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On a Quasilinear Parabolic System
Modelling the Diffusion
of Radioactive Isotopes

E. CoMPARINI, C. PESCATORE AND M. UgHI *)

Dedicated to the memory of Fabio Rossi, with deep affection

SUMMARY. - We consider a model for the diffusion of N species
of isotopes of the same element in a medium, consisting in a
parabolic quasilinear system, with Dirichlet boundary condition,
in the gemeral hypothesis that the diffusion coefficients possibly
are all different. We prove existence and uniqueness of classi-
cal solution in the physically relevant assumption that the total
concentration of the element is positive and bounded.

1. Introduction

We will consider a model proposed in [8] for the diffusion of N species
of isotopes of the same element in a medium and based on the as-
sumption that the flux of the ¢ component J; is given by
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with
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In the above constitutive law, the coefficients D; are the usual
parabolic diffusion coefficients, which account for the interaction of
the i-component with the surrounding medium, while the coefficients
D; are related to the interaction among the isotopes. We assume that
the coefficients Di and D; are positive constants.

The main idea is that each component feels the gradient of the
total element concentration in a relative percentage ﬁ, because the

isotopes are chemically indistinguishable. For details of the original
physical model see [8]. A similar model is presented in [3].

In the case of radioactive isotopes, we have to take into account
the radioactive decay law, which for spacially homogeneous distribu-
tions is a linear ODE system

L _re. cem”, (3)

with A a suitable N x N constant matrix.
An important example is the couple Ussg(cy), Uass(c2) for which
the decay law is

d

itl = -\,

& — \er — ) @
a 1€1 202,

with 0 < A1 << Ag.

The model is relevant in various physical applications, among
which let us mention the distribution of radionuclides in the ground
water around a deep repository for used nuclear fuel, whose study is
an essential requirement for future safety analysis, see e.g. [6].

In the paper [4] we have studied some qualitative properties of
the solution in the physically relevant assumption that the diffusion
coefficients D; are much smaller than the D;, thus showing the ap-
pearance of a “hyperbolic” behaviour for the ¢;, quite interesting for
the applications. Here we will consider the general case of positive
diffusion coeflicients, possibly all different.
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We will prove the existence and uniqueness of classical solution
of the resulting system with Dirichlet boundary conditions in the
physically relevant assumption that

K>¢>k>0, i=1,..N, (5)

k, K constant.

2. Statement of the problem

Let © be a bounded domain of R™ with regular boundary 02, the
model problem is

N
% = —divJ; + jzl )‘ijcja in ) x (0, T), (6)
Ci|aQ = fi, 1n(9§2 X (O,T),
¢i(x,0) = cio(x) in Q,

for i =1,..., N, with J; given by (1), (2).

The assumptions on the boundary-initial data are the physical
one (5) plus smoothness, that is, denoting by I' the parabolic bound-
ary 092 x [0,TJU ) x {t =0}

Hp A) ¢l smooth, ¢ satisfies (5) for i =1,...,N.

As for the matrix A we have to assume that either it is zero,
(for stable isotopes such as the couple (Clsz, Clss)), or it models a
radiactive decay, (such as the couple (Usss, Usss) we mentioned in
the introduction).

Therefore it is natural to require a positive property for the so-
lution of the ODE initial value problem

LU _ sow). €= (er,mmen) -
C(0) = Cy, Cy = (€105 -+, €NO),

namely

Hp B) A is a constant matrix such that YO, € R, there exists a
unique bounded solution C(t; C) for ¢t € (0,+00) and if
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(1) if ¢io > 0 then ¢;(¢t) > 0, for i = 1,..., N;
(ii) if for some i, ¢;o > 0 then ¢;(t) > 0, for any ¢ > 0.

Assumption B) implies that, if Cy # 0 and (i) holds, then

N
c(t)=> e(t)>0, >0,

i=1
REMARK 2.1.

Actually for radiactive isotopes there often exists a so called “sec-
ular equilibrium”, i.e. an asymptotically stable positive equilibrium

; U:
for the ratios &. For the couple Ussg, Uagy it is 238 218000. In this
Cj 234
situation we should add to assumption B) the following

Hp B’) A has N real negative eigenvalues, the eigenvector of the
largest one has all components of the same sign.

Since it is relevant to consider the total concentration ¢, we will
consider the problem obtained from (6) substituting to the N-th
equation the sum of all the equations, setting

N-1
CN =C— Z G-
i=1
Then denoting by
C= (Cl, ...,CNfl,C) S RN, (8)

we can write the problem in the following way, using the notations
of [2]:

I =~ 0 oc - .

%= Yo (425 ) +he. max oD )
C‘aﬂ = f, lnaQ X (O,T)
C(z,0) = Co(x) in,

where Aji, j,k =1,...,n are a family of real matrices NV x N given
by
Air(C) = A(C)djk, j,k=1,...,n (10)
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d;1 is the Kronecker symbol, and A(C) is the N x N real matrix

Dy o .. 0 Dy
0 D, 0 Dy
0 0 DNfl Dn_1 CN;l
Di—-Dy Dy—Dy ... Dy-1—Dny Dn+Dn+3 N "(Di—Dn)<%

(11)

The matrix A is derived in obvious way from A:

A1 — AN AN
A21 — Aan AaN
(12)
S Ot = ) e D A
and N
{ =, =120 fi), (13)
Co = (c10,- - - c(nv=1) 05 S cio)-

Since we are interested in the physical assumptions, the boundary
value cannot be zero, so we reduce to the homogeneous Dirichlet
problem in the usual way, see also [2], Sect.11, that is we extend
smoothly f in the interior, let us denote the extention by f, and
arrive for u = C — f to the following problem for u

ou "9 -~ Ou .
5 _j;1%j<Ajka—wk> + F(u,0u, z,t), inQ x (0,7)
ulp0 = 0, indQ x (0,7)
u(x,0) = Co — f(z,0) inQ,
(14)
where

Ak = A(u + f)di,

. .0 (- of - Of (15)

Since F' is affine in Ou, the principal part of the operator, see the
first of (15), is in “separated divergence form” in the sense of [2] and
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we have Dirichlet boundary conditions, we can apply the results of
[1], [2], provided we prove a “normal ellipticity condition” (see [2]
p.151 and [1] p.219, 220) which in this case (see Theorem 4.4 of [2])
reduces to prove that

“all the eigenvalues of the matrix A have positive real part”. (16)

Let us remark that for our problem the “normal ellipticity condi-
tion” corresponds to the original definition of parabolic system by
Petrovskii (see [9]) (see Def. 1,2 Cap. VII, Sect.8 of [7]), and that
in space dimension one a simpler proof of Theorem 4.4 of [2] can be
found in [7], p.624.

We will prove in the next Section 3 the “normal ellipticity condi-
tion” on A, however we want to stress here that our operator (15) is
not “strongly elliptic”, that is it does not satisfy the condition (see

[2], (10) of Sect.1, [7], Def.7 Cap. VII, Sect.8)

N
Z Aii&i& >0, V¢ e RV {0}, (17)

1,7=1

in all the domain of interest (see (5)).
In order to see this, it is sufficient to consider the special, but
physically relevant, case in which

D; = D, D; =D, i=1,..,N. (18)

In fact in this case the matrix A is upper triangular and has N —1
eigenvalues equal to D and one eigenvalue equal to D+ D, so it is
“normal elliptic”, but a straightforward calculation shows that (17)
does not hold for all the interesting range of D, D and for ¢; satisfying
(5). In particular, one can see that for N = 2 the condition (17) does
not hold for any D positive, but only for sufficiently large D (remark
that the matrix A is not symmetric).

3. Normal ellipticity condition

In view of assumption (5) and of the definition of A, let us define

r=(r,.ry_1) eERVL =G (19)
C
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We will consider the coefficients of the matrix A defined by (10), as
functions of 7, affine in r, in the open domain

N-1
G = {TERN_lzm >0, i=1.,N—1, Y r;< 1} c RNV
j=1
(20)
We will assume, without loss of generality, the order
Dy < Dy_1<..<Dy. (21)

Let us list first some simple cases, however of interest in the
applications.

case 1. D, = D, D; = D, 1=1,...,.N

We have already seen in Sect.2 that we have an eigenvalue D
with algebraic multiplicity N — 1 and an eigenvalue D + D.

case 2. D, = f?, i=1,...N

Again A is upper triangular, D is an eigenvalue with multiplic-
ity N — 1 and the last one is Axn(r)

case 3. D; =D, i=1,...N
Then in the matrix A the term Ayy = D + D is constant.

Let us remark that for Ayy we have

DN —|—m1nD, < ANN(T) < DN —i—maxDi, red. (22)
i i

Since Ay is affine in r and (22) holds in G, we have that
GcG={reRN"1: Ayy >0}, (23)

actually G is bounded away from 9G.
We will now prove the following

LEMMA 3.1. The matriz A has, in G, N real positive bounded eigen-
values, say A;, i =1,...,N and

0< Dy <A <Dy_1<..<Anv_1 <Dy <Ay<D;+maxD;.
T
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Proof. Let us consider first the case ofj)i all different.
Then the eigenvalues of A are # Dy, i =1,..,N — 1. In fact,

assume the contrary, i.e. one eigenvalue is D; for some i, and look
at the eigenvector equation (A — D; Id) v = 0, that is:

(Dj — Di)vj + Djrjuy =0,  j#1i,N,
D;rivy =0, (24)
> 25N (D; = Dy)vj + (Anwy — Di)oy = 0.
Since r € G, r; > 0 hence vy = 0, therefore v; = 0 for j # i, and
from the last row v; = 0 (recall that we are assuming that the D;

are all different). So v =0 and we get a contradiction.
(D Dy)

Multiplying the i-th row for — and summing it to the

N-th row, fori=1,....,N — 1, we get

Di-x 0 ... 0 Diry
0 DQ_)\ e 0 D2T2
det(A — AId) = det : : : :
0 0 DN—l—)\ Dn_1rNn-1
0 0 0 —g(X;7)
= —(Dy = M)...(Dy_1 — Ng(\;7) (25)
where g(\;r) is given by
N-1
(D; — D )D;r;
Z NA TN — Ann(r). (26)
=1

Since X # D;, i # N, the eigenvalues are the zeros of g(\; 7).
We have:

N—
(D = Dx)Dir
Z N) i 1>, (27)

for all r in G.
For any i # N we have Vr; >0, » € RV~1

lim, _ 5- g(A;7) = +00,
lim, 5 g(A;7) = —o0, (28)
lmy—q00 g(A;7) = +00.
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Therefore there exists a unique zero in each interval (Dit1, Di), i =
1,N — 2, and (Dy, +00).
As for the smallest eigenvalue, consider for r € G

N-1 N-1

g(Dy;r) = Z Diri + Dy — (DN + Dy + Z(Di - DN)H‘)
i=1 i=1
N—1
= —Dy (1 -3 n) < 0. (29)
i—1

Therefore, the smallest eigenvalue is > Dy, since (28) holds for
i =N —1 and g is increasing.

To prove the upper bound for the eigenvalues we simply show
that

g(Dy +max D;;r) >0 VregG. (30)

Therefore we have proved the Lemma in G with the strict inequalities
in the case of D; all different.

As we already remarked if all the D; are equal the Lemma is true
in G (see (22)), so we are left with two situations

(i) there exists one index i, 1 < i < N — 1, such that D; = Dy,

(ii) there exist two indeces i,j, 1 < i < j < N — 1, such that
D; =D,

In case (i) all the columns with index i are zero but for the i-th
element, therefore we have N —i eigenvalues equal to Dy and we can
reduce to a matrix of order i x i of the same form of A (suppressing
rows and columns of index i, ..., N — 1) to which we can apply again
the Lemma.

In case (ii) a direct examination either of the characteristic equa-
tion or of the system (A—AId)v = 0 shows that A has j—i eigenvalues
D; and we can reduce to a matrix (N — (j —4)) x (N — (j — i) of
the same form of A and repeat the initial argument, thus concluding
the proof. O
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REMARK 3.2. In the realistic assumption on the diffusion coeffi-
cients, we have that

DN + mlnD, > Dl.
T
Then we have that
g(Dy 4+ min Dy;r) <0 vr € G.
(3

Therefore we have in this case that the largest eigenvalue Ay is such
that in G

Dl < DN —i—mlnDz <Ay < DN —|—maxDz
i i

In other words the first N—1 eigenvalues are of the order of D;, while
the last one is of the order D;+ D;, i.e. larger than the previous ones.

Consider now the boundary of G, we have the following:

LEMMA 3.3. On the boundary OG A still has N real positive eigen-
values and:

DN < mjn N < max A < Dl + max D;, Vr € 9G. (31)
i i i

Let us remark in particular that, looking at (29), we have

N-1
min \; = Dy if 7 : Zrizl. (32)
7
1=1

Hence also if the D; are different, if the smallest one is reduced to
zero, the problem degenerates.

Proof. Let us consider only the case of all D; different, since, as we
have seen previously, we can always reduce to such a case in a smaller
dimension than N.

Ifre{reR¥"1t:r; >0, Zf\izl r; = 1}, then the same proof of
Lemma 3.1 holds and hence its assertion with the strict inequalities
but for the first one, i.e. A\; = Dy (see (29).
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Ifrely={reRV1:r =01 >05""r <1}, then,
looking at matrix (A — M\ d), we have that A = D; is an eigenvalue
and we can reduce the problem to the minor 7,7 of A, say A%’

If all the r;, j # ¢ are positive, we can apply directly Lemma 3.1
to A%, If some other r;j = 0, then we have that the corresponding ﬁj
are eigenvalues and reduce again the problem, repeating the present
argument.

Let us remark that in the origin » = 0 the matrix A is lower
triangular and the eigenvalues are DN_l, . Dl, DN + Dy, the last
one is the largest one in the “physical” assumption on D;, D;. Let
us also remark that there are points in G in which the eigenvalues
have algebraic multiplicity 2. O

REMARK 3.4. Since the elements of A are affine in r € RN~ we
can write A(r), given any ro € RN71:

A(r) = A(ro) + T,

where the matrix T, N x N, is:

0 ... 0 Dy(r1 —710)
: : (33)
0 ... 0 Dn_p(r(v—1) —T(n=1)0)
0 ... 0 SN ND;—Dn)(ri —ri0)
Then we have:
17} < max Dyfjr —rof|. (34)

Since the spectrum of A is continuous, uniformly for ||r — ro|| <
1, (see [5], Thm. 5.14, Cap.Il, Sect. 1.2, 1.7, 5.7, Cap.II) and
Lemmas 3.1, 8.8 hold, we have that, strictly: G C Gpe = {r € RN71;
eigenvalues of A have positive real part}.

Let us also remark that when N = 2 one can easily determine
Gpe, since

Gpe ={r e R: TrA > 0,detA > 0},
and TrA, detA are affine in r. Moreover we have:
TrA > Dy + Do + min; D;,
{ detA > DDy + min(ﬁng, Dng),
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forre[0,1] =G

4. Existence and uniqueness

The result of Sect.3, Lemmas 3.1, 3.3, Remark 3.4, allows us to apply
the existence and uniqueness theorem of [2], see Corollary 9.3, p.57,
which gives a classical solution in a given interval [0,7).

More regularity on the data, f € C, gives a C* solution, see
Corollary 9.4 of [2], but one can consider less regular initial datum,
see Theorem 9.2 of [2].

We can then repeat the argument in [2], p.18, to show that C is
bounded away from the boundary of

G={CeR":¢ >0, i=1,..,N}cRY

and we can use then Theorem 2 of [1] to get global existence.
In fact once we have a classical solution, we can rewrite the equa-
tion for ¢; as a linear parabolic equation, namely

de; -
8_07; = D;Ac; +b-Ve; + ac, i=1,...,.N (36)

with b € RV, a function of z, 1.

Then by the maximum principle we have that in the assumption
A), ¢; > 01in Q x [0, 7] for any T > 0, and bounded.

We have thus proved the following

THEOREM 4.1. In assumptions A) and B) there exists a unique clas-
sical solution of problem (6) for any T > 0.

Actually, from the results of Sect.3, see Remark 3.4, we can
weaken assumption A), assuming instead the following:

Hp A’) ¢|p smooth, K > ¢ > 0 for i = 1,..., N and such that
Yilicilp k>0,

REMARK 4.2.

With the same method one can deal with the Neumann boundary
value problem, that is

Ji v =g, inoQ x (0,7), i=1,..,N, (37)
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where v is the exterior normal to 99, J; given by (1). Moreover one
can also treat the case of mixed Dirichlet and Neumann boundary
condition as in [2], p.14, introducing, with the notations of Sect.2,
the boundary operator

n
B(C)C = 5< Z Ajkng—;> +(1-6)C, (38)
7,k=1
with either 6 = 0 (Dirichlet condition) or 6 = 1 (Neumann condi-
tion). In fact Theorem 4.2 of [2], p.32, holds also in this situation.
Let us make some comments on the special cases 1. and 2. of
Sect.3, because of their relevance in the applications.

case 1. (D;=D, D;=D, i=1,..,N)

If A = 0 (stable isotopes) the system (9) is actually decoupled,
since one can solve first the equation for ¢, which is a heat
equation with diffusion coefficient equal to (D + D). Then the
equations for each ¢; are linear parabolic equations (see (6))
with a much less diffusion coefficient D. If A # 0 (radioactive
isotopes) the system (9) is still coupled. However, looking at
the equation for the total concentration ¢, we can see that c has
a purely diffusive behaviour, while the single specie’s concen-
trations have a lower diffusion coefficient and a possibly strong
gradient term, thus exibiting a behaviour close to a “hyperbolic
one (see also [4]), in agreement with physical observations, see

[8].
case 2. D, = f?, 1=1,..,.N

Also if A = 0 the system (9) is not decoupled since the diffusion
coefficient for ¢ is Ayy which depends on ¢y, ...,cn—1, ¢ (see
(10)). However the equation for c is

% = div (Ayn Vo), (39)

with uniform bounds on Axy (see (23)), which gives good
information on the qualitative behaviour of the total concen-
tration c.

Moreover, also if A £ 0, one can apply the stronger results of
[1] for triangular matrixes A (Theorem 3).
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