11] Georgiev and Todorova studied the

. . . . . . m—1
nonlinear wave equation involving the nonlinear damping term |% 88—1; and

a source term of type |u|” -t u, from large initial data, they proved a global
existence theorem for 1 < p < m and a blow-up result for 1 < m < p. In [3],
Benaissa and Messaoudi studied the stability of solutions to the nonlinear wave

. . . .. . —2 €
equation with the nonlinear dissipative term « (1 + %—1‘ " ) % and proved

for his solution that energy decays exponentially. Lagnese [13] , proved some



42 M. DILMI ET AL.

uniform stability results of elasticity systems with linear dissipative term.

In our paper, we study the asymptotic behavior of the hyperbolic equation
governed by a thin, isotropic and homogeneous elastic membrane in the dy-
namic regime with a dissipative term (af + [24-|) 2% in a two dimensional
thin domain Q°. It is worth noting that the boundary conditions for our prob-
lem consist of two conditions: The first is Dirichlet boundary condition on the
top and lateral parts, the other condition is Tresca’s friction law over lower
part of the border. This friction law has a threshold of friction (coefficient of
friction) &, when the elastic membrane and the foundation are in contact, the
foundation exerts on the elastic membrane a tangential effort which does not
exceed the threshold k. As long as the tangential stress has not reached the
threshold k¢, the elastic membrane can not move relative to the foundation
and there is blockage. When this threshold is reached, the elastic membrane
can move tangentially relative to the foundation and then there is a slip. Some
research for initial and boundary value problems involving Tresca friction law
can be found in [10, 17].

In the literature, the asymptotic behavior of partial differential equations in a
thin domain, particularly those governed by elastic systems has been widely
studied. Ciarlet and Destuynder [9] studied equilibrium states of a thin plate
Q x (—¢,+¢) under external forces where (2 is a smooth domain in R? and ¢ is
a small parameter, to justify the two-dimensional model of the plates. In the
paper [16] Paumier studied the asymptotic modeling of a thin elastic plate in
unilateral contact with friction against a rigid obstacle (Signorini problem with
friction) where he proved that any family of solutions of the three-dimensional
problem of Signorini with friction strongly converges towards an unique solution
of a two-dimensional problem of plate of the type Signorini without friction.
Léger and Miara in [14] justified of a mechanical model for an elastic shallow
shell in frictionless unilateral contact with an obstacle using the asymptotic
analysis. In [5, 6] Benseridi and Dilmi studied the asymptotic analysis of linear
elasticity with the nonlinear terms |u®|” “24F in the stationary case, in [4] they
analyzed the asymptotic behavior of a dynamical problem of isothermal elastic-
ity with nonlinear friction of Tresca’s type but without including the nonlinear
dissipative term. Bayada and Lhalouani [2] investigated the asymptotic and
numerical analysis for a unilateral contact problem with Coulomb’s friction be-
tween an elastic body and a thin elastic soft layer. The reader can also review
some articles that are interested in studying the asymptotic analysis of some
fluid mechanics problems in a thin domain for the stationary case [1, 7, 8].
Our paper is structured as follows. In Section 1 we present the form of the do-
main ¢, then we give the basic equations. In Section 2 we derive the variational
formulation of the problem and give the theorem of existence and uniqueness
of the weak solution. In Section 3 by a scale change we carry out the asymp-
totic analysis, in which the small parameter (thickness) of the domain tends to
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zero. Using Gronwall’s lemma and Korn’s inequality we establish some param-
eter independent estimates for the displacement and velocity fields. Finally in
Section 4 we go to the limit when the thickness tends to zero, we derive the
convergence theorem and find the limiting problem, for which we study the
solution.

Let Q° be a bounded domain of R?, where ¢ is a small parameter which
ultimately will tend to zero, the boundary of ¢ will be denoted by I'® =
fi U I_"z U @, where I'j is the upper boundary of equation y = e¢h(x), I's =
{z =0} U {z =1} is the lateral boundary and w = ]0,![ is a bounded interval,
which constitutes the bottom of the domain Q°. For all 2’ = (z,y) € R?, the
domain ¢ is given by

QO ={r eR*:0<z<1,0<y<ceh(z)}
where h (.) is a function of class C* defined on [0, 1] such that
0 < h=hmin <Mz) < himaz = h, Yz € [0,1].

Let u®(z’,t) be the displacement field, then the law of elastic behavior is given
by

2
o5 (u%) = 2pd; (u=) + XY dew(u°)d35,
k=1

o A 1 [0us Ous
1<4,5<2; dij(u):2<ax- + 8:5]-)7
7 (3

where §;; is the Krénecker symbol, A, p are the Lamé constants and d;;(.) the
strain tensor.

The equation which governs the deformations of an isotropic elastic ho-
mogeneous body with a nonlinear dissipative term in dynamic regime is the
following

9%us

ot?

ous
ot

—mwfmw+(&+‘

ou® -
= f¢, in Q° x ]0,T7, 1
)=t 0Tl
where |.| denotes the Euclidean norm of R?, f¢ represents a force density and
a® € R+.

To describe the boundary conditions we use the usual notation

€
n

€

u, =un, ul =u® —u.n, o, = (c".n).n, or =0c°n—(0,).n,

where n = (n1, ng) is the unit outward normal to I'®.
e The displacement is known on I'§ x]0, 7 and on I'y x]0, T'[

u# (2,0 (2), 1) =0 on T5x]0,T], 2)
u® (0,y,t) =u® (l,y,t) =0 on I'x]0,T].



44 M. DILMI ET AL.

e On w the velocity is assumed unknown and satisfies the following condition

ous
ot

n =0 on ]0,I[x]0,T]. (3)

e There exists friction on w, this friction is modeled by the nonlinear Tresca’s
law (see [10])

loZ] < k® = (68—75)7 =0,

02| = k¢ = 38 > 0 such that (2%) = —fBoS

} on 10,1[ x]0,T7, (4)

where k% € C§°(]0,1[), k° > 0 does not depend of t.
The problem consists in finding u® satisfying (1)-(4) and the following initial
conditions

ous
ot

u®(x',0) = do(z'), (z',0) =91 (2'), Va' € Q°. (5)

2. Weak formulation

Let LP () be the space of real scalar or real vector functions on 2 whose
pt" power is absolutely integrable with respect to Lebesgue measure dz’. This
is a Banach space with the norm

1
ll ey = ( / |u|f’dx') 1<p<oo

The Sobolev space H! () is the space of functions in L? () with first order
distributional derivatives also in L? (£2). The norm of this space is

1

2 2 2
el g2y = (el + IVulFa))

To find the weak formulation, we recall that Tresca’s boundary condition (4)

is equivalent to
ou® N B
(at >T.UT—|—k (8t )T =0. (6)
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Multiplying (1) by ( — 68’—”:) where ¢ is test-function, then integrating over
QF and using the Green‘s formula, we obtain

0%uf ous , . ous ,

/Qa o2 (<p— at)dm—l—/sa.V(gp at)da:
R Ou . . |Ou® |\ ou® ou® ,
_/Ea.n< 8t>d$+/s<a+ )815 (<p at)dx

ot
ou®
— € d /
Lo (o= %)@ @
on the other hand, the boundary condition (2)-(3) implies that
. ous b ous
frrnlo)or- Lo () )
going back to (7), we get
0?uf ou® , . ou® ,
/5 92 (<p— at)dz—k/ﬂgo.V(gp at)da:
. . |Ou® |\ ou® ou® p b ou®
o (e ) S (o e [ ('@T“(atl

. ou b ou®
(o) [ (o= (), ) o

!
ou®
(e |(5)
i (1= (%)
Using (6) and the fact that

! ou® ! ou®
€ . € — >
frot (o= (), oo [ (1e1=| () [) =0

we get the following variational formulation

) as

Find v®, with u ( t), 86 (-, ) € K¢ for all t € [0,T], such that
0%uf B ou® ou®
o2 ¥ T B

ou® ou ou
_ 8
+< ot at‘p at)”(‘p) ”(a) ®)
> (fga ¥ — ) VQO € Kea
ou®

u®(x',0) = do(z'), 5t (2',0) = V1 (z"),
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where
Ke={ve H (Q°)*:v=00onT{UTl'},v.n=0o0nw},
!
e (v) = / k€ |v| dz, Yo € HY(QF)?,
0
a(u,v) = 2u/ d(u)d (v) dzedy + )\/ div (u) div (v) dzdy,
with

THEOREM 2.1. Under the assumptions
. 8fs ans
T ot o2
9o € HY(QF)?, 01 € HY(Q)?, (¥1), =0,

there exists a unique solution u® of (8) such that

f €12 (o,T, L2 (95)2> ,

ou’
e 7 e} THl €\2
u’@tEL (0,, (Q)),
s
ot?

€ L™ (O,T, L2 (96)2) .

The proof of this theorem proceeds in a similar fashion as in Lions [10, 15].

3. Change of the domain and some estimates

In this section, we use the technique of scaling z = y/e for studying the asymp-
totic analysis of the problem (8). This method consists in transposing the
initial problem posed in the domain ¢ to an equivalent problem posed in a

fixed domain ) independent of ¢ :

Q={(z,2) eR?*:0<x<1,0<z<h(x)},

and ' =T UI', Uw its boundary. We define on §2 the new unknowns and the

data
(:I;7 Z7t) = ui ($7y7 t) b
(z,2,t) = e s (z,9,1)
AZ (xﬂz7t) = 52 ’f(x7yﬂt) b Z = 1’27
k=c¢kf, & =c%af,

where fi, i=1,2, k and & do not depend on e.
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Moreover, we define some function spaces on 2

K:{QDEHl(Q)2:<p:00n1"1UI‘L andap.nzOonw},

II(K)={peH" (Q):¢=00onT1UTL},

VZ{UELz(Q):aU

8Z€L2(Q),'UOOHF1},

1
2
LQ(Q)) .

Multiplying (8) by € then we inject the new variables and the new data, we
obtain the following variational formulation on the fixed domain ).

V., is a Banach space for the norm

ov
0z

[olly, = (IIUIILz(m +‘

Find @°, with 4°(-, ¢), %(.,t) € K for all ¢ € [0,7], such that
2 <8;t€§7¢1 - a@ff) L (a;gs’@ B aaut > +a( ) a;s)
+a (%1?@1 - a;;) + ae? (38112 P a;g)
L (aaaf 2 6u2 ] 8u17¢1 81;1
, (10)
- UL
+J (@) — j( 5 )

> <fla¢1 - a;f) +e (JE27</52 - 6;15) Vo € K,

i (0) = o, 2 (0) = 0,

l
N@=/kww,
0
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) ()2 o e
()£ 8) 72 )

R o045
o 5 B2 (‘P at )dxdz

+ Ae? / div (a°) - div (¢ —
Q

For the rest of this paper, we will denote by ¢ possibly different positive con-
stants and we establish some estimates for the displacement field 4° in the

domain €.

+ 2ue?

3ut > dxdz.

THEOREM 3.1. Under the hypotheses of Theorem 2.1, there exists a constant c
independent of € such that

Haai 2 L0 2 +‘€ , 005 |7
82’ L2(Q) Bt L2(Q) ax L2 )
2 N 2
. 8u1 n 8u2 . 6281@
8.T LQ(Q) 82 LQ(Q) at LQ(Q)
o113 o3
+‘s§8u1 +’€§6u2 <e¢ (11)
Ot |l 130,7,12(9)) Ot || 1s0,7,12(02))
”a‘zai 2 Hga%f 2 2 075 ?
920t | oy NSO || oy IS ot e
o2as ||? H o5 ,0%5 ||
+ |le + + |le c 12
Ozt 12(9) 020t L2(9) ot2? 2@y (12)

Proof. First, we recall some inequalities
- Poincaré’s inequality

[0l 20y < RV || p2qey -

- Young’s inequality

a2 b2
ab < 7725 +n‘25, Y (a,b) € R?, ¥ > 0.
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- Korn’s inequality [12]

d ()2 ey > O [V 22 ey

where h and Ck are constants independent of .
Let u® be a solution of the problem (8), we take ¢ = 0, then

Pus du® vl ou® (o u® [\ Qu® Ju® e ous
a2 ot ot at|) ot ot ) T ot
ou’
< (>
(),
whence
1d 'auE 2 ou ||? ‘&f 3 < aue)
—— +a(u®,u’) | +af <{(fH—=)
2 dt [ o |20, 2 P Tl [ ot
For s € ]0,¢[ by integration we get
112 t e 3
‘3u +a(ue’u€)+2/ 8U (3) dS
Ot | 12(qe) 0 o |l Lsae
2 2 k 5 Ou® (S)
< N ll72(qe) + 20+ 30 [[Vdo |l 720y + 2 ; fe(s), ot ds. (13)

On the other hand, we have
Z/t (fE (s) 8u5(3)>d8
0 Tot

=2ty -2 @ -2 [ (2 ) as

using Poincaré’s and Young’s inequalities, we obtain

o (o t5) e
4e2h?

< pCk || VUl 2 (g0 + Cr

t
+ HV'lg()Hiz(Qs) + MCK/O ||V’u“E (S)HiQ(QE) ds

+4(57L)2 /t
uCr  Jo

151172 e + 4€*R° 112 (0)] 72 0ey

2

0f* (s)
ot

ds. (14)
L2(Q¢)
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By inserting (14) in (13), and using Korn’s inequality, we find

oue ||? ) Ll ows () ])°
+ uCk ||Vu® . +2/ ds
U Ot || L2 (0 HOK IV e 0 ot | Lsqs
45 h? .
< ||791||L2(Qz)+(1+2ﬂ+3>\) ||V’l90||1:2(95)7L ||f HL2(Q€
. eh)” [t]|osF <s>
+ 4202 || £ (0) 13210y + 4( / ds
15 (0|72 (0 WO/, |,
tllous (s) |17
P2 e 19 @ | as 05)
0 L2(0)

As
-1

2
2 =€

t
+2£/
0

2
+ 1Crk [[Vu® (8)[| 200
L2(Q°)

b

multiplying (15) by € we deduce that

M ou

2 3

ou® (s)
ot

ds

+MCKHVUEH%2(QE) -
L3(QF

<[

where A is a constant does not depend of ¢ with

L2(Qe)

oue (s) |7

ot

ds + A,

2 2
A= 0]y + 12039 [, 48 O
1 L2(9)+( + 2+ 33) 0l[ 12 + S

L"‘(Q)
@ ’ s a2 | of|"
uCx L=(07.2?)  uCr || Ot L2(0,T,L2(2)?)

Now using Gronwall’s lemma, we have

2

ou®
ot

€ +e || VUl Tagqe) <

L2(Q9)

from which (11) follows.

The functional j (-) is convex but nondifferentiable. To overcome this dif-
ficulty, we shall use the following approach. Let j¢ () be a functional defined
by

/ ke (z) pc <|UT\ )dm where ¢¢ (A) = 1+<|)\|(1+C , (> 0.
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To show (12) we consider the approximate equation as in [15]

62u2 6 . 8u2
52 P +a(u@<p)+(<a + > T 790)

+ (w0 <8§f> ) =) e Ko (10

aug

ous (2',0)
ug (', 0) = Jo(2'), CT =91 (z").

We differentiate (16), in ¢ and we take ¢ = %, we get
63u2 82u2 ta dug 82u‘2 o ang 821[2
ots 7 ot2 ot ot? otz ' o2
L (2] 22 2 | (0 Ly (0 Put) _ (or g

ot | o2 o2 ot ot ) o2 ot a2 )’
as <gt (jg) (88—?) ,8;;2) > 0, we have
1d ? ous Ous ofe 0%us
—— +a S ) / e
2 dt ot ot ot~ ot?

L2(Qe)
Integrating this inequality over (0,¢) and use Korn’s inequality, we get

2
0 uz
ot?

g ? dug 2
) +2LLCK"V ot
L2(0°) L2(Q¢)
d*ug ) afe Oug
|G O] eI, +2 (5 )
L2(99)

(0 2 [ (PL 220,

On the other hand, using Cauchy-Schwarz’s, Poincaré’s and Young’s inequali-
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ties, we obtain

e Ous OuE
o (9F ’ U¢ u¢
ot Ot

ot

ofe
2|5

L2(99) L2(99)

afe
ot

IN

2eh H

ous
_7¢
‘V 5

L2(0e) L2(Qe)

2 2

4(eh)’
pCx

ofe
ot

6u§
ot

+ nCrk HV

L2(Q¢) L2(9¢) '

We use the same techniques for the other terms, so we will have the following
inequality

2 2

821[2 6u2
4+ 2uCk ||V

ot?

ot

L2(QF) L2(9¢)

62u2 ?
ot? )

+ (2 + 3X) V01|72 0
L2(Qe)

€ 2
5u§

ot

+4@m2/t
wCxk  Jo
4 (ch)®
uCr

2 +4@@wfﬁ

i |[v ()

L2(QF) ,UJCK L2(QF)

8% f< () ||”
ot?

ds 4+ nCg ||V191||i2(gs)
L2(Q¢)

2

€ t
af + ,uCK /
L2(Qe) 0

ot

Oug (s)

v(?t

2
ds. (17)
L2(07)

2u5
Now let us estimate % (0). From (16) and (9) we deduce

8?us
( e (0) ,so> = (1 (0). ) — aldo, ) — a° (91, 0) — (W] 1, ) Vo € K.
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Therefore

0%us
(s

< eh |12 (0l 2oy IVl 20y + 21+ 3N) 100l 12 ey 2l 111 0

1
. 4 2
ta ||ﬂ1||L2ms>|so||L2<Qs)+< | 1 dasdy) Il e e,

< (RIS Ol o) + 20+ 30 190l s ey ) Il e
1
(ah 19010+ <8 [ 1011 o) )nsonm(m .

As 12 (0)agary = ||£ ()

Then using Sobolev embedding [[v[| 4oy < ¢ [[v]| 1 (q), We get

2’ we multiply this last inequality by +/e.

2,,€
8u4

\/‘g 3152 (0) S C/a

L2(Q°)

‘ 2

= 1|7 ©)

+(2u+3>\)H1§0H +an? HmH + he, ||
HY(Q) HY(Q)

|

L2(Q) HY(Q)

is independent of €. Passing to the limit in (17) when ¢ tends to zero, we find

2
| <]
L2(Qe)

+ (21 + 33X + puCk) |V ||i2(ns) +
N 4 (ch)? /t
1nCk  Jo

t
/(

8262 2

ot?

0%us
ot?

4(ch)’

nCr

ous
ot

(0)

+ uCxk HV

2(Q9) L2(Q°)
afe¢
ot

H(”“

L2(Q9)

O*f° (s)|” ’
atQ Lz(Qs ,U/CK

0%uf (s) ? ous (s) |7
ot? ot

+ uCxk HV

] ds. (18)
)

L2(Qe) L2(Qe
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Multiplying now (18) by &, we obtain

l“az ”

where B is a constant does not depend of &

2

ou’
ot

+ uCr H

L2(Q9) L2(Qe)

2

ous (s)|?
ot

ds+ B,

H62u

+ uCrk HV

L2(Q9) L2(Q°)

. 2
of
ot

12 4h?
B = (2u+ 3\ + pCk) HVﬂl’ L) T (01)2 n o

2

(0)

L*(Q)
- 2

4h?
pCx

4h?
uCk

of
ot

of
9

L>=(0,T,L2(2)?) £2(0,1,L2(2)?)
By the Gronwall’s lemma, there exists a constant ¢ that does not depend of e

such that

oue ||?

ot

\V4 <c

=6

L2(Q9)

+e

L2(QF)

82
|

we conclude (12). O

4. Convergence theorem and limiting problem

THEOREM 4.1. Under the hypotheses of Theorem 3.1,
there exists u € L% (0,T,V,) N L>*(0,T,V,), such that

a5 — uj weakly in L*(0,T,V>) (19)
8871; . Oup and weakly * in L>= (0,T,V,),
38771? —0 weakly in L* (0,T, L? (Q0)) (20)
RSN and weakly * in L> (0,T,L?(Q)),
oxOt
536715 -0 } weakly in L* (0, T, L? (Q0)) (21)
2 1 o
536;1 0 and weakly * in L> (0,T,L? (Q)),
£2 %7;2 —~ 0 } weakly in L* (0,T, L? (2)) (22)
) )
2 gx?ﬁf 0 and weakly * in L> (0,T, L* (),
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2% N O

ST kly in L? (0, T, L? (Q

82‘92’13 0 weakly in (0, L2 ( ))
gjaf and weakly * in L (O,Ta L? (Q)) ’
20 Uy

e — 0

2 945
3 1
€% 5

3 95

ot

—\

} weakly in L* (0,T,L* (Q)) . (24)

Proof. According to Theorem 3.1, there exists a constant ¢ independent of &
such that

Using this estimate with the Poincaré inequality in the domain 2, we get

o2
€
oug

0z

<ec.
L2(Q)

o2
3
043

~g |12 T
i < | 52| <

L2(©)

So (45), is bounded in L* (0, T, V.) N L*> (0,7, V.), which implies the existence

of an element u} in L? (0, T, V,)NL*> (0, T, V,) such that (af)_ converges weakly

to uf in L2 (0, T, V,)N L (0, T, V,), the same for (%) , thus we obtain (19).
g

For (20)-(24), according to (11), (12) and (19). O

THEOREM 4.2. Under the hypotheses of Theorem 4.1, the limit uj satisfies the
following variational inequality

oui 9, 9w A/%A_%
L L Dz 02 <<p1 8t>dxdz+a T D1 5 dxdz

R - [ Ou* . ou*
27 -7 (%) 2 (hn-51). wenm). o)

and the parabolic problem

2, %
o uj

H 022

1)+ (1) = i), in L2, (26)

U‘T (1’7 Z, 0) = 190,1-

Proof. As J (-) is convex and lower semicontinuous i.e

! e Lg%
lim [ inf / P24 g > / j|2u
e—0 0 6t 0 8t

dx,
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we pass to the limit when e tends to zero in (10) and using the convergence
results of the Theorem 4.1, we find the following limit inequality

Oui 9 (. _0ui A/% 5 o0ud
o az(% w)dwd”o‘gat o1y ) dvdz

~ ~ [ Out . ou*
+J(@)J(8U;>Z/Qf1 (@1 (;Ltl>dxdz. (27)

We now choose in the variational inequality (27)

o
pr="5kEu, e H (),

ouy Oy . [ Ouj _/ -
M/Q 9% adscdz—i—a/Q 5 Ydrdz = Qfﬂ/}dmdz.

According to Green’s formula, we obtain

we find

- / u% <8“1) vdzdz+ [ 629 pdudy = / Frbdadz, Vo € HL(Q).
Q Q

0z Q Ot
Therefore
Q%ui (t)  oui(t) 1
g Fae = filt), in HHQ) Vi €]0.T[, (28)
and, as f € L* (), then (28) is valid in L2 (Q). O

THEOREM 4.3. Under the same assumptions of Theorem 4.1, the traces

7 (2,t) = 85;1 (2,0,¢) and s* (z,t) = u} (z,0,1)

satisfy the following inequality

U Hs*
f (5

and the following limit form of the Tresca boundary conditions

0s*
ot

l
) dx — / put*pdr >0, Ve L2 (]0,1]),  (29)
0

M\T*|<]%:>%ZO;

=k = 3 L that 85 — g a.e on ]0,1[ x10,T[. (30)
p|m*| =k =38 > 0 such that - = —p77,

Moreover uy and s* satisfies the following weak form of the Reynolds equation

/l <F~'}2ls*+/huf (:c,z,t)derUl) ¢ (z)dz =0, Ve H(0,1]),
0 0
(31)
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where

h
- h
F (z,h,t) = l/ F(z,z,t)dz — —F (x,h,t),
©Jo 2p

~ h ~
- & ah
Uy (z,h,t) = —— Ui (x,z,t)dz+ —Uy (z,h,t),
1 ( ) A 1 ( ) o 1 ( )

F(x,2,t) = // i (@, t) dndg,

#%2) //a

Proof. For the proof of (29), (30), we follow the same steps as in [1]. To prove
(31) by integrating (26) from 0 to z, we see that

t) dndg.

ou ou; - [F o ZA

Integrating again between 0 to z, we obtain

t) dndc

z Qo

uy (z,2,8) = s + 27" + — /

in particular for z = h (z) we get

s* + hr* ———/

Integrating (32) from 0 to h, we obtain

h * * 1 *
/Oul(a:,z,t)dz:hs —|—§h2 /// 8

_;/0/0 ; fl (x,n,t)dnd¢dz. (34)

) dnd¢ + - / / fr @yt dndC. (33)

t) dndCdz

From (33) and (34), we deduce that

h
h .
/ u’{(x,z,t)dz—gs*—FF—FUl:O,
0
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with
F (2, 1) 1/hF( Dz — L F (2 1)
z, n, = - €, z, Z— o z, n, )
wJo 2p
0, (2, b t) &/hU( B dz+ Uy (@bt
&€, n, = - €, z, z o €, I, )
' B Jo ! 2 '
z ¢ .
Pt = [ [ it
o Jo
z ¢ *
Uizt = [ 5 vy dndc.
Therefore

! h
/ (/ uf(x,z,t)dz—;Ls*—i-ﬁ—&—ﬁl)w/(x)dxzo.
o \Jo

THEOREM 4.4. The solution u} of the limiting problem (25), (26) is unique in
L?(0,T,V.) N L> (0,T, Vz).

O

Proof. Suppose that there exist two solutions uj and uj* of the variational
inequality (25), we have

ouy 0 (. Ouj . [ Ouj . ou}
I D2 az(go 3t)d$dz+a/9 5 (ap R dxdz

2107 (%) = (hue- %) @)

Qui” 9 (@ _9u ) dedz +a [ 24 <¢ _ 0w > dadz

and

H, o o2 at o Ol ot
2@ —d (29 s (fe - 290 (36
1.4 ot )= \JvPT T )
ui™ Ouy

We take ¢ = =5 in (35), then » = = in (36), and by summing the two
inequalities, we obtain

a , . oy O (Oui  Oul”
u/{la(ul—ul) 62(315 5t )dwdz

. ou;  Oui* ou;  Oui”
_ ) _ <0.
+a/ﬂ<at at ) <8t o ) a0
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If we put W (t) = u} (t) — ui* (t), this implies

H ow ||”
B — <0.
We have W (0) = 0, then we find
<0.
H 0z L2(Q)

Using Poincaré’s inequality, we conclude

||W||L2(O,T,Vz) = HWHLOO(O,T,VZ) =0.

O
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