
Rend. Istit. Mat. Univ. Trieste
Suppl. 1 Vol. XXXII, 193–219 (2001)

Lifting Braids

Michele Mulazzani and Riccardo Piergallini (∗)

Summary. - In this paper we study the homeomorphisms of B2 that
are liftable with respect to a simple branched covering. Since any
such homeomorphism maps the branch set of the covering onto
itself and liftability is invariant up to isotopy fixing the branch
set, we are dealing in fact with liftable braids.
We prove that the group of liftable braids is finitely generated by
liftable powers of half-twists around arcs joining branch points.
A set of such generators is explicitly determined for the special
case of branched coverings B2 → B2. As a preliminary result we
also obtain the classification of all the simple branched coverings
of B2.

Introduction

A continuous map p : F → G between compact surfaces with G
connected and oriented is a branched covering iff it is a local home-
omorphism near Bd F and any point x ∈ IntF has a neighborhood
U ⊂ Int F such that the restriction p|U : U → p(U) is topologically

equivalent to the complex map z 7→ zdx , for a uniquely determined
positive integer dx, the local order of p at x. In particular, we have
p(Int F ) = Int G and p(Bd F ) = Bd G.

Given a branched covering p : F → G, we denote by Sp ⊂ IntF
the (finite) set of the singular points of p, that is the points x ∈ IntF
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such that dx > 1, and by Bp = {P1, . . . , Pn} ⊂ IntG the set of
branch points of p, defined by Bp = p(Sp). Then, the restriction
p| : F − p−1(Bp) → G − Bp is an ordinary covering with d sheets,
where d = d(p) is the order of p. The orientation of G can be lifted
to an orientation of F which makes p : (F,Bd F ) → (G,Bd G) a map
of positive degree d(p). We assume F oriented in this way.

Since p| uniquely determines p, by fixing a base point ∗ ∈ G−Bp

and numbering the fiber p−1(∗), we can represent p by means of the
monodromy ϕp : π1(G − Bp, ∗) → Σd of the ordinary covering p|,
where Σd is the permutation group on {1, . . . , d}. We call ϕp the
monodromy of p. In order to simplify the notation, we write ϕ in
place of ϕp, when there is no risk of confusion. Because of the choices
of ∗ and of the numbering of p−1(∗), the monodromy is defined only
up to inner automorphisms of Σd.

A branched covering p is called simple iff it maps Sp injectively
onto Bp and dx = 2 for any x ∈ Sp. This means that the monodromy
of a small simple loop around any branch point is a transposition.

Two branched coverings p : F → G and p′ : F ′ → G′ are equiva-

lent iff there exist orientation preserving homeomorphisms h : G →
G′ and k : F → F ′ such that p′k = hp. Of course, in this case we
have d(p) = d(p′), h(Bp) = Bp′ and k(Sp) = Sp′. Now, it turns out
that the existence of a lifting k : F → F ′ of a given homeomorphism
h : G → G′ such that h(Bp) = Bp′ depends only on the existence
of a lifting of the restriction h| : G − Bp → G′ − Bp′ . Then, by the
classical theory of ordinary covering, we get the following criterion.

Lifting theorem. A homeomorphism h : G → G′ has a lifting
k : F → F ′ with respect to the branched coverings p : F → G
and p′ : F ′ → G′ of the same order d iff h(Bp) = Bp′ and there
exists an inner automorphism ε of Σd such that ϕp′h∗ = εϕp, where
h∗ : π1(G − Bp, ∗) → π1(G

′ − Bp′ , ∗
′) is the isomorphism induced

by the restriction of h. In this case ε is given by the conjugation by
σ = ν ′k ν−1 ∈ Σd, where ν : p−1(∗) → {1, . . . , d} and ν ′ : p′−1(∗′) →
{1, . . . , d} are the numberings of the fibers p−1(∗) and p′−1(∗′), with
∗′ = h(∗), inducing the monodromies ϕp and ϕp′ .

As an immediate consequence of this lifting theorem, we have an
equivalence criterion for branched coverings in terms of their branch
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sets and monodromies.

Equivalence theorem. Two branched coverings p : F → G and
p′ : F ′ → G′ of the same order d are equivalent iff there exist an
orientation preserving homeomorphism h : G → G′ and an inner
automorphism ε of Σd such that h(Bp) = Bp′ and ϕp′h∗ = εϕp.

The classification of the simple branched coverings of S2 up to
equivalence is classical and well known. In [6] and [7], Gabai and
Kazez extended such classification to all the closed surfaces. The
following Theorem A, giving a classification of the simple branched
coverings of B2, is stated without proof in [2]. In Section 1 we give
a proof of Theorem A, by providing a canonical way of representing
branched coverings of B2. We need such canonical representation in
order to get our main result about liftable braids.

Given a simple branched covering p : F → B2 of order d, we fix
a base point ∗ ∈ S1 and a numbering of p−1(∗). Then, we define
total monodromy of p to be the permutation ϕp(ω) ∈ Σd, where ω
is the clockwise oriented simple loop supported by S1. Moreover,
we denote by Ω(p) the conjugation class of ϕp(ω) in Σd, which is
uniquely determined by p (actually by the restriction of p over S1).
Now we are in position to state the classification theorem.

Theorem A. Two connected simple branched coverings p : F → B2

and p′ : F ′ → B2 are equivalent iff they have the same order d, the
same number n of branch points and Ω(p) = Ω(p′).

Since Ω(p) is the class of d-cycles of Σd for any simple branched
covering p : F → B2 with Bd F connected, by the Riemann-Hurwicz
formula we easily get the following corollary.

Corollary. For every compact connected orientable surface F with
connected boundary and for every integer n ≥ 2−χ(F ) there exists a
unique (up to equivalence) simple covering p : F → B2 with n branch
points.

Given an orientable surface S and a closed subset C ⊂ S, we
denote by H(S) the group of all the orientation preserving homeo-
morphisms of S onto itself and by H(S,C) ⊂ H(S) the subgroup
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consisting of all the h ∈ H(S) such that h(C) = C. Moreover, if
D ⊂ S is another closed subset, then we denote by HD(S) ⊂ H(S)
and HD(S,C) ⊂ H(S,C) the subgroups of the homeomorphisms
which coincide with the identity in D. Finally, we denote by M(S),

M(S,C), MD(S) and MD(S,C) the mapping class groups corre-
sponding to the groups considered above (that is, we set M = π0 H).

For any n ≥ 1, let Bn = π1(Γn(IntB2), {P1, . . . , Pn}) be the braid

group of order n of S based at {P1, . . . , Pn} ⊂ IntB2, where Γn(X) =
(Xn − ∆)/Σn denotes the configuration space of all the subsets of
X with cardinality n. We recall that there exists an isomorphism
η : Bn → MS1(B2, {P1, . . . , Pn}), defined by setting η(b) equal to
the isotopy class of the ending homeomorphism h1 of any isotopy
t 7→ ht ∈ HS1(B

2) which realizes the braid b (that is, the map
t 7→ ht({P1, . . . , Pn}) is a loop in Γn(Int B2) representing b).

We use the right-handed notation for the action of braids on ev-

erything, that is (a)b denotes the image of a by the action of the

braid b. If a itself is a braid, then we have (a)b = b−1ab. More-

over, we adopt the following bracketing convention:(a)b1b2 . . . bn =
(. . . ((a)b1)b2 . . .)bn.

We say that a homeomorphism h ∈ HBd G(G) is liftable with
respect to the branched covering p : F → G iff there exists k ∈

HBd F (F ) such that p k = hp. We call k a lifting of h. Of course,
for such h and k, we have h(Bp) = Bp and k(Sp) = Sp. Moreover,
the lifting k is unique if Bd G 6= ∅, otherwise h may have more than
one lifting. In any case, liftability is preserved by composition and
is invariant by isotopy in HBd G(G,Bp), so it makes sense to speak
of the (subgroup of the) liftable isotopy classes in MBdG

(G,Bp).

Given a simple branched covering p : F → B2, we call b ∈ Bn

(the braid group based at the branch set Bp = {P1, . . . , Pn} of p) a
liftable braid with respect to p iff η(b) ∈ HS1(B2, Bp) is a liftable
isotopy class. Moreover, we denote by Lp ⊂ Bn the subgroup of the
liftable braids with respect to p.

Following [4], we call curve for the branched covering p : F → B2

any simple arc α ⊂ B2 joining the base point ∗ ∈ S1 with Bp and
such that Int α ⊂ IntB2 −Bp. Curves are considered up to ambient
isotopy of B2 modulo S1 ∪ Bp. A system of curves is any family of
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curves α1, . . . , αk ⊂ B2 such that αi ∩ αj = {∗} for all i 6= j. A
fundamental system is a maximal system of curves, that is a system
of curves α1, . . . , αn with the same cardinality of Bp = {P1, . . . , Pn}.

For any curve α, let λα ∈ π1(B
2 − Bp, ∗) be the homotopy class

of a simple loop supported by the clockwise oriented boundary of a
small regular neighborhood N(α) of α in B2. In order to simplify
the notation we put ϕp(α) = ϕp(λα). If p is simple, then ϕp(α) is a
transposition for any curve α. Viceversa, if α1, . . . , αn is a fundamen-
tal system for p and ϕp(αi) is a transposition for any i = 1, . . . , n,
then p is simple.

Since λα1 , . . . , λαn generate π1(B
2 − Bp, ∗), for any fundamental

system α1, . . . , αn for p, the branched covering p is completely deter-
mined, up to equivalence, by the monodromies ϕp(α1), . . . , ϕp(αn).

Following [4] again, we call interval for the branched covering
p : F → B2 any simple arc x ⊂ B2 joining two branch points and
such that Intx ⊂ IntB2−Bp. Intervals are considered up to ambient
isotopy of B2 modulo S1 ∪ Bp. We call interval and we denote by
the same symbol x also the counterclockwise half-twist around x and
the corresponding braid in Bn.

It immediately follows from the lifting theorem that any interval
x has a liftable power. In fact, we prove in Section 2 that, if x is not
liftable, then either x2 or x3 is liftable.

Theorem B. For any branched covering p : F → B2, the group
of the liftable braids Lp is finitely generated by liftable powers of
intervals.

The proof of Theorem B is given in Section 4. As a preliminary
step, in Section 3 we consider the special case of F = B2. In this
case, we explicitly provide a set of generators, as described in the
following Theorem C.

Let pn : B2 → B2 be the unique (up to equivalence) simple
covering of order d = n + 1 with n branch points. For sake of
simplicity, we denote by Ln ⊂ Bn the group Lpn of the liftable braids
respect to pn.

We assume the fundamental system α1, . . . , αn and the num-
bering of the sheets of pn be fixed, in such a way that the se-
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quence of transpositions ϕ(α1), . . . , ϕ(αn) is in the canonical form

(1 2), . . . , (d−1 d), that is ϕ(αi) = (i i+1) for each i = 1, . . . , n.

For each i = 1, . . . , n − 1, we define xi ≃ αi ∪ αi+1 to be the
unique interval such that xi ∪ αi ∪ αi+1 is a Jordan curve whose
interior does not contain any branch point. Moreover, we put xi,j =
(xi)xi+1 . . . xj−1, for 1 ≤ i < j ≤ n.

Theorem C. For any n > 1, the group Ln of the liftable braids with
respect to the branched covering pn : B2 → B2 is generated by the
above described braids x3

i and x2
i,j, with 1 ≤ i < n and i+1 < j ≤ n.

The above theorems constitute the first results in the study of
the lifting homomorphism λp : Lp → MBd F (F ), we are planning
to carry out in order to find a set of normal generators of ker λp in

Lp, for any branched covering p : F → B2. This would generalize a
result obtained in [4] (see also [5]) for coverings of degree 3.

Our work is mainly aimed to get a general equivalence theorem
for simple branched coverings of S3 in terms of covering moves. In
fact, the equivalence theorem for degree 3 coverings given in [9] and
[10] is essentially based on the results of [4].

1. Branched coverings of B2

Let p : F → B2 be a simple branched covering of order d. Given a
fundamental system α1, . . . , αn with monodromies ϕ(αi) = (ji ki) for
i = 1, . . . , n, we define the non-oriented graph Γ = Γp(α1, . . . , αn) to
have vertices v1, . . . , vd and edges e1 = {vj1 , vk1}, . . . , en = {vjn , vkn

}.
We remark that the ordering of the vertices of Γ is not relevant,

since it depends on an arbitrary numbering of the sheets of p. On
the contrary, the ordering of the edges contains relevant information
related to the choice of the fundamental system. Therefore, we con-
sider Γ as an edge-ordered graph, in such a way that p is uniquely
determined by Γ up to equivalence.

Moreover, for each non-oriented edge-ordered graph Γ with d
vertices and n edges, there exist a simple branched covering p = pΓ :
FΓ → B2 of order d with n branch points and a fundamental system
α1, . . . , αn for p, such that Γ = Γp(α1, . . . , αn).
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Lemma 1.1. FΓ has the same homotopy type of Γ.

Proof. FΓ is homeomorphic to the topological union D1 ⊔ . . . ⊔ Dd

of d discs, with a band glued between Dji
and Dki

for every i =
1, . . . , n.

Now we want to establish when two connected edge-ordered
graphs Γ and Γ′, with d vertices (which can be assumed to be the
same) and n edges, determine equivalent coverings pΓ and pΓ′ .

For any i = 1, . . . , n, let Oi be the elementary move corresponding
to the transformation (3.6) of [1], which transforms the graph Γ
with edges e1, . . . , en in the graph Γ′ with edges e′1, . . . , e

′
n, defined

in the following way: if ei and ei+1 are disjoint or they share both
the endpoints, then we put e′i = ei+1, e′i+1 = ei and e′k = ek for
k 6= i, i + 1; otherwise, if ei and ei+1 share only one endpoint, say
ei = {a, b} and ei+1 = {b, c} with a 6= c, then we put e′i = {a, c},
e′i+1 = ei and e′k = ek for k 6= i, i + 1. We also denote by O−1

i the
inverse elementary moves, defined in the obvious way.

Fixed a numbering of the vertices v1, . . . , vd of Γ, we associate to
each edge ei = {vji

, vki
} the transposition τi = (ji ki) ∈ Σd. Then,

we define Ω(Γ) as the conjugation class of the product τ1 · · · τn in Σd.
We observe that the class Ω(Γ) is uniquely determined by Γ (that is
it does not depend on the numbering of the vertices) and is invariant
with respect to elementary moves. Furthermore, it is straightforward
to see that Ω(Γ) = Ω(pΓ).

Lemma 1.2. Let Γ and Γ′ be two connected edge-ordered graphs with
d vertices and n edges. Then the coverings pΓ and pΓ′ are equivalent
if and only if Ω(Γ) = Ω(Γ′).

Proof. The ‘only if’ part is trivial. Viceversa, it suffices to prove that
each connected edge-ordered graph Γ with d vertices and n edges can
be transformed, by using elementary moves and their inverses, into
a canonical form dependent only on Ω(Γ).

Let us denote by c1 ≥ · · · ≥ cm the cardinalities of the non-
trivial orbits generated by any permutation of Ω(Γ) and let li =
c1 + · · ·+ ci for each i = 1, . . . ,m, then we can choice as a canonical
representative of Ω(Γ) the permutation π given by the product

(1 2) · · · (l1−1 l1)(l1+1 l1+2) · · · (l2−1 l2) · · ·
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· · · (lm−1+1 lm−1+2) · · · (lm−1 lm) .

On the other hand, there exists a numbering v1, . . . , vd of the
vertices of Γ, such that τ1 · · · τn = π, where τi = (ji ki) is the trans-
position associated to the edge ei = {vji

, vki
}, for every i = 1, . . . , n.

We want to transform Γ by elementary moves, leaving the num-
bering of the vertices fixed, in such a way that the sequence τ1, . . . , τn

becomes

(1 2), . . . , (l1−1 l1), (l1 l1+1), (l1 l1+1), (l1+1 l1+2), . . . , (l2−1 l2),
(l2 l2+1), (l2 l2+1), . . . , (lm−1 lm−1+1), (lm−1 lm−1+1),
(lm−1+1 lm−1+2), . . . , (lm−1 lm), (lm lm+1), (lm lm+1),

(lm+1 lm+2), (lm+1 lm+2), . . . , (d−1 d), (d−1 d),
(d−1 d), (d−1 d), . . . , (d−1 d), (d−1 d) ,

where the first two rows contain the transposition sequence defining
π, with additional pairs of consecutive equal transpositions inserted
between disjoint cycles, and the last two rows consist of pairs of equal
consecutive transpositions. Moreover: a) if π is the identity then the
first two rows are empty and lm = m = 1; b) if lm = d then the third
row is empty; c) the fourth row contains (n−m+ lm)/2−d+1 pairs
of transpositions.

We proceed by induction on n. If n = 1, then Γ itself has the
required form, in fact the only possibility is τ1 = (1 2) and d = 2,
since Γ is connected. In the rest of the proof, we deal with the
inductive step, assuming n > 1.

To begin with, we show how to perform moves on Γ in order to
obtain a sequence τ1, . . . , τn of the type (j1 k1), . . . , (jn′ kn′), (d−1 d),
. . . , (d−1 d), with 0 ≤ n′ < n and ji, ki 6= d for each i ≤ n′.
First of all, by using Remark (3.7) of [1], it is easy to get a se-
quence having the form (j1 k1), . . . , (jn′ kn′), (jn′+1 d), . . . , (jn d),
with 0 ≤ n′ < n and ji, ki 6= d for each i ≤ n′. Then, since
Oi change the pair (ji d), (ji+1 d) with ji 6= ji+1 into the pair
(ji ji+1), (ji d), we can limit ourselves to consider only the case
jn′+1 = . . . = jn = h. If h = d − 1, we have done. Otherwise, if
h 6= d− 1, we have that n′ > 0, by connectedness, and that n− n′ is
even, since (d)τ1 . . . τn can only assume the value d− 1 or d. At this
point, we could get the desired form by the sequence of elementary
moves On′ , . . . , On−1, On−1, . . . , On′ if (jn′ kn′) is (h d−1). So, it re-
mains to show how to obtain en′ = {vh, vd−1} without changing the
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edges ei with i > n′. By connectedness, there exists a chain of edges
ei1 , . . . , eil of minimum length l ≥ 1 connecting vh and vd−1, with
i1, . . . , il ≤ n′. If l = 1, then τi = (h d−1) and we can finish by using
Remark (3.7) of [1] again. If l > 1 and |il − il−1| = 1, then we can
decrease by one the length of the chain by performing the move Oi

with i = min(il, il−1). On the other hand, if |il − il−1| > 1, then we
can reduce by one the difference between il−1 and il, by performing
either O−1

il−1 if il−1 < il or Oil if il−1 > il. So we can conclude this
part of the proof by induction on l and |il − il−1|.

From now on, we assume that the first n′ edges of Γ do not
contain vd and that all the last n−n′ edges of Γ join vd−1 and vd. If
n′ = 0, then we have finished (d = 2 and either π = id or π = (1 2)
depending on the parity of n).

Let us consider the case n′ > 0. We denote by Γ′ ⊂ Γ the sub-
graph having vertices v1, . . . , vd−1 and edges e1, . . . , en′ . Since Γ′ is
connected and the permutation τ1 . . . τn′ is of the type requested for
π, we can apply the induction hypothesis, in order to transform Γ′

into the canonical form, by a sequence of elementary moves and in-
verse of them. The same sequence of moves also transforms Γ in a
canonical form, possibly except for the presence of more than two
transpositions (d−2 d−1) immediately before the n − n′ transpo-
sitions (d−1 d). In fact, the canonical form for Γ contains either
one transposition (d−2 d−1) if cm > 2 or two of them if cm = 2.
Hence, to complete the proof, it suffices to change all the n′′ ex-
ceeding transpositions (d−2 d−1) into (d−1 d). Taking into ac-
count that such transpositions are preceded by at least one more
(d−2 d−1) and followed by (d−1 d) and that their number n′′ is
even, we can realize the wanted change by the sequence of elemen-
tary moves On′ , . . . , On′−n′′+1, On′−n′′+1, . . . , On′ , On′−n′′ , . . . , On′−1,
On′−1, . . . , On′−n′′ .

At this point, we can prove the Theorem A stated in the intro-
duction.

Proof of Theorem A. Let Γ and Γ′ two edge-ordered graphs such
that p = pΓ and p′ = pΓ′ . By Lemma 1.1, Γ and Γ′ are both con-
nected. Moreover, we have Ω(Γ) = Ω(p) = Ω(p′) = Ω(Γ′). Therefore,
Theorem A immediately follows from Lemma 1.2.
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We conclude this section by considering some elementary prop-
erties of the restrictions of a covering of B2 over subdisks, which we
will need in the following sections.

Given a simple branched covering p : F → B2 with n branch
points and a system of curves α1, . . . , αk ⊂ B2 for p, we denote by
pα1,...,αk : Fα1,...,αk → B2

α1,...,αk
the restriction of p to Fα1,...,αk =

p−1(B2
α1,...,αk

), where B2
α1,...,αk

is the disk B2 − IntN(α1, . . . , αk),
being N(α1, . . . , αk) a regular neighborhood of α1 ∪ . . . ∪ αk that
does not contain any branch points other than the endpoints of the
curves α1, . . . , αk.

We remark that pα1,...,αk is a simple covering uniquely determined
up to equivalence, which has the same order of p and n − k branch
points. Moreover, if p has c components, pα1,...,αk has c′ components,
with c ≤ c′ ≤ c + k.

As base point for B2
α1,...,αk

we can choose either the starting-point
∗′ or the ending-point ∗′′ of the arc N(α1, . . . , αk) ∩ S1, oriented
accordingly with the counterclockwise orientation of S1. We denote
by ω′

α1,...,αk
(resp. ω′′

α1,...,αk
) the simple clockwise oriented loop based

at ∗′ (resp. ∗′′) and supported by Bd B2
α1,...,αk

. The liftings of the arc
N(α1, . . . , αk)∩S1 determine bijections p−1(∗) ∼= p−1(∗′) ∼= p−1(∗′′).
By means of this bijections, any numbering of the sheets of p induces
a coherent numbering of the sheets of pα1,...,αk , depending on the
choice of ∗′ or ∗′′ as base point B2

α1,...,αk
.

The sheets of any restriction pα1,...,αk of p will be ever numbered

coherently with the ones of p, whichever will be the choice of the

base point for B2
α1,...,αk

. We will denote with the same letter ϕ the

monodromy of pα1,...,αk , with respect to this coherent numbering, as

well as the monodromy of p, without any explicit reference to the

choice of the base point.

Given any curve α ⊂ B2 for p such that α∩ (α1∪ . . .∪αk) = {∗},
we can assume (up to isotopy) that α∩B2

α1,...,αk
is an arc. Then, we

denote by α′ and (resp. α′′) the curve in B2
α1,...,αk

obtained by sliding
the initial point of α∩B2

α1,...,αk
along the arc N(α1, . . . , αk)∩B2

α1,...,αk

until ∗′ (resp. ∗′′) is reached. By using these notations we can

write pα1,...,αk ∼= (pα1,...,αh)α
′′

h+1,...,α′′

k ∼= (pαh+1,...,αk)α
′

1,...,α′

h for each
h = 1, . . . , k − 1.



LIFTING BRAIDS 203

If α1, . . . , αn is a fundamental system for p, then for any i1 <
. . . < ik and j1 < . . . < jn−k such that {i1, . . . , ik}∪{j1, . . . , jn−k} =
{1, . . . , n}, we have that α′

j1
, . . . , α′

jn−k
(resp. α′′

j1
, . . . , α′′

jn−k
) is a fun-

damental system for pαi1
,...,αik with base point ∗′ (resp. ∗′′). More-

over, by putting τi = ϕ(αi), straightforward computations give the
following equalities: ϕ(α′

j) = τj and ϕ(α′′
j ) = (τj)τi1 . . . τik , if j < i1;

ϕ(α′
j) = (τj)τil . . . τi1 and ϕ(α′′

j ) = (τj)τil+1
. . . τik , for il < j < il+1

with 1 ≤ l ≤ k − 1; ϕ(α′
j) = (τj)τik . . . τi1 and ϕ(α′′

j ) = τj, if j > ik.

Lemma 1.3. If p : F → B2 is a simple covering and α1, . . . , αk ⊂ B2

is a system of curves for p, then ϕ(ω′
α1,...,αk

) = ϕ(ω)ϕ(αk) . . . ϕ(α1)
and ϕ(ω′′

α1,...,αk
) = ϕ(αk) . . . ϕ(α1)ϕ(ω).

Proof. Let αk+1, . . . , αn be curves such that α1, . . . , αn is a funda-
mental system for p. Then, by the equalities above, ϕ(ω′

α1,...,αk
) =

ϕ(α′
k+1) . . . ϕ(α′

n) = (ϕ(αk+1) . . . ϕ(αn))ϕ(αk) . . . ϕ(α1) =
ϕ(ω)ϕ(αk) . . . ϕ(α1) and ϕ(ω′′

α1,...,αk
) = ϕ(α′′

k+1) . . . ϕ(α′′
n) =

ϕ(αk+1) . . . ϕ(αn) = ϕ(αk) . . . ϕ(α1)ϕ(ω).

Lemma 1.4. A connected simple covering p : F → B2 with n branch
points is equivalent to pn if and only if one of the following conditions
holds: (1) F ∼= B2; (2) p has order n + 1; (3) pα is disconnected for
every curve α.

Proof. p ∼= pn ⇒ (1) is trivial. (1) ⇒ (2) follows from Lemma 1.1.
(2) ⇒ (3) follows from the fact that n−1 transpositions cannot gen-
erate a transitive action on {1, . . . , n + 1}. In order to prove the im-
plication (3) ⇒ p ∼= pn, we consider a fundamental system α1, . . . , αn

for p such that the sequence of transpositions ϕp(α1), . . . , ϕp(α1) has
the canonical form obtained in the proof of Lemma 1.2. It is easy to
see that p ∼= pn iff ϕ(αm) 6= ϕ(αm+1) for each m = 1, . . . , n − 1. On
the other hand, if ϕ(αm) = ϕ(αm+1) for some m, then the restriction
pαm is connected.

2. Liftable braids and intervals

In this section we consider a simple branched covering p : F → B2

of degree d with n branch points and denote by ϕ its monodromy.
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We denote by Bn the braid group based at the branch set Bp of p
and by Lp ⊂ Bn the subgroups of the liftable braids with respect to
p.

Let us begin with some elementary properties of liftable braids.
The following liftability criterion in terms of action on a fundamental
system will play a crucial role.

Lemma 2.1. Let α1, . . . , αn be a fundamental system for p. Then,
a braid b ∈ Bn is liftable if and only if ϕ((αi)b) = ϕ(αi) for every
i = 1, . . . , n.

Proof. Let b∗ be the automorphism of π1(B
2−Bp, ∗) induced by the

restriction of b to B2−Bp. By the lifting theorem, b is liftable if and
only if ϕb∗ = ϕ, since the lifting of b is the identity on p−1(∗) and
thus it induces the identity conjugation on Σd. Then, the statement
follows ¿from the fact that the sequence of transpositions associated
to a fundamental system uniquely determines ϕ.

Let α1, . . . , αk and β1, . . . , βk two systems of curves. Suppose
that there exists a liftable braid b ∈ Bn such that (αi)b = βi for
every i = 1, . . . , k. Since any system of curves can be completed to a
fundamental system, by the previous lemma, we have ϕ(αi) = ϕ(βi)
for every i = 1, . . . , k. On the other hand, we can always suppose
that (B2

α1,...,αk
)b = B2

β1,...,βk
, up to isotopy. Therefore, the restriction

b| : B2
α1,...,αk

→ B2
β1,...,βk

induces an equivalence between pα1,...,αk

and pβ1,...,βk , preserving the numbering of the sheets, when they are
referred to the same base point ∗′ or ∗′′.

Lemma 2.2. Given two systems of curves α1, . . . , αk and β1, . . . , βk

for p, there exists a liftable braid b ∈ Bn such that (αi)b = βi for every
i = 1, . . . , k if and only if the following conditions hold: (1) ϕ(αi) =
ϕ(βi) for every i = 1, . . . , k; (2) there exists a bijection between the
components of pα1,...,αk and pβ1,...,βk preserving the number of branch
points and the numbering of the sheets, when they are referred to the
same base point.

Proof. The ‘only if’ part immediately follows from the previous dis-
cussion. In order to prove the converse, it suffices to extend the given
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systems of curves to fundamental systems α1, . . . , αn and β1, . . . , βn

such that ϕ(αi) = ϕ(βi) for every i = 1, . . . , n. In fact, in this case
the braid b ∈ Bn uniquely defined by (αi)b = βi for i = 1, . . . , n
turns out to be liftable by Lemma 2.1. The fundamental systems
α1, . . . , αn and β1, . . . , βn will be constructed by induction on m =
n − k.

If m = 0 there is nothing to do. So, we assume m > 0 and observe
that in this case there exist connected components C ⊂ Fα1,...,αk

and D ⊂ F β1,...,βk , such that the restrictions pα1,...,αk

|C
: C → B2

α1,...,αk

and pβ1,...,βk

|D : D → B2
β1,...,βk

are non-trivial. We assume that such
components correspond each other with respect to the bijection of
property (2). Then, they involve the same sheets {i1, . . . , ie} and the
same number l > 0 of branch points. Moreover, by Lemma 1.3, they
have the same total monodromy with respect to the base point ∗′′,
that is the restriction of ϕ(ω′′

α1,...,αk
) = ϕ(ω′′

β1,...,βk
) to {i1, . . . , ie}.

By the proof of Theorem A, it is possible to construct two fun-
damental systems γ1, . . . , γl for pα1,...,αk

|C and δ1, . . . , δl for pβ1,...,βk

|D ,

with the same base point ∗′′ and such that ϕ(γi) = ϕ(δi) for every
i = 1, . . . , l.

Now we consider the systems of curves α1, . . . , αk+l and
β1, . . . , βk+l, extending the original ones in such a way that α′′

i = γi−k

and β′′
i = δi−k for all i = k + 1, . . . , k + l. Properties (1) and (2) still

hold for these new systems of curves. Therefore, by the induction
hypothesis, they can be further extended to fundamental systems as
desired.

We remark that property (2) in the statement of Lemma 2.2
trivially follows from property (1) when the restrictions pα1,...,αk and
pβ1,...,βk are connected. More generally, this fact holds also when the
two restrictions have at most one non-trivial component and their
trivial sheets are numbered in the same way.

In the rest of this section, we deal with intervals. Given an in-
terval x ⊂ B2 for the covering p, we say that x is of type i iff xi is
the first positive power of x which is liftable with respect to p as a
braid.

By the following lemma (cf. Lemma 2.4 of [4]), each interval
is either of type 1 or type 2 or type 3. Moreover, it can be easily
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realized that the intervals x and (x)b are of the same type for each
liftable braid b ∈ Lp.

Lemma 2.3. Let x be an interval for p and α be a curve for p meeting
x only at one of its endpoints. Then: x is of type 1 if and only if
ϕ(α) = ϕ((α)x); x is of ¿type 2 if and only if ϕ(α) and ϕ((α)x) are
disjoint transpositions; x is of type 3 if and only if ϕ(α) and ϕ((α)x)
are different and not disjoint.

Proof. Given x and α as in the statement, let α1, . . . , αn be a fun-
damental system such that α1 = α, α2 = (α)x and (αi)x = αi for
i = 3, . . . , n. By Lemma 2.1, x is liftable iff it preserves all the mon-
odromies of such fundamental system, that is iff ϕ(α1) = ϕ(α2). The
other two cases can be achieved by similar applications of Lemma 2.1
to the intervals x2 and to x3, taking into account that ϕ((α)x2) =
ϕ((α)x)ϕ(α)ϕ((α)x) and ϕ((α)x3) = ϕ((α)x2)ϕ((α)x)ϕ((α)x2) =
ϕ((α)x)ϕ(α)ϕ((α)x)ϕ(α)ϕ((α)x).

We denote by Ip ⊂ Lp the subgroup generated by all the liftable
powers of intervals, that is by the intervals of type 1, the second
power of the intervals of type 2 and the third power of the intervals
of type 3. Of course, Theorem B says that Ip = Lp. Nevertheless,
it is temporarily convenient to keep different notations for the two
groups.

Fixed a fundamental system α1, . . . , αn for p, we call index of
a curve or an interval (with respect to α1, . . . , αn) the minimum
number (up to isotopy) of the intersections with α1 ∪ . . . ∪ αn, not
including the endpoints.

Moreover, depending on the fundamental system α1, . . . , αn, we
give the following definitions: xi ≃ αi ∪ αi+1 is the unique interval
such that xi ∪ αi ∪ αi+1 is a Jordan curve whose interior does not
contain any branch point, for i = 1, . . . , n−1; xi,j = (xi)xi+1 . . . xj−1,
for 1 ≤ i < j ≤ n; x̂i,j = (xi)x

−1
i+1 . . . x−1

j−1, for 1 ≤ i < j ≤ n; in
addition, as a notational convenience, we put xi,j = xj,i and x̂i,j =
x̂j,i, for 1 ≤ j < i ≤ n. In particular, we have xi = xi,i+1 = x̂i,i+1.

We remark that the braids x1, . . . , xn−1 are the usual standard
generators of the braid group Bn; similarly, the braids x2

i,j (as well
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as the braids x̂2
i,j) with 1 ≤ i < j ≤ n are standard generators of the

pure braids group Pn ⊂ Bn.

We conclude this section by considering all the intervals and all
the curves of indices 0 and 1 with respect to the fixed fundamental
system α1, . . . , αn.

The intervals of index 0 are the x̂i,j’s. The curves of index 0
are the curves αi,j with 1 ≤ i, j ≤ n, defined in the following way:
αi,i = αi, αi,j = (αi)x̂

−1
i,j if i < j, αi,j = (αi)x̂i,j if j < i. Such

intervals and curves are related by the following equalities:

(αi,j)x̂
−1
j,k =

{
αi,k if i ≤ j < k or j < k ≤ i ,

αi−1,k if k < i ≤ j ;

(αi,j)x̂j,k =

{
αi,k if i ≤ k < j or k < j ≤ i ,

αi+1,k if j ≤ i < k .

The intervals of index 1 are the intervals x̂i,j,k with 1 ≤ i, j, k ≤ n
such that i < k and i 6= j 6= k, given by: x̂i,j,k = (x̂i,j)x̂j,k if i < j < k
and x̂i,j,k = (x̂i,j)x̂

−1
j,k if i < k < j or j < i < k. As a notational

convenience, we also set x̂i,j,k = x̂k,j,i if i > k and x̂i,i,j = x̂i,j,j = x̂i,j

for every i 6= j.

Finally, the curves of index 1 are the curves αi,j,k with 1 ≤
i, j, k ≤ n such that i 6= j 6= k, defined as follows:

αi,j,k =

{
(αi,j)x̂j,k if i < j < k or j < k ≤ i or k < i < j ,

(αi,j)x̂
−1
j,k if k < j < i or j < i < k or i ≤ k < j .

3. Liftable braids with respect to p : B2 → B2

By the results of Section 1, for every n ≥ 1 there exists a unique
(up to equivalence) simple branched covering pn : B2 → B2 of order
d = n + 1 with n branch points. Moreover, the pn’s represent (up to
equivalence) all the coverings of B2 onto itself.

We assume the base point ∗ ∈ S1, the branch points P1, . . . , Pn ∈
Int B2, the fundamental system α1, . . . , αn and the numbering of the
sheets of pn fixed in such a way that: (1) αi joins ∗ to Pi for every
i = 1, . . . , n; (2) the monodromy sequence ϕ(α1), . . . , ϕ(αn) is in the
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canonical form (1 2), . . . , (d−1 d) given in the proof of Theorem A,
namely ϕ(αi) = (i i+1) for every i = 1, . . . , n.

In this section, all the curves αi,j and αi,j,k and all the intervals xi,

xi,j , xi,j,k, x̂i,j, x̂i,j,k, as well as all the indexes of curves and intervals,

except where expressly indicated, are referred to the fundamental

system α1, . . . , αn.

In order to prove Theorem C, let us begin with some preliminary
results about curves. We recall that Ln ⊂ Bn denotes the subgroup
of the liftable braids with respect to pn.

By direct computation we get the following monodromies:

ϕ(αi,j) =

{
(i j+1) if i ≤ j ,
(i+1 j) if j ≤ i ;

ϕ(αi,j,k) =






(j+1 k+1) if i < j < k or i ≤ k < j ,
(j k) if k < j < i or j < k ≤ i ,
(j+1 k) if k ≤ i < j ,
(j k+1) if j < i ≤ k .

Assuming n > 1, we say that a curve α for pn is regular if pα
n is

equivalent to pn−1 ⊔ idB2 . We observe that, if α is a regular curve
then (α)b is a regular curve for any liftable braid b ∈ Ln.

Lemma 3.1. The curve αj is regular for every j = 1, . . . , n. More-
over, the equivalence between pn−1 and the non-trivial component
of p

αj
n is induced by a homeomorphism hj : B2 → B2

αj
such that:

hj(αi) = α′
i for 1 ≤ i < j; hj(αi) = α′

i+1 for j ≤ i ≤ n − 1;

hj(xi) = xi for 1 ≤ i < j − 1; hj(xj−1) = (xj−1)x
−1
j ; hj(xi) = xi+1

for j − 1 < i ≤ n − 2.

Proof. The fundamental system α′
1, . . . , α

′
j−1, α

′
j+1, . . . , α

′
n for p

αj
n

has monodromy sequence (1 2), . . . , (j−2 j−1), (j−1 j+1),
(j+1 j+2), . . . , (n−1 n). Let hj : B2 → B2

αj
be the homeomorphism

uniquely determined (up to isotopy) by hj(αi) = α′
i for 1 ≤ i < j

and hj(αi) = α′
i+1 for j ≤ i ≤ n − 1. By the Lifting theorem, hj

can be lifted to give an equivalence between pn−1 ⊔ idB2 and p
αj
n .

Hence, hj induces an equivalence between pn−1 and the non-trivial
component of p

αj
n . A straightforward computation of the intervals

hj(xi) completes the proof.
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Lemma 3.2. The curves α1,n e αn,1 are regular. Moreover, we have
that: the equivalence between pn−1 and the non-trivial component of
p

α1,n
n is induced by a homeomorphism h1,n : B2 → B2

α1,n
such that

h1,n(αi) = α′′
i for 1 ≤ i ≤ n − 1 and h1,n(xi) = xi for 1 ≤ i ≤

n − 2; the equivalence between pn−1 and the non-trivial component
of p

αn,1
n is induced by a homeomorphism hn,1 : B2 → B2

αn,1
such

that hn,1(αi) = α′
i+1 for 1 ≤ i ≤ n − 1 and hn,1(xi) = xi+1 for

1 ≤ i ≤ n − 2.

Proof. Similar to the previous one, except that we consider the fun-
damental system α′′

1 , . . . , α
′′
n−1 instead of α′

1, . . . , α
′
n−1 for the cover-

ing p
α1,n
n .

Lemma 3.3. The only regular curves of index 0 are α1, . . . , αn, α1,n

and αn,1. Among these, only α1,n and αn,1 are Ln-equivalent to each
other.

Proof. Lemmas 3.1 and 3.2 say that the curves α1, . . . , αn, α1,n and
αn,1 are regular. In the previous section, we observed that any other
curve of index 0 have to be an αi,j with j 6= i and (1, n) 6= (i, j) 6=
(n, 1). If j > i, then the curves α1, . . . , αi−1, αi,j , αi, . . . , αj−1,
αj+1, . . . , αn constitute a fundamental system for pn with mon-
odromy sequence

(1 2), . . . , (i−1 i), (i j+1), (i i+1), . . . , (j−1 j),

(j+1 j+2), . . . , (n n+1).

If j < i then the curves α1, . . . , αj−1, αj+1, . . . , αi, αi,j, αi+1, . . . , αn

constitute a fundamental system for pn with sequence of mon-
odromies

(1 2), . . . , (j−1 j), (j+1 j+2), . . . , (i i+1), (j i+1),

(i+1 i+2), . . . , (n n+1).

In both cases, none of the curves αi,j is regular, as can be immedi-
ately proved by using Lemma 1.4.

For the second part of the lemma, we observe that the mon-
odromies of the curves taken into account are distinct from each
other, with the only exception of ϕ(α1,n) = ϕ(αn,1) = (1 n+1). On
the other hand, since αn,1 = (α1,n)b, with b = (xn−1 . . . x1)

n+1 ∈ Ln,
we have that α1,n and αn,1 are Ln-equivalent.
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Lemma 3.4. Any fundamental system β1, . . . , βn for pn with n > 1,
contains at least two regular curves βi1 e βi2 .

Proof. Let Γ = Γpn(β1, . . . , βn) be the graph associated to β1, . . . , βn.
Moreover, for any i=1, . . . , n, let Γi =Γ

p
βi
n

(β′
1, . . . , β

′
i−1, β

′
i+1, . . . , β

′
n)

be the graph associated to the fundamental system β′
1, . . . , β

′
i−1,

β′
i+1, . . . , β

′
n for pβi

n . By Lemma 1.1, Γ is a tree. On the other hand,
it follows from Lemma 1.4 that all the Γi’s have two connected com-
ponents and that βi is regular if and only if one component of Γi

consists of a single vertex. Then, it is enough to prove that there
exist two graph Γi1 and Γi2 with that property.

The graph Γi can obtained from Γ, by removing the edge ei

and replacing the edge el = {vjl
, vkl

} with the new edge el−1 =
{vϕ(βi)(jl), vϕ(βi)(kl)}, for every l > i. We remark that the edges
e1, . . . , ei−1, as well as all the el’s not meeting ei, are left unaltered.

Now let Γ′ be the full subgraph of Γ generated by all the vertices
of valence greater than 1. It is not difficult to see that Γ collapses to
Γ′ (remember that n > 1). Then, also Γ′ is a non-empty tree.

If Γ′ reduces to a single vertex, this vertex is contained in all the
edges e1, . . . , en of Γ. In this case, we have that Γ1 and Γn have the
required property. Otherwise, Γ′ must contain al least two different
valence one vertices w1 and w2. From these vertices come out two
different edges ei1 and ei2 of Γ − Γ′, such that the graphs Γi1 e Γi2

have the required property.
Let us see how to determine i1 (in the same way could be de-

termined i2). Let el1 be the only edge of Γ′ containing w1. Since
the valence of w1 in Γ is greater than one, there is least one edge of
Γ − Γ′ containing w1. Then, we can set i1 equal to the maximum
among the indices of such edges.

We continue by considering some properties of the intervals. First
of all, we observe that all the intervals xi are of type 3 with respect
to pn, while all the intervals xi,j with j > i + 1 are of type 2.

Lemma 3.5. All the index 0 intervals are of type 3 with respect to
pn.

Proof. We recall that the index 0 intervals are the x̂i,j’s with i <
j. Such intervals are of type 3 by Lemma 2.3, since the curve αi
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meets x̂i,j only at its endpoint, ϕ(αi) = (i i+1) and ϕ((αi)x̂i,j) =
ϕ(αi+1,j) = (i+1 j+1).

Lemma 3.6. All the index 1 intervals are of type 2 with respect to
pn.

Proof. We recall that the index 1 intervals are the x̂i,j,k’s with i < k
and i 6= j 6= k. The curve αi meets x̂i,j,k only at its endpoint and we
have that (αi)x̂i,j,k coincides with αi+1,j,k if i < j < k or i < j < k
and with αi,j,k if j < i < k. In any case, the transpositions ϕ(αi)
and ϕ((αi)x̂i,j,k) are disjoint. Then, x̂i,j,k is of type 2 by Lemma
2.3.

Lemma 3.7. There are no intervals of type 1 with respect to pn.

Proof. Given any interval x and any curve α which meets x only
at its endpoint, let β1, . . . , βn be any fundamental system such that
β1 = α and β2 = (α)x. If x were of type 1, ϕ(β1) would coincide
with ϕ(β2), in contradiction with Lemma 1.1 and Lemma 1.4.

For sake of simplicity, we denote by In ⊂ Ln the group Ipn

generated by the liftable powers of intervals. The braids x3
i and x2

i,j

with 1 ≤ i < n and i + 1 < j ≤ n belong to In. In fact, we will see
that they generate In.

Lemma 3.8. If α is a curve whose interior meets each one of the
curves α1, . . . , αn in at most one point, then α is In-equivalent to a
curve of index 0.

Proof. We proceed by induction on the index of α, assuming that α
minimizes the number of intersection points with α1 ∪ . . .∪αn in its
isotopy class.

We start with the index 1 case. In this case, we have the curves
α = αi,j,k, with 1 ≤ i, j, k ≤ n such that i 6= j 6= k, defined in Section
2. If i = k, it suffices to observe that αi,j,i is In-equivalent to the
index 0 curve (αi,j,i)x̂

±3
i,j = αi±1,j , where ± is the sign of j − i, being

x̂i,j of type 3 by Lemma 3.5. If i 6= k, then αi,j,k is In-equivalent
to (αi,j,k)x̂

±2
i,j,k, where ± is the sign of j − i, being x̂i,j,k of type 2 by
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Lemma 3.6. The curve (αi,j,k)x̂
±2
i,j,k has index 0 if |i− j| = 1, while it

coincides with the curve αi±1,j,k, if |i − j| > 1. So, we can conclude
the case of the αi,j,k’s with i 6= k, by induction on |i − j| ≥ 1.

Now we suppose that α has index > 1. Let Pk be the endpoint
of α and let Qi ∈ α ∩ αi and Qj ∈ α ∩ αj be respectively the last
but one and the last point in which the interior of α (oriented from ∗
to Pk) meets the curves α1, . . . , αn. We consider the following arcs:
ti ⊂ αi with endpoints Qi and Pi, tj ⊂ αj with endpoints Qj and
Pj , si ⊂ α with endpoints Qi and Pk, sj ⊂ α with endpoints Qj and
Pk. By hypothesis we have i 6= j. Moreover, we can assume j 6= k,
otherwise we could remove the intersection Qj up to isotopy.

If i = k, the interval x = tj ∪ sj has index 0. Then, by Lemma
3.5, α is In-equivalent to the curve (α)x±3, with sign − if tj is on
the left of α and sign + if tj is on the right of α. The curve (α)x±3

has index less than α (the intersections Qi and Qj disappear) and it
is In-equivalent to a curve of index 0 by the induction hypothesis.

If i 6= k, the interval x = ti∪si has index 1. Then, by Lemma 3.6,
α is In-equivalent to the curve (α)x±2, with sign − if ti is on the left
of α and sign + if ti is on the right of α. The curve (α)x±2 has index
less than α (the intersection Qi disappears) and it is In-equivalent
to a curve of index 0 by the induction hypothesis.

Lemma 3.9. Every curve α is In-equivalent to a curve of index 0.

Proof. We proceed by induction on n. For n = 1 there is nothing
to prove. So, let us suppose n > 1. First of all, we consider the
special case in which α∩αj = {∗} for some j = 1, . . . , n. By Lemma
3.1 and by the induction hypothesis, it exists a braid b ∈ Ip

αj
n

such
that the curve (α′)b has index 0 with respect to the fundamental
system α′

1, . . . , α
′
j−1, α

′
j+1, . . . , α

′
n for p

αj
n . The braid b can also be

considered as a braid in In and it is easy to verify that the curve
(α)b satisfies Lemma 3.8. Then α is In-equivalent to a curve of index
0. By Lemma 3.2, also the cases α ∩ α1,n = {∗} and α ∩ αn,1 = {∗},
with the braid b respectively in Ip

α1,n
n

and in Ip
αn,1
n

can be treated
in an analogous way.

Now we carry on the proof by induction on the index of α, as-
suming that α meets every αj in some point other than ∗. For every
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j = 1, . . . , n, we denote by Qj the point of α∩αj nearest to Pj along
αj , and by βj the curve obtained following α from ∗ to Qj and then
αj from Qj to Pj . If Pk is the endpoint of α, then βk = α and all
the curves βj with j 6= k have index less than α. Since the curves
β1, . . . , βn, suitably renumbered, constitute a fundamental system,
Lemma 3.4 ensures the existence of l 6= k such that βl is regular.
By the induction hypothesis, there exists b ∈ In such that (βl)b has
index 0. Then (βl)b coincides either with some αj or with α1,n or
with αn,1. Hence, (α)b is In-equivalent to a curve of index 0, being
included in the cases examined at the beginning of the proof. It
follows that α is as well In-equivalent to a curve of index 0.

Lemma 3.10. Ln is generated by liftable powers of intervals.

Proof. We proceed by induction on n. If n = 1 there is nothing
to prove. If n > 1 and b ∈ Ln, then Lemmas 3.9 and 3.3, give
us a braid c ∈ In such that (αn)bc = αn, in such a way that bc
can be considered as a braid in Lp

αn
n

. By the regularity of αn and
by induction hypothesis, we have bc ∈ Ip

αn
n

⊂ In and therefore
b ∈ In.

Now, let Jn ⊂ Ln denote the subgroup generated by the braids
x3

i and x2
i,j with 1 ≤ i < n and i+1 < j ≤ n. We want to prove that

actually Jn = Ln, that is our Theorem C.
To get this goal, observe that in the proof of Lemma 3.10 we

do not use the liftable powers of all the intervals, but only of some
particular intervals. Therefore, it is enough to show that each one of
these particular intervals is Jn-equivalent to some xi or xi,j.

Lemma 3.11. Every interval x = (xi)x
ei+1

i+1 . . . x
ej−1

j−1 , with ei+1, . . . ,
ej−1 = ±1 and 1 ≤ i < j ≤ n, is Jn-equivalent to some xh,k, so all
the liftable powers of x belong to Jn.

Proof. By induction on the number of negative el’s. If all the el’s
are positive, then x = xi,j. Otherwise, let m ≥ i + 1 be the
minimum integer such that em = −1. If m = i + 1, then x =
(xi)x

−1
i+1x

ei+2

i+2 . . . x
ej−1

j−1 = (y)z2x3
i with y = (xi+1)x

ei+2

i+2 . . . x
ej−1

j−1 and

z = (xi)xi+1x
ei+2

i+2 . . . x
ej−1

j−1 . Since y and z are Jn-equivalent to some
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xh,k by the induction hypothesis and z is of type 2 (so z2 ∈ Jn),
we have that also x is Jn-equivalent to some xh,k. If m > i + 1,
then x = (xi)xi+1 . . . xm−1x

−1
m x

em+1

m+1 . . . x
ej−1

j−1 = (t)x2
i,m with t =

(xi)xi+1 . . . xm−1xmx
em+1

m+1 . . . x
ej−1

j−1 . Since t is Jn-equivalent to some
xh,k by the induction hypothesis, also x is Jn-equivalent to some
xh,k.

Lemma 3.12. Every interval x of index ≤ 1 is Jn-equivalent to
some xh,k, so all the liftable powers of x belong to Jn.

Proof. The intervals of index 0, that is the x̂i,j’s have been already
considered in Lemma 3.11. The same also holds for the intervals of
index 1 of type x̂i,j,k with i < j < k, in fact for these intervals we
have x̂i,j,k = (xi)x

−1
i+1 . . . x−1

j−1xjx
−1
j+1 . . . x−1

k−1.

It remains only to deal with the intervals x̂i,j,k = (x̂i,j)x̂
−1
j,k such

that either i < k < j or j < i < k. In the first case we have that x̂i,j,k

is Jn-equivalent to the interval (x̂i,j,k)x̂
3
j,k = x̂i,k,j. In the second case

we have that x̂i,j,k is Jn-equivalent to the interval (x̂i,j,k)x̂
−3
i,j = x̂j,i,k.

Hence, in both the cases x̂i,j,k is Jn-equivalent to an interval having
the form considered above.

Proof of Theorem C. We proceed by induction on n. For n = 1
there is nothing to prove. So, let us suppose n > 1. In the proof of
Lemma 3.8, the In-equivalence desired is obtained by using liftable
powers of intervals of index ≤ 1, which belong in Jn by Lemma
3.12. On the other hand, in proofs of Lemmas 3.9 and 3.10, we
use liftable powers of intervals in Ip

αj
n

, Ip
α1,n
n

and Ip
αn,1
n

. By the
induction hypothesis, these groups are generated by braids of the
form y3

i and y2
h,k with yi = h(xi) and yh,k = h(xh,k), where h denotes

one of the homeomorphism hj , h1,n and hn,1 given by Lemmas 3.1
and 3.2. It is not difficult to see that the intervals yi and yh,k are
among the ones considered in Lemma 3.11, so their liftable powers
belong to Jn.

Then, we can replace the group In with the group Jn in Lemmas
3.8 and 3.9 as well as in the proof of Lemma 3.10, in order to get

Ln = Jn.
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4. Liftable braids with respect to p : F → B2

All this section is devoted to prove Theorem B. Here, we consider
an arbitrary connected simple branched covering p : F → B2 of
order d with n branch points. As in the previous section, we assume
the base point ∗ ∈ S1, the branch points P1, . . . , Pn ∈ IntB2, the
fundamental system α1, . . . , αn and the numbering of the sheets of p
fixed in such a way that: (1) αi joins ∗ to Pi for every i = 1, . . . , n;
(2) the monodromy sequence ϕ(α1), . . . , ϕ(αn) is in the canonical
form given in the proof of Theorem A.

Lemma 4.1. Let β be a curve such that pβ is connected and let
β1, . . . , βn be a fundamental system for p. Then β is Ip-equivalent
to a curve γ such that γ ∩ βi = {∗} for some i = 1, . . . , n.

Proof. Let γ be a curve of minimum index with respect to the fun-
damental system β1, . . . , βn among all the curves Ip-equivalent to
β. Let us also assume that γ minimizes the number of intersection
points with β1 ∪ . . . ∪ βn in its isotopy class. We claim that there
exists an integer i = 1, . . . , n such that γ ∩ βi = {∗}.

Suppose, by the contrary, that γ meets any βi in some point
other than ∗. For each i = 1, . . . , n, we denote by Qi the last point
of γ ∩ βi along βi (starting from ∗) and with γi the curve obtained
following γ until Qi and then βi until its endpoint. Up to isotopy, we
can suppose γi ∩γj = {∗} for all i 6= j. If the endpoint of γ coincides
with the endpoint of βk, then γk = γ and any curve γi with i 6= k
has index less than γ. We denote by σi = ϕ(γi) the monodromy of
γi. In particular, let σk = (a b) be the monodromy of γ.

Let us consider the intervals yi,j ≃ γi ∪ γj for i 6= j and 1 ≤
i, j ≤ n. We observe that all the yi,k’s are of type 3, that is any
transposition σi with i 6= k is distinct but not disjoint from (a b).
Indeed, if yi,k were of type 1 or 2 then γ would be Ip-equivalent to
the curve (γ)y±2

i,k , with − or + depending on whether γi is on the
left or on the right of γ, which has index less than γ.

On the other hand, if γi and γj, with i, j 6= k, are on the same side
with respect to γ, then {σi, σj} 6= {(a b), (b c)}. Indeed, assuming
that Qi precedes Qj along γ (starting from ∗), the equality {σi, σj} =
{(a b), (b c)} would imply the liftability of the interval x = (yj,k)y

±2
i,j ,
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with − or + depending on the fact that γi and γj are on the left or
on the right of γ. Therefore, γ would be Ip-equivalent to the curve
δ = (γ)x±1, with the same choice for the sign, which has index less
than γ.

Analogously, if γi and γj , with i, j 6= k, are on opposite sides
with respect to γ, then σi 6= σj. Indeed, assuming as above that Qi

precedes Qj along γ (starting from ∗), the equality σi = σj would
imply the liftability of yi,j. Therefore, γ would be Ip-equivalent to
the curve δ = (γ)y±1

i,j , with − or + depending on the fact that γi is
on the left or on the right of γ, which has index less than γ.

Hence, by renumbering the γi’s in clockwise order, we get a new
fundamental system for p, whose monodromy sequence has the form

(c1 d1), . . . , (ch−1 dh−1), (a b), (ch+1 dh+1), . . . , (cn dn)

and satisfies the following properties: ci 6∈ {a, b} and di ∈ {a, b} for
any i 6= h; if i, j < h or i, j > h then ci = cj ⇒ di = dj ; if i < h < j
then ci = cj ⇒ di 6= dj . Then, by putting C−

a = {ci | di = a∧ i < h},
C+

a = {ci | di = a ∧ i > h}, C−
b = {ci | di = b ∧ i < h} and

C+
b = {ci | di = b ∧ i > h}, we have C−

a ∩ C−
b = C+

a ∩ C+
b =

C−
a ∩ C+

a = C−
b ∩ C+

b = ∅.

Now, the fundamental system γ′
1, . . . , γ

′
h−1, γ

′
h+1, . . . , γ

′
n for the

covering pγ has monodromy sequence (c1 d1), . . . , (ch−1 dh−1),
(ch+1 d̄h+1), . . . , (cn d̄n), where d̄i = a if di = b and d̄i = b if di =
a. Such a sequence of transpositions can be reordered in the form
(e1 a), . . . , (el a), (el+1 b), . . . , (en−1 b) with ei ∈ C−

a ∪ C+
b if i ≤ l

and ei ∈ C+
a ∪C−

b if i ≥ l + 1. Therefore the two sets C−
a ∪C+

b ∪{a}
e C+

a ∪ C−
b ∪ {b} are disjoint, non-empty and closed with respect to

the action of the group generated by these transpositions. Of course,
this fact contradicts the connection of pγ ∼= pβ. So, γ cannot meet
any βi in some point different from the point ∗.

Lemma 4.2. Let β be a curve such that β = (αm)b, with b ∈ Lp and
1 ≤ m ≤ n, and pβ ∼= pαm is connected. Then β is Ip-equivalent to
a curve δ such that δ ∩ αi = {∗} for some i = 1, . . . ,m and δ starts
from ∗ on the left (resp. right) of αi if i < m (resp. i ≥ m).
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Proof. By Lemma 4.1, β is Ip-equivalent to a curve γ which meets at
least one of the αi’s only in ∗. In other words, the set S ⊂ {1, . . . , n}
of the i’s such that γ ∩ αi = {∗} is nonempty. We can also assume
that γ has minimum index (with respect to the fundamental system
α1, . . . , αn) among all the curves having such property in the Ip-
equivalence class of β.

If there exists i ∈ S such that either i < m and γ starts from ∗
on the left of αi or i ≥ m and γ starts from ∗ on the right of αi, then
we can put δ = γ.

If such an i does not exist, but there exists i ∈ S such that the
interval x ≃ γ ∪ αi is of type 1 or 2, then we can put δ = (γ)x±2,
with + or − depending on the fact that γ starts from ∗ on the left
or on the right of αi.

In the remaining cases, all the curves αi with i ∈ S have the
same monodromy and start from ∗ on the same side with respect to
γ. Assuming this property and also that γ minimizes the number of
intersection points with α1∪ . . .∪αn in its isotopy class, we construct
the curves γ1, . . . , γn as in the proof of Lemma 4.1 with the αi’s in
place of the βi. In particular we get γi = αi if i ∈ S. At this point,
we can carry on the proof analogously to the proof of Lemma 4.1,
with the only difference that, each time a curve γi with i ∈ S is
involved in the reasoning, we get a good definition of δ instead of a
contradiction with respect to the minimality of γ.

Proof of Theorem B. We proceed by induction on the number n of
branch points of p. For n = 1 the result is trivial. So, let us suppose
n > 1.

On the other hand, the case p ∼= pn has been examined in Lemma
3.10. Hence we can also assume p 6∼= pn, in such a way that there
exists m ≤ d−1 minimum index such that ϕ(αm) = ϕ(αm+1). Then
pαm is connected and ϕ(αm) = ϕ(αm+1) = (m m+1).

We start by observing that, if b ∈ Lp and there exists a curve α
for p such that pα is connected and (α)b is Ip-equivalent to α, then
b ∈ Ip. Indeed, if c ∈ Ip is such that (α)b = (α)c, then (α)bc−1 = α
and therefore bc−1 can be thought as a braid in Lpα . By the induction
hypothesis, we have bc−1 ∈ Ipα ⊂ Ip and therefore b ∈ Ip. It is easy
to see that an analogous argument also holds if pα is not connected
but has at most one non-trivial component.
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Now, let b ∈ Lp be an arbitrary liftable braid. By Lemma 4.2, the
curve β = (αm)b is Ip-equivalent to a curve γ such that γ ∩αi = {∗}
for some i = 1, . . . , n. Moreover, γ starts from ∗ on the right of αi if
i < m and on the left of αi if i ≥ m. At this point, we conclude the
proof by checking separately the three possible cases.

(1) i < m. In this case ϕ(αi) = (i i+1) and both the restrictions
pαi and pαi,αm have two components, one of which is trivial (the one
corresponding to the sheet i + 1 with respect to the base point ∗′).
On the other hand, pγ is connected and therefore the components of
pαi,γ can not be more than two and they coincide with the ones of
pαi . By Lemma 2.2, there exists c ∈ Lp such that (αi)c = αi and
(αm)c = γ. By applying the induction hypothesis to c thought as a
braid in Lpαi , we have that c ∈ Ipαi ⊂ Ip and therefore β = (αm)b is

Ip-equivalent to αm. Finally, the starting observation enable us to
conclude that b ∈ Ip.

(2) i = m,m + 1 or i > m + 1 with m = d − 1. In this case
the interval x ≃ γ ∪ αi is of type 1 and γ is Ip-equivalent to αi and
therefore to αm. Then b ∈ Ip, since β = (αm)b is Ip-equivalent to
αm.

(3) i > m+1 with m < d−1. In this case we have ϕ(αi) = (l l+1)
with l > m, moreover the restrictions pαi and pαm,αi are both con-
nected or they have two components one of which is trivial (the
one corresponding to the sheet i + 1 with respect to the base point
∗′). We consider a fundamental system δ1, . . . , δn−2, γ, αi for p and
set ϕ(δj) = σj for each j = 1, . . . , n − 2. Then σ1 . . . σn−2 =
ϕ(ω) (l l+1) (m m+1) = (m m−1 . . . 1)σ(l l+1) (m m+1) with
σ product of cycles all disjoint from (m m−1 . . . 1). It follows
that (σ1 . . . σn−2)

m(m) = m + 1. Hence the orbits of the action
of 〈σ1, . . . , σn−2〉 ⊂ Σd coincide with the ones of the action of
〈σ1, . . . , σn−2, (m m+1)〉, so that also the components of pγ,αi corre-
spond to the ones of pαi . By Lemma 2.2, there exists c ∈ Lp such
that (αm)c = γ and (αi)c = αi. Then, we can conclude that b ∈ Ip

by the same argument of case (1).

At this point, in order to prove that Lp is finitely generated
and therefore can be generated by a finite set of liftable powers of
intervals, it suffices to observe that Lp is a subgroup of finite index
of Bn (see [8]). In fact, given b, c ∈ Bn, we have that bc−1 ∈ Lp if
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and only if ϕ((αi)bc
−1) = ϕ(αi) for every i = 1, . . . , n, by Lemma

2.1. Then b and c belong to the same coset of Lp in Bn if and
only if ϕ((αi)b) = ϕ((αi)c) for every i = 1, . . . , n. This means that
there is a bijective correspondence between cosets of Lp in Bn and
admissible sequences of transpositions of Σd of length n. Therefore
|Bn : Lp| ≤ (d(d − 1)/2)n.
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